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Abstract

An incompressible vorticity-streamfunction (VS) method is developed to investigate the single-mode
Richtmyer-Meshkov instability in two and three dimensions. The initial vortex sheet (representing
the initial shocked interface) is thickened to regularize the limit of classical Lagrangian vortex meth-
ods. In the limit of smaller thickness, the initial velocity converges to the velocity of a vortex sheet.
The vorticity on the Cartesian grid follows the vorticity evolution equation augmented by the baro-
clinic vorticity production term (to capture the effects of the instability on the layer) and a viscous
dissipation term. The equations are discretized using a fourth-order in space and third-order in time
semi-implicit Adams-Bashforth backward differentiation scheme. The convergence properties of the
method with respect to varying the diffuse interface thickness and viscosity are investigated. It is
shown that the small-scale structures within the roll-up are more sensitive to the diffuse interface
thickness than to the viscosity. By contrast, the large-scale quantities, including the perturbation,
bubble, and spike amplitudes are less sensitive. Fourth-order point-wise convergence is achieved,
provided that a sufficiently fine grid is used.

In two dimensions, the VS method is applied to investigate late-time nonlinear effects of the
single-mode Mach 1.3 air(acetone)/SFg shock tube experiment of Jacobs and Krivets [62]. The re-
sults are also compared to those from compressible ninth-order weighted essentially non-oscillatory
(WENO) simulations. The density fields from the WENO and VS methods agree with the ex-
perimental PLIF images in the large-scale structures but differ in the small-scale structures. The
WENO method exhibits small-scale disordered structure similar to that in the experiment, while the
VS method does not capture such structure, but shows a strong rotating core. The perturbation am-
plitudes from the two methods are in good agreement and match the experimental data points well.
The WENO bubble amplitude is smaller than the VS amplitude and vice versa for the spike ampli-
tude. Comparing amplitudes from simulations with varying Mach number shows that as the Mach
number increases, the differences in the bubble and spike amplitudes increase due to intensifying
pressure perturbations not present in the incompressible VS method. The perturbation amplitude
from the WENO and VS methods is also compared to the predictions of nonlinear amplitude growth
models in which the growth rate was reduced to account for the diffuse initial interface. In gen-

eral, the model predictions agree with the simulation amplitudes at early-to-intermediate times and



vi
underpredict at later times, corresponding to the late nonlinear regime.

The WENO simulation is used to investigate reshock, which occurs when the transmitted shock
reflects from the end wall of the test section and interacts with the evolving layer. The post-reshock
mixing layer width agrees well with the predictions of reshock models for short times until the
interaction of the reflected rarefaction with the layer.

The VS simulation was also compared to classical Lagrangian and vortex-in-cell simulations as
the Atwood number was varied. For low Atwood numbers, all three simulations agree. As the
Atwood number increases, the VS simulation shows differences in the bubble and spike amplitudes
compared to the Lagrangian and VIC simulations, as the baroclinic vorticity production for a diffuse
layer is different from that of a thin layer. The simulation amplitudes agree with the predictions of
nonlinear amplitude growth models at early times. The growth models underpredict the amplitudes
at later times.

The investigation is extended to three dimensions, where the initial perturbation is a product of
sinusoids and the initial vorticity deposition is given by linear instability analysis. The instability
evolution and dynamics of vorticity are visualized using the mass fraction and enstrophy isosurface,
respectively. For the WENO and VS methods, two roll-ups corresponding to the bubble and spike
regions form, and the vorticity shows the formation of a ring-like structure. The perturbation
amplitudes from the WENO and VS methods are in excellent agreement. The bubble and spike
amplitude are in good agreement at early times. At later times, the WENO bubble amplitude is
smaller than the VS amplitude and vice versa for the spike. The nonlinear three-dimensional Zhang-
Sohn model [I57] agrees with the simulation amplitudes at early times, and underpredicts later. In
three dimensions, the enstrophy iso-surface after reshock shows significant fragmentation and the
formation of small, short, tubular structures. Simulations with different initial amplitudes show
that the mixing layer width after reshock does not depend on the pre-shock amplitude. Finally, the
effects of Atwood number are investigated using the VS method and the amplitudes are compared
to the predictions of the Zhang-Sohn model. The simulation and the models are in agreement at
early times, while the models underpredict later.

The VS method constitutes a useful numerical approach to investigate the Richtmyer-Meshkov
instability in two and three dimensions. The VS method and, more generally, vortex methods are
valid tools for predicting the large-scale instability features, including the perturbation amplitudes,

into the late nonlinear regime.
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Chapter 1

Introduction

The Richtmyer-Meshkov instability denotes the growth of perturbations on an interface separating
two fluids following an impulsive acceleration [[§. In the laboratory, the impulsive acceleration is
typically provided by a shock. As a result, this instability is usually studied in shock tubes where,
at the entrance of the test section, an interface with a perturbation separates a light gas and a
heavy gas. The instability derives its name from the linear instability analysis of Richtmyer [T2],
who first considered the growth rate of a perturbation following an impulsive acceleration and later
numerically verified these predictions by solving the compressible linear instability equations, and
by the shock tube experiments of Meshkov @8], who verified the predictions of Richtmyer. The
instability has been extensively studied for its relevance to inertial confinement fusion [BIl B [d],
supernovae dynamics in astrophysics B Bl [6 ], supersonic combustion [B0] I52], as well as for its
fundamental interest [I54) [[7]. Developed in this thesis is a vorticity-streamfunction method for the
numerical investigation of the Richtmyer-Meshkov instability in two and three dimensions.

This introductory chapter is organized as follows. An overview of the Richtmyer-Meshkov insta-
bility, including the linear instability analysis, and the development of the single-mode instability is
presented in Section [I.J] The goals of this thesis are discussed in Section [[.2] The organization of

the thesis is presented in Section [1.3

1.1 Overview of the Richtmyer-Meshkov instability

An overview of the Richtmyer-Meshkov instability is presented here, including the linear instability

analysis (Sec. [1.1.1)) and instability dynamics (Sec. [1.1.2)).

1.1.1 Linear instability analysis

Presented here is the linear instability analysis for the Richtmyer-Meshkov instability, taken from
Pullin and Wheatley [[48] [49]. Additional information on linear instability theory can be found in
Drazin and Reid B3] BZ] and Saffman [[23].
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Figure 1.1. Sinusoidal interface for the linear instability problem in two dimensions.

Consider two incompressible, inviscid, irrotational fluids separated by an interface

n(y) = ay sin(ky), (1.1)

where a, is the pre-shock amplitude, ¥ = 2x/\ is the wavenumber, and A is the perturbation
wavelength (Fig. . Let 1 and 2 denote the fluids below and above the interface, respectively. In
two dimensions, let x denote the horizontal coordinate and let y denote the vertical coordinate. Let
the interface be parametrized as x(e,t) = [z(e,t),y(e, t)], where e is the parameter of the interface,
and ¢ is time.

The Richtmyer-Meshkov instability develops following an impulsive acceleration g = [u] d(t),
where §(t) is the Dirac d-function, and [u] is a velocity difference created by the acceleration. A
time dependence is introduced, so that the ansatz used in classical linear instability analysis for the
Kelvin-Helmholtz and Rayleigh-Taylor instabilities can no longer be used. To derive the new ansatz,

consider the boundary conditions for a flow at rest following an impulsive acceleration

Vé(z — to0) — 0, (1.2)
|G o] = | Ela0] 1.9

To solve the linear instability equations use the ansatz

(n, 61, 04) = [i1(z) a(t), 64 (2) fu(£), Bh(2) fa(t)] €(bx wH0w) (1.5)

and solve the initial-value problem to determine the time-dependent functions f;(t), f2(t), and a(t).

To satisfy the boundary condition [Eq. (L.2))] with initial conditions f;(0) = f2(0) = 0 and a(0) = ao,
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and substitute in Equations (1.3)—(1.4]) (for By = B2 = 7)(z)) to obtain

kR = .
B =
o |52 wswat| = |2 4150 alt)

(1.6)

(1.7)
(1.8)

(1.9)

To solve the system of first-order ordinary differential equations, apply the Laplace transform in

time
Fls) = /OOO F(#) et ds,
to Equations 7 to give the algebraic system
—kFy(s) = sA(s) —ag, kEFi(s)=A(s)—ao,

o1 [s Fils) + [l ao| = pa [s Fa(s) + [u] ag

The system can be solved to give

~ A ~ A -
Figs) = 29l g = A%l g~ 2y
s s s
where
A= P27/ ,
p1+ p2

is the Atwood number. Taking the inverse Laplace transform along the Bromwich contour

1 ct100 .
a(t) = —/ A(s) et ds,

211 —i0o

yields
a(t) =ap (1 +kfu] At),

indicating that the instability grows linearly in time. It follows that:

1. if po > p1, corresponding to A > 0, the instability immediately grows;

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

2. if po < p1, corresponding to A < 0, the instability initially decreases in a process called
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Figure 1.2. The shock tube test section and computational domain for the two-dimensional sim-
ulations of the Richtmyer-Meshkov instability. The diffuse sinusoidal interface separates the light
air(acetone) gas from the heavier SFg gas, « denotes the direction of shock propagation, and y
denotes the transverse (periodic) direction.

inversion, and then exhibits linear growth;
3. if p; = pa, corresponding to A = 0, the instability does not grow (called freeze-out).

In the case of a shock passing through an interface, [u] is the speed of the interface following
the passage of the shock, and aq is the initial perturbation amplitude. However, it is unclear
whether the Atwood number A and the initial perturbation amplitude ag should be formed from
the pre-shock values A~ and qg, or the post-shock values AT and ao+ . Richtmyer [I2T] (based on
numerical simulations of the linearized equations) concluded that the best agreement between the

model prediction and the simulation data is obtained with the post-shock values A+ and aa':
vo =k [u] AT ag . (1.16)

It is therefore customary to use the post-shock values in all of the models for both the linear and

nonlinear instability. The initial velocity is used to define the rescaled time
T=kuvt, (1.17)

which is used to distinguish the linear regime (7 < 1) from the weakly-nonlinear regime (1 < 7 < 4)
and the fully nonlinear regime (7 > 4). The initial growth [Eq. (1.16)] only applies to the linear

regime.

1.1.2 Single-mode instability dynamics

Presented here is an overview of the development of the reshocked single-mode Richtmyer-Meshkov
instability in two dimensions. The description is taken from a more comprehensive discussion in
Chapter [

The configuration considered here is the classical single-mode case, where air seeded with acetone



5

[air(acetone)] is separated from sulfur hexafluoride (SFg) by a diffuse sinusoidal perturbation [Eq.
(1.1)], where ag, k, and the diffuse-interface thickness 67 [Eq. (4.10)] are chosen to closely match
the parameters in the shock tube experiments of Jacobs and Krivets [62] (Sec. |4.2.1). In two
dimensions, a schematic of the shock tube test section and of the computational domain used in the
present simulations is shown in Figure Also shown is the shock entering the test section before
refracting at the interface separating the light air(acetone) gas and the heavier SF¢ gas.

Figure illustrates the instability evolution through the density p(z,y), vorticity w(z,y), and
simulated density Schlieren fields ¢(z, y) [Eq. ([£41))]. First, following the shock interface interaction,
shock refraction occurs, in which a transmitted shock continues into the SFg and a reflected shock
returns back into the air(acetone) and exits the computational domain. As the shock passes through
the interface, the misalignment of the density and pressure gradients causes a deposition of vorticity
through the baroclinic vorticity production mechanism. Consider the three-dimensional evolution

equation for the vorticity w = V x u (in the absence of dissipation terms):

dw

Vp x Vp
= T—i—(w-V)u—wV-u, (1.18)
where
d 0
a_9 ... 1.1
T 8t+u v (1.19)

is the convective derivative. The first term on the right side is the baroclinic vorticity production P
and constitutes the main mechanism for vorticity generation in the Richtmyer-Meshkov instability.
The second term is the vortex stretching S. Vortex stretching is identically zero in two dimensions,
as the vorticity field is perpendicular to the velocity field. The absence of vortex stretching in
two dimensions causes an inverse cascade from small scales to larger scales [[0], resulting in the
generation of larger and more coherent structures [I2Z9]. Thus, the dynamics of the Richtmyer-
Meshkov in three dimensions are different from the dynamics in two dimensions. The third term
is the vortex compression C and is small in the present simulations. In fact, compressibility effects
are not significant in the Richtmyer-Meshkov instability following the passage of the shock for the
moderate Mach numbers considered in the present work [03 04 B1].

The baroclinic vorticity production is large when the shock passes through the interface, as a
shock causes a jump in pressure, depositing positive vorticity on one side of the interface and negative
vorticity on the other side of the interface. As the positive vorticity represents a counter-clockwise
rotation, while the negative vorticity represents a clockwise rotation, the distribution of vorticity
on the interface drives the evolution of the instability. In particular, the heavy SFg penetrates into

the air(acetone) causing the formation of spikes, while the lighter air(acetone) “rises” into the SFg



@9, Aty
|

\
\

5.6 ms 5.7 ms 5.9 ms 6.5 ms

Figure 1.3. Time-evolution of the density p(z,y), vorticity w(zx,y), and simulated density Schlieren
¢(x,y) fields illustrating the development of the single-mode Richtmyer-Meshkov instability before
reshock at 0.06, 1.76, 3.06, and 5.26 ms (top panel) and after reshock at 5.6, 5.7, 5.9, and 6.5 ms
(bottom panel).
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Figure 1.4. The shock tube test section and computational domain for the three-dimensional sim-
ulations of the Richtmyer-Meshkov instability. The initial 7(y, z) interface separates the light
air(acetone) gas from the heavier SFg gas, x denotes the direction of shock propagation, and y
and z denote the transverse (periodic) directions.

causing the formation of bubbles. This can be seen in the instability evolution at 1.76 ms (Fig. [L.3)).
Subsequently, the spike rolls up forming the characteristic “mushroom” shape and the vorticity rolls
up into strong positive and negative cores. As the roll-up occurs, the baroclinic vorticity production
generates additional vorticity on the interface, in a mechanism also called vortex-accelerated-vorticity-
deposition (VAVD) [II5]. The baroclinic vorticity production causes the deposition of vorticity of
opposite sign in the roll-up, contributing to the formation of complex structures within the roll-up
that eventually fragment, as seen at 5.26 ms in Fig. Additional deposition of vorticity occurs
and additional complex structure forms in a process called reshock. The transmitted shock that
entered the SFg following the initial shock refraction travels faster than the interface, reflects from
the end wall of the test section, and interacts with the interface. At reshock, the shock refraction is
from the heavier SFg into the lighter air(acetone). As a result, a transmitted shock continues into
the air(acetone) and a reflected rarefaction wave returns back into the SFg. The passage of the shock
causes deposition of vorticity of opposite sign on the interface. As a result, the spike now transforms
into a bubble and vice versa in a process called inversion. This process is visible at 5.6 ms, when the
reflected shock is observed prior to interacting with the interface, and also at 5.7 and 5.9 ms. The
transmitted shock and the reflected rarefaction waves are visualized through the density Schlieren
fields at these times, which also show the complex system of reflected and transmitted waves in the
layer. Following reshock, the instability grows faster, and by 6.5 ms a complex layer develops.

In this thesis the single-mode case is extended from two dimensions to three dimensions (Chapter
5). In three dimensions, a schematic of the shock tube test section and of the computational domain
used in the present simulations is shown in Figure[[.4] The interface separating the light air(acetone)

and the heavier SF¢ gas is visualized through the mass fraction isosurface. The mass fraction is a
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scalar field advected by the velocity field and is initially zero in the air(acetone) gas and unity in the
SFs gas. The mass fraction iso-surface corresponding to m = 1/2 is used to visualize the evolution

of the instability in three dimensions. The perturbed interface separating the two gases is
Ny, z) = ag sin(kyy) sin (k; 2) , (1.20)

where k, and k, are the wavenumbers in the y and z direction, and a; is the pre-shock perturbation
amplitude. The values of k, = k., = kgp, and a, are chosen to match the values in the two-

dimensional study.

1.2 Goals of this thesis

The Richtmyer-Meshkov instability is a complex phenomenon that has been extensively investigated
numerically, analytically, and experimentally [[54] [[]. As the instability contains a wide range of
scales developing from small interfacial perturbations in the presence of shocks, a high-resolution
compressible shock-capturing method is needed to capture the dynamics and multi-scale properties
of the instability. In previous work [[8 [[29], the ninth-order weighted essentially non-oscillatory
method was used to investigate the physics of the two-dimensional single-mode Richtmyer-Meshkov
instability with reshock using a model of the Collins and Jacobs 7] Mach 1.2 air(acetone)/SFg
experiment. Concurrent with this investigation, a study was also performed to quantify the effects
of resolution and order of WENO flux reconstruction on the instability dynamics and other charac-
teristic quantities [[7]. This study underscored how physical and numerical effects are closely linked
and concluded that the ninth-order WENO method is well suited for investigating the instability
dynamics.

The single-mode Richtmyer-Meshkov instability is numerically investigated into the late nonlin-
ear regime in this thesis by simulating a model of the late-time Mach 1.3 air(acetone)/SFg Jacobs
and Krivets [62] shock tube experiment (Sec. . These experiments were previously considered
by Peng, Zabusky, and Zhang [[T3] as part of a numerical investigation of the effects of the vortex-
accelerated secondary baroclinic vorticity deposition (VAVD) using a piece-wise parabolic method.
The present investigation is performed in the spirit of a previous study of the Collins and Jacobs
20 experiment using the WENO method [[8 [29], but the present work is different in two impor-
tant ways. (1) The Jacobs and Krivets experiments have a higher Mach number, so that a later
nonlinear regime is reached (by contrast, reshock occurs at an earlier time in the instability develop-
ment in the Collins and Jacobs experiment). (2) The instability is investigated from a perspective
complementary to the compressible WENO approach by considering the incompressible dynamics

of the underlying vorticity deposited by the passage of the shock. In fact, following the passage of
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the shock, the Richtmyer-Meshkov instability is essentially an incompressible phenomenon [B4] B7].
Furthermore, for a high Reynolds number flow (including the Richtmyer-Meshkov instability), the
vorticity is concentrated in a small layer, so that a vorticity distribution can be used to model the
dynamics of the underlying complex flow [[24]. However, modeling such a flow using a vorticity
approach raises questions of well-posedness of the initial conditions, long-time existence of the so-
lution, and convergence [[]. In fact, the linear instability of an inviscid plane vortex sheet in two
dimensions is ill-posed B3 [[3]. Furthermore, Samtaney and Pullin [[26] numerically examined the
convergence of initial-value solutions for vortex sheets in compressible Euler equations and reported
that pointwise convergence is not achieved. Developed in this thesis is a vorticity-streamfunction
method to investigate the dynamics of the vorticity in the Richtmyer-Meshkov instability in two
and three dimensions, where the initial vortex sheet is thickened to regularize the singular limit of
classical thin sheet representations. The vorticity on the Cartesian grid is evolved using the vor-
ticity equation augmented by the baroclinic vorticity production term to capture the effects of the
instability.

Presented in this section are the goals for the development of the VS method (Sec. [[.2.I). A
comparison of simulation results using the VS and WENO methods is performed (Sec. [[.2.2). The
investigation is also extended to three dimensions (Sec. .

1.2.1 Development of the vorticity-streamfunction method

A vorticity dynamics approach for investigating the Richtmyer-Meshkov instability has many advan-
tages including: (1) recognizing that vorticity is a fundamental instability driving mechanism and;
(2) as vorticity exists only in a small region of the domain, the numerical method is computationally
efficient. Developed in this thesis is a vorticity-streamfunction (VS) method for the simulation of
the Richtmyer-Meshkov instability. The initial interface is thickened to model the diffuse thickness
of the Jacobs and Krivets experiments (Sec. . The goals for the development of this method

are presented here.

1. A goal of this thesis is the development of a high-order VS method for increased accuracy and
resolution of structures as the instability develops (Chapter [2). In addition, the numerical

method must be efficient.

2. In the present investigation, vortex layers with finite diffuse-interface thickness are adopted to
model the diffuse-interface experiments of Jacobs and Krivets [62]. Vortex layers are well-posed
and exist in time [[I]. The goal is to show that the vortex layer under appropriate conditions

converges to the solution of a vortex sheet as the diffuse-interface thickness is decreased (Sec.
p).

3. One of the goals for developing the VS method is to eztend the formulation to three dimensions.



10

4. Once the method is developed, a goal is the investigation of the numerical properties (Chapter
. A convergence study must be performed to verify the numerical properties of the method
(Sec. and investigate how these properties change in time. In addition, a systematic
and self-consistent convergence study is performed for variable diffuse-interface thickness and
viscosity (Sec. . The goal of these convergence studies is to ensure that simulations are
performed with sufficient resolution so that fourth-order pointwise convergence of the solution

is obtained.

1.2.2 Investigation of the two-dimensional single-mode instability

Compressible WENO and incompressible VS simulations are performed for the two-dimensional
Richtmyer-Meshkov instability (Chapter . The simulations are modeled after the single-mode
Mach 1.3 air(acetone)/SFg shock tube experiment of Jacobs and Krivets B2 (Sec. [£:2.)), which
investigated late-time effects of the instability.

The main goals of this study are presented here.

1. One of the purposes of this study is the accurate construction and evaluation of initial con-
ditions (Sec. [4.2)). First, the properties of the air(acetone) mixture are constructed based on
thermodynamic properties of the constitutive air and acetone vapor. As the WENO method
employed here allows the specification of a single value for the adiabatic exponent 7y, the
mix initial conditions corresponding to a 50% mixture of air(acetone) and SFg by volume are
adopted. As the VS method simulates the evolution of the instability following the passage of
the shock, results from linear instability theory, the Samtaney-Zabusky [[21 28] circulation
deposition model, and the WENO simulations are used to determine the circulation deposition

at the interface.

2. Another goal is to assess the properties of the ninth-order WENQO method by comparing with
the fifth-order WENO method at different grid resolutions (Sec. [£.3). Visualization of the
instability evolution, as well as comparison of perturbation, bubble, and spike amplitudes are
performed to ensure that these amplitudes do not vary as the grid is refined and the order of

flux reconstruction is varied.

3. A comparison of the instability evolution from the incompressible VS method with results from

the compressible WENO simulation and the experimental PLIF images constitutes is another

goal (Sec. [£.4).

4. A comparison of the perturbation, bubble, and spike amplitudes with experimental data and

with the predictions of linear and nonlinear growth models is another goal of this investigation

(Sec. [£.5).
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5. To further interpret the agreement between the VS and WENQO methods, the effects of varying
Mach numbers (Sec. are investigated.

6. Another goal of the simulations is the investigation of reshock using the WENO method (Sec.
, including comparison of the mixing layer width with the predictions of reshock models.

7. As the VS method introduces a thickened vortex layer to model a thin vortex sheet, results are
compared with the Lagrangian-y and vortez-in-cell method for different Atwood numbers (Sec.
. Different values of A correspond to different levels of baroclinic vorticity production, so
that this study also investigates the effects of A on the instability evolution.

1.2.3 Investigation of the three-dimensional single-mode instability

Three-dimensional simulations using the WENO and VS methods (Chapter [5) are performed using
the same shock tube dimensions as in the two-dimensional investigation. The initial interface is given
by a product of sine functions [Eq. }, as it represents a generalization in three dimensions of
the two-dimensional perturbation [4) [I57].

The goals for the investigation in three dimensions are presented here.

1. A goal of this study is the construction of appropriate initial conditions (Sec. [5.1)). In partic-
ular, as three-dimensional simulations have larger effective wavenumbers, two simulations are
performed: (1) the initial amplitude is the same as the two-dimensional simulations, and; (2)

the initial amplitude is reduced so that the initial growth matches the two-dimensional value.

2. Another goal is the visualization of the instability evolution in three dimensions through the
evolution of a mass fraction iso-surface (Sec. [5.2)). The vorticity is visualized using an enstrophy
iso-surface. Additional quantities are also considered to determine the principal mechanisms

of instability evolution in three dimensions.

3. The comparison of the perturbation, bubble, and spike amplitudes with the predictions of non-
linear growth models in three dimensions (Sec. [5.3) constitutes a central objective of this

study.

4. The dynamics of reshock are also investigated in three dimensions (Sec. [6.4) and the mixing

layer width is compared to the predictions of reshock models.

5. An Atwood number study is performed to assess the effects of this parameter on the instability
evolution and the dynamics of vorticity (Sec. . Visualizations of the density cross-sections
also illustrate the dynamics of the bubble and spike. Cross-sections of the components of
the vorticity field are also shown. The perturbation, bubble, and spike amplitudes are also

compared with the predictions of models.
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1.3 Organization of thesis

In Chapter [2 the vorticity-streamfunction method is developed and the numerical implementation
is discussed. Properties of the method, including pointwise convergence and the effects of numer-
ical and physical parameters are discussed in Chapter Simulations and analysis of the single-
mode Richtmyer-Meshkov instability in two dimensions, including a comparison to the experiments
of Jacobs and Krivets [62], to WENO simulations, and to classical Lagrangian and hybrid La-
grangian/Eulerian vortex method simulations are presented in Chapter |4} Simulations and analysis
of the single-mode Richtmyer-Meshkov instability in three dimensions, including a comparison to
WENO simulations, are presented in Chapter[5} Finally, conclusions and implications of this research

are presented in Chapter [f]
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Chapter 2

Development and Numerical
Implementation of the
Vorticity-Streamfunction Method

Presented here is the development of the vorticity-streamfunction method used in this thesis for the
numerical investigation of the Richtmyer-Meshkov instability. This method was developed in the
context of vortex methods for the simulation of the interface dynamics of this instability. Vortex
methods are used because the vorticity deposition-evolution viewpoint provides physical insight into
the instability [BIl [54] and is also numerically advantageous [Z9] when compared with the more
expensive weighted essentially non-oscillatory (WENO) compressible simulations considered in the
present investigation.

The vorticity evolution viewpoint recognizes that the main physical mechanism driving the clas-
sical Richtmyer-Meshkov instability is the deposition of localized vorticity at the interface during
shock refraction through the baroclinic vorticity production mechanism. Following the passage of
the shock, a transmitted shock enters the second fluid and a reflected wave returns back into the
first fluid. A second mechanism of vorticity deposition is the interaction of the interface with the
pressure perturbations from the stable perturbed shock fronts [I50 M51], including the reflected and
transmitted shocks, but not a reflected rarefaction. Typically, the pressure perturbations from the
stable shock front decrease the growth rate, causing in some cases “freeze-out” [[04]. This second
mechanism of vorticity generation is not captured by the present incompressible simulations. How-
ever, the results from this thesis suggest that such a contribution is not significant for the classical
Richtmyer-Meshkov instability. Velikovich et al. [I4T] discuss Richtmyer-Meshkov-like instabilities,
including “anti-collisions”, where such a mechanism becomes relevant.

Vortex methods allow the investigation of late-time stages of the instability development not

tractable via analytical approaches. For example, current analytical treatments are limited to

weakly-nonlinear analysis [I50] [45] or Layzer-type expansions [B2 [05] 55 E2 37 034 I35
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(Sec. . Such weakly-nonlinear treatments are shown to be valid up to 7 = 4 [Eq. ] By
contrast, vortex methods offer an alternative strategy to describe the interface dynamics from the
linear to the weakly-nonlinear and fully-nonlinear stages. In the fully-nonlinear stage, for A # 1 the
spike rolls up into a spiral due to the nonuniform vorticity distribution on the interface.

This chapter is organized as follows. An overview, including a discussion of vortex methods
applied to the Richtmyer-Meshkov instability and a description of the classical Lagrangian and
hybrid Lagrangian-Eulerian vortex methods based on the vortex-in-cell (VIC) algorithm, is presented
in Section 21} A convergence study for the VIC method demonstrating that this method does not
converge to the Biot-Savart velocity under grid refinement, and that the method can be applied to the
Richtmyer-Meshkov instability for coarse grids is presented in Section The development of the
vorticity-streamfunction method, including the equations solved and the semi-implicit third-order

in time and fourth-order in space discretization adopted here is presented in Section [2.3

2.1 Overview of vortex methods

Vortex methods are based on the discretization of the incompressible vorticity equation (presented

here in two dimensions in the absence of viscosity and for constant density flows)

Ow
E—I—V-(uw)

0, (2.1)

w(x,0) = wp. (2.2)

In particular, Equation states that vorticity is constant along particle paths. This combined
with the fact that vorticity is advected along particle paths [B3] suggests a natural Lagrangian formu-
lation for vortex methods based on the following simple algorithm: (1) discretize the initial vorticity
distribution wy using vortex markers; (2) next, compute the velocity field u induced by the vorticity
field through the Biot-Savart law; (3) advect the point markers under the self-induced velocity field;
(4) since vorticity is advected along particle paths and does not evolve in time, the procedure can
be repeated. To compute the velocity from the vorticity field in a Lagrangian formulation [step
(2) above] two methods can be used: (1) the Biot-Savart law based on the Green’s function is
adopted in purely Lagrangian vortex-marker methods, and; (2) the vortex-in-cell algorithm (which
uses an auxiliary Cartesian grid and the vorticity-streamfunction formulation) is adopted in the
hybrid Lagrangian/Eulerian vortex methods.

Vortex methods have been widely applied to investigate Richtmyer-Meshkov instability dynamics
(Sec. [2.1.1). In classical Lagrangian vortex methods for the Richtmyer-Meshkov instability, the
vorticity (circulation) on the markers is updated due to the action of density and pressure gradients

using a coupled system of integral equations (Sec. [2.1.2]). This formulation has also been extended
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to the hybrid Lagrangian/Eulerian methods based on the vortex-in-cell algorithm (Sec. [2.1.3]).

2.1.1 Literature survey on vortex methods applied to the Rayleigh-Taylor
and Richtmyer-Meshkov instabilities

Since the work of Rosenhead [[22], who computed the evolution of a Kelvin-Helmholtz [B4] [G7]
unstable vortex sheet by hand, the evolution of a vortex sheet has been a principal application
of vortex methods. Vortex sheets also form when a heavy fluid pushes on a light fluid in the
Rayleigh-Taylor instability 19 M39] and for impulsive accelerations in the Richtmyer-Meshkov
instability (Sec. [L.1.1). Presented here is a brief overview of the applications of vortex methods to
the Rayleigh-Taylor and Richtmyer-Meshkov instability.

The early interest in the classical Kelvin-Helmholtz vortex sheet dynamics was related to mathe-
matical questions of well-posedness and singularity formation. The problem of a vortex sheet roll-up
idealizing the Kelvin-Helmholtz instability is formally ill-posed (as first reported by Birkhoff [IH]), as
there is no mechanism to stabilize small-scale motions and short wave disturbances grow at increas-
ing rates. Saffman and Baker [[24] speculated that a singularity develops in a finite time. Moore
[[1T] expanded the interface as a Fourier series and showed that at a critical time ¢. the coefficients
of the Fourier series decay algebraically, indicating that the interface is no longer analytic. Meiron,
Baker, and Orszag [02] analyzed the vortex sheet dynamics when a tangential shear is applied to a
sharp flat interface. The analysis of the Taylor series coeflicients indicated that a singularity formed
at a critical time ¢, slightly larger than the critical time predicted by Moore. Krasny [T} [[2] desin-
gularized the equations governing the motion of the vortex sheet to investigate the possible evolution
past the critical time ¢.. As no rigorous theory exists to justify the procedure and guarantee that the
solution obtained is physical or even convergent, this procedure was treated as an experimental work.
However, this work was conducted in the spirit of Anderson [B], who replaced the exact equations by
a set of regularized equations. The regularized equations can overcome the breaking of analyticity
at the critical time ¢. and can mitigate the short-wavelength instability of the Kelvin-Helmholtz
instability. Before Krasny, Moore [[I0] proposed modeling the inner-most part of the roll-up as a
single strong vortex that would absorb all point vortices within a certain distance from it. Chorin
and Bernard [23] proposed using vortex blobs. Fink and Soh [BF redistributed the points on the
interface. The Krasny regularization is used in the present computations. Tryggvason [[42] later
compared the simulations of the vortex sheet roll-up using the vortex-in-cell (VIC) method and the
vortex blob method of Krasny [[1], and showed that the VIC method gave similar and accurate
results.

Birkhoff [I4] [[Hl M6] and later Baker, Meiron, and Orszag [§ extended the point vortex method

to study the Rayleigh-Taylor instability in inviscid, incompressible flows. The density interface was
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represented by a vortex sheet of strength + across which the tangential component of the velocity
became discontinuous. In two-dimensional layered flow, the vorticity is no longer constant along
particle paths (as in the Kelvin-Helmholtz instability). The evolution equation for the vortex sheet
strength was shown to depend on the density difference through the Atwood number and was coupled
with the Biot-Savart law to determine the velocity from the vorticity. To compute the change in
vortex sheet strength, an iterative procedure based on the flow acceleration from the previous time
level was used. This iteration procedure was shown to be globally convergent, provided that the
interface and vorticity were sufficiently smooth. This vortex method had a cost of O(IN?) operations.
For A = 1, corresponding to a fluid falling in a vacuum, the acceleration of the spikes approached
the free-fall limit. For small Atwood numbers, the spikes began to roll-up due to the Kelvin-
Helmholtz instability. Capturing the roll-up structure proved difficult, due to the small number of
point vortices. Increasing the number of point vortices led to a deterioration of the results. Baker,
Meiron, and Orszag [@] later presented a generalized vortex method to compute flows modeled using
vortex sheets (Sec. . The approach was later extended to the axisymmetric three-dimensional
Rayleigh-Taylor instability [I0].

Kerr 69 simulated the Rayleigh-Taylor instability using vortex blobs to smooth the Green’s
function, second-order central differences to accommodate spikes in the vorticity, a method to spread
the nodes evenly along the interface to suppress clustering and maintain resolution and accuracy,
and filtering similar to Krasny [[Z to eliminate numerical instabilities. The method predicted the
development of bubbles and spikes for a single-mode initial perturbation.

Tryggvason [[4]] simulated the Rayleigh-Taylor instability using the vortex-in-cell (VIC) algo-
rithm. As stabilization mechanisms (such as viscosity and surface tension) were neglected, difficulties
associated with infinitely small perturbations growing infinitely fast were resolved through the reg-
ularization introduced by the algorithm. In addition, the VIC algorithm is less computationally
intensive than a blob method. A Poisson solver has a cost of O(M?log M) for an M x M grid.
However, since the size of the grid is linear with the number of point vortices N, so that M? ~ N,
the overall cost of the VIC method is O(N log N), which is significantly less than the O(N?) cost
for a direct summation method in the Biot-Savart law. Tryggvason used a fixed Cartesian grid
and assigned the vorticity from the interface to the grid through the area-weighting-rule (AWR) of
Christiansen [24]. Thus, the vortex sheet had been replaced by a smoother vortex representation.
However, the area-weighting-rule created an anisotropic distribution on the smallest scales. This can
be corrected using smooth or quiet VIC methods [BI], but Tryggvason used the smoother Peskin in-
terpolant [II6] to remove the anisotropy. Tryggvason described two VIC methods based on whether
the acceleration is computed on the Lagrangian interface as in the iterative-time-step formulation
(VIC-ITS), or is computed on the Cartesian grid and then interpolated onto the interface as in the
acceleration-potential formulation (VIC-AP). The Rayleigh-Taylor test problem was compared with



17

solutions from the point vortex method of Baker, Meiron, and Orszag [@] and the conformal mapping
method of Menikoff and Zemach [05]. Excellent agreement was found at early times. For A = 1, the
results were compared with the the point vortex method solution indicating that the spikes were less
sharp in the VIC simulations. Zufiria [IG0] explained this through a linear instability analysis, which
linked the effects of the Cartesian grid to numerical surface tension. As a result, the spike velocity
decreased, falling short of the “exact” results from the point vortex method. The bubble velocity
was very similar to the exact value. A closer analysis of the spike dynamics showed that vorticity
of opposite signs formed near the spike tip, akin to a dipole. When this vorticity was distributed
on the Cartesian grid, a cancellation of the negative and positive vorticity occurred, resulting in a
weaker dipole.

Zufiria [I59 also considered the VIC-ITS method and noted that the discretization of the 2
term [Eq. } developed a very steep profile. Reminiscent of a shock-like behavior, Zufiria applied
a Godunov upwind technique to differentiate this term Il B3]. This small change significantly
improved the method, allowing the simulation to run to times one order of magnitude larger than
previous schemes. Prior to the introduction of this upwind finite differencing, Tryggvason [[4]
solved this problem using a five-point moving average of the vortex sheet strength . Following the
modification introduced by Zufiria, the iterative time-step method gave superior results, even in the
case of a roll-up. Zufiria [[59] investigated the bubble competition in the Rayleigh-Taylor instability
using the VIC algorithm in the limit A — 1. The study was motivated by experiments by Read [[20,
where a multi-mode initial condition gave rise to bubbles that grew in time and changed in number.
The bubbles did not break, indicating that they were stable to small-scale perturbations, and that
the change in number was due to bubble competition. In the case of a single-mode initial condition,
the results were compared with the ITS method of Tryggvason [[4I] and with the results of Baker,
Meiron, and Orszag [, showing that the bubble position was captured very accurately, but the
spike grew at a slower speed in the VIC simulations. In the case of multi-mode initial conditions,
Zufiria observed bubble competition with the larger bubbles overcoming the smaller ones.

Kotelnikov, Ray, and Zabusky [69] explored vortex dynamics and interfacial evolution of reshocked
and reaccelerated single-mode Richtmyer-Meshkov flows using an incompressible VIC method, a vor-
tex blob method, and a compressible second-order Godunov method. The configuration was based on
the experiments of Jacobs and Niederhaus [[12}, [[T3], where liquid-liquid interfaces were impulsively
accelerated giving rise to the Richtmyer-Meshkov instability. The impulsive and incompressible
approach was justified because the flow was incompressible [@3] following the passage of the shock.

Sohn [I36] applied the point vortex method of Baker, Meiron, and Orszag [B2] to investigate
the single-mode Rayleigh-Taylor and Richtmyer-Meshkov instability evolution for A < 1. Sohn
concluded that this method provided accurate and reliable results in agreement with analytical

predictions of potential models [[34]. The method used Eulerian time stepping, the Krasny [1]
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regularization to remove the singularity at the core and stabilize the method, and the Zufiria [[59]

Godunov-like flux splitting for the 2 term [Eq. (2.5)].

2.1.2 The classical Lagrangian vortex method

The classical Lagrangian vortex method for the Richtmyer-Meshkov instability uses a coupled system
of integral equations first derived by Birkhoff [T4) I8 [[6]. The formulation presented here was derived
from Baker, Meiron, and Orszag [@]. Consider a sinusoidal vortex sheet with position z = = + iy,
velocity ¢ = u+iv (in complex notation), and vortex-sheet strength «(e). The weighting parameter «
measures whether the interface moves with the lower fluid (w = 1) or with the upper fluid (o = —1).

The equations of motion are

ary dz*
2z, dt

=7 (2.3)

The velocity ¢* is obtained from the circulation «(e) via the Biot-Savart law

z(e)—z(e’)

1 27 y(e') cos {f}
q (e) = . de’, (2.4)
47 i | 2(e)—z(e’) 2
0 sin [f} +4

where § is a regularization parameter introduced by Krasny [[1] [[2], which transforms the singular
vortex cores into vortezx blobs.
The circulation on the interface is obtained by iteratively solving the coupled system of Fredholm

integral equations

oy _ b (27 O _evp (e L0 (7

o 20e (ze z;‘) 24 {Re <Z€ ot 2 Re Ze 3% 2ozt )|’ (25)
% 27 ’ N / 27 / ~ TN

g (e) _ 1 / N(e) o |2e) == 1 / (€ [ale) —a(e)] ;o (2.6)
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For A # 1, instead of regularizing 9¢*/0t [Eq. (2.6)], this value is obtained from ¢* [Eq. ([2.4)]
through the leap-frog scheme
(¢)?—(a")"

At

= : 2.7)
(q*)n+12£(tq*)n71 fOI. n Z 2

d(q*)"
ot

where n indicates the time step. Zufiria [[59) first noted that the discretization of the F = 42
term [Eq. (2.5)] needs to be treated carefully. In fact, this term becomes very steep, developing a
shock-like behavior. By analogy with the Burgers equation, a Godunov upwind method [l B3] is
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used:

Fi+1/2 = max |:(F)/@+)2a (7;1)2:| s ’Y+ = mmax (_’73 O) Y= min(_’% O) s (28)

where 7 indicates the index of the vortex marker discretizing the sheet. This method approximates
the flux at the midpoints between the vortex markers and ensures a proper upwind finite difference
relative to the “shock” position. This small change significantly improves the method, allowing
the simulation to run to times one order of magnitude larger than schemes based on pure finite

differences.

2.1.3 The hybrid Lagrangian-Eulerian vortex method based on the vortex-

in-cell algorithm

In vortex-in-cell (VIC) methods, a Cartesian grid is super-imposed onto the Lagrangian vortex
markers. The Cartesian grid is used to rapidly compute the velocity field from the vorticity field
through the velocity-streamfunction formulation. This step avoids the Biot-Savart integral and the
complex regularizations needed to overcome the singularity in the kernel. Furthermore, as discussed
in Section the VIC algorithm has a cost of O(N log N) compared to the O(N?) cost for the
Biot-Savart law.

The VIC algorithm is a special case of a more general class of algorithms developed to com-
pute the force field from charge distributions in particle-mesh methods [B0]. In these methods, the
Laplacian operator is replaced by grid-based finite-difference approximations, resulting in rapid force
calculations (or in rapid computations of the velocity field from the vorticity field). In addition, the
Cartesian mesh introduces a physical lengthscale, Az, that eliminates the unphysical correlations
as particles come close to each other. In this spirit, Harlow 3 HG] introduced the particle-in-cell
(PIC) method to overcome the disadvantages of Eulerian formulations that could not track inter-
faces, and Lagrangian formulations that could not represent regions of shear due to mesh distortions.
Harlow simulated advection by moving particles, and used the Eulerian mesh for all non-advective
terms, eliminating the problem of mesh distortion. Christiansen [24] later performed hydrodynamic
simulations using the area-weighting-rule interpolant and called the algorithm wvortez-in-cell.

The VIC algorithm consists of the following four steps.

1. The vorticity is assigned from the markers onto the Cartesian grid
Iy

where (2, yn) is the location of the vortex marker, (z;,y;) is the location of the grid point, ¢

is the assignment function, and T';, is the circulation [Eq. (2.19)].
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2. The Poisson equation

A= —w (2.10)
is solved for the streamfunction ¢ (z,y).

3. The velocity field on the Cartesian grid is obtained from the streamfunction
u=V x1. (2.11)
4. The velocity field is interpolated onto the markers

Up = Zu” (@0 — i, Yn — Yi) - (2.12)
‘)j

The interpolation and assignment steps are performed using the same function
oz, y) = M;(z) Mi(y) (2.13)

where M,,(x) are interpolation kernels based on central B-splines [[30]. These kernels are obtained

by taking successive partial sums of the polynomial
n n n n—1
— N (=1)F ( n_ k) , 2.14
o) = 0 () (o4 5 (2.14)

yielding the interpolation kernels

0 forx < -2

(x—&—%)n_l for -5 <x < -5 +1,
(n—1DIM,(z) = (2.15)

i:o(—l)k(Z) (m+%—k)n_1 for =2 +j—-1<z<—-2+4;.

The interpolation kernel M, (x) is an even function of . The first three interpolation kernels are

1 for0<z<1i, 1—|z| for|z|<1,
0 forz> 3, 0 for |z| > 1,
—|z>+3 for 0 < |z| <1/2,

M) =4 5 (=lel +8)° for 1/2< || <3/2,

0 for |z| > 3/2,



21

and are called the nearest-grid-point (NGP), area-weighting-rule (AWR), and triangular-shaped-cloud
(TSC) interpolants, respectively.

Here, the vorticity-streamfunction Poisson equation [Eq. } is discretized using a fourth-
order modified nine-point scheme [BI]. The fast Fourier transform is used to invert the block-

Toeplitz-symmetric-tridiagonal (TST) finite-difference matrices using Hockney’s method [B9].

2.2 Convergence study for the vortex-in-cell algorithm

Presented here is a convergence study for the vortex-in-cell (VIC) algorithm. This study establishes
that in the case of a thin vortex sheet (Sec. , the VIC velocity field does not converge to
the Biot-Savart velocity field under grid refinement. To correct this problem, the vortex sheet is
thickened to give a vortex layer. The velocity from the vortex layer converges to the velocity from
the Biot-Savart law as the grid is refined and the thickness of the layer is decreased (Sec. .
The classical VIC algorithm can only be used to investigate the Richtmyer-Meshkov instability when
fairly coarse Cartesian grids are used. As finer grids are used, the results fail to converge (Sec. [2.2.3)

Consider a vortex sheet with an initial sinusoidal perturbation

[z(e),y(e)] = {z(e),aq cos [k z(e)]}, (2.17)

where ag is the perturbation amplitude and k is the perturbation wavenumber. For the Richtmyer-
Meshkov instability the initial vortex dipole and vortex sheet strength are

v(e) = On

=5 (2.18)

p(e) =2wvg coslkz(e)],

respectively, where vy is a constant. In the present convergence study, the velocity and velocity
gradients are determined using the VIC algorithm, as the Cartesian grid is refined (N, = 32, 64,
128, 256) keeping the number of markers N = 4 N, and are compared with the results from the
Biot-Savart law. Results varying the number of markers from N = 2 N, to 8 N, showed no difference.

Each vortex marker has circulation

where

1
Asn = 5 \/(anrl - xn71)2 + (ynJrl - yn71)2 (220)

is the arclength on the interface. For the VIC algorithm, the circulation is assigned onto the grid
using

Iy
wiwiy;) = 52 Mi(@n — i) Mi (Yn — i) » (2.21)
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where M; are the interpolation functions [Eq. (2.15)]. To assess the effects of the interpolation

functions, the assignment and interpolation steps are performed using the second-order My and Mj

functions
%—|$|2+@ for |z| <1
My(x) = L (—|z[+2)° for1<|z[ <1, (2.22)
0 for |x| > 2
4 5 2
lz] L=l % for |z| < %
\:n|4 5\:6|‘3 5\z|2 5|z| 55 1 3
=+ 2B 424+ 2 for = <|z| <2
6 6 1 24 T 96 2 I =3
M) =P ; . (2.23)
21 (I = 3) for § <|z| <3
0 for |z| > 3

and the third-order modified ZTL, and fourth-order modified M5 interpolants

1= 3|z + 3z for|z[ <1
My(x) =9 3@~ |z[)?Q—|z]) for1<|z[<2, (2.24)
0 for |x| > 2
® (% — 75 ]x|* + 42 ‘$|4> for [z| < 3
Ta(e) = (185 420 |2 — 150||? + 120[z[* — 28|z|*) for I < [z < 3 | (2.25)
3
15 (21 = 3)" (7]« - ) for 3 < |u| < 3
0 for |z| > 5

The modified interpolants were derived by Monaghan [[09] using Richardson extrapolation to im-
prove the second-order convergence of B-spline kernels [Eq. (2.15))].

2.2.1 Convergence study for a thin vortex sheet

Figure shows the horizontal velocity u(e) and velocity gradient du/0e obtained using the My
[Eq. ] interpolant. As the grid is refined, the velocity converges; however, the velocity gradient
does not converge, as indicated by the large oscillations that develop on the finer grids because the
thin vortex sheet is singular. For coarse grids, the smoothing introduced by the grid spacing Ax
is sufficient to stabilize the low wavenumber instabilities associated with the evolution of a vortex
sheet. In fact, Zufiria [I60] showed that the Cartesian grid stabilizes the computation by an effect
that is equivalent to surface tension. However, as the grid is refined, the effective surface tension

decreases and the method becomes progressively more unstable. The convergence study can be
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Figure 2.1. Vorticity field on the Cartesian grid using the My4(z) interpolant for a thin vortex sheet
as the grid is refined with N, = 64, 128, and 256.
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Figure 2.2. Comparison of the horizontal velocity u(e) and velocity gradient du/de on the interface
for the VIC algorithm applied to the thin vortex sheet using the M, interpolant (left). The blue
line is the Biot-Savart solution, the red line is the VIC solution with N, = 64 and N = 256, the
green line is the solution with NV, = 128 and N = 512, and the black line represents the solution for
N, =256 and N = 1024. Also shown is the £*°-error for the horizontal and vertical velocity fields
for the VIC algorithm applied to the thin vortex sheet as the Eulerian grid is refined (right): dotted
black line N !, dotted red line N2, dotted green line N3, and dotted blue line N 4.
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Figure 2.3. Vorticity field on the Cartesian grid using the My(x) interpolant for a thick vortex layer
with 7 = 0.15, as the grid is refined with N, = 64, 128, and 256.

made quantitative by computing the /*°-norm of the difference between the velocity from the Biot-
Savart law and the velocity from the VIC algorithm under different interpolation algorithms. As the
grid is refined, the horizontal and vertical velocities show first-order convergence to the Biot-Savart
velocity using the M4 and Mj5 interpolants, while no convergence is observed for M4 and M;. This is
in contrast to the second-order convergence rate expected for My and M5 and the third- and fourth-
order convergence rates expected for M4 and M5, respectively. The velocity gradient diverges as
oscillations develop. Thus, the velocity obtained from the classical VIC algorithm does not converge

to the velocity obtained from the Biot-Savart law for the thin vortex sheet.

2.2.2 Convergence study for a thick vortex layer

The divergence in the VIC method applied to the (thin) vortex sheet is resolved here by thickening

the vorticity, creating a thick vortex layer. Thickening is obtained using the Gaussian interpolant

Az x?
Ly (z,0r,A;) = m exp <—25%> ) (2.26)

where d7 is the thickness and Az is the grid spacing, to assign the vorticity onto the Cartesian grid.
This provides a lengthscale d1 for the vortex layer that is independent of the grid resolution Azx.
It is shown here that the simultaneous reduction of the grid spacing Az and interface thickness 7
produces initial conditions that converge to the Biot-Savart solution.

The convergence study is divided into three parts. In the first part, the convergence of the VIC
algorithm is demonstrated for a fixed width (§7 = 0.15). Next, the convergence to the Biot-Savart
solution as 07 — 0 and Az/dr is kept fixed, is demonstrated. Finally, to increase the rate of
convergence, Richardson extrapolation is used.

Consider the case of a thickened vortex layer, as the grid is refined keeping the layer thickness

0 = 0.15 fixed. An illustration of the vortex markers and the vorticity assigned on the Cartesian
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Figure 2.4. Comparison of the horizontal velocity u(e) and velocity gradient du/0e on the interface
for the VIC algorithm applied to the thick vortex sheet using the M, interpolant and with fixed
d7 = 0.15 (left). Also shown is the ¢*°-error for the horizontal and vertical velocity fields for the
VIC algorithm applied to the thin vortex sheet as the Eulerian grid is refined (right). See Figure
for the legend.

grid is shown in Figure 23] Figure 2.4] shows the convergence results for fixed thickness d7 = 0.15.
The velocity does not converge to the Biot-Savart result, but to a smaller value. The convergence
analysis provides the £*°-norm of the difference between the solution on the fine grid and the solution
on the coarser grids. The expected rates of convergence are obtained: second-order for the M, and
M5 interpolants, third-order for JTL, and fourth-order for M5.

In the second part of the convergence study, the width of the vortex layer dr is decreased
simultaneously with the reduction of the grid spacing Ax. Figure shows the vorticity assigned
on the Cartesian grid, indicating that as the grid resolution is doubled, the thickness is halved.

Figure [2.6] shows that the velocity field approaches the Biot-Savart result. The ¢*°-norm of
the difference between the Biot-Savart and VIC results shows first-order convergence. Richardson
extrapolation is applied to the initial vorticity distribution to accelerate the convergence rate of the

velocity and velocity gradients on the interface to the Biot-Savart results. Richardson extrapolation
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Figure 2.5. Vorticity field on the Cartesian grid using the My(z) interpolant for a thick vortex layer
as the thickness is decreased keeping é1/Ax fixed for N, = 64, 128, and 256.

107}
3
S
~
>
3
| 107
9] .\ ~
Q =M, K
= modified M,
+M5 ‘\‘ s\\
—e—modified My
32 64 128 256 512
0.65 8
0
~
041 =107
)
2
© I | |
0.2
S - =M, “‘ \\\
ot § 10—27 modified M4 | .
T Mg Y ..
_0.2 _e—Mmodified M5 \“ \\
0 0.2 0.4 0.6 0.8 1 32 64 128 256 512
e Nm

Figure 2.6. Comparison of the horizontal velocity u(e) and velocity gradient du/de on the interface
for the VIC algorithm applied to the thick vortex sheet using the M, interpolant and with fixed
d7/Ax (left). Also shown is the £°°-error for the horizontal and vertical velocity fields for the VIC
algorithm applied to the thin vortex sheet as the Eulerian grid is refined (right). See Figure for
the legend.
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Figure 2.7. The ¢*-error for the horizontal velocity and velocity gradient with fixed ér/Ax and
Richardson extrapolation. See Figure 2.2 for the legend.

eliminates the leading error in the first-order convergence as 7. Consider two vorticity distributions
wsy and ws,. /2. Let s and g5, /2 be the corresponding velocity fields. As shown in the previous

section, the velocity field has expansion
q=qsr + Kor+ K107, (2.27)
which is first-order in d7. For dr/2 the velocity has expansion

5 sr\"
q:q(;T/2+K7T+K1 <2T) . (2.28)

Combining (2.27) and (2.28)) gives the new Richardson extrapolation for the velocity
Gnew = 2Q6T/2 —dsy + O (5’?“) . (229)

Equation removes the first-order error and leaves an error of order n. The results using
Richardson extrapolation are shown in Figure indicating that the convergence rate for the
velocity and velocity gradient fields is improved to second order for the M, and M5 interpolants.
When the ]TL and ]\75 interpolants are used, the convergence rate for the velocity increases to third
order, but as the grid is refined no convergence is observed in the gradients. As M4 is fourth-order,

this indicates that n = 3 in Equation ([2.29)).
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Figure 2.8. Time-evolution of the interface for the Richtmyer-Meshkov instability with A = 0 using
the Lagrangian-y formulation with N = 256 and 512 vortex markers and the vortex-in-cell iterative-
time-step (VIC-ITS) formulation at 0, 1, 2, 3, 4, and 5 ms with a grid resolution of N, x N,, = 32x128
with N = 256 vortex markers and N, x IV, = 64 x 256 with N = 512 vortex markers when the
My (x) interpolant is used.
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2.2.3 Vortex-sheet evolution by the vortex-in-cell and Lagrangian vortex

methods

Although the initial velocity gradient from the VIC algorithm does not converge to that from the
Biot-Savart law, this algorithm has been successfully applied to the Richtmyer-Meshkov instability
(Sec. [2.1.1)). Here a comparison of the classical Lagrangian and VIC algorithm is presented for
A =0 and 0.4 as the grid is refined.

Figure[2:8shows the time-evolution of the vortex sheet for A = 0 when the Lagrangian-y method
is used with N = 256 and 512 markers. The Lagrangian-y method gives similar results as the number
of markers is doubled, including details inside the roll-up. The parameter governing the evolution of
the vortex sheet in the Lagrangian-y method is the length-scale § (used to form vortex blobs in the
regularization of the Biot-Savart law). Also shown are the results from the VIC method using the
iterative-time-step formulation (VIC-ITS) [[41] as the grid is refined from N, = 32 (corresponding
to N = 256 markers) to N, = 64 (corresponding to N = 512 markers). As the grid is refined,
additional structure is observed in the roll-up. In fact, the length-scale governing the VIC method
is the grid spacing Ax.

Figure shows the time-evolution of the Richtmyer-Meshkov instability under the Lagrangian-
~ method for A = 0.4 with N = 256 and 512 markers. For A = 0.4, the Lagrangian-y method gives
identical results as the number of markers increases. This is expected as the length-scale affecting
the instability development is the size of the vortex blob §. Also shown is the time-evolution of the
instability when the VIC-ITS method is used. The results for N, = 32 are very similar to the results
from the Lagrangian-y method. However, for N, = 64 the VIC-ITS method shows the development
of additional unstable structure inside the roll-up. In fact, the only stabilization mechanism in the
VIC algorithm is provided by the grid spacing Az. For N, = 32 such a grid spacing is sufficient
to give results comparable with the Lagrangian-v methods. However, for N, = 64, the smaller grid

spacing is no longer sufficient, so that oscillations develop on the interface.

2.3 The vorticity-streamfunction method

Developed in this thesis is a vorticity-streamfunction (VS) method for the simulation of the Richtmyer-
Meshkov instability, motivated by limitations of the classical (thin) vortex sheet approaches (Sec.
. In this method, the vorticity equation on the Cartesian grid is augmented by the baroclinic
vorticity production term to capture the effects of the instability (Sec. [2.3.2]). The equations are
discretized using a semi-implicit fourth-order in space and third-order in time Adams-Bashforth

backward differentiation scheme (Sec. [2.3.3).
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2.3.1 Motivation for developing the method

Vorticity-streamfunction methods solve the vorticity transport equation [Eq. ] and are part of
a wider class of methods developed for incompressible flows (i.e. when the velocity, as measured by
the Mach number, is Ma < 0.3 [2Z]). These methods constitute an alternative to velocity-pressure
methods. The vorticity-streamfunction and velocity-pressure formulations are equivalent E4]. One
advantage of VS methods is that the velocity is divergence-free by construction. Furthermore, the
mathematical properties of the equations allow the construction of robust solution methods [I11].

The VS method is motivated by current limitations in classical vortex method approaches for
simulating this instability. (1) In the classical Lagrangian vortex method (Sec. , the evolution
of the vortex sheet requires complex regularizations to mitigate the formation of the singularity
during the rollup. In addition, a redistribution of the vortex markers may be necessary, and the
numerical method may cease to provide solutions at late times. Classical Lagrangian vortex methods
have been extended to three dimensions for the evolution of a vortex sheet F1]. (2) It was shown
in Section that the VIC method does not converge under grid refinement. This result is due
to the singular limit of the vortex sheet. Furthermore, the VIC method does not constitute a
valid computational method for the simulation of vortex sheet dynamics, as the method breaks
down upon grid refinement. The VIC method has not been extended to three dimensions for the
Richtmyer-Meshkov instability.

The VS method resolves the singular limit of a vortex sheet by thickening it to obtain a vortex
layer (Sec. . This has the desirable feature of providing a “physical” solution to the instability
problem (the thickening of the vortex sheet may be equivalent to the diffuse interface in the Jacobs
and Krivets [62] experiments). This is in contrast to the “unphysical” length-scale introduced by
using vortex blobs (in the Lagrangian-y method) and the grid spacing Az (in the VIC method).

Furthermore, the numerical method can be easily extended to three dimensions.

2.3.2 Governing equations

The three-dimensional vorticity equation for an incompressible viscous flow is

%+u.vw:w.vu+m

5 g +rvAw, (2.30)

where v = u1/p is the kinematic viscosity and p is the dynamic viscosity. To formulate a numerical
method, additional equations for the velocity w = (u,v,w), pressure p, and density p need to

supplement Equation (2.30).

The density is obtained by solving the continuity equation

dp

a-ﬁ-V-(pu)zO. (2.31)
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As the gases are miscible, diffusion is modeled as Fickian so that the mass flux of the heavy gas is
j=—-pDVm, (2.32)

where D is the mass diffusivity and m is the mass fraction. This gives the modified density equation

(see Cabot, Schilling, and Zhou 0] and Cook and Dimotakis [2§] for the derivation)

@—F’lrv,o:—

D
py (Vp-Vp)+DAp, (2.33)

P
where the mass diffusivity is chosen so that the Schmidt number Sc = v/D = 1 is consistent with

gas properties. The velocity is obtained from the vorticity-streamfunction Poisson equation

Ay = —w, (2.34)
u = Vx, (2.35)

where ¥ = (11,12, 13) is the vector streamfunction. The pressure is obtained by taking the diver-
gence of the momentum equation

ou _Vp
a—l—u-Vu——?—i—uAu (2.36)

to obtain the pressure Poisson equation
Ap=—pV - (u-Vu). (2.37)

To determine the boundary conditions for Equations (2.34]) and (2.37)), consider a periodic box in
the x and y directions with rigid walls at the top and bottom (z direction) [0, L,] % [0, L,] x [0, L,].

The boundary value problem for the streamfunction is

AY = —w
, (2.38)
P(2,9,0) =0, P(z,y,L:)=0
which represents three separate boundary value problems for each 1, 19, and 3.
The boundary value problem for the pressure is
Ap=—-pV - (u-Vu)
(2.39)

2(2,9,0) =0, ZE(x,y,L.) =0

Equations (2.30) and (2.33) supplemented by the boundary value problems for the streamfunction
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and pressure [Egs. (2.38) and (2.39)] and for the velocity from the streamfunction [Eq. ([2.35))]

constitute a complete VS method in three dimensions.

2.3.3 Spatial and temporal discretization

In the vorticity and density equations [Eqgs. (2.30) and (2.33)], separate the spatial operator into

linear diffusion and nonlinear transport terms:

ow

5 = N (w,p)+ L (v,w) , (2.40)
N (w,p) = —u-Vw+w~Vu+w, (2.41)
L(ryyw) = vAw, (2.42)
and

dp

at = Ny (u, p) + L, (D,p) , (2.43)
D

No(wp) = <V -(pu)- 7 (V- Tp), (2.44)
L,(D,p) = DAp. (2.45)

The governing equations are discretized using a semi-implicit scheme where the linear viscous part
L(v,w) is treated implicitly and the nonlinear part IN(p,w) is treated explicitly. This overcomes
the time-step limitations of a purely explicit formulation, and the need for complex nonlinear solvers
for a fully implicit formulation.

The third-order Adams-Bashforth backward differentiation (AB/BDI3) scheme is adopted for

the time-stepping, which uses multiple time-levels for both the temporal and spatial operators:

1 /11 3 1
n+l n < o n=1_ - n-=2 _ noony __ n—1 n-—1
At(Gw 3w —|—2w g ) 3N (W™, p™) = 3N (w1, p" ) (2.46)
+N (wn—27pn—2) —|—L (V7w"+1) ,
1 /11 3 1
n+l n Y n—-1_ - n-—2 _ n ,n n
At<6p 3p" 50 K > 3N, (u",v", p") (2.47)

—3 Np (un717,un717pn71)

+Np (un72’vn72’pn72) +Lp (D7pn+1) )

An analysis shows that the region of stability is largest among the Adams-Bashforth backward
differentiation methods.

The final implicit linear equation that must be solved is a Helmholtz equation of the form

Au+Adu=f. (2.48)
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A modified nine-point method is used to solve this equation by following the same procedure as in
the derivation of the modified nine-point method for the Poisson equation [GI].

Consider the error for a second-order finite-difference for the second derivative,
h4
Aj,=h"DI+ 5 D; + O (h°) , (2.49)

where D, = d/dz is the derivative operator and Ay, is the central difference operator (so that
Aoz = 2, 1T ). Applying Equation 1} to a second-order nine-point scheme shows that

the error scales as

1 A2 . AQ 2
5 <A§7x + A3, + 0609> =A+ % A% +0 (h*) . (2.50)

As a result, a second-order nine-point scheme can be made fourth-order by considering the nine-point

scheme for
h2
(A+12A2)u:f—)\u. (2.51)
After inversion, the solution of
h2
Au(I+12A) (f —Au) (2.52)

leads to the modified nine-point scheme for the Helmholtz equation [Eq. (2.48)],

AQ " + A2
(I + "1209> Fr (2.53)

A2+ A2
—\ <[+0@1207y Upg

1 AQI + AQ
2 (Agx +AF,+ 0y 5 0’y> U,

or re-arranging terms,

1 [u 2 AR? Uk, o~ 2 AR?
— [HMH + ( + ) U1, + — L 4 ( + ) U1 (2.54)

h2 6 3 12 6 3 12
2/\]12 10 2 /\h2 Uk—1,0+1 2 )\hQ Uk -1
+< 3 _3>Uk,z+(3+12>uk7€—1+6+(3+12)Uk—17£+6:| =
Jfea1,e | feesr | 2fke | Sre—1 o fre—1
12 * 12 + 3 * 12 + 12

This stencil for the scheme is represented in Table A similar procedure is followed to derive the

scheme in three dimensions. The stencil in three dimensions is shown in Table
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Modified nine-point stencil for the Helmholtz equation
in two dimensions

1 2 1 1
s 2+ G 12
2 4 ART 10 4 2XAA% 2 4 AR? —_p2 1 2 1
3 T3 3 T3 5T uke=h iz 3 13 [kt
1 2 h? 1 1
6 3+ 6 12

Table 2.1. The computational stencil for the fourth-order finite-difference modified nine-point scheme
used to discretize the Helmholtz equation [Eq. (2.48)] in two dimensions. The table presents a 3 x 3
block corresponding to the coefficients of uy ¢ and fy o.

Modified nine-point stencil for the Helmholtz equation
in three dimensions
I
6
1 Ly an? 1 1
6 3712 6 12
1 14 An? 1 1
6,\i2 3t }\2h2 6,\ h? 7
1 2 1 2 1 1 1
5 72 4+ 2, st Wem=h 5 5 5 Jeem
1 14 Ak 1 1 m
6 3 T2 6 12
6
1 14 an? 1 1
6 3712 6 12
g m—1

Table 2.2. The computational stencil for the fourth-order finite-difference modified nine-point scheme
used to discretize the Helmholtz equation [Eq. ] in three dimensions. The table presents three
3 x 3 block grids corresponding to the coefficients of uy ¢, and fx ¢m. The first block contains the
coefficients for ug ¢ m+1 and fi ¢,m+1, the second block the coefficients for uy ¢, and fi ¢m, and the
third block the coefficients for uy ¢m—1 and fi ¢m—1
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Chapter 3

Investigation of Convergence of the
Vorticity-Streamfunction Method

The vorticity-streamfunction (VS) method developed here depends on several numerical and physical
parameters. The numerical parameters include the grid spacing Az, the time step At, the CFL
number, and the number of grid points N,. The physical parameters are divided into parameters
for the vortex layer, including the layer thickness dr, the viscosity v, and the mass diffusivity D, and
physical parameters for the problem, including the initial perturbation amplitude and wavenumber,
ag and A, respectively, the Atwood number A, and the initial vortex sheet velocity vg. All of these
parameters affect the evolution of the vortex layer. In this chapter, the dependence of the solution
on the numerical and vortex-layer parameters is investigated. The dependence on A, vy, and ag is
investigated in Chapter [

This chapter is organized as follows. The dependence of the evolution of a vortex layer on
numerical parameters is investigated in Section [3.]] The dependence on vortex-layer parameters is

investigated in Section [3.2

3.1 Spatial and temporal convergence for fixed vortex-layer
thickness

Investigated here are the effects of grid spacing Az and time step size At on the evolution of a vortex

layer with fixed thickness dp = 0.4 cm under the VS method. The initial vorticity is
Iy
w(xiayj) = ZﬁLQ,QD (xn — iy, Yn _yivhv(sT) ) (31)

where Ly op is the two-dimensional Gaussian [Eq. (2.26)] and I'; is the initial circulation of the
markers used to discretize the center of the layer [Eq. (2.19)]. The initial density is a hyperbolic
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[ A v | N, =32 N, = 64 N, =128 N, =256 N, =512 |
0 0 VS-00-32 VS-00-64 VS-00-128 VS-00-256 VS-00-512
(solid blue) (dashed blue) (solid red) (dashed red) (solid green)
0 3x107% ] VS-03-32 VS-03-64 VS-03-128  VS-03-256 VS-03-512
(solid blue) (dashed blue) (solid red) (dashed red) (solid green)
04 3x1073 | VS-43-32 VS-43-64 VS-43-128  VS-43-256 VS-43-512
(solid blue) (dashed blue) (solid red) (dashed red) (solid green)

Table 3.1. Keys used to denote simulations for the convergence study using different grid resolutions.

tangent previously used by Saffman and Meiron [[25] and Meloon [@4],

plai,y;) =2 ;rpz {1+A tanh[

y; — ag cos (k xi)} } ’ (3.2)

or

where A is the Atwood number [Eq. (1.13)] and & = 27/X is the wavenumber with wavelength
A =5.94 cm. In the present simulations, ps = 1 and p; = (p2 — A p2)/(1 + A).

Simulations are performed in a rectangular domain [0, L] x [—Lp, L] = [0,5.94] x [-11.88,11.88]
for grid resolutions N, x 4 N, where N, = 32, 64, 128, 256, and 512, so that N, is the number
of points per initial perturbation wavelength. When v = D = 0 (Sec. , oscillations develop
due to the formation of steep density and vorticity gradients. As the grid is refined, the oscillations
occur at later times. Thus, viscosity and mass diffusivity are introduced to prevent the formation
of oscillations. Both in the case of zero Atwood number (Sec. and nonzero Atwood number
(Sec. , similar small-scale features form as the grid is refined and the thickness 7 is kept fixed.
Third-order in time and fourth-order in space point-wise convergence is demonstrated. Table

shows the simulations performed, together with the keys used to denote the simulations.

3.1.1 Results for zero viscosity and mass diffusivity

Figure [B1] shows the time-evolution of the mass fraction field for the evolution of a vortex layer
when the viscosity v and mass diffusivity D are zero as the grid is refined keeping the layer thickness
o7 = 0.4 cm fixed. The results are obtained using the VS method for A = 0. For N, = 64, the change
in color at 1 ms for the mass fraction field m(z,y) corresponds to the onset of oscillations. The red
color at 0 ms corresponds to m = 1, and the blue color to m = 0. At 1 ms, the change in color
indicates that regions with values larger than unity and smaller than zero form due to oscillations
that develop in the presence of steep gradients. These steep gradients form when the instability
develops, as the top fluid pushes onto the bottom fluid in the spike region, and the bottom fluid
“rises” into the top fluid in the bubble region. These oscillations become stronger at later times,
as demonstrated by the lighter colors at later times. For N, = 128, oscillations are not present

at 1 ms, but are already visible at 3 ms. For the N, = 256 and 512 cases, the change in color
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Figure 3.1. Time-evolution of the mass fraction field m(z,y) for the Richtmyer-Meshkov instability
with A = 0 and initial diffuse layer thickness o7 = 0.4 cm at 0, 1, 3, 5, 7, and 9 ms. The results are
obtained using the VS method with grid resolutions N, = 64, 128, 256, and 512.
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occurs at later times. This demonstrates that as the resolution is increased, the scheme can tolerate
steeper gradients before developing oscillations. For sufficiently high resolution, it may be possible
to simulate the Richtmyer-Meshkov instability without developing these oscillations. However, the
formation of the roll-up region with successively smaller structures guarantees that sufficiently steep
gradients develop, introducing oscillations in the flow. In the absence of dissipation, the Euler
equations do not have a length-scale so that progressively finer scales develop, despite the use of a
layer with finite thickness.

Figure shows the time-evolution of the mass fraction contours for the vortex layer evolution
using the VS method for A = 0. Complex small-scale structure develops within the roll-up regions.
The large-scale structure is not affected by the oscillations introduced by the small-scale structures.
Figure shows the time-evolution of the vorticity field w(z,y) for A = 0. For N, = 64, the
vorticity shows areas of higher concentration at 5, 7, and 9 ms. For higher grid resolutions, the
vorticity does not show similar concentrations. However, differences in structure are visible at 9 ms.

It was shown in Section [2:2.2] that a Gaussian thickening of the vortex layer converges in the limit
of decreasing thickness dr and decreasing grid spacing Az to the velocity given by the Biot-Savart
law for a vortex sheet. Figure [3.4]shows that the VS method is third-order in time and fourth-order
in space when 7 is kept fixed. For the temporal convergence (first row), simulations were performed
until 0.8 ms using decreasing values of the time-step At. The rms-norm of the difference between
the simulations obtained using the smallest Aty = 0.005 ms and the simulations obtained using
larger values of At are shown for the vorticity w(z,y) and density p(x,y). The results demonstrate
third-order convergence in time, as indicated by the fiducial (green). For the spatial convergence
(second row), simulations were performed for N, = 32, 64, 128, 256, and 512 (fine grid). The rms-
norm of the difference between the vorticity and density from the simulations on the fine and coarser
grids are shown at 1, 3, 5, and 7 ms. Fourth-order convergence is obtained at 1 ms as the grid is
refined. At 3 ms, second-order convergence is observed between N, = 32 and 128 and higher-order
convergence between N, = 128 and 256, indicating that for coarser grids, fourth-order convergence
is not achieved. At 5 ms, first-order convergence is observed between N, = 32 and N, = 128 and
higher order convergence between N, = 128 and 256. At 7 ms, first-order convergence is observed
for all grid resolutions. Thus, fourth-order convergence is lost in time for A = 0 when v = D = 0,
as expected, due to the oscillations (as shown in Fig. [3.1)).

Figure shows the time-evolution of the perturbation amplitude a(t) as the grid is refined
(left). The perturbation amplitude is computed for A = 0 as follows. The mass fraction is averaged

across the periodic direction,

Ly
m(:yat) = LL /0 m(x’yat) dy, (33)
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Figure 3.2.  Time-evolution of the mass fraction contour corresponding to m; = 1/2 for the

Richtmyer-Meshkov instability with A = 0 and initial diffuse-interface thickness dr = 0.4 cm at
0,1, 3, 5,7, and 9 ms. The results are obtained using the VS method with grid resolutions N, = 64,
128, 256, and 512.



Figure 3.3. Time-evolution of the vorticity field w(z,y) for the Richtmyer-Meshkov instability with
A = 0 and initial thickness 7 = 0.4 cm at 0, 1, 3, 5, 7, and 9 ms. The results are obtained using
the VS method with grid resolutions N, = 64, 128, 256, and 512.
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Figure 3.4. Temporal and spatial convergence for the vorticity w and density p fields when v =D =0
for A = 0. For temporal convergence, Aty = 0.005 ms at 0.8 ms when At = 0.16, 0.08, 0.04, 0.02,
and 0.01 ms. The dashed green line represents At3, indicating third-order convergence in time. For
spatial convergence, N, = 512 at 1, 3, 5, and 7 ms when IV, = 32, 64, 128, and 256. The red line
represents N 2, indicating second-order convergence, and the blue line represents N *, indicating
fourth-order convergence.

and the amplitude of the bubble and spike, a,(t) and as(t), respectively correspond to the location
where M > € and m < 1—¢, respectively with ¢ = 0.01. Define and spike amplitudes, the perturbation

width and perturbation amplitude
h(t) = ap(t) +as(t),  alt) = ==, (3.4)

respectively. The amplitude is not significantly affected as the grid is refined, even in the presence
of oscillations. The rms-norm of the difference between the amplitudes on the fine and coarser grids
(right) shows that first-order convergence is recovered in a(t) as the grid is refined. This is expected,
as the oscillations introduced by the steep gradients reduce the convergence rates for all quantities,

including a(t). The bubble and spike amplitudes are not shown, as they are equal for A = 0. Figure
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Figure 3.5. Comparison of the perturbation amplitude a(t) and circulation T'"(¢) as the grid is
refined for A = 0 using the VS method with v = 0 and 7 = 0.4 cm for N, = 32, 64, 128, 256, and
512 (left column). Also shown is the rms-norm of the difference between results obtained on the
Ngp x Nyp =512 x 1024 grid and results on coarser grids. See Figure for the legend.

m also shows that the positive circulation I'"(¢) remains constant as the grid is refined. For v = 0,
there is no mechanism to dissipate the circulation so that it remains constant. The rms-norm of
the difference between the circulation on the fine grid and that on coarser grids shows second-order
convergence.

To make the agreement between the results on the fine grid and the results on the coarser grids

more quantitative, the average fractional deviation [G2] [(§]

_ 1 al lan, (t:) — an ;)]
A= ; e (3.5)

is computed, where N is the number of sample points used. The results indicate that the coarser

grids values approach the fine grid value.
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A(%) ] N;=32 N,=64 N,=128 N, =256

a(t) | 1.408 0.661 0.275 0.086
ap(t) | 1.408 0.661 0.276 0.086
L) | 1407 0.661 0.275 0.086

a
It(t) 0.0427 0.014 0.00288 0.000583

Table 3.2. Average fractional deviation A between the results on the N, = 512 grid and those on
coarser grids for the perturbation, bubble, and spike amplitudes a(t), ap(t), and as(t), respectively,
and the circulation I'*(¢) for the VS method with A =0 and v =D = 0.

3.1.2 Results with nonzero viscosity and mass diffusivity for zero Atwood

number

To prevent the formation of steep gradients as the instability develops, viscosity v and mass diffu-
sivity D are introduced so that the Schmidt number S¢ = v/D = 1 is consistent with gas properties.
Figure [3.6] shows the time-evolution of a thickened vortex layer under the VS method for A = 0, as
the grid is refined keeping the thickness of the layer 6 = 0.4 cm fixed. For A = 0, the density is
equal across the two fluids and the baroclinic vorticity production is zero, so that the mass fraction
field m(z,y) is shown. The mass fractions across the fields are very similar. The mass fraction
field corresponding to N, = 64 shows a lighter color starting from 1 ms, indicating the presence of
oscillations in the simulation. At later times, the red and blue colors become lighter, indicating that
the oscillations intensify. At 7 and 9 ms, the oscillations are visible near the tips of the bubble and
spike. As the grid is refined, the additional points used to discretize the layer, combined with the
action of viscosity, prevent the formation of these oscillations. Starting from N, = 128, the red and
blue colors remain dark at all times, indicating that no oscillations develop. Furthermore, as the
grid is refined, the roll-up retains the same shape, indicating that the results are converged.

Figure shows the mass fraction contours corresponding to the fields in Figure [3.6] The
contours are used to visualize the small-scale structure within the roll-ups. The contours show
convergence under grid refinement, including similar characterizations of the small-scale roll-ups at
late times, further confirming that the results are converged under grid refinement. The contour
corresponding to N, = 64 shows a different structure within the roll-ups at 7 and 9 ms, with the
inner core exhibiting oscillations, due to the underlying oscillations in the field. No oscillations are
observed at 1 ms, although oscillations are present in the field. Figure 3.8 shows a comparison of
the vorticity field as the grid is refined. The vorticity forms cores at late times with a well-defined
center. The cores become larger at late times. For N, = 64 the cores show a fragmented core with
small disordered structures.

The temporal and spatial convergence properties for the VS method are shown in Figure 3.9
For the temporal convergence, the vorticity and mass fraction are computed up to a fixed time 0.8

ms as At is decreased. The rms-norm of the difference between fields obtained with Aty = 0.005 ms
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Figure 3.6. Time-evolution of the mass fraction field m(z,y) for the Richtmyer-Meshkov instability
with A = 0, initial diffuse-interface thickness 67 = 0.4 cm, and v = D = 3 x 1073 ecm? /ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions N, = 64, 128,
256, and 512.
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Figure 3.7. Time-evolution of the mass fraction contour corresponding to m; = 1/2 for the

Richtmyer-Meshkov instability with A = 0, initial diffuse-interface thickness 7 = 0.4 cm, and
v=D=3x10"2 cm?/ms at 0, 1, 3, 5, 7, and 9 ms. The results are obtained using the VS method
with grid resolutions N, = 64, 128, 256, and 512.
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Figure 3.8. Time-evolution of the vorticity field w(z,y) for the Richtmyer-Meshkov instability with
A = 0, initial thickness 67 = 0.4 cm, and v =D = 3 x 1072 cm?/ms at 0, 1, 3, 5, 7, and 9 ms. The
results are obtained using the VS method with grid resolutions N, = 64, 128, 256, and 512.
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Figure 3.9. Temporal and spatial convergence for the vorticity w and density p fields with v =
D =3 x 107* ¢cm?/ms when A = 0. For temporal convergence, Aty = 0.005 ms at 0.8 ms when
At = 0.16, 0.08, 0.04, 0.02, and 0.01 ms. For spatial convergence, N;r = 512 at 1, 3, 5, and 7 ms
when N, = 32, 64, 128, and 256. See Figure [3.4] for the legend.

and with larger time steps is shown, indicating third-order convergence. For the spatial convergence,
the results are compared at 1, 3, 5, and 7 ms as the grid is refined. The ¢*°-norm of the difference
between results on the N s = 512 grid and results on coarser grids shows fourth-order convergence
for all times. This is in contrast to the results with zero viscosity (Fig. , where fourth-order
convergence was obtained at 1 ms and lower-order convergence at later times.

Figure shows a comparison of the perturbation amplitude a(t), indicating that differences
as the grid is refined are small. The rms-norm of the difference between the amplitude on the fine
grid and on the coarser grids is also shown, indicating fourth-order convergence. Also shown is a
comparison of the circulations I'"(¢) as the grid is refined. The circulation decreases as time evolves,
due to the dissipation of vorticity. For A = 0 and v = 0, the circulation is expected to remain
constant (Fig. . A viscosity of 3 x 1073 ecm?/ms contributes a 0.5% decrease in circulation in 10

ms. The rms-norm of the difference between results on the fine and coarser grids shows fourth-order
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Figure 3.10. Comparison of the perturbation amplitude a(t) and circulation I'"(¢) as the grid is
refined for A = 0 using the VS method with v = D = 3 x 1072 cm?/ms and dr = 0.4 cm for
N, = 32, 64, 128, 256, and 512 (left column). Also shown is the rms-norm of the difference between
results obtained on the N,y x Ny = 512 x 1024 grid and results on coarser grids. See Figure
for the legend.

convergence. The average fractional deviation A [Eq. (3.5)] is shown in Table [3.3]

3.1.3 Results with nonzero viscosity and mass diffusivity for nonzero At-

wood number

Figure shows the time-evolution of the density field from the VS simulations of the Richtmyer-
Meshkov instability for A = 0.4 and v = D = 3 x 1072 cm?/ms. Results for v = D = 0 are
not shown since the oscillations for A = 0 intensify as the density is differentiated to compute the
baroclinic vorticity production P. The computation of P also requires the determination of the
pressure gradient, which is computed by solving the pressure Poisson equation [Eq. ] with
Neumann boundary conditions. For A = 0.4, the densities are very similar under grid refinement,
indicating converged results. The density also exhibits the expected differences between bubbles and

spikes. In particular, at early times, the bubble expands and the spike contracts. At later times, the
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Figure 3.11. Time-evolution of the density field p(z,y) for the Richtmyer-Meshkov instability with
A = 0.4, initial diffuse-interface thickness o7 = 0.4 cm, and v = D = 3 x 1073 cm?/ms at 0, 1, 3,
5,7, and 9 ms. The results are obtained using the VS method with grid resolutions N, = 64, 128,
256, and 512.
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A%)| N,=32 N,=64 N,=128 N, =256
a(t) 0.84 0.198 0.023 221 x107°
ap(t) 0.84 0.199 0.0231  2.22 x 1073
as(t) 0.84 0.198 0.023  2.22x 1073
I+(t) | 0.045 0.014 0.003  6.16 x 1073

Table 3.3. Average fractional deviation A between the results on the N, = 512 grid and those on
coarser grids for the perturbation, bubble, and spike amplitudes a(t), ap(t), and as(t), respectively,
and the circulation I'*(¢) for the VS method with A =0 and v =D = 3 x 1072 c¢m?/ms.

bubble has a smaller amplitude than the spike. For A = 0, the bubbles and spikes were identical.
For N, = 64, oscillations are observed at 3 ms. These oscillations are mitigated at later times due
to dissipation. For all other values of IN;, no oscillations are observed.

Figure shows the mass fraction contours corresponding to the densities in Figure As
the grid is refined, the contours provide similar characterizations of the roll-up structure, including
the N, = 64 case, where oscillations were observed at 3 ms. Figure shows the time-evolution of
w(x,y) for A = 0.4 under grid refinement. The vorticity field does not show differences, indicating
that similar characterizations of the vorticity are provided by the method. In particular, the vorticity
for N, = 64 at 3 ms does not show oscillations, indicating that the oscillations in the density were
mitigated by the viscosity. At late times, the vorticity rolls up into strong cores.

The temporal and grid convergence properties of the density and vorticity in the VS method
for A = 0.4 are shown in Figure For the temporal convergence (first row), the rms-norm of
the difference between results obtained using Aty = 0.05 ms and larger values shows third-order
convergence as the time-step is decreased. For the spatial convergence (second row), the rms-norm
of the difference between results on the fine grid N,y = 512 and results on coarser grids shows
fourth-order convergence for all times.

Figure shows a comparison of the perturbation, bubble, and spike amplitudes, a(t), ap(t),
and as(t), respectively, as the grid is refined. For A # 0, distinctive bubble and spike amplitudes
develop. As the grid is refined, the amplitudes do not vary significantly. Also shown in the figure
is the rms-norm of the difference between the amplitudes on the fine and coarser grids, indicating
fourth-order convergence.

Shown in Figure is a comparison of the circulation I'*(¢) as the grid is refined. Following the
baroclinic vorticity deposition, I' decreases and then increases. Also shown is the rms-norm of the
difference between the circulation on the fine and coarser grids, indicating fourth-order convergence.

The average fractional deviation A [Eq. (3.5)] is shown in Table
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Figure 3.12. Time-evolution of the mass fraction contour m; = 1/2 for the Richtmyer-Meshkov
instability with A = 0.4, initial thickness 07 = 0.4 ms, and v = D = 3 x 1072 ¢cm?/ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions N, = 64, 128,
256, and 512.
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Figure 3.13. Time-evolution of the vorticity field w(z,y) for the Richtmyer-Meshkov instability with
A = 0.4, initial diffuse-interface thickness o7 = 0.4 cm, and v = D = 3 x 1073 cm?/ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions N, = 64, 128,
256, and 512.
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Figure 3.14. Temporal and spatial convergence for the vorticity w and density p fields with v =
D =3x107% cm?/ms for A = 0.4. For temporal convergence, Aty = 0.005 ms with At = 0.16, 0.08,
0.04, 0.02, and 0.01 ms. For spatial convergence, N5 = 512 at 1, 3, 5, and 7 ms when N, = 32, 64,
128 and 256. See Figure [3:4] for the legend.

A(%) | N,=32 N,=64 N,=128 N, =256

a(t) 1.05 0.171 0.047 3.97 x 1073
ap(t) 0.192 0.45 0.106 2.12 x 1073
(t) 2.16 0.72 0.18 5.62 x 1073

s
rH(t) | 0476 0.047 53x1073 831x1074

Table 3.4. Average fractional deviation A between the results on the N, = 512 grid and those on
coarser grids for the perturbation, bubble, and spike amplitudes a(t), ap(t), and as(t), respectively,
and the circulation I'T(¢) for the VS method with A = 0.4 and v =D = 3 x 1072 cm?/ms.
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Figure 3.15. Comparison of the perturbation, bubble, and spike amplitudes a(t), ay(t), and as(t),
respectively, as the grid is refined for A = 0.4 using the VS method with v = 3 x 1072 cm?/ms and
dr = 0.4 cm for N, = 32, 64, 128, 256, and 512 (left column). Also shown is the rms-norm of the
difference between results obtained on the Ny ¢ x N,y = 512 x 1024 grid and results on coarser grids.

See Figure [3.4] for the legend.
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Figure 3.16. Comparison of the circulation I'"(¢) as the grid is refined for A = 0.4 using the VS
method with v = 3x 1073 ¢cm? /ms and d7 = 0.4 cm for N, = 32, 64, 128, 256, and 512 (left column).
Also shown is the rms-norm of the difference between results obtained on the N,y x N,y = 512x1024
grid and results on coarser grids. See Figure for the legend.

p=8x107% 9, —gx 10t 9 910t @04 o
0r =04 cm VS-04-80 VS-04-40 VS-04-20 VS-04-10
(solid blue) (dashed blue) (dash-dot blue) (dotted blue)
O0r = 0.3 cm VS-03-80 VS-03-40 VS-03-20 VS-04-10
(solid red) (dashed red) (dash-dot red) (dotted red)
O0r = 0.2 cm VS-02-80 VS-02-40 VS-02-20 VS-04-10
(solid green) (dashed green) (dash-dot green) (dotted green)

Table 3.5. Keys used to denote simulations with different values of the viscosity v and initial diffuse-
interface thickness dr for the VS method.

3.2 Convergence study using different diffuse interface thick-
nesses and viscosities

Presented here is a convergence study as the diffuse interface thickness dr is varied from 0.4 to 0.2
em and the viscosity v is varied from 8 x 107* to 10~* ¢m?/ms for A = 0.4 (keeping D = v). First,
the density, mass fraction contours, and vorticities are compared at 3, 5, and 7 ms (Sec. .
Next, a convergence study is performed for the smallest value of the viscosity, as the diffuse interface
thickness is reduced (Sec. . Finally, the effects of varying the diffuse interface thickness and the
viscosity on the perturbation, bubble, and spike amplitudes, on the circulation, and on the Reynolds

numbers is investigated (Sec. [3.2.3]).
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3.2.1 Dynamics of the instability evolution

Presented here is a visualization of the instability development as the diffuse-interface width §7 and
viscosity v are varied. Table shows the keys used to denote the simulations. Each simulation
is performed at a resolution of N, = 512, and it is shown in Section that this resolution is
guaranteed to be in the region of fourth-order point-wise convergence of the method.

Figureshows the density field p(z,y) at 3 ms as dr and v are varied. The results are presented
on a grid so that fields in the same column have the same viscosity v with decreasing diffuse interface
thickness, while fields in the same row have the same diffuse-interface thickness 7 with decreasing
viscosity v. A significant variation is observed in the small-scale features corresponding to the
formation of the roll-up as dr is decreased, while no significant difference is observed as v is decreased.
Figure [3.18] continues the comparison by showing the mass fraction contours corresponding to the
densities in Figure further confirming that variations are observed as 7 is decreased, but little
variation as v is decreased. In particular, as d7 is decreased the roll-up appears at a later stage
of the instability development. This is expected because if the instability development is measured
with respect to the nondimensional time 7 [Eq. ], then as the diffuse interface decreases, the
growth reduction factor ¢ (Sec. also decreases, resulting in a larger value of 7 for the same
time.

Figure [3.19] shows the comparison of the vorticity field at 3 ms as v and dr are varied. As dr is
decreased, the vortex layer is thinner with more refined cores. In addition, as noted in the discussion
of the mass fraction, the stage of the roll-up is more advanced as 7 is decreased. For i = 0.4 cm,
a core of the roll-up is barely visible. For 67 = 0.3 cm, the roll-up is beginning and for d7 = 0.2
cm, the roll-up is advanced. In addition, for 7 = 0.4 and 0.3 cm, no differences are visible in the
layer as v is decreased. However, for 7 = 0.2 cm, the layer becomes much thinner and concentrated
as v decreases. This is expected, as viscosity spreads the layer of vorticity. Such effects are more
pronounced in the presence of a thin layer as opposed to a thicker layer.

Figure [3:20] shows a comparison of the densities at 5 ms when the roll-up develops. As dr is
decreased, the details of the roll-up become sharper and the roll-up is more developed. For d7 = 0.4
and 0.3 cm, no visible effects are apparent as v is decreased. For dp = 0.2 cm, the roll-up is less
diffuse for smaller values of v. Figure[3.21] continues the comparison for the mass fraction contours.
The results also confirm small variations as v is decreased and larger variations as dr is increased.
The contour corresponding to 67 = 0.2 cm and v = 8 x 10~% ¢cm?/ms shows the most structure
within the roll-ups. As v decreases, such structure is replaced by a large-scale round structure.
This is a limitation of the mass fraction contours, as the fine-scale structure cannot be visualized
effectively, although it was present in the density fields.

Figure shows a comparison of the vorticity field at 5 ms. Variations are visible as both

67 and v are decreased. As ér is decreased, the cores become better defined and show additional
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Figure 3.17. The density field p(x,y) at 3 ms for different values of the diffuse-interface thickness
o7 and viscosity v. The results were obtained with grid resolution 512 x 1024 using the VS method.
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o7 and viscosity v using the VS method.
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Figure 3.19. The vorticity field w(x,y) at 3 ms for different values of the diffuse-interface thickness
o7 and viscosity v using the VS method.
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structure. For a fixed ér, as v is decreased, the cores are stronger. For dr = 0.2 cm and for
decreasing v, vorticity of opposite sign is observed within the cores, giving rise to a bi-layer.

Figure [3.23] shows a comparison of the density at 7 ms when the roll-up is fully developed. Sig-
nificant differences are observed as 7 decreases and smaller differences as v decreases. In particular,
the roll-ups for v < 4 x 104 ¢cm? /ms are small, in contrast to more pronounced differences in roll-up
structures observed when varying v at earlier times.

Figure [3.24] continues with the comparison of the mass fraction contours. The results indicate
differences in the small scale structure as the viscosity and diffuse-interface thickness are decreased.

Finally, Figure[3:25shows a comparison of the vorticity field at 7 ms. As the viscosity is decreased,
the structure of the roll-up and of the layer becomes more visible, showing tighter windings. For

o7 = 0.2 cm, bi-layers of positive and negative vorticity are visible within the roll-ups.

3.2.2 Convergence study as the diffuse interface thickness is reduced

The results in the previous section were obtained for a grid resolution corresponding to N, = 512.
An important question arises as to whether the resolution chosen is sufficient to guarantee fourth-
order point-wise convergence. In particular, as shown in Section fourth-order convergence is
expected at all times once sufficient resolution is provided. In order to demonstrate that the results
are within the ball of fourth-order convergence, a grid resolution study is performed for the case of
v =10"% cm?/ms for different values of 7.

Figure [3.:26] shows the time-evolution of the point-wise spatial convergence of the vorticity w and
density p as the grid is refined at 1, 3, 5, and 7 ms for ér = 0.4, 0.3, and 0.2 cm. For §7 = 0.4
cm, the results are fourth-order convergent at 1 ms for all grid resolutions. At 3 ms a deterioration
of the convergence rate is observed corresponding to N, = 32, 64, and 128, as indicated by the
second-order slope. For N, = 256 and 512, fourth-order convergence is recovered, as indicated by
the steepening profile. For 5 and 7 ms, fourth-order convergence is recovered only between N, = 256
and N, = 512. There is no error quoted at 7 ms for NV, = 32, as the simulation terminates before 7 ms
due to oscillations. For dp = 0.3 cm, a similar result applies. For 1 ms, fourth-order convergence is
observed for all resolutions. At later times, a deterioration of the convergence properties is observed
at coarser resolutions and fourth-order convergence is recovered between N, = 256 and 512. For
or = 0.2 cm, a similar result applies, except that the simulations corresponding to N, = 32 and
64 terminate before 5 ms, and that corresponding to N, = 128 before 7 ms. Only simulations with
N, > 256 give results up to 10 ms. Fourth-order convergence is recovered between N, = 256 and
512.

The following convergence properties apply to the VS method. In general, all simulations exhibit
fourth-order convergence at early times. At later times and for smaller values of the diffuse-interface

thickness and viscosity, high order requires sufficient resolution to resolve all small-scale structures.
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Figure 3.23. Same as Figure but at 7 ms.
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Figure 3.26. Time-evolution of the spatial convergence rate for the vorticity w and density p when
v = 107* cm?/ms as the grid is refined for 57 = 0.4, 0.3, and 0.2 cm at 1, 3, 5, and 7 ms. For
the fine-grid simulation N,y x N,y = 1024 x 2048 when N, = 32,64,128,256,512. The dashed red
line represents N, 2, the green line N3, and the blue line N, %, indicating, second-, third-, and
fourth-order convergence.
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When insufficient resolution is used, the method generates oscillations that degrade the solution.
Even when sufficient resolution is used to prevent the formation of oscillations, the resolution may
still not be sufficient to guarantee fourth-order convergence. In fact, as demonstrated here, regions
with second- and third-order convergence are observed prior to full fourth-order convergence. The
results also demonstrate that N, = 512 is sufficient to guarantee that the results are in the region

of fourth-order point-wise convergence.

3.2.3 Effects of viscosity and diffuse-interface thickness on the pertur-
bation, bubble, and spike amplitudes, circulation, and Reynolds

numbers

Presented here is a comparison of the perturbation, bubble, and spike amplitudes, circulation, and
Reynolds numbers as the diffuse-interface thickness ér and viscosity v are varied. The following
conventions are used. Each simulation is assigned a distinctive color and line style as explained in
Table A series of three figures is shown for each quantity. In the top figure, results for all
cases are presented together. In the middle figure, results are shown for a fixed ér = 0.3 cm as the
viscosity is varied. In the bottom figure, results are shown for a fixed v = 2 x 10~* ¢cm?/ms as o7 is
varied. This allows a more precise quantification of the effects of each parameter.

Figure shows a comparison of the perturbation amplitude a(t) as o7 and v are varied. No
significant variation is observed in the amplitude as these parameters are varied. The reason for
this is that the heavier fluid pushes onto the lighter fluid creating similar layer thicknesses as the
instability develops. Differences emerge in the small-scale roll-up structure (Sec. but these
differences do not affect the amplitudes.

Figure continues the comparison for the bubble and spike amplitudes a;(t) and as(t), re-
spectively. No significant variation is observed in the bubble and spike as v is varied. Some variation
is observed in the initial bubble amplitude as d1 is varied. This initial difference decreases rapidly
and is no longer visible at late times. By contrast, the spike amplitude shows no such variation at
the initial time, but instead at intermediate times. No variation is observed at late times.

Figure shows a comparison of the circulation I'(¢) as 07 and v are varied. The circulation
shows variation, developing at intermediate times and becoming more pronounced at later times.
The variation is due to changes in dr, as indicated by the fact that results are grouped by color.
In particular, smaller 7 lead to larger I'. Similarly, smaller v lead to larger I', but by a smaller
amount than changing the diffuse interface thickness.

Also shown in Figure is a comparison of the circulation Reynolds number [IT3]
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