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The physical chtlracteristlcs of the ablation pawe ns are deesribed. 

A theora?rical approach to calculate the heat transfer to the wal l  of an 

ablating body under flow conditions encounfared in the CALCIT hyperrrcnis. 

tunnets is outlined. Simplification i e  achieved by assunling the, -par 

pressure next to the sublimiag'body ie  at its equilibri vaiue. The 

G A L G n  hypersonic teat facilities ara deacrfbed briefly. Methods of 

nunufacture are  given for COZ-ice, NZO-ice, and Gl0H1 60-ice models. 

Teckmiquee a d  special tesr eguipnient ueed in obtzrining experiments 

resultst with HZO-ice and ClQNl6Q'i~e (camphor) are dkiaeribed. An 

illuvtration of the computational technique used to determine the heat 

~ o n a f a s  rate@ to the waif and the wal l  temperatux@ dietxibutisno i.8 

included. Figures tc show the agreement batweea theory and experiment 

are presented and reasonable results are obtained for temperature 

distribution, but heat-transfer rates [ablation rate@) are greates for 

~ e a r y  than far @xpaar%mekaE. 
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Ablation is the process whereby a body absorbs heat by giving 

up p r t  of its nhasu, either by r~2ilelting wi th  or witixou svsporation, or 

by direct sublinlation from the eolid stare. Ablation s h i l a r  to the type 

~~a?r~icPereP;B i a  this report ba f~uascE nicr~st ~5;$a~jf?+loaky ia MB~UPBS In t1'118 farm 

of meteorites which enter the earth's atmosphere at high vslocity and 

generally (if  they are neitiler too large nor too sanall) ~ p c r i e e  bofcro: 

t hey strike the ground. * AbIaticn s b w s  promise a s  an engineering 

wwpon againsz high heat transfar ratea ad, high alaterisl temperaturea 

iu several applications, the n.ost cbvicus being for noee cones of bllis- 

l i e  mlseiles, or other bo4ieo entering the earth's atmosphere. Lees 2 

yointn out that the heat transter rate at the throat 4f liquid fuel rocket 
2 

nczales can be as high as 1000 BI'u/~~.  see., and ~ l u e s  of the order 

uf 2500 - 3000 B T V / P / ~ ~ . '  soc. m~ay  be reached at the forward stagnation 

Sublimation abliltion or meIting ablation where a significant par- 

tion of the molten material is vaporised offers s reduetion in the heat 

transfer rate to the b d y  for two general xeaaons: 

(1) Absorption of it significant portion cf t$e incident heat in 

iataat hat of sahib Eion (evaporation) of the body 

( 2 )  Insulation of the bcdy by i t s  own vapor in the boundary l ayer .  

Gonsider a semi-infinite slab of material subjected to an im- 

pulsive consant beat transfer at the surlace.*%i Zfthe temperature, eha 

1 
9 Sin-I Cheng pre seats gome interesting comments on and 

photographs of meteoric abfation. (Super scripts denote references at 
the emad ~f ~ Q X * .  

2 ** Lees points out that a t r iangular  timewise distr ibution of heat 
transfer sate  is a good approximation to the heat pulse during reentry. 



distilnee from the surface, the :in:e, and ::?B heipk  flu^ are denoted by 

T ,  X, t and for reapectivc'ly, then 

where p, c, k, and K. , are rsgpectively the density, specific heat, 

rharrnal condue tivity and thar*mal diflueivity of the golid 

arfc  (s) dsno tea the c plemenWr y error function. h parlicubr, at 

the @-face X s 0 ,  the tennperat*e i s  given by 

&ad henee, dvm. in the c&o@ 8f a% terra1 with high conductivity and heat 

capacity, there is a limit tc the h ~ a t  transfer rate tbt a~aintains eurface 

t~rnpratures below the fusion point a$ the material involved. When the 

materlal begins to malt at the surface, a cere fn  amount ~f beat i s  

absorbed i a  changing the phase of the mataris1 f r  gotid to liquid &ad 

&e heat transfer into &a ~soEid iB@ rgduced by that amouat. (TBids d s a ~  

nor aplJly to amcrphasoua terials wbjch do net b v e  o sIa1.p melting 

temperature. ) tf the Liquefied raaterial i s  ccnvecfsd aamy from the 

melting region and resolidifies in the region or' Low heat triznrsfer xate 

or in the wake, namely if ~orodywrnic ablaticn occurs, the melted 

terial acts Eta an sgeat wMeh redistributes cr reduces the h a t  

t~ansfer to the aolid body. 5ubl tfon ablatioa affers a particularly 

good means cf regur;lting surface temperatures to tolerabla levele 

hecauea of Elre heat blocWng effect af the ablered material and abscabticn 

of heat by eke l a t ~ n t  heat of aublhat ion.  Ala'o a s  seen by the Glausius~ 



w h e s ~  Q t conseant, an increase ir T wilt  reg& in an increase in p V 

end hence  he heat absorption and bloc-go effect by blowing will be 

increased until a balanca is achiev-do By thig mechianis=, the teablarion 

pnociens i s  self-regulating. 1x1. addition rhe vapor pssseure curve ver s u ~ i  

tenlperarure i a  BO steep trkdt theoretically one b.ss only lo fin4 a saritsabla 

n;arerial go reguhts the nlaximPwi> ter;.pcratuse experienced to a given 

leveL. Further, as shown by ~rian:s~ for applicaticn~ ~ u c h  as recovery 

of a s te l l i to  rhs rcq.aired ~e~b~:-ei~iu- ior an ablating uosc cone n a y  be less  

t-n for a radiarinp noge conc +when zhs requixed -*eight for  i n ~ d t i a n  i s  

co;lsidered. Schemes where a gas is cjccred ar the nose of a body have 

tha! d i ~ d m ~ t a g e  of excess vieight and mechanical cofi;~pl@xity of p 

am A . g a t i n g  1 devices, aild p f ~ ~ l b t 3 g ~  

Lsee 
6 9 8 '* '' 5, KuboLa , Bethe and Adrns, Fay srnd Riddell, 

soberts9, and others tlave worked out the theory Ear the heat transfer 

rare to bodiee in hypetsonic flaw including the effects  of ioniwkion, 

dis  sochtion, combustlen in the bounder y byer, recombine$ion, radiatf on 

from the hot gases behind the bow shock and hack lradiati~n from $he body. 

By speeialieing these general seaults to the conations existing in the 

GALCIT hyper sonib tunnels*, i t  i s  possible to obain  theoretical r eijulta 

y be ueed to predict the salient iru3croscopic par 

* See page 10 for a brief description of tha GALCIT hyperlaonic 
facibitf @a. 



tem~perature, heat tranefes rate, and ablation rate for a given material, 

model s-pe, and tunnel operating conditions. These result@ are based 

on well under stood nuid mechanical sapects cf the p~oblem and allow 

the experimental r esul'ia obtained to atlrve a e  a check on the portions 

of the theory still retained. Si'ince the flow cc&itions in hyper sonic 

tunnel& of the GALCIT type ase now well known, it f s hoped that these 

reeulte will prove an intereeting supplamcsnt to the result@ obtained in 

high energy Boareps such ae air arc jets and socket e aasts where high 

enthalpies are obtained, but where flow conditions are Lese wall known. 



5 Lees shows that for flows of b~llndary layer type whers L e  = 

Pr = Sc = 1, KA and hs ~atisf  y identical diuer ent2sl equations. Hence* 

it the bounbry condittcns impsed cn Q and hB at the wall and rst the 

edge of the boundary lslyer are comprrtible, and EA and hs are slowly 
w w 

vsrying along the body surface, then the distributions of ha and KA will  

be $ibihr. msbd %hi B f & ~ t ,  the? C O ~ @ @ E V & ~ ~ Q W  g*~f 

chemical specie s, and defining 

&(Ly + tT) = p, U, C (h * hA . 
@e W 

Combining Eqo (1) and rbe above relations yields 



ing Ulat the vapor preseure of the solid matarial is at i t s  thermo- 

dymraig: equili bri 

and Ep. f l )  becwnee 
* 

6 
Figures 1 through 3 were  prepared by T. Kutota from Eqs. (2) 

Glausius-Clapeyron vapor prsseure equation. W i t h  figures such as 1 

*&rough 3 for 6% p a r t i c d r  wall terial, the equilibrium wall temperature 

can immediately be determined once the recovery temperature and pressure 

distrf ba$ i~n  are kgaowa. 

(gas p b s e )  

//////////r 



at the surface of any body immersed in a fluid. Coneider an ablating 

gas-@@lid interface with coordknates fixed in the interface. 

&a the ga pbase $hare are three terms to be conaidered for the 

treat transfer at the wall:* (1) conduction to tba wall. (k 8T ) ; s i ; ~  
( 2 )  diffusion of different species ta the wall carrying their associated 

BKi 
@~~&IPY* (P Dl 1 hi Iw i (3) blowing of material away from 

i 

tha wall = & hw (g) . 
In the $@lid pbase there are two term8 to be conaidered for the 

heat tranl~lfer at the wall: f l )  conduction of hmt into the interior of the ' 

solid* 4ps ; ( 2 )  convection of entbalpy to the wall (since the coordiwtes 

are fixed in the interface), 65 h, (s) . 
*.w 

Hence balancing heat to the waH in tihe gas = heae sway from the 

hw(gl a [C X~ hi] W (a) = $< h, . ( g ) + ( l - P i  ) l a  (g) 
Ew &w Ew Aw 

* We ignore here radiation and chemical reactions at the wall. 
See Reference 5 for an accounting of the terms in the general case. 



Substituting Lqs. (51, (61, and (7) in Eqo (4) and rearranging terms 

where 1 hE (g) - hE (s)] _ i s  the &tent heat of sublimation Ly . 
Defining Ga = xih LT , 

6.2 (LV + LT) = Be Ue C (h - 
hA ) E-I ' e  w 

u GH (ha - hA ) then I f4  is takenaa pe w 
@ w 

Gw 5 x=h [LV+ LT) 0 

In order to obtirin results that will allow use of pioneering work by other 

10 authors in computing the heat transfer parameter, one can define 

The case of melting ablation is not considered here. In the case of body 

terials of high latest heat of sublimation and/or i c w  conductivity. it 

i s  poesible to ignore haat conduction into the sokid and take 





The oxperlmenwl investigation of subliming ablation was conducted 

in t h ~  GALCIT hypersonic wind tunnels. The models used in the experf- 

=&Gats were hemisphere-cylinders of l-inch diameter made of H20-ice, 

CION1 60-ice, and GOZ-ice. In the fir st phase of the investigation, the 

nlodels were tested at wide ranges of temperature and pressure in order 

tc explore the general behavior cf these material@ in hypersonic air 

streams. (See Sactian UI. 5. ) In the aecond p h s e  of the investigation, 

the temperature distributions and the rate e of ablation were meaeured on 

NZO-ice a d  Cl OWlbOwlce models. ltn the third phase of the investigatiotl, 

a e t a y  of the equilibri ehaps  of ablating bodies was conducted with 

W20-ice and G H O-ice models initially of hemisphere-@ ylinder sbaape. 10 14 

In addftfm to the abktion n~eadelo, two meal  pa.eeBuge model8 were 

chine& with oriffceg df~txibulsd on thasi ~sr~%rEac$; one =&ode1 was of 
\ 

hemis&ere-cylinder arbpe, and the other of $be "eguitibri '' s b p e  ~b&b~l~@gl;a 

a b b t f ~ n  pg tes ware computed by the method outlined in Seetion 11. and 

compared with experimental values. 

The experiments were performed in. the GAECIT hypersonic wind 

tunnels legs 1 and 2. Both tunnels are of the continuous running closed 

return type, and are supptied by the same compseseor plant, hence they 

are run alternately. The deaign features of these two tunnels are set 



forth in the following table: 

Leg 1 Leg 2 

- - - - . - - -- - 

m c h  No. aangs 5.8 [mla?r%n) 6 eo l o  

-% Reservoir Temp., OC 149 

M a x  Reservoir Preo~urs, peig 108 

Test  Section, a m e n a i ~ n s ~  b. 5 x 5  

Leg 1 i s  a fixed contour nozzle and leg 2 ie a virriable contour nozzle with 

ten pairs of hand-operated jacks. (See Figure 4. ) Leg 2 is a complete 

operating 3/8 scale model of rha 21 x 2 i  inch hypersonic tunnel at the 

Caltech Jet Propuleion Laboratory. Both legs 1 and 2 feature alltomatic 

control of the reoervcir temperature and pressure. The temperatures 

are maintained by niclnr ome wire  electrical-resistance heaters imm~diately 

preceding the test seclicns. 

Becau.se of the higi2 te~rperatures encountered in the CrALCIT leg 

2 hypersdnic tunnel i t  18 necessary to bring t h ~  t el airaow up to 

tenp~rature while the wind is blowing: also f l ~ w  hati to be started at 

H ~ U C ~  Mgher pressures than were used for these tests. Hence in order 

ta prseerve bodies with low melting points cr htgh vapor presleure 

cbrircter, such as HZO-iee or solid camphor (@ H O), i t  was man&- $6 16 

tory tc protect the models from the airstream. This was acecmpliohed 

by withdrawing the model from. the ieirstrsarr~ rand holding it in a cooled 



protective case which could be opened and allow the model tc be, raised 

into the air stream through a cutout in the tunlie1 flcor after the deeired 

flow conditions had baan established. The device for accomplishing 

Cask is shown in Figure 5. Becauee of the high melting point cf camphor 

and the high Lidtent heat of HZ0-ice, i t  was satisfactorgr tc coal the model 

with ordinary atmospheric cooling air. Had GO3-ice or other low mairing 

point materials been tested in leg 2, cooler tsnnperaturtrs could have 

been obuined by using liquid NZ for the coaling medium. Cooling bya 

means d liquid N2 wae t r iad  in leg 1 and model tsmperature?s on the 

order of - 2 0 0 ~ ~  were obtained. In leg i because of the lower reservoir 

temperatures, i t  is possible to bring the airnow up to full sagmtion 

temperature while the tunnel air is cbnneled through by-pass lines and 

then to establish flow in the tunnel at: full stagnation conditions in about 

cae minute after model installation; hence no device for model protection 

was; required. 

rn 40 

The GOZ-ice models were first de by placing commercial dry 

ife in a high pressure mold kith micarta eting fixed in place. The GO2 

was allowed to melt, and was then refrozen by immersing the mold in 

Liquid N2 . The molds weze then tbawad to remove the atcdels which 

often came ouL with eoneiderable velocity (this can ba a dangerous 

neuver i f  one i e  eurioue enough to look down into tbe mold). Later 

COZ-ice modele were nufactwad by compressing the crushed dry ice 

in a mold, which i s  a far better and safer technique. 

The HZO-ice models were the marat difficuit to g~ufactur e. Fji r 



the air had to be removed from a supply of distilled water by holding the 

water under mcuurn. The solubility of O2 and N2 in M20 i a  given by 

Henry's law, 

Ki = St p . 4 

ti2 where K is concentration of the i gas species, Sr i e  the coefficient cf H 
eolubility at a given temperature, and p irr the partial presaure of the &as 

over the liquid. (See Figure 6 for values of M and KN in Hz8m ) 
a2 2 

Because of the solubility cbracterletlcrr of air in water, the gas over 

the water to be used f ~ r  the models was evacuated of air for a period of 

at lease one day to scavenge the air from the liquid. Then rha water was 

aected into molds with micarta stings fixed in place, held under if m c u  

and frozen (under vacuum) in an ordinary freeeez. In order for thiis 

the anolde so that the bubbles of vapor, which bave a large area, w i l l  

scavenge all the air from the eyrtem. The greatest difficulty with HZQ- 

ice models lies in keeping the sides af the model. uniform. Any slight 

irregularity in eurface slope causes considerable variation in both 

pressure and prestaure gradient, and hence heat transfer rate, or ablation 

rate, thus rnaking it very difficult to obhin  good dak repeatability with 

this type of model. These difficulties appeared to lave little effect cn the 

surfme temperature distrlbutian, hawever, becauae of the steepness of 

the v a p r  presauret cuxve varouo temperature. 

Tha C1OHlbO-i~e models were made by pressing granulated earn- 

phor under 8000 ibs. hydraufie pressure in brass molds. This metbod 

produced models cf good dimensional accuracy and fairly uniform 



denoity*, and is recommended Par GIOWlbO-i~e and GOZ-ice models. 

The accuracy of r h i ~  technique is reflected in the un i f~ rmi ty  of ablation 

results for the camphor models. 

To obtain model temperature data, copper-cons&ntsm thermo- 

couplee models wsrs de (See Figure 7. ), a t h  the thermocouples fixed 

on the eaer ior  of a hallow m ~ i c a r a  sting. The thermocouple wires were 

lead $a a ~ S r c  ferentht dizection on the micsrl;st sting far 0.20 to 0 .50  

inch fro=. the thermoc~uple junction in order to decraage errors eauecd 

by conduction in the thermocouple wire itself. The ice was then froeen 

on the stings in the ease of the WZO-ice model%, or depoolted in auecessive 

l aye r s  similar to a candle- 

model S. 

5 Zxgtsrat~rv Testa: B&oIe o.f the TsfpPs mint 

Exploratory teats were r m  in legs 1 and 2 with HZO-ice and 

GOZ-ice models tc e ine general aspects of the ablation phenomena. 

The n~odels were tested at zero angle of attack er Md@ ~ 0 n d i t l ~ n a  d 

temperature and pressure and were viewed by Clae &-ked eye and through 

a short focal length telescope. The GOZ-ice models were  found to exhibit 

fklring on the surface and hence to lose a W r g e  s h r e  cf their material by 

fragmentation. ** For thia reason and bacauae ~f the? digficulties of 

n;anufacture and storage of GOZ-ice models, no quantiative dam were 

attempted with this type of model. It should also be noted (See Figures 

* Tha wlue of the density achieved in this manner with C10H160* 
ice was 4 per cent lower %ban the value listed in phydcarl tizbles. 

a* Other investigatorsiZ using GOZ-ice models b v e  had 
difficulty with fragmentsr tion. 



2 and 3. ) that the wlues of B* achieved with GOZ-ice and 6 1 0 H 1 6 C ) - % ~ ~  

are very nearly the -me and ti~erafore preclude working with both 

materials to spread the range of $3' values attainable. The miues of 

Ah obtained with GOZ-ice w i l l  be larger, however, because of .the lower 

wall temperatures. 

The H20-ice modeis were observed to melt at the nose in leg I 

for supply pressures greater than 34 p ~ i a  at To 2 149@6. If the pressure 

wae appreciably greater than tMt5 value, a distinct crater or melt regicn 

of gzeater or less aeverity would form at the nolae. depending on the 

gnitude cf the reservoir pressure. (See Figures 8 and 9.) The 

raason for malting i a  seen from the relationship between the p b s e s  of a 

cryeat l ine  substance and the temperature and pressure (%e sketch. ). 



In the sketch, the loeus of points OA represent the boilfng temperature 

of the given substance in  the liquid state at t he  corroajponding pressures 

the locus of points OB represents the melting conditiaas for the solid 

s a t e ;  the locus of points OC gfvca the conations under whfch the solid 

will sublima, and O i s  the triple point at which all thee qtates may 

eaaA@C. The dot t~d  line from Q represeats suppreesion of the freeeing 

point, or supercooling. The triple poiar fog tkw ntcst comrncn form of 

ZZO-ice occurs at O@C and 0.0686 p e h  pressure. At a recovery tcm- 

0 perature af 149 C in leg 1, it was found possible to hold T, less t b n  

O ~ C  so lorag a s  rhe reservoir pressure was l e ~ s  than 2 atm. and 

melting at the nose was not t tpprent  at pressaree less  than 34 prria. 

Baeed on this sh&ple relationship and using Figure 1, it i s  easy 

to determine the reservoir conditions of ternpsrature and pressure which 

will induce stagnation piat melting at any given Xaach n 

af tke low viscosity of water, once the HZO-ice melted i t  was ~onvected 
b 

away, thus causing the cratering effect. Malting was not a problem with 

any of the other rn~teterials thkt were tested. 

Since say cratering with the models made accurate qusntitative 

dsur imgossible to obtain, ell tests with N20-ice models were run at 

reservoir gemperatares and pressures such t h t  the model nose tsm- 

0 perature was approxin~ately O 6. 
I 

The test conditions used for all quantitative da@ nneasuren~ents 

on ablation rate are set forth in the following chart: 



Moo 
5,8 8,O 

OC 1 49 48 2 

Po am. (C10M160) 2. 34, 3. 79 5,86 

% aem. (HZO) 2, OQ 3,70 

Angle of AtWck 8 Q 

To obtain quantitative cia& on ablation rates, t ime  lapiae pharo- 

graphs ware taken of the model profiles with a 35 mm single~jlense 

reflex camera fitted with a, 135 mm telephoto lensa w i t h  extension tube 

for close w c r k  By toking: a eeries of photographs of a model at 

specified time p e r i d s  during a run, a tima: laprae sesies of the abhtion 

prcceas wae obtlrined. The photographie f gea of ~kae model were later 

carefuHy measured on an optical cornparatas to aeewaciea on the order 

. c-f 0.0003 inches on the f i l m  f. 001 inches absoluta), giving the ablation 

rate at all points on thht silhouette of the mially ~ymmetric body. (See 

Figures 10 rhrough 13. ) 

The Camera was inwlbriaably positioned at E~ast 3 $see from the 

1-inch diameter model, hence the cosine error introduced in photographing 

the model silhouetrs was negligible. Errors rcaused by distortion in the 

photcgraphic process were cheeked by pbtogragiaing a &-inch ocale cmd 

measuring the inch mark@ on tha film; errors Prom this eourca are 

deemed to have bean leaa than 0.1 per cent. 



Perhaps the largest source of error w a e  lack of picture etarpness. 

caused nlainly by the tunnel plate glasp, windows; this effect u7as 

aggravated by the oil always present in the funnel and found on the 

windows after tunnel o~mra tion. 

3Aoilel ten2psrature a t a  were recorded or, a Brown self-isalancing 

potentiometer, which was calibrated to the temperature of distillel ice 

slush and boiling distilled watel-. Becaj~se tempratare gradients will 

exist within the nlatarial eveit after the wall temperature hae stabilized, 

accurate mil temperatuxe ilata are obtained only when the thermocouple 

is coincident with the gas-soliil i l ter face,  To minimize this effect, only 

~ ; ~ Q L T ) S C  ten-iperatu~e data v,tMch wero obtained at the end of a data rran were 

used. 

Model prassusa data were  recorded on a precision lead-serow 

mercusy micro-n~anometer for the higher presoures near the stagnation 

point (local body slope iriore t a n  45@ to the Qcw directioa) and a silicone 

oil multipze manometer bank for the pressure orif ices farther back on . 

the body. (See Figuses 14 and 15. ) 

There is good reasoll to believe that an ablating body under con- 

ditions such as were encountered in these tes to  will approach an equilibrium 

shape, if one cl;amines the two extrenies of body shape for laminar boanary 

layer flow: (1) If the nose s k a p ~  is highly ccnvex or pointed (see sketch) 

heat tranefsz and E L ~ X ~ I T ~ U ~ ~  ab=1Xat%on rate x v i l l  dcp@Cur at 

"Lizs forward ~tbtgsation point and the body wilt  become more blunt; 

(t) Zf the nose shape i s  initfallg flat then the heat trander and ablation 



(8) Highly Convex (b) Fkt Nose 03 
NO@@ 

rstee near the @boulder are brger than at the forwazd stagnation point. 

This fact can be seen from Eq. (91. If the nose i s  Plat, then ue wi l l  

increase a e  the flow opproach~s the shoulder; aleo dueids will increase 

apprwehing idinity at the corner. * 

*  ern^'^, Rose. and Detra show axperimenrally and theoretically 
that the peak heat transfcr rate tor a flat-noaei! cylindrical body 4 t h  a, 

11 corner ra&us ie reached at the eahcgadesp and not art: the farward 
s t k g ~ t i o n  point. ~ b o n e s l  Lf px s experimental data to show that the 
h p a e  tranefer prameter, ~ u /  and the non-dimensional velocity, 
a@/&@ , increase very rapicily as t;hs sharp corxxer of a flat no%@ cylinder 
i o  gkpprm~hed. 



Initially then, these two extremes in body sbape wtfi be expected 

to approach each other and there may exlst some intermediate sbpa,  

ao in the forsg~fng sketch. In part (c) of the &katch, the feedback batwean 

tsansfar rate per unit cross plecticn area i s  nearly constant. wMle the 

ablation rate per unit crose aseftion area i e  eona*mt. 

The condition fos an rquilibri shape d e e d  on eimple geomerrical 
2 

~@n@idssstload i IB 

T.  Kubolir* he& ammined the determiation of the equiLibri 

ehape theorertically, ass in@ a mdified Nawtonhn pres sura distribution 

near the etagnation pist, as 0. and using the 8 

( ~ u /  Iws as used in Beference 10. (Sic Appendices B and D. ) His 

reaults indicate tWt the radius at the r s a g ~ t i o n  pPnt increase8 with time. 

a Ae shown in AppendFv D8 ha alao obtained b reeult 

wrlue for due/d(a/r) to f i t  tMs relationship. ing an ellipsoidnrl 

nose e b p e  one can determine the ratio of the 

the ellipsoid that wil l  agree with ehis aquation For the fonditions of tha 

fiZO-fce at Po n 2.34 atmosphere&, MIp3 t 5.8, and To = 149'~, his 

results indici~ta that the aquilibri ellipsoid determined by this equation 



would bave i t s  aaaJor ads perpandlcuhr tb tha now ctlrection and a ratio 

of major axis to minor ads of 4.6 to ]I. For the eanditions of 610M160-ice 

at P 2.00 atmospPlerea, Mw e 5.8 and To = L49 OC, hi@ resulte indicate 

that an ellipsoid with i re  nlajor ads perpendicillar to the W w  direction, 

and s ratio of amjor axis  t6a anlncr arcis Df 6.  O t o  1 would be obained. 

To check these ideas, WZO+Lce and C1QW160eI~e  models with langth tct 

diameter ratios on the order of 7 were constructed and tested in leg 1. 

(See Figuree 12 and 13. ) Tbatee moclela were run for 34 minutes and 

39 minutas rerapectfvely to allow them to approach thais equilibri 

sbpct 8s clolsely a s  poseibla. An examination cf Figures 12 and 13 

indicates t b t  the nose skpes can indeed ba quite accurately approximated 

by oblate elltpsoida with their 1 to the fksw diraceion 

out to the region cf @lopa. on the order of 30 degrees to the now 

d?lreeti~xo Fer the case of HZB-ise the ratio of major axis to minor 

B obtained experimsntally w a ~  1.7 to 1, a d  for C W 0-ice the 10 It6 

GIOMl bO-Lce moclel, a preasutrs made1 was constsucted duplicating the 

fi~%Eal @hope of the actiuzl ~ 4 ~ d e L  and w&la tested in leg 1 to determine the 

pseesure distributian along Ule surfrtce. From these pressure ata, 

cctlcaticns were n&ade af the haat tranefe~ rate and eac~psa2.ed with  the 

The prarraure distributions obtained for both the hemisphere- 

cylinder and the equitibri -shape m d s l s  are pzesentad in Figures 14 

and 15, respectively. 



PV. RESULTS AND DISGUSSIQN 

Particutax hope for the accuracy of the experimental dlata i s  

derived from the excellent linearity Car the ablation rates at the nose. 

(See Figuree 16 thsough 20.  f At the start of each teat there was an 

adjustment period while the gunel flow conditions and model temperature 

stabilized although the tunnet was run for approxi tely 15 minutes at 

full ra~ervoir  coladftio9ee;i baflklrra eals=h test to deer-@@ $he efface@ of nrarozaitba 

block temperature agiuetmcnt. Thsse transient effecte caueed some 

lies ts accur in the abliatiaa rateo fer the first mfnuta or two 0% 

each run. Hence, the plots of ablartion rate at the nose do not include 

the first data points where obvious errors were involved. That is, 

t = 0 and x O are taken at the time and nose poit ion arbcut 2 minutee 

after the start of the flow. (The ablation rate at the nose is defined as 

th@ rate at wMch the nose rseedertis with time. ) 

The temperature measuring system as a whols -- the Brown self- 

balancing potentiometer and the copper-constantan thermocouples - wae 

Q o cartainly accurate to within - 1 C. However temperature gradients 

within the ablating matorfwls caused such islcatter in the experimental 

Figures 21 through 25. ) The fact that the cnset of melting at the nose 

is predicted accurately and with good repeatability by Figure 1 in the 

kase of HZO-ice indicmrtee that the actual wall temperatures were close 

to the theoretieat predictions. 

A calcuhtion was carxiad out $0 @st% te the rate of conducttow 

of heat into the interior of the model, ps , h e e d  on the theoretical wal l  



tempegatuta distribution at the hemiepherical nose! and a s s  

uniform temperature distribution over l;ha badre of the hemiswere. (See 

Appendfx C. ) Newever, the a s s  

tributicn over the base of the hemtaphere probably laads to higher 

tempratwe gradients prt the sagnation ping than would actually be 

achieved, and hence $he sstimaeed ccnduction effects at the nose might 

be larger than the actual effects. Expe~imenta with the HP-ice  models 

to measure the temperature difference across the micarta midway b c k  

on  he body indirated that no measurable difference in temperature 

edated hence the conduetioat etffscte on the afterbody are prea 

small. The accuracy this ass  ption was enhanced in the case of the 

HzO-ice models by the high latent heat of sub1 

lu (i. B. Ly + LT = LV) . and in the case of t$nz C PI, O-ice n l~ds l s  by 110 314 
the low coefficient of thermal conductivity oi solid camphor. 

Ths comparison batween the theoretical and experimental ahlation 

rates at the noae are given in the table on page 24. 

Note that the theoretical vsluesa for Chs stzignarton p i n t  ablation 

rate are greater than the experimental ~ l u e s  in all cases. One principal 

errcs in the theoretical rehiults coatd be the exirstence of non-equjllibri 

conditions at the surface. For elrampie convection in the boundrrry loyer 

flow may cause the M v r  ~011~enLr~Lion next tc the wiall tc be leee thsn 

the equilibri value; tU@ we~uld cautiser the B' value ts dscsea~e 1 0 ~  

constant To (See Eq. 3 .  and hence the constant preseure lines in 

Figures 1 through 3 would be shdftad to the right. If this should hiappen, 

T would rise, and ilw and nh would decrease. Nenee this result could w 
in part explain the fact thgt the experimental abletion rate9 at the nose 



Reservcir Ablation Rate at the Noee (em. /mine ) 
% @ Q B u ~ @  a ._ 

8,QB1 .075 

8.350 $340 

0.391 . aso 

are less than the tfiecreti~al values. Gonveraely, ff the vapor concentration 

next to the wall is higher than the equilibrium value, than the wall tem- 

perature will decr sase, 

If the expsrimentll, tempratwe dgta are qutrlitatively correct on 

the model afterbody, &en Figures 21 and 23 indicate that KE was less 

on the afterbady for H28-ice and greater than equilibriunl 

on the afterbody for GIOWibO~ie~o 

Conduction of heat into the ineerfox of the body (pogitive kg) would 

cauae 8' to decrease far ffxed TW (See Eq. (2). ) and hence would caulse 

the conersL~t reservoir fempelraturs lines to shift do in Figures 1 

thro~ngh 3. Thi$ would cause the equilibri TW to decrease, but only 

very slightly since the vapor pressure curve8 are very eteap. In any 

ease, as Seen by Eq. (8) eto aeg., 



..I LE - GW - 4@ 
Senee, positive is wodd effect a reduction in the local ablation rate. 

Aa adQitSsw1 error incurrad in the thasrettcal calcrtabtione is 

that. in general Le, Pr, and Sc are, not equal to 1, 

Factors contributing to the reliability of the theoretical re suits 

$ 0 ~  6 3  &FB 46 g0118~8: 

( I )  E (To - Tw) i s  Large then es be corner^ relatively lees impormat 

with rarsipect to il,. Thia reeulf i s  seen in the taMe on p a g e  24 where the 

tkcrstical predicricne for ablation rate in leg 2 are much better than 

t b d e  in Leg 1. 

( 2 )  If PCE at the wall i s  amal'l, then the appp+oxi 

i s  conetaat across the boundary layer i s  m o l e  valid. Here it i s  seen in 

the, tablo on p g e  24 t b t  the theoraticat ablation rates f ~ r  H20-ice are 

better thrrn thcss  for C10W160-I@e. Also if ME: is saran, .any errore 

incurred in computing G /C are reduced commenraurstely. 

(3) The blowing correction C /C is baaed on ii correlation of 
PIo 

theosetieal and axpsrimeatal results for mstexio~ls wirh WE lessl than 44. 

Nsnce the c?xtrapolaticn of these resralts to material& with high moleculzbt 

weight ~ u s h  a s  camphor (molecmler weight 152.23) i r a  guesticnable. 

Becauaa the vapor in the nose region could be cenvected around 

the shoulder of the body before i t  hae erufficient time to diffuee thsough 
' 

tba bundary layer, and aleo because pe and T, decrease along the surface, 

the rapbr preaaure on the afterbody y be gra ter  tban the thermod 

equilibrium value. In this case resolidification which i s  by definition 

characteristic of an equilibri. process may become prcncunced encugh 

to alter the abbtion results sppreciably, giving lower values of 



beyond the shoulder than would be otherwise exprlenced. Examination 

of the model film data and teleeccpic observations indicate! t b t  resoldi- 

f ia t ion  did occur, but no pronounced effects on &ha? abWion results are 

apprent. (See Figures 26 through 31. ) Resolidification also b e  the 

effect of increasing the modal roughness, (See garticukrly Figure 12 

near the shoulder. ) and hence Cf or CH with a proportionat increase is  

il, ; the magnitude of this effefr 19 not known. However, the model 

~cughneset obsarved was on a vary small surla incagable of tripping the 

bc~ tnda ry  kyer ,  and nowhere in the data is there a laharp increase in 

Beat trsaisf~sp sate aucb a s  would b v e  bema e rienced if boundirry 

l ayer  transition to turbulent flow had occurred. 

A s  seen by the pbatographa of the eguilibri -shape models 

(Figures 12 and 13)  the nose ebapee remain canvex. This result has 

ifications in that if one is to measure expe~imentally the 

ablation rate of a particular body ahape i t  is iragorwnt that the ablaticn 

data be obtained before the bcdy sup i s  appreciably altered. Ideally, 

Iha body shape at the s&arr of each test should duplifate the equilibri 

body shape For the eqiitlibri body shape obmined experimentally in 

1 ablation velocity increases by less 

than 4 per cent from the ~Mgnation point to the shoulder. (See Figure 32. ) 

The shoulder i s  taken tc be the point where the body slope is 45O to the 

flow directfano 

The pressure distribution for the equilibri 

sirr.ilar tc the distribution for the hemisphere-cylinder and agrees wel l  

with the modified Mewbnian pedictfon out ta O = 6 0 ~ .  

One point in the accuracy of the sxperimenM1 technique used in 



~bis report to obtain ablation rates i s  worth noting. In using a photo- 

graphic time-lspse process, absolute errors such a s  operator prejudice 

in film re?ading, distortion of the photographic i ge, and tight refraction 

by the runnel window, are less important because ,error@ of this type tend 

to caneel out when comparing maasuremsnts on two frames of film. 



The siwaple theory developed buased on an energy balance at the 

I gas- solid Interface and ulaiag a heat-transfer Wrameger suggested by 

other reaearchegs, give& good sesults for v v a l  tempratwre, but over- 

eetin~ertes the ablation rate by ao much a e  a factor of two. Howeve+, the 

results for the abktion ratee are greatly improved for the greater values 

oZ (To * Tw) and the lower KE at the wall. The tkeory 

application for estimating the rektiva merits of different materials. 

%adtation batween the gas and tbe body, combustion of the! ablating: 

terhla, and recombination of ehemicerl speciee at the suriace can be 

accomted for by simple addieiva terms to the baaic heat transfer eqvstian 

developed in Lhis report. Alsc for more deafled analyses, more complete 

account cculd be taken af hsat conduction into the salid by constructing 

figures based on Eqs. ( 2 )  and (31, bug not taking $& t 0. However, this 

l1 comghlred tc the sianAple additive term 

for 4 used in t h i ~  report. 
I 

More se;~@ase%n %e clhsrrly ine%%ezated to dstsrriline $Eae 

the shielding effect from blawing by heavy molecules. 

Tha H21ZO-ice and camphor models teeted in leg 1 for long periods 

nose shapes in a sense that the chagea of 

shape with time ware imprceptibty small. They wsse close kc obbte 

ellipeoids with a ralio of the major to the minor axio of 1. 7 for camphor 

and 6 for HZO-ice. An attempt hes been made to predict theoretically 

the axis- ratio by a hir s ing a family of ellipacids for the cquilibri 

ncee ehepe, bug the results were not ~atiefactory. It appear8 tbat one 



needs niore accurate relations hctween the body ahape and the flow 

properties outside the boundary layer than those as sun~~ed  in the analysis. 

Transient effocts vdthln thc &blaring material represents an 

interesting and challenging area foz investigation. I1 this region, one 

could nieasure the ear'iy timewise arblation rate a ~ ~ d  temperature dig- 

tribution within the eolid taking care tc regulate the initial model tam- 

perature. Also there i s  room for uaefd reaearch investigating the 

boundary layer, measwing coneeatration, temperature, and velocity 

profiles near ablating bodies. The heat transfer to the vd.all obwined 

from boundary layer meaaurenrents -could be correkted with photograNic 

abblE;jon chta and haae transfer mwsuramentb d t M a  the sotid. 
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PROPERTIES OF 

Molecular Weight (WE) 18,Q2 

-teat Heat of 
Sublimation (LV) 
(-1, /pm. 1 
DifQuaion Coefficient of 0,220 **@**@ 

Vapor in Air (Dl Z )  
(cam ' / 8 8 ~ .  ) 

Viscosity o Vapor at O@C ( ) 88 ******a 6 (gois@ . 10 ) 

* Reference I5,  page 2256. 

** Reference 16. page 30. 

#*PBb Refersnc~! 15, page 1985. 

**ergo ope eit.. pgera 2134, 2138. 

0.953 
expsr imena1ly 
determined 

***** ope cit,, page 2248. 

****** Reference 17, Val. 5, page 62. 

*+****+ op. cit., *EJ& 4. 



Str ucturial formula for canlphor : 



Ccnsider a blunt-nosad adally syrnnirzkric body in a$ a t rg t r~am 

ber Ma with a how ehock and boundary laye-s behind the 

shock eovering the body as in the following: sketch. 

Body 



Sq (9) u7as used to ~ o l v e  for the heat transfer rate to the wall 

along the body sayface. The values for the heat transfer pkrameter 

(NU/ were @omput& by a procedure warkc8 out by Cohen 
bO 

)W 

a ~ d  Reel20tko oe outlined balskv, 

The pressure ratio P,/p,' was computed by the modified Newtonian 
I 

2 2 
P ~ / P ~ '  5 cca O + {pw',/Po') sin Q 

up to values of Q at which the slope of the Newtoaha pressure dietributicn, 

d(p,/p,r)/d~a was equal tc the magnitude and slope ohmf ned by the 

Pr~ndt'l-Me yar function, The pressure was then aers esid to folllsw a 

h-inndtl-Meyer diatriburion out ro O = 70@ f r ~ m  where the data ware 

fair ed intc r h ~  e!xpecperimental ~ l u e a .  E;xperiment&1 values of P , / P ~ ?  

were measured on a 3/4 sacsrte model at B = oO. 4Ei0, 90', and at nrioue  

stations along the body, The m distr$butfon was ffound 

to give excallent agreement with experiment at Q x 85'. Once the pressure 

distribution wirs determined, &cb n ber and T ~ / T ~  were determined 

ara~rlyticaliy from pe/poB& and Tw wars determined directly from the 

cbarthc of Bg versala Two Then a s  suggesred in Reference 10, a corralarion 

ber, n, was determined by n erically integrating %he equation 



.was obminad from Figure 2,  page 13, in Refersnce 18, versus n and 

T \ J T ~ .  Than, 

where a was taken as 1/3. 

Values ob p W ~ F B  determined from Sutfncrhnd's formula snd 

Qw was deeermined from the equation af state tor a perfect gatl both 

wla;tes are for air at th@ w&PP &amp@aature, 

Once (NU/ (P~  )W ia  determined in t h b  manner i t  i~ eaqr 

to solve Eqo ( 9 )  fos aw itlong the aurface. 

~ a l / ~ r n ~ ~ ,  and 1.4, raspectively. 

This method bpi the advantage of being straightforward and 

requiring no iteration. The n er ical integration is best done anal ytf catty 

near the stagaation point relnee ~lrs tntagrgl (a small n bsr) must ba 

divided by the inkegrand {a small number). Naor the stagnation point 
I 

an@ aaay fakg 

For tha calculations with bbnt bodies encountered in this report, this 

linear equation was found to be accurate within 5 per cent out to values 

of @/I) = 0.2, Further, B' i s  such an insensitive function of p that Ti 
B 

/CH a 1 + p B' = constant to good accuracy i s  poseible to ass  

whers f3 i s  small. 



GQRRECTION FOR GONGVGTfON EFPEiGTS AT TI= XqDSX 

Because of the lazge ter~iperature difference at Ehe nese and at 

the shoulder of the modal& sigxzificailt errore n.&y bc incurrsd by 

asswx2ing the heat conducted in"; the solid interior is negligible. 

Barring the use of brute force numerical methods i t  i s  possible to get 

an estb&at.e of the =agnitude of such errors by means of a simple modal. 

Canoldcr the hemispherical nose of the modal to have ie tenlperature 

distribution on its aurface equal to the theos*eficzl equilibriurr~ tewaperature 

aad a uniform t empe~afuse  distribution over fha base given by the 

fieor etical equilibrium shoulder temperature. ~ a p l a c e ~  s equation in 

spherical polar coordinates for an  axially aymnletrlc bady gives 

Separating variable a, T e R(r] @ (41, and applying the baundar y condition, 

C a n r  
Zn+ 1 Tfr, 8 )  s Pawl @ 1 

811s 0 

. where Pnts are the Legendrels polynomials. 

Then @ale 
a6 

where Tw(l, O) is known. From t h i g  the ants are determined. 



Once, ( B T / B ~ ) ~ (  s) i s  deterrrxined, Pe Y detegn~ined by 

Fog practical purpeees the summation was not made ir 

infiniry. The temperarure dierribution followed a coeine function so 

closely that ody the Eegsndre polynomial Pi waa retained. The effect 

of c~nductiow Ha $0 dscreaae %he abktissn sate or the nose,  he catimotes 

oi these effect& are shawn ia Figurea Zb through 31. 



Reference 18 gives the approximate relationship far caleulatixxg 

inar heat transfer on an grbitraxgr body 

R is the local crcsa-section radiue all the: body, a l ~ d  2 2  

ed = 0 .  22 (the flat pbte value). Neah the stagnation point one 

x ~ d y  aesume a linear velocity prcfila, hence 

u = G 1 a * s  
d 

Then from the isentropic fldw relations 

Aloo, near the tatagnation point far blunt bodies 



Hence, subsitituting for F(x) and F(t) from these rehtione and simplifying, 

one obtain@ near  the sgagmticn p i n t  

Evaluating this at the swgaarion point, the term in square brackets 

This equation is limited to the region cloae to the stagnation p i n t .  

Reference 14 preaents experimentally obtained plats of u,/a* for flat 

xwsed bodie~ at Mach n bera between 2,15 and 4.86 and obtains velocity 

profiles linear within 5 par cent tor s/.D less than 0.3.  For f l a g  nosed 

bodies r - CJO . and hence 1/r2 = 0. 

( 1 )  At A = 5, the term in brackets in the h a t  squation becomes 

zero, hence the ratio of the heat tranafer coefficient to its sagnation 

p i a t  value is 1, and the nose wi l l  rerr~aia miat in the region of the stag- 

( 2 )  If R. > 5. the heat transfer parameter increasss away from thet 

stagmtion point hence the ablation rate will increase and the nose will 

(3) If A < 5,  the hear transfer parameter decreases away from 

the stagnation point, hence the ablation rate wi l l  decrease, and the nose 



wiBk tead to beeoms concave. 

From Reference 10, Figuse 5, the result is obmined that 

A .E 5 far T ~ / T ~  < 0.8 and vice verea. 

But the condition tor an equilibri no@@ s h p e ,  if qs * 0 , i@ t b t  

E COB O , also ( ~ $ 8 )  = dueids .: a@ for a linear 
0. p e  

velocity profile, hence 

4 NU/ )w ,  
= cos 43 = d ~ / d s  

Equating this result with the result cn the last page, 

By determining (r/a*)(due/ds) for a family of eltipsoid-noeed 

cylinders with ratios of minor tc majar axes of the ellipsoids between 



1 and Oe, one can solve the above rslations13ip for the ahape of the sllipsold 

i ~ s  eomwtible with the egullibri ano ce ~ o a d i t i ~ n ,  

The above r*nsrtysis oEfers a meane of pradicting whether an 

initially flat nose will tend to besoma convex or cancave. If the nosle 

e a general type of nose 

shap such as an ellipeoid and predict an squitlbrium shape from rbst. 

This only works i f  one knowo the general type cE nose s k p e  in advance. 

For tile conditions of the experiment in this repcrt. the ratio of the msrjor 

axis to the minor sda was ove-iestimated by a bctor of 3 for camphor 

and underestimated by a factor of 0 . 7  for HZ0-ice. 

a * See Reference 19 for plots of i( t a 

m 4% 
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Sur foce  Temperature, O G. 

FIG. 3- MASS ADDITION PARAMETER VS. SURFACE TEMPERATURE 
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FIG. 6-SOLUBILITY OF 0 2  (N2) IN H20 W H E N  PARTIAL 

PRESSURE O F  GAS PLUS H 2 0  VAPOR PRESSURE= I ATM. 





FIG. 8 - S E V E R E  CRATERING OF H 0- ICE MODEL 

I N  LEG I 

F1G.9-CONTROLLED G R A T E R I N G  OF H20- 1GE MOCEL 

H &  LEG t 



FIG. 10-H ICE MODEL IN LEG I AFTER QUCNTlTATlVE 

DATA RUN , Po = 2.00 ATM. 

F IG . I t -C l0H i60 - ICE  MOOEL IN  LEG I DURING 

QUANTITATIVE DATA RUN, Po = 2.34 ATM. 



FIG. 12- EQUILIBRIUM SHAPE FOR H z  0- IGE MODEL iN 

LEG I, Po = 2.00 ATM. 

FIG. 13- EQUILIBRIUM SHAPE FOR CIoWl60 - ICE MODEL 

IN L E G  I ,  Po = 2-34 ATM*  
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FIG. 14-PRESSURE OiSTRlBUTlON ON HEMISPHERE -CYLINDER 
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FIG. 15-PRESSURE DISTRIBUTION ON M, = 5.8 EQUILIBRIUM- 

SHAPE PRESSURE MODEL, C0Hj60-  ICE 
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FIG. 17 -ABLATION R A T E  AT THE NOSE , H 2 0 - I C E  
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FIG. I8 - ABLATION RATE AT THE NOSE, C,,H,,O- ICE 
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FIG, 19 - ABLATION RATE AT THE NOSE, C,oH,60 -ICE 
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FIG. 20-ABLATION RATE AT THE NOSE, G ,, H,,O - ICE 
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FIG. 21 -SURFACE TEMPERATURE, H 2  0 - ICE 



FIG.22 - SllRFACE TEMPERATURE, H 0- ICE 
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FI G .  23-SURFACE TEMPERATURE,  G,,HI6O - ICE 



D i s t a n c e  A l o n g  S u r f a c e ,  C a l i b e r s  

FI G.24-SU RFACE TEMPERATURE DISTRIBUTION, G,*H,,O- ICE 
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