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Abstract

An incompressible vorticity-streamfunction (VS) method is developed to investigate the single-mode

Richtmyer-Meshkov instability in two and three dimensions. The initial vortex sheet (representing

the initial shocked interface) is thickened to regularize the limit of classical Lagrangian vortex meth-

ods. In the limit of smaller thickness, the initial velocity converges to the velocity of a vortex sheet.

The vorticity on the Cartesian grid follows the vorticity evolution equation augmented by the baro-

clinic vorticity production term (to capture the effects of the instability on the layer) and a viscous

dissipation term. The equations are discretized using a fourth-order in space and third-order in time

semi-implicit Adams-Bashforth backward differentiation scheme. The convergence properties of the

method with respect to varying the diffuse interface thickness and viscosity are investigated. It is

shown that the small-scale structures within the roll-up are more sensitive to the diffuse interface

thickness than to the viscosity. By contrast, the large-scale quantities, including the perturbation,

bubble, and spike amplitudes are less sensitive. Fourth-order point-wise convergence is achieved,

provided that a sufficiently fine grid is used.

In two dimensions, the VS method is applied to investigate late-time nonlinear effects of the

single-mode Mach 1.3 air(acetone)/SF6 shock tube experiment of Jacobs and Krivets [62]. The re-

sults are also compared to those from compressible ninth-order weighted essentially non-oscillatory

(WENO) simulations. The density fields from the WENO and VS methods agree with the ex-

perimental PLIF images in the large-scale structures but differ in the small-scale structures. The

WENO method exhibits small-scale disordered structure similar to that in the experiment, while the

VS method does not capture such structure, but shows a strong rotating core. The perturbation am-

plitudes from the two methods are in good agreement and match the experimental data points well.

The WENO bubble amplitude is smaller than the VS amplitude and vice versa for the spike ampli-

tude. Comparing amplitudes from simulations with varying Mach number shows that as the Mach

number increases, the differences in the bubble and spike amplitudes increase due to intensifying

pressure perturbations not present in the incompressible VS method. The perturbation amplitude

from the WENO and VS methods is also compared to the predictions of nonlinear amplitude growth

models in which the growth rate was reduced to account for the diffuse initial interface. In gen-

eral, the model predictions agree with the simulation amplitudes at early-to-intermediate times and
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underpredict at later times, corresponding to the late nonlinear regime.

The WENO simulation is used to investigate reshock, which occurs when the transmitted shock

reflects from the end wall of the test section and interacts with the evolving layer. The post-reshock

mixing layer width agrees well with the predictions of reshock models for short times until the

interaction of the reflected rarefaction with the layer.

The VS simulation was also compared to classical Lagrangian and vortex-in-cell simulations as

the Atwood number was varied. For low Atwood numbers, all three simulations agree. As the

Atwood number increases, the VS simulation shows differences in the bubble and spike amplitudes

compared to the Lagrangian and VIC simulations, as the baroclinic vorticity production for a diffuse

layer is different from that of a thin layer. The simulation amplitudes agree with the predictions of

nonlinear amplitude growth models at early times. The growth models underpredict the amplitudes

at later times.

The investigation is extended to three dimensions, where the initial perturbation is a product of

sinusoids and the initial vorticity deposition is given by linear instability analysis. The instability

evolution and dynamics of vorticity are visualized using the mass fraction and enstrophy isosurface,

respectively. For the WENO and VS methods, two roll-ups corresponding to the bubble and spike

regions form, and the vorticity shows the formation of a ring-like structure. The perturbation

amplitudes from the WENO and VS methods are in excellent agreement. The bubble and spike

amplitude are in good agreement at early times. At later times, the WENO bubble amplitude is

smaller than the VS amplitude and vice versa for the spike. The nonlinear three-dimensional Zhang-

Sohn model [157] agrees with the simulation amplitudes at early times, and underpredicts later. In

three dimensions, the enstrophy iso-surface after reshock shows significant fragmentation and the

formation of small, short, tubular structures. Simulations with different initial amplitudes show

that the mixing layer width after reshock does not depend on the pre-shock amplitude. Finally, the

effects of Atwood number are investigated using the VS method and the amplitudes are compared

to the predictions of the Zhang-Sohn model. The simulation and the models are in agreement at

early times, while the models underpredict later.

The VS method constitutes a useful numerical approach to investigate the Richtmyer-Meshkov

instability in two and three dimensions. The VS method and, more generally, vortex methods are

valid tools for predicting the large-scale instability features, including the perturbation amplitudes,

into the late nonlinear regime.
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Chapter 1

Introduction

The Richtmyer-Meshkov instability denotes the growth of perturbations on an interface separating

two fluids following an impulsive acceleration [78]. In the laboratory, the impulsive acceleration is

typically provided by a shock. As a result, this instability is usually studied in shock tubes where,

at the entrance of the test section, an interface with a perturbation separates a light gas and a

heavy gas. The instability derives its name from the linear instability analysis of Richtmyer [121],

who first considered the growth rate of a perturbation following an impulsive acceleration and later

numerically verified these predictions by solving the compressible linear instability equations, and

by the shock tube experiments of Meshkov [96], who verified the predictions of Richtmyer. The

instability has been extensively studied for its relevance to inertial confinement fusion [31, 85, 86],

supernovae dynamics in astrophysics [37, 5, 6, 4], supersonic combustion [56, 152], as well as for its

fundamental interest [154, 17]. Developed in this thesis is a vorticity-streamfunction method for the

numerical investigation of the Richtmyer-Meshkov instability in two and three dimensions.

This introductory chapter is organized as follows. An overview of the Richtmyer-Meshkov insta-

bility, including the linear instability analysis, and the development of the single-mode instability is

presented in Section 1.1. The goals of this thesis are discussed in Section 1.2. The organization of

the thesis is presented in Section 1.3.

1.1 Overview of the Richtmyer-Meshkov instability

An overview of the Richtmyer-Meshkov instability is presented here, including the linear instability

analysis (Sec. 1.1.1) and instability dynamics (Sec. 1.1.2).

1.1.1 Linear instability analysis

Presented here is the linear instability analysis for the Richtmyer-Meshkov instability, taken from

Pullin and Wheatley [148, 149]. Additional information on linear instability theory can be found in

Drazin and Reid [33, 32] and Saffman [123].
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Figure 1.1. Sinusoidal interface for the linear instability problem in two dimensions.

Consider two incompressible, inviscid, irrotational fluids separated by an interface

η(y) = a−0 sin (k y) , (1.1)

where a−0 is the pre-shock amplitude, k = 2π/λ is the wavenumber, and λ is the perturbation

wavelength (Fig. 1.1). Let 1 and 2 denote the fluids below and above the interface, respectively. In

two dimensions, let x denote the horizontal coordinate and let y denote the vertical coordinate. Let

the interface be parametrized as x(e, t) = [x(e, t), y(e, t)], where e is the parameter of the interface,

and t is time.

The Richtmyer-Meshkov instability develops following an impulsive acceleration g = [u] δ(t),

where δ(t) is the Dirac δ-function, and [u] is a velocity difference created by the acceleration. A

time dependence is introduced, so that the ansatz used in classical linear instability analysis for the

Kelvin-Helmholtz and Rayleigh-Taylor instabilities can no longer be used. To derive the new ansatz,

consider the boundary conditions for a flow at rest following an impulsive acceleration

∇φ (z −→ ±∞) −→ 0 , (1.2)
∂φ′r
∂z

=
∂η

∂t
, (1.3)

ρ1

[
∂φ′1
∂t

+ [u] δ(t) η
]

= ρ2

[
∂φ′2
∂t

+ [u] δ(t) η
]
. (1.4)

To solve the linear instability equations use the ansatz

(η, φ′1, φ
′
2) =

[
η̂(z) a(t), φ̂′1(z) f1(t), φ̂

′
2(z) f2(t)

]
ei(kx x+ky y) (1.5)

and solve the initial-value problem to determine the time-dependent functions f1(t), f2(t), and a(t).

To satisfy the boundary condition [Eq. (1.2)] with initial conditions f1(0) = f2(0) = 0 and a(0) = a0,



3

choose φ̂′1 and φ̂′2

φ̂′2 = B2 e−kz , φ̂′1 = B1 ekz , (1.6)

and substitute in Equations (1.3)–(1.4) (for B1 = B2 = η̂(z)) to obtain

− kf2(t) =
da
dt
, (1.7)

kf1(t) =
da
dt
, (1.8)

ρ1

[
df1
dt

+ [u] δ(t) a(t)
]

= ρ2

[
df2
dt

+ [u] δ(t) a(t)
]
. (1.9)

To solve the system of first-order ordinary differential equations, apply the Laplace transform in

time

F̃ (s) =
∫ ∞

0

f(t) e−st ds , (1.10)

to Equations (1.7)–(1.9) to give the algebraic system

−k F̃2(s) = s Ã(s)− a0 , k F̃1(s) = Ã(s)− a0 , (1.11)

ρ1

[
s F̃1(s) + [u] a0

]
= ρ2

[
s F̃2(s) + [u] a0

]
.

The system can be solved to give

F̃1(s) =
Aa0 [u]

s
, F̃2(s) = −Aa0 [u]

s
, Ã(s) =

a0

s
+ k

Aa0 [u]
s2

, (1.12)

where

A ≡ ρ2 − ρ1

ρ1 + ρ2
, (1.13)

is the Atwood number. Taking the inverse Laplace transform along the Bromwich contour

a(t) =
1

2πi

∫ c+i∞

c−i∞
Ã(s) est ds , (1.14)

yields

a(t) = a0 (1 + k [u]A t) , (1.15)

indicating that the instability grows linearly in time. It follows that:

1. if ρ2 > ρ1, corresponding to A > 0, the instability immediately grows;

2. if ρ2 < ρ1, corresponding to A < 0, the instability initially decreases in a process called
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Figure 1.2. The shock tube test section and computational domain for the two-dimensional sim-
ulations of the Richtmyer-Meshkov instability. The diffuse sinusoidal interface separates the light
air(acetone) gas from the heavier SF6 gas, x denotes the direction of shock propagation, and y
denotes the transverse (periodic) direction.

inversion, and then exhibits linear growth;

3. if ρ1 = ρ2, corresponding to A = 0, the instability does not grow (called freeze-out).

In the case of a shock passing through an interface, [u] is the speed of the interface following

the passage of the shock, and a0 is the initial perturbation amplitude. However, it is unclear

whether the Atwood number A and the initial perturbation amplitude a0 should be formed from

the pre-shock values A− and a−0 , or the post-shock values A+ and a+
0 . Richtmyer [121] (based on

numerical simulations of the linearized equations) concluded that the best agreement between the

model prediction and the simulation data is obtained with the post-shock values A+ and a+
0 :

v0 ≡ k [u]A+ a+
0 . (1.16)

It is therefore customary to use the post-shock values in all of the models for both the linear and

nonlinear instability. The initial velocity is used to define the rescaled time

τ ≡ k v0 t , (1.17)

which is used to distinguish the linear regime (τ < 1) from the weakly-nonlinear regime (1 < τ < 4)

and the fully nonlinear regime (τ > 4). The initial growth [Eq. (1.16)] only applies to the linear

regime.

1.1.2 Single-mode instability dynamics

Presented here is an overview of the development of the reshocked single-mode Richtmyer-Meshkov

instability in two dimensions. The description is taken from a more comprehensive discussion in

Chapter 4.

The configuration considered here is the classical single-mode case, where air seeded with acetone
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[air(acetone)] is separated from sulfur hexafluoride (SF6) by a diffuse sinusoidal perturbation [Eq.

(1.1)], where a−0 , k, and the diffuse-interface thickness δT [Eq. (4.10)] are chosen to closely match

the parameters in the shock tube experiments of Jacobs and Krivets [62] (Sec. 4.2.1). In two

dimensions, a schematic of the shock tube test section and of the computational domain used in the

present simulations is shown in Figure 1.2. Also shown is the shock entering the test section before

refracting at the interface separating the light air(acetone) gas and the heavier SF6 gas.

Figure 1.3 illustrates the instability evolution through the density ρ(x, y), vorticity ω(x, y), and

simulated density Schlieren fields φ(x, y) [Eq. (4.41)]. First, following the shock interface interaction,

shock refraction occurs, in which a transmitted shock continues into the SF6 and a reflected shock

returns back into the air(acetone) and exits the computational domain. As the shock passes through

the interface, the misalignment of the density and pressure gradients causes a deposition of vorticity

through the baroclinic vorticity production mechanism. Consider the three-dimensional evolution

equation for the vorticity ω = ∇× u (in the absence of dissipation terms):

dω
dt

= P + S + C

=
∇ρ×∇p

ρ2
+ (ω · ∇)u− ω∇ · u , (1.18)

where
d
dt
≡ ∂

∂t
+ u ·∇ (1.19)

is the convective derivative. The first term on the right side is the baroclinic vorticity production P

and constitutes the main mechanism for vorticity generation in the Richtmyer-Meshkov instability.

The second term is the vortex stretching S. Vortex stretching is identically zero in two dimensions,

as the vorticity field is perpendicular to the velocity field. The absence of vortex stretching in

two dimensions causes an inverse cascade from small scales to larger scales [70], resulting in the

generation of larger and more coherent structures [129]. Thus, the dynamics of the Richtmyer-

Meshkov in three dimensions are different from the dynamics in two dimensions. The third term

is the vortex compression C and is small in the present simulations. In fact, compressibility effects

are not significant in the Richtmyer-Meshkov instability following the passage of the shock for the

moderate Mach numbers considered in the present work [93, 94, 57].

The baroclinic vorticity production is large when the shock passes through the interface, as a

shock causes a jump in pressure, depositing positive vorticity on one side of the interface and negative

vorticity on the other side of the interface. As the positive vorticity represents a counter-clockwise

rotation, while the negative vorticity represents a clockwise rotation, the distribution of vorticity

on the interface drives the evolution of the instability. In particular, the heavy SF6 penetrates into

the air(acetone) causing the formation of spikes, while the lighter air(acetone) “rises” into the SF6
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Figure 1.3. Time-evolution of the density ρ(x, y), vorticity ω(x, y), and simulated density Schlieren
φ(x, y) fields illustrating the development of the single-mode Richtmyer-Meshkov instability before
reshock at 0.06, 1.76, 3.06, and 5.26 ms (top panel) and after reshock at 5.6, 5.7, 5.9, and 6.5 ms
(bottom panel).
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Figure 1.4. The shock tube test section and computational domain for the three-dimensional sim-
ulations of the Richtmyer-Meshkov instability. The initial η(y, z) interface separates the light
air(acetone) gas from the heavier SF6 gas, x denotes the direction of shock propagation, and y
and z denote the transverse (periodic) directions.

causing the formation of bubbles. This can be seen in the instability evolution at 1.76 ms (Fig. 1.3).

Subsequently, the spike rolls up forming the characteristic “mushroom” shape and the vorticity rolls

up into strong positive and negative cores. As the roll-up occurs, the baroclinic vorticity production

generates additional vorticity on the interface, in a mechanism also called vortex-accelerated-vorticity-

deposition (VAVD) [115]. The baroclinic vorticity production causes the deposition of vorticity of

opposite sign in the roll-up, contributing to the formation of complex structures within the roll-up

that eventually fragment, as seen at 5.26 ms in Fig. 1.3. Additional deposition of vorticity occurs

and additional complex structure forms in a process called reshock. The transmitted shock that

entered the SF6 following the initial shock refraction travels faster than the interface, reflects from

the end wall of the test section, and interacts with the interface. At reshock, the shock refraction is

from the heavier SF6 into the lighter air(acetone). As a result, a transmitted shock continues into

the air(acetone) and a reflected rarefaction wave returns back into the SF6. The passage of the shock

causes deposition of vorticity of opposite sign on the interface. As a result, the spike now transforms

into a bubble and vice versa in a process called inversion. This process is visible at 5.6 ms, when the

reflected shock is observed prior to interacting with the interface, and also at 5.7 and 5.9 ms. The

transmitted shock and the reflected rarefaction waves are visualized through the density Schlieren

fields at these times, which also show the complex system of reflected and transmitted waves in the

layer. Following reshock, the instability grows faster, and by 6.5 ms a complex layer develops.

In this thesis the single-mode case is extended from two dimensions to three dimensions (Chapter

5). In three dimensions, a schematic of the shock tube test section and of the computational domain

used in the present simulations is shown in Figure 1.4. The interface separating the light air(acetone)

and the heavier SF6 gas is visualized through the mass fraction isosurface. The mass fraction is a
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scalar field advected by the velocity field and is initially zero in the air(acetone) gas and unity in the

SF6 gas. The mass fraction iso-surface corresponding to m = 1/2 is used to visualize the evolution

of the instability in three dimensions. The perturbed interface separating the two gases is

η(y, z) = a−0 sin (ky y) sin (kz z) , (1.20)

where ky and kz are the wavenumbers in the y and z direction, and a−0 is the pre-shock perturbation

amplitude. The values of ky = kz = k2D, and a−0 are chosen to match the values in the two-

dimensional study.

1.2 Goals of this thesis

The Richtmyer-Meshkov instability is a complex phenomenon that has been extensively investigated

numerically, analytically, and experimentally [154, 17]. As the instability contains a wide range of

scales developing from small interfacial perturbations in the presence of shocks, a high-resolution

compressible shock-capturing method is needed to capture the dynamics and multi-scale properties

of the instability. In previous work [78, 129], the ninth-order weighted essentially non-oscillatory

method was used to investigate the physics of the two-dimensional single-mode Richtmyer-Meshkov

instability with reshock using a model of the Collins and Jacobs [27] Mach 1.2 air(acetone)/SF6

experiment. Concurrent with this investigation, a study was also performed to quantify the effects

of resolution and order of WENO flux reconstruction on the instability dynamics and other charac-

teristic quantities [77]. This study underscored how physical and numerical effects are closely linked

and concluded that the ninth-order WENO method is well suited for investigating the instability

dynamics.

The single-mode Richtmyer-Meshkov instability is numerically investigated into the late nonlin-

ear regime in this thesis by simulating a model of the late-time Mach 1.3 air(acetone)/SF6 Jacobs

and Krivets [62] shock tube experiment (Sec. 4.2.1). These experiments were previously considered

by Peng, Zabusky, and Zhang [115] as part of a numerical investigation of the effects of the vortex-

accelerated secondary baroclinic vorticity deposition (VAVD) using a piece-wise parabolic method.

The present investigation is performed in the spirit of a previous study of the Collins and Jacobs

[27] experiment using the WENO method [78, 129], but the present work is different in two impor-

tant ways. (1) The Jacobs and Krivets experiments have a higher Mach number, so that a later

nonlinear regime is reached (by contrast, reshock occurs at an earlier time in the instability develop-

ment in the Collins and Jacobs experiment). (2) The instability is investigated from a perspective

complementary to the compressible WENO approach by considering the incompressible dynamics

of the underlying vorticity deposited by the passage of the shock. In fact, following the passage of
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the shock, the Richtmyer-Meshkov instability is essentially an incompressible phenomenon [94, 57].

Furthermore, for a high Reynolds number flow (including the Richtmyer-Meshkov instability), the

vorticity is concentrated in a small layer, so that a vorticity distribution can be used to model the

dynamics of the underlying complex flow [124]. However, modeling such a flow using a vorticity

approach raises questions of well-posedness of the initial conditions, long-time existence of the so-

lution, and convergence [11]. In fact, the linear instability of an inviscid plane vortex sheet in two

dimensions is ill-posed [35, 73]. Furthermore, Samtaney and Pullin [126] numerically examined the

convergence of initial-value solutions for vortex sheets in compressible Euler equations and reported

that pointwise convergence is not achieved. Developed in this thesis is a vorticity-streamfunction

method to investigate the dynamics of the vorticity in the Richtmyer-Meshkov instability in two

and three dimensions, where the initial vortex sheet is thickened to regularize the singular limit of

classical thin sheet representations. The vorticity on the Cartesian grid is evolved using the vor-

ticity equation augmented by the baroclinic vorticity production term to capture the effects of the

instability.

Presented in this section are the goals for the development of the VS method (Sec. 1.2.1). A

comparison of simulation results using the VS and WENO methods is performed (Sec. 1.2.2). The

investigation is also extended to three dimensions (Sec. 1.2.3).

1.2.1 Development of the vorticity-streamfunction method

A vorticity dynamics approach for investigating the Richtmyer-Meshkov instability has many advan-

tages including: (1) recognizing that vorticity is a fundamental instability driving mechanism and;

(2) as vorticity exists only in a small region of the domain, the numerical method is computationally

efficient. Developed in this thesis is a vorticity-streamfunction (VS) method for the simulation of

the Richtmyer-Meshkov instability. The initial interface is thickened to model the diffuse thickness

of the Jacobs and Krivets experiments (Sec. 4.2.1). The goals for the development of this method

are presented here.

1. A goal of this thesis is the development of a high-order VS method for increased accuracy and

resolution of structures as the instability develops (Chapter 2). In addition, the numerical

method must be efficient.

2. In the present investigation, vortex layers with finite diffuse-interface thickness are adopted to

model the diffuse-interface experiments of Jacobs and Krivets [62]. Vortex layers are well-posed

and exist in time [11]. The goal is to show that the vortex layer under appropriate conditions

converges to the solution of a vortex sheet as the diffuse-interface thickness is decreased (Sec.

2.2).

3. One of the goals for developing the VS method is to extend the formulation to three dimensions.
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4. Once the method is developed, a goal is the investigation of the numerical properties (Chapter

3). A convergence study must be performed to verify the numerical properties of the method

(Sec. 3.1) and investigate how these properties change in time. In addition, a systematic

and self-consistent convergence study is performed for variable diffuse-interface thickness and

viscosity (Sec. 3.2). The goal of these convergence studies is to ensure that simulations are

performed with sufficient resolution so that fourth-order pointwise convergence of the solution

is obtained.

1.2.2 Investigation of the two-dimensional single-mode instability

Compressible WENO and incompressible VS simulations are performed for the two-dimensional

Richtmyer-Meshkov instability (Chapter 4). The simulations are modeled after the single-mode

Mach 1.3 air(acetone)/SF6 shock tube experiment of Jacobs and Krivets [62] (Sec. 4.2.1), which

investigated late-time effects of the instability.

The main goals of this study are presented here.

1. One of the purposes of this study is the accurate construction and evaluation of initial con-

ditions (Sec. 4.2). First, the properties of the air(acetone) mixture are constructed based on

thermodynamic properties of the constitutive air and acetone vapor. As the WENO method

employed here allows the specification of a single value for the adiabatic exponent γ, the

mix initial conditions corresponding to a 50% mixture of air(acetone) and SF6 by volume are

adopted. As the VS method simulates the evolution of the instability following the passage of

the shock, results from linear instability theory, the Samtaney-Zabusky [127, 128] circulation

deposition model, and the WENO simulations are used to determine the circulation deposition

at the interface.

2. Another goal is to assess the properties of the ninth-order WENO method by comparing with

the fifth-order WENO method at different grid resolutions (Sec. 4.3). Visualization of the

instability evolution, as well as comparison of perturbation, bubble, and spike amplitudes are

performed to ensure that these amplitudes do not vary as the grid is refined and the order of

flux reconstruction is varied.

3. A comparison of the instability evolution from the incompressible VS method with results from

the compressible WENO simulation and the experimental PLIF images constitutes is another

goal (Sec. 4.4).

4. A comparison of the perturbation, bubble, and spike amplitudes with experimental data and

with the predictions of linear and nonlinear growth models is another goal of this investigation

(Sec. 4.5).
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5. To further interpret the agreement between the VS and WENO methods, the effects of varying

Mach numbers (Sec. 4.6) are investigated.

6. Another goal of the simulations is the investigation of reshock using the WENO method (Sec.

4.7), including comparison of the mixing layer width with the predictions of reshock models.

7. As the VS method introduces a thickened vortex layer to model a thin vortex sheet, results are

compared with the Lagrangian-γ and vortex-in-cell method for different Atwood numbers (Sec.

4.8). Different values of A correspond to different levels of baroclinic vorticity production, so

that this study also investigates the effects of A on the instability evolution.

1.2.3 Investigation of the three-dimensional single-mode instability

Three-dimensional simulations using the WENO and VS methods (Chapter 5) are performed using

the same shock tube dimensions as in the two-dimensional investigation. The initial interface is given

by a product of sine functions [Eq. (1.20)], as it represents a generalization in three dimensions of

the two-dimensional perturbation [84, 157].

The goals for the investigation in three dimensions are presented here.

1. A goal of this study is the construction of appropriate initial conditions (Sec. 5.1). In partic-

ular, as three-dimensional simulations have larger effective wavenumbers, two simulations are

performed: (1) the initial amplitude is the same as the two-dimensional simulations, and; (2)

the initial amplitude is reduced so that the initial growth matches the two-dimensional value.

2. Another goal is the visualization of the instability evolution in three dimensions through the

evolution of a mass fraction iso-surface (Sec. 5.2). The vorticity is visualized using an enstrophy

iso-surface. Additional quantities are also considered to determine the principal mechanisms

of instability evolution in three dimensions.

3. The comparison of the perturbation, bubble, and spike amplitudes with the predictions of non-

linear growth models in three dimensions (Sec. 5.3) constitutes a central objective of this

study.

4. The dynamics of reshock are also investigated in three dimensions (Sec. 5.4) and the mixing

layer width is compared to the predictions of reshock models.

5. An Atwood number study is performed to assess the effects of this parameter on the instability

evolution and the dynamics of vorticity (Sec. 5.5). Visualizations of the density cross-sections

also illustrate the dynamics of the bubble and spike. Cross-sections of the components of

the vorticity field are also shown. The perturbation, bubble, and spike amplitudes are also

compared with the predictions of models.
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1.3 Organization of thesis

In Chapter 2 the vorticity-streamfunction method is developed and the numerical implementation

is discussed. Properties of the method, including pointwise convergence and the effects of numer-

ical and physical parameters are discussed in Chapter 3. Simulations and analysis of the single-

mode Richtmyer-Meshkov instability in two dimensions, including a comparison to the experiments

of Jacobs and Krivets [62], to WENO simulations, and to classical Lagrangian and hybrid La-

grangian/Eulerian vortex method simulations are presented in Chapter 4. Simulations and analysis

of the single-mode Richtmyer-Meshkov instability in three dimensions, including a comparison to

WENO simulations, are presented in Chapter 5. Finally, conclusions and implications of this research

are presented in Chapter 6.
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Chapter 2

Development and Numerical
Implementation of the
Vorticity-Streamfunction Method

Presented here is the development of the vorticity-streamfunction method used in this thesis for the

numerical investigation of the Richtmyer-Meshkov instability. This method was developed in the

context of vortex methods for the simulation of the interface dynamics of this instability. Vortex

methods are used because the vorticity deposition-evolution viewpoint provides physical insight into

the instability [51, 154] and is also numerically advantageous [29] when compared with the more

expensive weighted essentially non-oscillatory (WENO) compressible simulations considered in the

present investigation.

The vorticity evolution viewpoint recognizes that the main physical mechanism driving the clas-

sical Richtmyer-Meshkov instability is the deposition of localized vorticity at the interface during

shock refraction through the baroclinic vorticity production mechanism. Following the passage of

the shock, a transmitted shock enters the second fluid and a reflected wave returns back into the

first fluid. A second mechanism of vorticity deposition is the interaction of the interface with the

pressure perturbations from the stable perturbed shock fronts [150, 151], including the reflected and

transmitted shocks, but not a reflected rarefaction. Typically, the pressure perturbations from the

stable shock front decrease the growth rate, causing in some cases “freeze-out” [104]. This second

mechanism of vorticity generation is not captured by the present incompressible simulations. How-

ever, the results from this thesis suggest that such a contribution is not significant for the classical

Richtmyer-Meshkov instability. Velikovich et al. [147] discuss Richtmyer-Meshkov-like instabilities,

including “anti-collisions”, where such a mechanism becomes relevant.

Vortex methods allow the investigation of late-time stages of the instability development not

tractable via analytical approaches. For example, current analytical treatments are limited to

weakly-nonlinear analysis [156, 145] or Layzer-type expansions [52, 105, 155, 42, 137, 134, 135]
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(Sec. 4.5). Such weakly-nonlinear treatments are shown to be valid up to τ = 4 [Eq. (1.17)]. By

contrast, vortex methods offer an alternative strategy to describe the interface dynamics from the

linear to the weakly-nonlinear and fully-nonlinear stages. In the fully-nonlinear stage, for A 6= 1 the

spike rolls up into a spiral due to the nonuniform vorticity distribution on the interface.

This chapter is organized as follows. An overview, including a discussion of vortex methods

applied to the Richtmyer-Meshkov instability and a description of the classical Lagrangian and

hybrid Lagrangian-Eulerian vortex methods based on the vortex-in-cell (VIC) algorithm, is presented

in Section 2.1. A convergence study for the VIC method demonstrating that this method does not

converge to the Biot-Savart velocity under grid refinement, and that the method can be applied to the

Richtmyer-Meshkov instability for coarse grids is presented in Section 2.2. The development of the

vorticity-streamfunction method, including the equations solved and the semi-implicit third-order

in time and fourth-order in space discretization adopted here is presented in Section 2.3.

2.1 Overview of vortex methods

Vortex methods are based on the discretization of the incompressible vorticity equation (presented

here in two dimensions in the absence of viscosity and for constant density flows)

∂ω

∂t
+∇ · (uω) = 0 , (2.1)

ω(x, 0) = ω0 . (2.2)

In particular, Equation (2.1) states that vorticity is constant along particle paths. This combined

with the fact that vorticity is advected along particle paths [53] suggests a natural Lagrangian formu-

lation for vortex methods based on the following simple algorithm: (1) discretize the initial vorticity

distribution ω0 using vortex markers; (2) next, compute the velocity field u induced by the vorticity

field through the Biot-Savart law; (3) advect the point markers under the self-induced velocity field;

(4) since vorticity is advected along particle paths and does not evolve in time, the procedure can

be repeated. To compute the velocity from the vorticity field in a Lagrangian formulation [step

(2) above] two methods can be used: (1) the Biot-Savart law based on the Green’s function is

adopted in purely Lagrangian vortex-marker methods, and; (2) the vortex-in-cell algorithm (which

uses an auxiliary Cartesian grid and the vorticity-streamfunction formulation) is adopted in the

hybrid Lagrangian/Eulerian vortex methods.

Vortex methods have been widely applied to investigate Richtmyer-Meshkov instability dynamics

(Sec. 2.1.1). In classical Lagrangian vortex methods for the Richtmyer-Meshkov instability, the

vorticity (circulation) on the markers is updated due to the action of density and pressure gradients

using a coupled system of integral equations (Sec. 2.1.2). This formulation has also been extended
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to the hybrid Lagrangian/Eulerian methods based on the vortex-in-cell algorithm (Sec. 2.1.3).

2.1.1 Literature survey on vortex methods applied to the Rayleigh-Taylor

and Richtmyer-Meshkov instabilities

Since the work of Rosenhead [122], who computed the evolution of a Kelvin-Helmholtz [54, 67]

unstable vortex sheet by hand, the evolution of a vortex sheet has been a principal application

of vortex methods. Vortex sheets also form when a heavy fluid pushes on a light fluid in the

Rayleigh-Taylor instability [119, 139] and for impulsive accelerations in the Richtmyer-Meshkov

instability (Sec. 1.1.1). Presented here is a brief overview of the applications of vortex methods to

the Rayleigh-Taylor and Richtmyer-Meshkov instability.

The early interest in the classical Kelvin-Helmholtz vortex sheet dynamics was related to mathe-

matical questions of well-posedness and singularity formation. The problem of a vortex sheet roll-up

idealizing the Kelvin-Helmholtz instability is formally ill-posed (as first reported by Birkhoff [15]), as

there is no mechanism to stabilize small-scale motions and short wave disturbances grow at increas-

ing rates. Saffman and Baker [124] speculated that a singularity develops in a finite time. Moore

[111] expanded the interface as a Fourier series and showed that at a critical time tc the coefficients

of the Fourier series decay algebraically, indicating that the interface is no longer analytic. Meiron,

Baker, and Orszag [92] analyzed the vortex sheet dynamics when a tangential shear is applied to a

sharp flat interface. The analysis of the Taylor series coefficients indicated that a singularity formed

at a critical time tc slightly larger than the critical time predicted by Moore. Krasny [71, 72] desin-

gularized the equations governing the motion of the vortex sheet to investigate the possible evolution

past the critical time tc. As no rigorous theory exists to justify the procedure and guarantee that the

solution obtained is physical or even convergent, this procedure was treated as an experimental work.

However, this work was conducted in the spirit of Anderson [3], who replaced the exact equations by

a set of regularized equations. The regularized equations can overcome the breaking of analyticity

at the critical time tc and can mitigate the short-wavelength instability of the Kelvin-Helmholtz

instability. Before Krasny, Moore [110] proposed modeling the inner-most part of the roll-up as a

single strong vortex that would absorb all point vortices within a certain distance from it. Chorin

and Bernard [23] proposed using vortex blobs. Fink and Soh [38] redistributed the points on the

interface. The Krasny regularization is used in the present computations. Tryggvason [142] later

compared the simulations of the vortex sheet roll-up using the vortex-in-cell (VIC) method and the

vortex blob method of Krasny [71], and showed that the VIC method gave similar and accurate

results.

Birkhoff [14, 15, 16] and later Baker, Meiron, and Orszag [8] extended the point vortex method

to study the Rayleigh-Taylor instability in inviscid, incompressible flows. The density interface was
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represented by a vortex sheet of strength γ across which the tangential component of the velocity

became discontinuous. In two-dimensional layered flow, the vorticity is no longer constant along

particle paths (as in the Kelvin-Helmholtz instability). The evolution equation for the vortex sheet

strength was shown to depend on the density difference through the Atwood number and was coupled

with the Biot-Savart law to determine the velocity from the vorticity. To compute the change in

vortex sheet strength, an iterative procedure based on the flow acceleration from the previous time

level was used. This iteration procedure was shown to be globally convergent, provided that the

interface and vorticity were sufficiently smooth. This vortex method had a cost of O(N2) operations.

For A = 1, corresponding to a fluid falling in a vacuum, the acceleration of the spikes approached

the free-fall limit. For small Atwood numbers, the spikes began to roll-up due to the Kelvin-

Helmholtz instability. Capturing the roll-up structure proved difficult, due to the small number of

point vortices. Increasing the number of point vortices led to a deterioration of the results. Baker,

Meiron, and Orszag [9] later presented a generalized vortex method to compute flows modeled using

vortex sheets (Sec. 2.1.2). The approach was later extended to the axisymmetric three-dimensional

Rayleigh-Taylor instability [10].

Kerr [68] simulated the Rayleigh-Taylor instability using vortex blobs to smooth the Green’s

function, second-order central differences to accommodate spikes in the vorticity, a method to spread

the nodes evenly along the interface to suppress clustering and maintain resolution and accuracy,

and filtering similar to Krasny [72] to eliminate numerical instabilities. The method predicted the

development of bubbles and spikes for a single-mode initial perturbation.

Tryggvason [141] simulated the Rayleigh-Taylor instability using the vortex-in-cell (VIC) algo-

rithm. As stabilization mechanisms (such as viscosity and surface tension) were neglected, difficulties

associated with infinitely small perturbations growing infinitely fast were resolved through the reg-

ularization introduced by the algorithm. In addition, the VIC algorithm is less computationally

intensive than a blob method. A Poisson solver has a cost of O(M2 logM) for an M ×M grid.

However, since the size of the grid is linear with the number of point vortices N , so that M2 ∼ N ,

the overall cost of the VIC method is O(N logN), which is significantly less than the O(N2) cost

for a direct summation method in the Biot-Savart law. Tryggvason used a fixed Cartesian grid

and assigned the vorticity from the interface to the grid through the area-weighting-rule (AWR) of

Christiansen [24]. Thus, the vortex sheet had been replaced by a smoother vortex representation.

However, the area-weighting-rule created an anisotropic distribution on the smallest scales. This can

be corrected using smooth or quiet VIC methods [81], but Tryggvason used the smoother Peskin in-

terpolant [116] to remove the anisotropy. Tryggvason described two VIC methods based on whether

the acceleration is computed on the Lagrangian interface as in the iterative-time-step formulation

(VIC-ITS), or is computed on the Cartesian grid and then interpolated onto the interface as in the

acceleration-potential formulation (VIC-AP). The Rayleigh-Taylor test problem was compared with
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solutions from the point vortex method of Baker, Meiron, and Orszag [9] and the conformal mapping

method of Menikoff and Zemach [95]. Excellent agreement was found at early times. For A = 1, the

results were compared with the the point vortex method solution indicating that the spikes were less

sharp in the VIC simulations. Zufiria [160] explained this through a linear instability analysis, which

linked the effects of the Cartesian grid to numerical surface tension. As a result, the spike velocity

decreased, falling short of the “exact” results from the point vortex method. The bubble velocity

was very similar to the exact value. A closer analysis of the spike dynamics showed that vorticity

of opposite signs formed near the spike tip, akin to a dipole. When this vorticity was distributed

on the Cartesian grid, a cancellation of the negative and positive vorticity occurred, resulting in a

weaker dipole.

Zufiria [159] also considered the VIC-ITS method and noted that the discretization of the γ2

term [Eq. (2.5)] developed a very steep profile. Reminiscent of a shock-like behavior, Zufiria applied

a Godunov upwind technique to differentiate this term [41, 83]. This small change significantly

improved the method, allowing the simulation to run to times one order of magnitude larger than

previous schemes. Prior to the introduction of this upwind finite differencing, Tryggvason [141]

solved this problem using a five-point moving average of the vortex sheet strength γ. Following the

modification introduced by Zufiria, the iterative time-step method gave superior results, even in the

case of a roll-up. Zufiria [159] investigated the bubble competition in the Rayleigh-Taylor instability

using the VIC algorithm in the limit A→ 1. The study was motivated by experiments by Read [120],

where a multi-mode initial condition gave rise to bubbles that grew in time and changed in number.

The bubbles did not break, indicating that they were stable to small-scale perturbations, and that

the change in number was due to bubble competition. In the case of a single-mode initial condition,

the results were compared with the ITS method of Tryggvason [141] and with the results of Baker,

Meiron, and Orszag [9], showing that the bubble position was captured very accurately, but the

spike grew at a slower speed in the VIC simulations. In the case of multi-mode initial conditions,

Zufiria observed bubble competition with the larger bubbles overcoming the smaller ones.

Kotelnikov, Ray, and Zabusky [69] explored vortex dynamics and interfacial evolution of reshocked

and reaccelerated single-mode Richtmyer-Meshkov flows using an incompressible VIC method, a vor-

tex blob method, and a compressible second-order Godunov method. The configuration was based on

the experiments of Jacobs and Niederhaus [112, 113], where liquid-liquid interfaces were impulsively

accelerated giving rise to the Richtmyer-Meshkov instability. The impulsive and incompressible

approach was justified because the flow was incompressible [93] following the passage of the shock.

Sohn [136] applied the point vortex method of Baker, Meiron, and Orszag [92] to investigate

the single-mode Rayleigh-Taylor and Richtmyer-Meshkov instability evolution for A < 1. Sohn

concluded that this method provided accurate and reliable results in agreement with analytical

predictions of potential models [134]. The method used Eulerian time stepping, the Krasny [71]
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regularization to remove the singularity at the core and stabilize the method, and the Zufiria [159]

Godunov-like flux splitting for the γ2 term [Eq. (2.5)].

2.1.2 The classical Lagrangian vortex method

The classical Lagrangian vortex method for the Richtmyer-Meshkov instability uses a coupled system

of integral equations first derived by Birkhoff [14, 15, 16]. The formulation presented here was derived

from Baker, Meiron, and Orszag [9]. Consider a sinusoidal vortex sheet with position z = x + i y,

velocity q = u+i v (in complex notation), and vortex-sheet strength γ(e). The weighting parameter α

measures whether the interface moves with the lower fluid (α = 1) or with the upper fluid (α = −1).

The equations of motion are

q̃∗ = q∗ +
αγ

2 ze
,

dz∗

dt
= q̃∗ . (2.3)

The velocity q∗ is obtained from the circulation γ(e) via the Biot-Savart law

q∗(e) =
1

4π i

∫ 2 π

0

γ(e′) cos
[

z(e)−z(e′)
2

]
sin
[

z(e)−z(e′)
2

]
+ δ2

de′ , (2.4)

where δ is a regularization parameter introduced by Krasny [71, 72], which transforms the singular

vortex cores into vortex blobs.

The circulation on the interface is obtained by iteratively solving the coupled system of Fredholm

integral equations

∂γ

∂t
=

α

2
∂

∂e

(
γ2

ze z∗e

)
− 2A

[
Re
(
ze
∂q∗

∂t

)
− αγ

2
Re
(
qe
ze

)
+

1
8
∂

∂e

(
γ2

ze z∗e

)]
, (2.5)

∂q∗(e)
∂t

=
1

4π i

∫ 2 π

0

∂γ(e′)
∂t

cot
[
z(e)− z(e′)

2

]
de′ − 1

8π i

∫ 2 π

0

γ(e′) [q̃(e)− q̃(e′)]

sin2
[

z(e)−z(e′)
2

] de′ . (2.6)

For A 6= 1, instead of regularizing ∂q∗/∂t [Eq. (2.6)], this value is obtained from q∗ [Eq. (2.4)]

through the leap-frog scheme

∂ (q∗)n

∂t
=


(q∗)2−(q∗)1

∆t

(q∗)n+1−(q∗)n−1

2∆t for n ≥ 2
, (2.7)

where n indicates the time step. Zufiria [159] first noted that the discretization of the F = γ2

term [Eq. (2.5)] needs to be treated carefully. In fact, this term becomes very steep, developing a

shock-like behavior. By analogy with the Burgers equation, a Godunov upwind method [41, 83] is
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used:

Fi+1/2 = max
[(
γ+

i

)2
,
(
γ−i+1

)2]
, γ+ = max (−γ, 0) , γ− = min (−γ, 0) , (2.8)

where i indicates the index of the vortex marker discretizing the sheet. This method approximates

the flux at the midpoints between the vortex markers and ensures a proper upwind finite difference

relative to the “shock” position. This small change significantly improves the method, allowing

the simulation to run to times one order of magnitude larger than schemes based on pure finite

differences.

2.1.3 The hybrid Lagrangian-Eulerian vortex method based on the vortex-

in-cell algorithm

In vortex-in-cell (VIC) methods, a Cartesian grid is super-imposed onto the Lagrangian vortex

markers. The Cartesian grid is used to rapidly compute the velocity field from the vorticity field

through the velocity-streamfunction formulation. This step avoids the Biot-Savart integral and the

complex regularizations needed to overcome the singularity in the kernel. Furthermore, as discussed

in Section 2.1.1 the VIC algorithm has a cost of O(N logN) compared to the O(N2) cost for the

Biot-Savart law.

The VIC algorithm is a special case of a more general class of algorithms developed to com-

pute the force field from charge distributions in particle-mesh methods [60]. In these methods, the

Laplacian operator is replaced by grid-based finite-difference approximations, resulting in rapid force

calculations (or in rapid computations of the velocity field from the vorticity field). In addition, the

Cartesian mesh introduces a physical lengthscale, ∆x, that eliminates the unphysical correlations

as particles come close to each other. In this spirit, Harlow [45, 46] introduced the particle-in-cell

(PIC) method to overcome the disadvantages of Eulerian formulations that could not track inter-

faces, and Lagrangian formulations that could not represent regions of shear due to mesh distortions.

Harlow simulated advection by moving particles, and used the Eulerian mesh for all non-advective

terms, eliminating the problem of mesh distortion. Christiansen [24] later performed hydrodynamic

simulations using the area-weighting-rule interpolant and called the algorithm vortex-in-cell.

The VIC algorithm consists of the following four steps.

1. The vorticity is assigned from the markers onto the Cartesian grid

ω(xi, yj) =
∑

n

Γn

h2
φ(xn − xi, yn − yj) , (2.9)

where (xn, yn) is the location of the vortex marker, (xi, yj) is the location of the grid point, φ

is the assignment function, and Γn is the circulation [Eq. (2.19)].
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2. The Poisson equation

∆ψ = −ω (2.10)

is solved for the streamfunction ψ(x, y).

3. The velocity field on the Cartesian grid is obtained from the streamfunction

u = ∇×ψ . (2.11)

4. The velocity field is interpolated onto the markers

un =
∑
i,j

ui,j φ(xn − xi, yn − yi) . (2.12)

The interpolation and assignment steps are performed using the same function

φ(x, y) = Mi(x)Mi(y) , (2.13)

where Mn(x) are interpolation kernels based on central B-splines [130]. These kernels are obtained

by taking successive partial sums of the polynomial

p(x) =
n∑

k=0

(−1)k

(
n

k

)(
x+

n

2
− k
)n−1

, (2.14)

yielding the interpolation kernels

(n− 1)!Mn(x) =



0 for x ≤ −n
2 ,(

x+ n
2

)n−1 for −n
2 ≤ x ≤ −n

2 + 1 ,
...

...∑j
k=0 (−1)k (n

k

) (
x+ n

2 − k
)n−1 for −n

2 + j − 1 ≤ x ≤ −n
2 + j .

(2.15)

The interpolation kernel Mn(x) is an even function of x. The first three interpolation kernels are

M1(x) =

1 for 0 ≤ x ≤ 1
2 ,

0 for x > 1
2 ,

M2(x) =

1− |x| for |x| ≤ 1 ,

0 for |x| > 1 ,
(2.16)

M3(x) =


−|x|2 + 3

4 for 0 ≤ |x| ≤ 1/2 ,

1
2

(
−|x|+ 3

2

)2 for 1/2 ≤ |x| ≤ 3/2 ,

0 for |x| > 3/2 ,
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and are called the nearest-grid-point (NGP), area-weighting-rule (AWR), and triangular-shaped-cloud

(TSC) interpolants, respectively.

Here, the vorticity-streamfunction Poisson equation [Eq. (2.10)] is discretized using a fourth-

order modified nine-point scheme [61]. The fast Fourier transform is used to invert the block-

Toeplitz-symmetric-tridiagonal (TST) finite-difference matrices using Hockney’s method [59].

2.2 Convergence study for the vortex-in-cell algorithm

Presented here is a convergence study for the vortex-in-cell (VIC) algorithm. This study establishes

that in the case of a thin vortex sheet (Sec. 2.2.1), the VIC velocity field does not converge to

the Biot-Savart velocity field under grid refinement. To correct this problem, the vortex sheet is

thickened to give a vortex layer. The velocity from the vortex layer converges to the velocity from

the Biot-Savart law as the grid is refined and the thickness of the layer is decreased (Sec. 2.2.2).

The classical VIC algorithm can only be used to investigate the Richtmyer-Meshkov instability when

fairly coarse Cartesian grids are used. As finer grids are used, the results fail to converge (Sec. 2.2.3)

Consider a vortex sheet with an initial sinusoidal perturbation

[x(e), y(e)] = {x(e), a0 cos [k x(e)]} , (2.17)

where a0 is the perturbation amplitude and k is the perturbation wavenumber. For the Richtmyer-

Meshkov instability the initial vortex dipole and vortex sheet strength are

µ(e) = 2 v0 cos [k x(e)] , γ(e) =
∂µ

∂e
, (2.18)

respectively, where v0 is a constant. In the present convergence study, the velocity and velocity

gradients are determined using the VIC algorithm, as the Cartesian grid is refined (Nx = 32, 64,

128, 256) keeping the number of markers N = 4Nx, and are compared with the results from the

Biot-Savart law. Results varying the number of markers from N = 2Nx to 8Nx showed no difference.

Each vortex marker has circulation

Γn = γn ∆sn , (2.19)

where

∆sn =
1
2

√
(xn+1 − xn−1)

2 + (yn+1 − yn−1)
2 (2.20)

is the arclength on the interface. For the VIC algorithm, the circulation is assigned onto the grid

using

ω(xi, yj) =
∑

n

Γn

h2
Mi (xn − xi) Mi (yn − yi) , (2.21)
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where Mi are the interpolation functions [Eq. (2.15)]. To assess the effects of the interpolation

functions, the assignment and interpolation steps are performed using the second-order M4 and M5

functions

M4(x) =


2
3 − |x|

2 + |x|3
2 for |x| ≤ 1

1
6 (− |x|+ 2)3 for 1 ≤ |x| ≤ 1

0 for |x| > 2

, (2.22)

M5(x) =



|x|4
4 − 5|x|2

8 + 115
192 for |x| ≤ 1

2

− |x|4
6 + 5|x|3

6 − 5|x|2
4 + 5|x|

24 + 55
96 for 1

2 ≤ |x| ≤ 3
2

1
24

(
|x| − 5

2

)4 for 3
2 ≤ |x| ≤ 5

2

0 for |x| > 5
2

, (2.23)

and the third-order modified M̃4, and fourth-order modified M̃5 interpolants

M̃4(x) =


1− 5

2 |x|
2 + 3

2 |x|
3 for |x| ≤ 1

1
2 (2− |x|)2 (1− |x|) for 1 ≤ |x| ≤ 2

0 for |x| > 2

, (2.24)

M̃5(x) =



1
48

(
345
8 − 75 |x|2 + 42 |x|4

)
for |x| ≤ 1

2

1
48

(
165
4 + 20 |x| − 150|x|2 + 120|x|3 − 28|x|4

)
for 1

2 ≤ |x| ≤ 3
2

1
48

(
|x| − 5

2

)3 (7|x| − 15
2

)
for 3

2 ≤ |x| ≤ 5
2

0 for |x| > 5
2

. (2.25)

The modified interpolants were derived by Monaghan [109] using Richardson extrapolation to im-

prove the second-order convergence of B-spline kernels [Eq. (2.15)].

2.2.1 Convergence study for a thin vortex sheet

Figure 2.2 shows the horizontal velocity u(e) and velocity gradient ∂u/∂e obtained using the M4

[Eq. (2.22)] interpolant. As the grid is refined, the velocity converges; however, the velocity gradient

does not converge, as indicated by the large oscillations that develop on the finer grids because the

thin vortex sheet is singular. For coarse grids, the smoothing introduced by the grid spacing ∆x

is sufficient to stabilize the low wavenumber instabilities associated with the evolution of a vortex

sheet. In fact, Zufiria [160] showed that the Cartesian grid stabilizes the computation by an effect

that is equivalent to surface tension. However, as the grid is refined, the effective surface tension

decreases and the method becomes progressively more unstable. The convergence study can be
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Figure 2.1. Vorticity field on the Cartesian grid using the M4(x) interpolant for a thin vortex sheet
as the grid is refined with Nx = 64, 128, and 256.
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Figure 2.2. Comparison of the horizontal velocity u(e) and velocity gradient ∂u/∂e on the interface
for the VIC algorithm applied to the thin vortex sheet using the M4 interpolant (left). The blue
line is the Biot-Savart solution, the red line is the VIC solution with Nx = 64 and N = 256, the
green line is the solution with Nx = 128 and N = 512, and the black line represents the solution for
Nx = 256 and N = 1024. Also shown is the `∞-error for the horizontal and vertical velocity fields
for the VIC algorithm applied to the thin vortex sheet as the Eulerian grid is refined (right): dotted
black line N−1

x , dotted red line N−2
x , dotted green line N−3

x , and dotted blue line N−4
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Figure 2.3. Vorticity field on the Cartesian grid using the M4(x) interpolant for a thick vortex layer
with δT = 0.15, as the grid is refined with Nx = 64, 128, and 256.

made quantitative by computing the `∞-norm of the difference between the velocity from the Biot-

Savart law and the velocity from the VIC algorithm under different interpolation algorithms. As the

grid is refined, the horizontal and vertical velocities show first-order convergence to the Biot-Savart

velocity using the M4 and M5 interpolants, while no convergence is observed for M̃4 and M̃5. This is

in contrast to the second-order convergence rate expected for M4 and M5 and the third- and fourth-

order convergence rates expected for M̃4 and M̃5, respectively. The velocity gradient diverges as

oscillations develop. Thus, the velocity obtained from the classical VIC algorithm does not converge

to the velocity obtained from the Biot-Savart law for the thin vortex sheet.

2.2.2 Convergence study for a thick vortex layer

The divergence in the VIC method applied to the (thin) vortex sheet is resolved here by thickening

the vorticity, creating a thick vortex layer. Thickening is obtained using the Gaussian interpolant

Lg (x, δT ,∆x) =
∆x

δT
√

2π
exp

(
− x2

2 δ2T

)
, (2.26)

where δT is the thickness and ∆x is the grid spacing, to assign the vorticity onto the Cartesian grid.

This provides a lengthscale δT for the vortex layer that is independent of the grid resolution ∆x.

It is shown here that the simultaneous reduction of the grid spacing ∆x and interface thickness δT

produces initial conditions that converge to the Biot-Savart solution.

The convergence study is divided into three parts. In the first part, the convergence of the VIC

algorithm is demonstrated for a fixed width (δT = 0.15). Next, the convergence to the Biot-Savart

solution as δT → 0 and ∆x/δT is kept fixed, is demonstrated. Finally, to increase the rate of

convergence, Richardson extrapolation is used.

Consider the case of a thickened vortex layer, as the grid is refined keeping the layer thickness

δT = 0.15 fixed. An illustration of the vortex markers and the vorticity assigned on the Cartesian
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Figure 2.4. Comparison of the horizontal velocity u(e) and velocity gradient ∂u/∂e on the interface
for the VIC algorithm applied to the thick vortex sheet using the M4 interpolant and with fixed
δT = 0.15 (left). Also shown is the `∞-error for the horizontal and vertical velocity fields for the
VIC algorithm applied to the thin vortex sheet as the Eulerian grid is refined (right). See Figure
2.2 for the legend.

grid is shown in Figure 2.3. Figure 2.4 shows the convergence results for fixed thickness δT = 0.15.

The velocity does not converge to the Biot-Savart result, but to a smaller value. The convergence

analysis provides the `∞-norm of the difference between the solution on the fine grid and the solution

on the coarser grids. The expected rates of convergence are obtained: second-order for the M4 and

M5 interpolants, third-order for M̃4, and fourth-order for M̃5.

In the second part of the convergence study, the width of the vortex layer δT is decreased

simultaneously with the reduction of the grid spacing ∆x. Figure 2.5 shows the vorticity assigned

on the Cartesian grid, indicating that as the grid resolution is doubled, the thickness is halved.

Figure 2.6 shows that the velocity field approaches the Biot-Savart result. The `∞-norm of

the difference between the Biot-Savart and VIC results shows first-order convergence. Richardson

extrapolation is applied to the initial vorticity distribution to accelerate the convergence rate of the

velocity and velocity gradients on the interface to the Biot-Savart results. Richardson extrapolation
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Figure 2.5. Vorticity field on the Cartesian grid using the M4(x) interpolant for a thick vortex layer
as the thickness is decreased keeping δT /∆x fixed for Nx = 64, 128, and 256.

u
(e

)

0 0.2 0.4 0.6 0.8 1

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
||u

B
S
−
u

V
I
C
|| ∞

32 64 128 256 512

10−2

10−1

 

 

M4
modified M4
M5
modified M5

∂
u
/∂
e

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

||
(u

e
) B

S
−

(u
e
) V

I
C
|| ∞

32 64 128 256 512

10−2

10−1

 

 

M4
modified M4
M5
modified M5

e Nx

Figure 2.6. Comparison of the horizontal velocity u(e) and velocity gradient ∂u/∂e on the interface
for the VIC algorithm applied to the thick vortex sheet using the M4 interpolant and with fixed
δT /∆x (left). Also shown is the `∞-error for the horizontal and vertical velocity fields for the VIC
algorithm applied to the thin vortex sheet as the Eulerian grid is refined (right). See Figure 2.2 for
the legend.
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Figure 2.7. The `∞-error for the horizontal velocity and velocity gradient with fixed δT /∆x and
Richardson extrapolation. See Figure 2.2 for the legend.

eliminates the leading error in the first-order convergence as δT . Consider two vorticity distributions

ωδT
and ωδT /2. Let qδT

and qδT /2 be the corresponding velocity fields. As shown in the previous

section, the velocity field has expansion

q = qδT
+K δT +K1 δ

n
T , (2.27)

which is first-order in δT . For δT /2 the velocity has expansion

q = qδT /2 +K
δT
2

+K1

(
δT
2

)n

. (2.28)

Combining (2.27) and (2.28) gives the new Richardson extrapolation for the velocity

qnew = 2 qδT /2 − qδT
+O (δn

T ) . (2.29)

Equation (2.29) removes the first-order error and leaves an error of order n. The results using

Richardson extrapolation are shown in Figure 2.7, indicating that the convergence rate for the

velocity and velocity gradient fields is improved to second order for the M4 and M5 interpolants.

When the M̃4 and M̃5 interpolants are used, the convergence rate for the velocity increases to third

order, but as the grid is refined no convergence is observed in the gradients. As M̃4 is fourth-order,

this indicates that n = 3 in Equation (2.29).
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Figure 2.8. Time-evolution of the interface for the Richtmyer-Meshkov instability with A = 0 using
the Lagrangian-γ formulation with N = 256 and 512 vortex markers and the vortex-in-cell iterative-
time-step (VIC-ITS) formulation at 0, 1, 2, 3, 4, and 5 ms with a grid resolution ofNx×Ny = 32×128
with N = 256 vortex markers and Nx × Ny = 64 × 256 with N = 512 vortex markers when the
M4(x) interpolant is used.
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2.2.3 Vortex-sheet evolution by the vortex-in-cell and Lagrangian vortex

methods

Although the initial velocity gradient from the VIC algorithm does not converge to that from the

Biot-Savart law, this algorithm has been successfully applied to the Richtmyer-Meshkov instability

(Sec. 2.1.1). Here a comparison of the classical Lagrangian and VIC algorithm is presented for

A = 0 and 0.4 as the grid is refined.

Figure 2.8 shows the time-evolution of the vortex sheet for A = 0 when the Lagrangian-γ method

is used with N = 256 and 512 markers. The Lagrangian-γ method gives similar results as the number

of markers is doubled, including details inside the roll-up. The parameter governing the evolution of

the vortex sheet in the Lagrangian-γ method is the length-scale δ (used to form vortex blobs in the

regularization of the Biot-Savart law). Also shown are the results from the VIC method using the

iterative-time-step formulation (VIC-ITS) [141] as the grid is refined from Nx = 32 (corresponding

to N = 256 markers) to Nx = 64 (corresponding to N = 512 markers). As the grid is refined,

additional structure is observed in the roll-up. In fact, the length-scale governing the VIC method

is the grid spacing ∆x.

Figure 2.9 shows the time-evolution of the Richtmyer-Meshkov instability under the Lagrangian-

γ method for A = 0.4 with N = 256 and 512 markers. For A = 0.4, the Lagrangian-γ method gives

identical results as the number of markers increases. This is expected as the length-scale affecting

the instability development is the size of the vortex blob δ. Also shown is the time-evolution of the

instability when the VIC-ITS method is used. The results for Nx = 32 are very similar to the results

from the Lagrangian-γ method. However, for Nx = 64 the VIC-ITS method shows the development

of additional unstable structure inside the roll-up. In fact, the only stabilization mechanism in the

VIC algorithm is provided by the grid spacing ∆x. For Nx = 32 such a grid spacing is sufficient

to give results comparable with the Lagrangian-γ methods. However, for Nx = 64, the smaller grid

spacing is no longer sufficient, so that oscillations develop on the interface.

2.3 The vorticity-streamfunction method

Developed in this thesis is a vorticity-streamfunction (VS) method for the simulation of the Richtmyer-

Meshkov instability, motivated by limitations of the classical (thin) vortex sheet approaches (Sec.

2.3.1). In this method, the vorticity equation on the Cartesian grid is augmented by the baroclinic

vorticity production term to capture the effects of the instability (Sec. 2.3.2). The equations are

discretized using a semi-implicit fourth-order in space and third-order in time Adams-Bashforth

backward differentiation scheme (Sec. 2.3.3).
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Figure 2.9. Same as Figure 2.8 but with A = 0.4.
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2.3.1 Motivation for developing the method

Vorticity-streamfunction methods solve the vorticity transport equation [Eq. (2.30)] and are part of

a wider class of methods developed for incompressible flows (i.e. when the velocity, as measured by

the Mach number, is Ma < 0.3 [25]). These methods constitute an alternative to velocity-pressure

methods. The vorticity-streamfunction and velocity-pressure formulations are equivalent [44]. One

advantage of VS methods is that the velocity is divergence-free by construction. Furthermore, the

mathematical properties of the equations allow the construction of robust solution methods [117].

The VS method is motivated by current limitations in classical vortex method approaches for

simulating this instability. (1) In the classical Lagrangian vortex method (Sec. 2.1.2), the evolution

of the vortex sheet requires complex regularizations to mitigate the formation of the singularity

during the rollup. In addition, a redistribution of the vortex markers may be necessary, and the

numerical method may cease to provide solutions at late times. Classical Lagrangian vortex methods

have been extended to three dimensions for the evolution of a vortex sheet [47]. (2) It was shown

in Section 2.2 that the VIC method does not converge under grid refinement. This result is due

to the singular limit of the vortex sheet. Furthermore, the VIC method does not constitute a

valid computational method for the simulation of vortex sheet dynamics, as the method breaks

down upon grid refinement. The VIC method has not been extended to three dimensions for the

Richtmyer-Meshkov instability.

The VS method resolves the singular limit of a vortex sheet by thickening it to obtain a vortex

layer (Sec. 2.2.2). This has the desirable feature of providing a “physical” solution to the instability

problem (the thickening of the vortex sheet may be equivalent to the diffuse interface in the Jacobs

and Krivets [62] experiments). This is in contrast to the “unphysical” length-scale introduced by

using vortex blobs (in the Lagrangian-γ method) and the grid spacing ∆x (in the VIC method).

Furthermore, the numerical method can be easily extended to three dimensions.

2.3.2 Governing equations

The three-dimensional vorticity equation for an incompressible viscous flow is

∂ω

∂t
+ u ·∇ω = ω ·∇u+

∇ρ×∇p

ρ2
+ ν∆ω , (2.30)

where ν = µ/ρ is the kinematic viscosity and µ is the dynamic viscosity. To formulate a numerical

method, additional equations for the velocity u = (u, v, w), pressure p, and density ρ need to

supplement Equation (2.30).

The density is obtained by solving the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 . (2.31)
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As the gases are miscible, diffusion is modeled as Fickian so that the mass flux of the heavy gas is

j = −ρD∇m, (2.32)

where D is the mass diffusivity and m is the mass fraction. This gives the modified density equation

(see Cabot, Schilling, and Zhou [20] and Cook and Dimotakis [28] for the derivation)

∂ρ

∂t
+ u ·∇ρ = −D

ρ
(∇ρ ·∇ρ) +D∆ρ , (2.33)

where the mass diffusivity is chosen so that the Schmidt number Sc ≡ ν/D = 1 is consistent with

gas properties. The velocity is obtained from the vorticity-streamfunction Poisson equation

∆ψ = −ω , (2.34)

u = ∇×ψ , (2.35)

where ψ = (ψ1, ψ2, ψ3) is the vector streamfunction. The pressure is obtained by taking the diver-

gence of the momentum equation

∂u

∂t
+ u ·∇u = −∇p

ρ
+ ν∆u (2.36)

to obtain the pressure Poisson equation

∆p = −ρ∇ · (u · ∇u) . (2.37)

To determine the boundary conditions for Equations (2.34) and (2.37), consider a periodic box in

the x and y directions with rigid walls at the top and bottom (z direction) [0, Lx]× [0, Ly]× [0, Lz].

The boundary value problem for the streamfunction is∆ψ = −ω

ψ(x, y, 0) = 0 , ψ(x, y, Lz) = 0
, (2.38)

which represents three separate boundary value problems for each ψ1, ψ2, and ψ3.

The boundary value problem for the pressure is∆p = −ρ∇ · (u · ∇u)

∂p
∂y (x, y, 0) = 0 , ∂p

∂y (x, y, Lz) = 0
. (2.39)

Equations (2.30) and (2.33) supplemented by the boundary value problems for the streamfunction
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and pressure [Eqs. (2.38) and (2.39)] and for the velocity from the streamfunction [Eq. (2.35)]

constitute a complete VS method in three dimensions.

2.3.3 Spatial and temporal discretization

In the vorticity and density equations [Eqs. (2.30) and (2.33)], separate the spatial operator into

linear diffusion and nonlinear transport terms:

∂ω

∂t
= N (ω, ρ) +L (ν,ω) , (2.40)

N (ω, ρ) = −u ·∇ω + ω ·∇u+
∇ρ×∇p

ρ2
, (2.41)

L (ν,ω) = ν∆ω , (2.42)

and

∂ρ

∂t
= Nρ (u, ρ) + Lρ (D, ρ) , (2.43)

Nρ (u, ρ) = −∇ · (ρu)− D
ρ

(∇ρ ·∇ρ) , (2.44)

Lρ (D, ρ) = D∆ρ . (2.45)

The governing equations are discretized using a semi-implicit scheme where the linear viscous part

L(ν,ω) is treated implicitly and the nonlinear part N(ρ,ω) is treated explicitly. This overcomes

the time-step limitations of a purely explicit formulation, and the need for complex nonlinear solvers

for a fully implicit formulation.

The third-order Adams-Bashforth backward differentiation (AB/BDI3) scheme is adopted for

the time-stepping, which uses multiple time-levels for both the temporal and spatial operators:

1
∆t

(
11
6
ωn+1 − 3ωn +

3
2
ωn−1 − 1

3
ωn−2

)
= 3N (ωn, ρn)− 3N

(
ωn−1, ρn−1

)
(2.46)

+N
(
ωn−2, ρn−2

)
+ L

(
ν, ωn+1

)
,

1
∆t

(
11
6
ρn+1 − 3 ρn +

3
2
ρn−1 − 1

3
ρn−2

)
= 3Nρ (un, vn, ρn) (2.47)

−3Nρ

(
un−1, vn−1, ρn−1

)
+Nρ

(
un−2, vn−2, ρn−2

)
+ Lρ

(
D, ρn+1

)
.

An analysis shows that the region of stability is largest among the Adams-Bashforth backward

differentiation methods.

The final implicit linear equation that must be solved is a Helmholtz equation of the form

∆u+ λu = f . (2.48)
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A modified nine-point method is used to solve this equation by following the same procedure as in

the derivation of the modified nine-point method for the Poisson equation [61].

Consider the error for a second-order finite-difference for the second derivative,

∆2
0,x = h2D2

x +
h4

12
D4

x +O
(
h6
)
, (2.49)

where Dx ≡ d/dx is the derivative operator and ∆0,x is the central difference operator (so that

∆0xi = xi+ 1
2
− xi− 1

2
). Applying Equation (2.49) to a second-order nine-point scheme shows that

the error scales as

1
h2

(
∆2

0,x + ∆2
0,y +

∆2
0,x ∆2

0,y

6

)
= ∆ +

h2

12
∆2 +O

(
h4
)
. (2.50)

As a result, a second-order nine-point scheme can be made fourth-order by considering the nine-point

scheme for (
∆ +

h2

12
∆2

)
u = f − λu . (2.51)

After inversion, the solution of

∆u =
(
I +

h2

12
∆
)

(f − λu) (2.52)

leads to the modified nine-point scheme for the Helmholtz equation [Eq. (2.48)],

1
h2

(
∆2

0,x + ∆2
0,y +

∆2
0,x + ∆2

0,y

6

)
uk,` =

(
I +

∆2
0,x + ∆2

0,y

12

)
fk,` (2.53)

−λ

(
I +

∆2
0,x + ∆2

0,y

12

)
uk,` ,

or re-arranging terms,

1
h2

[
uk+1,`+1

6
+
(

2
3

+
λh2

12

)
uk+1,` +

uk,`−1

6
+
(

2
3

+
λh2

12

)
uk,`+1 (2.54)

+
(

2λh2

3
− 10

3

)
uk,` +

(
2
3

+
λh2

12

)
uk,`−1 +

uk−1,`+1

6
+
(

2
3

+
λh2

12

)
uk−1,` +

uk,`−1

6

]
=

fk+1,`

12
+
fk,`+1

12
+

2 fk,`

3
+
fk,`−1

12
+
fk,`−1

12
.

This stencil for the scheme is represented in Table 2.1. A similar procedure is followed to derive the

scheme in three dimensions. The stencil in three dimensions is shown in Table 2.2.
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Modified nine-point stencil for the Helmholtz equation
in two dimensions

1
6

2
3 + λ h2

12
1
6

1
12

2
3 + λ h2

12 − 10
3 + 2 λ h2

3
2
3 + λ h2

12 uk,` = h2 1
12

2
3

1
12 fk,`

1
6

2
3 + λ h2

12
1
6

1
12

Table 2.1. The computational stencil for the fourth-order finite-difference modified nine-point scheme
used to discretize the Helmholtz equation [Eq. (2.48)] in two dimensions. The table presents a 3× 3
block corresponding to the coefficients of uk,` and fk,`.

Modified nine-point stencil for the Helmholtz equation
in three dimensions

1
6

1
6

1
3 + λ h2

12
1
6

1
12

1
6 m+ 1

1
6

1
3 + λ h2

12
1
6

1
12

1
3 + λ h2

12 −4 + λ h2

2
1
3 + λ h2

12 uk,`,m = h2 1
12

1
2

1
12 fk,`,m

1
6

1
3 + λ h2

12
1
6

1
12 m

1
6

1
6

1
3 + λ h2

12
1
6

1
12

1
6 m− 1

Table 2.2. The computational stencil for the fourth-order finite-difference modified nine-point scheme
used to discretize the Helmholtz equation [Eq. (2.48)] in three dimensions. The table presents three
3× 3 block grids corresponding to the coefficients of uk,`,m and fk,`,m. The first block contains the
coefficients for uk,`,m+1 and fk,`,m+1, the second block the coefficients for uk,`,m and fk,`,m, and the
third block the coefficients for uk,`,m−1 and fk,`,m−1
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Chapter 3

Investigation of Convergence of the
Vorticity-Streamfunction Method

The vorticity-streamfunction (VS) method developed here depends on several numerical and physical

parameters. The numerical parameters include the grid spacing ∆x, the time step ∆t, the CFL

number, and the number of grid points Nx. The physical parameters are divided into parameters

for the vortex layer, including the layer thickness δT , the viscosity ν, and the mass diffusivity D, and

physical parameters for the problem, including the initial perturbation amplitude and wavenumber,

a0 and λ, respectively, the Atwood number A, and the initial vortex sheet velocity v0. All of these

parameters affect the evolution of the vortex layer. In this chapter, the dependence of the solution

on the numerical and vortex-layer parameters is investigated. The dependence on A, v0, and a0 is

investigated in Chapter 4.

This chapter is organized as follows. The dependence of the evolution of a vortex layer on

numerical parameters is investigated in Section 3.1. The dependence on vortex-layer parameters is

investigated in Section 3.2.

3.1 Spatial and temporal convergence for fixed vortex-layer

thickness

Investigated here are the effects of grid spacing ∆x and time step size ∆t on the evolution of a vortex

layer with fixed thickness δT = 0.4 cm under the VS method. The initial vorticity is

ω(xi, yj) =
∑

n

Γn

h2
Lg,2D (xn − xi, yn − yi, h, δT ) , (3.1)

where Lg,2D is the two-dimensional Gaussian [Eq. (2.26)] and Γi is the initial circulation of the

markers used to discretize the center of the layer [Eq. (2.19)]. The initial density is a hyperbolic



37

A ν Nx = 32 Nx = 64 Nx = 128 Nx = 256 Nx = 512
0 0 VS-00-32 VS-00-64 VS-00-128 VS-00-256 VS-00-512

(solid blue) (dashed blue) (solid red) (dashed red) (solid green)
0 3× 10−3 VS-03-32 VS-03-64 VS-03-128 VS-03-256 VS-03-512

(solid blue) (dashed blue) (solid red) (dashed red) (solid green)
0.4 3× 10−3 VS-43-32 VS-43-64 VS-43-128 VS-43-256 VS-43-512

(solid blue) (dashed blue) (solid red) (dashed red) (solid green)

Table 3.1. Keys used to denote simulations for the convergence study using different grid resolutions.

tangent previously used by Saffman and Meiron [125] and Meloon [94],

ρ(xi, yj) =
ρ1 + ρ2

2

{
1 +A tanh

[
yj − a0 cos (k xi)

δT

]}
, (3.2)

where A is the Atwood number [Eq. (1.13)] and k = 2π/λ is the wavenumber with wavelength

λ = 5.94 cm. In the present simulations, ρ2 = 1 and ρ1 = (ρ2 −Aρ2)/(1 +A).

Simulations are performed in a rectangular domain [0, Lx]× [−Lb, Lt] = [0, 5.94]× [−11.88, 11.88]

for grid resolutions Nx × 4Nx where Nx = 32, 64, 128, 256, and 512, so that Nx is the number

of points per initial perturbation wavelength. When ν = D = 0 (Sec. 3.1.1), oscillations develop

due to the formation of steep density and vorticity gradients. As the grid is refined, the oscillations

occur at later times. Thus, viscosity and mass diffusivity are introduced to prevent the formation

of oscillations. Both in the case of zero Atwood number (Sec. 3.1.2) and nonzero Atwood number

(Sec. 3.1.3), similar small-scale features form as the grid is refined and the thickness δT is kept fixed.

Third-order in time and fourth-order in space point-wise convergence is demonstrated. Table 3.1

shows the simulations performed, together with the keys used to denote the simulations.

3.1.1 Results for zero viscosity and mass diffusivity

Figure 3.1 shows the time-evolution of the mass fraction field for the evolution of a vortex layer

when the viscosity ν and mass diffusivity D are zero as the grid is refined keeping the layer thickness

δT = 0.4 cm fixed. The results are obtained using the VS method for A = 0. For Nx = 64, the change

in color at 1 ms for the mass fraction field m(x, y) corresponds to the onset of oscillations. The red

color at 0 ms corresponds to m = 1, and the blue color to m = 0. At 1 ms, the change in color

indicates that regions with values larger than unity and smaller than zero form due to oscillations

that develop in the presence of steep gradients. These steep gradients form when the instability

develops, as the top fluid pushes onto the bottom fluid in the spike region, and the bottom fluid

“rises” into the top fluid in the bubble region. These oscillations become stronger at later times,

as demonstrated by the lighter colors at later times. For Nx = 128, oscillations are not present

at 1 ms, but are already visible at 3 ms. For the Nx = 256 and 512 cases, the change in color
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Figure 3.1. Time-evolution of the mass fraction field m(x, y) for the Richtmyer-Meshkov instability
with A = 0 and initial diffuse layer thickness δT = 0.4 cm at 0, 1, 3, 5, 7, and 9 ms. The results are
obtained using the VS method with grid resolutions Nx = 64, 128, 256, and 512.
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occurs at later times. This demonstrates that as the resolution is increased, the scheme can tolerate

steeper gradients before developing oscillations. For sufficiently high resolution, it may be possible

to simulate the Richtmyer-Meshkov instability without developing these oscillations. However, the

formation of the roll-up region with successively smaller structures guarantees that sufficiently steep

gradients develop, introducing oscillations in the flow. In the absence of dissipation, the Euler

equations do not have a length-scale so that progressively finer scales develop, despite the use of a

layer with finite thickness.

Figure 3.2 shows the time-evolution of the mass fraction contours for the vortex layer evolution

using the VS method for A = 0. Complex small-scale structure develops within the roll-up regions.

The large-scale structure is not affected by the oscillations introduced by the small-scale structures.

Figure 3.3 shows the time-evolution of the vorticity field ω(x, y) for A = 0. For Nx = 64, the

vorticity shows areas of higher concentration at 5, 7, and 9 ms. For higher grid resolutions, the

vorticity does not show similar concentrations. However, differences in structure are visible at 9 ms.

It was shown in Section 2.2.2 that a Gaussian thickening of the vortex layer converges in the limit

of decreasing thickness δT and decreasing grid spacing ∆x to the velocity given by the Biot-Savart

law for a vortex sheet. Figure 3.4 shows that the VS method is third-order in time and fourth-order

in space when δT is kept fixed. For the temporal convergence (first row), simulations were performed

until 0.8 ms using decreasing values of the time-step ∆t. The rms-norm of the difference between

the simulations obtained using the smallest ∆tf = 0.005 ms and the simulations obtained using

larger values of ∆t are shown for the vorticity ω(x, y) and density ρ(x, y). The results demonstrate

third-order convergence in time, as indicated by the fiducial (green). For the spatial convergence

(second row), simulations were performed for Nx = 32, 64, 128, 256, and 512 (fine grid). The rms-

norm of the difference between the vorticity and density from the simulations on the fine and coarser

grids are shown at 1, 3, 5, and 7 ms. Fourth-order convergence is obtained at 1 ms as the grid is

refined. At 3 ms, second-order convergence is observed between Nx = 32 and 128 and higher-order

convergence between Nx = 128 and 256, indicating that for coarser grids, fourth-order convergence

is not achieved. At 5 ms, first-order convergence is observed between Nx = 32 and Nx = 128 and

higher order convergence between Nx = 128 and 256. At 7 ms, first-order convergence is observed

for all grid resolutions. Thus, fourth-order convergence is lost in time for A = 0 when ν = D = 0,

as expected, due to the oscillations (as shown in Fig. 3.1).

Figure 3.5 shows the time-evolution of the perturbation amplitude a(t) as the grid is refined

(left). The perturbation amplitude is computed for A = 0 as follows. The mass fraction is averaged

across the periodic direction,

m(y, t) =
1
Lx

∫ Lx

0

m(x, y, t) dy , (3.3)
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Figure 3.2. Time-evolution of the mass fraction contour corresponding to m1 = 1/2 for the
Richtmyer-Meshkov instability with A = 0 and initial diffuse-interface thickness δT = 0.4 cm at
0, 1, 3, 5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions Nx = 64,
128, 256, and 512.
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Figure 3.3. Time-evolution of the vorticity field ω(x, y) for the Richtmyer-Meshkov instability with
A = 0 and initial thickness δT = 0.4 cm at 0, 1, 3, 5, 7, and 9 ms. The results are obtained using
the VS method with grid resolutions Nx = 64, 128, 256, and 512.
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Figure 3.4. Temporal and spatial convergence for the vorticity ω and density ρ fields when ν = D = 0
for A = 0. For temporal convergence, ∆tf = 0.005 ms at 0.8 ms when ∆t = 0.16, 0.08, 0.04, 0.02,
and 0.01 ms. The dashed green line represents ∆t3, indicating third-order convergence in time. For
spatial convergence, Nxf = 512 at 1, 3, 5, and 7 ms when Nx = 32, 64, 128, and 256. The red line
represents N−2

x , indicating second-order convergence, and the blue line represents N−4
x , indicating

fourth-order convergence.

and the amplitude of the bubble and spike, ab(t) and as(t), respectively correspond to the location

where m ≥ ε and m ≤ 1−ε, respectively with ε = 0.01. Define and spike amplitudes, the perturbation

width and perturbation amplitude

h(t) = ab(t) + as(t) , a(t) =
h(t)
2

, (3.4)

respectively. The amplitude is not significantly affected as the grid is refined, even in the presence

of oscillations. The rms-norm of the difference between the amplitudes on the fine and coarser grids

(right) shows that first-order convergence is recovered in a(t) as the grid is refined. This is expected,

as the oscillations introduced by the steep gradients reduce the convergence rates for all quantities,

including a(t). The bubble and spike amplitudes are not shown, as they are equal for A = 0. Figure
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Figure 3.5. Comparison of the perturbation amplitude a(t) and circulation Γ+(t) as the grid is
refined for A = 0 using the VS method with ν = 0 and δT = 0.4 cm for Nx = 32, 64, 128, 256, and
512 (left column). Also shown is the rms-norm of the difference between results obtained on the
Nxf ×Nyf = 512× 1024 grid and results on coarser grids. See Figure 3.4 for the legend.

3.5 also shows that the positive circulation Γ+(t) remains constant as the grid is refined. For ν = 0,

there is no mechanism to dissipate the circulation so that it remains constant. The rms-norm of

the difference between the circulation on the fine grid and that on coarser grids shows second-order

convergence.

To make the agreement between the results on the fine grid and the results on the coarser grids

more quantitative, the average fractional deviation [62, 78]

∆ =
1
N

N∑
i=1

|aNx(ti)− aNxf (ti)|
aNxf (ti)

(3.5)

is computed, where N is the number of sample points used. The results indicate that the coarser

grids values approach the fine grid value.
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∆ (%) Nx = 32 Nx = 64 Nx = 128 Nx = 256
a(t) 1.408 0.661 0.275 0.086
ab(t) 1.408 0.661 0.276 0.086
as(t) 1.407 0.661 0.275 0.086
Γ+(t) 0.0427 0.014 0.00288 0.000583

Table 3.2. Average fractional deviation ∆ between the results on the Nxf = 512 grid and those on
coarser grids for the perturbation, bubble, and spike amplitudes a(t), ab(t), and as(t), respectively,
and the circulation Γ+(t) for the VS method with A = 0 and ν = D = 0.

3.1.2 Results with nonzero viscosity and mass diffusivity for zero Atwood

number

To prevent the formation of steep gradients as the instability develops, viscosity ν and mass diffu-

sivity D are introduced so that the Schmidt number Sc ≡ ν/D = 1 is consistent with gas properties.

Figure 3.6 shows the time-evolution of a thickened vortex layer under the VS method for A = 0, as

the grid is refined keeping the thickness of the layer δT = 0.4 cm fixed. For A = 0, the density is

equal across the two fluids and the baroclinic vorticity production is zero, so that the mass fraction

field m(x, y) is shown. The mass fractions across the fields are very similar. The mass fraction

field corresponding to Nx = 64 shows a lighter color starting from 1 ms, indicating the presence of

oscillations in the simulation. At later times, the red and blue colors become lighter, indicating that

the oscillations intensify. At 7 and 9 ms, the oscillations are visible near the tips of the bubble and

spike. As the grid is refined, the additional points used to discretize the layer, combined with the

action of viscosity, prevent the formation of these oscillations. Starting from Nx = 128, the red and

blue colors remain dark at all times, indicating that no oscillations develop. Furthermore, as the

grid is refined, the roll-up retains the same shape, indicating that the results are converged.

Figure 3.7 shows the mass fraction contours corresponding to the fields in Figure 3.6. The

contours are used to visualize the small-scale structure within the roll-ups. The contours show

convergence under grid refinement, including similar characterizations of the small-scale roll-ups at

late times, further confirming that the results are converged under grid refinement. The contour

corresponding to Nx = 64 shows a different structure within the roll-ups at 7 and 9 ms, with the

inner core exhibiting oscillations, due to the underlying oscillations in the field. No oscillations are

observed at 1 ms, although oscillations are present in the field. Figure 3.8 shows a comparison of

the vorticity field as the grid is refined. The vorticity forms cores at late times with a well-defined

center. The cores become larger at late times. For Nx = 64 the cores show a fragmented core with

small disordered structures.

The temporal and spatial convergence properties for the VS method are shown in Figure 3.9.

For the temporal convergence, the vorticity and mass fraction are computed up to a fixed time 0.8

ms as ∆t is decreased. The rms-norm of the difference between fields obtained with ∆tf = 0.005 ms
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Figure 3.6. Time-evolution of the mass fraction field m(x, y) for the Richtmyer-Meshkov instability
with A = 0, initial diffuse-interface thickness δT = 0.4 cm, and ν = D = 3× 10−3 cm2/ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions Nx = 64, 128,
256, and 512.



46

0 ms 1 ms 3 ms 5 ms 7 ms 9 ms
N

x
=

64

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

N
x

=
12

8

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

N
x

=
25

6

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

N
x

=
51

2

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

0 2 4

−4

−2

0

2

4

Figure 3.7. Time-evolution of the mass fraction contour corresponding to m1 = 1/2 for the
Richtmyer-Meshkov instability with A = 0, initial diffuse-interface thickness δT = 0.4 cm, and
ν = D = 3× 10−3 cm2/ms at 0, 1, 3, 5, 7, and 9 ms. The results are obtained using the VS method
with grid resolutions Nx = 64, 128, 256, and 512.
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Figure 3.8. Time-evolution of the vorticity field ω(x, y) for the Richtmyer-Meshkov instability with
A = 0, initial thickness δT = 0.4 cm, and ν = D = 3× 10−3 cm2/ms at 0, 1, 3, 5, 7, and 9 ms. The
results are obtained using the VS method with grid resolutions Nx = 64, 128, 256, and 512.
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Figure 3.9. Temporal and spatial convergence for the vorticity ω and density ρ fields with ν =
D = 3 × 10−4 cm2/ms when A = 0. For temporal convergence, ∆tf = 0.005 ms at 0.8 ms when
∆t = 0.16, 0.08, 0.04, 0.02, and 0.01 ms. For spatial convergence, Nxf = 512 at 1, 3, 5, and 7 ms
when Nx = 32, 64, 128, and 256. See Figure 3.4 for the legend.

and with larger time steps is shown, indicating third-order convergence. For the spatial convergence,

the results are compared at 1, 3, 5, and 7 ms as the grid is refined. The `∞-norm of the difference

between results on the Nxf = 512 grid and results on coarser grids shows fourth-order convergence

for all times. This is in contrast to the results with zero viscosity (Fig. 3.4), where fourth-order

convergence was obtained at 1 ms and lower-order convergence at later times.

Figure 3.10 shows a comparison of the perturbation amplitude a(t), indicating that differences

as the grid is refined are small. The rms-norm of the difference between the amplitude on the fine

grid and on the coarser grids is also shown, indicating fourth-order convergence. Also shown is a

comparison of the circulations Γ+(t) as the grid is refined. The circulation decreases as time evolves,

due to the dissipation of vorticity. For A = 0 and ν = 0, the circulation is expected to remain

constant (Fig. 3.5). A viscosity of 3× 10−3 cm2/ms contributes a 0.5% decrease in circulation in 10

ms. The rms-norm of the difference between results on the fine and coarser grids shows fourth-order
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Figure 3.10. Comparison of the perturbation amplitude a(t) and circulation Γ+(t) as the grid is
refined for A = 0 using the VS method with ν = D = 3 × 10−3 cm2/ms and δT = 0.4 cm for
Nx = 32, 64, 128, 256, and 512 (left column). Also shown is the rms-norm of the difference between
results obtained on the Nxf × Nyf = 512 × 1024 grid and results on coarser grids. See Figure 3.4
for the legend.

convergence. The average fractional deviation ∆ [Eq. (3.5)] is shown in Table 3.3.

3.1.3 Results with nonzero viscosity and mass diffusivity for nonzero At-

wood number

Figure 3.11 shows the time-evolution of the density field from the VS simulations of the Richtmyer-

Meshkov instability for A = 0.4 and ν = D = 3 × 10−3 cm2/ms. Results for ν = D = 0 are

not shown since the oscillations for A = 0 intensify as the density is differentiated to compute the

baroclinic vorticity production P. The computation of P also requires the determination of the

pressure gradient, which is computed by solving the pressure Poisson equation [Eq. (2.37)] with

Neumann boundary conditions. For A = 0.4, the densities are very similar under grid refinement,

indicating converged results. The density also exhibits the expected differences between bubbles and

spikes. In particular, at early times, the bubble expands and the spike contracts. At later times, the
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Figure 3.11. Time-evolution of the density field ρ(x, y) for the Richtmyer-Meshkov instability with
A = 0.4, initial diffuse-interface thickness δT = 0.4 cm, and ν = D = 3 × 10−3 cm2/ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions Nx = 64, 128,
256, and 512.
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∆ (%) Nx = 32 Nx = 64 Nx = 128 Nx = 256
a(t) 0.84 0.198 0.023 2.21× 10−3

ab(t) 0.84 0.199 0.0231 2.22× 10−3

as(t) 0.84 0.198 0.023 2.22× 10−3

Γ+(t) 0.045 0.014 0.003 6.16× 10−3

Table 3.3. Average fractional deviation ∆ between the results on the Nxf = 512 grid and those on
coarser grids for the perturbation, bubble, and spike amplitudes a(t), ab(t), and as(t), respectively,
and the circulation Γ+(t) for the VS method with A = 0 and ν = D = 3× 10−3 cm2/ms.

bubble has a smaller amplitude than the spike. For A = 0, the bubbles and spikes were identical.

For Nx = 64, oscillations are observed at 3 ms. These oscillations are mitigated at later times due

to dissipation. For all other values of Nx, no oscillations are observed.

Figure 3.12 shows the mass fraction contours corresponding to the densities in Figure 3.11. As

the grid is refined, the contours provide similar characterizations of the roll-up structure, including

the Nx = 64 case, where oscillations were observed at 3 ms. Figure 3.13 shows the time-evolution of

ω(x, y) for A = 0.4 under grid refinement. The vorticity field does not show differences, indicating

that similar characterizations of the vorticity are provided by the method. In particular, the vorticity

for Nx = 64 at 3 ms does not show oscillations, indicating that the oscillations in the density were

mitigated by the viscosity. At late times, the vorticity rolls up into strong cores.

The temporal and grid convergence properties of the density and vorticity in the VS method

for A = 0.4 are shown in Figure 3.14. For the temporal convergence (first row), the rms-norm of

the difference between results obtained using ∆tf = 0.05 ms and larger values shows third-order

convergence as the time-step is decreased. For the spatial convergence (second row), the rms-norm

of the difference between results on the fine grid Nxf = 512 and results on coarser grids shows

fourth-order convergence for all times.

Figure 3.15 shows a comparison of the perturbation, bubble, and spike amplitudes, a(t), ab(t),

and as(t), respectively, as the grid is refined. For A 6= 0, distinctive bubble and spike amplitudes

develop. As the grid is refined, the amplitudes do not vary significantly. Also shown in the figure

is the rms-norm of the difference between the amplitudes on the fine and coarser grids, indicating

fourth-order convergence.

Shown in Figure 3.16 is a comparison of the circulation Γ+(t) as the grid is refined. Following the

baroclinic vorticity deposition, Γ+ decreases and then increases. Also shown is the rms-norm of the

difference between the circulation on the fine and coarser grids, indicating fourth-order convergence.

The average fractional deviation ∆ [Eq. (3.5)] is shown in Table 3.4.
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Figure 3.12. Time-evolution of the mass fraction contour m1 = 1/2 for the Richtmyer-Meshkov
instability with A = 0.4, initial thickness δT = 0.4 ms, and ν = D = 3 × 10−3 cm2/ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions Nx = 64, 128,
256, and 512.
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Figure 3.13. Time-evolution of the vorticity field ω(x, y) for the Richtmyer-Meshkov instability with
A = 0.4, initial diffuse-interface thickness δT = 0.4 cm, and ν = D = 3 × 10−3 cm2/ms at 0, 1, 3,
5, 7, and 9 ms. The results are obtained using the VS method with grid resolutions Nx = 64, 128,
256, and 512.
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Figure 3.14. Temporal and spatial convergence for the vorticity ω and density ρ fields with ν =
D = 3×10−3 cm2/ms for A = 0.4. For temporal convergence, ∆tf = 0.005 ms with ∆t = 0.16, 0.08,
0.04, 0.02, and 0.01 ms. For spatial convergence, Nxf = 512 at 1, 3, 5, and 7 ms when Nx = 32, 64,
128 and 256. See Figure 3.4 for the legend.

∆ (%) Nx = 32 Nx = 64 Nx = 128 Nx = 256
a(t) 1.05 0.171 0.047 3.97× 10−3

ab(t) 0.192 0.45 0.106 2.12× 10−3

as(t) 2.16 0.72 0.18 5.62× 10−3

Γ+(t) 0.476 0.047 5.3× 10−3 8.31× 10−4

Table 3.4. Average fractional deviation ∆ between the results on the Nxf = 512 grid and those on
coarser grids for the perturbation, bubble, and spike amplitudes a(t), ab(t), and as(t), respectively,
and the circulation Γ+(t) for the VS method with A = 0.4 and ν = D = 3× 10−3 cm2/ms.
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Figure 3.15. Comparison of the perturbation, bubble, and spike amplitudes a(t), ab(t), and as(t),
respectively, as the grid is refined for A = 0.4 using the VS method with ν = 3× 10−3 cm2/ms and
δT = 0.4 cm for Nx = 32, 64, 128, 256, and 512 (left column). Also shown is the rms-norm of the
difference between results obtained on the Nxf ×Nyf = 512×1024 grid and results on coarser grids.
See Figure 3.4 for the legend.
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Figure 3.16. Comparison of the circulation Γ+(t) as the grid is refined for A = 0.4 using the VS
method with ν = 3×10−3 cm2/ms and δT = 0.4 cm for Nx = 32, 64, 128, 256, and 512 (left column).
Also shown is the rms-norm of the difference between results obtained on the Nxf×Nyf = 512×1024
grid and results on coarser grids. See Figure 3.4 for the legend.

ν = 8× 10−4 cm2

ms ν = 4× 10−4 cm2

ms ν = 2× 10−4 cm2

ms ν = 10−4 cm2

ms

δT = 0.4 cm VS-04-80 VS-04-40 VS-04-20 VS-04-10
(solid blue) (dashed blue) (dash-dot blue) (dotted blue)

δT = 0.3 cm VS-03-80 VS-03-40 VS-03-20 VS-04-10
(solid red) (dashed red) (dash-dot red) (dotted red)

δT = 0.2 cm VS-02-80 VS-02-40 VS-02-20 VS-04-10
(solid green) (dashed green) (dash-dot green) (dotted green)

Table 3.5. Keys used to denote simulations with different values of the viscosity ν and initial diffuse-
interface thickness δT for the VS method.

3.2 Convergence study using different diffuse interface thick-

nesses and viscosities

Presented here is a convergence study as the diffuse interface thickness δT is varied from 0.4 to 0.2

cm and the viscosity ν is varied from 8× 10−4 to 10−4 cm2/ms for A = 0.4 (keeping D = ν). First,

the density, mass fraction contours, and vorticities are compared at 3, 5, and 7 ms (Sec. 3.2.1).

Next, a convergence study is performed for the smallest value of the viscosity, as the diffuse interface

thickness is reduced (Sec. 3.2.2). Finally, the effects of varying the diffuse interface thickness and the

viscosity on the perturbation, bubble, and spike amplitudes, on the circulation, and on the Reynolds

numbers is investigated (Sec. 3.2.3).
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3.2.1 Dynamics of the instability evolution

Presented here is a visualization of the instability development as the diffuse-interface width δT and

viscosity ν are varied. Table 3.5 shows the keys used to denote the simulations. Each simulation

is performed at a resolution of Nx = 512, and it is shown in Section 3.2.2 that this resolution is

guaranteed to be in the region of fourth-order point-wise convergence of the method.

Figure 3.17 shows the density field ρ(x, y) at 3 ms as δT and ν are varied. The results are presented

on a grid so that fields in the same column have the same viscosity ν with decreasing diffuse interface

thickness, while fields in the same row have the same diffuse-interface thickness δT with decreasing

viscosity ν. A significant variation is observed in the small-scale features corresponding to the

formation of the roll-up as δT is decreased, while no significant difference is observed as ν is decreased.

Figure 3.18 continues the comparison by showing the mass fraction contours corresponding to the

densities in Figure 3.17, further confirming that variations are observed as δT is decreased, but little

variation as ν is decreased. In particular, as δT is decreased the roll-up appears at a later stage

of the instability development. This is expected because if the instability development is measured

with respect to the nondimensional time τ [Eq. (1.17)], then as the diffuse interface decreases, the

growth reduction factor ψ (Sec. 4.2.2) also decreases, resulting in a larger value of τ for the same

time.

Figure 3.19 shows the comparison of the vorticity field at 3 ms as ν and δT are varied. As δT is

decreased, the vortex layer is thinner with more refined cores. In addition, as noted in the discussion

of the mass fraction, the stage of the roll-up is more advanced as δT is decreased. For δT = 0.4 cm,

a core of the roll-up is barely visible. For δT = 0.3 cm, the roll-up is beginning and for δT = 0.2

cm, the roll-up is advanced. In addition, for δT = 0.4 and 0.3 cm, no differences are visible in the

layer as ν is decreased. However, for δT = 0.2 cm, the layer becomes much thinner and concentrated

as ν decreases. This is expected, as viscosity spreads the layer of vorticity. Such effects are more

pronounced in the presence of a thin layer as opposed to a thicker layer.

Figure 3.20 shows a comparison of the densities at 5 ms when the roll-up develops. As δT is

decreased, the details of the roll-up become sharper and the roll-up is more developed. For δT = 0.4

and 0.3 cm, no visible effects are apparent as ν is decreased. For δT = 0.2 cm, the roll-up is less

diffuse for smaller values of ν. Figure 3.21 continues the comparison for the mass fraction contours.

The results also confirm small variations as ν is decreased and larger variations as δT is increased.

The contour corresponding to δT = 0.2 cm and ν = 8 × 10−4 cm2/ms shows the most structure

within the roll-ups. As ν decreases, such structure is replaced by a large-scale round structure.

This is a limitation of the mass fraction contours, as the fine-scale structure cannot be visualized

effectively, although it was present in the density fields.

Figure 3.22 shows a comparison of the vorticity field at 5 ms. Variations are visible as both

δT and ν are decreased. As δT is decreased, the cores become better defined and show additional
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Figure 3.17. The density field ρ(x, y) at 3 ms for different values of the diffuse-interface thickness
δT and viscosity ν. The results were obtained with grid resolution 512× 1024 using the VS method.
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Figure 3.18. The mass fraction contour at 3 ms for different values of the diffuse-interface thickness
δT and viscosity ν using the VS method.
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Figure 3.19. The vorticity field ω(x, y) at 3 ms for different values of the diffuse-interface thickness
δT and viscosity ν using the VS method.
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Figure 3.20. Same as Figure 3.17 but at 5 ms.
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Figure 3.21. Same as Figure 3.18 but at 5 ms.
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Figure 3.22. Same as Figure 3.19 but at 5 ms.
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structure. For a fixed δT , as ν is decreased, the cores are stronger. For δT = 0.2 cm and for

decreasing ν, vorticity of opposite sign is observed within the cores, giving rise to a bi-layer.

Figure 3.23 shows a comparison of the density at 7 ms when the roll-up is fully developed. Sig-

nificant differences are observed as δT decreases and smaller differences as ν decreases. In particular,

the roll-ups for ν < 4×10−4 cm2/ms are small, in contrast to more pronounced differences in roll-up

structures observed when varying ν at earlier times.

Figure 3.24 continues with the comparison of the mass fraction contours. The results indicate

differences in the small scale structure as the viscosity and diffuse-interface thickness are decreased.

Finally, Figure 3.25 shows a comparison of the vorticity field at 7 ms. As the viscosity is decreased,

the structure of the roll-up and of the layer becomes more visible, showing tighter windings. For

δT = 0.2 cm, bi-layers of positive and negative vorticity are visible within the roll-ups.

3.2.2 Convergence study as the diffuse interface thickness is reduced

The results in the previous section were obtained for a grid resolution corresponding to Nx = 512.

An important question arises as to whether the resolution chosen is sufficient to guarantee fourth-

order point-wise convergence. In particular, as shown in Section 3.1.3, fourth-order convergence is

expected at all times once sufficient resolution is provided. In order to demonstrate that the results

are within the ball of fourth-order convergence, a grid resolution study is performed for the case of

ν = 10−4 cm2/ms for different values of δT .

Figure 3.26 shows the time-evolution of the point-wise spatial convergence of the vorticity ω and

density ρ as the grid is refined at 1, 3, 5, and 7 ms for δT = 0.4, 0.3, and 0.2 cm. For δT = 0.4

cm, the results are fourth-order convergent at 1 ms for all grid resolutions. At 3 ms a deterioration

of the convergence rate is observed corresponding to Nx = 32, 64, and 128, as indicated by the

second-order slope. For Nx = 256 and 512, fourth-order convergence is recovered, as indicated by

the steepening profile. For 5 and 7 ms, fourth-order convergence is recovered only between Nx = 256

andNx = 512. There is no error quoted at 7 ms forNx = 32, as the simulation terminates before 7 ms

due to oscillations. For δT = 0.3 cm, a similar result applies. For 1 ms, fourth-order convergence is

observed for all resolutions. At later times, a deterioration of the convergence properties is observed

at coarser resolutions and fourth-order convergence is recovered between Nx = 256 and 512. For

δT = 0.2 cm, a similar result applies, except that the simulations corresponding to Nx = 32 and

64 terminate before 5 ms, and that corresponding to Nx = 128 before 7 ms. Only simulations with

Nx ≥ 256 give results up to 10 ms. Fourth-order convergence is recovered between Nx = 256 and

512.

The following convergence properties apply to the VS method. In general, all simulations exhibit

fourth-order convergence at early times. At later times and for smaller values of the diffuse-interface

thickness and viscosity, high order requires sufficient resolution to resolve all small-scale structures.
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Figure 3.23. Same as Figure 3.17 but at 7 ms.
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Figure 3.24. Same as Figure 3.18 but at 7 ms.
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Figure 3.25. Same as Figure 3.19 but at 7 ms.
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Figure 3.26. Time-evolution of the spatial convergence rate for the vorticity ω and density ρ when
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When insufficient resolution is used, the method generates oscillations that degrade the solution.

Even when sufficient resolution is used to prevent the formation of oscillations, the resolution may

still not be sufficient to guarantee fourth-order convergence. In fact, as demonstrated here, regions

with second- and third-order convergence are observed prior to full fourth-order convergence. The

results also demonstrate that Nx = 512 is sufficient to guarantee that the results are in the region

of fourth-order point-wise convergence.

3.2.3 Effects of viscosity and diffuse-interface thickness on the pertur-

bation, bubble, and spike amplitudes, circulation, and Reynolds

numbers

Presented here is a comparison of the perturbation, bubble, and spike amplitudes, circulation, and

Reynolds numbers as the diffuse-interface thickness δT and viscosity ν are varied. The following

conventions are used. Each simulation is assigned a distinctive color and line style as explained in

Table 3.5. A series of three figures is shown for each quantity. In the top figure, results for all

cases are presented together. In the middle figure, results are shown for a fixed δT = 0.3 cm as the

viscosity is varied. In the bottom figure, results are shown for a fixed ν = 2× 10−4 cm2/ms as δT is

varied. This allows a more precise quantification of the effects of each parameter.

Figure 3.27 shows a comparison of the perturbation amplitude a(t) as δT and ν are varied. No

significant variation is observed in the amplitude as these parameters are varied. The reason for

this is that the heavier fluid pushes onto the lighter fluid creating similar layer thicknesses as the

instability develops. Differences emerge in the small-scale roll-up structure (Sec. 3.2.1) but these

differences do not affect the amplitudes.

Figure 3.28 continues the comparison for the bubble and spike amplitudes ab(t) and as(t), re-

spectively. No significant variation is observed in the bubble and spike as ν is varied. Some variation

is observed in the initial bubble amplitude as δT is varied. This initial difference decreases rapidly

and is no longer visible at late times. By contrast, the spike amplitude shows no such variation at

the initial time, but instead at intermediate times. No variation is observed at late times.

Figure 3.29 shows a comparison of the circulation Γ(t) as δT and ν are varied. The circulation

shows variation, developing at intermediate times and becoming more pronounced at later times.

The variation is due to changes in δT , as indicated by the fact that results are grouped by color.

In particular, smaller δT lead to larger Γ. Similarly, smaller ν lead to larger Γ, but by a smaller

amount than changing the diffuse interface thickness.

Also shown in Figure 3.29 is a comparison of the circulation Reynolds number [113]

ReΓ(t) ≡ Γ(t)
ν

. (3.6)
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Figure 3.27. Comparison of the perturbation amplitude a(t) when the viscosity ν and diffuse-
interface interface thickness δT are varied (top). Comparison when ν is changed keeping δT = 0.3
cm fixed (middle). Comparison when δT is changed keeping ν = 2 × 10−4 cm2/ms fixed (bottom).
Quantities obtained using δT = 0.4, 0.3, and 0.2 cm are shown in blue, red, and green, respectively;
quantities obtained using ν = 8× 10−4, 4× 10−4, 2× 10−4, and 10−4 (cm2/ms) are shown using a
solid, dashed, dash-dot, and dotted lines respectively.



71

a
b
(t

)
(c

m
)

0 2 4 6 8
1

1.5

2

2.5

3

a
s
(t

)
(c

m
)

0 2 4 6 8

1

1.5

2

2.5

3

3.5

a
b
(t

)
(c

m
)

0 2 4 6 8

1.5

2

2.5

3

a
s
(t

)
(c

m
)

0 2 4 6 8

1

1.5

2

2.5

3

3.5

a
b
(t

)
(c

m
)

0 2 4 6 8
1

1.5

2

2.5

3

a
s
(t

)
(c

m
)

0 2 4 6 8

1

1.5

2

2.5

3

3.5

t (ms) t (ms)

Figure 3.28. Comparison of the bubble and spike amplitudes ab(t) and as(t) when the viscosity ν
and diffuse-interface interface thickness δT are varied (top). Comparison when ν is changed keeping
δT = 0.3 cm fixed (middle). Comparison when δT is changed keeping ν = 2 × 10−4 cm2/ms fixed
(bottom). See Figure 3.27 for legend.
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As the values of Γ are very similar for different values of ν, ReΓ groups the results based on the

viscosity. Some differences are also observed as δT is decreased, but such differences are smaller than

when ν is changed.

A perturbation Reynolds number can also be defined based from the width [Eq. (3.4)] and the

viscosity [28]

Reh(t) ≡ h(t)
ν

dh(t)
dt

, (3.7)

where the results for different values of δT and ν are shown in Figure 3.30. The Reynolds numbers

are clustered based on the viscosity and show some differences at early times with results for smaller

δT having a larger peak. In fact, a smaller δT indicates slightly larger values of dh/dt; Reh and ReΓ

have similar magnitudes of O(104).

Finally, another definition of the Reynolds number is [107, 77]

Re∆x(t) ≡
[
h(t)
∆x

]4/3

, (3.8)

where ∆x is the grid spacing. Figure 3.30 shows the Reynolds number based on this definition. As

all results are computed on the same grid corresponding to Nx = 512, the curves show a qualitative

agreement similar to that of a(t) (Fig. 3.27); Re∆x is slightly smaller than ReΓ and Reh.

The average fractional deviation ∆ [Eq. (3.5)] between the results corresponding to δT = 0.2 cm

and ν = 10−4 cm2/ms is shown in Table 3.6. The results show that as ν and δT are decreased, the

average fractional deviations for the perturbation, bubble, and spike amplitudes and the circulation

decrease.

In summary, the singularity associated with the evolution of a vortex sheet (Sec. 2.2.1) was

resolved here by thickening the sheet to obtain a vortex layer. Convergence of the thickened solution

to the Biot-Savart velocity was demonstrated (Sec. 2.2.2). A VS method based on the third-order

semi-implicit Adams-Bashforth backward differentiation (AB/BDI3) scheme was constructed (Sec.

2.3). The use of this scheme gave third-order in time and fourth-order in space convergent results

for both A = 0 and A = 0.4. Similar results are expected for larger values of A. For the thin

vortex sheet, a regularization corresponding to enlarging the cores of the vortex markers (in the

Lagrangian-γ scheme of Sec. 2.1.2) or a regularization provided by the grid (in the VIC method of

Sec. 2.1.3) are adopted. By contrast, in the VS method, an explicit thickening of the sheet based

on the diffuse-interface thickness δT is adopted. Without viscosity, the evolution of the interface

showed the formation of steep gradients that introduce oscillations (Sec. 3.1.1). To prevent the

formation of such oscillations, viscosity and mass diffusivity were introduced (Secs. 3.1.2 and 3.1.3)

keeping Sc = ν/D = 1, and fourth-order accuracy is obtained.
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Figure 3.30. Comparison of the Reynolds numbers Reh(t) and Re∆x(t) when the viscosity ν and
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∆ a(t) (%) ν = 8× 10−4 cm2

ms ν = 4× 10−4 cm2

ms ν = 2× 10−4 cm2

ms ν = 10−4 cm2

ms

δT = 0.4 cm 1.22 0.85 0.71 0.62
δT = 0.3 cm 0.87 0.47 0.3 0.21
δT = 0.2 cm 0.61 0.22 0.08 0

∆ ab(t) (%) ν = 8× 10−4 cm2

ms ν = 4× 10−4 cm2

ms ν = 2× 10−4 cm2

ms ν = 10−4 cm2

ms

δT = 0.4 cm 5.39 4.54 4.23 4.02
δT = 0.3 cm 3.23 2.39 2 1.79
δT = 0.2 cm 1.44 0.58 0.2 0

∆ as(t) (%) ν = 8× 10−4 cm2

ms ν = 4× 10−4 cm2

ms ν = 2× 10−4 cm2

ms ν = 10−4 cm2

ms

δT = 0.4 cm 2.7 2.67 2.66 2.65
δT = 0.3 cm 1.37 1.34 1.32 1.31
δT = 0.2 cm 0.1 0.08 0.03 0

∆ Γ(t) (%) ν = 8× 10−4 cm2

ms ν = 4× 10−4 cm2

ms ν = 2× 10−4 cm2

ms ν = 10−4 cm2

ms

δT = 0.4 cm 5.9 5 4.6 4.4
δT = 0.3 cm 2.5 1.5 1 0.08
δT = 0.2 cm 0.19 0.13 0.1 0

Table 3.6. Average fractional deviations for the perturbation amplitude a(t), bubble and spike
amplitudes, ab(t) and as(t), and circulation Γ(t) as the viscosity ν and diffuse-interface thickness δT
are varied.
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Chapter 4

Investigation of the
Two-Dimensional Single-Mode
Richtmyer-Meshkov Instability

Presented here are two-dimensional simulations and analysis of the single-mode Richtmyer-Meshkov

instability performed using the formally high-order accurate weighted essentially non-oscillatory

(WENO) shock-capturing method and the vorticity-streamfunction (VS) method, including com-

parisons to the Lagrangian and vortex-in-cell (VIC) methods. The simulations are performed on a

model of the Mach 1.3 experiment of Jacobs and Krivets [62] (Sec. 4.2.1) to provide an element of

validation to the results. The WENO method is a shock-capturing method based on discretizing

the compressible Euler equations of gas dynamics. As such, an ab initio simulation is performed,

with a shock launched in the air(acetone) mixture interacting with the diffuse sinusoidal interface.

By contrast, the VS simulation begins with the vorticity deposited on the interface by the shock

and is incompressible. A comparison of results from these two methods also provides an element

of further validation of the VS method developed here and provides a point of contact between the

compressible and incompressible approaches for simulating the Richtmyer-Meshkov instability, using

two different numerical methods.

This chapter is organized as follows. A description of the WENO method for the compressible

simulations of the single-mode Richtmyer-Meshkov instability is presented in Section 4.1. Initial

conditions for the WENO and VS simulations of the Mach 1.3 air(acetone)/SF6 Jacobs and Krivets

[62] experiment are discussed in Section 4.2. A comparison of results obtained from the WENO

method using fifth- and ninth-order flux reconstruction is shown in Section 4.3. The dynamics of the

instability evolution, including a comparison of the density fields from the WENO and VS simulations

with the experimental PLIF images, are shown in Section 4.4. A comparison of the perturbation,

bubble, and spike amplitudes from the WENO and VS methods with the experimental data points

and with the predictions of amplitude growth models is presented in Section 4.5. A comparison
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of the perturbation, bubble, and spike amplitudes and circulation for additional smaller and larger

values of the Mach number is presented in Section 4.6. An investigation of reshock using the WENO

method, including a comparison of the amplitude following reshock to the predictions of reshock

models, is presented in Section 4.7. Finally, the results of an Atwood number study performed using

the VS method with comparisons to the Lagrangian and VIC methods are presented in Section 4.8.

4.1 The weighted essentially non-oscillatory (WENO) method

The weighted essentially non-oscillatory (WENO) method is a shock-capturing scheme used in the

investigation of the Richtmyer-Meshkov instability [78] and more generally of complex flows with

shocks. A brief discussion of the development of the method, including its benefits for simulating

this instability are discussed in Section 4.1.1. A brief description of the algorithmic implementation

used here is also included in Section 4.1.2.

4.1.1 Literature survey

The WENO scheme belongs to a class of semi-discrete methods (method of lines) developed for the

solution of hyperbolic conservation laws. In semi-discrete methods, the equations are discretized

only in space, leaving the equations continuous in time. The semi-discrete approach is useful in

developing methods with order of accuracy greater than two, as high-order flux reconstructions can

be coupled with high-order time-stepping schemes for the system of ordinary differential equations

[82, 83]. Methods of first reconstructing the spatial flux and then evolving the solution in time

are called reconstruction-evolution methods [49]. The earliest of these is the Godunov method [41],

which reconstructs the flux based on the average, and is therefore only first-order accurate. A

second-order accurate approximation is obtained when a piecewise-linear approximation is used,

as in the monotone upwind schemes for scalar conservation laws (MUSCL) proposed by Van Leer

[143, 144]. Colella and Woodward [26] used piecewise-quadratic approximations in the piecewise-

parabolic method (PPM). Harten and Osher [50], proposed a uniformly high-order accurate non-

oscillatory method (UNO). This method is the same as the Van Leer MUSCL method except that

the slopes in the piecewise-linear reconstruction are formed using the essentially non-oscillatory

(ENO) reconstruction. Harten et al. [49, 50] proposed a reconstruction-evolution method based

on the reconstruction via the primitive function combined with the ENO adaptive stencil high-

order polynomial reconstruction. In this method, the stencil yielding the least oscillation is selected

by choosing the point that gives the smallest divided-difference for a given choice of points for the

polynomial reconstruction. Large values of the divided-differences indicate that a jump discontinuity

is being crossed, which introduces large oscillations in the polynomial and considerably lowers the

overall accuracy of the numerical solution. By avoiding such points, the ENO method achieves
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uniformly high-order accuracy in smooth flow regions and minimizes oscillations.

Despite their success, ENO schemes have several drawbacks. For example, the stencil based on

cell averages can be very sensitive to small round-off errors, which can yield two different stencils

for small errors. Furthermore, ENO schemes are based on complex logical statements that are

not efficiently parallelizable. To overcome these drawbacks, Liu, Osher, and Chan [88] developed

the cell-averaged WENO method. In this method, a convex combination of all possible stencils is

formed, instead of choosing a single stencil among several possible stencils. Each stencil is assigned

a weight that determines its relative contribution to the computed numerical flux. The weights are

assigned so that stencils crossing discontinuities are given nearly zero weight, while stencils that

are formed from points in smoother regions are given similar weights. Such schemes are easily

parallelized. Another advantage of the WENO method is that the resulting flux is smoother than

the flux obtained from the ENO method, and this property can be used to prove the convergence of

the method for one-dimensional scalar conservation laws.

Jiang and Shu [63] proposed significant improvements to the WENO method, including a flux-

averaged WENO formulation and a new method to measure the smoothness of the stencils. When

WENO reconstruction is performed over a smooth region and all the r stencils and r − 1 points

are weighted equally, a method of formal order 2r − 1 is obtained (a significant improvement over

the r + 1 order of the Liu, Osher, and Chan formulation). This implementation of the WENO

method is used in this investigation with fifth- and ninth-order reconstruction. Balsara and Shu [12]

later combined the WENO reconstruction with the monotonicity-preserving bounds of Suresh and

Huynh [138] to obtain high-order monotonicity preserving WENO (MPWENO) schemes. WENO

methods have been used in simulations of complex flows with shocks [90, 131] and more recently in

the investigation of the Richtmyer-Meshkov instability [78, 129, 77].

Approximating discontinuous solutions of hyperbolic conservation laws using high-order methods

yields only first-order accuracy in general [89, 108]. In the case of a scalar law, the characteristics

point into the shock. As a result, first-order errors are confined to a region near the shock and errors

O (∆xp) are obtained in regions away from the shock when a scheme of order p is used. However,

in the case of systems of conservation laws, multiple families of characteristics intersect the shock.

As a result, the large error near the shock propagates into the entire post-shock region, so that

even formally high-order methods give no better than first-order convergence, as demonstrated by

Engquist and Sjögreen [36].

The reason for using high-order methods in flows with shocks, even if only first-order accuracy is

realized in the post-shock region, is that high-order accuracy is desired for the propagation of high-

frequency low-amplitude waves and small-scale structures present in a Richtmyer-Meshkov unstable

mixing layer [21]. Furthermore, the nonlinearity of the WENO method removes the generation of

spurious oscillations (usually associated with linear central-difference schemes), making the method
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stable [21]. Recently, Gottlieb et al. [43] recovered third-order (design) accuracy in a post-shock

region by applying the Gegenbauer postprocessing method to a fifth-order WENO simulation of

the steady-state converging-diverging nozzle. This confirms an argument by Lax [79] that for a

nonlinear system, more high-order information is retained by a high resolution scheme (such as the

WENO method) and that this high-order information can (in principle) be recovered by suitable

post-processing. In addition, it was shown earlier [77] that higher-order WENO methods have

less numerical dissipation than lower-order methods and were more computationally advantageous

than increasing the grid resolution for the simulation of the Richtmyer-Meshkov instability. Here,

it is shown that increasing the grid resolution leads to second-order accurate convergence of the

perturbation, bubble, and spike amplitudes and circulation (Sec. 4.3) for both fifth- and ninth-order

WENO flux reconstructions.

Additional information on WENO schemes can be found in Shu [132]. Information on the stability

analysis techniques used in the development of the WENO method can be found in Laney [74] and

Leveque [82, 83].

4.1.2 Overview of the WENO method

The numerical simulations of the reshocked Richtmyer-Meshkov instability were performed using

the characteristic projection-based, finite-difference WENO shock-capturing method using fifth-

and ninth-order flux reconstruction [63, 12]. The parallel code used was developed as part of a

collaboration between the Lawrence Livermore National Laboratory and Brown University [30]. A

methods-of-lines approach to discretize the compressible Euler equations is adopted. The Euler

equations are augmented by an additional equation for the conservation of mass fraction m (of the

heavier gas):
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ρmu


+

∂

∂y



ρ v

ρ u v

ρ v2 + p

(ρ e+ p) v

ρmv


= 0 (4.1)

in two dimensions.

In the WENO method, the one-dimensional scalar conservation law

∂u(x, t)
∂t

+
∂f(u)
∂x

= 0 (4.2)

is discretized using a finite-difference approximation on a uniform grid discretized by xi:

dui(t)
dt

= − 1
∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (4.3)
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where f̂i± 1
2

are the numerical fluxes and ∆x = xi+1 − xi is the uniform grid spacing. The WENO

algorithm reconstructs the fluxes at the mid-points between cells f̂i± 1
2

based on the values at the

center of the cells f̂i.

Before applying the WENO reconstruction, an upwinding direction is established using local

Lax-Friedrichs flux-splitting

f̂±(u) =
f(u)± αu

2
, α = max

u

∣∣∣∣∂f(u)
∂u

∣∣∣∣ . (4.4)

Next the WENO reconstruction is applied to determine f̂+
i± 1

2
based on the point values of f̂i. The

main idea of the WENO method is to use a polynomial of degree k for the reconstruction, built on

stencils containing k+1 points. For the f̂+
i+ 1

2
reconstruction, the stencils must contain the point xi,

so that k reconstructions are formed. Next, the reconstructions are nonlinearly weighted

f̂+
i+ 1

2
=

k−1∑
r=0

wr f̂
(r)+

i+ 1
2
, wr =

αr∑k−1
s=0 αs

, (4.5)

where the αr in the construction of the weights wr are given by

αr =
dr

(ε+ βr)
2 , βr =

k−1∑
`=1

∫ xi+
1
2

x
i− 1

2

(∆x)2`−1

[
∂`pr(x)
∂x`

]2
dx , (4.6)

dr are the optimal weights [132], pr(x) are the interpolating polynomials, and ε = 10−6 is a small

number. The construction of the weights achieves two goals:

1. in the presence of a discontinuity, the stencil that crosses the discontinuity is given an effectively

zero weight, enforcing the ENO property of solutions to hyperbolic conservation laws;

2. in smooth regions, the information from the 2k−1 points is efficiently used to give a (2k−1)-th

order accurate solution.

A similar reconstruction is performed for f̂−
i+ 1

2
. Finally, the flux entering the finite-difference formula

[Eq. (4.3)] is

f̂i+ 1
2

= f̂+
i+ 1

2
+ f̂−

i+ 1
2
. (4.7)

In the present simulations, a single value for the adiabatic exponent γ is specified: a multiple γ

formulation introduces non-physical pressure oscillations near the material interfaces in conservative

shock-capturing schemes for the multi-component fluid equations [65, 66, 1, 2]. Nonetheless, WENO

schemes have been developed for two-gamma formulations [90, 58].

The system of ordinary differential equations from the spatial discretization

du
dt

= L(u, t) (4.8)
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are integrated in time using a third-order total-variation-diminishing (TVD) Runge-Kutta method

[133]

u(1) = un + ∆t L(un) ,

u(2) =
3
4
un +

1
4
u(1) +

1
4

∆t L(u(1)) , (4.9)

un+1 =
1
3
un +

2
3
u(2) +

2
3

∆t L(u(2)) ,

where ∆t is the timestep. These methods were developed because ordinary Runge-Kutta methods

are only linearly stable and do not guarantee convergence in the presence of shocks or other discon-

tinuities. Moreover, the stability analysis is usually performed for fixed stencils and does not apply

to ENO and WENO methods that have adaptive stencils. By contrast, the TVD property ensures

stability of the numerical scheme [48]. In addition, a TVD scheme ensures that large oscillations are

not introduced at shocks and contact surfaces in the numerical solution.

4.2 Initial and boundary conditions

The initial and boundary conditions used for the simulations of a model of the Mach 1.3 air(acetone)

and SF6 Jacobs and Krivets experiment (Sec. 4.2.1) are discussed here. For the WENO compressible

simulations, only a single value of the adiabatic exponent can be specified. As the experiment con-

tains gases with different values of the adiabatic exponent, the value of a mixture of 50% air(acetone)

and 50% SF6 is adopted in the mix initial conditions (Sec. 4.2.2). The VS and vortex methods begin

the simulations immediately following the passage of the shock. As a result, the vorticity deposited

on the interface by the shock in the WENO method is compared to predictions from linear instability

theory and the Samtaney-Zabusky circulation-deposition model (Sec. 4.2.3). For the VS and for the

Lagrangian and vortex-in-cell (VIC) methods, the initial conditions from linear instability theory

are used to specify the initial vorticity (Sec. 4.2.4).

4.2.1 Late-time Mach 1.3 air(acetone)/SF6 Richtmyer-Meshkov instabil-

ity experiment of Jacobs and Krivets

Here, the WENO and VS methods are applied to a two-dimensional model of a Richtmyer-Meshkov

shock tube experiment of Jacobs and Krivets [62]. Jacobs and Krivets modified the vertical shock

tube previously used in the investigation of Collins and Jacobs [27] and in Jones and Jacobs [64] to

include a longer driver section, allowing a stronger shock with Mach numberMa = 1.3 to be launched.

The test section had a 8.9 cm square cross section and a length of 75 cm. A membraneless initial

condition was created as follows: a mixture of air and acetone vapor [denoted air(acetone) in the
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sequel], and sulfur hexafluoride (SF6) gas flowed towards each other, exiting from small slits located

at the entrance of the test section. This generated a stable surface at the entrance of the test section.

An oscillation imposed on the shock tube formed standing sinusoidal waves. This technique created

a well-defined, slightly diffused initial condition. By contrast, the use of membranes gives sharp

initial conditions, but their effects on the development of the instability are not fully understood.

Previously, using membraneless sinusoidal initial conditions and shocks with Ma = 1.1 and 1.2,

Collins and Jacobs [27] reported excellent agreement between their experimental measurements of

the amplitude growth and the prediction of the Sadot et al. [114] nonlinear model. However, the

late-time development of the instability was limited by the arrival of the transmitted shock during

the reshock phase. The higher Mach number Ma = 1.3 allowed the investigation of “late-time”

effects, with the instability developing more rapidly for the higher Mach number. Rescaling time,

the instability development reached larger values of τ [Eq. (1.17)] due to the larger [u]. In addition

to the λ = 5.9 cm experiment, Jacobs and Krivets also considered λ = 3.6 cm, resulting in larger

values of k, allowing the investigation of even later-time effects. Only the λ = 5.9 cm experiment is

considered here.

4.2.2 Mix and upstream initial conditions for the WENO method

In a previous investigation [78], the upstream conditions were matched so that the adiabatic exponent

corresponding to the air(acetone) mixture was used. In the present thesis, both the upstream

conditions and new mix initial conditions are adopted, where the adiabatic exponent corresponding

to a 50% mixture of air(acetone) and SF6 by volume is used.

The WENO code requires the specification of the following initial conditions:

1. physical properties of gases, including the densities ρr (r is fluid index), molecular weights

Mr, adiabatic exponent γ, specific heat at constant pressure cp, and specific heat at constant

volume cv;

2. initial perturbation characteristics, including the preshock amplitude a−0 , the wavelength λ,

and the diffusion thickness δT , where the thickness function (multiplying the density) is

S(x, y) =


1 d ≤ 0

exp
(
−α |d| 8

)
0 < d < 1

0 d ≥ 1

(4.10)

with d = [x+ η(y) + δT − x]/(2 δT ) and α = − lnβ (β is machine zero);

3. additional quantities, including the lengths of the domain Lx and Ly (and Lz in three dimen-

sions), the shock Mach number, and the temperature ahead of the shock T1, and;
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air acetone vapor air(acetone) SF6

M (g/mol) 28.95 58.08 34.76 146.05
ρ (g/cm3) 1.202× 10−3 1.804× 10−3 1.3525× 10−3 5.494× 10−3

γ 1.4 1.1246 1.2776 1.093
Rg [erg/(g K)] 2.872011× 106 1.431551× 106 2.391681× 106 5.692894× 105

cp [erg/(g K)] 1.005204× 107 1.292076× 107 1.100727× 107 6.690681× 106

cv [erg/(g K)] 7.180028× 108 1.148921× 107 8.615586× 106 6.121392× 106

µ [g/(cm s)] 1.85× 10−4 7.56× 10−5 1.564× 10−4 1.61× 10−4

ν (cm2/s) 1.539× 10−1 4.19× 10−2 1.157× 10−1 2.93× 10−2

Table 4.1. The physical properties of air, acetone vapor, SF6, and air(acetone) mixture, including
the molecular weight M , the density ρ, the adiabatic exponent γ, the particular gas constant Rg, the
heat capacity at constant volume cv, the heat capacity at constant pressure cp, the dynamic viscosity
µ, and the kinematic viscosity ν. The properties of air, acetone vapor, and SF6 were obtained from
the NIST Chemistry Webbook [87] at a temperature of T1 = 296 K.

4. numerical parameters, including the number of grid points per direction Nx and Ny (and Nz

in three dimensions).

Other properties, including the initial pressure and energy are computed based on the density,

temperature, and the particular gas constant Rg = Ru/M , where Ru = 8.3143 × 107 erg/(mol K)

is the universal gas constant. The pressure is then matched across the interface by adjusting the

temperature of the gas T2 [75].

The simulations were performed using the following boundary conditions:

1. free-stream conditions at the entrance of the test section;

2. reflecting boundary condition at the end of the test section, so that reshock occurs;

3. periodic in the y direction (and in the z direction for three-dimensional simulations).

Table 4.1 shows the physical properties of air, acetone vapor, the air(acetone) mixture, and SF6.

The physical properties of the air(acetone) mixture are obtained using the thermodynamic prop-

erties of a mixture [118]. The mixture is composed of 75% air and 25% acetone vapor by volume

[27], so that the total density of the air(acetone) mixture is

ρaa = 0.75 ρair + 0.25 ρac , (4.11)

the air mass fraction and mole fraction are

mair =
0.75 ρair

ρaa
, Xair =

mair Mac

(1−mair)Mair +mair Mac
, (4.12)

where Mr are the molecular weights. The heat capacity at constant pressure and the heat capacity

at constant volume for the mixture are obtained by weighting the heat capacities of the components
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by the mass fraction. Their ratio gives the adiabatic exponent of the mixture. The dynamic viscosity

of the air(acetone) mixture is obtained using [140]

µaa =
Xair µair

√
Mair +Xac µac

√
Mac

Xair

√
Mair +Xac

√
Mac

. (4.13)

In the present investigation, two different strategies are adopted to specify γ.

1. In the mix initial conditions, the adiabatic exponent corresponding to a mixture of 50%

air(acetone) and 50% SF6 by volume is adopted, resulting in γ = 1.1405. In order to match

the initial growth rate v0 [Eq. (1.16)] of the experiment, the incident shock Mach number is

slightly increased to Mai = 1.313.

2. In the upstream initial conditions, the adiabatic exponent γ = 1.2776 of the air(acetone)

mixture is used. With these initial conditions, the initial Mach number is that of the experiment

Mai = 1.292, as now the velocity of the shock between the experiment and the simulations is

matched. This is the reason these initial conditions are called “upstream”, as the conditions

prior to the refraction process are all matched.

Normal shock refraction theory [75] is used to determine the jump in interface velocity [u] and

the post-shock Atwood number A+. These values are used to compute the initial growth rate v0 [Eq.

(1.16)] and to adjust the incident shock Mach number for the mix initial conditions. The post-shock

initial perturbation amplitude and post-shock diffuse-interface thickness are

a+
0 = ηcomp a

−
0 , δ+T = ηcomp δ

−
T , (4.14)

where

ηcomp ≡ 1− [u]
ushock

(4.15)

is the compression factor [103].

Table 4.2 gives the properties of the air(acetone) mixture and of the SF6 gas used in the present

simulations when γ1 = γ2 = 1.1405 (mix initial conditions), and when γ1 = γ2 = 1.2776 (upstream

initial conditions). When a different γ is selected, the gas constant Rg is the same, but the heat

capacity at constant volume cv is modified. In the upstream initial conditions, the physical properties

of the air(acetone) mixture are exact.

Table 4.3 compares the flow properties as reported by Jacobs and Krivets [62] (experimental

initial conditions) with values obtained from one-dimensional shock refraction theory. The two-gas

initial conditions values are obtained using the adiabatic exponents γ1 = 1.2776 for the air(acetone)

mixture and γ2 = 1.093 for SF6. The incident shock Mach number is that of the experiment

with Mai = 1.292. Also shown are the mix and upstream initial conditions. A comparison of the
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Mix initial conditions
air(acetone) SF6

γ 1.1405 1.1405
Rg [erg/(g K)] 2.391682× 106 5.692894× 105

cp [erg/(g K)] 1.941408× 107 4.621112× 106

cv [erg/(g K)] 1.70224× 107 4.051823× 106

Upstream initial conditions
air(acetone) SF6

γ 1.2776 1.2776
Rg [erg/(g K)] 2.391682× 106 5.692894× 105

cp [erg/(g K)] 1.100855× 107 2.620044× 106

cv [erg/(g K)] 8.61659× 106 2.050754× 106

Table 4.2. The gas constant R, heat capacity at constant pressure cp, and heat capacity at constant
volume cv for the air(acetone) mixture and SF6 gas when γ1 = γ2 = 1.1405 for a mixture of 50%
air(acetone) and 50% SF6 by volume (mix initial conditions); and when γ1 = γ2 = 1.2776 of the
air(acetone) mixture is used (upstream initial conditions).

experimental initial conditions with the two-gas initial conditions shows a ≈ 4.5% difference in the

initial perturbation growth rate v0 [Eq. (1.16)] and a ≈ 14.1% difference in the time of reshock

treshock. These differences are due to the diffuse interface and can be quantified by the growth

reduction factor ψ [34], which is a function of δT and A satisfying the boundary value problem

d
dx

(
ρ

df
dx

)
=
(
ρ− ψ

kA

dρ
dx

)
k2 f , (4.16)

where the eigenfunction satisfies f → 0 as x → ±∞. This equation was solved numerically [78]

assuming a density profile

ρ = ρ1 +
ρ2 − ρ1

2

[
1 + erf

(√
π y

δT

)]
. (4.17)

Thus, in the comparisons of the simulation amplitude data to the predictions of the models (Sec

4.5), the amplitude growth rates are adjusted to account for the diffuse interface by the rescaling

da
dt

−→ 1
ψ

da
dt
. (4.18)

Table 4.4 includes the parameters used in the single-mode sinusoidal perturbation in two di-

mensions [Eq. (1.1)]. Also included are additional physical parameters, including the shock Mach

number Ma = 1.313 (used for the mix initial conditions), and the temperature in the region ahead of

the shock T1. The table also includes the simulation parameters. The location of the left boundary

for Lx and Ly may appear arbitrary. The reason for this choice is that the code places the mesh

point at the center of the cell. Therefore, the selection of the limits corresponds to the first grid
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Experimental Two-gas
initial conditions initial conditions

Mai 1.292± 0.006 1.292
ushock,i (cm/s) 38858 38858

[u] (cm/s) 9260± 200 9477.3
v0 (cm/s) 1338.76 1403.9
Mar 1.077 1.077

ushock,r (cm/s) 34516 32203
Mat 1.422 1.422

ushock,t (cm/s) 19625 19625
treshock (ms) 6.00 5.15

ηcomp − 0.756
Pre-shock Post-shock Pre-shock Post-shock

a0 (cm) 0.29 0.215 0.29 0.219
δT (cm) 0.5 − 0.5 0.378

A 0.605 0.635 0.605 0.6344
ψ 1.17 1.131 1.182 1.131

Mix Upstream
initial conditions initial conditions

Mai 1.313 1.292
ushock,i (cm/s) 37311 38858

[u] (cm/s) 9770 9110
v0 (cm/s) 1336.8 1299.1
Mar 1.092 1.084

ushock,r (cm/s) 32203 34741
Mat 1.437 1.406

ushock,t (cm/s) 20265 20986
treshock (ms) 5.00 4.98

ηcomp 0.738 0.766
Pre-shock Post-shock Pre-shock Post-shock

a0 (cm) 0.29 0.214 0.29 0.222
δT (cm) 0.5 0.369 0.5 0.383

A 0.605 0.604 0.605 0.603
ψ 1.182 1.133 1.182 1.38

Table 4.3. Comparison of the flow properties, including initial, reflected, and transmitted shock
Mach numbers, Mai, Mar, and Mat, respectively, shock velocities ushock,i, ushock,r, and ushock,t,
respectively, interface velocity [u], initial interface growth v0, and pre- and post-shock initial ampli-
tudes a−0 and a+

0 , the pre- and post-shock diffuse-interface thickness δ−T and δ+T , pre- and post-shock
Atwood numbers A+, and A−, and pre- and post-shock growth reduction factor ψ+ and ψ−, when
the initial conditions of Jacobs and Krivets are adopted in one-dimensional refraction theory. The
results in the experiments of Jacobs and Krivets (top, left) are compared with the results obtained
using one-dimensional refraction theory when γ1 = 1.2776 of air(acetone) and γ2 = 1.093 of SF6 are
used, corresponding to the two-gas initial conditions (top, right); when a single value of the adia-
batic exponent γ1 = γ2 = 1.1405 of a mixture of 50% air(acetone) and 50% SF6 by volume is used,
corresponding to the mix initial conditions (bottom, left), and; when a single value of the adiabatic
exponent γ1 = γ2 = 1.2776 of the air(acetone) mixture is used, corresponding to the upstream initial
conditions (bottom, right).
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Initial interface perturbation
a−0 (cm) 0.29
λ (cm) 5.9
k (cm−1) 1.064947

Physical parameters
Ma 1.313 (mix)

1.292 (upstream)
T1 (K) 296

Numerical parameters
128/λ x y
N 1683 129

L (cm) [−3.0232, 75.0216] [−0.0232, 5.9624]
h (cm) 0.0464 0.0464
256/λ x y
N 3364 257

L (cm) [−3.0116, 75.01] [−0.0116, 5.9508]
h (cm) 0.0232 0.0232
512/λ x y
N 6726 513

L (cm) [−3.0058, 75.0042] [−0.0058, 5.9334]
h (cm) 0.0116 0.0116
1024/λ x y
N 13450 1025

L (cm) [−3.0029, 75.0013] [−0.0029, 5.9363]
h (cm) 0.0058 0.0058

Table 4.4. Initial interface perturbation properties, including the pre-shock amplitude a−0 , wave-
length λ, and wavenumber k; additional initial physical parameters, including the shock Mach
number Ma for the mix and upstream initial conditions, and the temperature T1 ahead of the shock,
and; numerical parameters, including the number of grid points N , grid separation h, and domain
size for the longitudinal Lx, and transverse (periodic) direction Ly, used in the two-dimensional
simulations. The numerical parameters are based on 128, 256, 512, and 1024 points per initial per-
turbation wavelength λ. For three-dimensional simulations in Chapter 5, the values for the periodic
z direction are the same as the values for the periodic y dimension.

point at −3 cm for Lx and at 0 cm for Ly. The right side limit is obtained by multiplying the

number of grid points N by the mesh separation h. This ensures that, as the mesh spacing is halved

and the number of mesh points is increased, the grid points overlap.

4.2.3 Baroclinic circulation deposition on the interface and comparison

to the predictions of models

The circulation deposited on the interface by the shock constitutes the principal driving mechanism

for the evolution of the Richtmyer-Meshkov instability. The circulation on the sinusoidal interface
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Figure 4.1. The initial deposition of circulation on the interface 〈ω〉(y, 0+) from the incident shock
at time t = 0+ from the WENO simulation (solid black line), together with the predictions of the
Samtaney-Zabusky model (dashed line) and linear instability theory (solid blue line) (left). The
initial baroclinic vorticity production 〈P〉(y, 0+) is also shown (right).

can be quantified by [127, 128]

〈ω〉(y, 0+) ≡
∫ ∞

−∞
ω(x, y, 0+) dx , (4.19)

which can be compared to the prediction of analytical models.

1. In the Samtaney-Zabusky model [128] the circulation is

〈ω〉(y, 0+) = Γ′1 a0 k sin(ky) , (4.20)

where

Γ′1 =
c1
Mas

[
1

γ2 − 1
1− ψ(p4/p2)

η γ1/γ2
− 1− ψ(p5/p3)ψ(p3/p1)

γ1 − 1

]
, (4.21)

p1 = p2 is the initial pressure ahead of the incident shock, p3 is the pressure behind the

incident shock, p4 = p5 is the pressure behind the reflected and transmitted shocks, η is the

initial density ratio, c1 is the initial sound speed, and the ratio of sound speed across the

incident, reflected and transmitted shocks is given by
√
ψ(p3/p1),

√
ψ(p5/p3) and

√
ψ(p4/p2),

respectively, where ψ(r) ≡ r (1 + µr)/(µ+ r) and µ ≡ (γ + 1)/(γ − 1).

2. In the linear instability model, the vortex dipole and initial circulations are

µ(e, 0+) = 2 v0 cos
[
k x(e, 0+)

]
cosh

[
k y(e, 0+)

]
, γ(e, 0+) =

∂µ(e, 0+)
∂e

, (4.22)

where v0 [Eq. (1.16)] is the initial instability growth rate.



89

The values of Γ′1, max [γ], and max [〈ω〉] are shown in Table 4.10 together with a comparison of values

from the mix and upstream initial conditions. Figure 4.1 shows the initial circulation deposited by

the shock 〈ω〉(y, 0+) from the WENO simulation, together with the prediction of the Samtaney-

Zabusky model [Eq. (4.20)] and the linear instability model [Eq. (4.22)]. The Samtaney-Zabusky

model and the linear model give virtually identical predictions (0.6% difference). However, the

models underpredict the simulation results by ≈ 4.3%. The difference between the numerical and

model predictions can be attributed to the fact that the circulation is computed at 0.06 ms. As

a result, the initial circulation deposited on the interface has evolved, increasing in value in the

proximity of the bubble and spikes.

The average of the baroclinic vorticity production term on the interface 〈P〉 is also shown in

Figure 4.1. The coarse- and fine-grid simulations give virtually identical results (1.4% difference).

The shape of the curve is a skewed sinusoid. This effect can also be attributed to the evolution

of this term on the interface, following the passage of the shock. The term could not have been

computed at an earlier time, while the shock was crossing the interface.

4.2.4 Initial conditions for the vorticity-streamfunction, Lagrangian, and

vortex-in-cell methods

Simulations of the Richtmyer-Meshkov instability performed using the VS, the Lagrangian, and

the vortex-in-cell (VIC) methods begin following the passage of the shock. The shocked interface

is represented by a thin vortex sheet discretized by vortex markers in the Lagrangian and VIC

methods, and by a vortex layer on a Cartesian grid in the VS method.

In the Lagrangian representation (Lagrangian-γ and VIC methods), the shocked interface is

represented by a sinusoidal vortex sheet discretized using N equally-spaced vortex markers located

at [xn, η(xn)] [η(x) is given by Eq. (1.1)]. In the present simulations N = 256 markers are used. For

the VIC method, an auxiliary Cartesian grid is introduced. This grid is specified over the rectangle

[0, Lx] × [−Lbot, Ltop] and has uniform grid spacing h = ∆x = ∆y with Nx × Ny grid points. In

the present simulations, a rectangular grid of dimension [0, 5.94] × [−11.88, 11.88] is specified with

Nx ×Ny = 32× 128.

The vorticity deposited by the shock on the interface constitutes the initial condition for the

Lagrangian representation. In Section 4.2.3 it was shown that the deposition of circulation on

the interface by the shock can be adequately characterized by the Samtaney-Zabusky circulation

deposition model [Eq. (4.20)] or by linear instability theory [Eq. (4.22)]. Adopted in the present

study is the linear instability theory, because it has a direct physical interpretation [v0 corresponds to

the instability growth rate of Eq. (1.16)]. The initial values and parameters used for the Lagrangian

and the VIC simulations are summarized in Table 4.5.
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Initial perturbation and vortex sheet properties
Atwood number study Jacobs and Krivets

A − 0.604
a0 (cm) 0.594 0.214
λ (cm) 5.94 5.94
k (cm−1) 1.064947 1.064947
v0 (cm/ms) 1.5 1.33876

Lagrangian methods
N 256
δ 0.15

∆t (ms) 0.001

VIC method
N 256

∆t (ms) 0.005
x y

N 32 256
L (cm) [0, 5.94] [−23.76, 23.76]
h (cm) 0.185625 0.185625

VS method
N 1024

CFL 0.3
δT (cm) 0.2

ν (cm2/ms) 10−4

D (cm2/ms) 10−4

x y
N 256 1024

L (cm) [0, 5.94] [−11.88, 11.88]
h (cm) 2.3203125× 10−2 2.3203125× 10−2

Table 4.5. Initial perturbation and vortex sheet properties for the VS and vortex simulations,
including the initial sheet amplitude a0, the wavelength λ, the wavenumber k, and the initial growth
rate v0 for the Atwood number study and for the comparison with the experiment of Jacobs and
Krivets with A = 0.604. Also shown are the properties of the Lagrangian method, including the
number of markers N , the regularization parameter δ, and the time step ∆t, the properties of the
VIC method, including the dimension of the Cartesian grid, and the number of grid points, and grid
spacing h = ∆x = ∆y, and; the properties of the VS method, including the CFL number, thickness
of the layer δT , and the viscosity and mass diffusivity ν and D, respectively.
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Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768
Ninth-order WENO9-128 WENO9-256 WENO9-384 WENO9-512 WENO9-768

(dashed light blue) (solid light blue) (dash-dot blue) (dashed blue) (solid blue)
Fifth-order WENO5-128 WENO5-256 WENO5-384 WENO5-512 WENO5-768

(dashed light red) (solid light red) (dash-dot red) (dashed red) (solid red)

Table 4.6. Keys used to denote simulations with different order of WENO flux reconstruction and
grid resolution. The number after the dash is the number of grid points per initial perturbation
wavelength λ.

max [〈ω〉 (y, 0+)] cm
s Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768

ninth-order 2925.567 2918.665 2924.82 2909.141 2928.68
fifth-order 2954.307 2887.19 2887.12 2874.68 2872.3

max [〈P〉 (y, 0+)] cm
s2 Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768

ninth-order 1.6875× 107 1.6542× 107 1.6415× 107 1.6313× 107 1.6512× 107

fifth-order 1.5814× 107 1.6087× 107 1.6301× 107 1.6416× 107 1.6594× 107

Table 4.7. Comparison of the initial circulation deposition max [〈ω〉 (y, 0+)] and baroclinic produc-
tion max [〈P〉 (y, 0+)] from the fifth- and ninth-order simulations for different grid resolutions.

For the VS method, the initial vorticity on the Cartesian grid is specified using the Gaussian

interpolant [Eq. (3.1)] and the initial density using a hyperbolic tangent [Eq. (3.2)]. A summary of

the numerical parameters used for the vortex methods is presented in Table 4.5.

4.3 Comparison of fifth- and ninth-order WENO simulations

for different grid resolutions

Presented here is a comparison of the effects of order of WENO reconstruction and grid resolution on

the instability evolution, including the density, vorticity, and baroclinic vorticity production fields

(Sec. 4.3.1) and on the perturbation, bubble, and spike amplitudes (Sec. 4.3.2).

4.3.1 Comparison of the instability evolution and fields

Simulations are performed for grid resolutions corresponding to Nx = 128, 256, 384, 512, and 768

points per initial perturbation wavelength using the mix initial conditions (Sec. 4.2.2) and fifth-

and ninth-order WENO reconstruction. The keys used to denote the simulations performed here is

presented in Table 4.6.

Figure 4.2 shows a comparison of the initial circulation deposition 〈ω〉(y, 0+) [Eq. (4.19)] for

the fifth- and ninth-order simulations at different grid resolutions. All of the simulations have the

same deposition of vorticity on the interface. This is further seen by comparing max [〈ω〉 (y, 0+)]



92

〈ω
〉(
y
,0

+
)

(c
m

/s
)

0 1 2 3 4 5

−2000

−1000

0

1000

2000

〈P
〉(
y
,0

+
)

(c
m

/s
2
)

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5
x 107

y (cm) y (cm)

Figure 4.2. Comparison of the initial circulation deposition 〈ω〉(y, 0+) and baroclinic production
〈P〉(y, 0+) from the fifth- and ninth-order WENO simulations at different grid resolutions. See
Table 4.6 for the legend.

in Table 4.7. Also shown in the figure is a comparison of the baroclinic vorticity production field

〈P〉 (y, 0+), demonstrating very good agreement between the simulations with different orders and

grid resolutions. A comparison of max [〈P〉 (y, 0+)] in Table 4.7 also quantitatively confirms this

finding.

Figure 4.3 shows a comparison of the density field and mass fraction contour at 5.26 ms for

the different simulations. As the resolution is increased, additional fine-scale structure becomes

evident in the roll-ups. In particular, such fragmentation has impacted and deformed the stem of

the perturbation in the WENO9-512 and WENO9-768 simulations. The mass fraction contours also

reveal that starting from the WENO5-384 and WENO9-256 simulations, symmetry is broken with

the spike and bubble sides yielding different results. The additional structure in the cores of the

roll-ups can be explained by the fact that different resolutions and different orders of reconstruction

correspond to different values of the implicit numerical viscosity [77]. In particular, as the order and

resolution increase, the implicit numerical dissipation decreases.

Figure 4.4 shows a comparison of the vorticity ω(x, y) and baroclinic vorticity production P(x, y)

fields. As the resolution and orders are increased, the vorticity cores become smaller, more compact,

and surrounded by more fine-scale, disordered structure. The baroclinic vorticity production field is

active in the roll-ups. In addition, the ninth-order results show more disordered structure than the

fifth-order results. Despite the differences in the fields, a comparison of the mass fraction contours

in Figure 4.5 shows agreement in the bubble amplitudes and in the width of the stem and large-scale

spike roll-up dynamics.
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Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768

ninth-order
fifth-order

Figure 4.3. Comparison of the density fields and mass fraction contours at 5.26 ms from the fifth- and ninth-order WENO simulations using different
grid resolutions.
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Figure 4.4. Comparison of the vorticity ω(x, y) and baroclinic vorticity production P(x, y) fields at 5.26 ms from the fifth- and ninth-order WENO
simulations using different grid resolutions.
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Figure 4.5. Comparison of the mass fraction contours as the order and resolution are varied. See
Table 4.6 for the legend.

4.3.2 Comparison of the perturbation, bubble, and spike amplitudes, cir-

culation, and Reynolds number

Presented here is a comparison of the perturbation, bubble, and spike amplitudes, circulation and

Reynolds number for different orders and grid resolutions.

The perturbation amplitude is computed from the mole fraction X as follows. From the mass-

fraction m2 of the SF6 gas [evolved in the Euler equations (4.1)], determine the mole fraction

X =
m2M1

(1−m2)M2 +m2M1
, (4.23)

where Mr are the molecular weights of fluid r (Table 4.4). Spatially averaging the mole fraction in

the periodic y-direction [or the periodic (y, z)-plane in three dimensions] gives

X(x, t) =
1
Ly

∫ Ly

0

X(x, y, t) dy , (4.24)

where Ly is the width of the domain in the spanwise direction. The spike and bubble locations, `s(t)

and `b(t), are defined as the x position where X ≥ ε and X ≤ 1 − ε, respectively, with ε = 0.01.

Therefore, the perturbation width and amplitude are

h(t) = `b(t)− `s(t) , a(t) =
h(t)
2

. (4.25)

To determine the bubble and spike amplitudes, a numerical simulation without an initial pertur-

bation (but otherwise identical) was performed to obtain the position of the interface `int, so that
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Figure 4.6. The x-t diagram showing the position of the interface `int(t) (solid line), shock (dotted
line), and bubble and spike locations `b(t) and `s(t) (dash-dot and dashed lines, respectively). The
horizontal distance between the spike and the bubble location is the perturbation width h(t).

ab(t) = `b(t)− `int(t) , as(t) = `int(t)− `s(t) . (4.26)

Figure 4.6 shows the x-t diagram from the WENO9-256 simulation. The locations of the bubble

`b(t) and of the spike `s(t) are shown using the dash-dot and the dashed lines, respectively. The

interface location is also shown using a solid line. The horizontal distance between the spike and

bubble is the perturbation width h(t), and half of this distance is the perturbation amplitude a(t).

Reshock occurs at ≈ 5.65 ms, when the shock wave refracts at the evolving interface, generating a

transmitted shock in the air(acetone) and a reflected rarefaction wave returning back into the SF6.

The transmitted shock following reshock moves faster than the incident shock, as indicated by the

change in the slope, corresponding to a slow-fast refraction [55]. Following reshock, the interface

is compressed (as indicated by the kink in the bubble and spike locations) and moves away from

the end wall of the test section. The reflected rarefaction wave returning back into the SF6 is not

shown in the x-t diagram. However, this rarefaction reflects from the end wall of the test section

and interacts with the interface at ≈ 8.5 ms, causing an expansion of the interface (as shown from

the position of the bubble and spikes) and causing the interface to move towards the end wall. The

interaction with the reflected rarefaction causes a compression wave to return back into the SF6,

and a series of wave interactions follows until the interface eventually comes to rest in the shock

tube test section.
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Figure 4.7. Comparison of the time-evolution of the perturbation, bubble, and spike amplitudes
a(t), ab(t), and as(t), respectively, as the grid is refined and the order of flux reconstruction is varied
(left). Also shown is the rms-norm of the difference between results obtained on the Nx = 768 grid
and results obtained on coarser grids for the WENO5 (red) and WENO9 (blue) simulations. The
dashed black line indicates N−1

x , the dashed red line N−2
x , and the dashed green line N−3

x . See Table
4.6 for the legend.
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Figure 4.8. Comparison of the time-evolution of the positive circulation Γ+(t) before reshock as the
grid is refined and the order of reconstruction is varied (left). Also shown is the rms-norm of the
difference between results obtained on the Nx = 768 grid and those on coarser grids for the WENO5
(red) and WENO9 (blue) simulations. See Table 4.6 for the legend.

Figure 4.7 shows a comparison of the perturbation, bubble, and spike amplitudes, a(t), ab(t),

and as(t), respectively, from the fifth- and ninth-order simulations at different grid resolutions. All

of the simulations are in agreement prior to reshock and for short times following reshock. Following

reshock, no clear agreement is observed. Also shown is the norm of the difference between results

obtained on the Nx = 768 grid and those on the coarser grids, indicating second-order convergence

in the amplitudes, despite the differences in the fields (Figs. 4.3 and 4.4).

Figure 4.8 shows a comparison of the circulation for the fifth- and ninth-order WENO simulations

at different grid resolutions. The results indicate good agreement between the simulations. Also

shown is the norm of the difference between the circulation on the Nx = 768 grid and those on the

coarser grids. The results indicate second-order convergence similar to the amplitudes (Fig. 4.7).

The average fractional deviation ∆ [Eq. (4.40)] between results obtained from the WENO9-768

simulation and the other simulations is shown in Table 4.8.

Finally, shown in Figure 4.9 is the Reynolds number Re∆x(t) [Eq. (3.8)] for the simulations. As

the value depends on ∆x, simulations at the same grid resolutions give similar values of Re∆x(t).

As the value also depends on h(t), Re∆x(t) increases following the passage of the shock, decreases

at reshock and then rapidly increases at late times.

4.4 Dynamics of the instability evolution

Simulations of the Jacobs and Krivets [62] Ma = 1.3 air(acetone)/SF6 shock tube experiment (Sec.

4.2.1) are performed using the fifth- and ninth-order WENO method and the VS method. First

the density fields from the WENO and VS simulations are compared to the experimental PLIF
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∆ a(t) (%) Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768
ninth-order 4.134 1.48 0.7324 0.357 0
fifth-order 7.01 2.96 1.611 0.997 0.419

∆ ab(t) (%) Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768
ninth-order 8.47 3.129 1.43 0.75 0
fifth-order 15.17 6.25 3.413 2.131 0.876

∆ as(t) (%) Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768
ninth-order 1.944 0.667 0.405 0.176 0
fifth-order 2.871 1.35 0.728 0.461 0.205

∆ Γ+(t) (%) Nx = 128 Nx = 256 Nx = 384 Nx = 512 Nx = 768
ninth-order 2.25 1.411 0.695 0.424 0
fifth-order 1.49 0.787 0.436 0.287 0.24

Table 4.8. Average fractional deviation ∆ from the WENO9-768 results as the order and grid
resolution are varied for the perturbation amplitude a(t), bubble and spike amplitudes ab(t) and
as(t), respectively, and the positive circulation Γ+(t).
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Figure 4.9. Comparison of the numerical Reynolds numbers Re∆x(t) for the fifth- and ninth-order
simulations at different resolutions. See Table 4.6 for the legend.
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images (Sec. 4.4.1). In addition, the mass fraction contour from these simulations is compared. The

vorticity and baroclinic vorticity production fields from the WENO5, WENO9, and VS methods are

also compared (Sec. 4.4.2). The vorticity can be interpolated onto the mass fraction contour to give

the vortex sheet strength on the interface.

4.4.1 Comparison of density fields to experimental PLIF images

Figure 4.10 shows a comparison of the density fields from the fifth- and ninth-order WENO and VS

simulations with the PLIF images from the experiments of Jacobs and Krivets. The VS simulation

does not capture reshock or small-scale features, but captures the main large-scale features of the

instability evolution. At 3.06 ms, the VS method captures the beginning of the roll-up, but the

roll-up from the experiment appears more developed, while the roll-up of the WENO simulation

shows additional small-scale structure. This is also observed at 5.26 ms, where the VS simulation

captures the roll-up, but not the small-scale structure. Overall, the VS method captures the larger

spike stem of the instability evolution and the wider roll-up region.

Figure 4.11 continues the comparison showing the mass fraction contours from the fifth- and

ninth-order WENO and VS simulations. At 1.16 ms, all methods give a similar characterization

of the bubble and spike initial growth. At 3.06 ms, differences are already visible in the structure

of the roll-up. The WENO method supports a well-developed roll-up, the VS method shows the

beginnings of a roll-up, and the Lagrangian method shows an earlier stage of the roll-up. At 5.26

ms, the differences are more pronounced. The WENO method shows a fully-developed roll-up with

fragmentation, which is not captured by the contour but was visible in the density [Fig. 4.10]. The

VS method shows a fully-developed roll-up and captures the internal fragmented structure of the

WENO method with a large lump structure.

4.4.2 Visualization of the vorticity and baroclinic vorticity production

fields

Figure 4.12 shows a comparison of the vorticity field ω(x, y) and baroclinic vorticity production

field P(x, y) from the fifth- and ninth-order WENO and VS simulations. At 0.06 ms, all methods

give a similar representation of the vorticity field, with one layer of positive and negative vorticity

deposited by the shock. The vorticity from the VS and WENO methods have similar widths, further

indicating that the VS approach of thickening the vortex sheet best models the diffuse interface

of the Jacobs and Krivets experiments and the diffuse interface of the WENO simulations. The

initial baroclinic vorticity production is different across the VS and WENO methods, but shows

similar trends with the reduction of vorticity near the bubble tip and the increase of vorticity

near the spike tip. At 1.16 ms, the vorticity across the methods appears similar, with a stronger
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Figure 4.10. Comparison of the corrected PLIF images from the Jacobs and Krivets experiment
with the density fields ρ(x, y) from the ninth- and fifth-order WENO simulations at a resolution of
512 points per wavelength and the density field ρ(x, y) from the VS simulation at 1.16, 3.06, and
5.26 ms. The experimental images are taken from Figure 5 of Jacobs and Krivets [62] (reprinted
with permission of the American Institute of Physics).
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Figure 4.11. Comparison of the mass fraction contour from the ninth- and fifth-order WENO
simulations and the VS simulation at 0.06, 1.16, 3.06, and 5.26 ms.

concentration of vorticity corresponding to the roll-up region. The baroclinic vorticity production

is also similar across the WENO and VS methods as more generation occurs near the spike tip. At

3.06 ms, there are differences between the WENO and VS vorticities. The WENO simulation shows

fragmentation surrounding the main rotating core, produced by the secondary vortex accelerated

vorticity deposition (VAVD), which is related to baroclinic vorticity production. This is not captured

in the VS simulations due to the coarser grid used and the regularizing effects of viscosity. The

baroclinic vorticity production also exhibits differences. In the WENO simulation, most of the

production is centered near the cores and along the interface. In the VS simulations, most of

the production is centered near the core and spike roll-up regions. The differences may be due

to compressibility effects in the WENO method. Similar observations apply to the vorticity and

baroclinic vorticity production at late times (5.26 ms).

Figure 4.13 shows a comparison of the vortex sheet strength γ(e, t) on the mass fraction contour

for the WENO and VS simulations. The initial circulation deposition at 0.06 ms is captured very

well by all of the methods. At 1.16 ms, the vortex sheet strength of the WENO simulation is steeper

than that of the VS simulation, due to the earlier formation of the roll-up in the WENO method.

At 3.06 ms, the WENO simulation shows oscillatory regions, due to oscillations in the mass fraction

contour (Fig. 4.11). However, the overall structure is very similar across all methods. At 5.26 ms,

the oscillations in the WENO method are more pronounced; however, the structure is in agreement

across the methods. Overall, there is good agreement in the vortex sheet strength.
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Figure 4.12. Comparison of the vorticity fields ω(x, y) and the baroclinic vorticity production fields
P(x, y) from the ninth- and fifth-order WENO simulation and the VS simulation at 0.06, 1.16, 3.06,
and 5.26 ms.
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Figure 4.13. Comparison of the vortex sheet strength γ(e, t) on the mass fraction contour from the
fifth- and ninth-order WENO and VS simulations at 0.06, 1.16, 3.06, and 5.26 ms.

Figure 4.14 shows a comparison of the interface position z(e), vortex-sheet strength γ(e), and

horizontal and vertical components of the velocity, u(e) and v(e), respectively, from the WENO and

VS simulations. The interface position at 0.06 ms shows very good agreement following reshock,

confirming that the growth reduction formula [Eq. (4.15)] is appropriate for determining the post-

shock amplitude. The VS and WENO methods show agreement in the vortex-sheet strength. In

the VS method, the value is due to the Gaussian thickening [Eq. (2.26)] to assign the vorticity on

the grid. As the Gaussian is a smoothing interpolant, it is expected that the vortex sheet strength

is reduced. For the WENO method, the initial diffuse thickness of the interface also corresponds to

reduced values of the vortex sheet strength on the mass fraction contour. The horizontal velocity

from the WENO method is larger at 0.06 ms than that from the VS method, due to the difficulty

of computing the horizontal velocity in the small layer immediately behind the shock. The vertical

velocity v(e) is in close agreement. The vertical velocity of the WENO method may be smaller due

to the difficulty of computing its value at such early times. At 1.16 ms, the interface evolution is

very similar across all methods. The WENO method shows the formation of roll-ups, which are

also apparent in the vortex sheet strength γ(e). The VS and WENO methods have comparable

values for the vortex sheet strength. The horizontal and vertical velocity are also in qualitative and

quantitative agreement. The WENO method shows additional oscillations due to the formation of

the roll-ups. Such oscillations are also present in the VS method as the roll-up develops. At 3.06

ms, the methods show similar large-scale bubble and spike dynamics, but different roll-up dynamics.
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Figure 4.14. Comparison of the interface position z(e), vortex-sheet strength γ(e), and horizontal
and vertical components of the velocity, u(e) and v(e), respectively, from the ninth-order WENO
(red) and VS (blue) simulations at 0.06, 1.16, 3.06, and 5.26 ms.

This is expected as the roll-ups differ across the methods. The circulation also shows that the WENO

and VS methods are in agreement. The horizontal and vertical components of the velocity are similar

across all methods, with slightly reduced values in the vertical component of the Lagrangian method

due to the different stages of the roll-up. At 5.26 ms, the large-scale bubble and spike amplitudes

and velocities are similar. The WENO method shows a flatter bubble and spike tip. The structure

of the roll-up indicates that the WENO method has a thinner stem than the vortex methods, all of

which have very similar stem widths.

These results show that the interface dynamics and vortex sheet strength of the WENO and VS

methods are in qualitative and quantitative agreement, as both methods have diffuse interfaces on

a Cartesian grid. The large-scale bubble and spike amplitudes and velocities are quantitatively and

qualitatively similar across the methods.
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4.5 Comparison of the perturbation, bubble, and spike am-

plitudes with experimental data and to the predictions

of amplitude growth models

Presented here is a comparison of the perturbation, bubble, and spike amplitudes from the WENO

and VS simulations together with the experimental data points of Jacobs and Krivets and the

predictions of amplitude growth models. A brief review of the models (Sec. 4.5.1) is followed

by a comparison of the amplitudes with the experimental data of Jacobs and Krivets and with the

predictions of these models (Sec. 4.5.2). The circulation and Reynolds numbers from the simulations

are also compared. Finally, a comparison of the mix and upstream initial conditions for the WENO

simulations is presented (Sec. 4.5.3).

4.5.1 Literature survey on Richtmyer-Meshkov instability growth models

Since the work of Richtmyer [121], many models have been proposed to predict the perturbation

amplitude. In earlier work [78, 76], the models were grouped according to their fundamental physical

assumptions: (1) impulsive models based on representing the shock as an instantaneous δ-function

acceleration (Sec. 4.5.1.1); (2) perturbation models, based on the asymptotic expansion of the linear

perturbation equations; (3) empirical models based on using data from experiments (or simulations)

to determine model parameters (Sec. 4.5.1.2), and; (4) potential flow models based on representing

the flow above and below the vortex sheet as incompressible and irrotational (Sec. 4.5.1.3).

4.5.1.1 Impulsive and linear models

The first linear model predicting the growth of an impulsively accelerated single-mode perturbation

is due to Richtmyer [121]. Richtmyer modified earlier work by Taylor [139] on the growth of a

single-mode perturbation when a dense fluid is continuously accelerated into a lighter fluid (the

Rayleigh-Taylor instability), by replacing the constant gravitational acceleration g with an impulsive

acceleration [u] δ(t), where [u] is the change in velocity at the interface, following shock refraction.

Meyer and Blewett [97] performed two-dimensional Lagrangian simulations of the single-mode

Richtmyer-Meshkov instability and computed growth rates corresponding to a shock propagating

from a light to a heavy and from a heavy to a light gas. They found that improved agreement

between simulation results and model predictions was obtained by averaging the pre- and post-

shock amplitudes in the Richtmyer model. In general, the prediction of Meyer and Blewett is best

for a reflected rarefaction wave.

Fraley [39] analytically solved the linearized perturbation equations for a reflected shock wave.

The complete set of linearized, compressible perturbation equations was first considered by Richt-
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myer [121], who solved them numerically. Fraley reconsidered the perturbation equations for a

single-mode initial perturbation and solved the equations using Laplace transform techniques in

time. Mikaelian [104] later recognized this solution as the most accurate for the linear growth.

Vandenboomgaerde, Mügler, and Gauthier [146] replaced the impulsive acceleration, post-shock

Atwood number, and post-shock amplitude with linearly time-varying values from pre- to post-shock

quantities. This is a good approximation for both a reflected shock wave and a reflected rarefaction

wave, provided the incident shock is not too strong.

The impulsive model has also been extended to the case of diffuse initial interfaces. Duff, Harlow,

and Hirt [34] heuristically proposed that the growth rate for a diffused initial interface subject to

the Rayleigh-Taylor instability is reduced by a constant growth reduction factor. Mikaelian [102]

extended this to the Richtmyer-Meshkov instability, obtaining results by considering both the initial

density profile of Duff, Harlow, and Hirt, and a density profile used by Saffman and Meiron [125].

The resulting equations were later solved using an N -layer matrix method [98, 99] and a moment

method [100]. Brouillette and Sturtevant [19] used the procedure of Mikaelian [102] to compute the

growth reduction factor for a slightly different density profile. The growth reduction factor was used

to obtain better agreement between the model predictions and the experimental results of Collins

and Jacobs [27].

A different type of linear model was proposed by Wouchuk and Nishihara [150] for both a reflected

rarefaction and a reflected shock wave. In this model, the impulsive growth due to the localized

deposition of vorticity at shock refraction is corrected by the interaction with pressure perturbations

from the transmitted shock and the reflected shock fronts. Typically, these pressure perturbations

slow down the growth rate, causing in some cases full cancellation or “freeze-out” [104]. This new

definition of linear growth encompasses a wider class of instabilities than the impulsive models and

is used by Velikovich et al. [147] to define a class of Richtmyer-Meshkov-like instabilities.

4.5.1.2 Perturbation and empirical models

Zhang and Sohn [156] developed a model for the growth rate of a two-dimensional Richtmyer-

Meshkov unstable interface, valid for compressible fluids from early to late times for a reflected

shock (light-to-heavy transition). The dynamics of the initially-perturbed interface are modeled

using the linear, compressible flow equations for early times and using the nonlinear, incompressible

flow equations for later times. Under appropriate kinematic and Bernoulli boundary conditions, a

perturbation solution ansatz yields differential equations for the functions. Solving these equations

at the location of the bubbles and spikes gives the amplitude and growth rate of the bubbles and

spikes. The radius of convergence of the series solution is extended via Padé approximants.

Vandenboomgaerde, Gauthier, and Mügler [145] proposed a simplified version of the perturbation

expansion of Zhang and Sohn [156]. They noted that an accurate perturbation series can be obtained
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by retaining only the terms with the largest unbounded part of the Zhang-Sohn solution. As only

the high-order terms in the series are retained, this shifts the problem from integrating to solving

an algebraic system of equations. As a result, series of much higher order are obtained. The radius

of convergence of these series is also extended using Padé approximants.

Matsuoka, Nishihara, and Fukuda [91] proposed a new formulation of the kinematic boundary

conditions in the perturbation expansion of the Zhang-Sohn potential flow to account for stretching

at the interface. The perturbation expansion yields different expansions for the bubble and spike.

The Sadot et al. [114] empirical model for the Richtmyer-Meshkov instability is based on fits

to experimental data and on asymptotic growth laws. The model was presented in the context of

providing a single formula that could capture the initial linear growth and the later nonlinear growth

of both the bubble and spike. This model was extensively tested against experimental data, and

excellent agreement was found for both the bubble and spike growth.

4.5.1.3 Potential models

The first potential model is due to Layzer [80], who derived analytic solutions for the flow of an

ideal, incompressible fluid contained in the upper half of a vertical tube falling under the action of

gravity. For inviscid fluids initially at rest, the velocity field can be described by a scalar potential in

two and three dimensions satisfying the Laplace and Bernoulli equations and additional kinematic

boundary conditions. An ansatz for the solution yields a system of differential equations that gives

the amplitude of the Rayleigh-Taylor bubble via integration.

Hecht, Alon, and Shvarts [52] extended the Layzer model to the Richtmyer-Meshkov instability.

The two-dimensional equations for the potential φ were modified so that g = 0, and an initial velocity

perturbation vRM
b (0) equal to the change in velocity after the shock was introduced.

Mikaelian [105] extended the Layzer model to the case when ab(0) 6= 0 for both the Rayleigh-

Taylor and Richtmyer-Meshkov instabilities. Equations for the bubble velocity in the Rayleigh-

Taylor and Richtmyer-Meshkov instabilities were derived in two- and three-dimensional geometries.

Zhang [155] extended the Layzer model to determine the spike velocity for both the Richtmyer-

Meshkov and Rayleigh-Taylor instabilities in two and three dimensions. Expressions for the spike

and bubble velocity were determined by assuming that the interface is locally parabolic.

Goncharov [42] extended the two-dimensional Layzer model to the case of A 6= 1 for both the

Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn [134] also extended the Layzer model

to fluids with arbitrary density ratios. The approach differs from that of Goncharov in the use of a

simpler form for the potential functions from Layzer [80].

Mikaelian [106] presented explicit expressions for the evolution of the bubble amplitude in single-

mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities in two and three dimensions. The main

idea was to combine the amplitudes from the linear regime with the analytic nonlinear amplitudes
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obtained from the Layzer potential theory.

Motivated by the desire to develop a simple model to understand the penetration of bubbles

in the Rayleigh-Taylor instability, Zufiria [158] augmented the Layzer model for A = 1 to account

for bubbles that change in size. This was accomplished by modeling bubbles with source flows.

Zufiria then generalized the model for the case of multiple bubbles, where the potential was given by

the superposition of the potential from different bubbles. Simulations showed that smaller bubbles

have smaller velocity, and therefore were overcome by other larger bubbles. The larger bubbles

therefore grew even larger, while the smaller bubbles shrank and were left behind in a process

called bubble competition. Sohn and Zhang [137, 135] extended the Zufiria model to the Richtmyer-

Meshkov instability for A = 1 and later extended both the Rayleigh-Taylor and Richtmyer-Meshkov

instability to arbitrary Atwood numbers.

4.5.2 Comparison of amplitudes to experimental data and to the predic-

tions of amplitude growth models

Presented here is a comparison of the perturbation, bubble, and spike amplitudes from the ninth-

order WENO and VS simulations using 512 points per initial perturbation wavelength with the

experimental data points of Jacobs and Krivets and the predictions of amplitude growth models.

Figure 4.15 shows a comparison of the perturbation amplitude a(t) from the ninth-order WENO

and VS simulations with the experimental data points. The VS and vortex simulations do not

capture reshock at ≈ 5.65 ms. The results show good agreement between the simulation results

and the experimental data points. At early times, the WENO and VS amplitudes are in close

agreement. At later times before reshock, the VS amplitudes are slightly smaller than the WENO

amplitudes, and the Lagrangian results are in-between. Also shown in Figure 4.15 is a comparison

of the bubble and spike amplitudes from the simulations. The VS simulation slightly underpredicts

the spike amplitude and overpredicts the bubble amplitude. The Lagrangian simulation also slightly

underpredicts the spike amplitudes at all times and overpredicts the bubble amplitude at late times.

When comparing the simulation data to the predictions of the models, the amplitude growth

rate is adjusted to account for the diffuse interface by including the growth reduction factor [Eq.

(4.18)]. Shown in Figure 4.16 is a comparison of the perturbation amplitude from the WENO and

VS simulations with the experimental data points and the predictions of the linear Richtmyer model

[121] [Eq. (1.16)], the nonlinear Zhang-Sohn series model [156]

da
dt

= v0

{
1− k2 v0 t a

+
0 +

[(
A+
)2 − 1

2

]
k2 v2

0 t
2

]
, (4.27)
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Figure 4.15. Comparison of the perturbation amplitude a(t) from the WENO and VS methods with
the experimental data points (top). Also shown is a comparison of the bubble and spike amplitudes
ab(t) and as(t), respectively, from the simulations (bottom).
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and the Matsuoka et al. series model [91], obtained by averaging the bubble and spike velocities

∂ab,s

∂τ
=

[
∓
(
A+
)2 ± 1

2

]
τ2 +

[
∓2
(
A+
)2
k a+

0 +A+ ± k a+
0

]
τ (4.28)

+
[
∓2
(
A+
)2 ± 3

2

](
k a+

0

)2
+
k a+

0 A
+

2
∓ 1 ,

where τ is the rescaled time [Eq. (1.17)] and the upper (+ or −) and lower (− or +) sign in ± or ∓

denotes the bubble and spike, respectively. The Richtmyer model only captures the initial growth

of the interface. The series models capture the initial linear and weakly-nonlinear growth before

diverging. Also shown in Figure 4.16 is a comparison of the perturbation amplitude, together with

the experimental data points and the predictions of the nonlinear Zhang-Sohn Padé model

da
dt

=
v0

1 + k2 v0 a
+
0 t+ max

[
0,
(
k a+

0

)2 − (A+)2 + 1
2

]
k2 v2

0 t
2
, (4.29)

the nonlinear Sadot et al. model [114], obtained by averaging the bubble and spike velocities

dab

dt
=

v0 (1 + k v0 t)
1 + (1 +A+) k v0 t+ 1

2πC k2 v2
0 t

2
, (4.30)

das

dt
=

v0 (1 + k v0 t)
1 + (1−A+) k v0 t+ 1−A+

1+A+
1

2πC k2 v2
0 t

2
, (4.31)

where C = 1/(3π) for A+ ≥ 0.5 and C = 1/(2π) otherwise, and the nonlinear Matsuoka et al. Padé

model [91], obtained by averaging the bubble and spike velocities

∂ab,s

∂τ
=

f3
±{

f±

[
(A+)2 − 1

2

]
+ g2

±

}
τ2 − f± g± τ + f2

±

, (4.32)

where f± ≡ ∓
[
2 (A+)2 − 3/2

](
ka+

0

)2
+ A+ka+

0 /2 ∓ 1 and g± ≡ ∓2 (A+)2 ka+
0 + A+ ± ka+

0 . The

Sadot et al. model overpredicts the perturbation amplitude, while the Zhang-Sohn and Matsuoka

et al. models underpredict. The Zhang-Sohn model gives the best overall agreement with the data.

Shown in the first row of Figure 4.17 is a comparison of the WENO and VS bubble amplitudes,

together with the predictions of the Zhang-Sohn model [156]

dab

dt
= −da

dt
+

A+ k v2
0

1 + 2 k2 a+
0 v0 t+ 4 k2 v2

0

[(
a+
0

)2
k2 + 1−(A+)2

3

]
t2
, (4.33)

the Sadot et al model [114] [Eq. (4.30)], the Matsuoka et al. model [91] [Eq. (4.32)], and the
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Figure 4.17. Comparison of the WENO and VS bubble and spike amplitudes ab(t) and as(t) with
the predictions of the Zhang-Sohn, Sadot et al., Matsuoka et al., and Mikaelian models.
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Figure 4.18. Comparison of the WENO and VS bubble velocity dab(t)/dt with the predictions of the
Zhang-Sohn, Sadot et al., Matsuoka et al., Mikaelian, Sohn-Layzer, Goncharov, and Sohn-Zufiria
models.

Mikaelian model [106]

ab(t) =

a
+
0 (1 + k [u]A+ t) for t < t∗ ,

1
3 k + 3+A+

3(1+A+)k ln
[
1 + 3 k vb,0 (1+A+)

3+A+ (t− t∗)
]

for t > t∗ ,

(4.34)

where the transition time is t∗ =
[
1/
(
3 k a+

0

)
− 1
]
/(k A+ [u]). The VS bubble amplitude is in best

agreement with the prediction of the Sadot et al. and Mikaelian models. The WENO bubble

amplitude is in best agreement with the Zhang-Sohn prediction.

Figure 4.18 shows the bubble amplitude growth from the simulations together with the corre-

sponding predictions from the models. In addition, also shown are the asymptotic bubble velocities

from the Sohn-Layzer model [134]

dab

dt
−→ 2

(2 +A) k t
, (4.35)

the Goncharov model [42]
dab

dt
−→ 3 +A

3 (1 +A) k t
, (4.36)
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WENO VS
∆sim ∆sim

Experiment 6.35 7.63
Zhang-Sohn Padé (all) 3.22 2.59

Zhang-Sohn Padé (bubble) 1.7 6.24
Zhang-Sohn Padé (spike) 5.31 2.75
Matsuoka et al. Padé (all) 6.02 4.19

Matsuoka et al. Padé (bubble) 13.31 21.65
Matsuoka et al. Padé (spike) 8.86 13.17

Sadot et al. (all) 8.26 9.38
Sadot et al. (bubble) 5.18 1.18
Sadot et al. (spike) 9.8 14.9
Mikaelian (bubble) 3.13 2.3

Table 4.9. Average fractional deviations ∆exp between the experimental amplitude aexp(t) and the
amplitude from the WENO and VS simulations asim and the predictions from nonlinear models
amod(t) obtained using the mix initial conditions, respectively. Also shown is the average fractional
deviation ∆sim between the simulation amplitude asim(t), and the amplitude from the nonlinear
models amod(t).

and the Sohn-Zufiria model [137, 135]

dab

dt
−→

[
A+ 3

3 (1 +A)
− 1
ζ(A)

+
2A

3 (1 +A) ζ(A)2

]
1
k t

, (4.37)

where ζ(A) is the root of the cubic polynomial (3−A) ζ3−(21+9A) ζ2 +(3+15A) ζ−4A = 0. The

asymptotic bubble velocity from the vortex simulations is larger than that from the WENO simula-

tion. The WENO asymptotic bubble velocity is best captured by the Zhang-Sohn and Matsuoka et

al. models. All other models shows asymptotic agreement with the vortex simulations. Also shown

in Figure 4.17 is a comparison of the WENO and VS spike amplitude together with the predictions

from the Zhang-Sohn model [156]

das

dt
=

da
dt

+
A+ k v2

0

1 + 2 k2 a+
0 v0 t+ 4 k2 v2

0

[(
a+
0

)2
k2 + 1−(A+)2

3

]
t2
, (4.38)

the Sadot et al. model [114] [Eq. (4.31)], and the Matsuoka et al. model [91] [Eq. (4.32)]. The VS

amplitudes are in excellent agreement with the predictions of the Zhang-Sohn model. The WENO

amplitudes are best captured by the Sadot et al. and Zhang-Sohn models.

To make the agreement between the perturbation amplitude and the experimental data points

more quantitative, the average fractional deviation [62, 78]

∆exp =
1
N

N∑
i=1

|amod(ti)− aexp(ti)|
aexp(ti)

(4.39)

is shown in Table 4.9 under the row “Experiment”. All of the simulations capture the experimental
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Mix Upstream
initial conditions initial conditions

Γ′1 a
+
0 (cm/s) 2784.881 2791.2

max (γ) (cm/s) 2768.647 2690.566
Γ′1 (1/s) 12952.936 12572.973

Coarse-grid Fine-grid Coarse-grid Fine-grid
max [〈ω〉(y, 0+)] (cm/s) 2918.665 2908.141 2708.698 2705.33
max [〈P〉(y, 0+)] (cm/s2) 1.65417× 107 1.63127× 107 8.49831× 106 8.23361× 106

Table 4.10. Comparison of the initial circulation deposition max [〈ω〉(y, 0+)] from the WENO simula-
tions using mix and upstream initial conditions with the predictions of the Samtaney-Zabusky model
Γ′1 a

+
0 and the prediction from linear instability theory max (γ). Also shown is max [〈P〉(y, 0+)],

which measures the initial circulation deposition on the interface.

data points very well. The best agreement is given by the WENO simulation followed by the VS

simulation. Also shown in Table 4.9 is the average fractional deviation between the WENO and VS

simulation, and the nonlinear model predictions,

∆sim =
1
N

N∑
i=1

|amod(ti)− asim(ti)|
asim(ti)

. (4.40)

The perturbation amplitude and bubble and spike amplitudes from the WENO simulations are

best captured by the Zhang-Sohn Padé model. The perturbation and bubble amplitudes from the

VS simulation are best captured by the Zhang-Sohn model, while the bubble amplitude is best

captured by the Sadot et al. model.

4.5.3 Comparison of the mix and upstream initial conditions for the

WENO method

Presented here is a comparison when the mix and upstream initial conditions are used in the WENO

simulations. Visualizations for the upstream initial conditions are not shown as they are very similar

to the visualizations for the mix initial conditions.

The baroclinic circulation deposition [Eq. (4.19)] from the simulations using the upstream and

mix initial conditions are compared. Figure 4.21 shows 〈ω〉(y, 0+) from the simulations together

with the predictions of the Samtaney-Zabusky model [Eq. (4.20)] and the linear model [Eq. (4.22)].

As shown in Table 4.10, max[〈ω〉] is ≈ 7% larger in the mix initial conditions case than in the

upstream initial conditions case. The predictions of the Samtaney-Zabusky model (as measured

by Γ′1 a
+
0 ) are very similar for both initial conditions (≈ 0.2% difference). Similarly, the linear

instability predictions for both initial conditions, max(γ) are also very similar (≈ 2% difference).

The slightly larger value for the mix initial conditions can be attributed to the larger shock Mach

number compared to the initial shock Mach number for the upstream initial conditions. The shape
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Figure 4.22. Comparison of the the x-t diagram (left) and perturbation amplitude a(t) (right) for
the mix (black) and the upstream (gray) initial conditions.

of the circulation deposition also shows a slight skewness, when compared to the predictions of

the models. As mentioned in Section 4.2.3, this is due to the evolution of the circulation on the

interface following the passage of the shock. The comparison of the maximum baroclinic vorticity

production, max 〈P〉(y, 0+), shows that the mix initial conditions value is approximately twice that

for the upstream initial conditions value; the larger value for the former can be attributed to the

larger shock Mach number.

A comparison of the x-t diagram from the mix and upstream initial conditions is shown in

Figure 4.22. As discussed in Section 4.2.2, the mix and upstream initial conditions predict different

wave and interface velocities, as indicated by the different slopes of the transmitted shock, interface

position `int(t), and bubble and spike positions `b(t) and `s(t). However, reshock occurs at the same

time. Furthermore, the perturbation amplitude a(t) is the same.

To better quantify the agreement between the experimental data points and the amplitudes

from the WENO simulations with the upstream and mix initial conditions, the average fractional

deviation ∆exp [Eq. (4.39)] is shown in Table 4.11. The upstream and mix initial conditions are

both very close to the experimental data points (a difference of ≈ 4.2%). In addition, the predictions

of the amplitude growth models are also computed using the model parameters from the upstream

initial conditions and compared to the simulation amplitude. The agreement is quantified using

the average fractional deviation ∆sim [Eq. (4.40)] shown in Table 4.11. The mix and upstream

initial conditions give very similar results, with the Sadot et al. model yielding the best agreement,

followed by the Vandenboomgaerde et al., Zhang-Sohn, and Matsuoka et al. model. The values for

∆sim are similar to those from the mix initial conditions case.

In summary, the perturbation, bubble, and spike amplitudes from the upstream initial conditions
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Mix Upstream
initial conditions initial conditions
∆exp ∆sim ∆exp ∆sim

Experiment − 6.35 − 6.63
Zhang-Sohn Padé (all) 17.7 3.8 17.72 3.72

Zhang-Sohn Padé (bubble) − 1.7 − 2.12
Zhang-Sohn Padé (spike) − 5.31 − 4.8
Matsuoka et al. Padé (all) 27.23 6.52 27.25 6.19

Matsuoka et al. Padé (bubble) − 13.85 − 15.64
Matsuoka et al. Padé (spike) − 10.89 − 11.43

Sadot et al. (all) 10.52 11.37 10.7 12.49
Sadot et al. (bubble) − 7.33 − 6.14
Sadot et al. (spike) − 13.38 − 15.7
Mikaelian (bubble) − 4.76 − 2.43

Table 4.11. Average fractional deviations ∆exp between the experimental amplitude aexp(t) and the
amplitude from the nonlinear models amod(t) obtained using the upstream and mix initial conditions.
Also shown is the average fractional deviations ∆sim between the simulation amplitudes and the
predictions of the Zhang-Sohn, Matsuoka et al., Sadot et al., and Mikaelian models.

simulation are in quantitative agreement with the results from the mix initial conditions simulation.

As a result, the choice of consistent initial conditions has little effect on the agreement with data

and on the predictions of the nonlinear models.

4.6 Comparison of WENO and vorticity-streamfunction sim-

ulations for different Mach numbers

To further understand the differences in bubble and spike amplitudes between the WENO and VS

simulations, the perturbation, bubble, and spike amplitudes and circulation from the WENO and

VS methods are compared as the Mach number is varied. Simulations are performed using the mix

initial conditions (Sec. 4.2.2) by modifying the incident shock Mach number to Ma = 1.05, 1.15,

and 1.45. The shock speeds, initial growth rates, post-shock amplitudes and Atwood numbers used

to initialize the VS simulations are shown in Table 4.12. The results in the present study are also

compared to the Ma = 1.31 results of Section 4.5.

Figure 4.23 shows a comparison of the perturbation amplitude a(t) from the WENO and VS

simulations as the Mach number is varied. First, reshock occurs at earlier times as the Mach

number increases, as the transmitted shock and interface both travel at a faster speed (Table 4.12).

For Ma = 1.05 the amplitudes are very similar. As the Mach number is increased, the agreement

between the WENO and VS amplitudes decreases. Also shown is a comparison of the bubble

amplitude ab(t) as the Mach number is increased. The WENO and VS amplitudes are in excellent

agreement for Ma = 1.05. For Ma = 1.15 the VS amplitude is slightly larger. The VS amplitudes



121

Ma = 1.05 Ma = 1.15
ushock,i (cm/s) 29837 32679

[u] (cm/s) 1719 4946
v0 (cm/s) 301 779.58
Mar 1.016 1.047

ushock,r (cm/s) 29069 30313
Mat 1.067 1.205

ushock,t (cm/s) 15049 16992
treshock (ms) 8.9 6.8

ηcomp 0.942 0.849
Pre-shock Post-shock Pre-shock Post-shock

a0 (cm) 0.29 0.273 0.29 0.246
δT (cm) 0.5 0.471 0.5 0.424

A 0.605 0.605 0.605 0.605
ψ 1.182 1.152 1.182 1.152

Ma = 1.31 Ma = 1.45
ushock,i (cm/s) 37311 41204

[u] (cm/s) 9770 13543
v0 (cm/s) 1336.8 1679.7
Mar 1.092 1.126

ushock,r (cm/s) 32203 33695
Mat 1.437 1.639

ushock,t (cm/s) 20265 23100
treshock (ms) 5 4.1

ηcomp 0.738 0.671
Pre-shock Post-shock Pre-shock Post-shock

a0 (cm) 0.29 0.214 0.29 0.195
δT (cm) 0.5 0.369 0.5 0.336

A 0.605 0.604 0.605 0.601
ψ 1.182 1.133 1.182 1.19

Table 4.12. Comparison of the flow properties, including initial, reflected, and transmitted shock
Mach numbers, Mai, Mar, and Mat, respectively, shock velocities ushock,i, ushock,r, and ushock,t,
respectively, interface velocity [u], initial interface growth v0, and pre- and post-shock initial ampli-
tudes a−0 and a+

0 , the pre- and post-shock diffuse-interface thickness δ−T and δ+T , pre- and post-shock
Atwood numbers A+, and A−, and pre- and post-shock growth reduction factor ψ+ and ψ−, for
Ma = 1.05, 1.15, 1.31, and 1.45.
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Figure 4.23. Comparison of the perturbation, bubble, and spike amplitudes a(t), ab(t), as(t), and
circulation Γ+(t) from the WENO (solid line) and VS (dashed line) simulations for Ma = 1.05 (blue),
1.15 (red), 1.31 (green), and 1.45 (light blue).

are much larger than the WENO amplitudes for Ma = 1.31 and 1.45. In addition, the bubble

amplitude from the Ma = 1.45 simulation is smaller than that from the Ma = 1.31 simulation.

This can be explained by the Wouchuk-Nishihara vorticity deposition model [150]. Following shock

refraction and the instantaneous deposition of vorticity on the interface, the transmitted shock is

super-stable (i.e. its perturbation decreases in time as t−3/2 [40]). As the shock stabilizes, pressure

perturbations are generated, which interact with the layer causing a decrease in the bubble growth.

Also shown in the figure is a comparison of the spike amplitude as(t). The spike amplitudes from the

WENO and VS simulations are in close agreement for Ma = 1.05. As the Mach number increases,

the WENO simulation gives a larger spike amplitude. Also shown in Figure 4.23 is a comparison

of the circulation Γ+(t). In general, the WENO and VS circulations are in good agreement up to

reshock. The average fractional deviation ∆ between the WENO and VS results is shown in Table

4.13, confirming the good agreement for Ma = 1.05 and the progressively larger differences as the

Mach number is increased.
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Ma = 1.05 Ma = 1.15 Ma = 1.31 Ma = 1.45
∆ a(t) (%) 2.34 3.37 4.85 7.83
∆ ab(t) (%) 0.82 2.59 7.63 21.19
∆ as(t) (%) 0.89 4.25 8.5 21.95
∆ Γ+(t) (%) 1.04 2.35 3.05 3.03

Table 4.13. The average fractional deviation ∆ between the perturbation, bubble, and spike ampli-
tudes a(t), ab(t), as(t), and circulation Γ+(t) from the WENO and VS simulations for Mai = 1.05,
1.15, 1.31, and 1.45.

4.7 Investigation of reshock using the WENO method

Following the initial shock refraction at 0 ms, the transmitted shock reflects from the end wall of

the shock tube and interacts with the evolving mixing layer in a process called reshock at ≈ 5.65

ms. Reshock imparts additional energy into the mixing layer, contributing to the formation of

additional complex disordered structures. Reshock is of fundamental interest [129] and occurred in

the experiments of Collins and Jacobs [27] and Jacobs and Krivets [62]. Investigated here are the

dynamics of reshock (Sec. 4.7.1), including a visualization of the complex wave interactions. The

mixing layer width is also compared to the predictions of reshock models (Sec. 4.7.2).

4.7.1 Dynamics of the reshock process

Figure 4.24 shows the time-evolution of the density and simulated density Schlieren fields during

reshock at time intervals of 0.1 ms (and later 0.2 ms) from 5.6 to 7 ms. Simulated density Schlieren

images are used to visualize the detailed wave structure present during reshock. The density Schlieren

shown is [90]

Φ(x, y, t) = exp
[
−α(m)

|∇ρ|
max |∇ρ|

]
, α(m) =

20 if m > m∗ ,

100 if m < m∗ ,

(4.41)

where m is the mass fraction of SF6 and m∗ = 0.25.

Figure 4.24 shows the arrival of the reflected shock at 5.6 ms, the reflected shock refracting at the

interface at 5.7 ms and at 5.8 ms, and the beginning of the inversion process at 5.9 ms, where bubbles

transform into spikes and vice versa. As reshock is a refraction from a heavier fluid (SF6) into a

lighter fluid [air(acetone)], a transmitted shock enters the air(acetone) and a reflected rarefaction

wave returns back into the SF6. The transmitted shock is highly curved, following the interaction

with the bubble at 5.7 ms, and also generates a complex system of waves as it passes through the

roll-ups at 5.8 and 5.9 ms. The reason for the inversion is the deposition of vorticity of opposite sign

on the interface that drives the formation of rolls-up in the opposite direction. The simulated density

Schlieren not only provides a sharp visualization of the system of reflected and transmitted waves



124

5.6 ms 5.7 ms 5.8 ms 5.9 ms

6 ms 6.2 ms 6.5 ms 7 ms

Figure 4.24. Time-evolution of the density and simulated density Schlieren fields from the WENO9-
512 simulation illustrating the reshock process at 5.6, 5.7, 5.8, 5.9, 6, 6.2, 6.5, and 7 ms.
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generated during reshock, but also of the fine-scale mixing within the roll-ups and, more generally,

within the mixing layer. In particular, prior to reshock, the cores of the roll-up contain well-mixed

complex regions. During reshock, these regions are compressed by the passage of the shock. At late

times, large spikes of SF6 develop. Near the large spike, a finely-mixed complex layer is observed,

which are the remnants of the spike prior to reshock. The creation of small disordered structures

breaks symmetry [129], leading to the formation of complex structures at late times.

Figure 4.25 shows the time-evolution of the vorticity ω(x, y) and baroclinic vorticity production

field P(x, y) at the same times as in Figure 4.24. Immediately prior to reshock (5.6 ms), strong

rotating cores develop, together with the vortex bilayers that contribute to the formation of the

irregular structures within the roll-ups. At 5.7 ms, vorticity of opposite sign is deposited by the

shock on the interface and drives the inversion process at 5.8 and 5.9 ms. The vorticity deposited by

the shock is eight times more intense than the vorticity present inside the roll-ups. As a result, at

5.7 ms the vorticity inside the roll-ups appears much smaller. By contrast, the baroclinic vorticity

production experiences a ten-fold increase at reshock, and the baroclinic production inside the roll-

ups is almost not apparent at 5.7 ms. Following the passage of the transmitted shock, the baroclinic

vorticity production forms strong positive and negative cores around the roll-up, contributing to

the further fragmentation and increased mixing within the layer, as shown by the simulated density

Schlieren. The baroclinic vorticity production also contributes to the formation of strong vortex

bilayers. As a result, the layers of negative (or positive) vorticity present immediately following

the passage of the shock at 5.9 ms on the surface of the spike are replaced by a disordered set

of alternating layers of positive and negative vorticity at 6 ms. Following 6 ms, the inversion

process forms a strong spike that penetrates into the mixing layer, forming a region of finely-mixed

material corresponding to the presence of the spike and a region of unmixed SF6 (associated with the

formation of the new spike). The presence of the numerous vortex bilayers in the region previously

occupied by the spike may facilitate the penetration of the spike, which instead has a strong region

of positive and negative vorticity which acts as a “vortex projectile”. This may also elucidate why

spikes penetrate deeply into the mixing layer at 6.3 and 6.5 ms. At late times, larger-scale structures

form due to the inverse energy cascade [129], particularly in the coarse-grid simulations.

Finally, Figure 4.26 shows the density, vorticity, and baroclinic vorticity production fields at late

times following reshock. Both simulations produce complex structures at late times. A dominant

spike is present, and finely-mixed fluid is present between the structures. The vorticity shows the

formation of localized strong cores of positive and negative vorticity. The baroclinic vorticity pro-

duction shows fragmentation and activity that occurs at the boundaries of the large-scale structure

and in between the separation region.
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Figure 4.25. Time-evolution of the vorticity ω(x, y) and baroclinic vorticity production P(x, y) fields
from the WENO9-512 simulation during reshock at 5.6, 5.7, 5.8, 5.9, 6, 6.2, 6.5, and 7 ms.
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8 ms

10 ms

ρ ω P

Figure 4.26. Time-evolution of the density ρ(x, y), vorticity ω(x, y), and baroclinic vorticity produc-
tion P(x, y) fields from the WENO9-512 simulation at 8 and 10 ms.

4.7.2 Comparison of the mixing layer amplitude to the predictions of

reshock models

Here, the mixing layer amplitude from the WENO9-512 simulation is compared to the predictions

of reshock models.

A linear power-law model for the mixing layer width following reshock was developed by Mikaelian

[101] developed the linear power-law model

a(t) = 0.14 [u]1 A
+
1 t , (4.42)

where A+
1 is the post-reshock Atwood number, based on the experimental results of Read [120] and

Youngs [153] for the width of a Rayleigh-Taylor mixing layer.
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Figure 4.27. The mixing layer amplitude a(t) versus time t from the WENO9-512 simulation
together with the predictions of the linear models following reshock.

Brouillette and Sturtevant [18] performed shock tube experiments to assess the effects of a thick,

diffuse interface on the growth of the Richtmyer-Meshkov instability. The growth

da
dt

= k [u] A+ a+
0 + k [u]1 A

+
1 a

+
1 , (4.43)

where the 1 subscript indicates values following reshock, was obtained by empirically generalizing

the Richtmyer model.

Charakhch’yan [22] assumed that reshock is much weaker than the initial incident wave and

occurs during the nonlinear phase, to obtain

da
dt

= v0 − 1.25 ∆u1A
+ , (4.44)

which does not depend on the initial amplitude and on the change in Atwood number at reshock.

Figure 4.27 shows the mixing layer amplitude and the predictions of the Mikaelian, Brouillette-

Sturtevant, and and Charakhch’yan reshock models. These models predict linear growth (Table

4.14). The Brouillette-Sturtevant model predicts the largest growth rate, followed by the Mikaelian

and the Charakhch’yan models. The models are intended to apply immediately after reshock (≈ 5.77

ms) until the arrival of the reflected rarefaction wave at ≈ 7 ms. The models are in agreement with
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da
dt (cm/ms) k da

dτ

Richtmyer 1337.29 1
Mikaelian 3334.21 2.49326

Brouillette-Sturtevant 3870.64 2.89438
Charakhch’yan 2534 1.89487

Table 4.14. The growth rate da/dt and the normalized growth rate k da/dτ for the Richtmyer model
before reshock for the mix initial conditions. Also shown is the growth rate and the normalized
growth rates from the Mikaelian, Brouillette-Sturtevant, and Charakhch’yan reshock models.

the simulation data. The growth rates da/dt and the normalized growth rates k da/dτ are also

shown in Table 4.14.

4.8 Atwood number study using the vorticity-streamfunction

method and comparison to the Lagrangian and vortex-

in-cell methods

In the limit of small diffuse-interface thickness δT , the evolution of the vortex layer should be similar

to the evolution of a vortex sheet. Presented here is a comparison of simulations performed using

the VS method to simulations performed using the Lagrangian vortex method (Lagrangian-γ) and

the vortex-in-cell method based on the iterative-time-step formulation (VIC-ITS) for A = 0, 0.2, 0.4,

0.6, and 0.8. For A = 1, the Lagrangian simulations are performed with the methods based on the

vortex sheet strength (Lagrangian-γ) and vortex dipole (Lagrangian-µ), which use principal values

to remove the singularity [9]. The effects of the Atwood number on the evolution of the instability

are compared across the methods through a visualization of common quantities (Sec. 4.8.1), and

the perturbation amplitude (Sec. 4.8.2).

4.8.1 Comparison of instability evolution from the Lagrangian, vortex-

in-cell, and vorticity-streamfunction methods

Presented here is a visualization of the initial growth of the instability, including the formation of

roll-ups at 0, 1, 2, 3, 4, and 5 ms for quantities from the three simulations. These times are chosen

because in most shock tube experiments, the evolution of the single-mode instability is limited by

the arrival of reshock. In addition, many features of interest to the investigation of the instability

are already present at 5 ms. For the VS and VIC simulations, the vorticity is compared on the

Cartesian grid. The density field of the VS simulation is also visualized. From the density field,

the mass fraction contour is computed and compared to the interface of the Lagrangian and VIC

simulations. In addition, field quantities can be interpolated onto the VS mass fraction contour with



130

the same procedure used to interpolate field quantities onto vortex markers in the VIC simulation.

This allows a direct comparison of quantities on the interface across all simulations.

Figure 4.28 shows a visualization of the instability evolution for A = 0 at 1 ms intervals. The

first and second rows show the interface evolution from the Lagrangian-γ and VIC simulations, the

third row shows the mass fraction contour from the VS simulation, and the fourth row shows the

time-evolution of the mass fraction field (for A = 0, the density is constant across the interface).

The A = 0 case represents the evolution of a vortex sheet with a sinusoidal initial distribution of

vorticity. As a result, the vorticity evolves and advects under its own velocity field. In the VS

method this corresponds to zero baroclinic vorticity production, since the density is uniform. First,

all three simulations provide similar characterizations of the evolution of the interface. The insta-

bility develops with the formation of a “bubble” and “spike”. In the Richtmyer-Meshkov instability

“bubble” refers to the lighter fluid “rising” into the heavier fluid, and “spike” refers to the heavier

fluid penetrating into the lighter fluid. For A = 0, the densities are the same, so that the bubbles

and spikes have similar amplitudes. At 2 ms, the spike and bubble form roll-ups. The VS simulation

shows a more pronounced roll-up compared to the Lagrangian and VIC simulations. The VS method

represents the evolution of a diffused layer of vorticity, which is a qualitatively different problem from

the evolution of a thin vortex sheet in the other methods. As a result, the VS simulation exhibits

differences when compared to the other simulations. After 3 ms, additional finer-scale structure

develops in the roll-up. The Lagrangian-γ simulation has the most structure in the roll-up, followed

by the VS and VIC simulations.

Figure 4.29 shows the evolution of the vorticity from the VS and VIC simulations. The initial

vorticity follows the sinusoidal distribution at 0 ms and has positive and negative signs on different

parts of the sinusoidal curve. The vorticity then rolls-up and forms strong cores by 5 ms. The

VIC vorticity is thicker due to the coarser grid and has smaller magnitude than that from the VS

simulation. Both simulations are based on an initial vortex marker representation of the interface

with markers carrying the same circulation. As a result, the vorticity field on the Cartesian grid

is a function of the thickness of the hyperbolic tangent diffusion layer in the VS method, and a

function of the Cartesian grid spacing in the VIC method. The evolution of the vorticity is similar

across the two simulations. Between 1 and 3 ms, the vorticity from the VIC simulation increases

in magnitude. Shown in the third, fourth, and fifth row is the vortex sheet strength γ(e) from the

Lagrangian-γ and VIC simulations, and the circulation interpolated back onto the contour from the

VS simulation. At 0 ms, the circulation from the three simulations has the same shape, but the

circulation of the VS simulation has smaller magnitude because the diffuse vorticity is interpolated

back onto the contour resulting in an overall smaller circulation. As time evolves, the circulation

develops spikes, corresponding to the roll-ups where the circulation is concentrated. The circulations

for the Lagrangian and VIC simulations are very similar, while the circulation for the VS simulation
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Figure 4.28. Time-evolution of the interface for the Richtmyer-Meshkov instability when A = 0
at 0, 1, 2, 3, 4, and 5 ms using the Lagrangian-γ method with N = 256 markers and δ = 0.15,
the VIC method with grid resolution Nx × Ny = 32 × 128 and N = 256 vortex markers, and of
the mass fraction contour corresponding to m1 = 1/2 from the VS method with grid resolution
Nx × Ny = 128 × 512. Also shown is the evolution of the mass fraction field m(x, y) from the VS
method.
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Figure 4.29. Time-evolution of the vorticity field ω(x, y) for the Richtmyer-Meshkov instability
when A = 0 at 0, 1, 3, and 5 ms using the VS method and the VIC method with grid resolution
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Nx ×Ny = 128× 512 (top two rows). Also shown is the circulation on the interface γ(e) at 0, 1, 3,
and 5 ms for the VIC, VS, and Lagrangian-γ methods with N = 256 markers and δ = 0.15 (bottom
three rows).
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is wider. The width in the VS simulation is due to the diffusion of the layer and the use of viscosity

which tends to thicken the strong spiked cores. The circulation is plotted as a function of the

arclength s, so that the length of the horizontal axis represents the length of the interface. At 5 ms,

the Lagrangian-γ and VS simulations have similar lengths, while the VIC simulation has slightly

smaller length. As the interface length is caused by the structure in the roll-up, this confirms that

more structure is captured using the Lagrangian and VS methods and slightly less is captured using

the VIC method.

Figure 4.30 shows a comparison of the instability evolution for A = 0.4 for the Lagrangian, VIC,

and VS simulations at intervals of 1 ms until 5 ms. Shown for the VS simulation are the density field

and the mass fraction contour. For A > 0, the baroclinic vorticity production term is activated and

contributes to the vorticity evolution. In the Lagrangian and VIC methods, this effect is captured by

the coupled system of integral equations describing the evolution of the circulation on the interface.

When A > 0, a distinctive bubble rises in the heavier fluid and a spike penetrates into the lighter

fluid. In addition, an asymmetry develops between the bubble and spike amplitude. The roll-ups

of the VIC and VS simulations are nearly identical. The roll-up in the VS simulation exhibits more

structure.

Figure 4.31 shows the time-evolution of the vorticity field ω(x, y) for the VS and VIC simulations

and of the circulation on the interface for the three simulations for A = 0.4. Comparing these results

with those for A = 0 (Fig. 4.29) shows that the cores during the roll-up phase at 3 and 5 ms are

wider. This is evident from the smaller values in the vorticity field in the VIC simulation at 3 and 5

ms, which indicate that the vorticity is assigned to multiple cells. This phenomenon is also visible in

the wider peaks in the circulation γ(e) at 3 and 5 ms. The width of the peaks in the VS simulation

is not affected, as this method has viscosity which spreads the cores. However, the results show

more structure in the area surrounding the cores. This additional structure is also visible in the

Lagrangian and VS simulations.

Figure 4.32 continues the comparison of the instability evolution across the methods for A = 0.6.

Comparing the interface evolution with the results for A = 0.4 in Figure 4.30 shows that the stem

of the instability becomes longer. In addition, the spike roll-up structure appears different across all

simulations at 5 ms. Both the Lagrangian and VIC simulations show a lump structure at the tip

of the roll-up region. The VIC simulation also shows a wider spike compared with the Lagrangian

simulation and the region between the beginning of the roll-up and the lump structure is thinner.

By contrast, the VS simulation does not show such a lump structure and the spike roll-up is longer

in extent.

Figure 4.33 shows a comparison of the vorticity field evolution ω(x, y) for the VIC and VS

simulations when A = 0.6. Comparing with the results for A = 0.4 in Figure 4.31 at 1 ms shows

the formation of a vortex lump close to the spike, which accelerates the growth of the spike. A
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Figure 4.30. Same as Figure 4.28 but for A = 0.4.
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Figure 4.31. Same as Figure 4.29 but for A = 0.4.
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Figure 4.32. Same as Figure 4.28 but for A = 0.6.
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Figure 4.33. Same as Figure 4.29 but for A = 0.6.
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similar pattern is observed in the VS simulation. At 3 and 5 ms, the roll-up of the spike is marked

by the formation of strong cores. The VS simulation shows a region of positive vorticity above the

negative core and a region of negative vorticity above the positive core at 5 ms. This is the vortex

bilayer [115] contributing to the formation of the secondary instability in the WENO simulations

and in the experiments of Jacobs and Krivets [62]. Also shown in the figure is a comparison of the

vortex sheet evolution γ(e) across the simulations. The vortex sheet evolution shows the formation

of the spikes and cores in the Lagrangian and VIC simulations. The circulation does not contain

any spike or region of high frequency, as these occur in the inner core of the roll-up. However, under

the Lagrangian and VIC simulations, the inner core is not resolved but represented by a lump. The

VS simulation shows a similar representation for the vortex sheet evolution along the mass fraction

contour.

Figure 4.34 continue the comparison of the instability evolution for the three simulations when

A = 0.8. As the Atwood number increases, the spike amplitude increases significantly. In addition,

differences are observed in the roll-up structure between the simulations at 5 ms. The VIC simulation

shows a more evolved roll-up compared with the Lagrangian simulation.

Figure 4.35 shows the vorticity field ω(x, y) for the VIC and VS simulations when A = 0.8. As

the Atwood number increases, more vorticity accumulates close to the spike, contributing to its rapid

growth. A similar trend was already visible for A = 0.6 in Figure 4.33. The vorticity then begins to

form rotating cores at 3 ms and more developed cores at 5 ms. Also shown is a comparison of the

vortex sheet strength γ(e) for the three simulations, showing the formation of the roll-ups and then

the formation of the rotating cores. The cores are not formed at 3 ms, so that the vorticity does not

show sharp peaks, as for smaller values of the Atwood number.

Figure 4.36 shows the time-evolution of the instability when A = 1, which corresponds to a fluid

falling into a vacuum. As a result, the instability is not expected to develop roll-up singularities.

Shown are Lagrangian simulations obtained using the vortex sheet strength formulation (Lagrangian-

γ) and the vortex dipole formulation (Lagrangian-µ). These formulations do not contain the blob

regularizations of the A < 1 Lagrangian-γ simulations. Instead, principal value integrals are used

to remove the singularity. The VIC simulation shows the formation of a lumped, droplet-like, flat

spike front. This droplet was also observed in the simulation of the Richtmyer-Meshkov instability of

Zufiria [159]. Zufiria [160] performed a linear instability analysis of the VIC algorithm and attributed

the formation of this structure to the effects of an equivalent numerical surface tension.

Figure 4.37 shows the time-evolution of the vorticity field ω(x, y) for the VIC simulation whenA =

1. The results indicate a concentration of the vorticity on the tip of the spike without the formation

of roll-ups. Also shown is the vortex sheet strength γ(e) on the interface for the Lagrangian-γ,

Lagrangian-µ, and VIC simulations. The Lagrangian-γ and Lagrangian-µ circulations are in close

agreement and exhibit the formation of a steep profile at 3 ms, due to the concentration of vorticity
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Figure 4.34. Same as Figure 4.28 but for A = 0.8.
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Figure 4.35. Same as Figure 4.29 but for A = 0.8.
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Figure 4.36. Time-evolution of the interface for the Richtmyer-Meshkov instability when A = 1 at
0, 1, 2, 3, 4, and 5 ms using the Lagrangian-γ and Lagrangian-µ methods with N = 256 markers
(these simulations only converge for t < 3.4 ms, so that visualizations at late times are not shown),
and the VIC method with grid resolution Nx ×Ny = 32× 128 and N = 256 vortex markers.
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Figure 4.37. Time-evolution of the vorticity field ω(x, y) for the Richtmyer-Meshkov instability when
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Figure 4.38. Comparison of the perturbation amplitude a(t), bubble amplitude ab(t), and spike
amplitude as(t) for A = 0, 0.2, 0.4, 0.6, 0.8, and 1 from the Lagrangian, VIC, and VS methods.

of opposite sign on the tip of the spike. By contrast, γ(e) from the VIC simulation does not show

the formation of a very steep profile at 3 ms, but shows a wider rounded tip. This is due to the

formation of the droplet-like feature.

4.8.2 Comparison of the perturbation, bubble, and spike amplitudes to

the predictions of amplitude growth models

Presented here is a quantitative comparison of the perturbation, bubble, and spike amplitudes from

the Lagrangian, VIC, and VS simulations of the Richtmyer-Meshkov instability for A = 0, 0.2, 0.4,

0.6, 0.8, and 1 with the predictions of amplitude growth models.

Shown in the first row of Figure 4.38 is a comparison of the perturbation amplitude a(t), bubble

amplitude ab(t), and spike amplitude as(t) from the Lagrangian simulations for A = 0, 0.2, 0.4, 0.6,
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0.8, and 1. For A = 1, both the Lagrangian simulations using the vortex sheet strength formulation

(Lagrangian-γ) and the simulations using the vortex dipole formulation (Lagrangian-µ) are shown.

As A increases, the perturbation amplitude increases. By contrast, the bubble amplitude decreases

with increasing A. The spike amplitude increases as A increases. For A = 1, the spike amplitude

increases very rapidly, corresponding to the case of a Richtmyer-Meshkov instability in a vacuum.

The smaller amplitude for the bubble and the larger amplitude for the spike as a function of increasing

Atwood number can be understood in terms of vorticity dynamics. In fact, as shown from the VS

simulation, the baroclinic vorticity production reduces the vorticity of the bubble and increases the

vorticity of the spike. As A increases, the simulations terminate at earlier times. In particular, the

A = 1 simulations end at 3.6 ms.

Shown in the second row of the figure is the comparison of the amplitudes from the VIC simula-

tions. The results are qualitatively similar to those from the Lagrangian simulations. For A = 1, the

perturbation and spike amplitudes do not show the same growth as in the Lagrangian simulations.

The smaller growth is due to the physical interpretation of the effects of the Cartesian grid in the

VIC algorithm, which can be related to the effects of surface tension [160], thus reducing the growth

of the instability.

Shown in the third row of the figure is the comparison of the perturbation, bubble, and spike

amplitudes from the VS simulations. The results are qualitatively similar to the results from the VIC

and Lagrangian simulations. For all Atwood numbers (except A = 1), the perturbation amplitude

is computed to 10 ms and beyond, highlighting one of the key advantages of this formulation.

Comparing the bubble and spike amplitude as a function of A shows that in the VS simulation the

bubble has a larger growth and the spike has a smaller growth than the Lagrangian and VIC results.

This is expected, as the VS simulation represents the evolution of a thickened vortex layer, while

the Lagrangian and VIC simulations represent the evolution of a thin vortex sheet.

Figures 4.39 and 4.40 show a comparison of the perturbation amplitude from the Lagrangian,

VIC, and VS simulations with the predictions of the nonlinear Zhang-Sohn Padé model [156] [Eq.

(4.29)], the nonlinear Sadot et al. model [114] [Eqs. (4.30) and (4.31)] and the nonlinear Matsuoka

et al. Padé model [91] [Eq. (4.32)]. The comparison of the results from the Lagrangian, VIC,

and VS simulations provides an element of cross-validation. The three simulations are obtained

using different numerical and modeling approaches to capture the effects of the instability, so that

the general agreement of the simulations provides confidence in the results. Analyzing the differ-

ences between the simulation results is also essential to understand the robustness of the numerical

methods or to evaluate the modeling assumptions underlying the simulations. Comparison of the

simulation amplitudes with the predictions of the linear Richtmyer model and with the nonlinear

series models provides understanding on the range of validity of these models. Vortex methods can

reach nonlinear stages of the instability development not accessible via analytical models. For A = 0
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Figure 4.39. The perturbation amplitude a(t)−a+
0 from the Lagrangian-γ, VIC, and VS simulations

with the predictions of the nonlinear models for A = 0 and 0.4.
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all three simulation amplitudes are in very close agreement. The comparison of the amplitudes to

the prediction of the nonlinear models extended via Padé approximants or to semi-analytical models

assesses the robustness and predictive capability of the models as a function of the Atwood number.

The results for A = 0 in Figure 4.39 show that the Sadot et al. model slightly overpredicts the simu-

lation amplitudes but is in best overall agreement. By contrast, the Zhang-Sohn and Matsuoka et al.

models underpredict the perturbation amplitude from the simulations. The simulation amplitudes

for A = 0.4 also show excellent agreement. The amplitudes for A = 0.4 show a similar behavior,

with the Sadot et al. model overpredicting the simulation amplitudes. The Matsuoka et al. model

is closer to the prediction of the Zhang-Sohn model, but both models underpredict the simulation

amplitudes. For A = 0.8 in Figure 4.40, the simulation amplitudes begin to show differences. The

VIC simulation gives the largest amplitude followed by the Lagrangian and VS simulations. The La-

grangian and VIC amplitudes are in close agreement until ≈ 5 ms when the Lagrangian amplitudes

are no longer available. The VS amplitudes underpredict the VIC amplitudes at late times. The

Sadot et al. model overpredicts, while the Matsuoka et al. and Zhang-Sohn models underpredict.

The Lagrangian-γ and VIC simulation amplitudes for A = 1 are in good agreement, while the VIC

amplitude underpredicts. The Zhang-Sohn model is in good agreement with the VIC amplitude,

while the Sadot et al. and Matsuoka et al. models are in agreement with the Lagrangian simulations

at early times, and over-predict later.

Figures 4.41 and 4.43 compare the bubble amplitude from the three simulations with the pre-

dictions of the Zhang-Sohn model [156] [Eq. (4.33)], the Sadot et al model [114] [Eq. (4.30)], the

Matsuoka et al. model [Eq. (4.32)], and the Mikaelian model [Eq. (4.34)]. Shown in Figures

4.42 and 4.44 is the bubble amplitude growth from the simulations together with the corresponding

model predictions. In addition, the asymptotic bubble velocities from the Sohn-Layzer model [Eq.

(4.35)], the Goncharov model [Eq. (4.36)], and the Sohn-Zufiria model [Eq. (4.37)] are also shown.

The amplitudes for A = 0 indicate good agreement between the bubble amplitudes from the three

simulations. The Sadot et al. and Mikaelian models are in best agreement with the amplitude,

with the first slightly overpredicting, and the second slightly underpredicting. As in the case of the

perturbation amplitude in Figure 4.39, the Matsuoka et al. and Zhang-Sohn models underpredict

the simulation amplitudes. The growth in Figure 4.42 shows that all three simulations give similar

predictions for the growth at all times. The Sadot et al. model shows the best agreement at all

times, while the Mikaelian model slightly underpredicts at early times. The potential models are all

in excellent agreement with the asymptotic bubble velocity. The Matsuoka et al. and Zhang-Sohn

models underpredict the asymptotic growth. For A = 0.4, the VS simulation gives a larger bubble

amplitude compared with the bubble amplitude from the Lagrangian and VIC simulations. The

Sadot et al. model is in excellent agreement with the amplitude and the Mikaelian model is also

very close. The Matsuoka et al. and Zhang-Sohn models underpredict the simulation results. The
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Figure 4.41. The bubble amplitude ab(t)−ab(0+) from the Lagrangian-γ, VIC, and VS simulations
with the predictions of the nonlinear models for A = 0 and 0.4.
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Figure 4.42. The bubble growth dab(t)/dt from the Lagrangian-γ, VIC, and VS simulations with
the predictions of the nonlinear models for A = 0 and 0.4.
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Figure 4.43. Same as Figure 4.41 but for A = 0.8 and 1.
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Figure 4.44. Same as Figure 4.42 but for A = 0.8 and 1.
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asymptotic bubble velocities from the simulations show excellent agreement. The Sadot et al. and

Mikaelian models now capture the bubble velocity at all times. The asymptotic bubble velocity is

also captured by the potential models. The Matsuoka et al. and Zhang-Sohn models underpredict

the simulation results. The amplitudes for A = 0.8 show that the Lagrangian and VIC amplitudes

are in good agreement up to ≈ 5 ms when only the VIC results are available. The VS simulation

gives bubble amplitudes larger than the Lagrangian and VIC amplitudes at late-to-intermediate

times. However, the VS simulation is now in good agreement with the predictions of the Mikaelian

and Sadot et al. models. The Zhang-Sohn model overpredicts the simulation amplitudes, while the

Matsuoka et al. model underpredicts the amplitudes. The bubble velocity shows that the predictions

of the nonlinear Sadot et al. and Mikaelian models and the potential models fall between the VIC

and VS bubble velocities. The amplitudes for A = 1 show that the Lagrangian-γ and Lagrangian-µ

bubble amplitudes are close and slightly larger than the bubble amplitude from the VIC simulation.

The Mikaelian model is in best agreement with the Lagrangian amplitude.

Figures 4.45 and 4.46 show the spike amplitudes from the three simulations with the predictions

of the Zhang-Sohn model [Eq. (4.38)], the Sadot et al. model [Eq. (4.31)], and the Matsuoka

et al. model [Eq. (4.32)]. For A = 0 in Figure 4.45, the three simulations give similar spike

amplitudes. The Sadot et al. model is in best agreement with the simulation data, while the

Zhang-Sohn and Matsuoka et al. models underpredict. The spike velocities from the simulations

are also in excellent agreement and are best predicted by the Sadot et al. model. For A = 0.4,

the spike amplitude from the Lagrangian and VIC simulations are in excellent agreement. The VS

spike amplitude is slightly lower. The spike amplitudes from the VIC and Lagrangian simulations

are in excellent agreement with the predictions of the Sadot et al. model. The Matsuoka et al. and

Zhang-Sohn models underpredict the simulation results. The spike amplitude for A = 0.8 in Figure

4.46 shows that the VS simulation gives spike amplitudes that are larger than the VIC amplitudes.

The Zhang-Sohn model is in best agreement with the simulation amplitudes, while the Sadot et

al. model overpredicts and the Matsuoka et al. model underpredicts the amplitudes. The spike

amplitude for A = 1 shows that the Lagrangian-γ simulation has the largest value followed closely

by the Lagrangian-µ simulation, and are in best agreement at early times with the Sadot et al. and

Matsuoka et al. models. The amplitude from the VIC simulation is smaller and in best agreement

with the Zhang-Sohn model. The comparison between the amplitudes from the three simulations and

the predictions of the models can be made more quantitative by computing the average fractional

deviations ∆sim [Eq. (4.40)]. The results for A = 0, 0.2, and 0.4 and for 0.6, 0.8, and 1 are shown

in Tables 4.15 and 4.16, respectively.
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Figure 4.45. The spike amplitude as(t)− as(0+) from the Lagrangian-γ, VIC, and VS simulations
with the predictions of the nonlinear models for A = 0 and 0.4.
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Figure 4.46. Same as Figure 4.45 but with A = 0.8 and 1.
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Lagrangian-γ VIC VS

A = 0 ∆sim ∆sim ∆sim

Zhang-Sohn Padé (all) 12.89 15.09 16.95
Zhang-Sohn Padé (bubble) 12.92 15.12 16.94
Zhang-Sohn Padé (spike) 12.86 15.06 16.96
Matsuoka et al. Padé (all) 38.81 42.6 42.16

Matsuoka et al. Padé (bubble) 31.40 34.99 35.38
Matsuoka et al. Padé (spike) 31.31 34.92 35.40

Sadot et al. (all) 8.30 5.64 3.94
Sadot et al. (bubble) 8.27 5.62 3.95
Sadot et al. (spike) 8.32 5.66 3.94
Mikaelian (bubble) 11.05 14.07 15.83

A = 0.2 ∆sim ∆sim ∆sim

Zhang-Sohn Padé (all) 12.28 15.31 16.66
Zhang-Sohn Padé (bubble) 12.07 15.13 19.27
Zhang-Sohn Padé (spike) 12.51 15.43 14.83
Matsuoka et al. Padé (all) 32.9 37.62 36.75

Matsuoka et al. Padé (bubble) 39.4 44.02 46.56
Matsuoka et al. Padé (spike) 16.25 20.7 19.21

Sadot et al. (all) 3.64 0.8 1.52
Sadot et al. (bubble) 2.05 1.48 5.48
Sadot et al. (spike) 5.06 1.39 3.08
Mikaelian (bubble) 7.2 10.7 14.41

A = 0.4 ∆sim ∆sim ∆sim

Zhang-Sohn Padé (all) 10.09 13.09 12.25
Zhang-Sohn Padé (bubble) 9.45 12.53 19.16
Zhang-Sohn Padé (spike) 10.7 13.4 7.66
Matsuoka et al. Padé (all) 17.64 22.3 19.58

Matsuoka et al. Padé (bubble) 38.18 42.61 48.62
Matsuoka et al. Padé (spike) 6.91 5.34 3.87

Sadot et al. (all) 8.92 5.32 5.68
Sadot et al. (bubble) 5.1 2.20 4.17
Sadot et al. (spike) 11.48 7.44 11.95
Mikaelian (bubble) 3.32 6.59 12.74

Table 4.15. Average fractional deviations ∆sim between the simulation amplitudes from the
Lagrangian-γ, VIC, and VS methods asim(t) and the amplitudes from the nonlinear models amod(t)
for A = 0, 0.2, and 0.4.
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Lagrangian-γ VIC VS

A = 0.6 ∆sim ∆sim ∆sim

Zhang-Sohn Padé (all) 5.61 7.79 5.44
Zhang-Sohn Padé (bubble) 3.33 6.25 12.54
Zhang-Sohn Padé (spike) 7.1 8.47 1.89
Matsuoka et al. Padé (all) 5.26 5.73 3.54

Matsuoka et al. Padé (bubble) 27.23 31.38 37.16
Matsuoka et al. Padé (spike) 17.31 12.79 17.59

Sadot et al. (all) 14.87 10.93 12.42
Sadot et al. (bubble) 7.84 5.05 1.11
Sadot et al. (spike) 18.55 14.04 19.03
Mikaelian (bubble) 1.46 3 8.93

A = 0.8 ∆sim ∆sim ∆sim

Zhang-Sohn Padé (all) 7.86 3.37 6.02
Zhang-Sohn Padé (bubble) 9.49 8.42 8.6
Zhang-Sohn Padé (spike) 7.44 2.01 5.22
Matsuoka et al. Padé (all) 12.1 9.05 9.13

Matsuoka et al. Padé (bubble) 7.58 11.27 7.42
Matsuoka et al. Padé (spike) 24.35 19.57 20.19

Sadot et al. (all) 22.96 18.76 20.36
Sadot et al. (bubble) 10.25 7.48 8.91
Sadot et al. (spike) 27.82 23.07 24.16
Mikaelian (bubble) 4.31 2.9 2.90

Lagrangian-γ Lagrangian-µ VIC

A = 1 ∆sim ∆sim ∆sim

Zhang-Sohn Padé (all) 33.31 29.53 1.1
Zhang-Sohn Padé (bubble) 34.87 32.62 25.88
Zhang-Sohn Padé (spike) 32.96 28.82 5.75
Matsuoka et al. Padé (all) 19.52 16.7 14.98

Matsuoka et al. Padé (bubble) 14.67 15.91 18
Matsuoka et al. Padé (spike) 28.89 25.52 21.63

Sadot et al. (all) 19.02 20.87 34.46
Sadot et al. (bubble) 6.08 7.47 9.62
Sadot et al. (spike) 21.42 23.36 40.02
Mikaelian (bubble) 3.55 4.57 5.08

Table 4.16. Same as Table 4.15 but for A = 0.6 and 0.8. For A = 1 the average fractional deviation
from the Lagrangian-γ, Lagrangian-µ, and VIC methods is shown.
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Chapter 5

Investigation of the
Three-Dimensional Single-Mode
Richtmyer-Meshkov Instability

Presented here are three-dimensional simulations and analysis of the single-mode Richtmyer-Meshkov

instability performed using the weighted essentially non-oscillatory (WENO) shock-capturing method

and the vorticity-streamfunction (VS) method. The simulations are performed using the mix ini-

tial conditions with an initial perturbation [Eq. (1.20)] that constitutes the generalization in three

dimensions of the two-dimensional perturbation [Eq. (1.1)]. The goal is to investigate the three-

dimensional dynamics of the instability evolution, including the bubble and spike dynamics, and to

compare the amplitudes to the predictions of the three-dimensional single-mode Zhang-Sohn model

[157]. An analysis of the reshock dynamics is also performed using the WENO method. The VS

simulations use the same initial conditions as the WENO simulations and are performed to evaluate

how well the methods agree. An Atwood number study is also performed using the VS method to

investigate the effects of this parameter on the instability evolution.

This chapter is organized as follows. Initial conditions for the WENO and VS methods are

presented in Section 5.1. The dynamics of the instability evolution, including a comparison of the

mass fraction and enstrophy isosurfaces is shown in Section 5.2. A comparison of the perturbation,

bubble, and spike amplitudes for the WENO and VS methods with the predictions of amplitude

growth models is shown in Section 5.3. An investigation of reshock in three dimensions using the

WENO method is presented in Section 5.4. Finally, the results of an Atwood number study using

the VS method are presented in Section 5.5.

5.1 Initial and boundary conditions

The initial and boundary conditions used for the simulations of the three-dimensional single-mode

Richtmyer-Meshkov instability are discussed here. A generalization of the single-mode initial con-
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dition is used in three dimensions. Two initial amplitudes are selected: an amplitude matching the

two-dimensional value (a−0 = 0.29 cm), and a reduced amplitude (a−0 = 0.205 cm) such that the

three-dimensional growth rate matches the two-dimensional value. The vorticity deposited on the

interface by the shock is compared to the predictions from linear theory (Sec. 5.1.2). The linear

theory is used to initialize the VS method in three dimensions (Sec. 5.1.3).

5.1.1 Initial conditions for the WENO method

The initial and boundary conditions for the simulations here are similar to those used for the

two-dimensional simulations in Table 4.4, with the values for the periodic z direction the same

as those for the periodic y direction: Lz = Ly, hz = hy, and Nz = Ny. The initial perturbation is

given by Equation (1.20) and is the standard initial condition for single-mode Richtmyer-Meshkov

instability in three dimensions. It was previously used in the quantitative study of three-dimensional

Richtmyer-Meshkov instability by Zhang and Sohn [157] and in a comparison between two- and

three-dimensional simulations by Li and Zhang [84].

As ky = kx = k2D, the effective wavenumber for the three-dimensional perturbation is

k3D =
√
k2

x + k2
y (5.1)

so that k3D =
√

2 k2D. As a result, two values for the initial pre-shock amplitude a−0 are considered:

1. a−0 = 0.205 cm, where the pre-shock amplitude is reduced by
√

2 so that the corresponding

initial growth v0 [Eq. (1.16)] is the same as in the two dimensional simulations (Chapter 4),

and;

2. a−0 = 0.29 cm, where the pre-shock amplitude is the same as in the two-dimensional simula-

tions. The corresponding v0 is
√

2 larger than in the two-dimensional simulations.

A summary of these initial conditions, including a comparison to the two-dimensional (mix) initial

conditions is presented in Table 5.1. The simulations were performed using the ninth-order WENO

with a resolution of 128 points per initial perturbation wavelength. Symmetry boundary conditions

were used in the transverse directions.

Figure 5.1 shows a comparison of the x-t diagram for the three-dimensional simulations with

a−0 = 0.205 and 0.29 cm, including the bubble and spike position, unperturbed interface position,

and the shock position. Prior to reshock, the spike position from the simulation with a−0 = 0.29 cm

is slightly behind that of the simulation with a−0 = 0.205. The bubble positions are the same. The

location of the shock and the time of reshock are the same. Following reshock, differences between

the two simulations become even less pronounced. In particular, the positions for both the bubble

and spike agree, even following the arrival of the reflected rarefaction at ≈ 8.5 ms.
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3D a−0 = 0.205 cm 3D a−0 = 0.29 cm 2D mix
initial conditions initial conditions initial conditions

k (cm−1) 1.4976 1.4976 1.0590
v0 (cm/s) 1336.8 1891.2 1336.8

Pre-shock Post-shock Pre-shock Post-shock Pre-shock Post-shock
a0 (cm) 0.205 0.1513 0.29 0.214 0.29 0.214

Table 5.1. Initial conditions for the three-dimensional simulations and comparison to the initial
conditions for the two-dimensional simulations with mix initial conditions.

t
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Figure 5.1. The x-t diagram showing the position of the interface `int(t) (solid line), shock (dotted
line), and bubble and spike locations `b(t) and `s(t) (dash-dot and dashed lines, respectively) for
the three-dimensional simulation with a−0 = 0.205 cm (red) and a−0 = 0.29 cm (green).

The WENO simulations were performed using a parallel Fortran 90 code on the uP computer

at the Lawrence Livermore National Laboratory; each processor is an IBM POWER5 with 3 GB of

memory per 4-CPU node and clock speed of 1.9 GHz. For each simulation, the number of nodes

and the total number of processors is shown in Table 5.2. The CPU times required to advance the

simulations from 0.4 ms to 0.5 ms are also shown in Table 5.2. Doubling the resolution constitutes

an eight-fold increase in computational time. Changing the order constitutes a 50% increase in

computational cost. These results are generally consistent with previous findings in two-dimensional

simulations of the single-mode Richtmyer-Meshkov instability [77].
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2D-128 2D-256 2D-384 2D-512 2D-768 3D-128
Nodes 8 8 8 8 16 16
CPUs 64 64 64 64 128 128

Time steps 26,351 52,853 79,280 105,707 158,560 30,949

WENO 5
Grid size 1688× 134 3369× 263 5050× 391 6731× 518 10093× 774 1688× 71× 71
Total cells 226,192 886,047 1,974,550 3,486,658 7,811,982 8,509,208

CPU time (s) 20 156 516 1233 2127 720

WENO 9
Grid size 1692× 138 3373× 267 5054× 395 6735× 522 10093× 774 1692× 75× 75
Total cells 233,496 900,591 1,996,330 3,515,670 7,855,466 9,517,500
CPU time 32 261 803 2013 3254 1101

Table 5.2. Number of nodes, CPUs, and time steps for the WENO simulations. Also shown is the
grid size, total number of cells, and CPU times for advancing the simulations by ∆t = 0.1 ms for
the WENO5 and WENO9 simulations.

5.1.2 Baroclinic circulation deposition on the interface and comparison

to linear theory

The circulation on the sinusoidal interface is defined by adapting Equation (4.19) to three dimensions:

〈ωi〉(y, z, t) =
∫ ∞

−∞
ωi(x, y, z, t) dx (5.2)

for the component ωi(x, t) of the vorticity vector. Equation (5.2) can be compared with the predic-

tions of linear theory [47]. By analogy with two dimensions [Eq. (2.18)], define the vortex dipole in

three dimensions

µ(x, y) = 2 v0 cos (k x) cos (k y) , (5.3)

so that the initial vortex sheet in three dimensions is [47]

γ(x, y) =
∂µ
∂y î−

∂µ
∂x ĵ +

(
∂η
∂x

∂µ
∂y −

∂η
∂y

∂µ
∂x

)
k̂√

1 +
(

∂η
∂x

)2

+
(

∂η
∂y

)2
. (5.4)

For the present η(x, y) [Eq. (1.20)] and µ(x, y) [Eq. (5.3)], it follows that γ3 ≡ 0.

Figure 5.2 shows a visualization of the mass fraction and enstrophy isosurface at 0.06 ms (imme-

diately following the passage of the shock) used to determine the circulation deposition [Eq. (5.2)].

The first row of the figure shows the mass fraction isosurface corresponding to mSF6 = 1/2. “Front”

denotes a view of the isosurface from the air(acetone) side; “back” denotes a view from the SF6 side.

The isosurfaces show the shocked initial sinusoidal interface. Also shown is the (x, y)-cross-section

corresponding to the central value of the z-coordinate denoted zmid. The cross-section shows the
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Figure 5.2. Visualization of the mass fraction isosurface corresponding to m = 1/2, the density
cross-section at zmid = Lz/2, the enstrophy isosurface Ω = 108 s−2 at 0.06 ms, and the enstrophy
cross-section at zmid using the WENO method.

transmitted shock entering SF6, the reflected shock returning back into the air(acetone), and the

compressed initial interface. Shown in the second row is the enstrophy isosurface, where

Ω(x, y, z, t) =
ω2

1 + ω2
2 + ω2

3

2
(5.5)

is the enstrophy. The isosurface is computed at a value corresponding to half the maximum and

minimum enstrophy values. A uniform layer of enstrophy is deposited on the interface and white

represents regions where Ω = 0, corresponding to the tip of the bubble or the tip of the spike. An

(x, y)-cross-section corresponding to zmid shows the deposition of enstrophy on the interface and the

zero values of the enstrophy corresponding to the tip and the bottom of the bubble. The enstrophy

is expected to be zero in these regions, just as the vorticity is zero at the tip of the bubble and spike.

In these regions the density and the pressure gradients are parallel, so that the baroclinic vorticity

production vanishes.

Figure 5.3 shows a visualization of the initial baroclinic circulation deposition by the shock for

the a−0 = 0.205 cm initial condition. The first column shows 〈ω1〉(y, z, 0+), 〈ω2〉(y, z, 0+), and

〈ω3〉(y, z, 0+) used to visualize the initial baroclinic circulation deposition on the interface by the

shock and a visualization of the initial enstrophy on the interface 〈Ω〉(y, z, 0+). The values of

〈ω1〉(y, z, 0+) are much smaller than the values for the other components of the vorticity field,
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Figure 5.3. The initial deposition of circulation on the interface from the three-dimensional WENO
simulation with a−0 = 0.205 cm, as measured by the averaged components of the vorticity vector
〈ω1〉(y, z, 0+), 〈ω2〉(y, z, 0+), 〈ω3〉(y, z, 0+), and the enstrophy 〈Ω〉(y, z, 0+) from the incident shock
at time 0+ (left column) with the comparison from linear instability theory (center column). Also
shown is the surface-plot comparison of the results from the simulation (green) with the results from
linear instability theory (blue) (right column).
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3D a−0 = 0.205 cm 3D a−0 = 0.29 cm
initial conditions initial conditions

WENO Theory WENO Theory
max [〈ω1〉(y, z, 0+)] (cm/s) 9.7698 0 20.8719 0
max [〈ω2〉(y, z, 0+)] (cm/s) 1.7828× 103 1.9525× 103 2.5768× 103 2.7623× 103

max [〈ω3〉(y, z, 0+)] (cm/s) 1.7835× 103 1.9525× 103 2.5765× 103 2.7623× 103

max [〈Ω〉(y, z, 0+)] (cm/s2) 1.6267× 107 − 3.2774× 107 −

Table 5.3. Comparison of the initial circulation deposition max [〈ω1〉(y, z, 0+)], max [〈ω2〉(y, z, 0+)],
and max [〈ω3〉(y, z, 0+)] from the three-dimensional WENO simulations with a−0 = 0.205 and a−0 =
0.29 cm together with the predictions of linear instability theory. Also shown is the baroclinic
circulation deposition on the interface max [〈Ω〉(y, z, 0+)].

indicating that it is negligible; 〈ω2〉(y, z, 0+) and 〈ω3〉(y, z, 0+) show the formation of alternating

strong positive and negative vortices, as expected by the different misalignments of the density

and pressure gradient vectors. Note that 〈ω3〉(y, z, 0+) is the same as 〈ω2〉(y, z, 0+), but rotated

90◦ clockwise. The second column shows the predictions for 〈ω2〉(y, z, 0+) and 〈ω3〉(y, z, 0+) from

linear theory. Linear theory gives similar qualitative and quantitative predictions as those from

the simulations. The only difference is that the maximum values are slightly larger in the linear

prediction, and that the vortices are much rounder in the linear predictions. The discrepancy can

be attributed to the fact that the simulation values are measured at 0.06 ms, so that the circulation

deposited on the interface by the shock has evolved. The right column of the figure presents surface

plot visualizations for the simulations (green) with a comparison to the predictions of linear theory

(blue). The surface plots for 〈ω1〉(y, z, 0+) show a disordered noisy structure. The surface plots of

〈ω2〉(y, z, 0+) and 〈ω3〉(y, z, 0+) show the formation of a sinusoid-like structure with the prediction

of linear theory shown above the simulation in the peaks of the vortices and shown below in the case

of the valleys. A visualization for the a−0 = 0.29 cm initial condition yields similar results and is not

shown.

A quantitative measure of the initial circulation deposition is obtained by comparing the max-

imum values from the WENO simulations with the predictions of linear theory. The results for

the simulations with a−0 = 0.205 and 0.29 cm are shown in Table 5.3, and indicate that linear

theory overpredicts the simulation by 8.7% in the case of a−0 = 0.205 cm and by 2.5% in the case

of a−0 = 0.29 cm. The WENO values for ω3 and ω2 also confirm that the simulations retain sym-

metry, as the difference is only 0.04%. The results also show that the simulation with a−0 = 0.29

cm has initial circulations that are one third larger than those with a−0 = 0.205 cm. The nonzero

value of max [〈ω1〉(y, z, 0+)] indicates an error of 1% between the simulations and theory. As the

WENO values are taken at 0.06 ms, the baroclinic vorticity production has already modified the

vorticity, which can be quantified as follows. The baroclinic vorticity production has magnitude

P1 ∼ ×107 and P2 ∼ 109 (in units of s−2) in the longitudinal and periodic directions, respectively.



164

For ∆t ∼ 0.06 ms, this corresponds to an increase in vorticity ∆ 〈ω1〉 ∼ ∆tP1 ∆x ∼ 1 (cm/s) and

∆ 〈ω2〉 ∼ ∆tP2 ∆x ∼ 103 (cm/s), which is consistent with the discrepancy between the WENO

results and the predictions from linear instability theory.

5.1.3 Initial conditions for the vorticity-streamfunction method

Initial conditions for the three-dimensional VS method are adapted from the two-dimensional sim-

ulations (Sec. 4.2.4) and the three-dimensional initial conditions for the WENO method (Sec.

5.1.1). The initial perturbation is the three-dimensional product of sinusoids [Eq. (1.20)]. A

Cartesian grid is specified over the domain [0, Lx]× [0, Ly]× [Lbot, Ltop], with uniform grid spacing

h = ∆x = ∆y = ∆z and Nx × Ny × Nz grid points. In the present simulations, the domain has

dimensions [0, 5.94]× [0, 5.94]× [−8.91, 5.94] with resolution Nx ×Ny ×Nz = 80× 80× 200 (Table

5.4).

A VS simulation of the Richtmyer-Meshkov instability begins immediately after the passage of

the shock. As a result, the initial vorticity must be specified on the grid. To specify the initial

vorticity, linear instability theory is used [Eqs. (5.3) and (5.4)]. Next, use N = 4Nx markers to

discretize [0, Lx] and [0, Ly] to give xi and yj . Let zn,m = η(xn, ym) and

∆sm,n,1 =
1
2

√
(xm+1 − xm−1)

2 + (zm+1,n − zm−1,n)2 , (5.6)

∆sm,n,2 =
1
2

√
(yn+1 − yn−1)

2 + (zm+1,n − zm−1,n)2 , (5.7)

be the arclength along the x and y directions, respectively. The circulations on each of the N ×N

markers is

Γm,n,1 = γ1(xm, yn) ∆sm,n,1 ∆sm,n,2 , Γm,n,2 = γ2(xm, yn) ∆sm,n,1 ∆sm,n,2 . (5.8)

Assign Γ1 and Γ2 on the grid to obtain the initial vorticities

ω1(xi, yj , zk) =
∑
m,n

Γm,n,1

h3
Lg,3D (xi − xm, yj − yn, zk − zm,n, h, δT ) , (5.9)

ω2(xi, yj , zk) =
∑
m,n

Γm,n,2

h3
Lg,3D (xi − xm, yj − yn, zk − zm,n, h, δT ) , (5.10)

where the Gaussian in three dimensions is

Lg,3D (x, y, z, h, δT ) =
h3

π3/2 δ3T
exp

(
−x

2 + y2 + z2

δ2T

)
. (5.11)
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Initial surface and vortex sheet properties
Atwood number study WENO comparison

A − 0.604
a0 (cm) 0.42 0.151321
λ (cm) 5.94 5.94
k (cm−1) 1.064947 1.064947
v0 (cm/ms) 1.5 1.33876

VS method
N 320

CFL 0.3
δT (cm) 0.2

ν (cm2/ms) 10−3

x and y z
N 80 200

L (cm) [0, 5.94] [−8.91, 5.94]
h (cm) 7.425× 10−2 7.425× 10−2

Table 5.4. Initial surface and vortex sheet properties for the VS simulations of the Atwood number
study and the comparison with the WENO method in three dimensions, including the initial ampli-
tude a0, the wavelength λ, the wavenumber k, and the initial vortex sheet strength parameter v0.
Also shown are the properties of the VS method, including the CFL number, thickness of the sheet
δT , and the viscosity ν.

The initial density field is

ρ(xi, yj , zk) =
ρ1 + ρ2

2

{
1 +A tanh

[
zj − a0 cos (k xi) cos (k yj)

δT

]}
. (5.12)

Figure 5.4 shows the mass fraction and enstrophy isosurfaces at 0 ms, corresponding to the

initial conditions of the VS method. The mass fraction isosurface shows the sinusoidal interface [Eq.

(1.20)]. The spike and bubble view refers to whether the spike or bubble are at the center of the

visualization box. The enstrophy isosurface shows that the deposition of vorticity is largest in the

regions between the tips of the bubble and spike and is smallest at the tips of the bubble and spike.

This is expected as the density and pressure gradients are parallel at the tip of the bubble and are

mis-aligned in-between.

5.2 Dynamics of the instability evolution

Presented here is a visualization of the time-evolution of the Richtmyer-Meshkov instability in

three dimensions using the mass fraction and enstrophy isosurfaces. As the initial surface in three-

dimensions [Eq. (1.20)] resembles an “egg carton” (Fig. 1.1), a distinctive “bubble” corresponding

to the perturbation entering into the SF6, and a distinctive “spike” corresponding to the pertur-

bation entering into the air(acetone) can be identified. In addition, a “front side” corresponding
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spike bubble

Figure 5.4. Visualization of the mass fraction isosurface corresponding to m = 1/2 and enstrophy
isosurface corresponding to Ω = 10 ms−2 at 0 ms from the VS simulation.

to a view from the air(acetone) side, and a “back side” corresponding to a view from the SF6 side

can be identified. The visualizations shown here are for the a−0 = 0.205 cm initial conditions (the

visualizations for a−0 = 0.29 cm are expected to be very similar and are not shown).

Figures 5.5 and 5.6 show the time-evolution of the mass fraction isosurfaces illustrating the

dynamics of the bubble and spike from the front [air(acetone)] side and the back (SF6) side from

the WENO and VS simulations. The initial shocked interface (Fig. 5.2 for the WENO and Fig.

5.4 for the VS simulations) shows the initial perturbation, including the bubble and the spike. The

bubble front contains a quarter of the spike front corresponding to the sides on the quarters, which

becomes more apparent at later times. Following the passage of the shock, bubbles of air(acetone)

start rising into the heavier SF6 and spikes of SF6 start penetrating into the air(acetone). At 1.16

ms, a tube-like feature links the spike fronts at the separation between the bubbles and the spikes:

this feature is the result of the initial conditions and the fact that in three dimensions two roll-ups

are observed, one corresponding to the spike and one corresponding to the bubble. These tube-like

features form the roll-up of the bubble and spike at 1.76 ms. On the front bubble, features appear

at the corners due to the interaction of the bubble with adjacent bubbles, indicating the onset of

the nonlinear interaction. As the instability develops further, the bubble and spike roll-up further.

At 3 ms, the spike develops a further structure on the roll-up. This structure can be seen when

visualizing the back of the spike, where corrugations form on the curved part of the spike. This

structure is further evident at 4.5 ms when these additional structures can be seen on both the front

and back of the spike, and develop a nearly star-shaped feature. At late times (5.6 ms) the roll-ups

develop additional complex structure. The sides of the mass fraction isosurface offer a view of the

roll-ups, which are similar to those in two-dimensional simulations.
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Figure 5.5. Time-evolution of the mass fraction isosurface mSF6 = 1/2 and enstrophy isosurface
Ω = 108 s−2 for the single-mode Richtmyer-Meshkov instability at 1, 3, 4.5, and 5.6 ms from the
WENO simulation. The spike side facing the air(acetone) (top two rows), and the bubble side facing
SF6 (bottom two rows) are shown.
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Figure 5.6. Time-evolution of the mass fraction isosurface mSF6 = 1/2 and enstrophy isosurface
Ω = 102 ms−2 for the single-mode Richtmyer-Meshkov instability at 1, 3, 4.5, 5.6, and 7 ms from
the VS simulation. The spike side facing the air(acetone) (top two rows), and the bubble side facing
SF6 (bottom two rows) are shown
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Figures 5.5 and 5.6 also show the time-evolution of the enstrophy isosurfaces following the passage

of the shock through 5.6 ms. The enstrophy [Eq. (5.5)] is used here to visualize the dynamics of the

vorticity. Immediately following the passage of the shock at 0.06 ms in Fig. 5.5, a layer of vorticity

is deposited on the interface due to the baroclinic vorticity production mechanism. At 1 ms, the

enstrophy isosurfaces begin rolling up with bubbles of air(acetone) rising into the SF6 and spikes of

SF6 penetrating into the air(acetone). At 3 ms, the enstrophy shows a toroidal tube-like structure

indicating the formation of a rotating vortex corresponding to the spike. The bubble also shows a

similar circular feature but it is larger. In the WENO simulation, the vortex tubes meet at corners

forming a complex structure, responsible for the ripples in the mass fraction isosurface at 3 ms. In

addition, the vortex tubes connecting the spike to the bubble divide, indicating that further roll-ups

are occurring. The bubble also shows the formation of complex structures. At 4.5 ms, the vortex

tubes connecting the bubble fragment. At later times, the spike still retains a major central core,

while the bubble fragments further. The vortex tubes also become smaller with the formation of

thinner and finer structures. This is the result of vortex stretching at the interface which causes the

elongation of the vortex tubes (an effect absent in two dimensions).

5.3 Comparison of the perturbation, bubble, and spike am-

plitudes to the predictions of an amplitude growth model

Figure 5.7 shows a comparison of the perturbation amplitude a(t) from the WENO and VS simula-

tions with a−0 = 0.29 and 0.205 cm. The three-dimensional simulations are in excellent agreement

for both initial conditions up to reshock. Also shown is a comparison of the bubble and spike ampli-

tudes, ab(t) and as(t), respectively. The VS bubble amplitude is in good agreement with the WENO

amplitude at early times. At intermediate times, it overpredicts the WENO amplitude. Similarly,

the VS spike amplitude is in agreement with the WENO simulation at early times. At intermediate-

to-late times, the spike amplitude is slightly smaller. Overall, the results show excellent agreement

between the VS and WENO simulations.

Figures 5.8 and 5.9 show a comparison of the VS and WENO perturbation amplitudes with

a−0 = 0.29 and 0.205 cm and the predictions of the three-dimensional Zhang-Sohn model [157]

da
dt

=
v0

1 + ε a+
0 v0 λ1 t+ max [0, (k a0+2)2λ2

1 − λ2] k2 v2
0 t

2
, (5.13)

where λ1 = 0.08887 (A+)2 + 0.45567 and λ2 = 0.39136 (A+)2 + 0.22784. The Zhang-Sohn models

agree with the simulations at early-to-intermediate times. At later times, the models underpredict

the simulation amplitudes.

Figures 5.8 and 5.9 also show a comparison of ab(t)−ab(0+) from the WENO and VS simulations
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Figure 5.7. Comparison of the perturbation amplitude from the WENO and VS simulations with
a−0 = 0.205 and 0.29 cm (top). The bubble and spike amplitudes ab(t) and as(t), respectively, for
a−0 = 0.205 cm (middle) and for a−0 = 0.29 cm (bottom) are also shown.
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Figure 5.8. Comparison of the amplitudes a(t) − a+
0 , ab(t) − ab(0+), and as(t) − as(0+) from the

WENO and VS simulations with a−0 = 0.205 cm and the predictions of the Zhang-Sohn model.
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Figure 5.9. Same as Figure 5.8 but for simulations with a−0 = 0.29 cm.
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VS VS
a−0 = 0.205 cm a−0 = 0.29 cm

∆sim ∆sim

Zhang-Sohn Padé (all) 2.1 7.09
Zhang-Sohn Padé (bubble) 6.2 19.74
Zhang-Sohn Padé (spike) 3.75 12.68

WENO WENO
a−0 = 0.205 cm a−0 = 0.29 cm

∆sim ∆sim

VS 4.49 6.35
Zhang-Sohn Padé (all) 4.08 6.31

Zhang-Sohn Padé (bubble) 2.55 3.7
Zhang-Sohn Padé (spike) 7.96 8.31

Table 5.5. Average fractional deviation ∆sim between the WENO and VS simulation amplitudes for
a−0 = 0.205 and 0.29 cm and the predictions of the Zhang-Sohn model.

with a−0 = 0.29 and 0.205 cm with the predictions of the Zhang-Sohn model

dab

dt
= −da

dt
+

v2
0 k λ3 t

1 + v0 a+
0 k2 λ4

λ3
+ v2

0 k
2

[
(a+

0 )2
k2λ2

4

λ2
3

+ λ5
λ3

]
t2
, (5.14)

where λ3 = 4.8482 (A+)3 +1.8257A+, λ4 = 0.32772 (A+)3 +9.87594A+, and λ5 = 0.02435 (A+)3 +

3.15422A+. The predicted bubble amplitude agrees with the simulated bubble amplitudes at early

times. At later times, the model underpredicts.

Also shown in Figures 5.8 and 5.9 is a comparison of as(t) − as(0+) from the simulations with

the predictions of the Zhang-Sohn model

das

dt
=

da
dt

+
v2
0 k λ3 t

1 + v0 a+
0 k2 λ4

λ3
+ v2

0 k
2

[
(a+

0 )2
k2λ2

4

λ2
3

+ λ5
λ3

]
t2
. (5.15)

The model predictions agree with the simulated spike amplitude at early times. At late times, the

models underpredict. The agreement between the model predictions and the simulation amplitudes

can be made more quantitative by computing the average fractional deviation ∆sim [Eq. (4.40)]

shown in Table 5.5.

5.4 Investigation of reshock using the WENO method

As in the two-dimensional investigation (Sec. 5.4), the transmitted shock reflects from the end

wall of the shock tube and interacts with the evolving mixing layer during reshock at ≈ 5.65 ms.

Investigated here are the dynamics of reshock (Sec. 5.4.1), including a visualization of the complex
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wave interactions. The mixing layer amplitude is also compared to the predictions of reshock models

(Sec. 5.4.2).

5.4.1 Dynamics of the reshock process

Figures 5.10−5.12 show the dynamics of the mass fraction isosurface, including the arrival of the

shock wave (5.7 ms), the inversion process (5.8 and 5.9 ms), and the development of a complex

mixing layer at late times (8 and 10 ms). At 5.7 ms, reshock is indicated by the compression of the

bubble which now shows a flat tip. Following reshock, a transmitted shock enters the air(acetone)

and a reflected rarefaction returns back into the SF6. The vorticity deposited by the reshock process

induces an inversion process, where the bubble turns into a spike and vice versa. The inversion

process at 5.8 and 5.9 ms shows the bubble returning back into the air(acetone). The spike is also

compressed by the passage of the transmitted shock, causing the formation of additional complex

structures in the roll-up. At 6 ms (Fig. 5.11), the mixing layer is compressed and shows the formation

of complex structures. At 6.5 ms, the new spike generated by the inversion of the bubble forms.

This spike grows at later times (7, 8, and 10 ms), as shown in Figure 5.12. This central spike is the

only large-scale structure following reshock, and is similar to that in two-dimensional simulations

(Fig. 4.24).

Figures 5.10−5.12 also show the time-evolution of the mass fraction isosurface during reshock.

At 5.7 ms, reshock causes a significant deposition of vorticity on the interface, which is much larger

than the existing vorticity on the interface. As a result, the enstrophy is largest at reshock and

the isosurface only shows a structure corresponding to the reshocked surface. Furthermore, as the

vorticity is generated by the misalignment of the density and pressure gradients, it attains its largest

values near the curved parts of the bubble. This explains why the enstrophy isosurface is primarily

observed along a strip on the side of the bubble. At 5.8 ms, the transmitted shock has interacted with

the spike, causing deposition of vorticity in the region. At 5.9 ms, the vorticity begins fragmenting.

This fragmentation continues with the formation of a dense, thick, tubular structure by 6 ms in

Figure 5.11. This phenomenon is further observed at 6.2 and 6.5 ms. At later times, the mixing

layer width grows, but the fragmentation of the vorticity persists, forming complex structure.

Figures 5.13 and 5.14 show the density cross-sections for the bubble and spike during reshock. At

5.7 ms, the transmitted shock enters the air(acetone) and a reflected rarefaction wave returns back

into the SF6. The reflected rarefaction is clearly visible from the lighter red colors corresponding to

the bubble position. The transmitted shock is weaker and is visible only when it interacts with the

spike, where it leaves behind a dark red color. The transmitted shock is not seen in the air(acetone),

as it is weak and does not significantly increase the density. The transmitted shock enters the spike

at 5.8 ms and the interactions with the density structures cause the formation of a complex system

of reflected and transmitted waves. At 5.9 ms, the transmitted shock has crossed the mixing layer
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Figure 5.10. Time-evolution of the mass fraction isosurface mSF6 = 1/2 and enstrophy isosurface
Ω = 108 s−2 at 5.7, 5.8, and 5.9 ms using the WENO method. The spike side facing the air(acetone)
(top two rows) and the bubble side facing SF6 (bottom two rows) are shown.
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Figure 5.11. Same as Figure 5.10 but at 6, 6.2, and 6.5 ms.
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Figure 5.12. Same as Figure 5.10 but at 7, 8, and 10 ms.

and the inversion process begins. The visualizations at 6, 6.1, 6.3, and 6.5 ms show the inversion

process, with the pre-shock spike thinning and the pre-shock bubble transforming into a strong spike.

At 7 ms, this spike begins to roll-up as shown in Fig. 5.14. A reflected rarefaction wave further

interacts with the mixing layer after 8 ms and causes the change in colors at 10 ms. Between the

spikes, the density cross-sections reveal the formation of a well-mixed region. The formation of a

well-mixed region between large-scale structures was also observed in two-dimensional simulations

(Fig. 4.26). However, whereas the two-dimensional simulations show the formation of strong cores

of vorticity, the enstrophy isosurface shows that the vorticity is fragmented and forms small, short,

tubular structures in three dimensions.
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Figure 5.13. Time-evolution of the density in the (x, y)-plane at 5.7, 5.8, 5.9, 6, 6.1, 6.3, and 6.5 ms
using the WENO method. Both the evolution of the spike (first and third row) and of the bubble
(second and fourth row) are shown.
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Figure 5.14. Same as Figure 5.13 but at 7, 8, and 10 ms.
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3D a−0 = 0.205 cm 3D a−0 = 0.29 cm
initial conditions initial conditions
da
dt

(
cm
ms

)
k da

dτ
da
dt

(
cm
ms

)
k da

dτ

Richtmyer 1337.29 1 1891.22 1
Mikaelian 3334.21 2.49326 3334.21 1.763

Brouillette-Sturtevant 3070.64 2.29616 4341.63 2.29568
Charakhch’yan 2534 1.89488 3641.42 1.92521

Table 5.6. The growth rate da/dt and the normalized growth rate k da/dτ for the Richtmyer
model before reshock for the three-dimensional WENO simulations with a−0 = 0.205 and 0.29 cm.
Also shown are the growth rates and the normalized growth rates for the Mikaelian, Brouillette-
Sturtevant, and the Charakhch’yan reshock models.

5.4.2 Comparison of the mixing layer amplitude to the predictions of

reshock models

Here, the mixing layer amplitude after reshock is compared to the prediction of reshock models. As

the models for the mixing layer amplitude are linear, the growth rate can be computed in dimensional

and rescaled units (Table 5.6).

Figure 5.15 shows a comparison of the mixing layer amplitude from the three-dimensional WENO

simulations with a−0 = 0.205 and 0.29 cm, together with the prediction of the Mikaelian reshock

model [Eq. (4.42)], the Brouillette-Sturtevant model [Eq. (4.43)], and the Charakhch’yan model

[Eq. (4.44)]. The Mikaelian model depends only on the post-reshock Atwood number A+
1 , which

has the same value in all simulations. As a result, only a single curve is plotted. This model

overpredicts the numerical results. By contrast, the Brouillette-Sturtevant reshock model yields

a different prediction for each simulation. The prediction corresponding to the three-dimensional

simulation with a−0 = 0.205 cm has the smallest value, followed by the model corresponding to

the three-dimensional simulation with a−0 = 0.29 cm (30% larger), as shown in Table 5.6. The

Charakhch’yan model depends on the post-reshock Atwood number A+
1 and the mixing layer growth

rate v0, so that two curves are plotted, corresponding to the simulations with a−0 = 0.205 and

0.29 cm. This model has the smallest prediction for the simulation with a−0 = 0.205 cm, and the

prediction for the three-dimensional simulation with a−0 = 0.29 cm is 30% larger. In conclusion,

the Mikaelian reshock model is in best agreement with the simulation results, as the mixing layer

amplitude following reshock does not depend on the pre-shock amplitude.
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Figure 5.15. The mixing layer amplitude a(t) versus time t from the three-dimensional WENO
simulation with a−0 = 0.205 cm (top) and a−0 = 0.29 cm (bottom), together with the predictions of
the Mikaelian, Brouillette-Sturtevant, and Charakhch’yan reshock models.
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5.5 Atwood number study using the vorticity-streamfunction

method

Presented here is a study of the effects of the Atwood number A on the evolution of the single-mode

Richtmyer-Meshkov instability in three dimensions. Simulations using the VS method are performed

for A = 0, 0.2, 0.4, 0.6, and 0.8, including visualization of the instability evolution using enstrophy

and mass fraction isosurfaces and cross-sections of the density and vorticity fields (Sec. 5.5.1), and a

comparison of the perturbation, bubble and spike amplitudes to the predictions of the Zhang-Sohn

models (Sec. 5.5.2).

5.5.1 Comparison of instability evolution and vorticity dynamics

Presented here are visualizations of the mass fraction and enstrophy isosurfaces for A = 0 and 0.4.

The mass fraction isosurface illustrates the instability development in three dimensions, while the

enstrophy isosurface illustrates the dynamics of vorticity. The visualizations illustrate the dynamics

of both the spike and bubble. For all visualizations, the perspective is from the heavier fluid (or in

the case of A = 0, from the fluid corresponding to m = 1).

Figure 5.16 shows the time-evolution of the mass fraction and enstrophy isosurfaces for A = 0.

At 1 ms, the mass fraction isosurface shows the linear stage of the instability development with the

growth of the bubble and spike. For A = 0, the bubble and spike are symmetric. In general, for

A 6= 0 the spike contracts, while the bubble expands. At 3 ms, roll-ups are already visible and the

vorticity assumes a ring-like structure. At 5 ms, roll-ups are further developed. At 7 ms, the roll-up

is fully developed and is visible on the sides of the mass fraction isosurface. In three dimensions

there are two regions where roll-ups occur; at the spike (as in two dimensions), and in the bubble

region.

Figure 5.17 shows the time-evolution of the mass fraction and enstrophy isosurfaces for A = 0.4.

As the Atwood number increases, the symmetry between the bubble and spike for A = 0 in Figure

5.16 is lost. Instead, as the instability develops, the bubble rises into the heavier fluid and expands,

while the spike penetrates into the lighter fluid and contracts. This is already visible at 5 ms, where

the size of the bubble roll-up is larger than the roll-up for the spike.

Figure 5.18 show the cross-sections of the density and components of the vorticity field. The

cross-sections are taken in the longitudinal (x, z)-plane and correspond to the middle of the spike

region at 0 ms. The cross-section for ω3(x, z) is shown at 0.2 ms, as it is zero at the initial time.

Only the spike region is shown, as the bubble region shows similar behavior. Visualizations at 1, 3,

5, and 7 ms illustrate the time-evolution of the instability. Results are compared for A = 0, 0.2, 0.4,

0.6, and 0.8 to understand how the dynamics change as a function of the Atwood number.

Figure 5.19 shows the time-evolution of the density cross-section ρ(x, y, z) as a function of time
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Figure 5.16. Time-evolution of the mass fraction and enstrophy isosurfaces for A = 0 at 1, 3, 5, and
7 ms from the VS simulation.
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Figure 5.17. Same as Figure 5.16 but with A = 0.4.
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Figure 5.18. The density cross-section ρ(x, ymid, z) and cross-sections for the three components of
the vorticity field, ω1(x, ymid, z), ω2(x, ymidz) at 0 ms and ω3(x, ymid, z) at 0.2 ms.

and A. For A = 0, the image shown corresponds to the mass fraction cross-section m(x, y, z) in

the spike region. The visualization shows the initial growth of the spike and bubble at 1 ms. At

3 ms, the beginnings of the roll-ups in the bubble and spike region are visible. At 5 and 7 ms,

the roll-up further develops, showing symmetry between the bubbles and spikes. Comparing the

mass fraction cross-sections of the three-dimensional simulations with those of the two-dimensional

simulations (Fig. 4.28) shows similarities in the development of the spike roll-up. In both cases, the

spike roll-up develops at 3 ms, and a fully-developed roll-up forms at 5 ms. The A = 0.2 results

show little differences compared with the A = 0 results except that the spike is now smaller. This

trend is visible in the 5 ms cross-section for A = 0.4. As the Atwood number increases, the spike

also penetrates further into the lighter fluid. The images corresponding to A = 0.6 and 0.8 show

similar trends, including a smaller spike roll-up and deeper penetration of the spike.

Figure 5.20 shows the time-evolution of the cross-section of the first component of the vorticity

field ω1(x, ymid, z) as a function of the Atwood number. At 0 ms, this component shows a negative

region corresponding to the tip of the spike and a positive region corresponding to the tip of the

bubble. The regions of strongest vorticity correspond to the mid-point between the bubble and

spike tip. Consider now the case A = 0. As the instability develops at 1 ms, this component follows

the growth of the bubble and spike, and intensifies in the region corresponding to the mid-point

between the bubble and spike. At 3 ms, the vorticity is now concentrated in a bilayer of positive

and negative vorticity in the region between the bubble and spike. At 5 ms, the vorticity rolls-up

in the bubble and spike. At 7 ms, the center of the roll-up shows vorticity of opposite sign. As the

Atwood number is increased to A = 0.2 and 0.4, the vorticity follows the more elongated and thinner

spike. For A = 0.6 at 3 ms, the vorticity field shows a negative layer corresponding to the tip of the

spike. This layer rolls up at later time. For A = 0.8, the vorticity shows a strong negative region

corresponding to the tip of the bubble at all times. A strong positive layer of vorticity is present in

the region between the bubble and spike.
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Figure 5.19. Time-evolution of the (x, z)-cross-section of the density field ρ(x, ymid, z) for A = 0,
0.2, 0.4, 0.6, and 0.8 at 1, 3, 5, 7, and 9 ms from the VS simulation.
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Figure 5.20. Time-evolution of the (x, z)-cross-section for the first component of the vorticity field
ω1(x, ymid, z) for A = 0, 0.2, 0.4, 0.6, and 0.8 at 1, 3, 5, 7, and 9 ms from the VS simulation.
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Figure 5.21. Same as Figure 5.20 but for the second component of the vorticity field ω2(x, ymid, z).
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Figure 5.21 shows the time-evolution of the cross-section of the second component of the vorticity

field ω2(x, ymid, z) as a function of the Atwood number. At 0 ms, this component has the same

distribution observed in two dimensions, with a positive and negative layer on opposite sides of the

tip of the spike. Consider now the evolution for A = 0. At 1 ms, as the bubble and spike grow,

the vorticity forms two regions of strong positive and negative vorticity, one closer to the bubble tip

and one closer to the spike tip. At 3 ms, the roll-ups of the bubble and spike are visible. At 5 and

7 ms, the cores become stronger and larger. For A = 0, the rotating cores corresponding to the tip

of the bubble and spike are located one on top of the other. By contrast, as A increases, the cores

corresponding to the spike are closer together, further indicating that the spike contracts while the

bubble expands. For A = 0.8, the vorticity of the spike forms a layer that is close to rolling up at 7

ms.

Figure 5.22 shows the time-evolution of the cross-section of the third component of the vorticity

field ω3(x, ymid, z) as a function of the Atwood number. This component is zero at 0 ms, correspond-

ing to the initial distribution following linear instability theory. As a result, the time-evolution is

only shown starting at 0.2 ms. For A = 0, this vorticity distribution corresponds to a vortex bilayer

located at the mid-point between the bubble and spike, which shows positive vorticity on the bubble

side and negative vorticity on the spike side. At 1 ms, the bilayer is still present and located in

the region between the bubble and spike. The vorticity has intensified, going from a maximum

magnitude of 0.1 to 0.5 ms−1. At 3 ms, the bilayer is still present and further intensifies with a

maximum value of 1.5 ms−1. At 5 and 7 ms, a roll-up is observed, where the cores are represented by

vorticity of opposite sign compared to the sign of the vorticity in the layer. As the Atwood number

is increased, the bilayer at 0.2 ms shows one side becoming stronger. At late times, stronger positive

and negative cores are observed in the roll-up regions.

5.5.2 Comparison of the perturbation, bubble, and spike amplitudes to

the predictions of amplitude growth models

Presented here is a quantitative comparison of the perturbation, bubble, and spike amplitudes from

the VS simulations with the predictions of the Zhang-Sohn model [157].

Figure 5.23 show a comparison of the amplitudes from the three-dimensional VS simulations

as the Atwood number is varied. As A increases, the spike amplitude increases and the bubble

amplitude decreases. However, the overall perturbation amplitude is nearly constant and increases

only for A = 0.6 and 0.8. This is in contrast to the perturbation amplitude in two dimensions (Fig.

4.38). The results suggest that in three dimensions, Atwood number effects are less pronounced

than in two-dimensions.

Figure 5.24 shows a comparison of a(t)−a(0+) from the VS simulation with the prediction of the
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Figure 5.22. Same as Figure 5.20 but for the third component of the vorticity field ω3(x, ymid, z).
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Figure 5.23. Comparison of the perturbation, bubble, and spike amplitudes, a(t), ab(t) and as(t),
respectively, for A = 0, 0.2, 0.4, 0.6, and 0.8 from the three-dimensional VS simulation.
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Figure 5.24. The perturbation, bubble, and spike amplitudes a(t) − a(0+), ab(t) − ab(0+), and
as(t) − as(0+), respectively, from the VS simulations with A = 0, 0.4, and 0.8 and the predictions
of the Zhang-Sohn model.
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A = 0 ∆sim

Zhang-Sohn Padé (all) 8.06
Zhang-Sohn Padé (bubble) 8.06
Zhang-Sohn Padé (spike) 8.06

A = 0.2 ∆sim

Zhang-Sohn Padé (all) 8.12
Zhang-Sohn Padé (bubble) 12.05
Zhang-Sohn Padé (spike) 5.16

A = 0.4 ∆sim

Zhang-Sohn Padé (all) 5.21
Zhang-Sohn Padé (bubble) 13.56
Zhang-Sohn Padé (spike) 1.82

A = 0.6 ∆sim

Zhang-Sohn Padé (all) 2.23
Zhang-Sohn Padé (bubble) 11.94
Zhang-Sohn Padé (spike) 9.15

A = 0.8 ∆sim

Zhang-Sohn Padé (all) 8.86
Zhang-Sohn Padé (bubble) 7.66
Zhang-Sohn Padé (spike) 15.8

Table 5.7. Average fractional deviation ∆sim between the VS amplitude and the predictions of the
Zhang-Sohn model for A = 0, 0.2, 0.4, 0.6, and 0.8.

Zhang-Sohn Padé model [Eq. (5.13)]. For A = 0, the Zhang-Sohn model shows agreement at early

times before diverging. These observations apply also to A = 0.4. For A = 0.8, the Zhang-Sohn Padé

models overpredict the perturbation amplitude. Figure 5.24 and shows a comparison of ab(t)−ab(0+)

from the VS simulations at A = 0, 0.4, and 0.8 and the predictions of the Zhang-Sohn bubble

amplitude model [Eq. (5.14)]. For A = 0 and 0.4, the Zhang-Sohn models show good agreement

at early-to-intermediate times. At late times, the models underpredict the bubble amplitudes. For

A = 0.8, the Zhang-Sohn model overpredicts the bubble amplitude from the simulations. Figure

5.24 also shows a comparison of the spike amplitude as(t) − as(0+) from the VS simulation and

the prediction of the Zhang-Sohn model [Eq. (5.15)]. For A = 0 and 0.4, the model is in good

agreement with the simulation amplitudes at early times. At intermediate-to-late times, the models

underpredict. For A = 0.8, the Zhang-Sohn model overpredicts the amplitudes. The agreement

between the simulations and the model predictions can be made more quantitative by computing

the average fractional deviation ∆sim [Eq. (4.40)] shown in Table 5.7.
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Chapter 6

Conclusions

A vorticity-streamfunction method was developed to investigate the single-mode Richtmyer-Meshkov

instability in two and three dimensions. In the VS method, the vortex sheet representation of the

shocked interface in classical vortex methods was thickened to obtain a vortex layer. Such thickening

corresponds to the shocked diffuse interface in the experiments of Jacobs and Krivets [62], which

serve as a model for the present investigation. The VS method was then applied to investigate the

single-mode Richtmyer-Meshkov instability in two and three dimensions with a comparison to the

compressible WENO method and to other incompressible vortex methods.

The formally high-order WENO method is a modern reconstruction-evolution shock-capturing

scheme for the compressible simulations of complex flows with shocks. As such, simulations are

performed ab initio with a shock launched in the air(acetone) refracting into the SF6 following the

interaction with the diffuse interface. The VS and WENO methods represent two different, yet

complementary, approaches to investigate this instability.

Presented here is a summary of the major findings from each of the chapters in the thesis.

6.1 Development and numerical implementation of the vorticity-

streamfunction method

A vorticity-streamfunction method for the incompressible simulations of the Richtmyer-Meshkov

instability was developed in Chapter 2. The VS method, and more generally vortex methods, offers

an alternative to compressible simulations and to nonlinear growth models to reach the nonlinear

stages of the instability evolution. The VS method was motivated by limitations in vortex method

approaches for investigating this instability. (1) In the purely Lagrangian vortex method (Sec. 2.1.2),

the algorithm for the evolution of the vortex sheet required complex regularization procedures to

overcome the formation of the singularity during roll-up [71, 13, 7]. In addition, the formation of

singularities required a redistribution of the vortex markers [68], and the numerical method may also
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cease to provide solutions at late times. (2) The velocity field from the hybrid Lagrangian-Eulerian

vortex method based on the vortex-in-cell algorithm (Sec. 2.1.3) did not converge under grid re-

finement to the velocity field from the Biot-Savart law (Sec. 2.2.1). Oscillations in the velocity

developed due to the singular limit represented by a (thin) vortex sheet [126]. When interpolation

kernels based on central B-splines [109] with larger stencils were used, the oscillations still develop,

but on finer grids. Higher order interpolation kernels obtained from Richardson extrapolation [109]

developed oscillations on coarser grids. As a result, the classical VIC method can only be used to

investigate the Richtmyer-Meshkov instability when fairly coarse Cartesian grids are used. To over-

come this limitation, the vortex sheet was thickened using a Gaussian to obtain a vortex layer. The

simultaneous reduction of the grid spacing and diffuse-interface thickness produced initial conditions

that converged to the Biot-Savart solution (Sec. 2.2.2). The rate of convergence can be increased by

using Richardson extrapolation. The thickening of the sheet has the desirable feature of providing

a “physical” solution to the instability problem and is equivalent to the diffusive thickness in the

Jacobs and Krivets [62] experiments. This is in contrast to the “unphysical” length-scale introduced

by using vortex blobs (in the Lagrangian-γ method) and the grid spacing ∆x (in the VIC method).

Furthermore, the numerical method can be easily extended to three dimensions.

In the VS method (Sec. 2.3), the vorticity assigned on the grid using the technique from the

VIC method (which ensured that the velocity field converged to the velocity of a vortex sheet in

the limit of decreasing diffuse-interface width) was evolved using the vorticity equation augmented

by the baroclinic vorticity production term to capture the effects of the instability. As a result, an

auxiliary density equation was evolved with initial diffuse thickness given by a hyperbolic tangent

[125, 94]. The pressure was obtained by solving the pressure Poisson equation with Neumann

boundary conditions.

The equations were discretized using a semi-implicit fourth-order in space third-order in time

Adams-Bashforth backward differentiation scheme (AB/BDI3) scheme, which uses multiple time-

levels for both the time and spatial operators (Sec. 2.3.3). A stability analysis showed that the

region of stability for this scheme is largest among other Adams-Bashforth backward differentiation

schemes. Fourth-order finite-difference operators were used for the spatial derivatives. The vorticity-

streamfunction Poisson equation was discretized using a fourth-order nine-point scheme. The fast

Fourier transform was used to invert the block-Toeplitz-symmetric-tridiagonal (TST) finite-difference

matrices (Hockney’s method [59]). When viscosity was present, the final implicit linear equation was

a Helmholtz equation, which was solved by modifying the nine-point scheme for the Poisson equation.

This method was extended to three dimensions.
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6.2 Investigation of convergence of the vorticity-streamfunction

method

The dependence of the evolution of the vortex layer on numerical parameters (including grid spacing

∆x and time step ∆t) and physical parameters (including the diffuse interface thickness δT , the

viscosity ν, and mass diffusivity D) was investigated in Chapter 3. Fourth-order in space and third-

order in time point-wise convergence was demonstrated for a vortex layer with fixed thickness δT

(Sec. 3.1). When A = 0 and ν = 0, fourth-order spatial convergence was observed only at early

times, demonstrating that the method is stable. As the instability developed, the heavy fluid pushed

onto the lighter fluid, decreasing the thickness of the layer and increasing the gradients, resulting in

the generation of oscillations. Increasing the grid resolution delayed but did not prevent, the onset of

such oscillations. In fact, the fine-scale structure of the roll-up eventually created sufficiently steep

gradients to generate oscillations. The oscillations became more severe at later times, decreasing

the convergence rate of the method. To prevent the formation of steep gradients, viscosity ν and

mass diffusivity D were introduced, keeping the Schmidt number (Sc ≡ ν/D) unity, consistent with

gas dynamics properties. This led to fourth-order pointwise spatial convergence for all times. The

perturbation, bubble, and spike amplitudes, and the circulation also exhibited fourth-order spatial

convergence.

Visualizations of the instability as the diffuse-interface thickness δT and viscosity ν vary (Sec.

3.2.1) showed that significant variation occurs in the small-scale features as δT decreases, while

no significant difference was observed as ν decreases. As a result, a grid convergence study was

performed for the smallest value of the viscosity as the diffuse-interface thickness was decreased

(Sec. 3.2.2) to ensure that the solution was inside the region of convergence. All of the simulations

exhibited fourth-order convergence at early times. At later times and for smaller values of the diffuse-

interface thickness and viscosity, high order required sufficient resolution to resolve all small-scale

structures. When insufficient resolution was used, the method generated oscillations that degraded

the solution. Even when sufficient resolution was used to prevent the formation of oscillations,

the resolution was still insufficient to guarantee fourth-order convergence. Regions with second- and

third-order convergence were observed prior to full fourth-order convergence. In general, a resolution

of Nx = 512 points per initial perturbation wavelength was sufficient to guarantee that the results

were in the region of fourth-order convergence for the diffuse-interface thickness and viscosity used

here. The perturbation, bubble, and spike amplitudes were in good agreement as δT and ν were

varied, indicating that these quantities were not very sensitive to these parameters. The average

fractional deviation (used to quantify the distance to the curve corresponding to the smallest δT and

ν) became smaller as δT and ν decreased.
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6.3 Investigation of the two-dimensional single-mode Richtmyer-

Meshkov instability

The incompressible vorticity-streamfunction method was applied to investigate the two-dimensional

single-mode Richtmyer-Meshkov instability in Chapter 4. Simulations were performed on a model

of the Jacobs and Krivets [62] (Sec. 4.2.1) Mach 1.3 air(acetone)/SF6 experiment to provide an

element of validation. The results were compared to those from compressible WENO simulations.

The WENO method [12] (Sec. 4.1) is a shock-capturing scheme used in the investigation of the

Richtmyer-Meshkov instability [78] and more generally flows with shocks. As with all other shock-

capturing methods, at most first-order accuracy can be expected in the post-shock region [89, 108].

In fact, multiple families of characteristics intersect the shock, so that the error near the shock prop-

agates to the entire post-shock region [36]. Despite the loss of accuracy, high-order shock-capturing

methods remain desirable for the accurate evolution of high-frequency components and small-scale

structure [21] present in the complex mixing layer of the Richtmyer-Meshkov instability, and for the

reduced numerical dissipation associated with higher-order WENO flux reconstructions and finer

grids [77]. As in other upwind schemes, the nonlinearity and upwinding in the WENO method

removes the generation of spurious oscillations, making the method more stable. A comparison of

the fifth- and ninth-order WENO methods for different grid resolutions (Sec. 4.3) indicated dif-

ferences in the small-scale structure within the roll-ups, consistent with what is generally observed

in simulations of this flow [78]. More importantly, the overall height and width of the stem did

not vary. A convergence study for the perturbation, bubble, and spike amplitudes and circulation

showed second-order convergence as the grid was refined, and no significant difference between the

amplitude from the fifth- and ninth-order simulations.

In the present implementation of the WENO method, only a single value of the adiabatic exponent

can be specified. As a result, the conditions of a mixture of 50% air(acetone) 50% SF6 were adopted

in the mix initial conditions (Sec. 4.2.2). The Mach number of the incident shock was adjusted

so that the initial growth rate v0 matched that in the experiment. An alternative approach to

the mix initial conditions was the upstream initial conditions, where the adiabatic exponent of the

air(acetone) mixture is used [78]. It was shown (Sec. 4.5.3) that using the mix and upstream initial

conditions led to different wave velocities. However, the time of reshock was the same, the growth

was very similar, and the agreement with the model predictions and experimental data points was

the same. As a result, the choice of initial conditions did not affect the instability dynamics. As

the VS simulation began immediately following the passage of the shock, the vorticity deposited in

the WENO method was compared to the predictions of linear instability theory and the Samtaney-

Zabusky [127, 128] circulation-deposition model (Sec. 4.2.3). Excellent agreement was found between

the vorticity deposited by the shock and the predictions of the models. As a result, the VS method
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was initialized using the linear instability model, due to the more direct physical interpretation of

this initial condition (Sec. 4.2.4).

A comparison of the density fields from the fifth- and ninth-order WENO and VS methods

with the experimental PLIF images (Sec. 4.4) showed agreement in the large-scale structures but

differences in the small-scale structures. In particular, the WENO and PLIF images showed similar

small-scale disordered structure within the roll-ups. Such structure was not captured by the VS

method, which showed a strong rotating core. Despite these differences, the perturbation amplitudes

from the WENO and VS methods were in good agreement and generally matched the experimental

data points well (Sec. 4.5). The bubble and spike amplitudes showed differences, with the bubble

amplitude from the WENO method smaller than that from the VS method, and the spike amplitude

from the WENO method larger than that from the VS method. To understand this, simulations

with different Mach numbers were compared (Sec. 4.6). For small Mach numbers, the bubble and

spike amplitudes from the WENO and VS simulations were very similar. As the Mach number was

increased, the agreement between the WENO and VS methods decreases. Furthermore, the bubble

amplitude from the WENO Mai = 1.45 simulation was smaller than that from the Mai = 1.31

simulation. In fact, following shock refraction and the instantaneous deposition of vorticity on the

interface, the corrugated transmitted shock stabilized, generating pressure waves which interacted

with the layer, causing a decrease in the bubble growth and an increase in the spike growth [150]. In

the incompressible VS method, such corrections were not present, explaining the discrepancy in the

bubble and spike amplitudes. The perturbation amplitudes from the WENO and VS methods were

also compared with the predictions of nonlinear amplitude growth models (Sec. 4.5.2), where the

growth was reduced to account for the diffuse initial interface [34]. In general, the models agreed

with the simulation amplitudes at early-to-intermediate times (τ < 4) and underpredicted at later

times, corresponding to the late nonlinear regime.

The WENO method was also used to investigate the reshock process (Sec. 4.7), which occurs

when the transmitted shock reflects from the end wall of the test section and interacts with the

evolving mixing layer. Reshock is of fundamental interest [129] as it imparts additional energy

into the layer and contributes to the formation of complex disordered structures. The mixing layer

amplitude was also compared to the predictions of reshock models and good agreement was found.

Finally, the VS method was developed for the evolution of a vortex layer, which naturally arises

in shocked stratified flows and in the presence of viscosity. However, in the limit of small thickness,

the vortex layer is expected to give results consistent with the evolution of a vortex sheet. As

a result, the VS method was compared to the classical Lagrangian and vortex-in-cell methods as

the Atwood number was varied (Sec. 4.8). For low Atwood numbers, all three methods were in

agreement. As the Atwood number increased, the VS method showed differences in the bubble and

spike amplitudes compared to the Lagrangian and VIC methods. This can be expected, as the
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baroclinic vorticity production for a diffuse layer is different from that of an infinitely thin layer.

The amplitudes from the simulations were also compared to the predictions of nonlinear amplitude

growth models. In general, the models agreed with the simulation data at early-to-intermediate

times and underpredicted at late times. The VS method and, more generally, vortex methods are

valid methods to reach the late nonlinear regime.

6.4 Investigation of the three-dimensional single-mode Richtmyer-

Meshkov instability

One of the main goals when developing the vorticity-streamfunction method was the ability to extend

the formulation to three dimensions. In the present thesis, the VS method was extended to three

dimensions and applied to the single-mode Richtmyer-Meshkov instability in Chapter 5.

The initial conditions for the simulations (Sec. 5.1) were the same as in two dimensions, but with

an additional periodic dimension. The initial perturbation was a product of sinusoids, consistent

with previous three-dimensional single-mode investigations [84, 157]. For these initial conditions,

the effective wavenumber (which enters into the determination of the growth rate v0) was larger than

the corresponding two-dimensional value. As a result, simulations with larger v0 and with a reduced

amplitude (so that v0 is the same as in two dimensions) were performed using both the WENO and

VS methods. For the VS method, the initial conditions were taken from three-dimensional linear

theory [47].

The instability evolution was visualized using the mass fraction isosurface (Sec. 5.2). In three

dimensions two roll-ups formed, one corresponding to the spike roll-up (as in two dimensions) and

one corresponding to the bubble roll-up. As the spike was compressed and the bubble expanded, the

bubble roll-up was larger than the spike roll-up. The vorticity was visualized through the enstrophy

isosurface showing the formation of a ring structure corresponding to the cores of the roll-ups. The

WENO and VS simulations were in good agreement, with the WENO simulations showing additional

complex structures in the cores.

The perturbation amplitudes from the WENO and VS methods were in excellent agreement for

both initial conditions up to reshock (Sec. 5.3). The bubble and spikes amplitude were in good

agreement at early times. At later times, the WENO bubble amplitude was smaller than the VS

amplitude. The spike amplitude also showed agreement at early times, while at later times, the

WENO spike amplitude was larger. This can also be explained by the same mechanism outlined for

the two-dimensional simulations (Sec. 4.6). A comparison with the nonlinear Zhang-Sohn model

[157] showed that the model agreed with the simulation data at early times and then underpredicted.

The investigation of reshock was also extended to three dimensions (Sec. 5.4) using the WENO

method. In three dimensions, reshock produced a qualitative change in structures. In particular,
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the enstrophy iso-surface showed that the vorticity was fragmented and formed small, short, tubular

structures. This was in contrast to the two-dimensional vorticity, which formed strong cores. The

mixing layer width from the simulations with different initial perturbation amplitudes were in excel-

lent agreement, indicating that the width after reshock did not depend on the initial perturbation

amplitude. A comparison with the predictions of reshock models showed that the Mikaelian model

[101] was in best agreement with the amplitudes following reshock. In addition, the Mikaelian model

was independent of the pre-shock amplitude.

Finally, the effects of Atwood number were investigated using the VS method (Sec. 5.5). A

visualization of the density and vorticity field cross-sections illustrated the dynamics in three dimen-

sions as a function of the Atwood number. The amplitudes from the simulations were compared to

the predictions of the Zhang-Sohn model. At early times, the simulations and the models were in

agreement. At late times, the models underpredicted.

This study is one of the few investigations of the single-mode instability in three dimensions.

6.5 Implications

The results presented here suggest that the VS method constitutes a valid numerical approach for

investigating the late-time dynamics of the single-mode Richtmyer-Meshkov instability in two and

three dimensions. This method offers an alternative to the more computationally expensive WENO

simulations to determine the large-scale properties of the instability, including the shape of the roll-

ups, provided that the Mach number is sufficiently low that compressibility effects are negligible.

The VS method constitutes an alternative to nonlinear amplitude growth models to accurately

determine the perturbation, bubble, and spike amplitudes into the late nonlinear regime (τ > 4).

This is due to the fact that nonlinear models are based on Padé extensions of weakly-nonlinear

expansions, which have a t−1 decay for the instability growth by construction. As shown in Peng,

Zabusky, and Zhang [115], the late-time decay of the growth remains an open question, as vorticity

coalesces into complex structures resulting in a decrease of the late-time decay. The VS method

does not have such a priori scalings.

When compared to classical vortex methods developed for the evolution of a vortex sheet, the VS

method resolves the questions of well-posedness and continued existence of the solution by thickening

the sheet into a layer. The thickening is performed so that in the limit of small diffuse-interface

thickness the evolution of a vortex sheet is recovered. This thickening also provides a physical

lengthscale (corresponding to the diffuse-interface width) in contrast to other lengthscales such as

the vortex blob core δ in the classical Lagrangian method, and the grid-spacing ∆x in the vortex-

in-cell method. In addition, the VS method is robust, so that the layer can be evolved to arbitrarily

late times (provided that sufficient grid resolution is used to fully resolve the gradients).
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Finally, the VS method was used here to investigate the large-scale bubble and spike features

of the single-mode instability and to obtain accurate values for the perturbation, bubble, and spike

amplitudes. However, the VS method contains additional information from the vorticity and density

fields, which can be used to determine mixing rates, the spectrum of energy distribution, and other

characteristic quantities [129]. In addition, only the single-mode instability was investigated here.

However, complex multi-mode initial conditions can also be examined.
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