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ARSTRACT

When a coherent imagine system is used to map a rough
surface, for instance when a synthetic aperture radar (SAR)
system is used to map the earth, the resulting picture of
the surface is degraded by random intensity fluctuations
called speckle. Speckle obscures the intensity variations
caused by the inherent reflectivity differences that iden-
tify various features in the picture. The problem of speci-
fying the extent of the degradation caused by speckle in
pictures meant to be examined bv a human observer was inves-
tigated. In particular, the problems considered were those
in which an observer has to (a) detect a small feature
immersed in a somewhat darker backesround; (b)detect a grat-
ing consisting of alternating bright and somewhat darker
lines; (ec) distinguish between two or four specified
geometrical forms. In each case the picture was corrupted

by speckle.

In investigating each of these problems, a plausiﬁle
theoretical model was developed for the decision process
used by the observer in his detection or discrimination
task. This model was used to relate the probability of his
making a correct decision to the relevant picture parameters
such as contrast ratio between the reflectivities of various
parts of the picture, number of looks per pixel, picture
size, and dimension of the features or lines., These calcu-

lations were verified by experiments in which the decisions



made by an observer examining computer simulations of

speckle- corrupted pictures were noted.

Results of calculations for the reasonable 3SAR
parameters of 1 dB contrast ratio and 12 looks per pixel
showed that, in order to achieve a probabilitvy of correct
decision of 0.95, (a) ‘a small scuare in a 100 bv 100 pixel
background needs to be about 7 pixels on a side; (b) a 100
by 100 pixel grating of line pairs needs to have lines about
2 pixels wide; (c¢) a simple geometrical form (a specific
one) needs to be at least 12 pixels on a side to be dis-
tinguished from another (specific) form of the same size,
when these two forms are the only possible alternatives,
These results illustrate that detectability of line pairs is
a poor criterion for characterizing picture quality, while
form discrimination imposes the most stringent requirements

on the imaging system.
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1. INTRODUCTION

1.1 Nature Of The Speckle Problem

Consider a surface whose rms (root-mean-square) roughness is
of the order of magnitude of the wavelength of visible
light. Assume that the surface has a uniform optical
reflectivity, so that if viewed in ordinary incoherent
light, all parts of the surface appear equally bright.
However, if the same surface is viewed in coherent light
such as laser light, the surface appears to have a random
intensity distribution which is called a speckle pnattern.
Such patterns are easily seen even bv a casual observer when

highly coherent laser lisht is shone on a rough surface.

Although speckle was first discovered and so named in
connection with oétical svstems [1], the same effect occurs
in other regions of the electromagnetic spectrum, for
example, in acoustical imaging systems, in radar
astronomical systems, and in radar systems [2]-[8]. 1In
radar, the "clutter" or intensity distribution resulting
from microwaves reflected by a diffuse scattering surface is
actually a speckle pattern. Speckle patterns formed in
partially coherent light are very useful in obtaining
information about the scattering surface. However, if a

coherent imaging system is used for mapping a surface, then



speckle is an undesirable effect, because it degrades the
quality of the photograph obtained. Synthetic Aperture
Radar (SAR) is a high resolution, coherent radar techniacue
used for mapping surfaces like the earth from an aircraft or
spacecraft [9]-[10]., We will concern ourselves only with
the picture-degrading effects of speckle, with particular
reference to SAR systems, although the resulits are
applicable to pictures obtained by any other coherent

mapping system.

Microwave and optical images are obtained by
translating the variations in reflectivity of different
portions of the surface being imaged into optical intensity
variations on a ohotographic film. As in any other imaging
system, there is;, of course; a smallest resolvable
dimension, which defines the size of the resolution cell in
the surface being mapped. Fach such resoliution celil
corresponds to one pixel in the final picture. In imagery
produced by incohereﬁt systems, the resolution cell size has
a physical meaning; for instance, a feature of the size of a
resoliution cell, which has a somewhat different reflectivity
from its immediate surroundings, is actually visible in the
picture. However, this is not necessarily the case for
coherent imagery, because of the random intensity
fluctuations caused by speckle; all that one pixel defines

is the size of the grains or "speckles" in the picture.

P

1.2 Brief theorv of speckie

In order to explain how speckle arises, we take the specific
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case of a Siak svatem. Consider the comnosition of the signal

return from a sinasle resclution cell, i.e. the signal relflected
by the cell. If the surface beinsg imared has a rouashness or
heiaht variation comnarable to the wavelength of the
electromagnetic radiation used for the imaging, the phases
of the contribution from various scattering centers differ
by amounts of the order of magnitude of 2JT and can be
considered to be independent random variables uniformly
distributed between 0 and 277 . If the imaging process is
such that the signal return from a single resclution cell
consists of a coherent superposition of the contributions of
a large number of these elementarv scattering centers, then
the intensity of the returp from each resolution cell can be
considered a random variable with an exponential
distribution, Since two adjacent resolution cells represent
the contributions of two different sets of elementary
scatterers, the intensities on the film corresnondinse to
these adjacent resolufion cells are indevnendent random
variables {(under ideal processing conditions), and the
picture consists of a random collection of bright and dark
spots which obscure the inherent reflectivity variations of
the surface., This high spatial frequency variation of

intensity in the picture causes speckle.

The theoretical conditions under which the exvponential
intensity distribution (or equivalentlv, the Rayleigh

amplitude distribution) for the signal return holds are

well-known [7]. Marcum and Swerling [11] state that the



Rayleigh distribution for amplitude holds in most diffuse
scattering cases,. Experimental evidence for the Ravleigh
amplitude distribution has been found by analyzing lunar
radar returns [7], radar returns from the ocean [12] and

light scattered from diffuse surfaces [13].

1«3 Speckle in SAR systems

The question of visﬁal examination of speckled pictures with
the intention of finding features in them has onlv recently
arisen with the development of SAR systems for mapping
surfaces like the ocean surface and that of Venus. In some
applications, conventional (as opposed to synthetic
aperture) radar is used in mapping, for instance, a runway
as seen from a (stationary) high tower [14]. PRut the
interest here is not in the diffuse reflection or clutter,
but in some smooth target like an aircraft on a runway,
which is relatively free from the effects of speckle. The
only interest in clutter in these cases is in ways to

separate the desired signal from the clutter.

Figure (1.1), courtesy Chialin Wu of JPL, shows a SAR
picture of a portion of Imperial Valley, California,
generated by digitally processing SAR data taken by the
experimental mission SEASAT. The large, grainyv patch at the
top right corner of the picture is a pateh of water, which
has a2 uniform radar reflectivity, but appears grainv because

of speckle. Similarly, the interior of each of the several



Figure (1.1): Digitally processed SAR image of a
part of Imperial Valley, California.

(Courtesy Chialin Wu, JPL)



small rectangular patches in the rest of the picture ought
to have appeared uniform, because each of them represents a
single vegetable or crop field, a few miles on a side, which

again has a uniform radar reflectivitv.

1.4 Reduction of speckle

(a) Looks: It is well known that speckle effects are reduced
by averaging incoherently‘over several independent returns
from a single resclution cell, i.e. by averaging over

several independent estimates of the power return from a
single resolution cell. 7The standard deviation of the average
of 1 independent, identically distributed random variables is
L-1/2 times the standard deviation of e=zch, while the mean ot
their averagse is eonual to the mean of ea-h, Thereiore, the
intensitv fluctuation ratio, defined as the ratio of rms
variation in intensity to mean value of intensity should

decrease by a factor of 1/L17/2 after this averaging and

present a truer reproduction of the original scene [8].

The picture in Figure (1.1) has U4 looks per pixel, but
we see that this is not a larege enocugh number of looks to

suppress the speckle in the picture,

If the averaging is done coherently, i.e. if
independent estimates of amplitude (rather than power) of
the return are added coherently, there is no reduction in

speckle [15].
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These considerations indicate that feature detection
and recognition in a given speckled pnicture ousght to improve
by taking more "looks" (from now on, unless otherwise
specified, "looks"™ means independent estimates) at each
resolution cell, and averaging incoherently over these
looks., Examining SAR pictures of a terrain obtained by
processing actual SAR data,we can see qualitatively that the
pictures appear better with increasing number of looks [8].
Butman and Lipes [16] simulated pictures starting with an
unspeckled ERTS picture and adding speckle to it. This
picture was then processed to include the effects of
varying numbers of looks and the resulting pictures, which
are reproduced in Figure (1.2) here, show the same

qualitative improvement with increasing number of looks.

(b)Contrast:In the above paragraphs, we considered how a
picture with given contrasts between the various features
and the background could be improved. But this intensity
contrast 1s, to some extent, a function of the imaging
system design and we would like to consider the effect of

varying this contrast.

Consider the problem of detecting a small feature of
just-resolvable cell size, whose intensity in the absence of
speckle would be (1+b) times that of its immediate
surroundings. The actual intensity of the SAR return from
this bright cell is a random variable with a mean value

eaqual to (1+b) times that of the return from the backsground.
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Figure (1.2): Improvement in speckled picture aquality
with increasing number of looks

(Courtesy Richard Lipes, JPL)



There is a non-zero probability, p, that the return from the
bright cell is smaller than that from the background cells.
As the number of looks per resolution cell increases, the
probability density functions of these random variables
become more peaked in the vicinity of their mean values and
this probability, p, decreases (which is another way of
explaining the effect described in (a) above). But it is
also true that, for a given form of probability density
functions, this probability decreases as the contrast ratio
(1+b) increases. We will be interrsted in determinin~T how
much this probabilitv decreases a3 contrast ratio increases.

1.5 Relating speckle and system parameters

In the previous section, we described the importance of
looks and contrast in speckle reduction. These parameters,
in turn, relate to the design parameters of the imaging

system, as we explain below.

(a) Looks:In SAR systems,independent estimates of a pixel

intensity are obtainable bv various means [8], [17]:

(i) by using different carriers sufficiently separated in
frequency so that the returns from a single resolution cell

at these freauencies are independent;

(ii) by looking at a single resolution cell from various
aspect angles.
Airborne or spacecraft-borne SAR svstems achieve hioh

azimuthal resolution by a technicue of procegsine the radar
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return S¢ as to synthessize a lerge antenna operture from
a small physical one., Often the technioue for procesgsing
involves some kind of sub-aperture processing which
accomplishes (ii) above [18]. The method consists of
separately processing L fractions of the synthetic aperture
S0 as to get an aiimuth resolution that is 1/L times the
best one obtainéble with that aperture. Then the L
estimates =0 obtained are combined, so that we sacrifice
resolution for looks. Or, for a given resolution, the
aperture for L looks needs to be L times as large as the
aperture reguired for 1 look. This makes the processing
reguirements for L looks about L times as complex as those

for 1 look, if a specified resolution is to be attained.

Similarly, if the frequency diversitv technigue of (i)
is used, there are L times as many carriers, and theretore
about L times as much processing, for L looks as there is

for 1 look.

(b) Contrast: In SAR processing bv 2-dimensional matched
filtering of the signal return [9], the autocorrelation
function of the filter impulse response should, ideally, be
a delta-~function, In practice, it is a peaked function with
sidelobes, and the integrated side-lobe power appears as
noise in the processed return. An increase in ISLR
(Integrated Sidelobe Ratio), i.e. the ratio of integrated
sidelobe power to the power between 3-dB points of the
central peak, has the effect of decreasing the contrast

between a feature and its background (in addition to making
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adjacent resolution cell returns somewhat correlated).
Reducing the ISLR while meeting the other SAR specifications

requires careful system design.

1.6 Scope of work

From the discussion in section (1.4), it can be seen that
looks and contrast are parameters that determine the aouality
of the picture. From the discussion in section (1.5), it
can be seen that the system desiegn determines these two
parameters, In order to be able to design a SAR imaging
system that produces some tolerable level of picture
quality, we need, first, to specify more precisely what we
mean by picture guality, and then, to determine how the
parameters L and b relate to this picture guality. This is

what we attempt to do in this work.

The aspects of .picture quality in which we are
interested are those of detection and recognition of small
features, We consider these problems in idealized cases
where the pictures of interest contain well-defined
geometrical shapes. We consider these pictures rather than
pictures with real scenes because realistic pictures have
too many intensity variations to permit anv aquantitative
evaluation of picture quality. Moreover, it is usual, in
testing the performance df an imagineg system, to do so by
observing how it images artificial forms, which are often

geometrical. For instance, in testing television system



performance, line-pair gratings are normallv used as the

test pattern [19].

We begin bv demonstrating the picture-degrading effects
of speckle and the improvement with looks and contrast using
simulated pictures of eye-charts like those used in vision
testing. Because of the comnlexity of these pictures, we
can make only a few quantitative statements about these
pictures,

We then investigate, more quantitatively, the degradation
caused by speckle and the effects of looks and contrast, in

three specific cases. These are:

(a) the detection of small features in speckled backgrounds,
where, in the absence of speckle, the small features would

be somewhat brighter than the background:

(b) the detection of line-pair gratings, when the picture is

degraded by speckle;

(c¢) discrimination between 2 or 4 specific geometrical

forms, when the forms are degraded by speckle.



- 13 -

2. DEMONSTRATION OF SPECKLE EFFECTS

2.1 Qverview

In later chapters, we present a mathematical analysis and
experimental verification of geometrical feature and line-
pair detection and geometrical form discrimination. Real
scenes have complicated intensity distributions so that it
is difficult to apply our results to them, in general. In
this chapter, we show the effects of speckle, looks and
contrast on some pictures of an intermediate level of
complexity. We chose evechartis because thev consist of
shapes that are well-defined and familiar to evervone, It
is theoretically possible, but not practicable, to extend
all the analysis of geometrical shapes of later chanters to
the situation in this chapter; however, in Chapter 5, we
show how to apply some of the approximate formulas derived

there to the present case. The detail

- & 3 1
of the simulations

o4}

used in generating the eyvecharts are the same as in the
later chapters and are described in Chapter 4. However in
the case of the eyecharts, we did not perform experiments as
we did for the cases of later chapters. This was because
the eyecharts are merelv intended as a demonstration of

speckle effects on picture qguality.

2.2 Eyecharts

In Figures 2.1(a)-(p), we show simulated pictures of an

eyechart with varyving numbers of looks L and varving



(a) (k)

() (d)

FLS 16518-20340-1603 FLS 16,18-2054D-1607

) )

(q) (h)

NI STRIFLS 16.18-20 HO STRIFLS 16,18-20

Figure (2.1): Eyecharts (a)-(h) reading from left to right
and top to bottom
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(k) (2)

(m) (n)

(&) (P)

FLS 29,30iN0 STR3S,6DB3 1LK FLS 29530iN0 STRiS,60Bi1LK

Figure (2.1): Eyecharts (i)-(p) reading from left to right
and top to bottom
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contrasts (1+b). All the pictures have 256%256 pixels:they
are all the same set of letters in the same positions. The
unspeckled set of letters with 1 dB contrast with respect to
the background is shown in Figures 2.1(d) and (h),., The
letters were designed so as to have the minimum redundancv,
given that the thickness and maximum heisght and width of all
the letters were to be the same. It can easily be seen that
a set of letters each constructed within a rectangle of
height 5 and width 3 pixels has this property. Only 15
letters of the alphabet can be unambiguously defined using
this rectangle. These are A (or R), C, D (or 0), E, F, G,
H, 1, J, L, P, S, T, U, Y, which is a set large enough for

our purposes,

The lowest line in all the pictures in Figure (2.1) is
of size 5%3 pixels. The nth line from the bottom has a size
5n¥*¥3n pixels. The parameters used in the various pictures

are summarized in Table (2.1).

Various stretch parameters have been used in the
pictures. A stretch of say 40-160 means that the
intensities of the pixels in the range 40-160 were linearly
rescaled to cover the range 0-255, Those below 40 were set
to 0, and those above 160 were set to 255. The stretched
pictures in Figures 2.1(a), (b) and (e¢), and the pictures
(e), (f) and (g) which are unstretched, are otherwise
identical sets. (However, even in the unstretched pictures,

values above 255 are set to 255, so that, to some extent,
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there is still some saturation of intensities). Stretchine

seems to make no difference to recognizabilitv in

the 2.5 dR pictures (b) and (f), while in the low

contrast (1 dB) pictures, the stretched versions look better.
We see by examining the pictures that the pictures with

25 looks and 2.5 dB appear better than the ones with 50

looks and 1 dB. Thus, as a preliminary result, it can be

seen that increasing the contrast from 1.26 to 1.8 is better

than increasing the number of looks from 25 to 50.

We note here that the proc increas

et

2

(¢}
0]

ss of stretchin
the variance of the intensity distribution for each of the
pixels in the surround and in the feature itself, as well as
the difference between the means of the distributions, all
by the same factor, We come back to this voint later on.
Thus the probabilities of detection, as calculated in this
work, should be unaffected by a histogram stretech. However,
the process of "increasing the contrast", referred to in the
previous paragraph,.is that of increasing the value of
(1+b), so that the difference between the means of the
background and feature intensity distributions increases, as
does the variance of the intensities of the pixels in the
bright features, while the variance of the intensities of
the pixels in the surround is left unaltered. Therefore
this increase of contrast increases the probability of
correct detection. But, as stated in Chapter 1, this
increase in contrast can be done only by a change in design

of the imaging system (as opposed to stretching, which can
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be done at the final stage of image enhancement).

The improvement in readability of the letters as
contrast is increased is most pronounced at the lower
contrasts, i.e., in Figures 2.1(i), (j) and (k). If we
compare the various 1-1look pictures and the 25-look pictures
for detectability of the lowest detectable line, we find
that the 25-loo0k, 1 dB pictures are about eauivalent to the
1 look, 4 dB or 5 dB pictures. That is, changineg the
contrast from 1.26 to 2.57 or 3.16 is roughly equivalent to
increasing the number of looks from 1 to 25, The theory
described in Chapter 5 predicts aporoximately the same
result. The same sort of conclusions can also be drawn by
considering that an increase in number of pixels in a letter
acts exactly the same way as increase in number of looks,
and then comparing appropriate lines from different
pictures. We do not elaborate on this method of comparison
here, but we describe 1t in Chapter 5 and the results

support the ones mentioned in this paragraph.
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3. MATHEMATICS OF SPECKLE

3.1 QOverview

Speckle is such a ubiguitous phenomenon that a considerable
amount of work has been done on the mathematics of speckle
[20]. Most of this work has been in connection with optical
systems, and most of the mathematical treatments have taken
into account the properties of a diffracting aperture and of
light propagating through free space before reaching the
image plane, For our purposes, we choose one of the
simplest representations, since the representation of
speckle is the starting point for further mathematical

analysis needed in this work.

We adopt the method used by Butman and Lipes [16],
which we repeat in sub-section 3.2.1 below. We will rassume,
throughout this chapter, that in addition to speckle, we
also have additive white Gaussian noise (AWGN) [21]
corrupting the signal, This inclusion of AWGN does not
change the analysis very much, and is a way of taking into
account, épproximately, various sources of noise, like
receiver noise and antenna noise. We shall see that this
AWGN merely leads to a redefinition of the contrast ratio
(1+b), and, with this newly defined "effective contrast
ratio®, all other results are just the same as if no AWGN
were present, However, none of our simulated pictures had

AWGN in them, so the validity of this effective contrast



ratio in accounting for AWGN has not been verified.

Throughout this work, we will be using the terms
(pixel) intensity and (pixel) power interchangeably, unless
otherwise stated, since we are not interested in varying the
area of each pixel; in effect, we assume a system of units
in which the pixel area is 1, so that power eguals

intensity.

3.2 Pixel SNR _(PSNR)

3.2.1 Definition of PSNR

In this sub-section, we deal with the first-order
statistiecs, i.e. mean and variance, of speckle. We also
define a signal-to-noise ratio (SNR) that accounts for both
speckle and AWGN, which we call [16] the "Pixel SNR" or
PSNR. This PSNR pnrovides one wayv of explaining the
improvement in picﬁure guality with increase in number of

locks; we do this in sub=-section 3.2.2.

Each estimate of a pixel intensity in a SAR system is
derived by envelope~- detecting an in-phase (I) and a
quadrature-phase (Q) signal (so called because they are,

respectively, in phase and 90 degrees out of phase, with a

th]

carrier frequency reference). The I and Q signals are
themselves contaminated by system noise which is AWGN, so

that the two detected voltages vIand vO are given by



Vp Sap+ng (3.1)

Vo= 8y + 1, (2.2)

where aI and ay are the in-phase and guadrature signal
voltages in the pixel in the absence of AWGN; and n; and L
are the corresponding contaminating voltages due to this

noise,

We assume here an idealized SAR processing scheme in
which the voltages v. and VQ for each nixel are indenendent of

those for all other pixels, so that we have 2K independent

random variables associated with a picture of K pixels.

The signal power s, noise power n, and total power v in

the processed return leading to any given pixel are given by

s:a% +ag (3.3a)

n=n12+n§ (3.3b)

v=(a_+n )2 + (a_+n )2 (3.3¢c)
I I o 0

With an ideal receiver and processing scheme, the aq, aq s
ny and ng are all independent and the aj; and ag are
identically distributed with a variance which we denote by
P/2, while the ny and WQ are identically distributed with a
variance denoted by N /2. A1l four variables have a mean

value egual to 0. Then the variables s, n, v are all
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exponentially distributed, because they are the sums of
squares of two identically distributed, independent Gaussian
random variables with zero means. The means of s, n, Vv are

given by

s=P (3.4a)
n= (3.4b)
v=P+N =V (3.4¢)

It has been shown [22] that the image of a uniformly
diffusing object illuminated with coherent light and imaged
through a lens system has a mean intensity (equal to the
standard deviation of the intensity) proportional to the
intensity that would be observed if the same object were
imaged in incoherent light. For SAR images, whether

o~ < -~ 1 —~ 2 - < e am -~ - - o o mn e T o B P
optically or digitallv processed, the same results will

[4/]

hold, so that the %) appearing above is proportional to what
we will call the "actual" power reflected by the resolution
cell, i.e. the power reflected if speckle were absent. The
proportionality constant can be taken as 1 because we are

only interested in relative intensities and not in absolute

intensities in the picture,

We have, so far, been considering the power return in
. \ .
one look. We now consider what happens when each pixel is

formed by averaging incoherently over L estimates or looks.
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Using v, to represent the total (signal plus noise) power in

L

the L-look estimate of pixel intensity, we get
L
vLﬁlz:vi (3.5)
L'1=l

where each A is now equivalent to the v in Foguation (3.3).
The conventional SNR that accounts for the receiver
noise is defined by

SNR=P /N (3.6)

However, if we want to define a sienal-to-noise ratio that
accounts for both speckle and receiver AWGN, we may do so by

defining the "pixel signal- to-noise ratio"™ or PSNR as

PSNR={(mean signal power)/

(standard deviation of the variable v)

=P /v variance of v (3.7)

Since the L estimates v, in Equation (3.5) are
independent, their variances add and so the variance of v
2
is 1/12 #L times the variance of v, si.e., it is eoual to V'/L;

however, the mean of the signal component of v is obtained

L

by adding the means of the L estimates and dividing by L, so
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that it is equal to P . Therefore, we have

PSNR=P / (v/vL) =vL / (1+(SNR)"1) (3.8)

where SNR is the quantityv defined in Ecuation (3.5).

3.2.2 Advantage of looks

We can now explain why taking independent looks and
averaging them incoherently improves picture guality. From
Equation (3.8), we see that the L-look mean/(standard
deviation) ratio is VYL times the corresponding 1-1look
guantity. This means that the random intensity fluctuation
that causes the picture to appear granular is reduced and so
the true intensity variations of the scene are less
obscured. This should improve feature detectability in the

picture,

3.3 Probabilitv density functions

There are two technicues for analvzing the effect of random
noise on the detectability of a siegnal: the SNR approach and
the probability of detection approach. The SNR approach
starts with a suitable definition of SNR as we did above.
When the noise corrupting a signal is not Gaussian, the
performance of the system predicted bv the two approaches is
not identical [23]. 1In our case, we are interested in

speckle noise and we are concerned about the probability of
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detection of features. Therefore, we need to develop the
probability of detection approach. In order to do so, we
first need the probability density functions of speckled

signals.

S~ far, our notation has been generzl. We will now
change it slightlyv so that it is applicable te that used in
some of the later chanters. We present the probability density
function for the intensity of a pixel formed from M
effective looks, which we define more precisely below.
Consider a small feature, B, of size D*¥D pixels, whose
intensity B in the absence of speckle is uniform throughout
the feature. We will use B to represent both the feature
itself and the quantity L¥(the total intensity of the
feature,T). We assume that each of the D¥D pixels
representing the feature is formed by averaging L

independent estimates of the return. Therefore, L*{%he

o

pixel intensity} for each of the pixels is formed by summing
these L independent estimates. In Chapter 5, we will be
interested in the total intensity T reflected by these D¥D
pixels in the feature, which is simply the sum of D¥D pixel
intensities. Thus, B=zL#¥T is obtained by summing L¥D¥D
intensities which are all independent estimates of the same
intensity, i.e., by summing M=L¥D¥*D "effective looks".

Since we will only be interested in relative intensities,

L#¥T is just as good for our purposes as T, and, for

simplicity, we shall deal with the probability density
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function of L¥T, If we need to obtain the probability
density function for a single pixel intensity, all we need

to do is to consider the case where D=1.

The total signal plus noise power in the sum of M

returns, and therefore in B has a mean value of

PB=M*(P0+N0) (3.9)

where we now use the symbols PO and N0 for the mean signal

and noise powers in anv one of the M returns.

If we now have a new feature, G, whose reflectivityv is
(1+b) times that of feature B, then the total signal plus
noise power in M returns from this feature G has a mean

value of

=M* *
P =M* (L+D) P #MAN (3.10)
If we now define an effective contrast, ¢, by
¢ = bPO = b (23.11)
-1
+
PO + NO 1 (SNR)

then the total sisgnal plus noise power received from feature
G is seen to be expressible as (1+c) times the total power
received from feature B. Thus the effective contrast factor

(1+¢) accounts for both AWGN and speckle. Therefore, if we
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replace (1+b) wherever it appears in this work by (1+c),
that ought to take care of both AWGN and speckle. Since
none of our simulated pictures have AWGN in them, we have

used (1+b) in all our analysis, rather than (t+c).

We now consider the probability density functions (pdf)

of the variables

Bi (3.12)

—

==}
n

=z 7=
4

62> vy (3.13)

et
H]
—t

where G/L represents the randomly varying intensity
reflected by a feature of size D¥D pixels, whose actual
intensity is effectively greater than that of its background
by a factor of (1+b). B/L represents the intensity
reflected by a region of the backeground of size D¥D pixels.
Thus B and G have the same meaning that thev had in the

equations so far. Here,

V. =s. +n (3.14)
Bi Bi B
vGi =SGi +n61 (3.15)

are the total signal plus noise powers in the processed
returns from the ith of M independent estimates of intensity

of the features B and G respectively. Thus each %i has a
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mean value of MPOand each Yoy has a mean value of MPO(1+b).

Then the variables, defined by x:s/(Po/z) and Y=G/(P,
(1+b)/2) are both chi-squared distributed with 2M degrees of
freedom [24]. Equivalently, X/2=B/Po?nd Y/2=G/(P0(1+b)) are
gamma distributed with parameter M. Specifically, the pdfs

of B and G are

y(M-l)e-Y/Po(l+b)

N S (3.16)
p~(y) = ,
¢ [p, (1+p) 1™ T (M)
(M-1) =-x/P
po(x) = —E— % e 0 (3.17)
B M
(PO) rM)

These are the desired probability density functions. Since
B and G are multiples of a gamma distributed or of a chi-
squared distributed random variable, we will refer to B and
G themselves as being gamma or chi-squared distributed,
meaning that they fallow the density functions given in

Equations (3.16)=-(3.17) above.

For large M, we can approximate the distribution
functions of B and G by Gaussian distribution functions
having the proper means and variances, 1.e., the mean values
are MPoand MPO(1+b) respectivelv, and the standard
deviations are 1#M times the respective means. This

approximation results from the Central Limit Theorem [21]

which is applicable because G and B are sums of a large
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number of independent, identically distributed random
variables, These approximate Gaussian probability density

functions are

: 2
Pply) = -(-2-1—-—-'-—- exp[-—(y—MPO) /2P(2) M] (3.18)
v ™M) P ’
0
= ‘ ; 2
pG(X) = 1 exp{—[x—MPO(l+b)_]2/2P8(l+b.) /M) (3.19)

V(2 mM) PO(1+b)

However, a better approximation [2.8] for a chi-sauared
distributed variable, such as Y, is to represent ¥(2Y) |,
rather than Y itself, by a Gaussian distributed variable
with a mean value of Y(4M-1) . This approximation gives
good results for 2M>100, for most purposes. We will use
this approximation in some cases, and the expressions for B
and G using this and some other approximations are given

where they are needed.
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4, EXPERIMENTAL METHOD: GENERAL FEATURES

4.1 OQverview

In order to verify the detectability calculations we will
make in the coming chapters, we perform psychophysical
experiments using computer-simulated pictures., The details
of the simulations and experiments used depend on the
specific calculations being verified, and these are
described in the later chapters. However, all the
simulations and experiments have certain features in common

and we will describe them in this chapter.
4,2 The simulations

We consider pictures generated by the computer, which
simulate the output of an ideal processing svstem in the
case where there is no additive system noise. Sometimes,
speckle is included under the term "noise", but in our work,
we use the term "noise" to mean only system noise, excluding

speckle.

To generate the various speckled pictures we use in
this work, we started bv generating a matrix of intensity
values representing the "actual"™ or unspeckled picture of
interest. Then we degraded the picture bv speckle as
follows, Each of these intensity values which we may call PI
was replaced by a random intensity vy corresponding to the vp

in Chapter 3. This was made to have the desired gamma
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density function by averaging L independent random
variables,vi, each having an exponential probability densitv
function, and a mean value equal to the actual or unspeckled
intensity PI . Thus in the case of the vpictures of

Chapter 5, each of the random intensities v;; for the small
bright features had a mean value of PO(1+b), while each of
the random intensities vgj for the background had a mean |

value of Py .

The pictures were all generated on a Dichomed image
generator connected on-line to the computer (SEL-32) used
for generating the random variables. The Dichomed converts
intensities of resolution cells represented by 8- bit pixels
(range 0-255) inté optical intensities exposing a
photographic film. For initial examination, black and white
Polaroid type 52, Polapan 4%5 Land film was used. Higher

guality negatives could also be obtained and printed and the

ictures shown in this dissertation are obtained by this

4,3 Histogram stretching

We also studied, for each picture, the effect of uniformly
stretching the picture histogram to make the full dynamic
range of 0-255 available for pixel values initially lying in
some range R. This range R was chosen by generating the
picture histogram and examining it to find the range in

which more than 99% of all pixels lay. This is a popular
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technique used in picture enhancement. One effect of this
stretching is to change the appearance of the picture,
making the background look much more grainy. Theoretically,
as noted in Chapter 2, the stretching process should not
affect the probability of detection of features or line
pairs or the probability of correctly discriminating forms,
if only the probability density functions are considered.
However, in cases where the contrast between a feature and
its background is very low, stretching should help in
detecting features, because the film is unable to resolve
fine variations in gray shades, and because the viewer's eye
can more easily spot well-defined contrasts. The same sort
of considerations should apply to line pair detection and
form discrimination. In all our experiments, we used
stretched or unstretched pictures, whichever gave better
feature, line or form detectability for the particular set

of parameters used in each picture.

L.ou icture and ixel size

In the calculations that follow, we assumed each pixel to be
square and non-overlapping with its neighbors. To ensure
that this was so in the pictures generated, each pixel was
expanded to fill a square of size at least 2%¥2 pixels
centered on the original pixel. Thus even though the
Dichomed output beam does not have a square profile, the
final pixels are of uniform intensity in a sauare region and

almost independent of adjacent pixels. In some pictures, a
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particular pixel was expanded to fill a sauare of H¥l4 pixels
or more, but the appearance of the final picture is about
the same as when each pixel was expanded to fill a 2%¥2
square, Throughout this work, when we refer to "pixel", we
mean this composite pixel of saquare shape. Each such
composite pixel corresponds to exactly one resolution cell
of the real or imaginarv scene being imaged. The results
would, however, be approximatelv valid even if this

"soguaring" of pixels were not done,

Most of the pictures generated have 200%¥200 pixels
(meaning the composite pixels referred to above) and there
are up to 2048#2048 "actual pixels" in each picture. Some
of the pictures have 100%¥100, 256#%¥256, 300%300 or 512%512
pixels. The Polaroid Land film used in the experiments has
a size of 3.5%4.,5 inches, and an actual image area of
3.5%¥3,5 inches and a resolution of 35 to 40 lines per mm.
However, once the negatives are made, there are many

possible print sizes.

4,5 Imaging svystem characteristics

A1l the pictures we show, unless otherwise stated, were
generated using the "1log select" switch on the Dichomed.
This causes the input exposure codes, which are proportional
to the pixel intensities generated on the computer, to be
linearly related to the photographic density, that i1s, the

logarithm of the intensity transmittance of the film [26].
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It is reasonable to assume [F0] that t:e reflectence of 2

developed film is proporticnal to its transmittance, and L. (]

that the observer's eve responds to the logarithm of the
intensity of light entering it. After the logarithm
extractor in the viewer's eye, we assume that there comes a
probabilistic evaluation by his brain. Thus, with the log
select, it is reasonable to assume that the response evoked
(by a pixel of intensity P), at the final stage where its
probability is evaluated is proportional to the gamma-
distributed pixel intensity generated by the computer. This
sequence of assumptions makes it reasonable that the
probability densities that are finally recuired in decision
making are the gamma-density functions described in Chapter

3.

In many of the cases in Chapter 5, we also generated
pictures using the linear select, which causes the exXposure
codes to be linearly related to the film intensity
transmittance, After preliminarv experiments, in which we
found that there was no clear-cut improvement or worsening
in the detectability of features, we decided to use only the

log select,

This is the extent to which we consider the imaging
system and film characteristics. In ocur analysis, we
neglect other complexities and imperfections in the imaging

process,



- 36 -~

4.6 Absolute and relative brightness levels

In all our pictures, we are concerned with two pixel
intensity levels, which we denote by PO and p0(1+b). In all
the pictures, the "effective contrast ratio”™ (1+b) is an
important parameter in the detection problem. However, the
absolute intensities PO and PO(1+b) are not important in anv
of our problems, because the overall brightness level of the
picture can be verv easilv changed in the developement of
the photograph and in all the cases we consider, the picture
is assumed to have an overall brigﬁtness level that is
clearly above the threshold of detectability. There may be
some small dependence of detectability of features (or
line-pairs or form or whatever) on absclute brightness
levels, because of the propnerties of the visual detection
mechanism, but we neglect this effect in our calculations,
and experiments that we performed for the purpose seemed to

Jjustify this assumption.

We also assume, since we are investigating the
degrading effects of speckle, that the differences in
brightness that the observer is looking for would be
definitely detected in the absence of speckle. Thus, we do
not consider the effect of (1+b) being so small as to be
near the observer's just-noticeable-difference level of
relative brightness (which is normally about 1% of the
average brightness of the two levels involved [27]) or near

the intensity-resolving limit of the photographic system.
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By looking at the unspeckled versions of the pictures
simulated, we found that the contrast ratios of 1 dB and

above, which we used, satisfy this recuirement.

4,7 The experimental procedure

Psychophysical experiments were conducted using the
computer-simulated pictures to verify the theoretical
results that we derive in the succeeding chapters. In all
of the experiments, several pictures with a fixed set of
parameters were shown to an observer, who was asked to make
some decision. The proportion of his responses that were
correct, QC, was then used as an estimate of the probability
of correct decision pc for the particular case. The
theoretically predicted p  and experimentally estimated o

c
were compared to determine the correctness of the theorv.

In all experiments, the choice of exactly what
directions to give the observer was made following the

principles that

(a) the observer ought to be told all the possible details

he could know without biasing him; and that

(b) the experimental situation should, as far as possible,
resemble the real situation which might occur when a
scientist, such as an oceanographer or geologist, is studying
the pictures. Thus, we tell the observer in our experiments

such things as one might expect the scientist to know in
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some real case which our experiment parallels.

The first of the above principles follows the procedure
given by Green and Swets [28] (in the Appendix on
Experimental Procedures). The details of the second

principle are given later.

In our experiments, some pictures were initially shown
to an observer (TJG) with a given set of directions. The
observer then made a decision for each samnle or picture,
and his responses were compared with the correct ones. The
probability of error was estimated bv the percentage of

errors made by the observer in his decision task.

The same procedure was repeated with these same
pictures and with the author (VNK) as observer and the
results agreed with those obtained with TJG above to within
a 5% significance level as measured by the t-test [29]. It
was possible to use VNK as observer, because of the way in
which the pictures were designed. For instance, in the line
pair detection experiments, each picture consisted of a set
of patterns that randomly had or did not have a line pair
grating in them, so that VNK had no a priori knowledge of
whether her decision would be correct. There is a similar
justification for using VNK in the other sets of
experiments, Making observations on the manv pictures that
were needed in the experiments was too time-consuming to

make the use of any other observer feasible.
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5. DETECTION OF SMALL FEATURES

5.1 Overview

By detectability of a feature, we mean the ability to see
that the feature is present without necessarily being able
to distinguish its shape. A circle (which might represent a
crater) may be a good feature to use in our calculations and
simulations. But we use squares because the mathematics is

simpler. We consider the probability, p of an observer's

(6] $
{(correctly) detecting a small square of D#%#D pixels of
uniform intensity, in a uniform background of W¥W pixels,

and brighter than this background by a factor (1+b).

In this chapter, we make certain assumptions about the
visual process involved in the detection problem stated
above and derive a mathematical relationship between the
probability of detection p_  and various parameters of the
picture. We simula£ed several pictures of the tyvpe that we
made the calculations for, using various sets of parameters.
We then used psychophysical experiments to check our
calculations. The nature of the pictures considered in this
chapter is such that it was not feasible to perform a large
enough number of experiments so that we can say that the
theory developed here is the only correct one. However, the
experiments are extensive enough to show that the predicted
probabilities are very close to the experimental ones and

that the theory developed here at least provides a way of



predicting the probability of detection given the various
picture parameters., We feel this is useful, because the
ability to resolve small features like rocks and craters is
an important characteristic of an imaging system, and it is
desirable to be able to specify the level of confidence with
which such features are detectable in the imagery produced

by the system.

We also derive some simple approximate eocuations which,
we feel, will help in choosing the system parameters (1+b),
i.e. contrast ratio, and L, i.e. number of looks per pixel,
which will lead to desired probabilities of correct

detection of small features.

5.2 The parameters

In this section, we define the specific problem for which we
made our calculations and simulations used for our
experiments. The picture we are interested in consists of a
square background of W by W pixels, in which a single
bright feature is located at some place that is unknown to
the observer. The feature is a square of size D by D
pixels, where D<KW. 1In the absence of speckle, the
background has a uniform intensity, PO! and the feature has
a uniform intensity of P,(1+b). However, we are interested
in speckled pictures, so that neither the background nor the

feature appear uniformly intense anv more, and the location

of the feature becomes difficult to determine. We assume
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that the picture corresponds to something that might be
obtained by an L-look SAR system, so that each pixel
intensity is obtained by summing L independent estimates of

the unspeckled pixel intensity.

It is reasonable to assume that the detectability of
the feature depends on the values of W, D, L, and the
contrast ratio (1+b) between the feature and background
intensities, The absolute intensities PO and p0(1+b) are
not important in our problem, but their ratio is, as

explained in Chapter 4.

5.3 Thegoretical calculations

5.3.1 The detection model

We make our calculations concerning the detectability of
features according to a detection model that uses two basic
assumptions. Although we make our calculations for the case
of a square of size‘D*D pixels, the general method is
applicable to the problem of detecting small features of any

shape.

(1) The first assumption we make is that the viewer's visual
system, by which we mean‘the entire eye-brain systemnm
involved in visual perception, responds to the total optical
power reflected by a stimulus, provided the stimulus
subtends a small enough angle at the eye (i.e., a small
enough visual angle). This has, in fact, been demonstrated,

by various workers, to be true under many different
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conditions. To quote from Budrikis [30], "it is clear that
before detection (of light) takes place (in the visual
system) the input distribution is subjected to spatial and
temporal filtering...Both the spatial and temporal filter
characteristics show bandpass resonances. However, a
multiplicity of data on detection of stimuli on plain
backgrounds can be explained by a filter with only low-pass
characteristics." We assume that this result can be
extended to the speckled backerounds that are of interest to
us. We are not going to be concerned with the temporal
filtering, since the viewer in all cases of interest to us
has unlimited time for observation. Visual transfer
function curves, such as the one given by Budrikis [30],
suggest that we can assume that spatial (intensitv)
summation occurs within about 10°' arc of visual angle
subtended by the stimulus. Cornsweet [27] also zives this
angle as the one in which spatial summation occurs. The

impulse response of the transfer function of the visual

system will not be exactly eguuivalent to a summation, but

it will be a weighted summation of intensity within some
visual angle. We assume that it 1s a simple summation, so

that the exact details of the visual transfer function of
each observer are not considered. Appendix (5.1) summarizes

more details of the visual system of interest here.

The pictures we used in our experiments were of a small

enough size so that, in most of them, the bright features to
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be detected subtend at most 10' arc at the eye at normal
viewing distances, Even if this was not the case, the
observer was told to adjust his viewing distance so that he
could best make a decision. This is a reasonable thing to
do, because our calculations are intended to correspond to
situations where a scientist is looking at a picture and is

free to view it under the most advantageous circumstances.

Furthermore, we assume that, in these real situations,
the scientist knows what size of object he is looking for in
the map. Therefore, in our experiments, we told the
observer the size of sguare he should look for. Under
these circumstances, we can assume that the observer's
visual system responds to the total intensity of areas of
size D¥D pixels. Since we assume that each pixel is formed
by averaging L independent estimates of the pixel intensity,
the total intensity of each of these D¥D sized squares is
formed by summing M:LD2 independent estimates of intensity
of the (uniformly reflecting) saouare, and dividing this sum
by L. Since all the areas have the same L, we will neglect
this factor of L, and think id terms of the sum of M
intensities (for each of the areas), in which case we can

use the pdf's of Chapter 3.

We will say more about this assumption of visual

summation in the next subsection (5.3.2).

(2) The second assumption we make is about the decision
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technique used by the obsgerver. In this connection, we
first consider how an ideal detector or receiver which
responds to the total intensity of an area of size D¥D
pixels would behave. One wav in which such a detector might
detect a target of the type considered here would be by
looking at the total power returned from every souare of
size D¥D pixels and determining which one was the brightest.
We assume that the human observer acts as an ideal detector
in detecting visual signals in noise, This assumption has
often been made before in work on vision and shown to be

reasonable [28], [311, [32].

5.3.2 Justifying the detection model

In the previous subsection, we made the assumption that the
observer's visual system responds to the sum total power
from all pixels in D¥D pixel areas. In order to justify the
assumption that his visual svstem responds to D¥D sized

areas and not areas of some other size, we argue that the
observer is looking for targets of that size and therefore
mentally evaluates areas of that size. Even 1if this is not
a sufficiently strong reason to support our assumed
detection model, there are various other arguments that we

can make to justify using this model.

(1) First of all, the idea of using the total power from all
the pixels in the feature as the important parameter
determining its detectability is certainly reasonable if the

picture is held far enoueh awav from the eye so that the
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angle which the feature subtends at the eye is Jjust equal to
the angular resolution of the eye, which i1s about 1' arc
[331]. A scientist studying a SAR map to detect bright
features is free to hold it far away from him so that he
sees several adjacent pixel intensities blurred or merged
together, As long as the feature is not too large in
extent, the viewing distance recuired to make most or all
its pixels appear to merge is small enough so that the
amount of light from the picture entering the eve provides a

detectable stimulus to the eve.

(2) An alternative to the detection model described in sub-
section 5.3.1 goes as follows. The observer decides that an
arca of D¥*D pixels is the feature he is looking for if more
than half (or some other fraction, f, greater than half) of
the pixels comprising it are brighter than some threshold
level. This assumes that the observer looks at the
individual pixels rather than the tLotal nover from some

area of size D¥D, and would thus apply to large targets as
well as small ones, We did a few sample calculations based
on this assumption, where the threshold level with which
each pixel intensity is compared is set by a Neyman-Pearson
strategy [34]. This method is more complicated than the one
described in sub-section 5.3.1 because there are several
parameters to be chosen (similar to the one parameter Py
that we will describe for the model of sub-section 5.3.1).

However, for a choice of these parameters leading to a
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highly reliable detection of the target, the reaquired values
of M for given b (or b for given M) are verv close to the
ones predicted by the model of sub-section 5.3.1.

Therefore, we decided to use the latter model.

(3) Examination of preliminary simulations performed to
verify the results predicted in sub-section 5.3.1 give us a
clue to the validity of the model. These preliminary
simulations are not sufficient in number to be used in
detailed experiments like the ones finally made. However,
they do indicate that, for a wide range of parameters b and
M, the probability of the observer's making a correct
decision as a function of b and M follows the same trend,
whether the pixel intensities are directly displaved on the
film or their square roots, and whether the "linear" or
"log" select option (Chapter 4) is used. Since the method

of sub=-section 5.3.1 calculates the probabilities on the

basis of a summation of pixel intensities by the observer,

the probability of correct decision ought to depend on the

specific function of intensity displayed. However, we may

regard the sum of the pixel powers as a measure of

detectability of the feature. This measure is related to
some other possible measures we could define, such as the
sum of the logarithms of the pixel powers or the sum of the
square roots of the powers, or the number of pixels in the
feature with powers greater than a certain threshocld value.

All these measures have the property that they increase if



- 47 -

the power of some of the pixels in the feature increases.
Because of the correlation between the various measures, a
probability of correct decision based on any of these
measures ought to yield a fairly similar trend of results.
This explains why the method of choosing a square, half of
whose pixels exceed some given level in power, as a feature
gives about the same results as the method of sub-section
5.3.17. It also explains why the particular (monotonically
increasing) function of intensity displaved is not too
important., The simulations and experimental results are not
accurate enough to allow us to choose between the various
models., Our aim here is merely to provide an approximate
method of specifying the relation between the system
parameters b and M so that features of given sizes can be
detected. Since the model and the method of sub-section
5.3.1 give results that agree guite well with the
experiments on the simulated pictures,; the model is

acceptable,

5.3.3 Theoretical analysis

5.3.3.17 The probability of correct detection

In this section, we outline the analysis used in our
theoretical calculations of the probability of correct

detection using the model of sub-section 5.3.1.

Since we are considering small souare features, the

length or width W of the picture is much greater than the
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side D of the square. Then there are about V=w2/D2
independent squares of size p? pixels in the picture. (This
number may or may not be an integer, but for large values of
V, we may replace V by the integer closest to V, for our
purposes.,) There are actually about N=W® possible souares of
size D° in the picture, because each of the W2 pixels can be
considered to be, for instance, the central pixel of a
squa}e of size D2 pixels (neglecting the effects at the four
edges of the picture). Only V of these N sqguares are

independent in the sense of being non-overlapping.

The cuestion arises : should we use N or V as the
number of squares in the backeground that the feature should
exceed in total power, in order to be correctly detected to
be the desired feature? We will refer to these background
sgquares as comparison squares. If there were a square grid
of size D by D pixels superposed on the picture, we could
ask the observer ﬁo confine his attention to D¥*D pixel
squares defined by the grid. In this case, there are
definitely only V=w2/D2 comparison squares in the
background. However, this is not a very realistic
situation, and so we chose not to have such a grid in the
picture,. In the actual, gridless case, we could take N=w2
as the number of comparison squares, provided that in our
calculations Wwe took into account the correlation between
the w2 comparison squares, Where Nzw2 is large, as it is in

all our cases of interest, the lack of independence of all N
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squares 1is not very important, provided we are interested in

values of p, greater than about 1/2, as we shall clarify

later.

According to the model we are using, a correct decision
occurs whenever the feature has a total power greater than
that of each of the N comparison sguares. If we represent
the total power reflected by the ith one of these N
comparison squares as Bi and the power reflected bv the
feature as G, then a correct decision occurs whenever G
exceeds each of the Bi' Thus we can express the probability

of correct decision Dc as

p, = Pr {G>By, G>By,....G>By} (5.1)

where Pr{x} is the probability of the event described by x.

We can also write this as (5.2)

P, = Pr {G> the largest of the N variable By oy i = 1,2,...N)

0

Or, defining the probabilitv distribution function of the

largest of the N variables B, bv Ag(x), i.e.,
Ay ( x ) = Pr{largest of the N variables B, <x } (5.3)
we can write
P, =

Pg (x) Ay (x) dx (5.4)

If the N powers

(00]
0
B, are independent, then Ay(x) can be

written as FN(X) where



Fu(x) = (Fg(x)" (5.5)

Here, FB(x) is the probability distribution function of the

B

;+ Therefore,

X N

(0 = [ [op(v) av] (5.6)
0

If the variables Bi are not independent, then we must
express AN(x) as the joint probability distribution function

of the Bi’ given by

F1,2,....N (X,X,....X) = Pr {81_<_X,52_<_X,....BN_SX} (5.7)

In the case of independent powers By, we can write P, as

«Q
P, = xpr (x) Fy (x) dx (5.8a)
[+4] 0 X - N
Pe s [rg 0 [ fop (v av]  ax (5.8b)
0 0
In the case of the Bi not being all independent, we can
write
@
P, = _/pG (x) F1,2,,...N (Xy%X,00..%) dx (5.9)
0

5.3.3.2 Extreme value theory

The expression Ay(x) obtained above cannot be expressed in a
simple closed form for a general probability density
function (pdf) of the B;, and certainly not for a chi-
squared or Gaussian distribution of Bi‘ However, for large
N and large x, an asymptotic expression can be found for
Ag(x) [35], which has the same form for a large class of

distributions of the variable Bi (which we shall refer to as
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the initial distribution). This is obtained from "extreme
value theory." For initial distributions of the exponential
type, to which the chi~-squared and the Gaussian belong, the
asymptotic distribution is referred to by Gumbel [35)] as the

first asymptote, and is defined by
Ay, (x) = expl-exnlay (x - xy )}] (5.10)

where XN is the so-called characteristic larszest value of
the initial distribution, and ay is the so-called intensity
function evaluated at this point. More precisely, for a
population with pdf equal to f(x) and a distribution

function equal to F(x), we define the characteristic largest

value Xy in a sample of size N from this population by
FN (xN) =z 1=-1/N (5.11)

The "intensity function®" m(x) for the distribution is
defined by
m(x) =  —Lixl (5.12)

1-F(x)

and, if we use Eguation (5.11), the intensity function

evaluated at x:xN becomes

5.3.3.3 Interdependence of the N background sguares

As we have pointed out in the previous section, the N=w?
comparison squares in the background are not all

independent, so that the correct expression for AN(X) ought
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to be given by Equation (5.7) and not Eauation (5.6), which
is a much simpler expression. However, if we can use the
first asymptote instead of the exact expression for AN(X)’
(and we show, in the next sub-section, that we can) then the
interdependence of the N values of Bi causes no special
problems. This is because, for a large number of
identically distributed random variables, N, the probability
distribution of the largest value is given by the same
asymptotic expression as that given in Eouation (5.10),
whether or not the variables are interdependent (see Gumbel
[351). A justification for this, Gumbel notes, is that the
asymptotic distribution of the eXtremes depends on the
properties of the initial distribution only for large values
of the variate, where the influence of the interdependence
may vanish;* This idea was first put in mathematical form by
G.S.Watson [36]. Thus, in our problem, where N is indeed
large, we will use'Nzw2 together with the first asymptote in
the circumstances where the latter is applicable, which are
described in the next sub-section. In any case, when we are
making a comparison between the first asymptote and the
exact expression for AN(X), we use Eouation (5.6) instead of
the more correct Equation (5.7), because the explicit form
of Equation (5.7) is difficult to obtain. For this reason,
the "exact expression (value) for P." that we use in the
following paragraphs and sections is not really exact since

it refers to Equation (5.8) rather than to Ecuation (5.9).

* See Appendix (5.2) for details.
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5.3.3.4 Using the first asymptote

In our application of the first asymptote, we want to use it
as part of an integrand where the integration runs from 0 to
infinity (Equationb5.4). For this purpose, we need to
ascertain the range of its validity and also to check how
close it is to the correct expression in this range. We
note here that even if the first asymptote can be used in
Equation (5.4) for the entire range 0 to infinity, a
closed-form evaluation of P, is still not possible, and it
has still to be evaluated bv computer. However the computer
evaluation in this case is much easier than a computer
evaluation of Equation (5.8). This is because we are
interested in p, of about 0.5 or more. Hence the value of
the integral is of the order of magnitude of 0.5, while the
integrand of Equation (5.8) is extremely small over most of
its range, because N is very large. We do not have this
problem if we use Lhe first asymptote instead of FN(X) in

Equation (5.8), because there is no Nth

power of any
integral to be determined. Also if we use the first
asymptote, we need to evaluate a single integral, as opposed
to the double integral of Eouation (5.8), where, in addition
the inner integral FB(X) has to be evaluvated with a high
degree of precision because it is then raised to a large
power. These problems did, in fact arise when we evaluated
the exact intesral of Equation (5.8) in order to compare the

results with those obtained usineg the first asvmptote,

Equation 5.10.
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The first asymptote is a good approximation for the
function Ay(x) only for large enoush x. Therefore, we do
not use it to evaluate the entire integral from 0 to
infinity. 1Instead, we use the technique described in the
next 3 paragraphs, which is valid for Dc not too small; it

is certainly valid for D, greater than 0.5.

For large values of N, the distribution function AN(X)
has a step-function—-like appearance, with the transition
occurring near the characteristic largest value XN‘ This
can be seen to be true from the form of the first asymptote,

Equation (5.10), or by reflecting on the form of the exact

expression for Ay(x), Equation (5.6) for the case of
independent Bi' For instance, for N=1o”, in order for AN(X)
to be egual to 0.05, FB(x) has to be 0.99970047, while for
Ay(x) to be 0.95, Fgp(x) has to be 0.99999487. The two
values of x at which AN(x) is 0.05 and 0.95 respectively,
are therefore very close, which results in a step-function-—
like curve for AN(X). Figure (5.1) shows the nature of the
first asymptote ANa(x), along with the initial probability
density functions pp(x) and py(x) for the background and
feature powers, all for the case where N=10u, M:LD2=35 and
b=1.0 respectively. The cases we are interested in all have

4

N greater than 10°', so that the ANa(x) curve in Fig. (5.1)

is quite representative.

The integrand for the calculation of P, in Equation

(5.4) is a product of the two factors Ay(x) and pg(x). The
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Figure (5.1): Probability density functions Pr(x), pg(x) with

means MP,  MP,(1+b) and first asymptote Ay, (x)

with characteristic largest value Xy; all have

=10, M=35, b=1, P -

first of these factors becomes very small for low values of
X as we go away from X=X. , and the second one is verv small
for both low and high values of x, far from the peak which

occurs near (1+b)PO. If the integral for p, is to have any
appreciable value at all, it must be because the peak of the

density function DG(X) occurs either at a value of X greater

w than Xys or at a value of x that is less than xy but close
to it, so that both the factors of the integrand are

reasonably large in an overlapping region within the rance
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of integration. This requires that the mean (1+b)PO of the

pdf p,(x) be large if N is large, or in other words, that

the contrast must be high to ensure a high value of P, .

We find by actual calculation that the first asymptote
is a good approximation for AN(x) at least in the region
X>XO where AN(x) is greater than about 0.05. Over the range
of b and M investigated (which is the range covered in
Table 5.1) the value of the integral of Equation (5.Y4) is
negligible for x<XO. By negligible, we mean that these
contributions to P, are no more than 0.05. Thus, for D,
greater than, say, 0.5, we may neglect the contribution to
the integral of Equation (5.4) from this region, while the
contribution from the remaining region may be evaluated

using the first as,mptote in place of AN(X) in Equation

(5.4).

5.3.3.5 Relation between b, M and N given P,

In the previous sub-sections, we considered the problem of
finding p_  for given values of b,L,D,W. We will refer to
this as the analysis problem. We are also interested in the
converse problem, which we will refer to as the design
problem, of determining some of these parameters when the
others are given, so that a desired value of pc is obtained.
Since we cannot obtain a closed form expression for P, even
using the first asymptote as in the previous sub=-section,
this converse problem cannot be easily solved by the method

used for the analysis problem; unless we are willing to use

\
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an iterative approach. In this sub-section, we will make
further approximations so as to obtain a simple relation

between b, M:LD2 2

and NzW™ that will result in a specified Ps
=P, which we will call the threshold b, M, N and D4
respectively. The method will give good results provided
the specified value of p_  is not too small. It is
reasonable that, if we want to design a system that will
enable reliable detection of features of a certain size, we
would like to design it for a fairly high probability of
correct detection, for instance 0.95. The method we
describe will be applicable to this case; if greater
accuracy is desired in specifying the P, obtainable with the

system, we can always refine the design using the more exact

approach of the previous sub-section.

The approximate relation between b, M and N is obtained

in several steps,

(1) We first note that, as shown in Gumbel [35], for N>100,

the agreement between A (x) and Ay, (x) is very good over the

range

Xy £ x £ Xy (5.14)

defined as the interval in which

0.05 £ AN(x) £ 0.95 (5.15)

This statement is for a Gaussian initial distribution. As N
increases, the agreement zets better. Also, for the sctual

chi-sauared initial distribution, the agreement is even
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better, as we verified in some cases. The Gaussian is not a
very good distribution from this point of view (of
convergence of AN(x) to the first asymptote), whereas the
exponential distribution is, and, in this application, the
chi-squared resembles the exponential for large values of
the argument,. We use this property to divide the range of

integration of Eguation (5.4) into 3 parts, defined bv

0 £ x K< Xq (Range 1)
X5 £ x £ %4 (Range 2) (5.16)
X, < x (» (Range 3)

Since AN(x)<0.05 over Range 1, we see from Ecuation {(5.4)

m

that we make an error of much less than 0.05 if we replace
the integral, over this range, in Equation (5.4) by 0. 1In
range 3, we may, again with an error of much less than 0.05,
set the value of AN(x) egual to 1. The middle range is the

one over which the first asymptote is valid.

(2) We find our approximate relation between b, M, N and D,
by requiring that the integral over Range 3 be equal to Py
and substituting the value of 1 for the factor AN(x), We
find that doing this leads to a simple relation of the tvpe
we want, Obviously, this relation will be reasonably
correct only 1f the integral over the other two ranges is

negligible in comparison to that over Range 3. We have

already stated that the integral over the first range is
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less than 0.05. For the case where P, is eowval to 0.5, we
made a very rough estimate of the integral over Range 2, by
using the value of the integrand at the midnoint oi the
range. We calculated this mid-range value of the integrand
by using the first asymptote in place of AN(X)’ since this
is a valid approximation in this range. (This is the only
use we made of the first asymptote in this calculation, and
this is the only reason for choosing the three ranges
instead of combining the first two ranges into one.) We
found that over the range of M and b and N that we are
interested in (as given in Table (5.1) at almost the end of
this chapter) the integral over Range 2 is between 0.2 and
0.3, when the overall p, is about 0.5. However, if p >0.9,
we find that the error in P, caused by nezlecting the
integral over the first two ranges is less than 10%. This
dependence of the integral over the first two ranges on the
value of DC can be explained by the same arsuments as those
given at the end of the previous sub=-section, That is, if b
increases, the peak of the curve of p.(x) in Figure (5.1)
shifts to the right, the non-zero region of the integrand

shifts to the right, and P, increases.

(3) We are now ready to obtain the desired relationship. To
do this, we use the fact [25] that, for a nmber of degrees
of freedom 2M greater than 100, the chi-souared distribution
of a random variable denoted by X2 can be approximated by

assuming that (2;(2)1/2 has a Gaussian distribution. This is



- 60 -
more accurate than directly using the Gaussian distribution
for x¥(as we could according to the Central Limit Theorem
[21]). 1In deriving our approximate relation between b, M,

and Pos We assume that this Gaussian approximation to

2

(z2X )1/2 holds even for 2M<100, recognizing, however, that

our answers will be in error to some extent for small M,

Let the chi-souared distribution funection with n

degrees of freedom be denoted by P (x4 n), and the

X
under the tail of the Gaussian distribution function bv the

V)]
]
a
Q)

so-called Q function Q(.), and let z. and gz

1 be the 100p;%

pl

point of these two distributions respectively,. We are

interested in the case where the value of P, is (0.95)1/Ni

but for any general value of p1, we have the followineg

approximate relationship between z1 and 2z

p1’
2, = 1/2 (z... + (2n-‘!\1/2 )2 (5.17)
"‘ N p‘ \ 7
where
P.Xz(ZT in) = D (5.18)
and
Q(ZDT) = D-! (5.19)
Here the Q(.) function is defined as usual by
@
O 2
0(z) =]r exp(-v©/2) dy (5.20)
J (2m)1/2

Thus, the X, of Egquation (5.16) is given approximately by
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1/2 ]2

X, 2 (Pp/W)[ z +  (4M-1) (5.21)

pi

because the Xi=Bi/(PO/2) are chi-sauared distributed (see

Chapter 3) and Equation (5.17) then applies to the Xi'

The integral of Eouation (5.4) then has a contribution

from Range 3 of Equation (5.16) that is given by

«©

Pe3 =~/~ pg (x) dx (5.22)

a G,
1

or, in terms of the pdf of the Y, z——
P Py(1+b)/2

, which are chi-

squared distributed, we have

0

.pc3 = f Py (v) dy = sz( Vi oM ) (5.23)
Y

where 1

X4
Vo= T T (5.24)
Po(1+b)/2

and where
Q@ ,{(z } n) =1 -P ,-(z | n) (5.25)
X2 X2

is the integral, between z and infinity, of the chi=-sauared
pdf with n degrees of freedom. Now, using the Gaussian

approximation for (2\11)1/2 [25], we have
sz(z P n) = Q (zy) (5.26)
Wwhere

z, = (22)'/2 - (2n-1)1/2 (5.27)
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Thus, with 'z' replaced by Yy, of Eauation (5.23) and using
Equations (5.21), (5.24) and (5.26), we have

1/2
z + (4M=1)
z Q o] - (uM - 1)1/2 (5.28)

Dc3

If we now decide to make Pe3 equal to the given p,, which we
have denoted by p,, then the argument in sauare brackets in
Eguation (5.28) must be eaual to the 100pt% point of the

normal distribution, which we denote bv Zot That is,

2z, (N) + (4m-1)' 72
)1/2

- (aM-1)12 = 4

ot (5.29)

(1+b

where we have denoted z bv zp1(N) to emphasize that

p1

"N §s a function of N. Equation (5.29) is the

D1=(O,95)
desired relationship between b, M and N for a given value,
Piy of pPge For b<<1, we can get a very simple relation
between b and ™

bM1/2 = constant. (5.30)

This shows that, for low contrasts, increasing b is more

affective than increasing M. This agrees with what we found

from the evecharts in Chapter 2.

We could choose P, to be (0,99)1/N instead of

(0.95)"/N¥_  The reason for choosing o, to be (0_95)1/N is

1
simply that, for our purposes, a 5% error (which is about
what this choice leads to in cases of our interest) in

our calculations is tolerable.



5.3.3.6 Choice of p,

in order to be aple to make opredictions about the
guality of pictures obtainable with a given set of
parameters, we need to chocse a suitable value for the
acceptable probability of correct decision, b, in the

t

previous sub-section. We now show how to make this choice

of nt. We use nt:J.QB in all our numerical calecula ions.

(1) We know that, if M=0, the probability of correct
decision is 0, while for M=zinfinity, it should be 1. It
would be desirable to be able to determine a threshold value
of M, denoted by M, | such that, for a given b and N, an
increase in M above M=M, makes little difference to the
probability of correct decision. To see what value of P
gives an.Mt satisfyineg this reouirement, we show a tvpical
plot of P, versus M; for fixed b=2.16 and N:TOM- The
calculations for this graph were done by computer,; using the
method we have discussed in this section, For values of P
greater than 0.5, the extreme-value method was used to
evaluate the integral of Equation (5.4), and for lower
values of p_ , the exact expression of Eguation (5.6) was
used. The results are plotted in Figure (5.2), which shows
Pe=(1—pc) versus M. Also shown in this figure, are the
experimentally obtained estimates, ﬁé:(1-ﬁb), which were

determined as explained in the next section,
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We see from this figure that if Dy is chosen to be
about 0.95, increasing M above the corresponding Mt value
would cause a change in P, that would be hard to detect
experimentally. That is, it would not lead to a noticeable
improvement in picture quality, Thus, for example, in
Figure (5.2), increasing M from 2 to 20, i.e., by a factor
of 10, reduces the error probability P,=1-p, from 0.94 to
0.05. On the other hand, increasing M from 20 to any higher
value causes p_ to reduce from 0.05 to at most 0, and in the
kind of application that we have here, this reduction would
not be easily noticed, whereas the reduction from 0.94 to
0.05 would be, as can be verified from the simulated
pictures shown in the next section. (In an area like coding
theory, however the region of interest would be that in
which P, decreases from 0.05 to 0, rather than from 0.94 to

0.05.)

(2) The use of the first asymptote in place of Aj(x) in
Eauation (5.«) becomes more accurate as P, inereases. In
order to be able to use this simpler caleulation for Dy it is
desirable to have Py fairly large. If Py is chosen to be
.95, as we have done, the approximate kquation (5.29)
becomes applicable and can be used for solving the design
problem of finding one of the parameters b, L, D and N,

given the others and a specified Dt'

(3) Finally, if we want to specify a p, and obtain the value

of feature size D at which the feature is detectable with
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Table (5.2): Predicted threshold parameters for pt=g_gi,ﬁz1ou

(1+b) dB M D for L=12
1 641 7.3
3 65 2.3
5 22 1.4
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near certainty, we might need to have P, even higher than

0.95.

5.3.4 Results of theoretical analysis
The results of the theoretical calculations of P, for
various sets of parameters b, L, D, all for N=10u, are shown
in Table (5.1) along with the experimental results, obtained
as described in the coming section. In the theoretical
calculations, as well as in the experiments; we concentrated
on the sets of parameters with b=2.16; theoretical
calculations for various sets of such parameters were done
in order to obtain Figure (5.2).

The calculations for the other contrast
ratios considered are merely illustrative, and are not done
for the complete range of parameter sets simulated, since
the calculations are time-consuming, especially for Dc.lower
than 0.5, where we used the exact expression for AN(X)

instead of the asymptotic one.

Table (5.2) shows the calculated threshold parameters
M, given 4 different values of b, recuired for Dczotzo.QR.
The calculations are all for the case of N:TO”, and were all
made using the design relationship Equation (5.29). Fron
the values of M:LD2, in this table, we can calculate D for

given values of L. The values of D for a typnical case,

L=12, are also shown in Table (5.2).
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5.4 Simulations and experiments

5.4.1 The experimental procedure

Ideally, we can verify the theoretical calculations of
probability, o , of correctly detecting a souare in a darker
surround by using a large number of simulated pictures,
which we will refer to as "samples". The samples were
generated and the experiments conducted with a viewer as

described in Chapter 4, and the percentage of his correct

decisions used as an estimate of pc,

Since the theory is applicable only to cases where the
object to be detected is small compared to the size of the
picture, it would take a very long time to simulate a number
of pictures large enough to verify the calculated
probabilities of correct detection. This problem is not
serious in simulations like the ones in Chapters 6 and 7 of
this thesis, where ﬁhe size of each pattern used in the
experiments is small. 1In the present case, the need to
simulate a 100#%100 pixel picture for each experimental
observation limits the number of samples of pictures that

can be simulated.

For these reasons, it is not possible, with our
experiments, to determine whether the theory used is the
correct one, as opposed to other possible theories that can
be used to predict p_ , and we do not attempt such a

verification., We merelv hope to verify that the model we
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have used gives acceptably good results and that our
predicted parameters b, L, D, N for pc equal to Py, Where Py

is about 0.95 are approximately correct.

In our experiments, the observer knew the size of
feature to be detected and the contrast ratio and was asked
to designate one square of size D¥D in the picture as the
feature. The observer was aware that, because of speckle,
the features might not look square, and that the apparent

shape of the feature was not relevant.

To analyze the results, we compared, for each sample,
the observer's choice of feature location with the actual
one. If the actual location coincided with the observer’s
choice, then the decision on that particular sample wes noted
as correct; from a number, n, of such samples the
probability of correct decision was estimated by the
fraction of the total number of decisions that were
correctly made. We denote this experimental estimate of Dc

by fvc.

5.4.2 The simulations

Several samples corresponding to various sets of parameters
(L, b, D), but all with the same picture size (100¥100
pixels) were simulated and shown to the observer. To reduce
the number of pictures we actually simulated 200#%200 pixel
pictures and had 4 brieht features in each picture, one in

each quadrant of the picture, but the location of each
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feature in each quadrant was random. In the experiments, 3
guadrants were masked at all times bv a black card-paper
mask, so that the net result was that each picture resulted
in 4 samples of size 100%¥100 pixels, The sample pictures
shown in Figure (5.3) are these 200%200 pictures. All four
samples in each of the pictures simulated had the same set
of parameters b, L, D. A detailed discussion of the
pictures of Figure (5.3) is given in the sub-section on

"Examples of simulated pictures®.

The number of samples with a given set of parameters

ranged from 12 to T72. In order to demonstrate the variation

of p, with total equivalent number of looks, M=LD?, for a
fixed b, we simulated at least 48 samples of various sets of
parameters that had a fixed b=2.16 (5 dB contrast ratio),
but L and D varying from set to set. The results of
experiments using these sets of parameters are shown in

Figure (5.2), which. shows 56=(1—69, i.e., the experimental

estimates of probability of error, as a function of M.

Other values of b simulated were b=0.26 (1 dB
contrast), 1.0 (3 dB contrast) and 5.318 (8 dB contrast).
The range of L and D corresponding to the 3 dB contrast case
was also as extensive as that for the 5 dB case, but some of
these setg had only 12 or 16 samples. The range of values
of L and D for the other values of b (3 dB and 8 dB cases)
was not so extensive. The sets of parameter values in these

cases were chosen to lie in a small range around the



- 73 =
theoretically expected value of Mt recguired for P, eaqual to

pt=0.95, and are merely expected to demonstrate
approximately the M value reguired to obtain this threshold

probability of correct decision pt_

5.4.3 Examples of simulated pictures

5.4.3.1 Qverview

In our experiments, we used a large number of simulated
pictures. It is neither feasible nor verv revealing to
include all of them here. However, we show, in Figure
(5.3), some examples of these pictures. An examination of
these pictures will show the plausibility of the theoretical
model and some of the results derived in section (5.3), in
particular, Eauation (5.29). Each picture shows 4 samples
with different sets of parameters. In the experiments,
these simulated pictures were viewed with 3 quadrants
covered or masked at a time. Each picture simulated had 200
¥ 200 pixels, but the last 6 lines at the bottom were
replaced by the caption before obtaining the photograph.

The caption under each picture gives the parameters used in
producing that picture, and also a code, such as B26 or

S10 #1, which identifies the picture, All the pictures
shown here have D, L and (1+b) in dB specified in the
caption. In addition, we have also specified the amount of
histogram stretching. This is written as "no str" for the
case of no stretch or as "str a-b" for the case where the

pixel intensities lying in the range a-b were uniformly
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rescaled to extend over the available range 0-255 of pixel

intensities.,

5.4.,3.2 The samples

(1) We first discuss the photograph which shows the 4
samples designated as B6, S30, B9 and B22. B6 and 330 are
unspeckled pictures. The U features, one in each auadrant,
are clearly seen in these pictures. B9 and B22 are samples
with speckle, where the parameters are chosen to be at (or
near) the predicted threshold parameters for 95% probability
of correct detection. See Table (5.2) which predicts
M=LD228 for the 8 dB case of B9, and M=LD2=63 for the 3 dB
case of B22. We can see the high detectability of features

in each of these samples.

(2) The second photograph shows samples called B6, B11, B28
and B29. The B6 shown here is the speckled 8-look version
of the (unspeckled) one discussed above. B6 and B11 are 5
dB pictures, with M;8 and M=22 respectively, which
correspond to values below and at the threshold given in
Table (5.2). The 4 features in B6 are almost invisible,
whereas in B11 they are guite clear. Thus a comparison of
B6 and B11 illustrates the validitv of the predicted
threshold for the 5 dB case. B28 and B29 similarly

illustrate the 8 dB threshold parameters.

(3) The third photograph shows B26, B27, S10 #1 and S9 #3.

B26 and B27 are 5 dB samples with M=16 and 25 respectively,



895N0 SPECKLE

(1)

B95D=1;L=83 8DBiNO STR i =7330DB5N0 STR

33 STR 0~200 SOB3 STR 0-200

(2)

B28j0=23L=158DB} N0 STR B293 D=35L=1; S0BIND STR

Figure (5.3): Detection of saquares--examples of
simulated pictures; photogranhs 1 & 2



B26iD=4;L=1315DBiN0 STR

2)

S103 #13 D =1i3DBiNO STR S95#3i .=133DBiND STR

$305 #43 D=63 L=123 1085 N0 STR

(4)

B2411-0 SPECKID=2341

Figure (5.3) continued: Photographs 3 & 1
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and again illustrate the validity of the threshold
parameters, just as B6 and B11did. The only difference is
that B6 and B11 differ in their D values, while B26 and B27
differ in L. This shows the validity of using M:LD2 as an
"effective number of looks per feature®. Similar

conclusions follow by comparing B29 and B22 (of photograph 1.

S10 #1 and S9 #3 are 3 dB pictures with M=z49 (below
threshold) and M=81 (above threshold)., Again, the predicted

threshold for the 3 dB case appears reasonable,

(4) The fourth photograph shows 1 dB samples. S30 #4 and
S23 have M=432 and 648 respectively, and show the validity
of the 1 dB threshold parameters predicted. S30 #4 shows
that in a 1 dB, 12 look picture, a D=6 feature is not easily
detectable, We will refer to this fact in Chapter 6. The
other two samples are B21 without speckle and the speckled
version of the same sample, B21, which has M near threshold.
A comparison of B2f and S23 again Jjustifies the use of

M=LD?.

5.4.4 Results and conclusions

The experimental and the theoretically expected
probabilities of correct decision, dg and p, respectively,
are shown in Table (5.1). The upper and lower bounds on the
B, shown in Table (5.1) are the 95% confidence limits
calculated from the standard formula for confidence limits

on estimates of proportions such as the Bc are [29]. As
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stated earlier, in both the theoretical and experimental
calculations, we concentrated on the sets of parameters with
b=2.16. The theoretical results for the sets with other

values of contrast ratio are not so extensive.
From Tables (5.1)=(5.2) and Figure (5.2), we see that

(1) the experimental P, are usually lower than the
theoretical ones, but both follow the same sort of increase

with b and M;

(2) however, the difference between the experimental and
theoretical P, is small for high p, (above approximately
0.95) =-this supports our use of a threshold probability of

correct decision P, equal to 0.95;

(3) the simulations for the various values of b with M
around the predicted threshold values Mt reguired for
Dczpt=0.95, show that the analyticallv obtained Mt values
are reasonable criteria to use in predicting, apporoximatelv,
the L and D combination recuired to make a bright feature of

contrast ratio (1+b) detectable with reasonable certainty.

5.5 Application to eve=charts

We now apply the theoretical analysis that we have described
in this section to exXxplain some of the results seen in the
eye-charts of Chapter 2. Because of the greater complexity
of the eye-chart problem, we can analyze only certain

aspects of the problem by the methods developed so far in



this chapter.

In the 1-look per pixel eyecharts discussed in Chapter
2, the lowest line in the 1-db cortrast case is not detect-
able (while a2ll the upper cores are), but as the contrast
increases, there is a2 point at which it becomes visible.
Tnis probabilitv of detectionrn of the lowest line differs
frem the P, wWe have been dezling with =0 {far in this
chapter Dbecause the situation here is slightly different.
If we consider the letters in the lowest line as small
features, the probability of detection of each of these
letters is independent of 211 the others, and we mav con-
sider that any one of these becomes detectable if its tot=l
intensity exceeds that of an area of comp=rable size in the
surround. By surround, we mean herve the region a2t the bot-
tom of the picture below the secord-te-last line, in whiech
we assume there is some number, N, of “comparison areas'.
This extends the argument for souares that we have used so
far to other snapes and ought to be at least roucghly valid.
since we are merely looking for 2 smsll brignt cluster and

not trying to recognize any shapes,

Now, in 21l the pictures, the letters in the upper
lines of the eye-chart are large enouch to pbe clearly visi-
ble as letters, if not recognizable. Therefore, an
observer, when asked to say how many lines of letters are

presernt, will include the lzst line if one or more of the
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The fact that 9 features are present (there are 9 letters in
the last line) again increases the probability of detection
of at least one of them. But, on the other hand, it is very
likely that the observer needs to see more than one feature
in the last line before he decides that the line is present.
Finally. the presence of the other lines of letters will
perhaps influence him to expect the same irtensity of a
letter in the last line 25 there is in a bright area of the

same s8ize in one of the upper lines,

411 these differences from the simple situation assumed
in section (5.,3) will invalidate the use of Equation (5.2Y)
in the same form in the preczsent situation. However, we may

expect that, if zp‘(N) and z in that eguation are =suitablv

pt

redefined (to be, perhaps, a value that iz specific tn the
configuratior of letters in the particulér eye-chart used),
then the eguation will still hold. That iz, we assume that
the general functional relationship between b and M given in
kquation (5.29) will be valid for pictures more complicated
than the one it was derived for, Thus, we may test the

hypothesis that

)1/2 172

(4M=-1 [(1+b) - 1] = K_, (5.31)

Dlc

at the detection threshold, where K is a constant that

nic

depends on‘the spatial intensitv variation in the pictire in

the absence of speckle, and on the desired threshold
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probability, Py of correct detection of the last line in

the picture,

We find reason to support Equation (5.321) if we examine
the speckled eye-charts of Chapter 2, Thus, for the 25
look, 1 db pictures, the lowest line is just detectable &nd
we assume that it represents the thresheold of detectabilitv;
if we now look for the same level of detectability
(subjectively judsed) of the lowest line in the 1 lock
pictures, we find that it oeccurz in the 4 db or 5 dt
pictures., This is the experimental result. To see what
kquation (5.31) predicts, we first note that in all the
pictures, the lowest line has 5%¥2=z15 pixel letters, so th=t
in the 25-1lcok, 1 dE pictures, the lowest line has
M=25%15=375, b=0.20, so we find, bv substituting in Equation

(5.31), that Kpic has the value of

Kpio = 4.7 (5.32)

For the 1-lcok pictures, where M=5%¥3%i=15 for the last line,

in order to obtain the same level of detectability, we need

(1+b)1/;’ - 1 - -«—u.‘w.qi..jiﬂ.“.' - 0‘617 (5.jﬁ)
‘ (4r-1)17¢
or
10 leg (1+b) = =«.,2 (5. %)

Thus, th2 contrast needs to be 4.2 dB, which agrees very

well with the observed value, stated in Chapter 2,



- 82 -

APPENDIX (5.1)

Relevant properties of the visual systen

A-5.1.1 The visual system

A great deal of research has been done on underztanding the
details of human visual perception, both by physiological
methods and psychophysical methods. Cornsweet [27] gives
many of the details and several references. Our interest
here is in the spatial filtering properties of the human
eye. There is considerable evidence for this spatial
filtering and many visual phenomena, such as Ricco's law
(which states that the threshold intensity of a small bright
object in a dark field is, within limits, inversely
proportional to its size) and the Mach band phencmencn

(light lines appear to darken adjacent dark lines) can be

explained on the basis that adjacent receptors in the human
retina excite or inhibit each other. Cornsweet [27] shows

how these phenomena agree with the retinal interaction
theory., It has been shown that this interaction does occur
and can explain both spatial and temporal effects (time

delays in transient response of the eye are an example of

the latter) [37], [38]. Helson [38] concludes that

(1) the area of an object being detected in a darker
background acts as a luminance, i.e, increase in area is

eguivalent to increase in luminance in this respect;

(2) in the retina, relatively weak neural interactions
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summate, while intense stimulation in one area inhibits

weaker stimulations in neighboring ones.

These interactions explain the modulation transfer function
of the eye obtained experimentally [39],[40], as shown by

Cornsweet [27].

Applying the above results to our problem is
complicated by the fact that our pictures are viewed
directly by the observer in normal conditions; we do not

ons (e.g. dark

.

have the controlled experimental condit
adaptation, uniform background) under which the visual
transfer function was determined [39], [40], or those under
which Cornsweet [27] shows that the visual system
integrates intensities lying within 10°' arc of each cther.
However, the visual transfer function has been successfully
applied to image enhancement problems [41] where the
experimental conditions referred to above are not met

either, but are similar to the normal viewine conditions
used in our experiments and bv scientists studyving SAR maps.
As another example of the effects of spatial filtering under
ordinary viewing conditions, we have the work of Harmon et
and Julesz [42], whose results show that looking at a picture
corrupted by high-freguency noise from a viewing distance
that is greater than normal helps improve its
recognizability. The blurring of the picture caused by
viewing it from a distance is equivalent to low=-pass

filtering the picture.
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We assume, therefore, that our observer's eves
integrate intensities within an area subtendineg 10' arec at
the eye, and that he is able to resolve targets subtending
1' arc at the eye, as is generally accepted. (All the
visual angles referred to here are those subtended by any
one dimension of the object at the observer's retina.) A-

£-5.1.2 Visual angles in our pictures

The simulated pictures used in our experiments have variocus
picture sizes (in inches) and numbers of lines and pixels
per picture. We give here typical calculations that will
enable a quick conversion of feature size to visual ansgle.
In those pictures where 200 pixels fit into 3.5 em, and are
viewed at a distance of 40 cem (16"), which is the normal
viewing distance, each pixel subtends a visual angle of
-about 3' arc. Thus, a feature of about 2 or 3 pixels on a
side would subtend less than 10' arc at the retina at the
normal viewing distance, and it is reasonable to apply the
summation approximation to it. For larger features, the

Viewing distance needs to be larger, for instance for D=6 to

T, the viewing distance needs to be doubled. Since, at a
distance of a few times the normal viewing distance, the
picture intensity variations are still visible, it is
reasonable to try to locate features of the kind of sizes we
have used in our experiments by looking at them from afar,
thus averaging out the speckle. This is what a scientist

looking for small features might well do.
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AFPPENDIX (5.2)

Interdependence of backoround powers

wWatson [36] shows that if the variables in a strictly
stationary sequence are m-dependert and unbounded above, the
asymntotic distribution of the larrfest in 2 samrle of size H
is the same as in the casze of independence. provided
Lauatior (A-5.1) below is satisfied. A sequence of random
variables {Ki} is called m-dependent if |i-Jl>m implies th=t

Xi and X, sre independent. Ffor our 2-dimensioral secuence
’)\: .
of N=W" backercund powers, this is true in both dimensions

for m=D. In order to justify the use of Equastior (5.1¢)

o
[

with H=W™, all we need to do is to show that Equation (&=

5.1) helds.

. 1
lim ————— ¢ pax Pr{x.>c, x.>c) =0 A-5
oosoo Pr(xi>c) iwji<m i s 3 ) ( .1)

inis has been shown to be true [30] for Xi normally
distributed. so we can use this result for large i, where
our varisbles aprroach Gaussian varisbles, For general M.
it suffices to show that for any two of the dependent

varisbles x1 and X,2 in cour problem,

Pr(Xl>c, X2
Pr(Xl>c)

>c)

> 0 as c-» (A-5.2)

Now (setting PO=2 for simplicity) X1 and XE are each formed

by summing (MG+M1) exponential random variebles, of which K,

()
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are common. If we let the ec~mmon part be denoted by Y, we

have % =
1 = Ytz
(A-5.3)
X2 = Y+22
where Y, Z1 and ZE are independent rardom variables with

Eﬂc. EMT’ 2M1 degrees of freedom (dof), Then we cen uyrite

Equation (4-5.2) in terms of the pdfs of Y and Z., (cr Z,) as

i

(e o] I'd o« 2
gy (4 pzixl-y)dxl)

+0 as c-® (A-5.4)
[ee] [e e}

l‘ —-vYd
{ py(y)dy pzixl y)dx;

by direct calculatior, this can be verified to be true for
¢cases where MQ and M1 are small. We can also give a
heuristiec argument for the validityv of Equation (A4-5.2) in
cur problem. Equation (4-5.2) imrlies that thes jeint

probability of X. and X

« -~
i <

being very large is small compared

to the probability that X, is very larrse. One would exrect

1
that if this 1is not true, it is because the common part .Y is
large., However, using the asvmptotic expansion ior the

distribution function, we get

Pr(¥>c) _ sz(CIZMO)
Pr(Xl>c) sz(c]2M0+2Ml)

C(MO—-l)e—c/Z 2(Mo—l)
o (2422—— + ...)
F(MO)Z 0 —Ml
A-5.
(M. +M_-1) -c/2 (M.+M_ -1) voe >0 as c¥e (
c 0 1 e (2+22 0 1 +
F(MO+M1)2(MO+M1) c

This makes it plauzible that Equation (4-5.2) should hold in

our problem, and therefore that the asymptotie distributien

5)
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of the largest of the Ei should be the same as in the case
of independence. However, we note that., from a practical
peint of view, P, is not strorglyv dependent on the exact
value of N for large 5. at leesst for pc>G.9. so that an
order of magnitude estimoate of N is sufficient at least for
predicting threshold parameters as we de in sub-section

-

5.5.3.5, which is ore ~f our main concerpsz,
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6. LINE PATR DETECTION

6.1 QOverview

A common criterion used in television picture
characterization is line pair resolution. A picture
consisting entirely of alternating brieht and dark lines is
used as a test picture, As the width of the lines is made
smaller, there comes a stage at which the aVerage viewer can
see only a uniform gray picture instead of the line pattern.
The inverse of the width of the lines, d, or some ocuantity
related to it, like the spatial (fundamental) freaquency of
the lines at this stage, is a figure of merit of the TV
system. The lines used in the test pattern usually have a

square-wave or sinusoidal spatial intensity distribution.

People sometimes attempt to use the same criterion,
that is, line pair resolution, to characterize SAR systems
and others that produce speckled pictures. In the absence
of speckle, if the system bandwidth(BW) was high enough and
the signal-to-noise ratio (SNR) was high enough, we would
have a situation similar to that with a good TV system.
However, large system BW and hieh receiver SNR are not
sufficient to produce a good picture in a coherent imaging
system, because of speckle effects. Thus a line pair of a
spatial frequency resolvable with a speckle-free system may
or may not be resolvable in one with speckle. We might

still attempt to characterize the overall system by the
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spatial frequency of resolvable lines, hoping to account for
the degradation due to speckle by a decrease in the systenm

performance,

In this chapter, we investigate the relationship
between the various parameters characterizing a line pair
grating and the probability, oc, of correctly detecting it.
We find that for a typical system, and a test pattern of a
size that might typically be used, for example, one of

100%100 pixels, line pair detection is a useless wav to

characterize resolution in the presence of speckle.

A more stringent criterion is the detectability of
small features, which we dealt with in a previous chapter.
Thus, for a contrast ratio and number of looks per pixel at
which line pairs in a picture consisting entirely of line
pairs are recognizable, a small object may not be

detectable.

In this chapter, as before, we assume that the
degradation in the picture is caused by speckle alone, i.e.
we consider a system that is speckle- limited rather than
BW- or SNR- limited, so as to isolate the effects of

speckle.

6.2 The method used




6.2.1 Qverview

Our approach to the problem consists of a combination of
theory and experiment that will enable us to relate P, to
the parameters of the grating. Because current
understanding of the visual mechanism is incomplete, and
because of the difficulty of making exact calculations in
the theory that we use, our analytical calculations are
merely plausible. We dovnot attempt to predict analytically
the functional dependence of pc on the various parameters of
the grating. 1Instead, we assume (and justify) a

relationship of the form

DC=DC(SSNR) (6.1)

where SSNR is a plausible signal=-to=-speckle~noise ratio

expression that involves all the grating parameters.

We derive a reasonable expression for SSNR and then
rely on experiment'to give the desired functional
relationship of Equation (6.1). We then use this functional

relationship to predict P, given a set of grating parameters

and vice versa,

6.2.2 The line pair gratings

There are various parameters that could influence the
detectability of a line-pair grating. A1l the gratings we
consider are rectangular in shape and consist of lines

running vertically, since we felt that in a real SAR
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picture, if the user were looking for some feature
resembling a grating, he would be free to turn the picture
around so that the lines, if present, would be vertical.

Two of the picture parameters are the height, V, expressed
in number of pixels in the (vertical) length of each line,
and width, D, expressed in number of pixels in the
(horizontal) width of each line. Another parameter possibly
affecting the detectability is the number of pixels, H, in
the width of the grating in the horizontal direction. Thus
there are HV pixels in the grating, and H/2D pairs of lines
or cycles. H, V, D may be called the geometrical parameters

of the grating.

We consider line pairs with a square-wave distribution
of intensity, where the average intensity of the bright,
lines is (1+b)*PO and that of the dark lines is Py. Thus,
in the absence of speckle we would have the bright lines
uniform in intensiﬁy and (1+b) times brighter than the dark
lines, which are also uniform in intensitv across their
widths. We assume that each pixel in the grating is
obtained by averaging L independent estimates of the pixel
intensity, that is, there are L looks per pixel in the
picture. L and b are what may be called the system

parameters of the grating.

Thus our grating parameters are b, L, H, V, D.
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6.2.3 Visual detection mechanism

There are two distinct mechanisms which the observer might
use to make his decisions about whether or not the signal 1is
present, In one method, he makes his decision by looking at
where he thinks the bright lines in the picture ought to be
and determining whether all or most of them appear brighter
than all or most of the regions where the dark lines ought

to be. This may be called a space-domain approach.

The other mechanism, which is the one we assume in this
chapter, involves a comprehensive look at the whole picture,
and may be thought of in terms of spatial Fourier
transforms. We assume that the grating is passed through a
filter in the visual system of the observer and the
amplitude of the output envelope observed. If it lies above
a certain threshold, then the observer decides that the

signal is present; otherwise he decides it is absent.

On considering the way in which one examines a high-
frequency grating, it seems reasonable that the first
mechanism, if it operates at all, does so when only a few
lines are present, or being looked for, in the visual field.
This is because, when there are a large number of lines of
reasonably high contrast in the grating, one is aware of the
presence of the signal even without looking at every line.
It could also be that, whatever the mechanism actually used,
either of the above two methods would be useful in

predicting the approximate probability of correct decision
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for a given case, and our experiments would be unable to
choose between the two mechanisms. Because of this
uncertainty of approach, we decided, at least as a
beginning, just to try to obtain a definition of a signal-
to~speckle-noise ratio that would correlate well with the
experimental probabilities of correct decision, P.. In

other words, we have used the SNR approach rather than the

probability approach of Chapter 3.

6.2.4 Evidence _for _assumptions

(a)There is evidence, neurological as well as
psychophysical, that there exist, in the visual nervous
system, several visual channels, each tuned to a different
limited range of spatial freguencies. Campbell and Robson,
in an investigation of gratings of different waveforms, were
the first to propose this [43]. Other findings since then
support their hypothesis. According to Stromeyer and Julessz
{447, "the idea that the visual system decomposes a visual
scene into a set of sinusoidal gratings of specific
spatial frequency, orientation, phase positions and contrast
is contrary to our introspection......Nevertheless, this
idea 1is consistent with several studies using simple
gratings as stimuli."™ It has been demonstrated by them that
vertical sinusoidal gratings are obscured or "masked"™ by
noise whose spatial frequencies are close to the grating

freguency. Their results show that only the noise within <1

or -1 octave of the grating freauency affects the detection
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of the grating. They also lend support to the theory that
there exist channels in the visual system that are
selectively tuned to different spatial frequencies. In our
experiments, we asked the observer to look at a picture
which consisted of a speckled version of either a uniform
background or a rectangular grating and decide between the
two alternatives. Thus the observer saw either plain

speckle noise or a noisy rectangular grating.

Because of the results in masking just stated, we can
assume that the observer's visual system acts as a series of
filters of various center frequencies fo and BW eqgual to
(2f0-0.5f0)=1.5f0. We assume that if the signal (the
grating) is present, the observer's visual channel that
comes into play is the one that 1is tuned to a freauency

equal to the fundamental of the grating frequency fg, so

that the filter BW is 1-5fg. Even when there is no signal
present in the picture, we assume that since the observer is
told what frequency of grating he is looking for, the visual
channel he uses i1s the one tuned to fg_ Thus, in either

case, the light reflected by the picture is passed through a

filter of central freguency f‘g and BW 1.5fg.

(b)To justify the assumption that a filter output envelope
is examined, we note first that this is what an ideal
detector would do if detecting a sinusoid of known freauency
and unknown phase in additive noise [21] and extend the

decision procedure, though not the resulting curves of pc
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versus SNR, to the present case of speckle. (We cannot
extend these curves to the present case because speckle is
not additive noise and because the visual filter is not
narrowband, as it is for the ideal detector.) Then we note
that it is common practice in interpreting psychophysical
results in audio or visual experiments to assume that the
human observer is only somewhat worse than an ideal
detector. This assumption is often correct (see Green and
Swets [28]). Here we merely assume the same detection

process as an ideal detector, and not the same performance.

6.3 Signal-To-Speckle-Noise Ratio (SSNR)

6.3.17 Qverview

In this section, we show how to obtain one plausible
definition of SSNR. Going bv this SSNR, we are led to the
conclusion that line-pair resolution is not a very good
criterion for characterizing speckle. 'We shall elaborate
upon this later in the chapter. Because of this conclusion,
as well as because of the difficulties of analysis mentioned

in section (6.2), we did not pursue the attempt to predict

the value of P, given the grating parameters.

The SSNR expression obtained contains one parameter,
which we call 'a', that lies somewhere between 0 and 1. We
decided to investigate two possible values of 'a', and the
two corresponding expressions for SSNR are referred to by

subscripts 1 and 2.



- 96 -

We first consider the case where the grating has a
width H equal to the correlation length of the filter output
(which is approximately 1/BW =1/1.5fg, where f, is the
center frequency of the grating that the observer is looking
for) and a height V equal to 1 pixel. We denote the
corresponding SSNR expression by SSNRD, We then extend the

results to the case of larger V and H.

6.3.2 SSNR

P
Using the speckle statistics described in Chapter 3,we can
represent each pixel intensity in the gratineg by a Gaussian

random variable with meen values P, and FO(1+b) for the

£
o

dark and bright pixels respectivelv. We will alsc define two

s
new auantities related to F,. and b by
A4

Ab = the 'bias' intensity

= Py *¥(1+b/2) (6.2)

Ad =the 'signal’' intensity

In this analysis, each pixel intensity is written as the sum
of a signal component of intensity ecual to the intensity it
would have in the absence of speckle, plus a noise component
that accounts for the departure of the actual observed value
from this ideal noiseless value. We then derive the SSNR

expression by considering that the input intensity spatial
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distribution goes throusgh the observer s visual filter of
bandwidth T.Bf" extendinrg fronm O.5fc to Efg. ir obtair tiiis
expression, we first determine the signal and noise powers

at the filter output.

{a) Kois=s power outnut: The total intensitv of each

pixel (which includes both noise component and signal

component, if any) can be written as
i(x)=g¥*s(x) (6.4)

where s(x) is the spatial distribution of intensity in the
absence of speckle and g is a Grv with mean 1 and variance

1/L.

If g is rewritten as

g=1+r (6.5)

then r is a Grv with mean 0 and variance 1/L. Also s(x) in

the present case is
s(x)=[Ab+Adsqu(x/xO)] (6.6)
where we define

squ{a)=11 if the largest integer

less than a is odd;

-1 if the largest integer

less than a is even (6.7)



XO=1/2fg (6.8)

Thus, we get
i(x)=(1+r)[Ab+Adsou(x/x0)] (6.9)

The amplitude V, of the input to the filter is proportional
to i(x); for simplicity, we take the proportionality

constant to be 1. Therefore

Viz(1+r)[Ab+Ad*sou(x/xO)] (6.10a)

This can be written as the sum of a signal component VS and
a nolse component Vn, i.e.

Vn(x)=(1+r)Ab+r*Ad*sou(x/xo) (6.10Db)
Vs(x)zAd*squ(x/xo) (6.10¢)

Because of the spat;ally varying term P*Ad*squ(x/xo) in
V,(x), the noise has a mean square value which is a function
of position x, and hence is not stationary. However, a
spectral density function may be defined even for a non-
stationary process, as the Fourier transform of the time-
(or, in this case, space- ) autocorrelation function (acf)
of the process [U45]. We may further take the the ensemble-
average of the time- (space- ) acf, if that is necessary to
make the result meaningful [46]. Alternatively, if the
noise falls into a categorvy of random process called

"broad-sense stationary" [UT7], the space-acf may be averaged
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over a spatial cycle to get a meaningful acf. Vn(x) does
fall into this category if we can approximate the square-

wave by one of infinite extent.

Once we have thus defined the spectral density of the
noise, the results on linear filtering of noise also become
applicable here. Thus, we can show in the same manner as in
the conventional stationary noise case [21], that the power

spectral density So(f) at the filter output is given by
%! 12 (6 1 )
So(£)=8; (£F)*IH(F) | -1
where H(f) is the filter transfer function.
We now apply these results to the case at hand. In
Appendix (6.1) we show that the acf of V,(x) is given by
1,2 800252
C(y)= Ab+((d—y)/d) (Ab+Ad)/L for y <d

Ai . otherwise

(6.12)

where d is the thickness of each pixel in the horizontal or

x direction,

The power spectral density of Vn(x) is then

d

2 2 2
( Ay + A ) [sin(7de)] (6.13)

2
P - §(f
1(0) = a4y 800 ( mfd)

b L

Now if this noise -is passed through the visual filter, we
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can use Equation (6.11) to obtain the output noise spectral
density. The visual filter has a center freaguency f‘g and a
flat passband fromn O.ng to 2fg‘ We can see that with D

pixels per width of each line and a thickness d for each

pixel,
fq =1/(20d) (6.14)

The filter passes unchanged that portion of the spectrum

Fo{f) that lies betwsen U.5/(2Dd) and 1/(bd). so that the total

E N

»

output noise power is . -
1/ (Dd)

2
Ponz(A§+A§)/E/;[}i;};f dr (6.15)
U.b/(zid)

To get a simple approximate estimate, we replace the
(sin(.)/(.))2 function in Equation (6.13) by a rectangular
function extending un to the first zero of the orisinsl
function, i.e., up to f1=1/d, and of the same area as
the(sin(.)/(.))2 function. We find that the height of this

rectangle should be 1/2 the peak height of the(sin(.)/(.))2

function. Using this approximation, we get, for POn’

(A%+A2)

d
Py = ——7ﬁj——*(1'5/2D) (6.16)

This is the desired expression.

(b) Signal power output: The input signal is

VS(X)zAd*sou(x/xo) (6.10¢)
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We can see that, irrespective of the value of D, only
the fundamental frequency component of the sauare-wave
grating lies in the bandwidth O.Sf‘g-Zfg that is passed by
the visual filter. Since the amplitude of the fundamental
is 4/“*Ad, the power output from the filter, after averaging

over a few spatial periods, is
P=1/2%(h/m A )° (6.17)
s7 d

where the factor 1/2 comes from averaging the sinusoidal
fundamental. (g)SSNRp: We can now write an expression for
the signal-to-speckle-noise ratio (SSNR)p for the case where
V=1 and there is only one horizontal correlation interval

available for observing the output. We get

2
p A
SSNR =—==z1/2 (4/7 )2 d o1 (2D (6.18)
P P, 2.,2 1.5
n (Ab+Ad)

Note that the SSNRD' is proportional to the product D¥L of
the number of pixels per line and the number of looks per
pixel. This is in accord with the averaging or blurring
property of the eve-brain combination which we assumed in
Chapter 5, which enables the eve to consider the total
intensity of pixels in the line width as one unit. Thus,
there are, equivalentlv, M=L#%#D looks per line width. 1In
Chapter 5, this results in an improvement of signal=-to-noise
ratio by a factor of“JM. Here, the eye has been considered
to respond to the square of the input light intensity since

we assume a square-law detector, so that the SSKNR
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improvement is by a factor of M,

6.3.3 SSNR for general H#Y

In order to extend the result to case where V>1 and more
than one correlation interval is present in the horizontal
direction, i.e, H>2D/1.5, we assume that the observer's
eye-brain system considers a portion of the output envelope
of length equal to one correlation interval (i.e. 2D/1.5
pixels) in the horizontal direction and one pixel length in
the vertical direction (V=1) as the basic unit, and, from
each such unit available, forms an independent estimate of

the output amplitude.

To relate the horizontal extent, i.e. H pixels, of the
grating to the number of independent estimates available
from the horizontal direction, we consider the filtering
operation in the Fourier transform domain. Then we can see
that the output extends for one correlation interval if
H<2D/1.5 (we will ignore this unrealistic case in which
there is not even one whole cycle in the grating); else it
extends for a length egqual to the length of H pixels. Thus
there are approximately H/(2D/1.5) correlation intervals in
the filter output and hence this many independent estimates
of output envelope amplitude available from the horizontal
direction. To account for the approximation, we insert a
factor a, and get ah*H/(ZD/1.5) for the number of estimates
from the horizontal direction. Further, if there are V

vertical pixels, then there are aV*V independent estimates
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possible from the vertical direction for each horizontal
correlation length. The factor av accounts for the
possibility that the eye looks at more than one vertical
pixel in making one estimate, Thus there are

av*ah*HV(1.5/2D) independent estimates obtained.

The precise value of the factor av*ah is not important
provided we assume that it is the same for all H and V.
This is equivalent to assuming that the observer keeps his
decision criteria constant from picture to picture, which is
also implicit in the assumption, made in section 6.2, that
the observer is only somewhat worse than an ideal detector.
Then the factor av*ah merely changes the SSNR expression by
a constant factor and since our aim is to find,
experimentally, the functional relationship between pc and
SSNR, we may set this factor equal to 1. Specifically, in

section (6.4), we find that

P, = 1-1/2%exp(-k*SSNR) (6.19)
where k is obtained by a least-squares technique. If av*ah

were not set equal to 1, k would change accordingly.

We now have that the observer’s brain forms
N=V(H/(2D/1.5)) independent estimates of the presence of the
signal. It can combine these estimates in various ways to
reach a decision. If an ideal envelope detector is used and

post-~detection integration performed [21], then the use of N
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independent estimates leads to an improvement in SSNR bv a

1/2 over that achievable with a single estimate.

factor of N
With perfect pre-detection integration, the improvement
factor is N. In general, we may assume that the improvement
factor will be N?, where a lies between 1/2 and 1, if some
sort of imperfect pre-detection integration is assumed. If
some imperfect post-detection integration is assumed, a can
be even less than 1/2. We investigated two values of a,
namely 1/2 and 3/4, and got two SSNR expressions, which we

will call SSNR1 and SSNR, respectively. We get, for a

grating of H#¥*V pixels,
1/2
SSNR,=ssNR [HV (1.5/2D]] (6.20a)

so that

2

SSNRF"S :d sz 2b |
! L1.5d
v Ad+Ab

1*5]7/2 (6.200b)

BY
L 2D

or, in other words,

2
SSNR =l% (b/2) L[Hviﬂl]1/2 (6.20¢c)
m2(14b/2)2+(b/2)? 1.5
and, for SSNR2’ we get
52
ssn32=l§ d la[zD][HVlLE]B/u (6.21a)
n A§+A§ 1.5 2D

or,



- 105 -

2
SSNR,=1% (b/2) L(av)3/4 fﬁQ}T/” (6.21b)
T (14b/2)2+(b/2)°

Thus, we have found two plausible expressions for SSNR.
Although these expressions are logical only for the case of
large number of looks‘per pixel, L, we have assumed them to
be the correct expressions even for small L, in analvzing

our experimental results.

6.4 Simulations and experiments

6.4.1 The procedure

In order to test the usefulness of the SSNR expressions we
obtained, we performed computer simulations of gratings with
various sets of parameters. Each picture obtained, which we
will also refer to as a sample, had a size of 200%200,
256%256 or 300%300 pixels and consisted of a matrix of
smaller rectangular-shaped figures which we shall refer to
as "patterns", FEach of these patterns was of size H#¥V
pixels and represented a speckle=-corrupted version of either
"noise™ or "signal-plus-noise®. The patterns representing
"noise" were obtained by taking a V¥H pattern of uniform

intensity P =PO[(1+b/2)2+(b/2)2]1/2

, and replacing the
intensity of these V#H pixels by V¥H independent, gamma-
distributed random variables of mean value P and variance
P2/L that represented L-look, speckle-corrupted pixels of
average intensity P. The patterns representing signal-

plus-noise were similarly obtained by starting with a figure

of size V¥H pixels that had vertical line-pairs, with each
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line having a thickness of D pixels and with each pixel
having an intensity of either PO or PO(1+b) depending on
whether it belonged to a dark or a bright line. Each
picture shown to the observers consisted of a rectangular
matrix of k#*p patterns. Each pattern in the picture was
randomly chosen to be, with equal probability, either a
noise or a signal-plus-noise pattern. The parameters
characterizing each pattern, namely the contrast ratio
(1+b), the number of looks per pixel,” L and the values of V,
H and D, were the same for each pattern in a given picture,
so that the only non-random difference between any two
patterns was the presence or absence of a signal, i.e. a
line-pair grating. The number of patterns, k¥p, varied from
picture to picture devending on V and H and the total number

of pixels in the picture,

Whenever a line-pair grating was present in a pattern,
it had a random phase, l.e. the phase of the sguare-wave
cycle represented in the leftmost pixel of the pattern was
randomly chosen for each pattern in the matrix. This
phase-randomizing ensures that an envelope detector is

indeed the ideal detector [21].

The experimental procedure was to show pictures
obtained with various sets of the 5 parameters, b, L, H, V,
D, to an observer, who was given certain directions and
asked to decide whether or not a line-pair grating was

present in each of the patterns. The information to be made
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known to the observer was chosen as explained in Chapter by,
specifically, (a) he knew that the signal and no-signal
patterns occurred with equal probability:; he was also told:
(b) the number of cycles to expect in each pattern if a
signal were to be present; (c) the contrast ratio (1+b); (d)

the number of looks per pixel, L.

The effect of revealing fact (b) above is that the
observer knows what center freauency of signal to look for.
Thus, the assumption of known center freguency of signal

expected, that we used in subsection 6.2.4, is satisfied.

The other 3 pieces of information given to the observer
let him know what contrast and clarity to look for in making
his decision,. His knowledge of these pieces of information
makes 1t reasonable to assume that he can calculate the
probability density functions of signal-plus-noise and noise
and use some decis;on strategy such as the Bayes strategy
[21] to make his decision. This kind of assumption, that
the observer's eye-brain combination seems to make such
probability calculations, has often been made and shown

feasible in psychophysical experiments [28].

Figure (6.1) shows the geometry of patterns in a
sample, and Figure (6.2) some examples of the speckled
pictures used, as well as how some of them would look in the

absence of speckle. We will now describe these pictures.
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V [m] ﬂm coce

Figure (6.1): Geometry of patterns in a picture
in line-pair detection experiments
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Figure (6.2): Line-pair detection; examples of
simulated pictures
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6.4.2 Examples of simulated pictures

6.4.2.1 Qverview

As in Chapter 5, we show here only a few of the simulated
pictures used in our experiments. Here, we show only 8
samples as opposed to the 16 shown in Chapter 5. However,
each of these 8 samples contained manv patterns, whereas
each sample in Chapter 5 could show only 4 features because
of the need there to show a large background for each
feature, A1l the samples except L1 are 200%200 pixels,
except that the last 6 lines are replaced by the caption.
(We specify the size of the samples, for completeness,
although it is irrelevant to the detection problem.) The
sample called L1 has 100%100 pixels. The captions specify
the line thickness D in pixels, the contrast ratio in dB,
the number of looks per pixel L and the size of each pattern
V#H in pixels,. However, in A16 and L1, there isn't enough
room to specify all we ﬁeed to, and we will supply the

missing information in the text.

6.4.2.2 The samples

(1) The first photograph shows A1l4 without speckle, A14 with
speckle, A18 and A36. All these are 2 dBR samples with D=3
and A18 and A36 have L=2. The first sample shows that the
lines are clearly detectable in the absence of speckle. The

second one shows the degradation caused by speckle.

A comparison of A14 and A18 shows the improvement in
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detectability of lines as V is increased. A36 has
V¥H=U40%12, while A18 has V¥H=12%40, It is not really
possible to see the effect of interchanging V and H by
examining one example of such a pair of samples, unless many
other samples are included. But, at any rate, comparing A18
and A36 gives an idea of what this interchange does. 1In
addition, it is clear that A36 has lines that are more
detectable than A14, which shows that increasing V from 6 to

40 more than compensates for reducing H from 40 to 12.

(2) The second photograph shows L1, which is a 100#%100
sample, and AU47, AA5, AUYH, each of which is 200%¥200. L1 has
parameters D=2, L=12, 1 dB contrast ratio, V¥H=100%#100, and
is intended to show how clearly the lines can be detected in
such a picture, We contrast this with the poor
detectability of features in S30 #4 of Chap. 5, which has
the same L and contrast ratio, and a much larger D. This
illustrates that the detectability of small features is a
much more stringent criterion than detectability of line

pairs,

A4T7, A4S and AUL4 are all 1 look, 3 dB pictures with
D=2, They show that detectability of lines increases as V#H
increases from 8%#8 through 16%¥16 to 64%64, In the sample

A4L4 . the probability of correct decision is practically 1,
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6.4.3 Results of experiments

Table (6.1) shows the results of the experiments for the
various values of parameters used. The table also shows,
for each set of parameters, the values of SSNR as given by
the two expressions of Equations (6.20)-(6.21). We attempt
to see if one of these two expressions is much better than
the other in predicting the observed experimental results.

The various columns in Table (6.1) are
(a) the parameters H, V, D, b, L

(b) the probability of correct decision oc obtained
experimentally as the percentage of patterns correctly

decided upon by the observer
(e) SSNR, calculated from Equation (6.20)

(d) SSNR2 calculated from Equation (6.21)

(e) the number of patterns, n, on which the experimental Ps

is based,

6.4.4 Analysis of the results

We wish to determine whether one or both of the‘SSNR
expressions defined in section 6.3 is a meaningful
expression that helps us obtain the probability of correct
decision P, for line gratings with a given set of
parameters. In order to do this, we plotted, corresponding
to each of the SSNR expressions, the value of P, obtained

experimentally versus the SSNR, fitted a regression curve
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1.26
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1.26

1.26

1.26
1.26
1.26
1.26
1.26

1.60

1.60

1.60
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L D v
2 64
2 96
1120
3 120
3 100
3 85
3 64
4 12
4 24
4 24
b 80
b 60
2 b
2 i
2 8
2 8
2 12
2 8
2 6
2 8
3 bo
3 12
3 120

64
96
120
120
100
85
64
4o
40
80
24

60

12

4o

Line pair gratings

e

.80
.75
.63
.92
.89
.94
.64
.69
.75
.83
.81
.61
.66
.60
17
.76
.72
.68
.70
.99
.93
.81

.73

SSNR,

2.213
3.320
2.934
5.082
4.235

3.600

1.071
1.515
2.143
2.143
2.934
1.660
2.347
2.347
3.320
3.934
3.212
2.782
2.782
7.183
7.183
8.798

SSNR,

13.
25‘

29.

29.
23.

15.

19.
19.

27

855
453

912

.366

947
468

333

.300
.550
-334
334
.956
.396
347
<347
.948
.323
.03
. 354
. 354

992
992

.098



24
25
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34
35
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(1+b)

(W })

.60
.60
.60
. 60
.00
.00
.00
.00
.00
.00
.00
.16
.16
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L D v
3 4o
3 6
3 25
3 6
1 8
1 8
1 16
2 8
2 y
2 16
2 64
3 4o
3 bo

ho

24

16

64

12

.78
. Th
.81
.59
.70
. 86
.64
.58
.86
.99
.00
.00

.00

SSNRL

5.079
5.079
4.016
3.934
1.059
1.498

2.995

1.059
4.236
16.943

21.33

N

30.000

SSNR,

1.

11

13.

106.

83.

887

.887
.356
.10l
. 344
.9u2
. 149
.688

. 657

258
068



- 115 -
and calculated the index of correlation correspondineg to
this curve. The details of the methods for these

statistical calculations are standard in statistical theory

t291, (48], [491].

The experimental data are given in Figures 6.3(a) and
6.3(b). 1Initially, we tried fitting a straight line to the
observation points, but an examination of the points and the
line showed that a straight line is not the right curve to
fit the data. For large values of SSNR, P, should approach
1 asymptoticélly and not exceed it, as a straight line would
predict. Many of our data points have P, close to 1, so
that even for the range of values of the data points, a
straight line 1s inadequate. A curve that has the proper
characteristics is one that relates Py linearly to the

nesabive of the exponential of SSNK.

For the exponential regression curve, we spvecified that
the point SSNR=0, p,=1/2 lie on the curve, because, for
SSNR=0, no signal is present, but the observer is expecting
a signal half the time, so that the percentage correct
should be 50% for an unbiased observer. We assumed a curve

given by

P, = 1 -1/2 expl( -\ (SSNR)]+e  (6.22)

.and determined ) so as to minimize the sum of sauares of the

errors represented bv e in the above eguation. In this

chapter, D, is used to denote the value predicted bv the
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regression curve. The equation for ) that results has to be
solved iteratively, and this was done by computer. The
resulting values of } and the two regressions curves for the
two assumed expressions for SSNR of Ecuations (6.20)-(6.21)
are given below with subscripts 1 and 2 corresponding to the

two SSNR expressions.

Ay = 0.24818  (6.23a)

3,
H

1 - 1/2 exp[-0.24818 (SSNR)1] (6.23b)

Ao = 0.08264  (6.243)

ho)
L]

1 - 1/2 expl[=-0.08264 (SSNR)Z] (6.24b)

The resulting regression curves are shown in Figures 6.3(a)

and 6.3(b) along with the data points.

6.4.4.1 Comparing (SSNR)1 and (SSNR)2

Since Equations (6.23b) and (6.24b) are nonlinear in the
parameter } they fall in the category of nonlinear
regression equations. Hence, standard goodness-of-fit tests
that can be used for linear regression are not strictly
valid here. However, following [29], we may still use these
standard tests to get some idea of goodness of fit of the
two curves,. The test we used is applicable only if there
are some repeated observations for the same value of the
independent variable and if the errors corresponding to e in

Equation (6.22) are normallv distributed. This normality
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assumption was tested using the Kolmogorov-Smirnov test [48]
and found to be valid. We do have repeat observations in
our experimental results, but only if the (SSNR) expressions
of Equations (6.20) and (6.21) are assumed to be correct in
fitting Equations (6.23b) and (6.24b) respectively, to the
corresponding data. That is, we have observations for 2 or
more combinations of b, D, L, H, V that give the same SSNR
value,

We find that, to the extent that the test can be
considered applicable to the present nonlinear case, the fit

for the regression curve of pc on (SSNR)2 is better than

that for the regressiocn curve of P, O (SSNr)T. However this

does not tell us that the (SSNR)2 expression is better than
the (SSNR), expression, because the assumed form of the
regression curves may not be the correct one. There are,
however, two possible comparisons that we might make about
the validity of the two SSNR expressions, which we give

below.

(a) The index of correlation [49] between two random

variables X, Y fitted by a regression curve described by
? = F£(X) (6.25)

is given by i which is defined as

e b

2
ic =(1 -fl-.)”2 (6.26a)
52
Yy
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2 . . . . .
where g, 1s the variance in the deviations Zi’ which are

defined by

2, = ¥y - £(Xg)  (6.27)

2
and Gy is the variance in the observed Y. The Yi and Xi in
the above ecuations are the data points, for i=1,2,..N,
where N is the number of observations made. We find that

this index of correlation, ic, has the values

i

0.781 (6.28a)

cl

L]

i, = 0.767 (6.28b)

where the subscripts 1 and 2 refer to the cases of the two
SSNR expressions considered. Since the values of i;for the
two SSNR expressions considered are so close, we cannot
infer that either one is more correct than the other.
However, we note that both indices of correlation are fairly
high, so that either of the SSNR expressions, together with
the corresponding régression eauation, is useful in

predicting the observed results.

(b) We may compare the values of cé:SSe/(df) obtained from

the "error-sum-of-squares", SSe, and its number of degrees

of freedom (df). Here,

k N4 2
=] J:]
k
(df) =3 n-k (6.29Db)

where there are k groups of repeat observations with ni



observations in the ith

the ith group and f; is

variance,og, arises as
in the observations and
SSNR expression. It is

experimental errors are
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group, Y is the jth observation in

th

i3
the mean of the i gEroup. This

a result of pure experimental errors
any possible errors in the assumed
reasonable to assume that the

the same

whether SSNR1 or SSNR2 is

used, since the same basic set of observations is used in

both cases, Hence, any difference in SSe in the two cases
must arise out of the difference between the two SSNR
expressions,

The values of S58_/(df) are given, for the cases of the two

SSNR expressions, by

2
Og =IES /(df‘)]1 = 0.002775 (6.30a)
] L e
02 *[}S 8
e, ~ o/ (df), = 0.006877 (6.30Db)
Thus, SSNR1 appears to give less error than SSNRZ. But if
these variances are compared using the F-test, their ratio

is found to be insignificant at the 5% level of

significance.

We find, from our two comparisons, that we cannot

definitely choose between the two SSNR expressions,

However, either of them will predict the experimental

results reasonably well, It is also possible to make

various other comparisons to ‘trv to choose between the two
expressions [49], but we did

not feel thev were necessary in

this case, since there are too many other expressions
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possible, for instance, just by varying the value of ‘'a‘

used in deriving Equation (6.20a).

6.4.4.2 Regression of (SSNR) on Py

It is also possible to obtain a regression equation of SSNR

on p,, e.g., to estimate a parameter vy , to minimise the
variance of e', where
A
(SSNR) = - ¥ [1n 2(1-p )] + e (6.31)

This expression would enable us to calculate (SSNR), given a
value of p .,
c
In a case where there was perfect correlation between P,
&nd SSKK, we would find that J,‘Q@. bit we did not perform
this regression, because it reguires another iterative

solution,; and it is sufficient for our purposes to be able

to find P,, glven SSNR.

65.4,4,3 Interchangeability of H and ¥

We also used Table 6.1 and Figure 6.3 to check, in two ways,
the assumption that a pattern with HO horizontal and VO
vertical pixels 1is just as correctly recognizable as one
with V) horizontal and Hy vertical pixels, other things
being egual. This assumption is implicit in the fact that
the SSNR expression has H¥%¥V occurring in it only as a

product H¥V,

(a) We calculated the statistical significance of the

difference in P, for all the pairs of observations having
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this property (that the values of H and V were interchanged
for the two pictures) and found that none of these

differences were significant at the 5% level.

(b) We made a visual confirmation of the hypothesis as
follows. In Figures 6.3(a) and (b) we have drawn all points
corresponding to observations with H>V with one sort of
symbol and all points corresponding to V>H with another sort
of symbol. Scanning Figures 6.3(a) and (b), we find that
points drawn with both kinds of symbols are similarly
scattered, which makes it plausible that a long, narrow
grating is neither more nor less recognizable than a short,

wide one, if the product H¥V is the same for both,

6.4.5 Conclusions from the experiments

From the fairly high index of correlation between the P, and
(SSNR),, and between p, and (SSNR),, we conclude that either
of the two SSNR expressions given in section (6.3) is a
useful figure-of-merit expression in characterizing the
detectability of a speckled line-pair grating. The
regression curves we have obtained in Equations (6.23)-
(6.24) define the relationship between P, and each of the
SSNR expressions within the range of P, and (SSNR)1 and
(SSNR)2 covered in Figure (6.3) and Table (6.1), which is a
fairly wide range. They can be used to predict the pC that
can be expected for any given set of parameters within the

given range.
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6.5 General Conclusions

From the previous sections, it appears reasonable that the
parameters b, L, H, V, D characterizing a grating affect the

probability p_, of correctly decidine on whether it is

present or not, via the expression

, . a
(SSNR) = 12' (b/i) ) LfDE*Z 1'ﬂ (6.32)
¢ (1+b/2)+(b/2) -7 2D

where the value of a may be chosen as 1/2 or 3/4 to get
pretty good results. We cannct, on the basis of our
experiments, choose between these two values of aj; perhaps,
some other value of a between 1/2 and 1 is even more
appropriate,

We can also obtain two other general conclusions:

(i) We see that, at least within the range of parameter
values investigated, increasing the height V or the width H
of a grating increases the SSNR, and hence the probability
of correct decision. It follows, then, that merely
specifying the frequency of the grating (which, for a given
width of pixel, d, specifies the number of pixels per line,
D) will not reveal whether a certain combination of system
parameters, b and L, is sufficient to make the grating
correctly detectable; the height and width (V and H) of the
grating also need to be given. Or, conversely, within
limits, any combination of b, L and D will make a grating

detectable if present or recognized as noise otherwise,
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vrovided the height and width of the grating are made
sufficiently large. This is not the case with the usual
pictures that are corrupted by additive white Gaussian noise
(AWGN) as in TV systems, where the just-detectable line-pair
frequency for a standard-sized picture is sufficient to

characterize the system performance,

(ii) One reason for considering line-pair gratings was to
determine whether line-pair gratings could be used as test
patterns for characterizing the quality of pictures obtained
by the imaging system. First of all, as we noted above, the
height and width, as well as the freouency of the test
pattern, would have to be specified if a line-pair grating
were chosen as the test pattern. Assume that these
specifications are chosen to have the values that thev might
typically be expected to have for a SAR picture, considering
the kind of image-processor that is normallv used for SAR
pictures. Thus, a bicture of 256%#256 pixels might be used
as the test picture. We now show that, for typical SAR
parameters, a line-pair grating of such a size would be
almost certainly detected by a trained observer used to
looking for line pair gratings, as in our experiments, and

as might be expected of a scientist examining a SAR map.

We consider a picture of 100%#100 pixels; a more
realistic 256%256 picture ought to be even more detectable,
according to th discussion in (i) above. We also choose a

grating with 2-pixel wide lines, D=2. From the SSNR
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expressions derived, any larger value of D should make the
lines even more detectable. We consider that we have L=12,
b=0.26 (corresponding to a 1 dB contrast ), D=2, H=V=100.

For these parameter values, we obtain

(SSNR)1 = 41.5 (6.33)

From the regression curve of Eauation (6.23), or by
interpolation in Figure 6.3(a), we see that the p, for this
value of (SSNR)1 is >0.999.

If we use (SSNR), instead, we find that
(SSNR)2 = 386 (6.34)

and using Ecguation 6.24(a), we find that P, is again

predicted to be >0.999,

Thus a practised observer should almost certainly be
able to see lines with D=2 in a 100#¥100 picture of 1dB
contrast and 12 looks per pixel. This was, in fact, found
to be the case, with a simulated picture having these
parameters, The sample L1 in Figure (6.2) illustrates this

point,

Actually, even a D=1 line grating is visible with
Dc>0.95, as we find from both regression curves and
experiments, However, it recuires a practised observer to
demonstrate that P,20.95 in this case. We use D=2 so as to
be able to demonstrate our point by presenting a sample (L1)

in which a casual observer can see the lines.
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We now consider the detectability of a small feature in
a speckled picture with comparable parameters. From Chapter
5, we find that, for a 100¥100 speckled picture with 12
looks per pixel, a square whose actual intensity (in the
absence of speckle) is 1 dB above that of its background, of
size D¥*D pixels, would have to have D>7 in order to be
detectable with 95% probability of correct decision. An
otherwise similar square with D=Z would be practically
undetectable. As an illustration, we see that the D=6
features in the sample S30#4 in Figure (5.3) are hard to

detect.

We see from the comparison above, that a speckled
imaging system that is capable of making a test pattern
consisting of a grating with 2-pixel lines clearly
resolvable (by which we mean detectable) might be totally
unable to resolve a square 2 pixel on a side and having the
same contrast ratiolas the grating. Since it is more likely
that the imaging system will be used for detecting features
rather than lines, resolvability of line-pair gratings is a
useless way of characterizing the quality of the image.
Resolvability of squares, as in Chapter 5, is a much more

stringent criterion for testing image quality.
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APPENDIX (6.1)

POWER SPECTRAL DENSITY OF NOISE IN CHAPTER 6

Here, we calculate the power spectral densityv of the random

noise process Vn(x), given by

Vn(x) = Ay + rlAy + Ay soulx/xp)] (A=-6.1)

where

squ(a)=[1 if the largest integer

less than a is odd;

-1 if the largest integer

B less than a is even (A-6.2)

We assume that the function Vn(x) eXxtends infinitelv long in
space, although this is not actually true for our problem.
We will assume the results derived here to be approximately

applicable to our actual finite-extent problem.

We obtain the power spectral density by first
calculating the autocorrelation function (acf) of the
process. We note that the process considered here is not
stationary so that the ensemble-acf obtained by the
conventional method of ensemble averaging the product of the
function values at a pair of points is not a function of
their separation alone, as we reaquire in order to take the
Fourier transform, However, for the process considered

here, we can use one of two techniques to obtain an acf,
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both of which give the same results. The first technique
[46] consists of obtaining the spatial acf CT(Y) for a
sample function Vo1(x), for a specified shift, v, of the
whole function, and then ensemble averaging this CT(y) to
get the acf for the whole process. In the second techniaue
[47], we obtain the product of the values of a sample
function VnT(X) at a pair of points, x and x+y, find the
ensemble average of this product, and then average over all
X in the cvecle. The cycle here has a width 2d where d is
the width of one pixel. We use the first technicue here
because it is simpler, since, for the process considered
here, the spatial acf C1(y) is the same for all sample
functions so there is no need for ensemble averaging. A-

i=-b.1.1 The case where |viid

The expression for acf that we derive in this section is

valid only for the case where the extent of the shift, y, of

the sample fun@tiOﬁ‘Vn1(x) is less than the width of each
line, d.
We show, in Figure A-6.1, two adjacent pulses in the

function Vn1(x) with amplitudes A, and A,, where
A1 = Ay + 1y (Ab + Ad) (8-6.22a)
AZ = Ab + r'2 (Ab - Ad) (A-6¢2b)

The r, and r, in the above equations are independent
Gaussian random variables, each having a mean 0 and a

variance 1/L,
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Figure (A=-6.1): Two tvpical pulses in a noise sampnle
function VnT(X) and the shifted
function Vn1(X+V)
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We also show the same two pulses shifted by an amount y
(in dotted lines). From looking at this figure and
remembering that calculating the spatial acf involves
multiplying V _.(x) by V_ ,(x+y) and obtaining the intesral of

this product, we see that

X
1
CT(y) = lim 7% VnT(X) Vn1(x+y) dx (A-6.3)
X= o
For jyl<d, this becomes
1 A% ¥
Ciy) = g B [ (d-y) P (d-y) ot vAAgl (a-6.h)

where E[x] is the expected value of x obtained by ensemble
averaging. This ensemble average occurs here, although only
one sample function Vn1(X) is being considered, because the
'r's in the different pulses of width d forming Vn1(X) are
all independent, Therefore, in the infinitely long wave
V,4(x), there are so manv independent values of r, that
averaging over all the contributions to each of the three
terms in Equation (A-6.4) as is reauired, is equivalent to
finding the ensemble average value for each term. To
perform the ensemble average indicated in Equation (A-6.4),
we substitute for A, and A, from Equations (A-6.2a)-(A-6.2Db)
and use the fact that the 'r's are independent and have mean
values of 0 and variances of 1/L and end up with

2 (d-y) (,2 2 -
C,(y) = Ap + La (Ab + A%) for |yl<d (A-6.5)

A-6.1.2 The case where lyl>d
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In the case where the shift y has any magnitude greater than

d, we can see that Equation (A-6.3) for CT(y) reduces to
Cily) = E[yaqa,] (A-6.6)
This leads to

C,(y) = a2 for fyl>d  (A-6.7)

o

A-6.1.3 The power spectrum

Taking the Fourier transform of C1(v) as expressed by
Equations (A-6.5) and (A-6.7), we get, for the power

spectrum of Vn(X)’

( 22 + a2 ) z

2 5(8) + b d__ 4 [51”1 “fdfl (8-6.8)
L L ( wfd) J

P.!(f') = A



- 133 -

7. FORM DISCRIMINATION

7.1 Qverview

In Chapter 5, i.e., the part on detection of small
features, we ignored the internal structure of the features
to be detected. While the detectability of small features
provides a good measure of one aspect of picture ocuality,
the aim of most pictures is to provide good enough aquality
so that we can identify the form of a feature. Usually, the
identification problem can be thought of as one in which the
observer has various possible alternatives in mind - perhaps
a large number of them - and he believes the given feature

to be a speckled version of one of these forms. In this

0N

chapter, we consider some simple cases of this idealized
form identification problem. Specifically, we consider
three cases of discrimination, i.e., discriminating among
two possible forms, two possible orientations of a given
form and four possible orientations of a given form. Our

aim here is to try to relate the parameters of the possible

alternatives to their discriminabilitv.

In order to be able to make any theoretical
predictions, we have chosen some simple geometrical forms
for which calculations can be made reasonably easily. The
forms chosen are such as to have very little complexity of
structure, and they are easily identified in the absence of

speckle.
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Not much is known about the exact perceptual mechanism
involved in form discrimination., Therefore, the
calculations we make are based on an assumed nearly optimal
discriminator. There is some evidence to support this
assumption. In any case, we checked our calculations by
computer simulation of the pictures for various sets of
parameters and psychophysical experiments in which these
pictures were shown to observers, and found reasonable

agreement with the theory.

7.2 The approach used

7.2.17 Qverview

To focus attention on the internal structure of the features
of interest, we isolate the features from their speckled
backgrounds, i.e., the features are assumed to be set in an
otherwise uniform completely dark backsground, rather than
the more reasonable speckled background. This makes
possible a simpler @athematical calculation, since the
background speckle need not be accounted for., It also means
that a large number of small features can be simulated in
each picture used in the experiments, since we need only
show the observer a small feature through a hole in a dark
mask., This allows us to use a large number of samples of
each set of parameters in the experiments, contrary to the

case for the detection of features discussed in Chapter 5.

We note that, with a speckled background,
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discriminability would be worse, as we verified by means of
a few simulated pictures. This has, in general, been found
to be true in visual form determination experiments in the

past [501.

The general approach we use here is the same as in the
problem of detection of small features in speckled
backgrounds. That is; we make some assumptions about the
discrimination process used by the observer, choose a

plausible theorv to calculate the probabilitv, b of

o
correctly distinguishing between the allowed shapes, then
run experiments in which an observer looks at simulated
pictures with various parameters and compare the probability
of correct decision P obtained experimentally with the
theoretical probability. In the experiments, the observer
is told what the possible shapes are and then asked to

determine which of the possible shapes the speckled patterns

seem closest to.

7.2.2 The forms used

Throughout this chapter, whenever we refer to "form" or
"shape", we mean the speckle-free feature from which the

speckled "pattern™ is obtained.

We considered first the problem of discrimination when
there are only two allowed shapes, differing slightly from
one another. The problem of discriminating between the two

shapes shown in Figure T7.1(a) was considered first. The
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theory, which we describe in the next section, predicts that
the two shapes in Figure 7.1(b) are just as differentiable
from each other as the two shapes in Figure 7.1(a). In
order to verify this experimentally, we simulated some
pictures that had the two shapes in Figure 7.1(b) as the
allowed shapes, although the majority of the pictures
simulated here are for the problem of distinguishing between
the two shapes in Figure 7.1(a). We will refer to the
simulated pictures having the two shapes of Figure 7.1(a) as
the Set 1 pictures, and the ones corresponding to Figure

7.1(b) as the Set 2 pictures.

We also considered the problem of distinguishing
between two possible orientations of a given shape. The
shane and the two orientations considered are shown in rFigure
7.2(a). We then extended the theory to the case where four
alternative shapes are present and made a few simulations
for the four orientations shown in Figure 7.2(b). We will
refer to the set of pictures corresponding to the shapes in
Figure 7.2(a) as Set 3 and the ones corresponding to Figure

7.2(b) as Set 4.

We will refer to the shapes shown in Figure 7.1(a) as U
and 0, those in Figure 7.1(b) as O and S, those in Figure

7.2(a) as U and R, and those in Figure 7.2(b) as U,D,L,R.
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T.2.3 The parameters

In the absence of speckle, all the shapes described above

are obtained from squares of size D pixels # D pixels, by
making some portions brighter than the others. In the

absence of speckle,; all pixels in these brighter portions

have intensities Py (1+b) while the remaining pixels in the
squares have intensities PG' The brighter no-tions in» all the
shapes occur in strieos of width J pixels along the ecge of the
scuareof side U and are shown shaded in Figures (7.1) and (7.2).
in 211 cases, D=%xJd 30 that the darker p@rtimhs (if anv exist in

tne snhave) are also of thicxness J nixels.

All pixels in all the speckled pictures have L looks,
i.e., are obtained by summing L independent estimates of the
speckle~corrupted pixel intensity. Thus, our parameters are

L, b, and J (or D).

7.3 Theoretical calculations

7.3.1 General method

Currently there isn't enough known about the perceptual
processes involved in discrimination of forms, so that the
use of any visual model and calculations based on it, as in
the previous chapter, is not feasible. However, some

guidelines do exist.

Previous work on discrimination has shown [51], as one
would expect, that two patterns become more easily

discriminable from one another as the "difference" between
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them increases. This difference may be any kind that is
visually perceptible. One reasonable way of objectively
characterizing the difference between the various forms we
consider is used here., We start by representing the two
forms in terms of a few basic spatial components, which we
can choose to be orthogonal. One simplified choice of
orthogonal basis vectors is the set of 9 squares of size J
pixels * J pixels that characterizes each figure. Or, we
could increase the complexity greatly but get a more

accurate representation by choosing the D2 pixels in each

(e

pattern as D2 orthogonal basis vectors. We chose the
former, simpler approach, The various shapes are then
characterized bv 9 components, each one representing the
total power reflected by the J2 pixels of one of the 9
squares of size J pixels ¥ J pixels. There is some
sacrifice in accuracy in using this representation, because
the intensity variation within the individual sguvares of
size J2 pixels is ignored and only the sum retained. This
representation would be acceptable if, for example, we were
considering machine recognition and the input to the machine
was obtained from a sensor that summed the intensities of
the JZ pixels in each square somewhat like the sensor

considered by Dainty [23].

It may or may not be reasonable to consider the human
observer's perceptive process as performing the sort of

summation described above. But we may try to justify the
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use of this model by the following arguments:

(a) If the observer is told, as he is in our experiments,
exactly what the forms are, his brain will be examining the
9 squares of size J° pixels in the pattern, so it is
reasonable that he will mentally divide the pattern into 9

2 pixels and fix his attention on the 9

squares of size J
squares, examining each as one unit. Of course, he is
limited in his judgement of how large the sauares should be,
but since the observer in all our experiments initially saw
a high signal-to-noise version of the pattern he would
examine, this limitation 1s not too great. This method of
showing the observer a high contrast version of whatever he
is looking for, has the same effect as a training period for
the observer (Green and Swets [28], Appendix on Experimental

Procedures) that makes the assumption of his ability to

Judge relative sizes reasonable,

(b) Once we assume, as in (a) above, that the observer's
attention is focused on a particular square of size J2
pixels, then the same arguments as in Chapter 5 apply to
Justify the use of the sum of intensities in the saquare as a
parameter, i.e., either we may assume that his visual system '
actually performs the spatial summation, or that it responds
to some function of the individual pixel intensities in the
square of size J2 pixels that mav be approximated by their
sum. We also considered another function of the J2 pixel

intensities which assumed that the J2 pixel intensities are
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independent estimates that are combined suboptimally by the
visual system, so that they effectively act as if onlv
(32)1/2-7 such estimates were available. The use of the
square root in this suboptimal combination of estimates
comes from an analogy with incoherent summation in the case
of line pair detection, Because the same detection
mechanism is not used here, the assumption may be somewhat
unrealistic. However, the calculated probabilities of
correct decision pc based on this suboptimal combination of
the estimates was found to be a useful lower bound for the
experimental 50, while the ones based on the optimal use of

the estimates formed an upper bound to the experimental ﬁc,

Using these assumptions, we calculated the probability
of correct decision given one of the shapes, as the
probability of identifying the given speckled pattern as
that shape, and then the overall probability of correct
decision for equally likely shapes. We now describe the

decision mechanisms assumed:

(¢) In the case of distinguishine between two shapes of the
kind shown in Figure 7.1(a) or Figure 7.1(b), the observer
has to look at a particular one of the 9 components which we
call C and decide whether, in the given pattern, this
component is "bright" or "dark", i.e., is a speckled version
of intensity P,(14b) or Py. In Figure 7.1(b), this
component C is the central square of the shape; in Figure

T.1(a), it is the central one in the ton row. ihe observer
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needs a standard which tells him what "bright" and "dark"
should look like. We assume that he derives this standard
from the squares that he knows to be dark or bright and from
his knowledge of db. In the case of the Figure 7.1(b)
shapes, he has some direct idea of what "bright" squares
should look like because the 8 outer squares are "bright",
and then, from his knowledge of b, he is assumed to be able
to judge what "dark" looks like. In the case of the Figure
7.1(a) shapes, he knows what "dark" looks like from the
central square and what Ybright" looks like from the 7
surrounding saquares that are known to be bright. This
difference between the cases of Figure 7.1(a) and Figure
7.1(b) might make a small difference to the experimental BC
for the two cases, Because our experiments are not
sensitive enough to detect this difference in our
calculations, we assume its affect to be negligible. Thus
the same calculations should apply for both the cases,
Figure T.1(a) and Figure 7.1(b). We now describe the method
used for these calculations. We assume that the observer's
perceptual process is able to use his knowledge of L and b
and "bright" and "dark" standards to evaluate the threshold
intensity at which the two conditional probability densities
involved (i.e. the one given C "bright" and the one given C
"dark") are equal. Then he makes a decision about component
C being "bright" or "dark" according as the observed
intensity of C falls above or below the threshold. Thus he

acts as a maximum a posteriori probability (MAP) detector
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[21]. Since we assume both possibilities are a priori

equally likely, the MAP detector is equivalent to a Maximum
Likelihood (ML) detector [21]. This assumption of MAP or ML
detection by the observer is at least plausible, and it has

been verified in some cases in the past [28].

(d) The case of distinguishing between two or four
orientations of a shape, as in Figure 7.2(a) and Figure
7.2(b) is somewhat different from the cases discussed in
paragraph (c¢) above. In the case of the two orientations of
Figure 7.2(a), it is reasonable to assume that the observer
makes his decision by determining whether the central square
in the top edge (C1) or the right edge (C2) is the brighter
one, There he does not need to make any Jjudgement about
"bright" or "dark" levels as in the cases of Figure T7.1(a)
and Figure 7.1(b). This process is equivalent to the one
used in the detection of orthogonal signals in
communications theory [21]. The idea of using this
orthogonal signal theory in the determination of orientation
of a nolsy shape, for the case of additive white Gaussian
noise, has been used before [31]. 1In our case, however, the

noise 1is not AWGN,

7.3.2 Remark on method used

Finally, we note that even if the observer does not actually
behave according to these assumptions, the probabilities
resulting from his visual and perceptual mechanism, whatever

it actually is, can at least be compared experimentally with
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the ones calculated for the idealized observer which we
assumed. This is what we hope to do with our simulations
and experiments., We find that as the parameters b, L, J are
varied, the experimental and calculated probabilities follow
the same trends, and that the experimental probabilities
mostly fall between upper and lower bounds represented by
the calculations based on the assumed optimal and suboptimal
combinations of the J2 intensity estimates within each basis
square. These results at least lend support to the
arguments used in our calculations, although thev do not
justify them, since other alternative theories might give a
similar agreement with theory. 1In anvy case, the close
agreement of the experimental results with the theorv shows
that the theory is one reasonable way to make predictions of
probabilities for the kind of problems considered here,

within the range of parameters investigated.

7.3.3 Details of méthod of calculation

7.3.3.17 Case of two alternatives of Figure 1

We first consider the case where there are two alternative
forms as in Figures 7.1(a) and 7.1(b). Figure (7.3)
illustrates schematically the calculations for this case.
Although the two shapes may be characterized by nine
orthogonal components, they differ in only one such
component, so that, to calculate Pos onlvy this component, C,

need be considered.
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Py (x)

pp(x), pg (x)

X¢ area = p(e|d)

area=p{e|b)

Schematic for ML detection mechanism assumed

"2 alternative forms" calculations

Figure (7.3):
in
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For any one of the nine basis vectors, the
corresnonding component can be either MPG oi MPG(T+M). Given
either of these values, a priori, we can calculate the
probability density function for the corresponding total
intensity following Chapter 3. This density function is a
gamma-distributed random variable with M degrees of freedom;
where M = LJ2 in the optimal case, or M = LJ in the
suboptimal case [see subsection (7.3.1)]; thus

1 M- mx/Bg

p.(x) = —— e Y for x>0
(M-1) -x/P,(1+Db)
pb(x) = 1 X e 0 for X>O' (7'2)
[P0(1+b)]M T (M)

with the probability densities being 0 for x < O. Here,
Py(x), pp(x) are, respectively, the probability density
functions for the cases where the relevant component C of
the shape is the darker or brighter alternative, i.e., has a
mean value of POM or‘PO(1 + b)M. Thus, for the case of Set
1, shown in Figure 7.1(8).Db(x) is the probability densitv
for component C of the form 0, while pd(x) is the one for
the form U, 1In the case of Set 2, shown in Figure 7.1(b),
Pb(x) is the probability density for the relevant component

C in the shape of S, while pd(x) is that for shape 0.

The calculation of P, for the ML detector (in this case

equivalent to the MAP detector) now proceeds as follows:

The intersection of the two density curves represented
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by Equations (7.1) and (7.2) gives us a threshold intensity
of x,. If the observed intensity falls above this, then the
probability of occurrence of x is higher if the brighter
alternative is assumed to be present than if the darker is
assumed present. So the ML detector chooses the brighter

alternative. If x < x,, it chooses the darker alternative.

By equating the density functions of Equations (7.1) and

(7.2), we get, for the threshold intensity X,

x,= P { M 1n(1+b)} (lﬂ) (7.3)

b

\

The probability of error given that the brighter alternative

is actually present is

X

[t
plefb)=f p (x)dx

Jo

—
-~
°
4=
~—r

The probability of error given that the darker alternative

is actually present is

(s 0]

p(e!d)=f py(x)dx (7.5)

e

The overall probability of error, for equally likely bright

and dark alternatives is

p, = zlp(e|b) + ple/d)]

e

(7.6)

and the probability of correct decision is



c e (7.7)

‘The probability of correct decision can be calculated from
the above equations, using either numerical integration or
tables of the gamma distribution. Since these tables are
not available for all the desired values of M in our
simulation and for ali the X, values that occur, we used

numerical integration,

For large values of M, we can use the Gaussian
approximations for the pdf's involved (see Chapter 3).
Since extensive tables of the Gaussian distribution are
readily available, this method is useful. We checked the
results obtained by using this approximation with the
numerical integration results using the exact Equations
(7.1)-(7.7) for values of M equal to 18, 24 and 25, and with

b

1

1.0. We found that the values of p(eib), pl(eld) and P,
calculated by these two methods agreed to within + 0.02 or
better, which is a close enough agreement for our purposes.
Hence, for all values of M > 25, we used the Gaussian
approximation, For all values of M < 25, we used the exact
method with numerical integration to calculate pc' These
calculated probabilities p,, and the experimental ones, D,
are shown in Tables 7.1(a) and 7.1(b). See the subsection
on 'Tables of Results' for further details. The

calculations for all cases are done for both, M = LJ° and M

= LJ.
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The use of the Gaussian distribution along with a
further approximation for b << 1, leads to the following

useful gquick approximation to the value of the threshold x

t
and Dt
X =~ P M(l+ h) (7.8)
t 0 2 .
and
N 1 bVM bvm |
Pe = 1 - 23Q(2(1+b))+ Q('_z_—{ (7.9 )
[+o]
where Q(z) f"’l—‘ exp(-y°/2) dy. (7.10)
3 (2%)1/2

7.3.3.2 Case of 2 orientations of Figure 7.2(a)

Here we assume that the observer looks at 2 vector
components C1 and C2 of the pattern he is shown, and decides
which of them is brighter. He does not have to try to
decide, as in section (7.3.3.1), whether the absolute level
of a given componenf of the pattern 1is closer to POM or to

Po(" + b)M-

We can see that the probability of correct decision is
the probability that the component which is actually

brighter is seen as brighter, and is therefore given by

© X

pc‘-“jg pG(X)dx’/; pg(y)dy (7.11)

where p.(x), pp(x) are given bv the same expressions as

Pb(x) and pd(x) in Equations (7.1) and (7.2) respectivelv.
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We use the notation oG(x) and Db(X) to emphasize the
similarity with the calculations in Chapter 5. By
substituting these gamma density functions for pG(X) and
Pg(x) from Equations (7.1) and (7.2) in Eqguations (7.11), we

can obtain P, using numerical integration.

Alternatively, for M > 25, we can use the Gaussian

approximation for DG(x) and DB(x), and obtain the

approximation

bv/M \
= 1 - Q —_—
Pe ( J2[1+(1+b) 21/ (7.12)

The agreement between the o, calculated by this egquation and
the exact ones is very good for all the cases investigated,

since all of them had M > 51 and b = 0.26.

These calculated results are shown in Table T7.2(a),
along with the experimental ones, The calculated
probabilities for all cases are shown assuming M =LJZ as

well as M = LJ.

7.3.3.3 The case of four aliernative orientations as in
Figure 2(b)

In this case, the observer decides which of four basis

squares (top center, bottom center, left center or right

center) is brightest. The probability of correct decision

is then
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@ X

: 3
P =/ p.(x)dx f p (y)dy] (7.13)
c 0 G [ 0 B

ihese p  were caleculated by numerical intepration for a few
cases and are shown, along with the experimental values, in
Table T.2(b). Calculations are shown for both M = LJ2 and M

= LJ.

7.3.4 Analogy with optimuym detector theory

The decision mechanisms in all the discrimination problems
discussed above are analogous to some case or other of
optimal detection of signals in noise. To see the analogy
more clearly, we make the Gaussian approximation to the
probability density functions of Egquations (7.1) and (7.2),

and assume a low contrast, b << 1., Then the two probability

g
[

density functions have approximately equal variances hku , and
look like those for signals in additive white Gaussian noise
(AWGN) in problems of optimal detection [21]. The mean

values of the intensities here then correspond to the signal
amplitudes in the optimal detector case and the speckle-
induced variability of intensity corresponds to the
variability of the received signal-plus-noise vector caused

by additive noise in the receiver. By working out the

details, we can obtain the approximate Equations (7.10) and

(7.12).
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7.4 The simulations and experiments

T.4.1 h rocedure

In order to test the validity of our calculation of P,, wWe
performed computer simulations of four different sets of
forms for many different sets of parameters, The most
eXtensive simulations were for the case of Set 1 in Figure

7.1(a), i.e., for distinguishing between U and 0O .

The procedure used was to generate pictures of size
(300)2 pixels, each picture correspondine to a fixed value
of b, L, J. Each picture, which we will also refer to as a
sample, consisted of a matrix of patterns each of size D # D
pixels as in Chapter 6. By 'pattern', we mean a speckle-
corrupted version of any one of the allowed alternative
forms. That is, for the sets of Figure (7.1) and Figure
7.2(a), a random matrix of equally likely O0's and 1's was

generated by computer. Then, cor

"3
@
n
o]
8]
3
[«
o
3
00}
ot
Q
*
g
(7
(]
63

s one
of the two alternative forms, say SO, was generated, and,
corresponding to the 1's, the other form S1 was generated.
For Set 4, a random matrix of equally likely O's, 1's, 2's
and 3's was similarly used. The number of patterns per
picture, N, was as many as could reasonably be fitted in the
picture., N varied from picture to picture depending on the
value of D, but was in the range of 64 to 256, The
background in which the patterns were set was, as stated

before, completely dark. The arrangement of each picture is

shown schematically in Figure (7.4). Some examples of the
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® @ 6 ©
300 pixels

300 pixels -

Figure (7.4): Arrangement of patterns in a picture
in form discrimination experiments
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pictures simulated are shown in Figure (7.5) and are

discussed in the next subsection.

The experiments consisted of showing speckled pictures
obtained with various sets of parameters, b, J (or D), and
L, to an observer, who was given certain directions and
asked to decide which of the specified possible forms each
pattern in the picture represented. The facts revealed to
him, which were chosen following the procedure given in

Green and Swets [28] were the following. He knew
(a) what exactly the various possible forms were
(b) that they were all equally probable

(c) the contrast ratio (1+b)

(d) the number of looks per pixel L

(e) the value of J.°

The responses of the observer were then compared to the
original (correct) responses. From the proportion of errors
made by the observer for each shape, we can estimate the
probability of error given each shape and the overall
probability of correct decision. These experimental results

were then compared with the analytical ones.

7.4.2 Examples of simulated pictures
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7.4.2.1 Qverview

As in Chapter b6, the size of each sample is irrelevant to
the discrimination problem, but we specify it for
completeness; all samples shown are 200%200 portions of an
original 300%300 picture, which is why some of the patterns
at the edges are incomplete. The last 6 lines are the
caption, which specifies, among other things, J, L, (1+b) in

dB, and the stretch parameters.

7.4.2.2 The sampile
(1) The first photograph contains samples M2, R16, R10 and M5,
All these are samples consisting of patterns that are either

O0's or U's,

M2 is a 3 dB, 34 look, J=3 picture which is almost like
an unspeckled picture in the sense that all the patterns are

clearly recognizable.

R16 also has J=3 and 3 dB contrast but L=8, and the
patterns are much harder to distinguish than in M2. Thus, a
comparison of R16 and M2 shows the improvement in

discriminability with increase in L.

R10 and M5 both have 1 dB contrast and L=20, but J=5 in
R10 and 3 in M5. The patterns in R10 are much more easily
identified than those in M5, which shows the improvement in
discriminability with increase in pattern size. We will
refer to the poor discriminability in M5 in the Conclusions

section in this chapter,
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(2) The second photograph shows K2, F6, F2 and F8. The
captions show what the patterns (see Figure (7.1)) in each
of these are., K2 has 0's and S's while R10 has U's and O's.
Although a comparison of K2 and R10 is not sufficient proof,
it does illustrate the fact that for the same parameters,

the forms U and O are just as discriminable as S and O.
(See photograph 1 for R10)

F6 has patterns with one of two orientations, U, D, R,
L. F2 and F6b have the same parameters, and a comparison
indicates that it is harder to distinguish between Ui
alternatives (as in F2) than between 2 (as in F6). A
comparison of F8 and F2 shows the improvement in

discriminability as L increases.

T.4.3 Tables of results

Tables 7.1(a), 7.1(b), T7.2(a), 7.2(b) show the experimental
and calculated probabilities for the 4 sets in Figures (7.1)
and (7.2). The tables give, for each picture, at least the

following:
(a) the parameters b, L, D

(b) the probabilities of correct decision BC obtained

experimentally
(¢) the probabilities of detection P, obtained analvtically

(d) In addition, for the cases in Sets 1 and 2, where only
two alternatives are present, and the probabilities of error

given each alternative are expected, theoretically, to be
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Table 7.2(a): Two orientations; Set 3 (U and R)

(1+b) L J M= # of Probabilities Bounds on
dB (a) LJ, sam- Theoretical Experimental P,
(b) LJ ples P, ﬁc lower, upper
1 6 5 30 100 0.81 0.85 0.76, 0.91
150 0.977
10 5 50 100 0.87 0.96 0.90, 0.99
250 0.995
17 3 51 256 0.88 0.86 0.81, 0.90
153 0.98
13 4 52 144 0.88 0.87 0.80, 0.92
208 0.99°
20 5 100 100 0.95 1.0 0.96, 1.0
500 0.9998

Table 1.2(b): Four orientations; Set 4 (U, D, L, R)

+

(1+b) L J M= # of Probabilities Bounds on
dB (a) Lg sam- Theoretical Experimental 50
(b)LJ ples Pe Po lower, upper
i 6 5 30 100 0.64 0.70 0.60, 0.79
153 0.95
10 5 50 100 0.75 0.82 0.73, 0.89
250 0.99
1T 3 51 256 O.75V 0.82 0.77, 0.86
153 0.95
13 4 52 14y 0.75 0.81 0.74, ©0.87
208 0.973
20 5 100 100 0.88 0.95 0.89, 0.99
500 0.999
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different, these probabilities are also given.

For cases where M<25 in Tables 7.1(a) and (b) and in
Table 7.2(a), the values listed as " Calculated
Probabilities' were obtained as described in section 7.3 by
numerical integration of the appropriate exact expressions.
For cases where M>25, we used the expressions based on the
Gaussian approximation, which gave results within +-0.02 or
better of the eXxact ones in these cases, as we verified in a
few cases. For all cases of Table 7.2(b), the exact

expression was used.

The results on calculated probabilities include both
those made with the assumption of M=LJ?2 {rows labeled (b))

and those with the assumption M=LJ (rows labeled (a)).

T.4.4 Analysis of results and conclusions from experiments

From our thecoretical and experimental calculations, we

arrived at the following conclusions:

(a) We find that the P, values obtained experimentally
almost always lie between those calculated analytically for

the two cases M:LJ2 and M=LJ.

(b) The experimental estimates of probability of error given
the individual shapes p(elb) and p(el!d) in cases where they
are different for the different shapes don't show the same
order relation as the corresponding calculated

probabilities, i.e., don't agree with the theory about which
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of the two is greater. However, this may be due to
experimental error in measuring small quantities, since the
probabilities of error in all the cases dealt with are
fairly low. Or, it could be due to an observer bias which

changes from picture to picture.

(¢) The use of the Gaussian approximation to the gamma
distribution leads to simple approximate expressions for Dc
that are, for large M, verv close to the ones obtained using

the exact gamma distributions and numerical integration.

7.5 Conclusions

In this chapter, we made certain assumptions in order to
calculate the probabilities of correct decision in the
problem of discriminating between certain geometrical forms.
We checked our calculations experimentally using computer
simulated pictures. From the results of our experiments, we

arrive at the following conclusions:

(a) The conclusions of paragraph (a) of section 7.4.3 are
valid for the fairly wide range of parameters covered
experimentally, This fact lends credence to the theories
about the identification process used in making the
analytical calculations, although it does not actually prove
that these theories are correct. There is an insufficient
number of patterns for each set of parameters to validate
completely the theories used, since other plausible theories

might equally well produce the same degree of agreement with
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the experimental probabilities. However, whatever the
mechanism used, the results indicate that the present method
of calculation can be used to make predictions about pc, The
simple approximate expressions for the low- contrast, high M
cases should be especially useful in designing a system to

provide a desired P, for any of the cases considered.

(b) We now wish to comnare the diseriminability of forms in
a given picture with their detectability. For instance,
consider the case where we are trying to identify a feature
in a speckled background, and if we assume b=.26, L=13, we
see from Table 7.1(a) that, for p_ =0.95, we need J=4 or
D=12, even by the optimistic estimate which uses MzLJ?
rather than M=LJ, and even if we know that there is only one
alternative form allowable that differs in one orthogonal
componegt. This is much larger than the D=7.3 required for
the detection of that feature in a 12 look 1 dB 100%100

nicture. Nnte that the form diserimination results are baxed

on a completely dark backeround. If the backeround in which the

patterns are set w re also sneckled, the orobability of correct
decision would decrease Yecause there “s, in general a worsening

of form recognizabilitv a2s the ba-kground is made non-unirorm,

g

Az arother examnle, consider samnle M5 in the first

photograph of Figure (7.5). This sample has 1 dB contrast

and D=9, L=20 and only two possible patterns in the picture.
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The patterns are seen to be hard to identify in this sample.
If we merely had to detect one of these patterns located in
a speckled background, it would be clearly detected, as
shown in Chapter 5. We can see from the photograph in
Chapter 5 that the 1 dB, M=648 cases of S23 and B21 give
good detectability, and an M=1620 picture like the one we

are discussing would be even better.

‘thus, by combining the results of Chapters 5 and 7., we
are #ble to specify how much harder it is to disecriminate

between two or more forms than it is to detect them.
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8. SUMMARY AND CONCLUSIONS

8.1 General

We have investigated the problem of characterizing the
degradation caused by speckle in pictures generated by SAR
or-other coherent mapping systems. For this purpose,; we
have considered pictures in which, in the absence of
speckle, the in?ensity at any point in the picture can be
only one of two values PO or PO(1+b). The contrast ratio
(1+b) and the number of looks per pixel, L are picture
parameters that are important in determining the guality of
the picture. We have con:idered, both theoretically =and
experimentally, the extent of picture quality imnrovement
as either of these parameters increases. The eve-charts

of Chapter 2 provide a2 good visual demonstration of sneckle
effects, and, i~ Cha ter 5, we showed how the theoretical
model used for detection of features predicts some of the
guantitative relatibns between b, L and picture quality in

the case of the eye~charts,

We have considered the problem of determining whether
or not some inﬁensity variation seen in a speckled picture
is inherent in the picture., That is, would the variation be
present in the picture if speckle were eliminated, or is it
an artifact produced by speckle? fhe answer, for a picture
with given parameters b and L and picture size W#W, depends

on what kind of inherent intensity variation we are looking
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for. We have considered problems that fall into one of
three categories of intensity variation that we might be

looking for.

In each category, we made some theoretical calculations
that served as a guideline for our experiments. 1In the
experiments, we showed simulated pictures to an observer who
was given a specific decision task, and we noted the
percentage of correct responses made by the observer. The
results of these experiments agree with the calculations
based on the particular theoretical model used to predict
the outcome of the experiments. However, the number of
experiments made is not large enough to rule out other
plausible theoretical models. But the experiments do show
that the theoretical models we have used give reasonably
good results. We now discuss these three categories in more

detail.

8.2 The three categories

(a) The first category deals with detection of a small
square of D¥*D pixels in a picture of W¥W pixels. We related
theoretically, the probability P,, of the observer's
correctly detecting this feature, to the parameters b, I,

D, W, and verified this relation experimentally. We also
obtéined a simple formula that can be used to design the

system parameters b and L reguired for a specified

theoretical probability, Po=py = 0.95, of correctly detecting
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a square of D¥D pixels in a picture of N=W¥*W pixels. Ve
first obtain M from the formula, repeated below, and then
use L=M/D2. 1In all our equations, Q(x) is the integral of

the normal probability density function from x to .

2 (N) & (4m-1)'/2

SR CI R PR (5.29)
(1+5) 172 |

1/K

where Q (z_ ) Py Q [zp1(N)] = Py=(0.95) (5.30)

pt

(b) The second category deals with the detection of a V*H
pixel grating consisting of alternating bright and dark
lines, each one D pixels wide. We defined a speckle-
signal-to-noise ratio (SSNR) expression that involves all
the grating parameters b, D, L, V, H and fitted a regression
curve to the data of experimentally obtained probability of
correct decision P,. The SSNR expression and the regression
equation are repeated below. Together, they can be used to

predict p, for a grating of given parameters. We also

derived another very similar expression for SSNR, which can

be used equally well to predict pc,

2
SSNR, 18 (b/2) L[Hviﬂl]‘/z (6.20¢)
YV 2(140/2)24+(b/2)2 1.5

P = 1 = 172 exp[-0.08264 (SSNR)2] (6.24b)
(e) The third category deals with distinguishing between 2

or 4 alternative geometrical forms. Each of these forms is

derived from a D¥D pixel saguare, consisting of 9 smaller
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squares, each of size J#¥J pixels. One or two of these nine

smaller squares is "dark" while the others are brighter by a

factor (1+b).

(1) We first considered the problem of discriminating
between the two forms which we have designated as S and O.
The results here also apply to the case of distinguishing
between U and 0. One of the simpler formulas derived, which
is valid for L>>1, b<<1, is guoted below. It relates the

probability of correct decision Pos to the parameters b, L,

) N 1 bVM bvm \!
P, * 1 -3 3 Q(2(1+b))" Q( 2 )§ TS

where M=LJ and M=L12 lead to lower and upper bounds on pc

J

and Q{x) is defined as in the case of the equation quoted
above. (2) We also considered the problem of distinguishing
between 2 orientations, U and R, and the problem of
distinguishing betwgen 4 orientations U, D, R, L. We auote
a simple formula for the case of large number of looks per

pixel for the 2-orientation problem.

bvM
p = 1 - Q s e
c ( /2[1+(1+b)2]) (7.12)

where M=zLJ and M:LJ‘2 lead to lower and upper bounds on P,
and Q(x) is defined as in the case of the two equation

above,
8.3 T hold rameter

For each of the three categories of problems considered
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above, we found the required threshold value of D for a
probability of correct decision P,= 0.95, for a picture with

parameters that are typical for a SAR system.

For a 1 dB contrast ratio and a 12 look picture, we

found the following results:

(1) To detect a small bright speckled square in a 100#100

pixel picture, we need D equal to 7 or §.

(2) To detect a speckled line pair grating of 100%#100
pixels, a line thickness D equal to 2 will more than

suffice,

(3) To determine the form of a speckled feature, even in the
favorable circumstances in which the background is
unspeckled, and only one alternative form is available, we

need D>12,

These results demonstrate that it is not possible to
characterize the quality of the imagery produced by a
coherent system by one single parameter, such as resolution
cell size or highest spatial frequency of grating resolvable
by the system. Thus, if for a given set of parameters b and
L, a line pair grating of width D is detectable with near
certainty, & square of size D may not be detectable. 4&gain,
if a D®D square can be located with near certainty, its form
cannot necessarily be determined. The detectability of line

pair gratings is a poor criterion for characterizing the
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quality of the picture. Discriminability of form imposes
the most stringent conditions on the system, in terms of the

b and L required to make a D#%¥D form identifiable.
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