The Tree Machine: A Highly Concurrent

Computing Environment

Thesis by

Sally Anne Erowning

In Partigl Fulfillment of the Requirements

for the Degree of Docter of Philosophy

California Institute of Technology

Pasadena, California

i?80

(Submitted Janvary 45, 1980)

-ii-

Acknowledaements

The Computer Science Department at Caltech provides a
marvelous backdrop for learning how to do research. The
faculty’s unconventional approach to Computer Science is
hard to resist,

Two faculty members deserve special thanks. Carver Mead
and I have maintained @ dialog about Oregon and about
software systems since my first week at Caltech, He
proposed the tree machine to me as a potentially
interesting concurrent programming environment suvited to
VLSI. That proposal 1led to the research described here.
Martin Rem not only influenced the development of the tree
machine notation, but was instrumental in constraining the
scope of the research to a managable set of questions. His
return to Holland in 4978 provided me with an excuse to see
a lot of Europe while consulting him about tree machines,

Three of my fellow students have also contributed to this
research., Bart Locanthi provided insights into the maze of
numerical analysis algorithms and svggested improvements to
the processor instruction set, Jim Rowson and " Mike Ullner
not only were involved in the design of wmany of the
algorithms included here, but also had the fortitude to
read and correct this document. Many thanks,

During my first two years at Caltech, I was supported by a
predoctoral fellowship from the International Business
Machines Ceorporntion. My research has been partially
supported by the Defense Advanced Research Pro jects Agency
vnder contracts #N004i23~-78-C-0806 and #NO00L14-79-C-0597.

-iii-

Abstract

An architecture for a VLSI wmultiprocessor machine is
proposed. The processors are connected together as a
binary tree., A collection of algorithms are mapped onto
the tree machine. These include heap sort, transitive
closure, the travelling salesman, and wmatrix inversion,
among others. A model of computational complexity for the
tree machine is suggested, and the algorithms are analyzed
in the context of that model, A notation for expressing
the algorithms is described, a processor design is
proposed, and a compiler for the notation and processor is

presented.

Introduction..ﬂl."ll!l'llllll

£. The
i.4

fo

e I T
H Gl

2. The

K o N

o

R ST B QPRI T R

LV 3

Table of Contents

anese sevesmore

Tree Machine.,..voosvs
The Tree Machine.......
A First Step: Simula...
A Second Step: CSP.....

f Tree Machine Notation.

Analysis of Algorithms....

¢ & & 0 0

Random Access Machine Model......

Reference Machine #Model....

Turing Machine Model. ..
Tree Machine Model.....
Sorting. v et esae
Transitive Closure.....
Closing Remarks........

-
-
-
-
-
-

3- NP"COMple‘te P!‘ObleMS.........-.--.‘...

An Introduction to NP-Completeness.

Theclique P"oble“'l'."llllll"l'l

The Color Cost Problem. .o anoss

8 2 9 0 @
e 8 68 % @
e ¢ 9 38 &
e 8 8 8 0
e ¢ 8 8 ¢
e 0 e 0 2
¢ ¢ 0 0 2
LI I I I)
e 2 80

L I I I)
e s 8 0 @
"8 8 0 0
e 8 ¢ ¢ @8
£ 8 9 0 8
s ¢ 0 0 o
e 98 0 0 0
e 2 2 2 0

The Travelling Salesman Problem..........
NP-Complete Problems and the Tree Machine,

4, Matrix Manipulation.....ss..

4.4
4.2
4.3
4.4

4.5

Matrix Multiplication...

Matrix Inversion........

Solving Ax=y and AX=E...

LU Decomposition....vivss

L

¢ ¢ & & & ¢

]

Matrix Problems on the Tree.......

90001

a4
R -t
N -
.48

l.lP—S

A 34
co 40
<o 45
1)
.49
v oo 64
v bb
v 75

0077
v 77
v 79
.. .89
N
.. 405

. .408
.. 408
114
. 427
.. 428
.. 430

uv-

S. The Processor Architecture...coosoa004

5.4

An Overview of the Processor...

$.2 The 8S8ize of Each Processor.....
5.3 The Instruction Set..cooosroas
5.4 Code Generation...ovevessvosson
$.%5 Loading the Tree Machine.......
5.6 Floating PoOLnt..ceoneinronnsnes
6, "As Lovely as a Tree". .o onnnons
6.4 ConcurrenCcy....ccoceeves ot cnnns
6.2 Communication....seoessnornons
6.3 Future Directions. . vovivevvonas
ReferenCes. co oottt snar oo sass

£

L

.. 4314
.. 432
v 134
. 436
.. 443
..4150
.. 456

166
167
.. 469
. 471

. 184

i.4.4
i.4.2
i.4.3
i.4.4
1.4.5

2.4.14
2.4.2
2.4.3
2,3.4
2,3.2
2.3.3
2.4.4
2.4.2
2.4.3
2.4.4
2.4.5
2.5.4
2.5.2
2.6.4
2.6,2
2.6.3
2.6.4
2.5.6

3.2.4
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

List of Fiqures and Tables

Some Potential Wiring Patterns..cciosovesvscoconsos o?

External Connections for the Wiring Patterns....

Allocation Technique for Mismatched Fanouts.....

Tree Characteristics with Mismatched Fanovts.,...

A Planar Layout of a Binary Tree Machine......

Vector Summing Solution #41 (RAM model)........
Vector Summing Solution #2 (RAM model)........
Machine Language Translation.... s evernnnraos
A Turing Machine ... covvn ot nntsssennoroans
Sample Turing Machine Tape...+itvivrvivrenonas
Turing Machine Program: Addition......vo 0
Vector Summing Tree, n=45.. .00 et sor ot sansas

The Vector Summing Tree. . oottt otononsos

The vSumRoO0Ot Processor. i vv et sssacs oo
The vBuUM Processor . voes it snasisnrtrsosoonassas
The vSumbeaf Processor....vovvirvsenosrooonson
The Sort Tree. oot otsrtri st tsortsesssoosasss
The sort and sortLeaf Processors.....ivvor040.
Warshall’s Aigorlthn for Transitive Closure...

The Transitive Closure Tree.. ..ottt oans
The closureRoot Processor...cooiieotortntonorsonas
The node Processor....oveiotrrsrsssstossesonans
The endNode Processor....cosoieeotoortosoancens

Problem Subgraphs in Planarizing Technique....
Algorithmic Generation of Potential Cliques...

The Connection Plan for the Clique Tree.......
The cliqueRoot Processor....ccooveistoasnassas
The clique ProcCessor . cooeercroscostossosssasses

The cliqueleaf ProcCessSo0r. .ot ocososnsonss

*

'l8
42
A2

45

42
43
.44
46
47
.49
.54
.52
.55
.57
.59
62
64
67
69
72
74
75

.80
.81
.84
.85
.87
.89

3.3.4
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4.4
3.4.2
3.4.3
3.4.4
3.4,5
3.4,6
3.4.7

4.4.4
4.4.2
4.4.3
4.1.4
4.4.%
4.2.14
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.3.14

S5.4.4
S.2.4
5.3.4
5.3.2
$.3.3

-yii-

A Sample Graph for the Color-Cost Problem..........94
Solution to Sample Coloring ProblemM.... . vivvvsis s .93
The Connection Plan for the Color-Cost Tree........93
The colorRoot Processor..c.vverroanrsrossnnrssnniss 74
The coloring Processor. ..ot vveortocaststonosscsnsss ?6b
The colorLeaf Processor...civversirnortrnssotsneses 27
Sample Salesman Tree, N=5. . it irotrissssnconssrse 78
Travelling Salesman Example. ..o v e orosssaoces 404
Solution Tree for Example ProblemMm..,..vevvivuerse. 404
The Travelling Salesman Tree. .. oottt e00000.402
The salesmanRoot Processor.....ivivecoassnronssons 403
The salesman Processor... i oo irsevnrsrssssersrsses 04
The salesmanleaf Processor.....icooviiiovsiianses 405
Matrix Multiplication Processor Tree...ciovevee...409
Sample Loaded Matrix Multiplication Tree....440
The root Processor . ocororononosornsssrsossrsoanness il
The row Processor. . vvesrrisvcnnrsonsersonsiorasss 442
The element Processor.,...orsoiritrtaosssvsnsssssons 443
An Augmented MoOtrixX. .o ot rrorsvenrrsorrarias.14S
The Matrix Inversion Processor Tree......ii0000:..447
Time Complexity for Inverting an nxn Matrix.......119
The root Processor. i cversrtsoecvnisonnossnosoras 424
The row Processor. . i vciiorsvriroasncensnonsersssss 423
The element ProCessor voestriinnnasensrenassesi2d
Time Complexity for Column Organization...........425
Time Complexity for Solving AX=B on the Tree......1i28
A Block Diagram of the Processor....ireees10000:0.433

Space Requirements of the Tree Machine Algorithms.4i36

Control Flow INStruCtions ... cooesosorsscsesossoosss 839

Communication

Inetructions., « v o v oveoosssanrosssesrecidi

Data Flow InsStructlons.scovsossssossaosssensssesesidB

S.4.14
5.4.2
5.4.3
$5.4.4
5.4.%

$5.4.6
5.4.7
$.5.4
5.5.2
$.5.3
5.5.4
5.5.%
5.6.4
5.6.2
5.6.3

-viii-

The Assignment Statement SyntaX. cvovovroooo o

Code Generation for the Assignment Statement,

Code Generation for the Messaqge Statement....

Conditional and Repetitive Statement Syntax.

Conditional and Repetitive Statement
Code Generation. . ccooseesstosoeas
The newCclorSorter Processor...vecoree
The padding and bin Processoers........
Program Header....cvvoovvnnsnnssonoos

fAssigning Unique Addresses to Processors,
Path-Oriented Address Assignment.........
Code Stream OpcodesS. . cvvvooiovtvononnnnas
Loading a Tree Machine.... v vivarnvonoes

Matrix Multiplication/Inversion Tree for n=5,
Multiplication: The Sum of Partial Proeducts.,

Division: Blazingly Slow...: ittt tssssos

The Compilation Process...cicontvarinarsnnsas

]

. 445
445
146
447

. 4148
. 449
450
454
452
453
.45%
456
462
164
i64

475

Introduction

As very large scale integration (VLSI) becomes a reality,
we have the opportunity to redefine the notion of what a
computer is. The traditional view of a single large
processing wunit physically separated from a large store by
a memory bus ils certainly realizable in VLSI,. But because
processing elements and storage elements can both be
implemented in silicon, we may now consider other
architectures.

One new approach to designing computers is to embed an
algorithm directly into silicon, There are several
examples of special purpose designs in the literature,
concentrated in the Proceedings of the Caltech Conference
on Very Large Scale Integration held in Januvary of 1979.

My research has centered around the notion of a general
purpose computing environment that capitalizes on the
properties of VLSI, Ivan &Sutherland and Carver Mead
discussed the properties of VLSI in "Microelectronics and
Computer Science", published in Scientific éAmerican in

e oadie eacae

September of 1977. Among the things they w#ention are 4)
that wmost of the space on a chip is occupied by the wires
that carry control and data information to the function
blocks, 2) that regularity of the interconnect means that
it will be less expensive in both design time and area, and
3) that 1local communication is less expensive than global
communication. In the concluding remarks, they say

o

“We believe adequate theories that account for
the cost of communication will be an important
guide for designing the machines that have been
made possible by the integrated-circuit
revolution.”

In the pages that follow, a general purpose wmachine is
presented, It is a collection of small processors, each
with some local storage, connected together as a binary
tree. It has a regular interconnection pattern and relies
on local communication only. The machine description is
accompanied by a notation that requires explicit statement
of communication and a model of computational complexity in
which the time cost is dominated by the communication cost,
The notation and computational model are wused to map a
collection of algorithms from the seqgquential view of
computation to the highly concurrent world of the tree
machine, The model of computation, neotation, body of
algorithms, and infant machine design provide a first cut
at the "adequate theory” that Sutherland and Mead describe.

The first chapter of this dissertation introduces the tree
machine, and discusses the reasons why a tree-structured
interconnection pattern was chosen., The notation wused to
program the tree - is also presented, along with some
backgound information about how the notation evolved. The
second chapter begins with a discussion of traditional
complexity theory in order to 1lay a foundation <for the
discussion of complexity on the tree machine. The chapter
closes with a look at how some familiar algorithms, heap
sort and transitive closure, can be mapped onto the tree
machine,

The third and fourth chapters present the main body of tree
machine algorithms. The third chapter introduces the
notion of NP-completeness and presents algorithms for three

NP-complete problems, including the familiar travelling
salesman problem. The fourth chapter addresses some matrix
manipuvlation algorithms., In both chapters, the algorithms
are analyzed accoerding to the computational wmodel
introduced in Chapter 2.

The §ifth chapter lintroduces the beginnings of a system
design for the tree machine,. It contains a block level
design of the individual processors, an instruction set, a
strategy for compiling the tree machine notation into the
instruction set, and a protocol for loading the tree.

The sixth and final chapter talks about <the contributions
this work has made in emphasizing that communication is the
most significant measure of cost in a highly concurrent
programming environment, There is a collection of hard and
as yet unsolved problems that I have found during the
course of this research. Some of these are mentioned in
the 1last chapter, pointing to future directions the
research might take.

Chapter One

The Tree Machine

Processors and memory have historically been designed and
implemented as distinct modules separated by a bus. This
arrangement made sense at one time since the two ‘uere
implemented in completely different media, and the bus made
communication between them possible. With the arrival of
silicon technology, however, both logic and memory can be
implemented in the same medium, Why not implement them
both on the same chip? Better yet, why not implement the
traditional large processor and large memory as a large
collection of small modules, each with a small processor
and a small memory. Might noet the sum of the parts be
greater than the whole? '

The next pages present a proposal for a machine made in
just that way a large number of small, almost
inconsequential processors are assembled into a system that
can outperform a large single processor system., The machine
proposed here is called a tree machine: the many processors
are connected as a binary tree,

Chapter One begins with a description of the tree machine,
concentrating on the rationale behind the machine design.
Fellowing the machine description, a notation for
programming it is given. The second chapter begins with an
introduction to traditional complexity theory, recalibrates
the theory to <the highly concurrent world of the tree
machine, and looks at esome Familiar algorithms Iin the
context of the tree wmachine. The third chapter looks at

some problems that are intractable on single processor
machines, The fourth chapter presents some Matrix
manipulation algorithms, The fifth chapter describes the
underlying processor architecture and the system support
programs, The final chapter reiterates the high points of
the previous seven, and talks about future directions.

4.4 The Tree Machine

The tree machine is composed of many tiny processors, each
with a semall amount of program store, o few registers for
data, and general arithmetic and 1logic capabilities. The
processors are connected together to form a binary tree.
That is, each processor has a single parent processor and
all but the leaves have two descendents. These connections
are the only communication paths in the system.

The next paragraphs will attempt to answer a series of
questions about the tree machine: Why a tree? Why a binary
tree? Is it a special purpose machine? Is it practical
to build? If s0, how can 1t be programmed?

i.4.4 Why a tree?

Suppose you have a pile of ten thousand processors, and
have been given the task of organizing them ds a system,
How would you wire them together? The most general way is
to connect each processor <to every other processor, as
shown in figure 4.4.i(a). Thie might work for tens of
processors, but is nearly impossible for thousands of

processors. In this case, each processer n®ust have 9999
connections: you would end up with a hopeless jumble of
about S0 million wires!

Suppose you connect the ten thousand processors together in
a long chain, o la figure 1.4.4(b). Then there are only
ten thousand wires, one per processor, But suppose the
first processor wants to communicate with the last one: the
message must travel the whole length of the chain, through
9998 intermediate processors, Hooking the ends of the
chain together into a loop, as in figure 1.4.1(c), softens
the blow a 1little. The longest distance a message might go
is half way: through 4999 processors.

Another option is to make some kind of rectangular mesh out
of the processors. Figure i.i.4(d) shows one such pattern,
Here the number of wires is manageable, and the worst case
access time is faster than either the chain or the ring.
The ten thousand processors can form a 400 by 400 grid; the
most distant processors are separated by 197 intermediate
processors,

The final wiring pattern shown in figure 4.4.4 is a tree.
Here again, the number of wires is proportional to the
number of processors, but the access time is considerably
better than any of the other schemes. Suppose the tree is
a 40-ary tree: each processor has 10 descendents. The
distance between the root and the leaves is log1010,000=4,

The 1longest distance any message must travel is twice the
height of the tree.

The table in figure 4.4.4 summarizes the wire requirements
and access time for the five wiring patterns discussed,

& DO
(a) complete graph (b)) chain
(c) ring (d) mech

(e) tree, fanout=m

wiring pattern ¥ wires access time
(1) complete graph n{n-1)/2 i

(b) chain n-4% n-4i

(c) ring n n/2

(d) mesh 2(n=/n) EQJ;-i)
(e) tree, fanout=m n—4i Elogmn

Figure $.1.4 Some Potential Wiring Patterns.

The fast access time to any processor in the tree is part
of the answer to the question, "Why a tree?”.

Another part of the answer has to do with the number of
external connections: how many processors reside on the
*edges" of the pattern, If, for example, several
processors reside on a chip, how many pins must be made
available to wire the chips together? Figure 1.4.2 shows
the connection requirements for the five wiring patterns of
figure 4$.4.4. Notice that the chain, the ring and the tree
are the winners: in each case, the number of pins required
is independent of the number of processors on a chip. As
technology improves and more and more devices can be put on

a chip, we don’t want to have to move to larger and larger
packages,

n = number of processors in system
M = number of processors on a chip

wiring pattern external connections
(a) complete graph (n{n-4) - mim=-4))/2
(b) chain 2
(c) ring 2
(d) mesh 4 m
(e) binary tree (leaf chip? i

binary tree (non-leaf) 1 + (m+d)

Figure 1.4.2 External Connections for the Wiring Patterns.

The number of external connections per chip in a tree
machine depends on whether the chip centains leaf nodes or
not. Chips that provide the leaves of the tree need only a
single external connection, Non-leaf chips need not only
the external connection for the root, but one for each
internal port of the processors in the lowest level on the
chip as well, This is shown below for three processors per
chip and five chips in the system.

What this means is that the leaf chips are appropriate to
VLSI technology: +the number of external connections does
not depend on the number of processors on the chip. The
chips wused to build the upper levels of the tree are better
svited to medium or large scale integration since the
number of connections grows linearly with the number of
processors,

So far we have discussed physical properties of the tree,
There are some conceptuvalization issues that alse support
the tree interconnection structure. The tree ls an gcyclic
structure: there are noe circular paths, This facilitates
proof of freedom from deadlock. While deadlock proofs must
be constructed for each tree machine program, the
hierarchical nature of the tree leads to some general proof
techniques,

There are a couple of ways to show that a program is free
of deadlock. One, proposed by Martin Rem [Rem79bl, is to
draw a communication graph for the program. If thax
(directed) graph, a state machine, has no traps, that is,
nodes that can be entered but not left, the program is free
of deadlock. Another way of showing freedom from deadlock
is te show that the communication can be modelled as a
special kind of Petri net called a marked graph. Yeung-il
Choo has investigated this technique for his Masters Thesis

-4 0~

[ChooB01. In both techniques, the hierarchy of tree
machine programs makes it possible to characterize the
behavior of lower levels of the +tree in terms of 1the
behavior of their external ports., As a result, proofs at
each level of the hierarchy need only look one level down
into the tree (instead of all the way to the bottom), and
proofs can be completed with induction,

These, then, are the reasons behind choosing to wire a
large number of processors together as a tree. The tree is
the only one of the simple, planar wiring schemes that has
both fast access time to any processor in the structure and
a constant external connection function. In addition, the
tree is an acyclic structure: it is easy to show that a
given program is free of deadlock, A more complete
treatement of wireability considerations, including
analysis of nonplanar structures like the hypercube, has
been done by EBart Lecanthi [Locanthi791.

1.4.2 Why a binary tree?

In figure 1.4.4, a tree with arbitrary fanout was shoun,
Becavse the tree machine is an architectural proposal, a
specific fanout must be chosen. Suppose that a fanout m>4
is chosen, Now, suppose that we have a tree machine
program that requires a fanout of f and uses p processors.
There are three cases to consider: 1) f=m, 2) f{m, and 3
£)m. What happens to the height and consequently the
number of processors in the solution tree?

1f £ and m are equal, it’s easy., The program and the tree
match, Exactly p processors are required and the resulting

-4 4~

tree will be logfp processors high,

If § is 1less ¢than ®m, we wWwill allocate only § of the m
descendents of each processor., Figure 1.4.3(a) shows the
allocation scheme for f=2 and m=3. This results in a
tremendovs waste as the tree gets deeper: the number of
idle processors grows exponentially with the depth of the
tree,

If § is greater than m, we must use several processors to
simulate the increased fanout. Figure §1.4.3(b) illustrates
the wmethod, In particular, f-m processors are used to
supply the proper fanout at each logical level of the tree,
The padding processors form a piece of the tree that is
logmf processor high, Thus we consume extra processors at

a rate linearly related to p, the number of processors
required by the problem.

Figqure 4i.i.4 gives the precise formulae for the height and
number of processors in the solution trees that arise for
the three cases. Clearly, we want to avoid the exponential
woste that arises when the fanout of the phygical 1tree
machine is bigger <than that required by the problem. But
each program will be different; we can not always guarantee
a perfect fit. Thus the fanout built inte the hardware
should be the smallest wvseful one. The 1linear waste of
simulating larger fanouts is considerably less costly than
the exponential waste caused by underallocating the
processors in the tree. A binary tree has the smallest
fanout of all +trees, ignoring the degenerate case, the
chain,

-4 2=

(a) fm (F=2,m=3) (b) £nm

f=hardware fanout m=program fanout

Figure 1.4.3 Allocation Technique for Mismatched Fanouts.

m = tree machine fanout
f = program fanout
p = required processors
case tree height extra processors
logfp-i
i i
f{m logfp n - f
i=0
f=m logfp 0
frnm (logfp)(log"f + §) (f-m)(p-1)/F

Figure 1.4.4 Tree Characteristics with Mismatched Fanouts.

The table above is just a little simplistic, While there
is a 1linear growth in the number of processors required to
establish the program fanout when the physical fanout s
too small, the resvlting tree is unbalanced whenever the
program fanout is not a multiple of the physical fanout,
The physical structure is balanced, and must be as deep as
the longest path, given as the tree height in figure 1.4.4.
The correct number of unused processors must also include
the ones that are vunneeded but present because of the
vunbalance., This number is

-f3-

h
(Z mt) - p where h=(10g.p)(log, f+1)
i=0

This number grows exponentially with the depth of the tree.
If there were some way to keep the tree balanced, the
number of extra processors would grow linearly as predicted
in the table above. James T. Kajiya of Caltech has
proposed a tree-like architecture that can balance itself.
It has a few extra communication paths that allow the
location of parent and children processors to be less rigid
than in a strict binary tree, The proposed structure
retains the planar layout <feature, and as such, may be
practical to build, If the work continves to be as
promising as the early revlts, his structure may be the way
to build a binary iree.

1.4.3 1s the Tree Machine a Special Purpose Machine?

In the past decade several machines that intermingle logic
and memory have been designed, each with a specific purpose
in mind, A survey paper by Thurber [Thurber7S] describes

many of them. More recent examples are the hexagonal

array machine of Kung and Leiserson [Kung79] for matrix
multiplication, radar tracking wmachines I[Denny791l, and
gorting machines [Armstrong77,Bently791. Is the tree
machine yet another speclial purpose machine?

No . We will show that the <tree wmachine is a general
purpose computing wmachine, Iin <the next few chapters
examples of a wide range of algorithms for the tree machine

-4 4~

are presented. In each case, a special purpose machine
could be, and often has been, designed to do the task more
quickly. But none of those special purpose machines can do
the variety of problems that the tree machine can: one
operation is made fast at the expense of another. The tree
machine presents a system with balanced capabilities; it is
general purpose.

1.4.4 Is it Practical to Build a Tree Machine?

The question of buildability has already been answered, in
part. The wiring pattern is planar and the number of wires
grows linearly with the number of processors. Figure 1.41.5
shows a possible layout of processors on a chip. Notice
that the length of the wires doubles every two levels from
the leaves to the root, Notice alse that the amount of
space available for a processor grows with each level,
There is enough room to build the beefier drivers needed to
insure constant communication time between levels of the
tree, Bart Locanthi has addressed the question of power
requirements for the tree machine in [Locanthi791],

A processor architecture is proposed in the fifth chapter.
It too is buildable. In fact, if we assume ¢that a logic
cell is roughly equivalent in area to four dynamic memory
cells, and that the processor is made up of equal number of
memory and logic cells, about ten processors can be put on
a chip using the same design rules that produce 64K RAMs.
Given the very large scale integration of the 1980’s we can
expect several hundred processors on a chip!

15

Figure 4.4.%5 A Planar Layout of a Binary Tree Machine.

1.4.% How is the Tree Machine Programmed?

Other tree~connected machines have been proposed that
identify petential concurrency in an algoriths written in a
higher level language. Examples are the applicative
language machine of Magoe (Mago791 and the wvarious LISP
machines [Keller78,LocanthiB01],

The philosophy proposed here is different. We assume that
the programmer is the ultimate expert on the algorithm. We
expect the algorithm to be designed with concurrency in
mind from the beginning. To that end, a high level
programming notation is introduced in the next section, and
used throughout the rest of this paper, Chapter Six
describes a compiler that provides the mapping from legical
to physical fanout, but the programmer must break the
problem into modules that will run on the processors of the
tree machine. A tree machine algorithm is successful only
if the programmer fully understands the problem at hand,

The remainder of this chapter shows the evolution of the
tree machine notation. The original algorithms were
programmed in Simula, an ob ject-oriented language described
briefly in section 4.2, As this proved unsatisfactory due
to linadequate communlcation primitives, the algorithms were

—16_

reprogrammed in CSP, @ notation specifically designed to
provide linterprocess communication facilities. CBP is the
sub ject of section 4.3, This too was uyneatisfactory
because the underlying machine architecture is not
reflected in the notatlon. A notation for tree machines
that reflects the architecture has developed, and is
described in section 4.5. It is vused for the algorithms
presented in later chapters.

1.2 A First Step: Simula

Simulae ([Birtwhistle73] is essentially a super-set of
Algol-60 with an important addition: the class data type.

A class is g collection of data and procedure declarations
bound together as a single unit. The data is local to the
class ob ject, and the procedures manipulate the data. In
fact, if locality of data is emphatically enforced, the
enly access to the data stored in a class instance is
through procedure calls. Then as 1long as procedure
functionality is preserved, the wunderlying implementation
can be modified wWwithout affecting existing programs that
reference the class.

Each class instance can be thought of as an independent
machine, responding to well-defined requests from the
outside world in the form of procedure calls. This
metaphor is useful for describing concurrent programs, The
data attributes correspond te¢ local storage cells, the
procedures to actions initiated by messages from
nelghboring processors.,

e VA

Another feature of Simula is the ability to facter out
things common to a set of related classes. These common
attributes are combined into a gsuperclass, that is, a class
which is an antecedent of all the others. The subclasses,
descendents of the class of common attributes, provide a
definition of the variant parts,

This factoring technique leads to hierarchical definitions.
The tree machine, for example, can be defined
hlerdrchicully. CLASS processor might define the hardware
capability at each node: number of registers, words of
program store, communication protocol. This class is a
superclass of the collection of classes representing the
code to solve each problem, That is, CLASS sort might
supply program text for heap sort while CLASS clique
describes the algorithm for finding the largest clique in a
graph. Each «class is a subclass of CLASS processor,
sharing the same hardware definition.

Simula is, however, intended for expressing programs that
will run on single processor, There is no facility for
sending messages between processors, Procedure calls are
an inadequate substitute because the calling processor s
blocked until a return from the called processor is
executed, There is alse no clean way to indicate
concurrent execution, although it can be simulated at the
expense of many lines of code irrelevant to the problem at
hand.

Another problem with S8Simuvla is its wverbosity, A tree
machine algorithm typically involves several different
processor definitions, each doing only a small plece of the
computation. The collection of processors must be viewed

-4 8-

together in order to understand the algorithm. A language
like S8Simula, with wmany ways to say the same thing and
requiring many symbols to say anything, forces lengthy
descriptions at the expense of clarity.

The original tree machine algorithms were programmed in
Simula and appear in [Browning79cl,

1.3 A Second Step: CSP

Hoare’s notation for Communicating Sequential Processes
(CSP) [Hoare78] certainly doesn’t suffer from verbosity.
He bases CSP on the concise, restrictive language proposed
by Dijkstra [Dijkstra76l, adding message-passing facilities
and the abillity to describe concurrent computation.

I will begin with a description of Dijkstra’s language,
then describe Hoare’s additions, and <finally give a
critique of my experiences with CS8P, The syntax that I use
does not exactly match that uvsed by Dijkstra or Hoare,
although the semantics are the same,

§.3.4 The Basic Statements

Di jkstra defines a language with five kinds of statements:
skip, abert, assignment, a 1loop, and | conditional

statement, There are ne procedure calls, no gotoe’s, no
choice among ten different ways to write a loop.

There is a unifying notion o¢f a guarded command., The guard
is a condition., If the guard is true the command that

-f Q=

follows may be executed. The statement "if ¢ is less than
n, interchange the values of c and n” is written as

c {n -->» c,nt=n,c

More than one statement can be included in the command
following the guard., Each statement ils separated from the
next by a semicolon, There is no semicolon following the
last statement in the command,

Guarded commands appear in the conditional and loop
statements, The conditional statement is analogous to the
if-then-else and case statements of Algol-style languages.
It has the form

[guard --> command
{ guard --> command

! gquard --) command]

There can be as many guarded commands included in the
statement as desired. There is no implied order in the
attempt to esatisfy a guard, however, That is, wunlike
Algol, Simula, PQchl, etc, if the second guard is tested
and found truve, it does not mean that the first gquard is
not true,. There is no catchall else condition that is
accepted when all other guards are false. In other words,
each guard must be fully specified.

The gquarded command gliven above can be written as a
conditional statement:

ted({n--)c,n 1= n,c
! € > n -=) gkip 1

-2~

The second guard, c>=n, must be included even though the
command that follows, skip, is a no-op. When no guard
within a conditienal statement is satisfiable, the
conditional statement fails and the program will abort.

The other statement that contains guarded commands is the
loop construct. It is written

{ guard --) command
! guard --> command

{ gquard --) command 2

The statement is executed repeatedly as long as any guard
can be satisfied. When none of the guards are true, the
loop terminates. The loop construct never aborts, It can,
however, never terminate, Semantically, there is no
difference be tween nontermination and abortion
{Dijkstra76,p.351.

The sample conditional statement can also be written as a
loop:

€ c(n == c,n 1= n,c 2

The loop will be executed at most once, If c is at least
as large as n, the qguard is not satisfiable, and the loop
is terminated without the values of c and n being swapped.
If ¢ is 1less than n, the values are interchanged and the
guvard is reevaluated. This time c is certaihly larger than
n and the loop is terminated,

The equivalent of Algol’s for loop is written with explicit
initialization, testing, and incrementing of the control
variable. There is no special language construct,

i

=4; € 1 (= n =-> PRINT; ii=i+f)

The gkip statement, as mentioned above, is a no-op. The
agbort stotement causes an error termination of the program.
The assignment statement is much 1like assignments in
Algol-style 1language, except that a list of variables can
appear on the left side, with a corresponding 1list of
values on the right. These are all valid assignment
statements:

It must be remembered, however, that all of the expressions
on the right hand side of the assignment are evaluated
before any assignment is made to variables on the left hand
side.

1.3.2 Statements to Express Parallelism

The language constructs just described are used to define
sequential, though possibly non-deterministic, programs.
Toe these Hoare bhas added o message sending capability, a
class-like structure for defining process vnits, and
statements to specify parallel execution,

1.3.2.4 HMessages

A message has @ name and, optionally, some arguments,
Examples are jincrement or load(a). In the first case, the
message name carries sufficient Iinformation. In the

-2

second, additional information is provided by the argument,

Messages are always sent to and received from named
processes, The process name is separated from the message
name by a symbol indicating the direction of the
communication., An exclamation point (!) means send the
message to the named process. A question mark (?7) means
receive this kind of message from the named preocess, A
message is sent only when both the sender and receiver are
willing to process it. Input statements, those with a 7,
can appear as guards, but output statements cannot. An
input statement guard is satisfiable if the specified
message can be received from the specified process.

1.3.2.2 Process Definitions

A process definition specifies 1local data attributes and
some program text that accepts, sends, and responds to
messnges from other processes., It also supplies a generic
name for the kind of process. Processes are replicated in
arrays, wWwith a subscript appended to the generic name. For
example, to model a bucket brigade, a process fireman might
be defined and replicated fifty times:

fireman(i:i..50)::
{ fireman(i~1)?bucket ==> fireman(i+id!bucket 2

Here a subscript, i, indicates one of the fifty firemen. A
fireman is prepared to receive a bucket from the left and
pass it to the right,

Suppose the empty buckets travel back to the well through
the same brigade, but from right to left. The program text

for fireman can accommodate the change:

fireman{(i:i., .50)::
{ fireman(i-4)7?bucket ~=> fireman(i+i)!ibucket

! flreman(i+i)lempty —-=> fireman(i-i)lempty J

The endpoints of the brigade are special since there is no
fireman to the 1left of fireman(i) or to the right of
fireman(50), There must be special definitions for them,
Assume that there are 75 buckets that can be in use at one
time, Fireman(i) can fill a bucket only if there is one
available.

firemand(i)::

integer b;
b := 75;
{ b>0 ==) b:=b~-i; fireman(2)!bucket

! fireman(2)?empty --) b:=b+i 1}

fireman(i:2..49)::
{ fireman(i-41)?bucket ~=> fireman(i+i)!bucket
! fireman(i+id%empty —=> fireman(i-i)lempty 2

fireman(S0)::
{ fireman{(49)?bucket --) fireman(4?)lempty 2

There is a problem with the program given above. Deadlock
can arise if fireman(i) is +trying to send a bucket to
fireman(2) at the same time that fireman(2) is trying to
tell fireman(i) that the brigade is empty. The way to fix

this problem is change the first quarded command in the
defintion of fireman(i) to read

b>0 and fireman(2)!bucket --> bi=b-{

Regrettably, Hoare does not allow the wvuse of output
statements in guards.

-D4 -

1.3.2.3 Indicating Parallelism

The third feature that Hoare adds is the ability to
indicate parallelism., Each process is a sequential one,
but a collection of them can execute in parallel with the
messages providing any required synchronization. The
symbol ! is used to indicate that the named processes
execute concurrently, The bucket brigade is set in motion
by the statement

fireman(i) ! fireman(2..49) ! fireman(50)

1.3.3 A Critique of CSP

CSP does not suffer from the 1limitations attributed to
Simula. A message facility is an integral part of the
notation, there are facilities for describing parallel
execution among processes, and the 1language ie concise.
There is also something like a class construct for defining
local data attributes and confining external access 1o
specific entry points,

However, csP has some deficiencies. First, the
hierarchical definition capability of Simula is missing.
There is no way to define @ superclass that contains the
attributes that all the processes share. Instead, the
common part must be repeated in each variation,. Second,
the only way to replicate processes is as arrays. Using
subscripting conventions to represent the tree as an array
obscures its structure.

-25~

Also, CSP has no way of restricting the communicatien of a
process to a select set of other processes. That is, there
is no way to enforce a particular interconnect structure.
The notation allows a process to communicate with any other
process it can name. In a tree, as with any large physical
structure, there is a very rigid set of proceésors that can
communicate directly with a given process. The notation
should emphasize the physical structure,

Ky choosing to represent communication as messages sent
between named processes, Hoare has made it impossible to
assemble a collection of precess definitions that can be
veed as building blocks in many different programs. The
processor names are locked into the program text since a
process must know the name of its partner in communication.
Thus each process definition must be tailor-made for a
specific program.

§.4 A Tree Machine Notation

This section proposes a notation that is a blend of Simula
and CSP ideas, with some useful additions. While the
notation, used throughout the remainder of this paper, |is
tailored to the tree machine, it can easily be made more
general, Extensions are discussed at the end of the
chapter,

The syntax of the notation is derived from CSP. The skip,
gbort, assignment, 1loop, and conditional statements are
identical to those in CSP, and have already been described.
The message statements are also similar, Processes
correspond directly to the processors of the tree machine.

The processors are defined as self-contained units that
communicate <through ports to other processors. The
processor definitions assume that the ports are capable of
processing messages. They assume nothing about the
identity of the processor on the other end of the port,
This is a significant departure from Hoare’s style of
communication, where process definitions name other
processes directly.

There are several advantages to naming communication
partners indirectly by vsing ports. A processor .can be
defined without regard to the eventual connection plan of
the network, A processor expects to follow a specific
communication protocol when accessing a port. Any
processor that follows the same protocol can be connected
to the other end of the port.

This definitional locality makes possible a parts kit of
standard processor definitions. Each part is a processor
or tree of processors that can be characterized by the
behavior of its ports. As leng as the expected messnges
are sent and received, the part will work anywhere in the
system,

In addition to the ability to define processors, the
notation provides a mechanism for specifying the
correspondence between ports and the tree processor
interconnections of the complete machine. The mapping of
the processor’s ports onto the physical communication paths
Mmust be supplied in order <to complete <the program
description., This mapping is one-to-one and onto: every
port sust be connected to another port, and no two ports
can be connected to the same port.

& complete tree machine program has two parts: a set of
processor definitions and a gonnection plan. The syntax of

these wWwill be discussed later.

i.4.1 Messages

Messages are written just as they are in CSP except that a
port is named instead of a process. Another difference is
that output statements as well as input statements can
appear as guards., An output statement guard is satisfiable
if the destination processor is willing to receive the
message, Qutput statement guards are used repeatedly in the
algorithms of Chapters 2 and 3. As in CSP, input statement
guards can be satisfied if the specified port can receive a
message.

The notation also supports broadcast output. A given
Mmessage can be sent to several ports simultanecusly. An
output statement can have a list of destination ports each
of which will receive the message. If an entire array of
ports is to receive the message, the subscript %’ is used
to specify all of the array elements. For example, if L,
R, and $(4:9) are ports, these are valid output statements:

Lthi

L,Rthi
S(3)1hi

S(¥) thi
R,5(X)1hi
8¢(4),5(4)thi

Broadcast mode output is used frequently in the algorithms
of Chapters 2 and 3, vsually to send a message to all of
the sender’s descendents,

=@ B~

Input statements can specify a list of ports as well, In
this case, the message can be received from any one of the
named ports. Thus if L, R, and S(i1:5) are ports, L,R?hi
means accept the smessage ’hi’ from either L or R, The
message S(X)7hi means accept the message from any of the S
ports. This notation can only be veed where it really
doesn’t matter which port received the message. There is
no way to retrieve the identity of the sender unless it is
part of the messoge itself,

§.4.2 Processor Definitions

A tree machine program Iis a collection of modules. Each
module is a processor. A processor definition begins with
the keyword processor, a name ¢for the processor, and,
optionally, an argument. Next come the port and data
declarations. The bedy of statements that form the program
text of this module complete the definition. We will 1look
at each of the components of the processor definition in
more detail,

The input and output statements name ports to be used in
the communication. Each processor con have external ports

and internal poerts. Every processor is the root of 0 tree

of processors, Communication with this tree is possible
only via the external port of the root processor. The
internal ports are used for communication between the
processor ond its subtrees.

A processor must have exactly one external port, but may
have any number of internal ports. Leaves have an external

-2 P

port, but no internal ports. Programs are written for an
arbitrary tree of processors, and mechanically translated
into programs for a binary tree.

The definition of 0o processor that sorts marbles by color
le given below., The processor, called colorSorter, has one
port to the outside world and three ports to subtrees., The
processor expects to receive marbles from its external port
and will send them to an internal port chosen according to
the color of the marble. If the marble is blue, it is
routed to the B port, similiarly for green and red marbles,.
If it is not blue, green, or red, the marble is sent to the
reject bin, The color is represented by an integer, with
blue=i, green=2, and red=3.

processor colorSorter;
external port In;

internal port B,G,R,re ject;
integer color;

{ In?marble(color) —-)
[color=i —--) EBimarble
color=2 --) Glmarble
color=3 --) Rimarble
color{i or color>3 --) rejectimarble

bl P® e mew

A processor definition can be parameterized to allow one
processor definition to fit a variety of situations. The
parameter is a constant within the processor definition,
and it cannot be modified during the computation. The
parameter can be used to specify the number of internal
ports a processor has., It can be used aos a constant in an
expression or in any sitvation that does not attempt to
change its value, It cannot be the target of an
assignment, since it is a constant, not a variable.

=30

The processor definition for colorSorter is rewritten to
handle n colors instead of three:

processor colorSorter(n);

external port In;
internal port c{i:n),reject;

integer color;

{ In?marblel{color) -=)>
[4<¢=color{=n --) c(color)!marble
! colordn or color{i --) rejectimarble
]

In order to complete the example, the definitions of the
processors connected to the internal ports of colorSorter
must be supplied and the interconnection scheme must be
specified, The missing processor definition is given
below. The bin processor keeps a count of how many marbles
it has received. Ein is a leaf node in the tree so it has
no internal ports.

precessor bin;
external port p;

integer cnt;

cnti=0; .
{ p?marble --> cnt:i:=cnt+i 2 .

£.4.3 The Connection Plan
The processor definitions define the building blocks that
the program will uvse. The connection plan shows how they

fit together.

The keyword 21iree indicates a connection plan. It is

followed by a name for the tree and an optional list of
parameters. The remaining statements in the plan describe

-34 -

connections between processors., A connection specifies

which kinds of processors will be connected to the internal
ports of a given processor. A connection is always between
an internal port of one processor and the external port of
the other, The external port connections, then, are
implicit in a connection statement., I will begin with an
explanation of the shorthand form of a connection plan, and
gradually move toward the general form,

The connection plan for colorSorter and the bins can be
expressed very simply as
tree marbleSorter(n): colorSorter(c(i:n),reject) * bin .

This statement says that the tree is called wmarbleSorter.
It is parameterized by a valve, n, that must be provided
before the tree can be built. A colorSorter is the root of

the tree. It has n+i{ internal ports, named c(i), c(2),
veep, €(n) and re ject. These are all connected to bin
pProcessors. The symbol **? is read "is connected to".

Implicit in the statement is that there are n+i bins, each
with its external port connected to colorSorter. The tree
looks like this:

colorSorter
bin bin oo bin

Since the fanout of colorSorter can be determined from the
processor definition and all the internal ports are
connected to bin processors, the connection plan can be
further abbreviated as

Yoo

tree marbleSorter(n): colorSorter “ bin .

The connection plans glven so far are shorthand for the
more general form, The example gives a tree with two
levels, each made of different processors but with all the
same kind of processors on a given level. Suppose that
this is not the case., If the reject bin in the marble
sorting example is a special processor called Rbin'thut
keeps track of the total number of wmarbles that are
successfully sorted as well as the number of bad ones, the
tree gets a little more complicated. Here are a modified
definition of colorSorter and a definition of Rbin.

processor colorSorter(n);
external port In;

internal port c(i:n), reject;
integer color;

{ In?marble{color) -=? :
{ $¢(=color{=n --) c(color)imarble ;
re jectlgood
! color{i or coloerdn —-) reject!bad
]
).

processor Rbin;.
external port p;
integer g,b;

g,b:=0,0;
{ p?good --> g:=g+i | p?bad --? b:=b+f 2 .

The connection plan becomes

tree marbleSorter(n):
colorSorter(c(i:n))"bin ,
colorSerter(reject)”Rbin .,

Again, there are two kinds of processors on the second
layer of the <tree: n bins and one Rbin. Here, however,
connection statement has twe parts, separated by a comma.

=ZF—-

The comma signifies that the order of the two parts of the
statement does not matter. Each part fully specifies which
ports are connected to what type of processor.

Suppose the tree had more than two levels. This might
happen if, in addition to differing in color, the marbles
could be either square, round, or some other shape., If the
marbles are sorted first by shape and then by color, a
three level tree could be used:

tree fancyMarbleSorter(n):
shapeSorter(square,round)“colorSorter ,
shapeSorter(re ject)"Rbin ;
colorSorter(c{(i:n))”bin,
colorSorter(re ject)”Rbin .,

Notice that the second connection statement describes a
previously defined tree. Since a tree has a single external
port, it can be connected to an internal port of a
processor in the same manner a single processor is
connected. Another way of of describing the tree above is
given here:

tree fancyMarbleSorter(n):
shapeSorter(square,round)“marbleSorter ,
shapeSorter(re ject)”Rbin .,

A three level tree requires two connection statements in
the connection plan. In order to aveid writing k statements
for a tree that is k+i levels high, a shorthand is provided
for replicating a connection. For example, imagine a tree
made up of three kinds of processors: a roeot, some leaf
processors, and in between, mid processors that each have
three descendents. If there are M layers of mids, the 1tree
can be described as follows:

34~

tree t(M):
reat © mid ;
M-4 (mid ~ mid) 3

mid ~ leaf .,

The shorthand means "repeat the connectioen (mid ~ #»id)
M-4 times”, The resulting tree will have M levels of mid

processors, and M-i levels of connections between them.

In order +to achieve a pattern of alternating processors by
layers, one might write

This will give 2n+i levels consisting alternatively of a’s

and b’s,

Suppose the tree below is to be built:

a

”///a\\\\\\b
N N

d d

It cannot be described with the connection plan presented
thus far. The connection plan tree t 3 a“b ;3 b “ ¢ 3 b 7 d

is ambiguous: which b is connected to the ¢’s and which to
the d’s? Here, each b must be identified via the path to it
from the root of the tree, This tree |is described
recursively by defining <the two subtrees that have root
nodes of b processors, and then assembling the complete
tree from these,.

=30

tree firsth: b " c .
tree secondB: b ~ d .

tree t: alpi) ~ firstk , a(p2) ~ secondk .

The general form of the connection plan provides for layer
repetition, a heterogeneous collection of processors on a
given layer, and uniquely naming a peort in terms of its
path from the root, The trees described in Chapters 2 and
3 tend to be simple, requiring only the shorthand notation,

i.4.4 8Syntax Definition
1.4.4.4 Processor Defintion Syntax
{processor) ::= processor {name) ’;’ <{declPart) ?;’ (body>

{name) ::= {ident) | (ident>?(’ (ident)> ?)?

{(declPart? ::= {(portDecl> | {(portDecl) ?;? {(typeDecl)
(portDecl) ::= (eport) | (eport) ?;? (iport>
ternal port {ident?

ternal port {(pnList?

~ {13 ix

H pn> { (pn> ?,? (pnList)
{pn? ::= (ident) | (ident) ?(’ (expr) ?:? (expr)>)’

{body? ::= (statement) | (statement? ’;’ <(body?
{(statement) ::= skip ! agbort ! (iteration)> ! {(conditional>
! (assignment? ! (message)

(iteration) ::1= ?{’ (quardList)> 1}’
(conditional) ::= ?[? {(quardlList) ?1]?
(guardList) ::= {guardedBody>

! <{guardedBody> ?!’ {(guardlList>
(guardedBody) ::= (guard? ?-=)? <(body>

-ZbH-

(guard) ::= (booleanExpr) i {Mmessage’
(assignment) ::= (identifierList) 21=2 (exprlList)
(identifierlList) ::= (ident)

{ (ident) ?,? (identifierlList)
Cexprlist) 1:= (expr) i (expr) 2,7 (exprlist)

(message) ::= (portList) ’?’ (contents)

! (portlList) ?!? {(contents)?
(portlList) ::= (port) { (port) 7,’ {(portList)
(port) ::= (ident> | (ident) 7(’ {expr) ?)?

! (ident)> ?2(X)?
(contents) :i= <(ident) | (ident) 7(’ (exprList)> 7))’

4.,4,.4,2 Connection Plan Syntax

(tree) ::= tree {(name) ’:’ {(connectBody> ’.’
(name) ::= {ident) ! (ident> ?(’ <(ident) ?)’

{connectRody) ::= (connectlList)

! {connectList) ?;? (connectBody)
{connectlList) i:= (connection?

! (connection) ’,’ {(connectlList?

(connection) ::= (ident) ?7? (ident)

! ¢ident) ?(? {pnList) ?)? ?7? (ident?

! (expr? ((connectBody))

= (pnd> | <(pn) ?,? (pnList)

(ident) ?(? (expr? ?i1? (expr) ?)?

The usual definitions are assumed for (ident)>, <(expr),

and

{(boolean expr. Comments can appear wherever a blank can,

37 =

and are enclosed in double quotes: "This is a comment...

4.4, Future Directions

This notation describes static trees, The tree is
assembled before the computation is initiated During the
computation, its structure remains vnchanged., Static
behavior is sufficient for the algorithms presented here.
It might be interesting to examine trees with dynamic
behavior,

The tree structure is reflected in the notation only
becauvse each processor is limited to a single external
port, By removing this restriction and requiring that
external as well has internal ports be explicitly declared
in the connection statements, other structures can be
described. The programs retain the important
characteristics: the processors are locally sovereign and
the network is characterized by the traffic through the
external ports.

Another extension of the language is to allow substructures
other than trees to be defined and included in connection
plans. For example, vuser defined composite processors
might be nice, especially as a library of processor
definitions develops. I have not included them because of
vaguely disquieting issves that arise, First,
substructures are no longer characterized solely by the
behavior of the external port, This may affect the
provablility of the structure,. Second, it becomes harder teo
specify the behavior of the ports. Timing assumptions
about the processors inside a substructure may have to be

X -

made , Since a definitional capability for other
substructures 1is a vuseful one to have, however, it should
be investigated. My misgivings may be unfounded.

Messages in this notation are matched on the basis of like
names. This is fine for custom processors and small
problems, but might be cumbersome as libraries of processor
definitions are developed, and complicated problens' are
tackled. It might be necessary to augment the notation
with a way of explicitly specifying the matching of
messages between processors.

Finally, there is no capability in the notation for
indicating the overall strategy of each algorithm. The
individual processors are defined and connected, but it is
seldom apparent from these +two things what the complete
tree is supposed to do, In this thesis, I will present a
textual, informal description of the strategy. As it is
better wundersteod, a formal specification should be
developed,

-39~

Chapter Two
The Analysis of Algorithms

There are many different ways to solve a given problem.
Complexity theory provides a framework for evalvating each
solution, or algorithm, so that the best one can be chosen,
The wuvsval measures of complexity are the time and space
requirements of the algorithm, The relationship of time
and space to the size of the problem shows the asymptotic
behavior of the algorithm as the problem gets arbitrarily
large.

Complexity measures are given as functions of the size of
the problem, usvally called n, For instance, the space and
time requirements of a sorting algorithm depend on the
number of items to be sorted. If n elements can be sorted

2

in cn”™ time for some positive constant c, the algorithm is

2
said to be 0(n%) in time, read "order n“ ",

The space requirements of an algorithm are computed by
counting the number of storage locations it requires. The
time complexity is usually a wmeasure of the number of
operations that must be performed on each input, and should
properly be called an operation count,

Most measures of complexity are based on a particular model
of computation that is chosen to suit the problem domain,
For example, analysis of matrix manipulation is done in the
framework of a machine with an array of memory, while 1list
processing algorithms are more at home in a computational
model with a pointer space. I will describe several
different models of computation, ending with a description

=4 (-

of one that can be used to analyze the complexity of tree
machine algorithms. The first model, the Random Access
Machine (RAM) is discussed in more detail <than the other
sequential machine models because the individual processors
of the tree machine are modelled as RAMs,

Each computation model is accompanied by criteria for
calculating time and space costs for algorithms programmed
in the conteit of the model. Most of the traditional
models make the assumption that memory cells are equally
remote from the processor, Algorithms are not penalized
for ignoring locality in accessing memory.

Memory access is a degenerate form of the interprocess
communication found in the +tree machine, In the tree
machine context it becomes apparent that a distance penalty
must be assessed for each communication as part of the time
cost of an algorithm. Another model that penalizes random
access algorithms is the Turing machine model. Since the
tape can advance only one cell per step, much as a tree
machine message can traverse cnly one level in the tree at
each cycle, examination of adjacent cells is cheap while
examinatien of distant cells is costly. However, the
Turing machine program is stored in a lookup table that can
be viewed as infinite. There is no distance penalty applied
to program elements stored in this table. Thus the model is
inconsistent in its treatment of communication costs.

2.4 Random Access Machine Model

The most common model for complexity analysis is the random
access machine (RAM) [Aho74]1. A RAM has a single processor

-4 4 -~

Wwith one accumulator, an unlimited memory, and some input
and ouvtput ports. One integer can be read from or written
to the ports or the memory at a time. Integers can be of
arbitrary size.

The instruction stream does not occupy memory. Thus, it
cannot eodify ditself. The exact instruction set doesn’t
matter. érithmetic, logical, input/output, Mmemory

addressing, and branching instructions can be assumed,
aleng with anything else that is common to the instruvction
repertoire of real machines., RAM programs will be stated
here in pidgin Algol. Because asymptotic costs are given,
the cost difference between Algol and machine language is
absorbed in the constant.

The time and space costs of a RAM program can be viewed
from tuwo perspectives, The uniform cost criterion assumes
that all instructions take the same amount of time and that
each datum occupies the same amount of gpace. The
logarithmic cost criterion attempts <to recognize that
memory is limited. Costs are assigned depending on the
number of bits it takes to represent the instruction and
the data, Both cost models are illustrated in the
following paragraphs.

Consider the following problem., Given a vector o, generate
another vector x such that

X; = ZE: °j where 1i=1,2,...,n

J=1

The two problems that follow are RAM solutions to the
vector summing problem described above., The first
algorithm mimics the problem definition. The second is
optimal for the RAM computational model.

integer array ali:inl, xIi:nl;
integer i,j;

Figure 2.4.4 Vector Summing Solution #i (RAM model).

The first program, fiqure 2.1.4, computes the wvalves for
the wvector x by repetitively summing the values of a. The
uniform cost space complexity is <found by counting the
memory requirements., There are two vectors of n elements
each, plus two temporary variables, so the space cost is
an+2 or 0Od(n), The time complexity is somewhat wmore
complicated. The outer loop is executed n times and the

inner loop is executed i times for the ith

iteration of the
outer loop. Thus the time required, given the uniform cost

criterion, is
2 2
n + (§42+,,..4n) = n + pni{n=4)/2 = (n 4+n)/2 = 0(n")

The second algoerithm, figure 2.4.2, requires only one loop
to do the computation becavse it takes advantage of
previous work., The space complexity remains O(n), but the
time complexity is improved. The single loop executes n

-y F -

times and contains two instructions. Thus, it will take 2n
or O(n? time,

integer array ali:nl, xli:nl;
integer i,sum;

sum = 0;
for ii=1 to n do

begin
sum 1= sum + alil;
x{il := sum;

end;

Figure 2.4.2 Vector Summing Solution #2 (RAM model).

8¢ far, coste have been based on the uniform cost
criterion, Another way of assigning costs is to relate the
cost to the number and size of the operands, This is
called logarithmic cost [Aho74]1, and is based on the
assumption that the cost of an instruction is the sum of
the lengthse of its operands., The length of an operand is
the number of bits required for its representation:

1¢1) = |log,i + %, 10
0, i=0

To compute the logarithmic time cost for the more efficient
program, figure 2.1.2, it is useful to look at a machine
code translation, given in flgure 2.4.3. The time costs for
each ingtruction can be tediously computed wusing the
formula given above and assessing a penalty for the 1length
of the operand and for the length of data fetched in each
MemMory access. The resuvlting time cost is O(nlogan +

nloggs), where logas is the maximum number of bits it takes

t0o represent the sums or vector elements. Logarithmic
space complexity is defined as the sum, over all memory and
the accumulator, of the length of the largest number stored

o L

in each cell during the computation, Here again, the space
complexity is U(nlogas).

load =0 3 sum:=0
store sum
load =4 3 Li=4
store i
for: load =n 3 for i:=4i to n do
sub i
Jjneg done
load a 3 fetch alil
sub =
add i

store ind

load ¥Xind sumi=gsym+alil

o

add SUM

store SUM

load X 3 x[ili=sum

sub =

add i

store ind

load sSUM

store %ind

load i 3 Li=i+d

add =4

store i

Jjump for s loop
done: halt

Fiqure 2.4.3 Machine Language Translation

Since logarithmic costs are much more difficult to compute
than uniform costs, Thus, uniform costs are usually used
with the RAM model of computation, The logarithmic
criterion is an attempt to be realistic about memory
accesses, There are easier ways of doing that: the tree
machine model provides a less cumbersome technique.

=l -

2.2 Reference Machine Model

The RAM model assumes the existence of an unstructured
store. Many algorithms access memory in a prescribed
manner, however, and have no need of the less structured
access capability, List processing techniques are an
important example of <this kind of algorithm., Reference
machines [Tar jan771 have been proposed as a computational
model that is more appropriate for such problems,

Like o RAM, a reference machine is a processor, a memory,
and a collection of registers. The memory is organized as
a pool of records, each containing entries that are either
data or references to other records. All records are
identical in structure.

There are registers that can hold data, and registers that
can hold references., All CPU operations apply to these
registers, The instruction repertoire inclvudes
instructions to +transfer data between either kind of
register and the memory, to perform the usval arithmetic
and logical operations, to create new records, and 'to
conditionally branch,

The main difference between this model and the RAM is that
the reference machine severely limits access to the memory,.
Explicit reference is required. This makes the model
appear 1less powerful than the RAM: some algorithms that
rely on address arithmetic cannot be used. However, it can
simuvlate LISP and other 1list processing languages. Thus,
the reference machine is herely different from the RAM, not
less powerful.

-4

The reference machine model is interesting becavse it
recognizes that memory access is not free. Regrettably,
the model stops short of the point. Though memory daccesses
are restricted, <there is no distance measure applied to
make clumped accesses cheaper than widespread ones.

2.3 Turing Machine Model

A Turing machine [Turing36é] is pictured in figure 2.3.1.
It has an infinitely long tape that is divided into cells,
each of which can hold one symbol. One cell at a time is
scanned by a tape head that can read and write the tape.

Y

7/

/4
L4

Figure 2.3.4 A Turing Machine

The Turing machine is controlled by a primitive program
that describes transitions from one state to another based
on the cell being scanned by the tape head. The program is
represented as a set of guadruples (initial state, input
symbol, action, next state), The action taken can be one
of three things: move the tape one cell to the left, move
the tape one cell to the right, or write a character into
the cell vunder the head. No two quadruples in the set can
have the same initial state and input symbol.

The Turing machine is initialized to a specified state.
From there, actions are taken and new &states entered by
finding a guadruple such that the current state and symbol

s Vi

under the tape head watch the initial state and input
symbol in the quadruple.

fAs an example, we will look at the Turing machine program
for adding two integers. First, however, we need to set
the stage by defining the Turing machine. @& Turing machine
is defined by a quintuple (Q,I,b,qo,qf), where @ is the set

of states, I the set of input symbols, b the blank
character, 9 the initial state, and ar the final state.

The Turing machine for this example, then, is
({so,si,sz,sf3,C1,03,0,so,sf).

Numbers will be represented in unary form, as a string of
ones ., Thus the number five is represented as the string
rii4447°, The first number in the sum starts in the
leftmost cell of the‘tupe. The other number is separated
from the first one by the blank character 707, The sum
will be written on top of the two numbers. Figure 2.3.2
shows the tape for forming 3+4,

-/

Figure 2.3.2 Sample Turing Machine Tape.

The program proceeds this way: scan the tape, wmoving
right, wuntil the blank character is found. Write a ’4i? in
that cell and continve scanning. When the next blank
character is encountered, nove left one cell, write a 20’
there and halt, Thus the tape of figure 2.3.2 is
transformed into 2444444i’, <the vunary representation of

-3~

seven., Figure 2.3.3 gives the Turing machine program
described above,

(50,0,1,51)
(Si’i’R’si)
(si,o,L,sg)
(sa,i,o,sf)

Figure 2.3.3 Turing Machine Program: Addition.

The Turing machine model of computation is even more
primitive than the RAM and reference wmachine models
discussed in the previous sections. Turing invented it
before digital computers existed as a framework for
comparing abstract computational processes. The model is
too primitive to be wuseful for most complexity analysis,
However, it can compute anything a RAM wmachine can in
polynomially related time, That is, if the Turing machine

takes Fi(n) time and the RAM takes fa(n) time, then there
exist polynonials‘pi(x) and pe(x) such that fi(n)(pi(fa(n))
and fg(n)<p2(fi(n))'for all valves of n.

This relationship between the RAM and Turing machine models
comes in handy when analyzing programs where the polynomial
blowup is 1lost in the noise. For example, if the time
complexity of an algorithm ls an exponential function, all
polynemially related functions are also exponentials., This
fact is used in analyzing the set of NP-complete problems
described in the next chapter,

I have described a Turing machine that hes a single tape
and behaves in a determinlistic manner. That is, no two
quadruples can have identical initial states and input

=4O

symbols., Other flavors of the machine have been proposed:
multi-tape machines, nondeterministic machines, and
multi-tape nondeterministic wmachines. For each flavor

there is a set of problems that benefit from being analyzed
on that particular computational model. Aho, Hopcroft, and
Ullman [Aho74]1 and Tar jan [Tar jan781 discuss these
variations in more detall,

2.4 Tree Machine Model

All of the computational models presented above are
sequential machines, but the <tree wmachine environment is
highly concurrent. A different model of computation is
needed to describe the complexity of tree machine
algorithms,

Since each processor in the iree machine is a
deterministic, sequential processor, the traditional vieu
of complexity can be applied to each individual node of the
tree., In the complexity analyses that follow, the RAM
model with uniform cost criterion is used to characterize
the behavior of the individual processors.

The messages exchanged between processors intreduce
synchronization and dependencies among the nodes of the
tree, and must be figured inte the time cost of the tree
machine algorithm. The wuniform time cost is appropriate
here because messages can travel between adjocent levels of
the tree in one time step. The farther a message has to
go, the greater the cost. Thus, a message travels from the
root of a tree of n processors to the leaves in D(logzn)

time.

=50~

Every message does not contribute to the time cost of the
algorithm, however. The time cost is really a measure of
the seguentiality of the algorithm., Suppose that a message
is broadcast from a processor to all its descendents in
synchrony, The broadcast communication has the same cost
as a communication from the parent to a given descendent
because the elapsed time is the same, Similarily, if two
communications in different parts of the tree occur in
parrallel, the time cost is the cost of one communication,.
The second one, happening in parallel, is free, Thus,
overlapping communications do not individually contribute
to the time cost of the algorithm,.

Space complexity of tree machines is easy to calculate,
Each processor is of constant size, and once the data space
in a processor is wused, another processor must be
allocated. The space cost, then, is the number of
processors used to solve a problem.

Let us return to the vector summing problem of the RAM
discussion., Given a vector a, calculate x such that

X, = E uJ where i=4{,2,..,n

i
J=1

The tree machine algorithm for vector summing is presented
in detail in a paper I presented at the Caltech VLSI
Conference [Browning7%9al. The initial vector a is loaded
into the tree in infix order, as shown in figure 2.4.4.
The summing begins in the left corner aﬁd proceeds wup and

to the right as the oi’s are replaced with the

-Cf{-

corresponding values of x. In the following paragraphs we
will examine the algorithm in detail in order to understand
how time costs are assigned in tree machine algorithms,

Figure 2.4.4 Vector Summing Tree, n=i%,

The arrows in figure 2.4.41 indicate the flow of messages in
the tree. The starting place ls the leftmost leaf, called:
ag. The computation ends in the rightmost 1leaf, 1labeled

95" As the wave front of summing approaches the root,

more and more processors are operating in parallel. As the
computation crawls back down the right half of the tree
fewer and fewer sums are formed in parallel. The net
result is that all sums are formed by the time the last one
is, and the last one is formed as quickly as a message can
travel from the leftmost leaf to the rightmost leaf. That
distance is Zlogan. Thus, the time spent computing the

vector sum is D(logan).

2.4.4 The Vector Summing Tree

Figure 2.4.4 shows a trée machine configuration for n=i%,.
The connection plan we write down must be a general one,
parameterized to fit any value of n. Because all the ports
of every processor used in the tree must be hooked wup to
something, we must define the root, leaves, and middle

G-

processors separately, Thus, we define vSumRoot, vSum, and
vSumLeaf as the baslic building blocks of the vector summing
tree.

In figure 2.4,2, we see that there is one set of
connections between the vSumRoot and vSum processors, and
one set of connections between vGum and vSumleaf
processors. These will remain constant with n. The
parameterization, then, belongs in the declaration of vSum
to vSum connections., The connectien plan is given in
2.4.2. Note the second 1line: the number of vSum to vSum
connections is logzn - 2, When n=4iS, this is indeed 1.

(The logarithm is truncated to an integral value.)

tree vSumTreed(n):
vBumRoot ~ vSum
logan-a (vSum

e

vSum)

vSum ~ uSumleaf .

Figure 2.4.2 The Vector Summing Tree.

2.4,.2 The vSumRoot Processor

Each of the three kinds of processors have four activities
to undertake., Variables must be initialized, the vecteor
values must be loaded into the proper nodes, the sums must
be formed, and the answer must be unloaded from the tree.
The vSumRoot is responsible for beginning the
initialization phase. It alsc controls the loading and
unleading of the wvector values. The vector summing,
however, beains in the leaves of the tree.

During the initialization phase of the computation, the
vSumRoot sends two different messages to ilts descendent

-G~

subtrees: expect and subscript. The gxpect message tells

the processor how many values must go to the left, how many
to the right, and which one will stay here. That is, the
processor that represents the fourth element in a vector of
length 45 will see seven values during the leoading phase:
the first three are destined for processors in the left
subtree, the fourth value becomes the value stored in this
processor, and the remaining three are sent to the right

subtree. The subscript message informs each processor
which element of the vector it represents, The subscript

is wused in the summation step to insure that the right
things get summed together.

The 1loading phase, partially described above, is also
initiated by the vSumRoot., It reads load messages, n of
them, from the system bus., These are distributed to the
left and right subtrees, with the wmiddle values remaining
in the root, assigned to the variable x.

The vSumRoot plays a relatively passive role in the wvector
summing process, mimicking the code of the vSum processor.
It will receive a partial sum from the left subtree. Since
all the subscripts to the left are less than the subscript
of the root element, that sum should be added in to the
value of x. Correspondingly, all the elements in the right
subtree have subscripts greater than the one in the root.
Thus, their valves are not needed for the sum stored in the
root.

This left and right handedness applies to every subtree in
the graph, not just to the root, and is the key to the
glgoritham, During the esummation phase, sumUp and sumDown

messages fly furiously around the tree, The #essage names

=54~

sumbp and gsumDown indicate the direction in which the
messages travel., In each, the messages carry a partial sum,
and an integer that reflects the element with the largest

subscript that has contributed to the sumM. sumlp messnges
from the left are olways added into the x value. The
sumllp messages from the right never affect x. The root

never receives a sumDown message. It does, however, send
them, both to the left and te the right.

Once the summation is accomplished, the unloading of the
new vector is initiated by the vSumRoot, A technique
similar to the loading process is employed: the first half
of the valuves come from the left, then this element is
unloaded, and the other half come from the right, This
mirrors the infix arrangement of the elements in the tree,
The infix visitation rule is to visit the left subtree,
visit this node, and then visit the right subtree.

The definition of the vSumRoot processor is given below, as
figure 2.4.3. When we view this processor as an entity
separate from the tree we find that the initialization and
summation phases are independent of the size of the
problem, Thus, they are constant time operations. The
loading and wunloading do depend of <the problem size,
however, and are 1linear in n, that is, 0(n)., Thus this
algorithm con be no better than 0(n) in time,

= E5 -

processor vSumRoot(n);
external port bus;
internal port 1,r;
integer i,x,t%,8;

“initialization"
s 1= n/2 3 l,rlexpect(s,i) ;
ll'subscript(s/2) ; risubscript(3%s/2) ;

"load the values of vector a"
it=1 3 € i(= n/2 --> bus?load(t) ;
1tload(t) ;3 i:=i+i J

o

bus?load(x) ;
it=4 ; (i¢(= n/2 --) bus?load(t)
3

H
rlload(t) iy=i4d 3

e

“suym the values to form vector x"
17sumlp(t,i) ; xi=x+t ; llsumDown(t,i) }
r7sumUp(t,i> ; rlsumDown(x,s) ;

“ynload the values of vector x"
it=4 ; { i(= n/2 --> 1l?unload(t) ;
bus!load(t); i:=i+i 23 3
buslunload{(x) ;
1=4 ;3 (i{= n/2 --) rlunload(t) ;
bus!load(t); i:=i+i 2 .

Figure 2.4.3 The vSumRoot Processor.

2.4.3 The vSum Processor

The vSum processor fills essentially the same role in the
computation as the vSumRoot does, with two differences,
First, the vSum is not connected to the system bus, All
the load messages it touches come from the root. Secondly,
since it is descendent from the root, the vSum processor
receives as well as sends expect, subscript, and sumDown
Mmessages., The sumDown messages provide the vehicle for
values in the left subtree to be included in sums formed in
the right subtree,

=546~

The complexity characteristics of the vSum processor are
reminiscent of the vSumRoot: loading and unloading costs
vary with n, while summing and initialization are constant
time operations. The actual cost of the 1loading and
unloading operation is complicated by the fact that the
position of the vSum processor in the tree dictates the
number of elements it will see. If L represents the level
in the +tree at which a vSum processor resides, then the
time complexity can be written as O(n/EL). (The root is
level 0.) Since this is less than 0(n), the algorithm
remains no worse than linear,

=GP -

processor vSum;

S+ A

external port p;
internal port 1,r;

integer x,s,i,n,t,v,j;

“initializatien®

plexpect(n,v) ; 1,rtexpect(n/2,v+i) ;
p?subscript(s) ;

lisubscript(s/2) ; risubscript(3%xs/2) ;

*1oad the valuves of vector a"
ii=4 3 € i¢= n/2 —=) p?load(t)
1i1load(t)

we weo

p?load(x);
it=4 3 i¢= n/2 -=) plload(t)
rlload(t)

o weo

ii=i+i)

“"form the sums"
17sumUp(t,i) ; xi=x+t ; lisumDown(t,i) ;
r?sumlp(t,1) ; rlsumDown(x,s) ; plesumUp(x+t,i) ;
Jji=i 3
{ j¢=v ==
p?sumDown(t,i)
[i¢(s —=) x:=x+t | id)=s —-) sgkip 1 ;
lisumDown(t,i) ; r!sumDown(t,s) ;
Ji=j+d
Y3

“uynload the vector x"
it=4 3 € i¢(= n/2 --> 1l7unlead(1)
plunload(t)

—wa wo

ii=i+i 2
plunload{(x) ;
it=4 ; { i¢= n/2 --> r7unload(?1)

plunload(t) ir=i+i 2

—o e

Figure 2.4.4 The vSum Processor.

2.4,.4 The vSumlLeaf Processor

The vSumLeaf processors have no subtrees beneath them ta
worry about., Thus, the messages they send and receive are
much simpler than elsewhere in the tree. The vSumbLeaf
receives and ignores the expect message. It will see only
one value during the loading step, and send only one value
in the unloading step. The sgubscript message initializes

=58~

the wvariable s. During the vector summing phase of the
computation the vSumlLeaf will send a sgumUp message and
receive a sumDown message. The sumlp initiates the stream
of like messages flowing through the tree, and the sumDown
terminates the vector summing phase, If the subscript
contained in the sumDown message is less than the subscript

stored in the processor, the partial sum is added to the
valve stored in variable x. Otherwise the partial sum is
ignored. The final action of the vSumLeaf is to unload its
newly formed value of x.

The program text for the vSumLeaf processor is given in
figure 2.4.5, Notice that n, the size of the vector, is in
no way involved in any of the steps of the computation.
The execution of vSumLeaf program, then, is constant in

time,

=59~

processor vSumlLeaf;
extern ort p;
integer x,s,v,t,i,j;

“initialization" _
p?expect(s,v) ; p?subscript(s) ;

“load the valves of vector a"
p?load(x);

"vector summing"”

Ji=1 3

{ j{=v ==
plsumlp(x,s) ; p?sumDown(t,i) ;
[i{s ==) xi=x+t | i»=s --> skip 1 ;
Ji=j+1

3

"*unload the values of vector x"
plunload(x) .

Figure 2.4.9 The vSumbLeaf Processor.

2.4.%5 The Complexity of the Tree Machine Algorithms

The space complexity of a tree machine program is very easy
to calculate: one merely counts the number of processors
veed in the solution., In this case, the vector summing of
a vector containing.n elements requires a processor for
each element. Thus, the space complexity is precisely n.

We have seen that the time complexity of the individual
processors in the tree is no worse than 0(n), That is only
(an insignificant) part of the picture, however, In order
to understand the time requirements of this and other tree
machine algorithms, we must look at what happens when the
processors play together,

In the vector summing problem, we can calculate the time
complexity by computing the longest distance that any

—60_

message must travel in each phase of the computation,
Since pipelining can be employed to overlap the transport
time of multiple pieces of data, the number of ™messages
that travel the maximal distance does not usvally affect
the order of the time cost.

The initialization phase calls for a messuge to travel from
the root to the leaves. In a tree of n processors, this
distance is logan. During the loading and unloading steps,

n numbers travel <the fuvll height of the tree, again
0(1ogan). Since pipelining allows the movement of data to

overlap, the time cost of all n messages is ﬂ(n+logan)=0(n)

rather than O(nlogan).

The vector summing phase begins in the left—-most leaf and
ends in the right—-most 1leaf. The sumlUn and sumDoun
messages travel the height of the tree once. That is, the
summation step requires 0(1092n) time,

The overall time complexity is the sum of all the pieces,
in this case, O0{(n), As with many tree machine algorithms,
the loading and unloading time dominates the time cost.
The computation time, reduced as it is by the concurrency,
is last in the noise. If we assume that the tree |is
already loaded with <the vector and the answer is left in
the tree, <the computation time of 0(logan) is an

improvement over the linear computation time of the best
sequential machine algorithm (figure 2.4.2).

In the next two chapters o varied collection of algorithms
are mapped onto the tree machine, In each case the
complexity of the individual processors does not contribute

=54 -

to the complexity of the tree machine solution as a whole.
The most significant activity is the flow of messages
throughout the tree. Thus, the programming style that |is
emphasized is one that 1limits the length and number of
communications between processors, The processors are made
as independent of each other as possible, and the
communication is restricted as much as possible to nearest
neighbor conversation, The flow of contrel of the
algorithm is distributed throughout the tree, with no
central puppeteer controlling the actions of the other
processors. While this style of programming is a bit
vnsettling when one is wused to RAM-style machines, the
‘results are very satisfying.

2.5 Sorting

The problem of sorting a set of elements into ascending or
descending order has received much attention. There are a
variety of algorithms available that can arrange n numbers
in the prescibed order in O(nlogzn) time [Knuth731., Since

the elements cannot be loaded faster than one at a ’tine,
any tree machine algorithm will require at least O0(n) time
to sort n elements,

The 1lower bound time complexity, 0(n), is achieved by the
algorithm that follows. When the numbers have been loaded
inte the tree wmachine, the largest number in the set is
available in the root of the tree. As soon as it is
removed, it is replaced with the largest among those
remaining. Thus, the numbers are sorted in the time it
takes to load and unload the tree.

I have chosen to implement heap sort on the tree and will
use one processor for every number to be sorted. As the
numbers are loaded into the +tree, they are partially
sorted. The largest number in any subtree is stored in the
root of that subtree. As the numbers are unloaded, the
gorting is completed: each root of a non-empty subtree is
refilled with the 1largest wvalve among its descendents.
During loading and vunloading the tree remains balanced.

The program defined here never terminates. It will always
be either waiting for a new number to sort or trying to
output one of the sorted numbers. It is a simple matter to
modify it to terminate when a special end—-of-file indicator
appears in the input stream, Several interesting
extensions to the basic sorting tree are discussed later: a
stack, a queue, and a priority queve. These data
structures are implemented on a tree machine with small
modifications to the non-terminating sorting algorithm.

The tree is defined with the connection plan below.

ree sortTree(n):

nmascemesttrminns

ogen—e (sort

Ll

sort) ;

gort ~ sortleaf .

Figure 2.5.4 fhe Sort Tree.

As indicated, there are two kinds of processors in the
tree. It is a binary tree with height logon. The leaf

processors are sortieafs; the others are gort processors,

The processor definitions are given in Figure 3.4, There
are two values stored in each sort processor: pum is one of
the numbers to be sorted, ¢nt is a count of how many

-5

processors in the subtree rooted at this processor are
storing one of the input numbers, If ¢cnt=—-4i, this
processor is not currently storing a number, and can accept
one. If cnt=0, +the only wvalid number in the subtree is
here, at the root. If cnt)0, there is at least one number
in the subtree, The 1leaf processors record a number in
num; they don’t need a cnt variable as there is no subtree
beneath them.

Each processor will either accept @ load message from or
send an unload message to the processor connected to its
external port., If a load message, with argument ¢, is
received, the processor will either keep c or pass it on,
depending on the current value of cnt. If c¢nt=-i, the
value of ¢ is assigned to num. If cnt)-i, the larger of ¢
and pum is kept as pum, and the smaller is passed either to
the 1left port, if ¢nt is even, or to the right port, if cnt
is odd. The tree is kept balanced by alternating between
the two internal ports.

If an unload message is sent, a new value of pum must be
selected from among the wvaluves in the subtree. Cnt is
again uvsed in the replacement selection, If cnt=0 there
are no more valid numbers in the subtree. If cnt=i only
the left subtree has a number in it. That number becomes
the new value of num. If cnt)i, both subtrees contain a
valid number so the larger one must be chosen, This is
accomplished by asking for both candidates, keeping the
largest one, and reloading the smaller one. The program
text for the load message is mimicked in the reloading
operation to maintain the balance of the tree.

g -L

processor Sort;
external port p;
internal port 1,r;

integer cnt,num,C;

cnt = ~-43
{ p?load(c) -=)
[cnt = =4 ==) num 1= ¢; cnt = 0
i ent >= 0 -=)
"keep the largest one of c and num"
{ c) num ==> num,c 1= c,num J} ;
"lean to the left, lean to the right ..."
[even(cnt) —=> llload(c)
! odd(ecnt) --> rlload(c) 1 ;
cnt = cnt + §
)]
! plunload(num) -=)>
{ cnt = 0 --) cnti=~{
! cnt = & —--) 1?7unload(num) ; cnt = 0
{ cnt > 4 -=)
"reload with largest valuve in subtrees"
“"this is a repeat of the load code"
172unload(num) ; r?unlead(c) ;
€ ¢) num —=) num,c = c,num J
[even(cnt) —=> 1lllead(c)
! oddfcnt) == rlload(c) 1 ;
cnt (= cnt - 4

processor SortlLeaf;

external port p;
integer num;

€ p?lload(num) =-) plunload(num) 3 .

Figure 2.%.2 The sort and sortlLeaf Processors.

This discussion wouldn’t be complete without mentioning
that several machines have been proposed to sort things in
linear time. Armstrong [Armstrong77] has looked at sorting
memories, Bently and Kung [Bently79] have proposed a double
tree as a VLSI sorting engine, and Thompson and Kung
[Thompsen79] have analyzed mesh connected architectures for
gorting. None of these machines can. get around the fact
that until the data is loaded and unloaded in parallel, the

least amount of time and space needed to sort n things is
0dnd .,

wifh miner modifications te the program text, the sorting
tree wmachine can be wused to imitate elther a stack or a
queve, A stack is a data structure with the property that
the last item inserted into the stack will be the first one
removed from the stack. By changing the program text in
processor Sort to always keep the new number (¢) and pass
on the old number (num), we can simulate a stack, A queve
has the property that the first number inserted into the
queve will be the first number removed from the queve. If
the sort processor is modified to always pass on the new
number, it will act 1like a queue,. In both cases, the
unload behavior is changed so0o that <the processor is
refilled alternately from the left and right subtrees,

By adding a delete operation to the sort tree described
here, we can extend it to act as a priority queue [Aho74,
p.1471., Delete removes a given valve from the set of
numbers stored in the tree. The load operation corresponds
to the insert operation of the prlority queve, and unload
is the same as identifying the minimum or maximum value in
the queve, Load and unload take a constant amount of time
per element loaded or unloaded. Delete, on the other hand,
can take as much as O(Iogen) time to complete. While

delete operations can overlap each other, all deletes in
progress must finish before an unload is initiated. Thus,
the time it takes to process a series of actions on the
prierity queuve 1lis related not only to the number of
operations, but the order in which they come, as well. The
worst possible sequence is to never allow the deletes to
overlap: each delete is followed by a load or wunload that

—bb—

must wait for completion. In this case, the time cost is
D(nlogan), Just as it is on sequential machines. The best

pessible sequence has no deletes at all, and it takes 0(n)
time to complete. The expected behavior lies somewhere in
between,

Leiserson ([Leiserson79] presents an archltecture for
multiple priority queuves that utilizes an array of primary
store for each queve, backed uvp by a single tree—shaped
secondary store. He shdws that load and unlead operations
can be performed on m™m priority queves in parallel in
constant time, While he ignores the costly delete
operation in his discussion, the integration of array and
tree structures is interesting,

2.6 Transitive Closure

Let G be a directed graph with n nodes and e arcs. The
transitive closure GX, itself a directed graph, is
generated from G as follows, If v and v are nodes of G,
then there is an arc from v to v in GX if there is a path
from v to v in G,

There are at 1least two ways to generate the transitive
closure of a graph on a single processor sachine. Let B be
an nxn incidence matrix for G. That is, bijzi if arc (i,j)
is in G, and b; ;=0 otherwise. Then B" is the incidence

matrix for GX. Since wmatrix wmultiplication is an D(nz)

operation and 8" is computed by doing n matrix
multiplications, this method of forming the transitive
closure takes 0(n4) cperations,

-7 =

Warshall’s algorithm [Warshallé2l is a more efficient
method. An incidence matrix is again used to represent the
graph., The algerithm, figure 2.6.1, employs three nested
loops that traverse the matrix adding arcs., After k steps
of the outer loop, matrix element Q1J=1ggg 1f and only if

there is a path frem i to i through intermediate nodes

S

taken from the set (4,2,...,k).

boolean array bli:n,i:nl ;
integer i,j,k;

for ki=i to n do
£gn ii=i to n do
for j:=1 to n do
if ni;,k] and bik,jl
then bli, jli=trve 3}

Figure 2.6.4 Warshall’s Algorithm for Transitive Closure.
On a sequential machine, this algorithm takes O(nz) time,
an improvement of an order of n over the matrix
multiplication method.

Several improvements on these two algorithms for transitive
closure have been présented recently. By performing some
preprocessing on the incidence matrix to remove cycles, the
matrix can be expressed in upper triangular form. Matrix
theory is brought to bear on the problem, showing that
transitive closure can be formed in O(nzllogzn) time

{Arlazarev70l, or in the time required to perform one
boolean matrix multiplication [Munro7il. Fischer and Meyer
[Fischer74l show that transitive closure is at worst

0(n1°g7(1092n)2). (The time cost of the most efficient

matrix eultiplication algorithm on sequential machines is
0(n2°97) (Strassens9l.)

-68-

Each of the algorithms in the preceding paragraph have made

only miner improvements on the basic D(n3

) time complexity
of <the problem. The vltraconcurrency of the tree machine
provides the luxury of not having to squeeze every last
drop of unnecessary activity from the olgorithn in order to
achieve a lower time complexity., We can and will wuse one
of the less complicated, less efficient algorithms as the

starting place for the tree machine algorithm.

A technique for multiplying matrices on the tree machine is
presented in a later chapter. It can be used to implement
the first transitive closure algorithm, requiring O(na) for
a sihgle multiplication, and O(ns) time to form the
closure, A tree machine implementation of Warshall’s
algorithm yields better resuvlts,

Before 1looking at the code in detail, a few words need to
be said about the overall strategy. There are two key
points in Warshall’s algorithm. First, it is cascading.
That is, newly created arcs can effect the creation of
other arcs in the «closure, Any realization of the
algoerithm on the‘ tree machine must include this
characteristic. It is not gsufficient to consider only the
arcs of the original graph. ‘

Also important is the comparision between arcs. This
comparison, stated in figure 2.6.41 as

if bli,k] and blk, jl then bli,jl:=true

can be translated into English: if there is an arc fiom i
to k, and another arc from k to [, then create an arc from
i to J. If, instead of wsing the incidence matrix

- -

representation of the graph, we represent the graph as a
list of arcs, we can build a tree machine that represents
all possible arcs in the graph and prune it down, by means
of the arc 1list, to only those arcs that are in the
closure. '

In the graph problems of this and <the next chapter, this
technique of enumerating an exhaustive set of all possible
answers and weeding out the wreng ones is used over and
over again, As was emphasized in the discussion of
complexity theory as it relates to the tree machine, we
treat space (processors) as an unlimited resource in order
to minimize the time required to arrive at a solution,

2.6.4 The Transitive Closure Tree

The connection plan for the tree designed to generate the
transitive clesure of a directed graph is given in figure
2.6.2, It is a three level tree, with closureRoot, node,
and endNode processors. The closureRoot and each of the
node processors have a fanout of n. The endNodes are the

leaves of the tree.

tree closure(n);
closureRoot * node }
node ~ endNode .,

Figure 2.6.2 The Transitive Closure Tree,

Each node to endNode connection represents a potential arc
in the closure. All possible arce in a directed graph of n
nodes are represented by the na connections between node
and endNode processors. As the arcs are processed the tree
will be (figuratively) whittled down to include only the

=70~

arcs actvally in the closure.

Each endNode processor represents an arc from its parent to

the node it represents. Conceptually, think of them as
little lights., If the light is off, the arc does not yet
exist in G*. 1f the light is on, the orc exists., As the

arcs are processed, endNodes 1light wup, new arcs are
broadcast around the tree, and more lights come on. When
all the lights that can be lit are 1it, the algorithm is
done. The endNodes that are still in the dark are the ones
that have been pruned from the tree.

In the next few paragraphs the code for each type of
processor will be examined thoroughly. It will beconme
apparent that the time complexity of the individval
processors is constant., The messages flowing through the
tree dominate the time complexity of the problem. The time
required to compute the closure is ‘0(0), where @ is the
number of arcs in the clesure., There are certainly no more

2

than n“ arcs in the graph,

2.6.2 The closureRoot Processor

The closureRoot processor begins by initializing the tree.
Each nede is assigned a node number, with a set message.
The external port bus of the root is connected to some
system bus that can provide the arcs of the graph. The
closure, also in the form of grc messages, is sent out on
the bus as well.

Remember that Warshall’s algorithm is a cascading one,
While the original arc messages come from the system bus,

-74-

once the computation gets under way new arcs are generated
among the node processors. These too are received by the
closureRoot and broadcast both to the system (as part of
the answer) and to the tree (to effect the creation of more
arcsl.

The main part of the program text in the closureRoot
processor is a repetitive statement with all four guards
being input statements. The closureRoot wants an arc
message from either the bus or any node processor, a done
message from any port, or a notDone message from any
internal port. The done and notDone messages control a

semaphore vused <o determine when the generation of the
transitive cleosure is complete. The semaphore, active, is

initally equal to n+i, the number of ports in the
closureRoot. The reception of a done message 'decrenents
gctive, and a potDone message increments it. When active
reaches zero, the closure has been found. The final action
of the closureRoot processor is to send a done message to
the system bus.

The processor definition of closureRoot is given as figure
2.6.3, below,

=72-

processor closureRoot(n);

external port bus;
internal port v{(iin);

integer i,j,active; hoolean more;

"initialization - set node number"
it=f 3 € i(=n =-=> viidlset(i) ; i:i=i+i 3 3

“read arcs from bus and internal ports"
"pass up and down"
*done when ACTIVE=0"
active := n+i ;
€ active)ld =->
[bustarc(i,j) —=> v(X)larc(i, j)
viX)?arc(i, j) -=> v(X)larc(i, j) ; bustlarcd(i, j)
bus?done —-) active:=active-i
v(%X)?done -—-) active:=active-i
v(X)?notDone —-) active:=active+i

H

[

3
v(X),bus!done ,

Figure 2.6.3 The closureRoot Processor.

2.6.3 The node Processor

The first thing the closureRoot processor did was send an
initialization to the processors wvia its internal ports,
Consequently, the .first action the node processor takes is
to recelve a get message from lits external port to
initialize its node number in the variable myVY. Once that
is done, the arc processing phase of the computation
begins,

The boolean d is used to remember which message was sent
last: one or potDone. Recall that these two messages are
vsed to increment and decrement a semaphore in the
closureRoot,

The other important message the node deals with is the agarc
message ., When an grc message is received, the endpoints in

73

the ®message, i and ,j, are compared to pyV., If the starting
point of the arc is this node (i=pyV), er there is an
existing arc from myV to i (i\=myV and mi), the arc (myY,j)
is added to the closure. This is precisely the test of the
sequential Warshall’s algorithm given in figure 2.6.1.

If an arc is received that does not create a new arc in a
particular node processor, a done message is sent if d is
false. If d is true and a new arc is created, a potDone
precedes the transmittal of the new arc. The two remaining
states, d=true with no new arc, and d=false with a new arc,
do not cause a change in d; nor do they force the
transmittal of done and notDone messages.

The program text for the node processor is given below, in
figure 2.6.4.

=7 h -

processor node(n);

external port p

internal port v(i:n) 3}

integer myV,1i,j; beolean mi,mj,d,more;

"initialization - get node number"
plset(myV)

"get arcs from external port"
"d=true if a done message was sent"
di=false ; morei=true ;
{ more -
[prarc(i,j) ==
"if the arc is from myV or there is"
* an arc (myV,i), set mark"
v{i)?mark(mi) ; v(j)?mark(m]j) 3
I (i=myV and mj) or C(i\=myV and not(mid) -->
[not(d) —-> d:=true ; plildone
t d --> gkip 1
! (i=myV gnd notimjd) or (i\=mpy
v(j)isetMark;
[d --> pinotDone ; d:=f
! not(d) --> gkip 1
plarcimyVv, j)

and mi) --)

]

{ p?done --) more:=false ; v(X)ldone
1

Fiqure 2.6.4 The node Processor.

2.6.4 The endNode Processor

The endNode processor is very simple. It stores a beolean
state variaoble called m. The value of m is true if there
is an arc from the parent node to the endNode, and false
otherwise, Only two messages are of interest: the endNode
will receive a getMark instruction to set @ to true, and it
will send a mork message to display the state of m,

One might wonder why the endNode even exists. Couldn’t a
boolean array in the node processor serve the same purpose?
Functionally, the effect would be the same. However, the

VAT

array would be n cells long. This introduces the size of
the problem, 0, inte the required storage of each
processor, This tie between the size of the processor and
size of the problem is to be avoided at all cost. The
processors are of fixed size and the characteristics of the
problem are allowed to influence only the npumber of

processors in the tree, not the characteristics of those

processors.

The endNode definition is given in figure 2.6.5.

precessor endnode;
external port p;
boolean m,more;

"mark is TRUE iff there is an arc "
"from the parent to this node"
m = false ; mMmore:=iruve ;
{ more —->
[plmark(m) --> skip
p?setMark ~--> m 1= true

vomstsssoies

1]
' meeseasesmse:
! p?done --> more:=fglse
]

Figure 2.%.6 The endNode Processor.

2.7 Closing Remarks

This chapter began with a survey of computation models
vseful in the analysis of algorithms, It ended with a
demonstration of a particuvlar model, the highly concurrent
tree machine, in action., Two classic algorithms, heap sort
and transitive closure, have been mapped from a sequential
context to the tree machine, and analyzed in the new
context,

-7y

Heap sort is an U(nlogan) algorithm on a sequential

machine. The time complexity can be reduced to O(n) on the
tree machine, Transitive closure is essentially an 0(n3)
algorithm in the sequential world. On the tree machine it
becomes O(na). Both of these time requirements correspond
to the load/unload time of the data, and, as such,
represent lower time bounds, The space requirement for both
heap sort and transitive closure is the same as required by
their sequential machine counterparts: heap sort takes 0(n)
space in both contexts, and transitive closure takes O(ng).
" There is much to be gained by treating space as an
unlimited resource and concentrating en reducing the time

requirement to the bare minimum,

=77 =~

Chapter Three

NP-Complete Problems

In this chapter the notion of NP-completeness will be
introduced. This class of problems is intractable on
sequential nnchldes, requiring exponential amounts of time
for a solution to be found. When the problems are mapped
onto the highly concurrent tree machine, the results are
startling. Given the premise of unlimited processors, the
Np-complete problems can be solved in polynoemial time.

The chapter begins by describing the characteristics of
NP-complete problems., Three problems are mapped onto the
tree machine: the clique problem, the color-cost problem,
and the travelling salesman problem. The chapter ends with
a discussion of the tree machine approach to solving these
intractable problems.

3.4 An Introduction to NP-Completeness

Complexity theery has established a context within which it
is possible to make certain statements about the inherent
complexity of computations. These statements are
universally couched in the terminology of sequential
machines. There is, however, a class of problems for which
the possibility of large scale concurrency has been
addressed,

=78~

Consider a computation in which there are n decision
points. At each decision polnt a choice must be made among
q possible branches. If there is enough information
available to decide which branch to take at each step, a
sequential machine will be able to complete the computation
in n steps.

In many computations there is not enough information
available to decide which branch to take at the <time the
decision is made. In this case, a sequential machine must
either pick a path at random or apply some heuristic, If
the chosen path turns out to be wrong, the machine must
backtrack to the declision point and try another route.

Imagine a machine that always chooses the right branch at a
decision point, even though there isn’t enough information
to go on. Such a machine cannot, of course, be built with
real logic operating with real programs. These imaginary
machines with foresight are called pondeterministic, and
can solve the computation mentioned above in linear time,
Even without complete information, the nondeterministic
machine can make the right choice among gq branches at each
of n decision points. Problems that can be solved in a
polynomial number of steps on this imaginary machine are
called Nondeterministic-Polynomial, abbreviated NP.

There is a class of NP problems where there are no
shortcuts, Following a path to the end gives no hints
" about the outcome of another path. These problems are, in
some sense, maximally difficult. They are called
NP-complete problems.

7P~

All NP-complete problems are equivalent in the sense that a
solution to a particular problem can be polynomially
transformed into a solution to any other problem in the
‘class [Cook74]. Thus if a linear solution to any one of
the NP-complete problems exists, all of them can be solved
in no worse than polynomial time, If an exponential
solution is required, all NP-complete problems will require
exponential time.

Exponential solutions to NP-complete problems exist for

sequential machines., Each path Must be followed
individually, Since there are an exponential number of
paths, the solution has exponential time complexity. On

the tree machine, all the paths can be followed
simultaneously,

Tree machine algorithms for three NP-complete problems have
been designed. The solutions are presented in the next
three sections, followed by a discussion of the programming
style that the problems encourage. All three solutions
follow the same general pattern: a tree is generated that
represents all possible solutions for an arbitrary graph of
size n. The edges of the particular graph are used 1o
prune the tree and arrive at a solution. A

3.2 The Clique Problem
A cligue is a subset of nodes and edges of an wundirected

graph with the property that there is an edge between every
pair of nodes in the subset.

=80~

I# € is an undirected graph, then C, a subgraph
of G, is a cligue if and only if for every pair
of nodes v and v in €, there is an edge (u,v) in
c.

Finding the largest clique in an arbitrary undirected graph
is an NP-complete problem, as is determining if a qgraph
contains a clique of a given size.

Before presenting the tree machine solution to the clique
problén, let vs look at a situation where the problem
arises. Heller ([Heller79] describes an algorithm for chip
planning that takes a graph-theoretic approach. He
describes the chip interconnections as a graph, planarizing
the graph if possible, If the graph contains any subgraphs
that reduce to either of the shapes in figure 3.2.4, the
araph can be planarized only by adding extra nodes, Notice
that one of the critical shapes is a clique of five nodes,
Thus, as the graph is planarized, the question of whether
the graph contain a clique of size S arises. While this is
not an NP-complete problem (it is O(ns)), it is related +to
the more general NP-complete problem of whether a graph
contains a clique of size k.

Figure 3.2.4 Problem Subgraphs in Planarizing Technique.

The tree machine algoerithm will generate all of the 2"
possible cliques of the graph. The subgraphs are generated
algorithmically as shown in figure 3.2.2. A path From a
leaf to the root represents one potential clique, with &
meaning no node. Thus, the leftmost path, (1 2 3 45 6 ...
n), is the whole graph, and the rightmost path, (% & % ..,

=4 -

£), is the empty subgraph. All paths between these two
extremes are the other subsets of the nodes of the graph.

&

/N /"N /\ 7\
3 # 3 % 3 $ 3 &
AL AN AN AA

4 ¥ 4 & 4 % 4 % 4 % 4 4 4 %

Figure 3.2.2 Algorithmic Generation of Potential Cliques.

The +tree of processors representing potential cligques
processes the edges of the graph and (conceptually) prunes
the tree down to only genuine cliques. The largest of
these is the maximal clique in the graph. This same tree
machine can also be vsed to determine if a graph has a
clique of a given size.

The pruning strategy is this: each processor keeps a count
of how many edges containing the node it represents pass
by. This count is initialized to the number required if
this path of the tree represents a clique. As an edge with
an endpoint that matches this node is encountered, the
count is decremented. A count of zero or less means that
this node might be part of a clique. If the edge count in
every processor along a given path in the tree is less than
er equal to zero, the path represents a clique.

At this point you should be wondering how the number of
required edges, that is, the initial edge count, is set,
Doesn’t it involve foresight about the makeup of each

clique, and thus the complete path in the tree? After all,

each neode in a clique of size m must have m-4 outgoing
edges.,

Well, as you may have guessed, there is a trick., True, the
first node in a m-clique has m—-i ovtgoing edges, but one of
those goes to the second node. the second node, then, has
m-2 outgoing edges that haven’t been counted vyet, This
counting continuves with successive nodes having one fewer
uncounted edges until we find that nth node has no new

edges at all, This edge counting is shown below for a
4-clique.

node § node 2 node 3 node 4
edges edges edges edqes

(1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4)

Another way of looking at the edges is that there is one
edge coming inte node 2, two into node 3, and three into
node 4 in a 4-clique. This is the way the edge counts are
initialized, In any size clique, there are m-i edges

coming in to the nth

node in the clique,

The tree below represents the edge counts generated to find
cliques in a graph with four nodes. Another way of 1looking
at the edge counts is that each edge count is one less than
the number of left branches in the path from the root,.
Recall from figure 3.2.2 that a count of left branches
determines the size of the clique.

83~

./root\

0 =
///\\\ ’//N\\
AN 0 N
27 § 0 1/\1 o/\~1
AN /AN N N N AN AN A
32 241 24 410 24 40 40 0 -1

The initial edge counts are decremented each time an edge
to <the node in question is encountered. As edges are sent
down the tree by the root, the endpoints are scrutinized by
the receiving processors, If neither one matches this
processor’s node, the edge is sent further down the tree.
If either endpoint matches and this processor is part of a
clique (that is, is not one of the #’s of figure 3.2.2),
the edge becomes a to message, and the edge count in the
destination processor will be decremented. If the
processor is not part of a clique (rather, is one of the
$#’s in flilgure 3.2.2) and either endpoint of <the edge
message references this processor, the message is thrown
into the bit bucket,

Each 1level in the tree represents the consideration of a
new node in the graph. Each path in the tree represents a
potential clique. This structure makes it possible to rely
purely on leocal information in identifying the cliques of a
araph,

The textual description of the tree is given below, There
are three kinds of processors defined: cligueroot, cliguve,
and cligueleaf. The tree has depth n+i, Hence there are n
connections in the plan.

-84~

tree cliqueTree(n):
cliqueRoot ” clique ;

n-2 (clique ™ clique)
clique ~ cliqueleaf,

Figure 3.2.3 The Connection Plan for the Clique Tree.

The c¢ligqueRoot nede is responsible for initiating the
initialization wmessages (set), for reading the edges from
the system bus and passing them down the tree (edge, done),

and for reporting the answer (largestCligue).

The set message takes three arguments; the first is the
node number, the second is a count of the number of non-#
processors in this path so far, The third argument is a
boolean: true wmeans this node is in the potential clique,

false means its not.

The root node has two internal ports, y and n. It expects

to receive largestCligue messages on these ports, reporting
the largest clique found in each subtree. The larger of
the two is reported to the system bus as the answer, again

in a largestClique message.

The definition of the cliqueRoot processor is given in
figure 3.2.4. The program has four sections: declarations,
initialization, edge processing, and answer reporting.

=85~

processor cliqueRoot;
external port bus;

internal port vy,n;

integer i,Jj; boolean more;

"initialize the tree"
ylset(i,0,trve) 3 nilset(i,-i,false)

~we

“read the edges from the system bus"
"and pass down the tree"
more = true ;
{ more -=>
[bus?edge(i, j) —=> y,ntedge(i,j)
{ bus?done --) more:=false ;
y,nldone
1
3

"choose largest clique from subtrees"
"and report answer"

y?7largestClique(i) ; n?largestClique(j) ;
 i<j ==> i,j 1= j,i 3 3
bus!largestClique(i) .

Figure 3.2.4 The cliqueRoot Processor.

The clique processor is replicated to form all of the nodes
in the tree between the leaves and the root. It receives a
set message along its external port initializing the
variables myN, a nede number, ecnt, the number of edges
from lower numbered nodes to myN that must be in the graph
in order for this node to be part of a clique, and
inClique, a boolean that represents this node’s membership
ln the subgraph. The clique processor builds set messages
from it’s own state variables to send to the descendent
subtrees only the two internal ports.

The processor will receive gdge messages on its external
port, terminating with a done message. If one of the
endpoints of the edge is this node, the edge message |is
transformed into a to message containing the other endpoint
of the edge., Otherwise, the edge message is passed on

-8 &=

unchanged. Je messages provide a mechanism for letting one
endpoint of an edge know that the onther endpoint has
already seen the edge. When a to message is received by the
other endpoint of the edge, ecnt is decremented. If ecnt
goes to0 zero everywhere along a path in the tree machine,
that path represents a genuine clique. As with the root,
the largestClique messages report the answers.

The code for clique processors is given as figure 3.2.5.
Again, it is presented as four paragraphs: declarations,
initialization, edge processing, and answer reporting.

=87~

processor clique;

external pert p;

internal pert y,n;

integer myC,ecnt,size,l, j;
boolean inClique,more;

"receive initialize message, send to subtrees”
"myN: node number, ecnt: edge count in clique”
plset(myN,ecnt,inClique) ;
ylset(myN+i,ecnt+i,trve) ;
niset(myN+4i,ecnt,false) ;

[inClique --) size := ecnt+i

! not(inClique) --> size,ecnt := 0,0 1 ;

"process edges: if myN in edge, change to"
“to message. if to contains myN, decr ecnt”
Mmore 1= true ;
{ more -=>
[pledge(i, j) ==
[i=myN and inClique —--) y,nito(j)
j=myN and inClique ==) y,n!to(i)
i=myN or j=myN and not(inClique) --) skip
I i\=myN and j\=myN --> y,nledgeli,j) 1
! p?to(i) ==
[i=myN gnd inClique --) ecnt := ecnt-i
! i=myN and not(inClique) =--) skip
] idmyN -=) y,nlito(i) 1
! p?done --) more := false ; y,nl!done 1

oo oo

3,

“if ecnt=0 this could be a cliquel®
"choose largest clique and report answer"
y?largestClique(i) ; n?largestClique(j) ;
idj =2 i,j = j,1i 2 ;

i{(size --) i,size 1= slze,i 3} ;

ecnt>0 --> pllargestClique(0)

ecnt{(=0 --) pllargestClique(i)

ot == PR Y Y

Figure 3.2.% The clique Processor,

The cliqueleaf processor makes up the bottom level of the
tree. I1ts program text is simplified becauvse it receives
and sends fewer messages.

The 1leaf processor wlill receive get messages to initialize
myN and ecnt as before. However, as a leaf node has no

=83~

internal ports, a cliqueleaf processor does not manufacture
set messages for its descendents,

No edge wmessages reach the leaves, They have all been
converted into 1o messages. The done message terminated

the edge processing phase of the computation.

The answer reporting via largestCligue messages is
initiated in the leaves and ripples up through the tree to
the root,

The program text for the third and final processor
definition is aiven in figure 3.2.6.

-89 -

processor cligueleaf;
external port p;

integer myN,ecnt,i,size;
boolean more,inClique;

"get initialization message from above"
"no need to send it on"

"(and nowhere to send it anyway)"
p?seti(myN,ecnt,inClique) ;

[inClique --) size := ecnt+i

i not(inClique) --) size,ecnt := 0,0 1 ;

"process edges = only to and done message"”
more = true ;
{ more --)

[p?to(i) ==

[i=myN and inClique —--) ecnt 1= ecnt+i
[}

i i\=myN or not(inClique) --) sgkip
1

! p?done --) more := false

]

3

*start the answers on their way up the tree®
*if ecnt=0 this is a clique, else no cigar"”
[ecnt{(=0 --) pllargestClique(size)
i ecnt>0 —-> pllargestClique(0) 1 .,

Figure 3.2.6 The cliquelLeaf Processor.

3.3 The Color Cost -Problem

Can the nodes of an arbitrary undirected graph be colored
with k colors so that adjacent nodes are different colors?
This colorability question [Aho74, p.3781 has attracted
widespread attention in the past decade as researchers and
game players alike have attempted to solve the problem for
sMmall valves of k [Appel771.

The color-cost problem is a variant of the colorability
problem, with k = n, the number of nodes in the graph.
Here, of course, colorability is assured: each node can be
colored a different color. Each color has a cost

-90-~

associated with it, and the problem is to find the coloring
with minimum cost, It is not necessary to use all of the
colors.

We can easily show that this problem is NP-complete by
reformulating it to answer the question of k-colorability
posed in the opening sentence of this chapter. If k of the
n colors have zerocost and the w®inimum cost coloring has
zero cost, the graph can be colored with k colors, This
technigque of showing NP-completeness by showing that the
problem is equivalent to a known NP-complete problem is the
standard way of adding to new problems to the class,

If <the wundirected graph in question has n nodes, with a
pallet of n colors, the number of potential colorings,
ignoring adjacency restrictions, is n". Thus, a sequential
machine will use O(n") time to make an exhaustive search
for the answer, Given a tree machine with 0¢n™)
processors, however, all possible colorings can be
generated and evaluated in parallel.

The tree machine algorithm is paced by the number of edges
in the graph, Thus the time complexity is more rightly
O(e), where e is the number of edges. Because e is no
larger than the number of edges in a clique of size n, that

is, e <= n(n-1), OCe) (= O(n%),

The coloring tree is built in the same style as the clique
tree. Each level of the tree represents the coloring of a
particular node in the graph, and each path from a leaf teo
the root is a unique coloring.

=0 4§ -

For example, consider the graph of figure 3.3.41, with three
nodes and three colors. The tree machine for every agraph
of size three 1ls given in figure 3.3.2. It has four
levels, has a fanout of three from each non-leaf node, and
is built using one colorRoot, twelve coloring, and
twenty—-seven colorleaf processors.

color | cost
blve ¢ 0
green | 1§
red i 2

Figure 3.3.4 @A Sample Graph for the Color-Cost Problem.

Each of the 27 possible colorings are generated as
described and shown in figure 3.3.2, As the edges are
processed, various colorings are ruvled out because they
violate the adjacency criterion, If two nodes of the graph
are adjocent, that is, if they share an edge, then they
must be colored differently.

b/!\i" _bA\f? b/‘\r
(/T\ b & Slg\% b/'\~ 6/¥\\ 6’!\} E/Q\% 5’3\~ t;/r\

y g

b: blue g: green r: red

Figure 3.3.2 Solution to Sample Coloring Problem.

The edges are used to invalidate colorings that ignore the
ad jacency rule. Ad jacent nodes must be different colors,
Each processor has a validity flag, initially set to true,
This flag indicated whether or not the coloring of this
node is legnl. Edges are sent through the tree by the root
and are scrutinized by the processors, Each time a
processor finds an edge with one endpoint matching the node
it represents, the edge is converted into an adjacency
message directed at the other endpoint, The messnage
contains the color chosen to color the first endpoint., If
the target processor has colored its node the same color,
the coloring is invalidated by setting the valid flag to
false. A valid colering is one In which every processor
along a path from a leaf to the root has the validity flag
set to true after all the edges have been processed.

When both edges of the example graph have been processed,
there remain 42 wvalid colorings, shown as double-lined
paths in figure 3.3.2. Of these, the minimum cost coloring
is the left—most one: blue, green, blue.

The algorithm vtilizes three different kinds of processors:
colorRoot, coloring, and colorLeaf processors. The tree is
n+i levels deep and branches n ways from each node. Thus,

-9

there are n" leaves in the tree, and eoch‘puth from a leaf
to the root represents one potential coloring of the graph.
The connection plan is given in figure 3.3.3.

tree colorTree(n):

colorRoot “ coloring ;

n~3 (coloring “ coloring) ;
coloring ™ colorlLeaf.

Figure 3.3.3 The Connection Plan for the Color-Cost Tree.

The colorRoot processor performs initialization and system
input/output just as the corresponding processor in the
clique algorithm did. The set message i initiated by the
root and carries two pieces of information. The first
argument is the number of the node in the graph that the
receiving processor will represent. The second argument
tells the receiver which color it will represent. After
the set w™essage is sent, the color costs are read from the
system bus and broadcast throughout the tree.

The edge and done messages are part of the edge processing

phase of the computation. Arcs of the graph are read from
the system bus and sent out through the internal ports of
the root node. A done messnge follows the last edge.

When edge processing is complete, the colorRoot is ready to
receive a candidate for minimum cost coloring from each of

ite n internal ports, and to choose the final answer from
among them.

The definition for the colorRoot is given in figure 3.3.4.
As with the program text for the clique algorithm, the code
is paragraphed inte each phase: declaration,
initialization, edge processing, and answer reporting.

-4~

processor colorRoot(n);
external port bus;

internal port vii:in);
integer i,Jj,c; boolean more;

"initialize subtrees with costs and colors”
it=f ;3 € i{=n --) v(idleget(4i,i) ; ii=i+i 2;
i,J 1= 4,0 ;
{ i{(=n --) bus?cost(c) }

€ cj —=) ji=c 3 3

vik)lcost(c) ; ii=i+i 3 ;
ci=nXj ;

“process the edges"”
“read from system bus"
“pass to subtrees"
more:=true ;
{ more -=) ‘
[bus?edge(i, j) --) v(X)ledge(i, j)

i bus?done --)> more:=false ; v(X)idone 1]

Y

*choose least of n answers and report it"
it=f ;3 € i{=n --) v(i)?answerd(j) ;

{ j¢e ==> e=j 2 3 ii=i+d 3 3
buslanswer(c) .

Figure 3.3.4 The colorRoot Processor.

The coloring processor resides between the root and the
leaves in the +tree machine solution. It has ene external
port and n internal ports. From the external port it
receives a get message to initialize fhe variables myN, the
node number, and myC, the coler number. As the n cost
messages are received, the nthh one is picked out to
initialize myCost. A set message is manufactured and sent

out each internal port. The costs are passed on as well.

In the edge processing phase, edge messages are scanned to
see if wmyN matches either endpoint. If so, the message is
transformed into an adj message carrying the other endpoint

-5~

and the color of this node. Otherwise, the edge is passed
on unchanged. If an adj message is recelved with the
endpoint matching myN and the coler the same as myC, this
coloring is not allowed. This invalidity is recorded in
the boolean valid. The edge processing phase end with the

reception of a done message,

In the answer repeorting phase, the internal ports are
interrogated for the cost to date of each coloring. An
invalid coloring has a very large cost, called inf for
infinite. The smallest valid cost among the subtrees is
added to wmyCost and passed up the tree. @ coloring is
valid enly if every processor on the path from the leaf to
the root has valid=true. Thus, if all answer messages from
the internal ports are inf or if wvalid in this node is
falge, an inf is reported.

The complete processor program text for the coloring

processor is given in fiqure 3.3.5,

=04~

processor coloring(n);

external port p;

internal port v(iin);

integer myN,myC,myCost,i, j,c; boolean valid,more;

"read init message, send some to subtrees”

"myN: node number, myC: color, myCost: cost"

p?set(myN,myC) ; valid:=truve ;

it=i; € i(=n ==> v(i)lset(myN+i,i) ; ii1=i+4 3,

ii=4 3

€ i{=n --) p?cost(c);
[myC=i == myCoest:i=c | myCr/=i --> skip 1 ;
viX)lcost(c) ; Ll:=i+14

3

“process edges: if myN in edge, make adj message."
"if adj(myN,myC), mark as invalid coloring"
more = true ;
{ more -->
[pledgedli, j) —=)
[i=myN -=)> v(x)iadj{j,myC)
i J=myN -=> v(X)lad j(i,myC)
i LdmyN and jo>myN —=> v(x)ledge(i, j) 1
Vo pladj(i, jy -
[i=myN and j=myC --> valid:=false
{ i=myN and j\=myC --> skip
v LImYN ==)> v(X)lad j(i, j) 1]
pidone --) more:=false ; v{X)!ldone

tood @ew

3,

“report answepr"
"pick least cost coloring from below"
"if valid add in myCost®
*inf means invalid celoring"
i,c:=1,inf ;
{ i{(=n =-=) v{i)?answer(j) ;

€ jJ€e ==> ex=j 3 ;3 ii=i+i 2 3
inf or not(valid) --) planswer(inf)

eavser

(inf and valid --) planswer(c+myCost)

fhed ww P
- an

Figure 3.3.5 The coloring Processor,

The leaf processor, colorleaf, is a simplified wversion of
the coloring processor. Since it has ne internal ports,
the colorleaf receives set and cost messages wWwith no need

to forward them, In the edge processing phase of the
computation, only adj messages will be received by

-5 7=

colorLeaf. All of the edge messages have been converted to
ad i messages higher up in the tree. As with the clique

algorithm, the colorLeaf’s claim to fame is that it
initintes the answer reporting as soon as the done message
is received. See figure 3.3.6 for the definition,

processor colorlLeaf(n);

external port p;
integer myN,myC,myCost,i,c; boolean valid,more;

"get initialization message from above"
p?set(myN,myC) ; valid,i := true,i;
{ i{=n --) plcost(c);

[myC=i --) myCost:i=c

! myC\=i =--> skip 1 ;
ii=i+f 2

"nrocess edges — only adj and done messages"”
more:=irue ;
{ more ==
{ p?adj(i,c) ==
[i=myN and c=myC --) valid:=false
! L=myN and c\=myC --) skip
iN=myN --> skip

]
{ p?done —-)> more:=false
3

b

“Initiate answer reporting”

[valid --) planswer(myCost)
{ not(valid) -=-)> planswer(inf) 1 .

Figure 3.3.6 The colorLeaf Processor.

3.4 The Travelling Salesman Problem

One of the classic NP-complete problems is that of the
travelling salesman. Given an vundirected graph, with
weights on each edge, find a path that visits each vertex
exactly once, returns to the starting point, and minimizes

98

the sum of the welights along the path.

This problem is often casvally defined in terms of the
cities (vertices) and highways (edges) of a roudnup{ That
is why it is called the travelling salesman problem. It
differs from the two previous problems in that it grows as
n! rather than exponentially,.

The tree machine solution wmirrers the n! growth. The
fanout is different at each level in the tree. The root
has n-i descendents, each of which has n-2 descendents,
each of which has n-3 descendents, and so on, The last but
ene level has a fancut of 4, te the leaf nedes. The 1tree
that arises from n=% is given in figure 3.4.1%.

/7—1\

= 3 Ty 5
3'/<I\\ 5 2 //I\\‘s 2 //g\\ 5 //g\\ 4
ANNN NANAN ANANAN NN A
A5 3534 452524 362523 342403
ey bt vevr vy vrrygd
S45343 545242 5365232 432432

Figure 3.4.1 Sample Salesman Tree, n=S,

The travelling salesman problem maps onto the tree machine
very much 1like the two previous NP-complete problems. The
tree represents the complete set of possible cycles in a
graph of n nodes. The lth level in the tree represents the
addition of the i'M
leaf to the root in the tree represents a potential cycle,

that is, a potential solution.

node to the path, Each path from a

L A A

The processors in the tree are assigned graph nodes in the
following way, The graph nodes are broadcast through the
tree as a stream of pode messages. Each processor has been
told to notice the node occupying a particular position in
the stream, The processor will remove that node from the
stream, but pass all the rest on. This means, incidently,
that the stream gets shorter as it approaches the leaves of
the tree machine,

Each processor initializes its descendents, The notice

message carries an integer argument that indicates the
position of the node in the stream that this processor will
represent, The pnotice messnges are generated by way of a
simple FOR 1loop in each processor, The first descendent
will pick off the first node in the stream, the second will
remove the second, and so on. Since the "noticed" node is
removed from the stream, the stream is different for each
processor in the tree,

The edges of the graph are thrown at this tree in order to
prune this exhaustive set of cycles down to the routes that
are legal in the context of the graph. Edges are broadcast
through the tree, examined by the processors, and converted
into distances as endpoints of the edges are wmatched. Ey
the time all of the edges have been sent through the tree a
legal cycle through the graph has been identified,. Every
path from leaf to root that represents a cycle has positive
distance stored in every processor aleng the path.

The main subtlety to the problem is the fact that the path
must be a cycle. It must end where it began. The
salesmanLeaf processor holds state information about two
edges: the one from its parent to itself, and the one from

-400-

itself to the starting peoint, The root not only passes
edges on as is, but if the edg is to or from the starting
point, it is duplicated as an end message as well, Thus,
the cycle property is maintained in the final solution.

An example graph is given in figure 3.4.2. The distances
are shown in along the edges of the graph, and are given in
the Los Angeles measure of distance: minutes,

The solution tree for the travelling salesman problem is
shown in fiqure 3.4.3. The eight double~lined paths are
the legal cycles in the gqraph. The fastest route from
Pasadena to Pasadena by way of the Hollywood, Santa Monica,
Long Beach, and Pasadena freeways, at least according to
this map, takes an hour and forty-five minutes, Either of
these two (mirror image) routes are fastest: (Pasadena, Los
Angeles, Long FBReach, Santa Monica, Hollywood, Pasadena) or
(Pasadena, Hollywood, Santa Monica, Long Beach, Los
Angeles, Pasadena).

=404~

¥ Pasadena

30
X Hollywood
10 150
Santa Monica X= — %" Los Angeles
30
30
20

% Long Reach

Figure 3.4.2 Travelling Salesman Example,

PTETOT TR0 Rpunt gnigng
ARA HEHMM HHMA BEMAM

P: Pasadena H: Hollywood M: Santa Monica

A: Los Angeles B: Long Beach

Figure 3.4.3 Solution Tree for Example Problem,.

The travelling salesman tree has a different fanout on each
level of the tree. That fanout is related to the level of
the tree the processor resides on. In order to represent
the varying fanouts in a connection plan, a new piece of
notation is introduced. The symbol & is used to mean lewvel
number in the tree, much like ¥ or . is used to represent
the current value of the program counter In <traditional
assembly languages, The root is 1level 0, so the row of
salesmanlLeaf’s in Figure 3.4.1 has &=4. The & appears only

-{02~

in connection plans, never in a processor definition,

The solution tree for the +travelling salesman problem |is

defined in figure 3.4.4, As wWwith the other NP-complete
problems, there are three types of processors, the root,
the leaves, and the ones in between, Notice that the

fanout of the salesman processors is described by an
expression that changes with the level number.

tree salesmanTree(n):
saleamanRoot(v(i:in)) salesman
n-3 (salesman(v(iin-%)) ~ salesman) ;
salesman(v(i)) ~ salesmanLeaf .

-~

Figure 3.4.4 The Travelling Salesman Tree.

Each of the three processors perform wmuch of the same
functions as the corresponding ones Iin the clique and
coloring problems. The root, salesmanRoot, initiates the
initialization phase, reads the edges from the system bus,
and reports the answepr. The wmiddle processor, salesman,
continves the initialization, processes and converts the

edges, and passes answers up. The leaf processeor,
salesmanleaf, is a sink for initialization and edge
messages, and the source of the answer messages, The
weights are loaded via distance messages in the same way
that costs were initialized in the <coloring problem, See

figures 3.4.%5, 3.4.6, and 3.4.7 for the program text,

-403~

processor salesmanRoot(n);
external port bus;

internal port v(i:n-4);
integer i,j,d; boolean more;

"initlalize subtree"”
it=4; € i{n ==> v(i)inotice(id; i

+4 33
it=4; € i<n -=) v(X)!inode(i); i: 33

=i
i+i
“process edges"”
"read from bus and pass to subtrees"
"if edge contains starting point (0)"
"make an end message too."
Mmore = frue;
{ more -->
[bus?edge(i, j,d) -=>
[i=0 -=-) v(X)!distance(j,d); .
vix)lend(j,d)
i Jj=0 -=> v(x)!distance(i,d);
v(X)lend(i,d)
i iN=0 and j\=0 -->» v(X)iedge(i, j,d)
]
{ bus?done —=> more := false ; v(X)!done

2=

3;

“report answer"”
"choose shortest path from n-i subtrees"
i,d :=14,inf ;
 i<n —=> v(i)?length(d, j) 3
{ j\=0 and d>j --> di=j 3 ;
i 1= 1+4 23
=inf --> bus!inoPath
{inf --) bus!shortestDistance(d) 1 .

Figure 3.4.%5 The salesmanRoot Processor.

-104-

processor salesmani{m);

external port p;

internal port v(i:m);

integer myN,myD,i,j,d; boeolean more;

“read initialization messge to set myN"
myD:=0 ; pInotice(j) ;
Li=4; € i{=n -=) v(i)!lnotice(i) ; l:=i+i I
i=1 3 € i(=m+ti ==

p?node(d) ;

[i=j -—) myN:=d

VoiN=j ==> v(X)!node(d) 1 ;
Li=i+i 3 ;

"nrocess edges: if myN in edge, make distance"
"if myN in distance, set myD; if end, pass it on."
more 1= true ;
{ more =-=>
[p?edgeti, j,d) -=>
[i=myN -=> v(X)lidistance(j,d)
! i=muN -=-) vi(X)!distance(i,d)
i i\=myN and j\=myN --> v(k)ledgeli, j,d)
{ p?distance(i,d) --?
[i=myN ==> myD:=d
t iN=myN --)> gkip 1
! p?end(i,d) -=-) vi(X)lend(i,d)
! p?done —-) more:=false ; v(X)!done 1]
33

“report answer: choose least distance among"
"subtrees, add myD, and pass up"
*myD=0 or d=inf means it is not a legal path"
i,d := 4,inf ;
{ i{=m —=) v(i)?length(j)
{ j\=0 and d>j --> d:=j) ;
it=jiti 233
d=inf or myD=0 --> pllength(0)
d{inf and myD>0 --> pllength{(d+myD)

el @e 7R

Figure 3.4.6 The salesman Processor.

-405-

processor salesmanleaf;
external pert p;
integer myN,myD,i,d,cycle; boolean more;

"initialize myN"
plnotice(myN) ; p?node(myN) ; myD,cycle := 0,0 ;

*process edges"”
“if distance contains myN, set myD"
“if end contains myN, set cycle"
more 1= true;
{ more -=2

[p?distance(i,d) —==> [i=myN ==) myD:=d

VoiN\=myN --)> skip 1
p?end(i,d) -=> [i=myN --> cycle:i=d
! i\=myN —-) skip 1

p?done --) more := false

bt @

3

"etart ansuwer trickling up the tree"

"both cycle and myD must be nonzero for valid path”
[myD=0 or cycle=0 --> pllength(0)

! myD)0 and cycled0 -=)> pllength(myD+cycle)

] 1]

Figure 3.4.7 The salesmanLeaf Processor.

3.5 NP-Complete Problems and the Tree Machine

In the previous sections, three NP-complete problems were
solved on the tree machine. The three problems, though all
intractable, exhibit different growth patterns, and the
tree machine algorithms reflect this and other
problem—specific characteristics, The similarities in
solution and style are dealt with here.

All three tree machine algorithms require O(na) time, and
all three are paced by the number of arcs in the graph.

" The pathse in the tree machine are vused to represent
possible paths in the graph. Thus, state is hidden in the

-§06-

connection plan of the tree. This is a departure from
earlier solutions to these problems I[Browning79cl, and
eliminates the need for problem-size dependent storage in
the processors, There is another benefit as well. Each
subtree has the same appearance, excepting special root
functions, as a complete tree for a problem of reduced
size., This is critical, since the goeal of the programming
exercise is to make the size of the problem influvence only
the pumber of processors in the tree, not the shape of the
tree or the size of the individunl processors.

In a single processor environment, space is treated as the
critical resource when attempting to solve the NP-complete
problems., Each of the exponential number of cases is
treated individually, Thus the time required to arrive at
o solution is exponential in n.

In +the wupcoming VLSI environment, the tradeoff can be made
the other way, Time can be minimized, and space
(processors) treated as an wunlimited resource. The tree
machine is a machine from that wmold. The NP-complete
problems, while still exploding expenentially in space, are
solved by examining all potential solutions in parallel,

It must be pointed out that the reduction to polynomial
time is realized gnly if there are enough processors in the
tree. Otherwise, the algorithm must be simulated at some
point and is still exponential. In that case, only the
time constant is reduced.

There are several algorithms that yield approximate
solutions <to these problems in polynomial time. It might
be interesting to wmap somMe of these agpproximation

-407-

techniques onto the tree for use when there aren’t enough

processors to find an exact solution,

-108-

Chap ter Four

Matrix Manipulation

In this chapter two algorithms for manipulating matrices
are presented: matrix multiplication and matrix inueréion.
In addition, several related problems are discussed: chain
multiplication, solving systems of equations, and LU
decomposition., The chapter ends with a discussion of the
_appropriateness of solving matrix problems on the tree
machine.

One might wonder if matrix problems are appropriate
problems for a tree Mnchine.. They seem to wmore naturally
map onto an array machine, There are array machines that
do matrix operations, and they multiply matrices very well,
But matrix inversion and related problems often require
that the data be reordered, that is, rows or columns
interchanged. Array machines have great difficulty with
this operation, called pivoting, because their efficiency
relies so much on the physical order of the data. The more
general structure of the tree machine is well svited *to
pivoting, as we will see later.

4.4 Matrix Multiplication

Consider the problem of multiplying two nxn matrices, Let
A, B, and C be nxn matrices such that C=AxE. An element of
C is formed by a series of multiplications and additions
according to the formula given below. Each element of c is

~409-

computed from a row of A, and a column of R.

n

The tree is composed of <three types of processor: root,
row, and element processors. It is an n—ary tree and is
described by the connectivity statements in figure 4.4.§,

tree MatMultin):
roct “ row;
row ~ element.

Figure 4.4.4 Matrix Multiplication Processor Tree.

The multiplicand matrix, A, is loaded inte the tree, one
number per element processor, in row order., That is, the n
elements of the first row of the matrix occupy the element
processors connected to the internal ports of the first row
processor, and s¢ on, For example, if n=3, <the tree Iis
loaded as in figure 4.1.2,

-440-

Figure 4.4.2 Sample Loaded Matrix Multiplication Tree.

The multiplier matrix, B, is available ¢to the root in
column-ma jor order as Cbii’bzi’b31""’bni'biE"'"bnn}'

Each element of B is sent to all of the row processors
simultanecusly. Each row processor multiplies it by the
appropriagte glement of & and accumulates the sum, UWhen the
n elements of a column of B have been received by the root
and sent to the rows, the first column of the answer maotrix
C is available, one element from each row processor.

The processor definitions are given in Fiqures 4.1.3 (the
root), 4.1.4 (the row), and 4.4.5 (the element), Each is
accompanied by a discussion of the salient features of the
program text,

The root is largely a traffic director, The tree is first
initialized with the elements of the multiplicand., The
first loop in the program text does that. It remains to
accept a column of the multiplier, direct it to the rows,

and receive a column of the product.

The root is prepared to receive two types of messages from
the environment, Lond messages cause the wmultiplicand
matrix to be loaded, Mult messages signal the availability
of the multiplier matrix. The root will provide the answer
te the environment via the product message. Rememeber that

-44i-

the root expects the multiplicand in row major order. The

multiplier and product are in column major order.

processor root(n);
external port bus;
internal port r(i:nd;
integer i,j) real a;

"load in the multiplicand”
ii=41 3
€ i¢(=n -=-) j:i1=1 3
{ j¢{=n --) bus?load(a) ;
r{i)!load(a) ; j

1=j+4 2
Li=i+d 3;
ii=1 3
{ I{(=n --)}
"get a column of the multiplier"
ji=4 3 € j¢=n --) bus?mult(a) ;
r(X)imultCa) ;3 je=j+di 23
“"get a column of the product”
Ji=t 3 € j<¢=n -=) r(j)?productia) ;
busiproduct(a) ; ji=j+di 2 ;
IRESFES1
) L]

Figure 4.4.3 The root Processor.

The second layer of the tree is made up of row processors.
The row receives the initial values of the row of the
multiplicand that it represents from the root, and doles
them out to the apprepriate element processors. As
multiplier elements are received from the root, the
products are calculated and accumulated until each element
in the row has contributed to the sum, The sum, an element
in the product, is sent to the root.

The row will accept load and mult messages from its
external port. It will send product messages in return,
Ovtgoing traffic on the internal ports consists of load and

rotmorsameen ors

-§i2-

fult messages. The row will accept product messages from
its internal ports,

processor row(n);
external port p;
internal port e(i:n);
integer i,j; real a,s;

"load multiplicand"
it=f 3 € i{(=n --) p?load(a) ;
e(i)!load(a) ; ii=i+i 3 ;

s,J:=0,4;
"get an element of the multiplier"
"form product with multiplicand element”
*accumulate a column’s worth and report sum"
{ j¢=n == p?'mult(a) ; e(jdimult(a) ;

e{ j)?product(a) ;

s, ji=sta, j+ti 2 ;
pl!product(s) ; i:=i+i

Figure 4.4.4 The row Processor.

The third kind of processor, element, is the simplest. It
waits for messnges on its external port., If it receives a
load message, variable g is inititalized. A nult message

cavses G wmultiplication; the answer is returned in a
product message,

=443~

processor element;
external port p;
real a,e;

"this guy only knows how to load and multiply"
{ p?load(a) —--> gkip

! p?mult(e) ==> piproduct(ake)

) .

Fiqure 4.4.%5 The element Processor.

On a sequential processor, matrix wmultiplication takes
0(n3) time. The algorithm described above requires D(nz).
There are O(na) data elements involved in the computation
and each must be loaded into or unloaded from the tree

individually.

Since the tree is a recursively defined data structure, one
might wonder if the divide-and-conquer technique for matrix
multiplication [Aho74] is a better match of algorithm to
machine. In fact, it is neot. The divide-and-conquer
method calls for recursively quartering the matrix until
each piece is small enough to be multiplied directly, then
reassembling the partial products into the whole answer,
It r;quires D(na) processors, an order of n more than the
algorithm described above. Eoth take O(ng) time. The tree
machine divide-and~conquer implementation is given as one
of a collection of tree machine algorithms presented in
Mead and Conway’s Introduction to VLSI Systems

[Browning79c].

With a slight modification, the wmatrix multiplication
algorithm can be extended to multiply a series of matrices,
that is, to compute

~344~

)
C = ig Ai where C and the Ai’s are nxn matrices.

i=4

If, instead of unloading the elements of the product as
they are generated, they are stored as a second valve in
the element processors, the tree is initialized for another
multiplication, By storing two values in each element, and
alternating between the two, a chain of m multiplications
can be performed in O(nnz) time, '

4,2 Matrix Inversion

Here is a simple way to invert a non-singular nxn Mmatrix,
First, the matrix is augmented with an n x n identity
matrix to form a nx2n wmatrix as in Figure 4.2.14.
Elementary row operations, described below, are applied to
this augmented matrix uvntil the left half (the original
matrix) has been transformed into an identity matrix. The
right half of the augmented matrix is now the inverse of
the original matrix. Franklin [Frankliné81 offers proof
that this method will work.

\
]
’111 012 8 0 9 Clin 1 0 0 I} 0
Qo Gpp o G5 6 ¢« 0 ... O
Qg Ogp o0 Oxo 6 0 4 ... 0
Luni an s 8 0 O.nn 0 0 0 s 8 0 1/

Figure 4.2.4 An Augmented Matrix

There are three elementary row operations required. They
are §) interchanging two rows, 2) dividing an entire row by
a scalar, and 3) adding a muvltiple of one row to another.
The next few paragraphs explain the algerithm in terms of
these three operations.

The row interchange operation ls wused to minimize the
computational errors due to fixed precision, The element
with the largest absolute value on or below the diagonal of
the selected column is chosen as the pivot element, The
row that contains the pivot element is interchanged with
the row that contains the diagonal element. In later
discussions the selection of the pivot element is called
pivotinag. It is considered separately from the interchange
step.

An identity matrix has ones on the diagonal and zeros
elsewhere, The scdlur divide operation is wused to
transform the diagonal elements of the matrix into ones.
Each element of a given row is divided by the value of the
diagonal element. Notice that this operation requires that
the wmatrix is non-singular, The diagonal element, after
pivoting, must not be zero.

...116_

The third row operation is adding a multiple of one row to
another row, This operation is wvused <to make every
non-diagonal element zero. It is called elimination.

This method of <forming the Lnverse matrix takes 0(n3)
operations and D(nz) storage cells on a sequential
processor,

4,2.4 The Tree Machine Implementation

The algorithm described in the previous section maps very
nicely onto a tree machine, Given processors that can
store and manipulate a single element of the matrix, the
time complexity can be reduced to 0(n2) by taking advantage
of the parallelism offered by the <tree architecture. The
time-space product of the algorithm is U(ns) on a single
processor machine, It is reduced to 0(n4) on the tree

machine,

The following paragraphs descrlbe the tree machine
algorithm. The discussion assumes that the tree contains
an augmented matrix, with an element of the original matrix
and the corresponding element of <the identity matrix in
each of the leaf nodes.

The 1logical +tree that will invert an nxn matrix has three
different kinds of processors in it, and two different
faenouts, The root processor is the control center. It
issues the messages that cause pivot, interchange, and
divide operations to happen. And it oversees the
elimination step as well. There is no computational
activity performed in the root, however, and it has no

~§47-

knowledge of the actual matrix element values.

The row processors, one for each row in the matrix, direct
the actual computations on the matrix elements. They
select the appropriate multiplier for the elimination and
divide operations, and send their pivot candidate to the
root. They are directly responsible for the n element

processors in each row, and as such, have a fanout of n.

The element processors are the only processors in the tree
that do arithmetic. Each element processor is responsible
for one entry in the original matrix, and the corresponding
entry in the identity matrix. The processor will divide
its data by a given scalar, and will add the preduct of two
given scalars to its element, These are the actions
required to perform the divide and elimination steps. Note
that pivot and interchange do not require arithmetic, and
are handled higher up the tree, The elements are the
leaves of the tree,

Figure 4.2.2 ls a concise textuval description of the
interconnect pattern between the three flavors of
processors, root, row, and element. Later figures detail

the programs that will run in each processor.

tree inverti(n):
root © row ;
row element .

o

Figqure 4.2.2 The Matrix Inversion Processor Tree,

4,2.2 Identifying the Parallelism

Communication between processors is the costly part of any
tree machine algorithm. Which of the row operations

-1i8-

require movement of whole rows of data?

On the surface, the interchange operation would seem to
require the physical movement of two rows. This is not the
case, however, if there is no dependence on a particular
physical ordering of the data, If each row knows which row
it is, interchanging two requires only that the
identification change. Because the tree machine algorithm
treats each row as an independent entity, the interchange
operation requires the movement of two pieces of data, the
new row assignments, not 4n (two rows). Linked 1list
implementations of Mmatrix manipuvlation algorithms .on
sequential processors also use this method to interchange
tWo rows. The interchange order goes from the root to the
TWwo row processors in parallel, an 0(logan) operation,

How about pivoting? Is there a fast way to find the
largest element on or below the diagonal in a given column
of the wmatrix? One sgolution is examine the up to n
elements and choose the largest one. This is a linear
operation, In a later section we see that the pivot
element can be chosen in O(Iogzn) comparison operations by

restructuring the tree slightly.

Scalar divide of a row of the matrix is another 0(logzn)

operation, Furthermore, all n rows can do it in parallel.
Each row finds its diagonal element and asks each element
processor to divide its element by <the diagonal valve.
There is no need for cross communication between rows,

The elimination operation is the only row eoperation that
requires the movement of an entire row of the matrix. Once
again, the cost of the operation can be minimized by

~119-

letting all the other rows act on the data in parallel.
That is, <the actual row will be broadcast to all the other
row processors. Each row will calcvlate the necessary
multiplier to eliminate their entry in the column in
question. The communication of the row can be pipelined so
that the operation is 0O(n), This is a lower bound, since
0(n) elements must be moved.

None of the row operations are worse than O(n). The
transformation of a_given column of the matrix into the
appropriate column of the identity wmatrix, then, is a
linear operation. Inverting the matrix takes O(ne) steps,
Since the 1loading and vunleoading of the matrix is also
O(na), the lower bound on time complexity is achieved.
Table 4.2.3 shows the time costs for the various operations
on one column and on the entire matrix. The entries in the
table are counts of communications, with each message
taking constant time to go from one level to the next in

the tree machine.

operation one column n columns
Pivot Elogan 2nlog2n
Interchange logyn nlogzn »
Eliminate 4logzn + 2n 4nlogen + 2n
Divide Elogen 5
Toetal 21092n + 7n1092n + 2n

Table 4.2.3 Time Complexity for Inverting an nxn Matrix,.

4.2.3.4 The Programs

I will begin with the root processor, shown in Figure
4.2.4, 1 assume that the root is connected to an
environment that will supply the root with the matrix via

~120-

load messages, and will accept the inverted matrix as
answer messages.

The root processor begins by loading the matrix., Then, for
each column in the matrix, the pivot element is chosen, the
rows are interchanged, and other column entries are
eliminated, When each column has been examined, the divide
order is given to all rows in parallel.

The pivot element is identified by receiving pivot messages

from all <the row processors, The jinterchange m™message
affects the interchange operation, The other column

entries are eliminated wvia +the eliminate message, which
broadcasts the row elements throughout the tree. When all
n columns have been treated, answer messages arrive at the
root and are transfered to the system bus in the next ne
time steps.

The root processor code is written without an enclosing
loop. It can load, invert, and wunload one matrix before
halting. If repetitious execution is desired, a loop can
be added,

=424~

processor rooti(nd;
external port bus; internal port r(i:n);
integer i,j,k,m,c; real a,b;

"set initial row assignments"”
it=4 3 € i(=n --) rl(i)lisetRow(l) ; i:=i+f 2 ;

"load the matrix"
ii=1 ; {id{=n -=)
Ji=t 3 (j¢=n --> bus?load(a) ;
r{i)!load(a) ;
Ji=j+i 2
ii=i+4 2 ;

“for each column ..., "
ir=1;y d({i¢(=n --7
"select pivot"
Jobi=4,0.0 3
€ j¢=n ==> r(j)?pivot(a,k) ;
{ b<{a =-=) b,mi=a,k 2 ;
Ji=j+i 3 3

"interchange rows i and m"
r(X)!interchange(i,m);

"elimination step"”

"get row values and broadcast"

Ji=i;

{j¢{=n ==> r{X)?eliminate(a,b) ;
r{(x)leliminate(a,b)
Ji=j+i 3

ii=i+d 23

"unleoad the answer"
ii=4; (i{(=n%n --) r(X)?answer(a,m,c? ;
buslanswer(a,m,c) ; it=i+i 2 .,

Figure 4.2.,4 The root Processor.

The second flaver of processor, the row, is by far the most
complicated one,. SetRow initializes myRow. Load is used
to load in the matrix, and depending on myRow, initialize
the identity matrix as well., Then, for each column, we see
~the familiar pivot, interchange, and elimination steps.
The scalar divide operation is triggered by the completion
of the column massaging. Once the divide is complete, 1t

-i22~

remains only to unload the answer, appending row and column
indicators to the value received from the elements.

-423-

processor row(n);

external port p; internal port e(i:n);
integer syRow,i,j,r; real a,b,f;

"initialize myRow"” p?7setRow(myRow);

"load the avgmented matrix" i:=1 ;
{ i{=n --) plload(a) ; ‘
[i=myRow -=) e(id!lload(a,i)
! i/=myRow —=) e(i)!load(a,0) 1 ;
=it 3

"for each column ,..," i:i=4 ;
€ i{=n --)
"send up pivot element"
[myRowli == plpivot(0)
! myRowd=i =-) e(i)?absVal(a) ; plpivot(a)
"interchange"
p?interchange(j,r) ;
[j=myRow --) myRow:=r
r=myRow --) myRow:=j
J/=myRow and r/=myRow --> skip 1 ;
'elimination®
[i=myRow —->
Ji=4; € j¢(=n -=) e(j)?bothVal(a,f) ;
pleliminate(a,f) ; ji=j+i 2
! i/=myRow --> gkip 1 ; ji=4 3

{j¢=n --) pleliminate(a,b); e(i)lelimValve(a,b);

~e

[j=i -=) fi=a | j/=i -=) gkipl; ji=j+i 3}

e?val(a) ;

[i=myRow -—=) e(X)leliminate(0)

{ i/=myRow —-) e(X)leliminate(a/f) 1 ;
Pi=i+i) 3

"divide en mass"
e(myRow)?val(a) ; e(X)!idivide(a) ;

"unload the answer"
it=4 3 € i(=4 --> e(l)?answer(a) ;

planswer(a,myRow,i) ; i:=i+i 3

Figure 4.2.5 The row Processor.

The simplest processor is the element at the leaves

tree.

of

the

The actions that resuvlt from the eight messages the
element processor will accept are easily understood.

~124~

processor element;
external port p;

real a,i,r,s,t;

p?load(a,i) --)> skip

plabsVal(abs(a)) --) gkip
p!bothVal(a,i) --) skip
ptelimValuve(s,t) —=) gkip
pleliminate(r) --) a:=a-s¥r ; ii=i-tkr
plvalda) --> gkip

p?divide(r) -=) a:=a/r} ii=i/r
planswer(i) --> gkip

L) oo ae oo co oo oo oo @y

Figure 4.2.6 The element Processor.

4.2.4 Column ve Row Organization

One might think <that the elimination step could be
simplified by storing the elements by column rather than by
row, as described above., Instead of pow processors, define
column supervisors, and load the wmatrix in column major
order. The three operations on the columns to produce the
inverse are analogous to those on the rouws. We will 1look
at the column operations individually to see if the time
cost improves,

The pivot selection involves only one column and the
subtree of element processors below it, but the interchange
operation affects every column in the tree. Thus, pivot
selection has the same cost and interchange s more
expensive than in the row organization. The pivoting
cannot be done in parallel in all the columns, The
elimination of a coluén affects the choice of the next
pivet element because it changes all of the elements in the
matrix

-§2%5-

The elimination step no longer requires the broadcasting of
the 2n elements in a row. Instead, the n factors that are
used to eliminate the column must be transmitted <throughout
the tree,. Thus, the cost of +the elimination step is
reduced by a factor of two because of the column
erganization,.

The divide step becomes costly in a column organization
because each row is scattered <throughout the tree. The
rows can no longer be divided in parallel They must be
treated sequentially instead. However, pipelining can be
employed to overlap the broadcasting of the n scalars to
all of the columns,

The time complexity for each operation is given below, as
well as an expression for the overall complexity, Notice
that column organization, like row organization, results in
an O(na) algorithm, albeit with a smaller constant. The

row organization has the advantage of beling more intuitive,

operation one column n_columns
Pivot Elogen 2nlogen
Interchange 31092n 3nlogzn ~
Eliminate 41092n +n 4nlogzn + n°
Divide blogan +.n
Total 61092n + n + 9nlogzn + n

Table 4,2.7 Time Complexity for Column Organization,

4,2.5 More chout Pivoting

The intebchunge/piuot operation described above chooses the
largest element in the column to replace the diagonal
element, This is partial piveting, and is adequate for

-126-

most matrices,

Full pivoting extends the scope of the pivot candidate
search to all elements in the submatrix whose upper left
corner ls the diagonal element in question. This can be
implemented on the +tree machine by adding the linear
selection code from the root processor to the row processor
code, The largest element in each row is selected by the

rOoW processor, The largest of these is selected by the
root, Two interchanges are required. First two columns
are interchanged, then two rows. Pivot selection and

interchange operations are still 0n) and 0(logan)

operations, though the constant factor increases.

The pivot step, either partial or full, involves choosing
from among n things. By defining the three level tree of
figure 4.2.2, we force the pivot operation to be 1linear in
n. But choosing the 1largest of n numbers can be done
incrementally with pairwise comparisions. Comparing tuwo
numbers is a particularily appropriate operation for a
binary tree. We define a fourth kind of processor, max,
that forms a binary tree between the root and rows.
Partial pivoting takes O(Iogan) time per column. Full

pivoting requires the wuse of max processors between both
the root and the rows and the rows and the elements,
Program text for matrix inversion using max processors is
given in a memo called “Matrix Inversion on the Tree
Machine”" [Browning7%bl.

4,3 Solving Ax =y and AX = B

Suppose the matrix A is non-singular. Then

-1 -4

Ax = A Ty

i
n
~

A

1]
il
~
b
i
>
~<

Ax = y

The preceding paragraphs describe an O(na) algorithm for
finding a”Y. The product Aa”Yy can be found in OCn) time
with the tree machine algorithm for matrix wmultiplication
described in the previous section, The solution vector x
is found in U(nz) time,

The same method is used to solve the more generdal problem
AX = B, where A, X, and E are matrices. If A is nxn, and X
and B are nxm, then the solution requires D(n2+nn) time
steps., A must be non-singular, since the solution is
arrived at by inverting A, then multiplying the inverse by

E.

Franklin I[FranklinéB8] suggests that A be augmented with B
instead of the identity matrix, The steps that transform A
to the identity alse transform B into the solution X. This
method also has time complexity 0(n2+ﬁn). The cost of each
operation is given below.

-128~

operation one colump n_columns

Pivot Eloggn anlogen
Inferchunge logan nlogan .
Eliminate 2logymn + m 4 n 2nlog,n + mn + n“
Divide Elogzn

Total Elogzn + 3nlogen + 2nlogenn + mn + 2n2

Table 4.,3.4 Time Complexity for Solving AX=E on the Tree.

4,4 LU Decomposition

Matrix inversion is only one way of solving Ax =y, A more

widely vsed method is direct solution of the linear system,
The matrix A is first decomposed into an upper and a lower
triangular matrix, U and L, such that A = LU, Given L, U,
and y, the solution wvector x can be found with a set of
subtractions and divisions [Isaacsonéé, p. 301,

U is found wvsing the same row operations described above,
that is, by Gauvssian elimination. L is a by product of
calculating U, Below the diagonal of L are the factors
used to eliminate the lower triangular elements of A, The
diagonal elements are ones., To put it more precisely,

-129-

i-1
Vij = %5y " E: LikYk
k=4
P-4
1 =v. Y - E: v, .1..)
ij ji ij kjlik
k=1

LU decomposition is more widely used than matrix inversion
to0 solve 1linear systems, While both methods require 0(n3)
operations, matrix inversion takes three times as wmany
operations as LU decomposition on a sequential machine,
Isaacson and Keller do the analysis in detail [Isaacsonééb,
p.34-371,

On the tree machine, however, there is no time saved by
doing the elimination only below the diagonal. Elimination
of a whole column is done in parallel, Both matrix
inversion and LU decomposition are O(na).

Pivoting complicates the process of solving for x once L
and U are found. The vector y must be permuted the same
way that A was rearranged by the pivoting. A permutation
matrix, P, must be calculated and applied to y.

If only one solution x is desired, A can be augmented with
y, with pivoting affecting the augmented matrix. The need
for a permutation matrix is obviated.

=430~

4.5 Matrix Problems on the Tree

The preceding paragraphs have presented several matrix
problems and their tree machine solutions. While these
solutions represent an improvement over the traditional
single processor solutions, they are ovutshown by the
results obtainable on special purpose machines like the one
described by Kung and Leiserson in Introduction to VLSI

Systems [KungB01., The main advantage of the tree machine
is that it can do other things as well as manipulate
matrices,

Another advantage of the generality of the tree machine
structure is that piveting does not introduce complications
into the algorithm, The wmachine described by Kung and
Leiserson relies on the data flowing through their
"systolic array" in a prescribed manner. Pivoting plays
havoc with that order by rearranging the data throughout
the computation. While some matrices that arise in the
course of solving a system of equations can be inverted
without requiring pivoting, wmany cannot be solved without
it. The rigid structure and data flow requirements of the
systolic matrix machine wmake multiplication a 1linear
operation, but cannot adapt to the general matrix inversion
problem,

-§34i~

Chapter Five

The Processor Architecture

In the first chapter a programming notation for the 1tree
machine was introduced. The notation was wused in the
previous three chapters to program a variety of algorithms
for the tree wmachine, In this chapter the wmachine
underneath the notation is explored. The size requirements
are discussed, an instruction set is defined and used as a
target for compilation of the notation, and the 1loading
protocoel is described. Finally, the question of floating
point is addressed. Shovuld it be built into the harduware
of each and every processor, into a select few, or
simulated in software?

The important idea behind the processor design discussed
here is that the job that any one processor will do is only
a small part of the complete algorithm. Thus the processor
need not be everything to everybody., There is no need for a
seemingly vnlimited store or a rich instruction set.
Indeed, the more 1luxurious the processor, the 1less the
tendency of the programmer to fully expleoit the concurrency
available in the algorithm. Thus, the important tradeoff
is between the number of processors required to solve a
problem, and the individual capability of the processors,
When a feature is added to the processor design, this
question must be posed, Is the increased functionality
worth the increase in chip area?

-132-

. 5.4 An Overview of the Processor

The tree machine processor has four main parts: a program
store, a bank of registers for storing data, an ALU, and
some communication handlers. The control and data paths
run between these components, aided by three special
purpose registers. The I register holds an instruction,
the PC register points to the instruction in the program
store that will be fetched next, and the AC, or
accumulater, is g source and seole destination for the ALU,
The address calculation logic is extremely simple in this
machine, Only an adder is required, and is provided in
addition to the ALU,

Figure S5.4.4 gives a block diagram of the machine. Control
lines are indicated as dashed lines, and the data paths are
so0lid lines.

The program store, I-register, PC, and address logic
represent one functional wunit in the machine, The PC is
vsed to fetch a byte from the program store and into the
I-register; following the fetch, the PC is incremented to
point to the next byte. The instruction in the I-register
is decoded and executed, either affecting operations in the
ALU or interupting the sequential flow of the program.

The ALU, AC, and registers comprise a second functional
block, The ALU is equipped to perform all the wvusuval
arithmetic and 1logical functions. The AC is the primary
operand source for the ALU, The reglisters will supply a

~133-

PORT HANDLERS

REGISTERS
PROGRAM :
STORE T 7
AC
I]
ALU
PC |
ADDRESSING I
LOGIC

= —— (Control Paths
Data Paths

Figure 5.1.1 A Block Diagram of the Processor.

-134~

second operand if necessary., The AC is the sole
destination of the ALU functions.

The third group of related components are the communication
handlers, There are three of them, one for each of the
three ports. They provide the interface to the outside
world, handling message traffic, loading the program store,
and passing code through to their descendents., The actual
communication requirements, and thus the details of the
structure of the handlers, are discussed in a later

section.

The next few paragraphs describe the actual dimensions of
the program store, the data registers, and the data path,
A discussion of the instruction set that exercises the
machine follows. The chapter concludes with a loek at the
question of execution speed versus chip area: should
floating point logic be built into the processor?

S.2 The Size of Each Processor

There are four important numbers involved in the dimension
of the processor: the number of bits of program store, the
word size of the program store, the number of data
registers, and the width of <the data path. In order to
encourage the distribution of the algorithm through a large
number of processors, these numbers should be as small as
possible while maintaining the vusefulness of the processor,
After all, a processor with a i-bit program store and no
registers is not very interesting.

=435~

While intuition about what <these numbers should be will
firm up as programming experience grows, there is a
considerable body of programs in the previous chapters,
The program and data requirements of these programs have
been tabulated, and summarized in figure S.2.1. The
initial recommendation for the processor size 1is based on
these sample programs, I will present the results here;
the reasoning behind these decisions is given in the 'text
that follows.

First, the program store dimensions: a four bit nibble is
appropriate, with 5i2 nibbles of memory in each processor,
for a total of 2048 bits. The target machine language of
the compiler is defined in the next section., Eecause of
the relatively small size of the program store, density is
stressed in the choice of instructions to implement. The
number of unused bits in the semi-precious program store is
minimized.

The initial tree machine processor will have a bank of
sixteen 8-bit registers for holding data. Some of these
are assigned to user-defined storage, The others can be
used by the compiler for temporary storage.

The size of each processor is also related to the kind of
arithmetic functionality that is built in hardware. The
simplest (and smallest) processor has only integer addition
and subtraction, with multiplication and division requiring
repetitive shift and add/subtract operations. It is this
simple processor that is described here. Other features,
like built in wmultiplication and division and +floating
point hardware, will be 1left to future designers and
versions of the tree machine.

=136~

nibbles of

flgorithm program _store data registers
Vector Sum

vSumRoot 250 4

vSum 350 7

vSumbLeaf 88 é
Heap Sort

Sort 258 3

sortlLeaf i9 i
Transitive Closure

closureRoot 147 4

node i94 7

endNode S8 2
Clique

cliqueRoot 138 3

clique 399 7

cligquelLeaf i62 6
Color Cost

colorRoot 24S 4

coloring 442 8

colorLeaf 183 7
Travelling Salesman

salesmanRoot 285 4

salesman . 394 6

salesmanleaf 198 S
Matrix Multiplication

root i64 3

row 437 4

element 40 2
Matrix Inversion

root 289 é

row ' 426 7

element 162 S

Figure S5.2.1 Space Requirements of the Tree Machine
Algorithms,

5.3 The Instruction Set

Programs for the tree machine are written in the high-level
language presented and vused earlier. The instruction set
and machine definition presented here exist solely for the
benefit of the compiler. The instruction set does not

=437~

provide myriad ways to do
capabilities, It contains
generation,

The novel characteristics of the
the peculiarities of the tree
example, the only data store
registers. There is no need for
capability in the instruction

address a register will suffice.

of the
we need not concern ourselves
fetch
more important that the code be
the bit,

Because
processors and

bang for

something

dense,

er a rich set of

only instructions vused in code

instruction set arise fram

machine processors. For
the
addressing

bits

available is set of

lavish memory

set since four to

concurrency available in the tree machine,
with
execute instructions quickly,

individval
It is
of

making the

that is, 1lots

Each bit of program store increases the

size of the processor, and reduces the number of processors

per chip.

The instructions are composed of one or more 4-bit

The first nibble is the opcode,

The instructions fall into three categories:

communication, and data flow,

operands, they are provided in the nibbles that

opcode,

There are seven control flow instructions.

to0 the

ABORT is an abnormal
In

other

correspond directly
notation:
SKIP
termination.

is a no-op.

The four
implement

if False) and JAL and JAS are

like-named

termination
addition,
control
branches., JFL and JFS are conditional jumps (Jump
vnconditional

nibbles.

of which there are sixteen.

flow,
If an instruction requires
follow the

control

ABORT and SKIP
statements in the

statement, and
HALT is used for normal
flow instructions

Jumps (Jump

...138...

Always). These linstructions assume two forms, The long
form (JFL and JAL) is followed by an 8-bit offset into a
Jjump table. The jump table contains i2-bit offsets that
are added to the PC to arrive at the address of the next
instruction to be executed. The jump table begins at
location 0 in the program store and may contain wup to 86
3-nibble entries. The stream of instructions that make up
the progron text follows the table. The short form (JFS and
JAS) is <followed by a 4-bit positive offset that is added
directly to the PC. All backward jumps require the 1long
form, but forward jumps can use either one. Since the
testing of gquards in the conditional and repetitive
statements often requires skipping over only a statement or
two, the short form is a space saver,

One might wonder why there is no short backward jump
provided in the instruction set, 1Isn’t five nibbles a high
price to pay for each backward jump? Remember that this
instruction set is designed as the target of compilation
for the tree machine notation. Forward jumps are needed
after the evaluation of each guvard in both the <conditional
and loop statements, and at the end of each statement body
in the conditional statement. Backward jumps appear only
at the end of statement bodies in loop statements, and
these jumps tend to be long jumps anyway., Since there is a
limited number of opcodes, it is wise to concentrate on
forward jumps,

Figqure 5.3.41 is a summary of the control flow instructions.
Addressing is to the nibble. The program counter is
advanced after each fetch to the next nibble.

mneumonic $§ ext
ABORT

SKIP

HALT

oo o

JFS
JFL (+3 in jump table)
JAS
JAL

R e

(+3 in jump table)

Figure 5.3.4 Control Flow Instructions,

There are four communication instructions, There are two
for input and two for output. Since message statements can
appear either as declarative statements or as guards, there
must be two forms of the instruction: one to do the
communication if it is appropriate, the other to do it
anyway . That is, if the message statement is a guard, the
communication is appropriate only if the processor destined
to send or receive the message on the other end is ready.
The declarative form of the message statement 1is not so
picky: the communication is done even if it means waiting
for the other processor to get ready, and control does not
return to the processor wuntil the communication is
completed, Thus the instructions ? and ! do input and
output if it is appropriate (messaqe guards) and ?7W and W
will wait for successful completion (message statements).
The mechanics of synchronizing two processors by way of a
message statement is discussed in detail in the next
section, In all cases, if the communication is successful
the value true is loaded into the Ab. Otherwise, the AC is
set to false.

All four of these instructions take a fairly complicated
list of operands that include the port, the message name,
the number of arguments in the message, and a 1list of
registers that contain those arguments. ' The message

-140-

p?load(c) from <the sort processor definition of figure
2.5.2 might be written as

7 4,1,4,3 jinput,external port
smsg #4i,one arg,put in reg &3

when it appears as a guard, If the statement is the
declarative <form, the opcode becomes ?W. The operand list
is unchanged,

The nibble representing the port is encoded to allow the
specification of a single port, a 1list of ports, or a
register that contains the port name., The high order bit
is the indirect bit, If it is zero, the next three bits
indicate the ports involved in the communication., The low
order bit represents the right internal port, the second
bit the 1left internal port, and the third bit is the
external port. One or more of the ports can be named in
the communication,. On output instructions, the message is
to be sent to all the named ports, On input, any one of
the named ports may receive the message,

opP 0plr Mégt #args args

v/4
(4

27

I

op iplr reg#¥ msqgdk #args args

OP: one of !, 7, W, or 7V
plr: parent, left, and right ports

If the indirect bit of the port specification is o one, the
next nibble in the instruction stream names a register that
contains a port specification., The register contents are
assumed to be encoded in the same wmanner, though
indirection through yet another register is not allowed.
The contents of the register are ORed with the original

-541-

port specification to arrive at the final specification of
the ports involved in the communication,

Figure $.3.2 is a table of the communication linstructions.
The 1limitation on the number of message and arguments is
46, This limitation does not present a serious problen,
given the size of the program store. The limit is not even
approached by any of the algorithms of the precéding
chapters.

valuve of the indirect bit

I =

n = number of arguments

Mmneuymonic § extra nibbles
? 3 +1+n
W 3 +1+n
! 3+ 1 +n
W 3 +1I +n

Figure $.3.2 Communication Instructions.

The third class of instructions are the data flow
instructions, The machine has an accumulator that is the
source and destination of all the arithmetic instructions.
Three of the instructions are for loading and unleading the
ucc0ﬁulutoé. They are LOAD, LOADI, and STORE. LOAD moves
the contents of a register to the accumulator, LOADI moves
the 8-bit 1literal in the next two nibbles to the
accumulateor, and STORE puts the contents of the accumulator
in the specified register.

The 4-bit opcode allows sixteen instructions to be defined.
The instructions described above use up 414 of the available
codes. The two remaining are used as escape codes. They
requlire anocther nibble to fully specify the operation. One
of them, BOP, ls vsed for binary operators. These use the

~142-

accumulator as one source and a register, specified in the
third nlibble, as the other., The destination is always the
accumulator, The binary operators include addition,
subtraction, multiplication, division, and, or, exclusive
or, and the binary tests: greater than, greater than or
equal, less than, less than or equal, equal, and not equal.
The last opcode is called UOP and is vused as an escape to a
set of unary operators: not, two’s complement, clear,
increment, decrement, set to i, set to -1, and the tests
even, odd, positive, and negative. All of the unary
instructions use the accumulator as the sole source and
destination of the instruction., The test instructions in
the repertoire of both the BOF and UOP instructions leave
either true or false in the accumulator, based on whether

the condition is satisfied or not,. Register sources are
vnaffected by the binary operators,

Figure 5.3.3 summarizes the last group of instructions, the
data flow opcodes. Note that these instructions require no
fancy addressing modes. The data is elither in the
accumulator, requiring no addressing at all, or in a
register that requires a 4-bit absolute address. The
absence of complex data structures is the result of the
limited capacity for data and program storage in each
processor,

-143-

Mneumonic $ extra nibbles
LOAD i (reg &)

LOADI 2 (literal)

STORE i d(reg &)

BOP 2 (One O‘F +,—,*;/)

and,or ,xor,
2,0=,0,(=,=,/=
reg %)

uop i (one of -,0,4,-4,abs,
inc,dec,not,compl
pos,neq,odd,even)

Figure $.3.3 Data Flow Instructions.

The instruction set defined here is intended as the
compilation +target of the high level notation described in
Chapter 4. The code generation strategy is the subject of
the next section,

5.4 Code Generation

The previous section defined an instruction set for the
tree machine processor., In this section we will see how
the high level notation described in the first chapter |is
translated inte the instuction set. I have written a
program that does this translation. This is only one part
of the complete compilation task, and is the simplest part,
A design for the complete compiler is proposed in the next
chapter. There are some difficult problems involved in
immplementing the other parts of <the compiler, I will
point them out in the next chapter as topics that need to
be investiaated.

The first few paragraphs explore the general problem of
converting each of the different lanquage ceonstructs into

~144-

machine code. Following that the wmarble sorter example
will be compiled into the machine code of the tree
processor,

S.4.4 The Assignment Statement

The syntax of the assignment statement is given below, in
figure 5.4.1%1. Note that a 1list of variaobles, and a
corresponding list of expressions whose wvalues will be
assigned to the variables, can be specified in a single
assignment statement. The semantics of the statement say
that all the expressions are evalvated before any
assignments are made. That is, the order in which the
expressions are evaluated is not allowed to matter, Thus,
the statement

NUM,C = C,Num

for the heap sort algorithm requires the vse of a temporary
register to hold a copy of num while the wvalue of ¢
overwrites the original., The semantics of the statement
are, and in fact must be, identical with those of the trio
of statements below,

temMp i=nNuUM } NUMI=C ; C:i=temp

In situations where there are dependencies among the
expressions in the list, the compiler assigns free
registers to hold intermediate results. In the more common
sitvation where all expressions can be evaluvated and the
assignments made without fear of wnodifying wvalues wused
later, the task is simple., The compiler will evaluate the

-145-

expression and store it in the selected variable.

(assignment) ::= {identifier list> ?:=’ (expr list)
Cidentifier list) ::= {(identifier?

! (identifier) ’?,? (identifier list’
(expr list) :1:= (expr)> | {expr? ?,? (expr list)

Figure S.4.4 The Assignment Statement Syntax.

Figure 5.4.2. shows the machine instructions that are
generated when an assiqgnment is compiled, There are two
cases: i) the expressions are independent, and 2) the
expressions overlap. The example shows an assignment with
identifier and expression lists containing two items,. The
technigue extends in an analogous way to longer lists,

a,b := (expr1> » (exprz) <expri>
((expri) does not involve b and STORE Ma
(expr2> does not involve a) <expr2>
STORE ™h
a,b = <expri) » (expr2> (expri>
((expri) is a function of b and STORE Ty
<expr2> is a function of a) <expr2>
' STORE r,
LOAD Ty
STORE Ta

Figure 5.4.2 Code Generation for the Assignment Statement.

If the compiler runs out of registers to wuse as temporary
holding places for dependent expressions, it will issve a
diagnostic message telling the wuvser to simplify the
assignment statement,.

~146~

5.4.2 The Message Statement

The message statement translates directly into one of the
four communication instructions. Each of the messages is
assigned a number the first +time it is encountered.
Message arguments can be either named variables of

expressions, Variables have already been assigned a
register, and that register appears in the argument list of
the m™message instruction, Expressions must be evaluvated,

the resuvlt stored in a temporary register, and that
register inserted into the argument list,

A communication opcode is chosen to fit the sitvation: !
and ? for imperative send and receive, W and W for
guarded send and receive. The instruction is completed
with an indication of the port, the number assigned to the
message, the number of arguments, and a 1list of registers
that contain the arguments. Figure 9%S.4.3 shows the
technique for a message with two arquments, one a variable,
the other a literal,

pmsg(a,50) LOADI S0

STORE ry

W portt,nsgt,a,rq,rt

p?msg(a,50) --> <(body> LOADI SO

STORE Ty

? port#,nsg#,z,ru,r

JFx
{body>

t

Figure $.4,3 Code Generation for the Message Statement.

-147-

S.4,3 The Repetitive and Conditional Statements

The syntax of the conditional and repetitive statements is
given in figure 5.4.4, They are alike except for two
things: what happens when none of the gquards can be
satisfied, and what happens after the statements following
a guard are executed. The conditional statement aborts the
process if the evaluation of all its guards generate £g;§g.
The repetitive -statement terminates the loop. After the
statements following a guard are executed in a conditional
statement, it terminates., A repetitive statement goes back
to the top and loops.

{iteration?} : ?{? {(guard list) ?}?
{conditional) ::= ?’[? {(guard list)> ’1’
{guard list) ::= {(guarded body>
! ¢(guarded body> ?i’ {(guard list)
{guarded body) ::= {(quard> ?-->? (body?
{guard) ::= {(boolean expr) | {(message’

°

=
1
®
I
5

Figure 5.4.4 Conditional and Repetitive Statement Syntax,

Code generation is easy for both of them, The guards are
tested in order. When one is selected, the accompanying
body of statements is executed and a jump is performed
either to the top of the loop or around the other cases.
The guards are chained together with JFx (Jump False 1long
or short) instructions; the chain ends either with an ABORT
instruction (conditional statement) or falls <through to
execute the statement following the loop (repetitive
statement), Figure $.4.5, shows the code generated by the
compiler for both the repetitive and conditional
statements,

~148-

(guurd1> -2 (bodyi> ~€>(guurdi)
(guurd2> -=2 (body2> JFx
(bodyi>

JAL
€>(guard2)

W oee M

JF x
(bod92>
JAL

=

(quurdi) -=> <bodyi) (guurdi>

(guurd2> -=> (bod92> — JFx
1 <bodyi>

—JAX
><quard3)

JF x
(bodvg)

—>Tax%
> ABORT

-2
Figure $.4.5 Conditional and Repetitive Statement

Code Generation.

S.4.4 gkip and abort

The code ageneration for the remaining statements, skip and
gbort, is trivial because there is a direct equivalent of
each in the machine instruction set., Thus, gkip is SKIP
and gbort is ABORT.

5.4.5 An Example of Code Generation: marbleSorter
In this section the binary tree version of the marbleSorter

tree is compiled. Figure 5.4.6 is the compiled
newColorSorter and figure $.4.7 shows the code generated

for the padding and bin processors. In each case the
register and message assignments are shown.

~149-

registers: color=0
messages: marble with one arg=0, marble with neo args=i

Jump Table
0: 18
31 87
b6: 65
?: ? 4,0,4,0 3{ In?marble(color) -->
i4: JFL 3
17: UOP SETH4 H [color=4{ -->
19 BOP =,0
22 JFS i2
24 UOP SETH } Li!marble(i)
26 STORE {4
28 W 2,0,1,1
33 JaL o0
36 LOADI 2 } i color=2 --)
39: BOP =,0
42 JFS 42
44, LOADI 2 } Limarble(2)
47 STORE 2
49: W 2,0,4,2
54 JAS 45
56 LOADI 2 H { color’2 -=>
59: BOP >,0
62: JFS 6
64: W 4,4,0 $ rejectimarble
68: Jas 4
70: ABORT }]
74 JAL 6 [
74 HALT 3o

Figure $.4.6 The newColorSorter Processor.

=450~

registers: r=0
messages: marble=4

Jump Table

0: ~i4

31 ? 4,0,1,0 3¢ ptmarbled(r) --)
8: JFS8 7

i0: W ¢(0),0,0 3 ci{r)imarble
iS: JaL o 33

i8: HALT 3o

- {a) the guddigg'processor

registers: cnt=0
messages: marble=4

Jump Table
0: ~-16
3 UOP CLEAR 3 cnti=0 ;
S STORE 0
7: ? 4,0,0 3 ptmarble -->
ii: JFS 4
i3: uoP SETA 3 cnti=cnt+d
iS: BOP +,0
i8: STORE 0
20: Jak o 33
23: HALT 3o

(b) the bin processor

Figure $S.4.7 The padding and bin Processors,

$.95 Loading the Tree Machine

The question of loading code into the program store has
been treated rather 1lightly in the preceding discussion.
It is time to rectify the sitvation by looking at it in
detail.

-454~-

The special capabilities for loading code are part of the
external port handler. Since code is loaded only from the
bus connected to the external port of the root processor of
the tree, it travels down to the leaves, never up.

The code streams are preceded by a header that directs the
code to a particular processor, or <0 a class of
processors. This header is prepared by the compiler.

The header contains five fields, as shown in figure S5.5.4.
There is a two-bit opcode, a number describing the length
of the address, in bits, that follows, the address of the
destination processor, the initial value of the PC, and the
length, in nibbles, of the code stream. The initial PC
valuve is included so that the jump table, which begins at
location 0, is skipped over,

opcode $bits in address initial #n%bgies code
address pC co 4
L C
opP L‘1 A PC c ,

Figure $.5.4 Program Header.

The two—-bit opcode can take on four different wvalues: ONE,
TREE, LEVEL, and YOU. ONE means that the address points to
the specific processor that will receive the code, TREE is
veed to 1load an entire subtree, rooted with the processor
addressed in the A field of the header, with code stream.
Similarily, the LEVEL function directs the stream to all
processors on the level specified in the address. {The
root is level §.) The <fourth operation, called YOU, is
vsed by a parent processor to force the 1loading of @

-is2-

particular descendent. The address is ignored by the
receiving processor, This operation is vsed in testing the
tree machine processors. While the effect of a ONE

operation with a zero length address is, the same, the YOU
instruction requires that less circuitry/microcode be
working.

The processors are uniquely identified by a bit string that
grows with the depth of the tree. The root is called 14,
its descendents are 10 (the left child) and 44 (the right
child), and so on, Figure 5.5.2 shows the generating
pattern.

Figure 5.5.2 Assigning Unigque Addresses to Precessors.

Notice that the processor name, and thus the number of bits
it takes to store it, grows linearly with the depth of the
tree. This linear growth requirement runs counter to the
programming philosophy of Chapter 3. But look again at the
way the addresses are generated,. The address of a
processor differs from that of its parent by only one bit,
the extra one on the end. There is no need <to store the
duplicate bits: state information ls hidden in the paths of
the tree just as it was in the algorithms <that solve the

-153~

NP-complete problems on the tree machine. Thus the address
becomes a single bit of routing infermation: 0 means the
left, and 4 the right port. A more accurate picture of the
addressing is given in figure 5.5.3.

Figure $.5.3 Path-Oriented Address Assignment.

fis each processor examines the header of a code stream, it
looks first at the opcode, If YOU is specified, it skips
over the address and loads the number of bits specified in

Lc into the program store. If LEVEL is the opcode, the

processor looks at Lu. If LQ is nonzero, it is

decremented, the leading bit is stripped off A, and the
modified header and code are passed down the tree via both
the right and left ports, It Lu is zero, the code is

loaded into the program store,

If <the opcode is either ONE or TREE, the address of a
processor or group of processore is included in the
instruction. If the address has a nonzero length (Lq>0),

the code is intended for a processor deeper in the tree.
The 1leading bit of the address is stripped off and vused as
rovting information. If it is zero, the modified header
and code go to the left, else to the right. If the length
of the address is zero, the code stream is loaded into the
program store. If the opcode was ONE, that is all that

- 454~

happens. If, however, TREE was specified, the entire
subtree beneath the processor must be loaded with the same
program. The header, with TREE and L°=0, and code are sent

to both the right and 1left. The descendent processors,
following the algorithm given above, will notice the zero
length address, 1load the code, notice the opcode of TREE,
and pass it to their descendents.

Figure S5.5.4 summarizes the opcodes and the actions they
invoke in the external port handler. The internal port
handlers merely pass code stream messages through to the
external port of the descendent processor, The action
invoked by each opcode is written symbolically in the tree
machine notation. This only to provide a description of
what happens., In fact, these operations are part of the
hardware or microcode of the external port handler,

-§55~

opcode fbnction
YOU load,
LEVEL [Lq=0 -=> load

ONE

TREE

Lu)o -=2?
L°:=Lu-1 ; Ai=leftShift(a) ;
l,r!code(LEVEL,Ln,A,Lc,C)

Lu=0 -=2 load
Lu>0 -=> .
La:=Lu—1 3 Ri=msb(A) ; A:=leftShift(A)
[R=0 --> 1!code(0NE,Lu,A,LC,C)
! R/7=0 -=> r!code(DNE,Lu,A,LC,C)
]
L0=0 -—% load ; l,r!code(TREE,O,,lc,C)
Lu)o - '
L°:=Lu-i 3 Ri=msb(A) ; A:=leftShift(A)
[R=0 ~--> llcode(TREE,Lq,A,LC,C)
! R/=0 --> r!code(TREE,Lu,A,LC,C)
]

Figure 5.5.4 Code Stream Opcodes,

Let uvus look at the effect of the different opcodes given a

particular 1load
streams differing
fields are <the
where the code is

stream, Figure 5.5.5 shows four load
only in opcode, The address and code
same in each case. The tree machines show
loaded, given a particular opcode.

~we

wo

=156~

oP 2 10 1. code "
(o
7]
(n) OP = YOU (h) OP = ONE
(c) OP = LEVEL (d) OP = TREE
® = Processors that are loaded

Figure $.%9.5 Loading a Tree Machine,

S.6 Floating Point

A collection of Mmatrix sanipulation algorithms was
presented in the <fourth chapter. They all declared real
variables and performed floating point arithmetic on then,
In the machine description presented earlier in this
chapter only integer arithmetic was provided, In this

~-157-

section we will describe the problems peculiar to floating
point arithmetic, discuss the tradeoffs between building
floating point hardware and simulating the arithmetic in
software vsing integer arithmetic, and close with a leok at
numbers that are wider than the 8-bit data path of the
processor,

$.6.4 A Brief Look at Floating Point Arithmetic

A floating point number is represented as a sign, a
fractional part and an exponent. The exponent is applied
to a base of 2. That is, the number ten might masquerade
as the floating point number +.625 x 24. Internally, this
might be stored as shouwn below.

sign exp fraction
0 0400 104

Arithmetic eperations are applied to the exponent and
fractional part, or mantissa, separately. The two are
treated together in the normalization step at the end of
each arithmetic operation, Normalization is the process of
ad justing the exponent until all the significant bits are
to the right of the "binary point" and the leftmost bit of
the mantissa is nonzero.

The familiar rules for performing arithmetic on numbers in
scientific notation apply. That is, two floating point
numbers can be added or subtracted only if their exponents
are the same. The typical practice is to make the one with
the smallest exponent match the larger one by shifting the
mantissa right and incrementing the exponent until
agreement is reached. This way, only the least significant

-458-

bits are lost. Multiplication and divislion can be
performed on numbers with disparate exponents: the
exponents are added in wmultiplication and subtracted in
division, The mantissas are multiplied or divided as
appropriate, Refore any of the four arithmetic operations
are completed the answer must be normalized.

There are a collection of exceptional, i.e, bad,
conditions that can arise during the arithmetic. The
mantissa can overflow (no big deal), The exponent can
overflow or wunderflow (a disaster), If the mantissa

overflows, the least significant bit is shifted out, the
expeonent is incremented by one, and the processing
continues., Expenent overflow (too big) or underflow (too
small) is a different matter, The number simply cannot be
represented in the number of bits provided, Flores
[Flores63]1 gives a lucid description of when and why these
exceptional conditions arise.

With this introduction to fleating point, albeit brief, let
us get on with the business at hand. How shall a tree
machine processor manage floating point numbers?

$S.6.2 Hardware vs, Software

If the <floating point logic is built into the hardware, it
makes the processors bigger, thereby decreasing the number
of them on a chip. If the floating point is simulated in
software, less of <the semi-precious program store is
available to the wuser. Or, alternatively, the program
store must be increased, again increasing the chip area
occupied by each processor. Another alternative is to use

-159~

several processors to do the task.

There are a couple of ways to reduce the cost of providing
floating point support. The arithmetic operations can be
made slow but simple, for example, bit serial. This is
currently under consideration by Peggy Li of Caltech as a
Master’s project, Alternatively, a select few of the
processors can be endowed with floating poeint hardware. It
is possible to write the matrlx algorithms of Chapter 3 so
that the floating point arithmetic is confined to the leaf
processors, This increases the number of messages and the
length of those messages, but reduces the amount of chip
area devoted to floating point functions by one half. That
is, only half of the processors, the leaves, have floating
point hardware. The matrix inversion algorithm described
in my wmemo “"Matrix Inversion on the Tree Machine"”
[Browning79b]l] is an example of an algorithm with fleating
point required only in the leaves,.

The ideal solution is to supply floating point capability
with a combination of both software and harduware. The
leaves can be built with the hardware capability, Messages
asking to borrow the floating point unit for a cycle or two
travel the right direction in the tree: toward the greatest
bandwidth, If processors higher in the tree have sufficient
program store to absorb the software package that simuvlates
floating point, it can be loaded with the rest of their
program, thereby reducing the trafficking in messages.

-460-

$.6.3 When Eight is Not Enough . . .

The data path of each tree machine processor ls eight bits
wide. Floating point representation that vses a total of
eight bits for each number is not very interesting: given
the representation shown above using one bit feor the sign,
four bits for a signed exponent, and the remaining three
bits for the mantissa means that numbers between 27 and 2-8
can be represented with approximately one digit of
precision. 1In Eenerol, floating point numbers should be

represented by more than eight bits,

Widening the data path to 46, 32, or 64 bits not only
increases the area of the processor, but forces a lot of
waste in operations that can proceed quite happily with
smaller word sizes. There are a couple of ways the wider
data path can be simulated that require no modification +to
the hardware described earlier in this chapter.

First, if there are enocugh free registers in a given
processor, the compiler can allocate several of them to a
real wvariable. This technique is possible with the
composite processors discussed in the first chapter. These
composites exist uhénever the fanout from a node is greater
than the two-way branching provided by the physical
structure of the tree. S8Since most of the processors in the
composite simply pass messages on, they have lots of unused
registers,

A related technique is to distribute the number in several
processors., Each processor performs arithmetic on its
piece of the number, sending and receiving carry
information from its neighbors. This scheme is an

-164~

interesting way to do 1long addition, subtraction, and
multiplication because the carry chain penalty can be
postponed and done for 8-bits at a time., Long division,
however, is blazingly slow. Nonetheless, the technique
deserves a closer look,

The matrlx multiplication and inversion algorithms have
fanouts from the root and row processors of n. Thus, there
are n-i processors in each composite processor. These
padding processors can be used to hold the bits and pieces
of the real variables,

Figure 5.6.14 shows the tree wmachine for multiplying or
inverting a 5x5 matrix,. The reet, rouw, and element
processors are shown as solid circles, the fill-ins as open
circles, There is plenty of room to provide real numbers
with eight bit sign and exponent, stored in the row and
element processors, and 24-bit mantissas, stored eight bits
at a time in the padding processers. An extension of the
tree beneath the element processors is required.

How is the floating point arithmetic simulated in software?
We look closely at each of the four arithmetic operations
in the next few paragraphs.

First we will look at addition and subtraction, There are
three basic steps: 1) make the exponents match, 2) do the
addition or subtraction of the mantissas, and 3) normalize
the resvult, The processor that has the exponents directs
the first step. The smaller exponent is made to agree wWith
the larger one, keéplng track of the number of times the
mantissa should be shifted right. The high order bits of
the mantissa are shifted first, with the spillover handed

*G=U 404 d34] mo_m;m>cH\=owpmuwpapr=z Xtd3eW T1°G°G @4nbry

....162..

' s40Ssad04d xew 40 buipped

S40SS3204d JUdWI |3 4O “MOJ €3004

ST e M

n
O

=863~

to the processor responsible for the middle poftion of the
fractional part., This shifting continues wuntil the
processor with the low order bits of the mantissa lis done,
The spillover from the last shift operation is lest. Keep
in mind that the shifting is done to a copy of the original
number: none of its precision is lost.,

Once this setup is completed, the addition or subtraction
can proceed. In order to minimize the cost of the carry
chain, all of the processors except the ones with the
exponent and low order bits of the mantissa do the addition
twice: first assuming a carry in, and then with no carry,
The 1low order bits are added, generating the first carry
information., That carry is used to select one of the twe
sums in the next processor, and the carry from that sum is
passed to the processor representing the next highest order
set of bits, and so on,

The final step is to normalize the resuvlt. The exponent is
incremented or decremented appropriately and the shift
ripples either from the high order bits to the 1low order
bits, or vise versa, until the leftmost bit of the mantissa
is nonzero, A special check for a zero result must be
made, since its rather difficult to normalize zero,

How about multiplication? Figure 5.6.2 shows the way a
product is composed from partial products, The two
partitioned numbers are multiplied in pieces and the pieces
combined with addition to give the final product. The
various multiplications are overlapped so that the only
synchronized action is the carry chain of the addition in
the final assembly. Again, we must normalize the resvult,
but there is no setup step analogous to reaching exponent

-164-

agreement in addition, The exponents are simply added
toge ther to yield the exponent of the (unnormalized)
product,

ajblc] X |dje|f]| = ad

aet+hd bf+ce

u€+pe*cd cf

B

Figure $.6.2 Multiplication: The Sum of Partial Products.

Division, on the other hand, cannot be done in a
distributed way, though some overlap is pessible. Each
piece of the dividend can be divided by the whole divisor
independently, as shoun jin figure 5.6.3. But the whole
divisor must be assembled in each processor, and the
division of the high order bits must be done to the full
precision, shown by the overlapped parts below. Again, the
final step of the computation is normalization.

alolcl 7 lalele] = [ardes

L
b/def

c/def

Figure $.6.3 Division: Blazingly Slow.

Let’s take a look at the cost of each of the fleating point
operations, assuming worst case. Addition and subtraction
require exponent massage, add with carry, and
normalization, These are all O(m) operations where m is
the number of bytes vused to represent the mantissa.
Multiplication requires n2 multiplications and 2m-3 sums.

The multiplications are overlapped so that ™ of them are

=165~

done at a time, The partial products can often be formed
in processors that are appropriate for the additions.
Since normalization remains 0O(m), mnmultiplication is also
O(m). Division requires the transmittal of m pieces of the
divisor to all the mantissa processors, m(m+i)/2 divisions
done m at a time (roughly), followed by normalization,
Thus, it would appear that division is 0O(m) as well.

These cost functions are unrealistic, however, because they
assume that integer addition, multiplication, and division
of 8-bit quantities all have wuvnit cost. This is most
assuredly false in the simple tree machine processor
described in this chapter. Multiplication requires
repetitive shift and add operations and <takes roughly
eighty times as long as simple addition., (There are about
ten instructions in the loop, and it is executed 8 times.)
Similar costs apply to division.

The bottom 1line is this., Floating point can be simulated
in software,. So can wider word widths. If the tree
machine vser wants fast floating point arithmetic on
numbers with lots of precision, however, it should be built
into the hardware,.

~166~

Chapter Six

.o As lovely as a tree ..."

In their recently published book, Introduction to VLSI

Systems, Carver Mead and Lynn Conway suggest that we let
examples of complex systems in nature aid in the design of
complex computer systems [(Mead79,p.2641,

"Human organizations, like computer
organizations, suffer if communication costs are
high or if concurrent processing cannot be
exploited,. In fact, a human brings to an
organization what VLSI brings to a circuit: both
combine processing and memory effortlessly!
Analoglies with human structure wmay help to
suggest the kinds of behavior we might achieve in
computational structures."

The most durable of human organizations is the hierarchical
management structure of large corporations, and it is this
structure that we wmimic in the tree machine, Each
processor has a restricted set of communication paths
available to it, communication is strictly local, and there
are no cross links to dilute the hierarchy.

Chapter One presents a body of physical evidence to support
the notion that a tree wmachine is a practical and
interesting architecture to expoit the properties of VLSI.
In this chapter, 1 will argue that the tree machine is a
good model <for wunderstanding and organizing concurrent

programs as well.,

The chapter has three sections. The first two sections,
titled Concurrency and Communication, reiterate the theme
of the previous six chapters. If we are to take advantage

~-i67-

of VLSI, we must build a new theoretical foundation for
designing and analyzing algorithms. The tree machine model
of computation, its notation, and the emerging body of
algorithms provide a beginning. The final section
discusses possible extensions to the results presented here
and new directions the research might take.

6.4 Concurrency

In his presentation at the VLSI Conference at Caltech in
January of 1979, Martin Rem [Rem7%9a,p.571 made the
following statements:

“"The design of ... an vultraconcurrent computation
is not an easy task. In this respect VULSI came
too early: we are beginning to understand the
theory of sequential programming, but still have
only a rudimentary knowledge of concurrent
programming . " -

It is not easy to map a sequential algorithm onto a tree
machine., It is not even clear how worthwhile that activity
would be. The programmer must go back to <the original
problem, throw away any preconceived notions about the form
of the program to solve the problem, and examine the
problem with a fresh outlook. As a result of mapping
several problems onto the tree machine, I have developed
some rudimentary guidelines for designing tree machine
algorithms,

There are a couple of intellectual h%rdles that must be
crossed in the early stages of programming a problem for
the tree machine. The program must first be broken into
modules that will run in the tree machine processors. This
division 1is wusvally as fine as the smallest unit of data:

-168-

the individval numbers to be sorted, the individual
elements Iin a matrix, or the individuval nodes of a graph.
Then the control flow of the problem must be partitioned so
that each module is as independent of the others as it can
be. Any natural structuring of the data should also be
reflected in the tree: the rows of the matrix, for example,
or the paths in a graph,

The most helpful metaphor is the object-oriented nature of

the Simula class, described briefly in section §.2. Each
class, or module, or processor, is wviewed as an
independent, autonomous unit, It is not wmanipulated by

external processes., It is asked +to manipulate itself.
Thus, locality is emphasized. All operations are local
ones, and all requests for action can be scrutinized before
effecting a change,

leé programming the tree machine, programming in Simula’s
ob ject-oriented world does not come naturally., There is a
significant difference between the recursive subdivision of
problems encouraged by the Algol-Pascal family of languages
that most programmers 1learn first, and the modularity of
Simula and its derivative languages, Nonetheless,
ob ject—-oriented programming is the best possible experience
to have before trying to design an algorithm for a tree
machine.,

The second major step in designing a tree machine program
is the distribution of control through the entire tree of
processors. For example, in the matrix inversion algorithm
of Chapter 4, the row processors expect the pivot,
interchange, and eliminate sequence to happen n times,
After that, they linitiate the divide step themselves: the

-469-

reot is‘not involved in the computation, so0o it is not
invelved in the control either. In the NP-complete
problems of Chapter 3 the 1leaves Initiate the answer
reporting phase because that is where the answer is, If
knowledge of the control flow of a pregram is built inte
all of the processors in the tree, fewer synchronizing
messages need to be exchanged, thus reducing the execution
time.

The key to finding and exploiting the concurrency available
in an algorithm depends on twe things: proper cholice of
modules, and proper distribution of control flowu. The
subdivision inte wmodules should be guided by the natural
erganization of the data. The control flow should be
distributed to minimize the number of sequencing messages,

E.W, Dijkstra in Structured Progqramming [Dahl?72,p.6] said

that “the art of programming is the art of organising [sicl
complexity”., That statement is particelarily apropes to
the tree machine,

6.2 Communication

In thelir 1977 article "Microelectronics and Computer
Science", Ivan Sutherland and Carver Mead
[Sutherland77,p.24i2] suggest that foundations of Computer
Science will be reconsidered as VSLI becomes a reality.

"o We feel Justified in describing as
revolutionary the effect of integrated-circuit
technology both on the design of computing
machines and on the intellectuval framework within
which such machines are exploited.”

-170-~

They point out that because wires and communication, not
logic and wmemory, are expensive in VLSI, the criteria we
use to measure the cost of algorithms must change. The
second chapter of this dissertation presented a model of
computation in which communication is <the deminant cost,
In fact, in all of the algorithms presented here, the
problem is decomposed into modules in such a way that the
computational cost within a module is insignificant. I
believe that computational models and cost functions ~ like
the one presented here will replace the time/space costs
and models of sequential machines,

One of the effects of replacing the theoretical foundations
of the theory of algorithms is that notations will change
as well, If communication is to provide the basis of the
cost analysis, the notations must accommodate explicit
communication statements, After all, the algorithm
designer must be able to count something <to arrive at a
cost for the algorithm. Chapter One presented a notation
that contains communication primitives and the notion of a
#multiprocessor system. While the notation is blased toward
tree machines with a strict hierarchy, the chapter
concludes with some comments about how the notation can be
extended to other structures. It is notations like the one
given here ‘that will be the programming languages of the
next generation of computing machines.

Given that we want to exploit concurrency and count
communication costs, why should we do it on a tree machine?
One of the most persvasive reasons was given by Martin Rem
[Rem7%a,p.621:

ot Y2

"A hierarchy is the only way <to build complex
systems with a high confidence level., They enjoy
the nice property that we can prove assertions
about the system by recursion over the hierarchy:
assuming that the assertion holds for the
subprocess we can prove that it holds for the
process itself.”

Entire subtrees are characterized by the communication
through the external port, without regard to the
substructure beneath the root of the subtree. In making
and proving assertions about the behavior of a processor in
the tree, you never have to 1look further than one level
inte the substructure, Thus, as Rem concludes, "What is
mathematically attractive turns out to be physically
attractive as well.” [Rem7%a,p.621].

6.3 Future Directions

The development of a theoretical foundation for the study
of algorithms that is appropriate to VLSI is a very fertile
area for research. I have presented a model of computation
for hierarchical machines. A more general model, not tied
to a particular interconnect structure, should be
developed. In addition, more wunderstanding of how *to
design an algorithm for an wultraconcurrent machine is
needed. With this understanding comes the development of
proof technigues for concurrent programs, Work has been
started in all of these areas. At Caltech, Young—-il Choe
and James T. Kajiya are looking at proof techniques,
including notations that encovurage correctness by
construction, Many of the investigations by - Caltech’s
Silicon Structures Pro ject into how to manage the
complexity of implementing a design in VLSI will influence
the study of programming complexity. At Carnegie-Mellon
Universlty; a group of people led by H.T. Kung are 1looking

~472-

at implementing algorithms directly in silicon. One of
them, Clark Thompson, has proposed a cost function for
algorithms based on chip area [Thompson7?]. Since wires
represent the bulk of the area on a VLSI chip, one might
argue that he, too, is counting communication cost. Since
his analytic model, an extension of work beqgun by Carver
Mead and Martin Rem [Mead79,p. 343-3291, is independent of
a particular interconnection pattern, perhaps it will
become the de facto standard,

In addition to forays into the theory of algorithms, there
is more work to be done on the tree machine itself. The
obvious next step is to build one. Peggy Li will probably
do Just that, The implementation of interprocessor
communication will be the most critical part of building a

tree wmachine. The individual processors are asynchronous
modules, All synchronizing betuween processors is
accomplished via communication statements, The

communication takes place if one of the two processors |is
willing to receive the message that the other is trying to
send,

Communications can be specified either as statements or as
guards. As long os.ut least one of the processors involved
is communicating via a message gtatement, synchronizing the
two processors is easy. One of the processors will suspend
further processing until the communication is completed,
But what if both of the processors are communicating from
guards? The consequences of message guards need to be
fully explored. They are clearly wuvseful, possibly even
necessary., But they greatly complicate the implementation
of a communication protocel. Perhaps the work in
self-timed 1logic being done by Charles L., Seitz and Charles

-173~-

Molnar, among others, will provide vs with hints about how

to implement the communication structure safely,

Another implementation issve is the problem of wunbalanced
trees. If a pure binary tree is implemented, the user will
define an unbalanced program tree whenever the logical
fanout is not a multiple of the physical fanout, James T,
Kajiya is looking at a structure that has more than three
physical ports on each processor, That is, as well as
parent and chlldren links, the processor might also have
access to some of its sibling processors, and to selected
children of siblings. This structure is still planar, but
has the advantage that the extra links allow the program to
remain balanced regardless of program fanout. Because 1tree
machine programs define static structures, a tree machine
compiler could lay out a binary tree on Kajiya’s peculiar

structure. Thus, the programmer would still be dealing
with a pure tree machine, and the compiler would be
eptimizing the program’s processor usage.

Speaking of compilers, there is much more work to be done
on the compiler <for the tree wmachine notation., I have
written a program thdt translates from the notation teo the
instruction set I defined in Chapter S. I envislion this as
the second phase in the compilation process. It should be
preceded by a mapping phase that tokes processor
definitions with arbitrary fanouvts and generates new
processor definitions with only two internal ports. The
code generation is followed by the tree assembly phase in
which a 1load stream for the tree machine is constructed
vsing the protocol described in Chapter 5. Figure 7.3.14
shows the three phases of compilation that tree machine
programs might undergo,

~474-

The most difficult of these compilation steps is the first
one, A set of customized processor definitions must be
manvfactured by the compiler <to pad out the tree. The
original composite processor is modified to communicate
with the padding processors, Messages that pass through
the padding are altered to include their final destination
in addition to the other arguments. It is hard to modify
the original processor definition to communicate wvia only
two ports while preserving the original semantics, It is
even harder to produce padding processors that don’t add
deadlock situations to the program, The next few
paragraphs give an infantile strategy for the wmapping. It
is by no wmeans a solution to the problem, but provides a
starting point for future work.

My perception of <the mapping problem is that it proceeds
recursively. The composite processor is used to generate
three processor definitions: a modified version of the
processor that has only two internal ports, and two padding
processors., Each padding processor has half as many
internal ports as the orliginal processor, These padding
processors are themselves composite processors, and MUS T
vndergo the mapping process.

There are two tasks that are involved in mapping a
composite processor onto a binary tree, The first one
involves changing <the original processor definition to
communicate along only two internal ports. The second step
is to génerute the padding processor definitions and change
the connection plan accordingly. I will look at each part
of the problem, pointing out potential pitfalls. Martin
Rem and his students are working on @ general solution to

~475~

Source| Program

MAP ‘!
Padded | Source ﬁ
TRANSLATE ‘
Code | Modules :
7 ‘ 1
ASSEMBLE
| ONE___
ONE
ONE
Load Stream
ONE
|, x
=

Figure 7.3.1 The Compilation Process

~176-

this problem at the Technical University of Eindhoven,
Holland., Some of the pitfalls mentioned are ones I found
myself. Others were pointed out by Martin.

First, a processor definition is modified to communicate
along the two physical internal ports. The definition is
parsed by the compliler in order to count the number of
internal ports defined and to identify the message
statements and guards. The internal ports are mapped “onto
the two physical ports of a real processor. Half are
assigned to the left port and the others are mapped onto
the right port. The port assignments alternate between the
left and right side. Thus if an array ¢(i:5) of linternal
ports is specified and c(i) is assigned to the left port,
then all of the internal ports selected with an odd index
(c(i), c(3), c(S5)) will use the left port, and the others
will vse the right port.

After all of the logical ports are mapped onto physical
ports, the message statements and message guards are
massaged to reflect the wuse of physical ports. The
transformation of message statements is straightforward.

If the specified port has a simple name, like B, G, and
reject, the mapped port is wused directly. If broadcast
mode communication lis specified, all of the appropriate
ports are selected. If an expression is used to select one
of an array of ports, the message statement is replaced
with a conditional statement. For example, if the message
statement c{i)!foo is encountered and c(i) has been
assigned to the left port, the following conditional
statement replaces the original message:

-477-

odd(i) -=> Lifoo((i+i)/2>
even(i) == R!foo(i/2)

et ®®

Notice that an argument has been appended to the message
foo. This argument allows the message to be routed to its
original destination. It is appended when the ports have
simple names as well, Eroadcast communication, on the
other hand, does not require a routing argument, since it
involves all of the processors.

The transformation of message guards is more difficult.
Suppose we continue the technique described above and
replace the single message guard with a pair:

[odd(i) and Lloops({(i+i)/2) -3
! even(i) and Rloops(i/2) ~-=>

]

How do we get the argument to message foo into the act?
Communication with a specific port is desired, yet the port’
is encoded as data in the message., It cannot inflvence the

control of the statement, that is, the guard.

Another problem with either form of communication arises
when broadcast mode is wused for input, The message c(X¥)
?7foo means that the message foo can come from any one of
the internal perts. In particular, the message will be
accepted from only one of the ports. Yet these five ports
are spread out over two physical ports. It is easy to
guarantee that only one of the ports mapped onto a
particular physical port will respond, but how do we make
sure that only one among all of <them is accepted? This
problem and other related mutual exclusion problems are
difficult,

-178-

In the preceeding discussion we looked at the mapping of a
composite processor definition onto a physical processor,
But we have yet to produce any padding processors. The
second step of the mapping process is to generate some
source code for the padding, The compiler makes two
additional processor defintions, one for each of <the right
and left physical ports, Each one has a logical fanout
equal to the number of processors mapped onto its parent
port in the previous step. The body of statements in each
padding processor definition consists of a 1loop with
message gquards, There is one gunrd for each communication
on the parent port. Messages sent or received through the
parent port ~may have an appended argument for routing
purposes, Messages that invelve the internal perts of the
padding processor wWwill not have the routing information
contained as data in the message., Since the internal ports
are once again logical ports, the m™message is rovted
directly by port selection,.

The resvlt of producing composite padding processors is
that they too must be mapped onto physical processors.
That is, the mapping is done recursively, The advantage of
this technique is that a composite processor can be mapped
onto a group of physical processors without knowing the
characteristics of those processors that will eventually be
connected to its internal ports., The messages that vse the
internal ports of the composite at any stage in the mapping
are identical to those specified in the original
~definition, The extra routing argument is never present in
messages through the visible layer of internal ports.

The third step of compilation produces a load stream. This
is a straightforward process, requiring the parsing of the

-479-

revised connection plan to identify which physical
processors should be loaded with each kind of code segment.
I have implemented this phase, together with the code
generation phase, in a working compiler.

The last section of Chapter 0One mentions some extensions
that might be made to the notation., I will reiterate only
the most important one here. There is no way <to capture
the overall strategy of the algorithm. The notation is
very good at the detail level., We can write programs for
each kind of processor, and we can hook the processors
together into a tree machine. But how do we know what the
program is supposed to do withovut resorting to reading all
the code with paper and pencil in hand, I might add that
this problem is not unigque to tree machines., PBRut, because
the control of a tree machine program is distributed
throvghout the processors, the intent is harder to capture
than in an ordinary programming language. Thus, I believe
the next significant contribution to our understanding of
concurrent programming will be to find a way of concisely
describing what an algorithm is supposed to do., This may
be a flow graph of the communication, similar to the work
being done by Marina Chen, Eric Barton, and John Williams
at Caltech. It may be a by-product of improved proof
techniques for concurrent programs, Regardless of the
method chosen to provide a functional specification, the
key to the specification will be the hierarchical nature of
tree machine programs,

There are some hard system problems that go along with
having a real machine of fixed size instead of a
computational model that is us‘big as it needs to be. What
do you do when the tree isn’t big enough? What do you do

-480~

when a processor isn’t big enough? How do you debug it?
How do you tell when one of the processors is broken? All
of these questions must be answered when the tree machine
moves from the theoretical world to the real world. It
should be a very exciting time,

-iB8i~

References

[Appel77]
Kenneth Appel and Wolfgang Haken
*The Solution to the Four-Color-Map Problem"
Scientific émerican 237:4 October, 1977
p. $408-421

{Aho74] .
A.V, Aho, J.E. Hopcroft, and J.D. Ullman
The Design and Analysis of Computer Alqgorithms
Addison-Wesley, Reading, Massachusetts, 1974

[Arlazarov701]
V.L. Arlazarov, E.A., Dinic, I.A, Faradzev
“On Economic Construction of the Transitive Closure
of an Oriented Graph", Boviet Math Dokl, 14:5(i970)
p. 1209-4240

[Armstrong77]
Phillip N. Armstrong
An Investigation of Sorting and Self-Sorting Memory"

Final Technical Report on Smart Memory Structures
California Institute of Technology, 1977

[Backus78]
John Backus
"Can Programming be Liberated from the vonNeumann Style?
A Functional Style and its Algebra of Programs"
C.ACH 24:8, August, 41978 p. 613-641

[Bently79]
Jon Bently and H.T. Kung
"A Tree Machine for Searching Problems
(A Preliminary Description)"
Computer Science Dept.
Carnegie~-Mellon University, 4979

[Birtwhistle73] ,
G.M. Birtwhistle, 0-J Dahl, B, Myhrhaug, K. Nygaard

Simula Regin
- Petrocelli, New York, 1973

-i82-

[Browning7%9al
Sally A. Browning
"Computations on a Tree of Processors®
Proc. Caltech Conf, on Very Large Scale Integration
Janvary, 4979, p. 453-478

[(Browning7%bl
Sally A, Browning
"Matrix Inversion on the Tree Machine"
Memo #2806, Computer Science Dept.
California Institute of Technology, May, 1979

[Browning79c]
Sally A. Brouwning
"Algorithms for the Tree Machine®
in [Mead79], p. 295-343

[ChooB80]
Young-il Choo
Hierarchical Design Nets
MS Dissertation, Computer Science Dept.
California Institute of Technology, 4980 (in progress)

[Cook74]
8.A. Cook
*The Complexity of Theorem—Proving Procedures"
Proc, 3rd Annval ACM Symp., on Theory of Computing
1974, p., 154-458

[Dahl72]
0-J Dahl, E.W. Di jkstra, and C.A.R. Hoare
Structured Proqramming
Academic Press, New York, 4972

[Denny791]
W. Michael Denny, Ernest R. Buley, and Earl Hatt
"Logic-Enhanced Memories: An Overview and Some Examples
of Their Application to a Radar-Tracking Problem"

Proc, Caltech Conf. on Very lLarge Scale Integration
Janvary, 1979, p. 173-486

[Di jkstra76l
' E.W. Dijkstra

A Discipline of Proaramming
Prentice-Hall, Englewood Cliffs, New Jersey, 1976

-183~

[Fischer?7il
M.J. Fischer, A.R. Meyer
"Boolean Matrix Multiplication and Transitive Closure"
Conf. Record, IEEE §2th Annual Symp. on

Switching and Automata Theory, p.429-134

{Floresé3]
Ivan Flores
The Logic of Computer Arithmetic
Prentice-Hall, Englewood Cliffs, New Jersey, 1963

[Frankliné8]
Joel N, Franklin

Matrix Theory
Prentice-Hall, Englewood Cliffs, New Jersey, 41968

[Heller79l
Williaom R. Heller
"An Algorithm for Chip Planning"”
S8P Memo #2806, Computer Science Dept.
California Institute of Technology, May, 1979

[Hoare781
C.A.R. Hoare
"Communicating Sequential Processes"
C.ACM, 21:8, August, 1978, p. 666-677

[Isaacsonéb]
Evgene Isaacson, Herbert Bishop Keller
aAnalvsis of Numerical Methods
John Wiley & Sons, Inc., New York, 1966

{Keller781]
Robert M, Keller, Gary Lindstrom, Suhas Patil
"An Architecture for a Loosely-Coupled Parallel
Processor", Department of Computer Science
University of Utah, UUCS-78-40S5, October, 1978

EKnuth73]
Donald E. Knuth
The Art of Computer Proaramming, vol.3
"Searching and Sorting"
Addison Wesley, Reading, Massachusetts, 1973

[Kung791

H.T. Kung and Charles E. Leiserson
*Algorithms for VLSI Processor Arrays"
in [Mead791, p. 274-292

=194~

[Leiserson79]
Charles E. Leiserson
"Systolic Priority Queves"
Proc, Caltech Conf. on Very Large Scale Inteqration
Janvary, 4979, p. i99-2i4

{Locanthi7%1]
Rart N, Locanthi
“A Taxoenomy of Interconnect Structures”
Memo #2764, Computer Science Dept
California Institute of Technology, April, 1979

[Locanthi80]
Bart N. Locanthi
The Homogeneous Machine
PhD Dissertation, Computer Science Dept,.
California Institute of Technology, 1980

[Mago791]
Gyvula A, Mago
*4 Cellular, Language Directed Architecture"

Proc., Coltech Conf. on Very Large Scale Inteqration
Januvary, 4979, p. 447-452

[Mead7%]
Carver Mead and Lynn Conway

Introduction to VLSI Systems
Addison-Wesley, Reading, Massechusetts, 1979

[Munro741]
Ian Munro
"Efficient Determination of the Transitive Closure
of a Directed Graph"”

Information Processing Letters 1(i974) p. 56-58

[Rem7%al
Martin Rem :
"Mathematical Aspects of VULSI Design”
Invited presentation, transcript included in
Proc. Caltech Conf., on Very Large Scale Inteqgration
Janvary, 1979, p.55-64

[Rem7%9b1
Martin Rem
personal communication, spring 1979

[Strassenb?]
V. Strassen
"Gauvussian Elimination is not Optimal”
Numer ., Math., 13(4969) p.354-356

-85~

{Tar jan771]
R.E. Tar jan
"Reference Machines Require Non-Linear Time to Maintain
Disjoint Sets®
Proc, 9th_Annual Symp. en Theory of Computing, 4977

{Tar jan781
R.E. Tar jan
“Complexity of Combinatorial Algorithms"
S1AM Review, 20:3, July, 4978

[{Thompson791]
C.D. Thompson
*Area-Time Complxity for VLSI®
Proc. Caltech Conf. on Very Large Scale Integration
Januvary, 41979, p.495-508

{Thurber?7S1
Kenneth J. Thurber
"Associative and Parallel Processors”
Computing Surveys, 7:4, December, 4975, p. 215-25%

{Turing3b]
A.M. Turing
"On Computable Numbers, with Appllication to the
Entscheidungs Problem"
Proc. London Math, Society, 2:42(1936), p. 230-265

[Warshallé?2l
S. Warshall

"4 Theorem on Boolean Matrices"
J.ACM 9:4, Janvary, 1962, p.51i-42

[Wilner79]
Wayne T, Wilner
"Recursive Machines"
Xerox Palo Alto Research Center
(submitted to IFIP ’80)

