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Plane waves propagating in a periectly electrically conducting
polytropic gas of otherwise uniform state in the presence of an arbi-
trarily oriented uniform magnetic field are studied; they correspond to
plane simple waves in magnetohydrodynamics. Riemann invariants
acrose finite amplitude waves in ordinary gasdynamics are generalized
herein to take into account all possible magnetchydrodynamic effecta.
There exist totally seven types of waves, namely, contact surfaces,
forward and backward facing transverse simple waves and forward and
backward facing coupled (fast and slow) simple waves. But of these only
coupled waves are genuinely nonlinear and receive most of our attention.
The mathematical theory of simple waves is discussed {irst to give a
general picture of the underlying structure of solutions. Contact sur-
faces and transverse simple wave solutions are given next with particulay
eraphasis on the case of the contact surface adjacent to 2 vacuum region.
An exact analytical solution of coupled waves for gases of arbitrary
value of vy is obtained in terms of generalized Riemann invariants;
some of these invariants are expressed in terms of definite integrals of
a parameter a = ag/ c‘:f’. The invariant relations among several physical
quantities are thus expressed in a parametric form. An alternative
method of solving coupled waves by graphical means is proposed and
some detailed calculations are presented. General properties of physical
variables across coupled waves are mentioned. For the special case of
gas in a purely transverse magnetic field, a scheme of solving arbitrary
flow problems is discusaed briefly., The corresponding case of coupled
wave solutions is given in terms of a hypergeometric function. Finally,
some examples are shown to illustrate the application of the solutions to

actual physical problems.
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‘I, INTRODUCTION

Plane I\/IHDT waves in an arbitrarily oriented uniform magnetic
field are investigated in this paper. The working medium is considered
te be a continuum and the problem is treated from a macroscopic point
of view. For ionized gases in the presence of magnetic fields, we have
to assume not oﬁly the mean free path of gaé particles to be much smaller
than any pertinent characteristic length of the problem but also the mag-
netic field strength not very strong. Consequeﬁtly, Larmor radii of
ions are considerably larger than mean free path and collisions domi-
nate the underlying interaction mechanism. The pressure can then be
regarded isotropic throughout. ¥ Moreover, diffusion velocities of ions
and electrons are assumed to be véry small compared with mass velocity
so that a treatment from one-fluid theory is justified.

In a study of the theory of MHD flow, cumbersome nonlinear
terms arise from Maxwell stresses in addition to inertia stresses. For
sufficiently high flow speeds the compressibility effects have also to be
taken into account. The possibility of bbtaining exact solutions of a
generai flow problem is remote and various approximate methods should
be considered, Usually simplification is achieved at the expense of losing
some essential features of the actual physical phenomenon. It is the ob-

ject of the present work to study in detail finite amplitude MHD waves

t MHD = magnetohydrodynamic, or magnetohydrodynamics.

The corresponding simple waves in rarefied ionized gas with collisions
playing negligible role has been investigated by Akhiezer, Polovin and
" Tsintsadge (1960) according to the Chew-Goldberger-Low approxima-
tion.
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the usual linearization procedure {acoustic approximation) is not justi-

fied. As a matter of fact, the basic priaciple of our investigation i

to preserve all nonlinear terms of the governing equations and to seek
an exact solution of the problem esxhibiting the compressibility and MHD
effects as well as their mutual interactions. Thus many powerful
methods for solving linear equations find no application here. In order
to avoid extra complexities due to geometry we have limited our atten-
tion to the study of one-dimensional unsteady waves for which all
physical variables are functions of only one gpace variable, 3, in
addition to time, ¢. There is no transverse gradient in the x;- and

xg=directions; or the state of fluld is homogeneous on all planes perpen-

dicular to the m-direction, ‘ave {ronts of any discontinuity are then

necessarily of planar {form and travel along :-direction. The prob-

lern is actually e gencralization of the famous one-dimensional unsteady

speeds to other parts of the fluid. Thus wave motion governs the basic

mechanism of fluid flow and is the most i vportant phenommenon to be
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be used as an approximate sclution of more general flows, e.g. those ia



a magnetic annular shock tube (MAST) developed by Patrick (1959).

The prototypes of two- and three-dimensional steady flow are contained
in the present solution; the insight gained here would be helpful in further
investigations.

We consider only thermodynamically reversible flow s0 that there
is no entropy production always. In other words, the entropy remains
constant along each fluid particle path. Apart from the usual assurnptions
for a dissipationless {luid in ordinary gasdynemice (inviscid and non-heat-
conducting, v =0 and k = {), we have to agssume the electrical conduc-
tivity, @, to be infinite alse. This iraplies that the entropy produced by
Joule heating, jz/’@, vanishes and we are essentially dealing with an

Magnetic flux lines are then frozen in the mediurm,

ideal fluid in MHI
they are fixed to the same fluld particles always. The justification of
assumning v = 0 and k = 0 for actual applications in ordinary gasdyna-
mice is familiar; some remarks should be made about the proper signifi-
cance of the assumption of infinite electrical conductivity., o is finite
indeed for most ionized gases. In addition to the system of nonlinear
equations governing an ideal flow, a diffusion term (higher order spatial
derivative) must enter in the problem:. The general situation is similar

to viscosity effects in ordinary gasdynamics. Nonlinear terme dominate
the underlying motion but diffusion is important in certain regions of space
and time. It is cémr@mem to measure the effect of electrical conductivity

by means of a dimensionless variable

£
T B
—
T

® . Cnt o 5
where T =1/uc “»:’z = the characteristic time and V can be any charac-



teristic speed, e.g. the disturbance speed in the fuid. At 7>> 1, an
actual ﬂgw close to ideal flow can be achieved over large regions., De-
tailed calculations showing the asymptotic approach to ideal fluid motion
have been given by Cole {1959).

The assumption of S = constant throughout the entire space has
been tacitly avelded here; this permits the existence of contact surfaces
across which an entropy jump is allowed. A typical example would be a
flow in a shock tube. If gases on each side of the diaphragm have dif.-
ferent pressures and densities initially, the entroples are not the same
in general. They may even be of different kinds of gas. After the rup-
ture of diaphragm: , a contact surface 'segmwa%’:éﬁg gases on two sides
exists and it moves with the same velocity as that of fluid in x -direction.
The initial entropy jurmp is maintained throughout and an actual flow cone
sisting of two separate isentropic flows of different entropies appears.

‘ The {low speed is supposed to be much smaller than the speed

of lght so that no relativistic effects need be taken into account. Dis-
placement currents may then be neglected throughout as usual. It can
also be shown that electric forces are much smaller than magnetic forces
and only the latter should be considered in the Lorentz force term that
enters as a body force in ordinary gasdynamics. The gas is assumed

to be isotropic, homogeneous, devoid of electric and magnetic polariza-
tion throughout. It is electrically neutral in the bulk though some weak
local charge distribution may be built up owing to nonuniformity of
electric f{ields (see e. g. Cowling, 1956). The permittivity, ¢, and per-

meability, p, are assumed to be constant in the entive fluid; they take

&

the same values as those in {ree space. Hationalized MESO unite will
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be used throughout. Then the {low problem can be forrmulated according
to a simplified version of Lunquist's model {(1952).

In order to facilitate detailed mathematical analysis, the working
mmm@ considered in this paper is a polytropic gas which implies that
the adiabatic exponent, vy = @F/CV.T ig a constant. The gas is also con-

sidered calorically perfect. The caloric equation of state reads
P=ApY {11}

where the coefficient A is generally 2 function of entropy only. It follows
from classical statistical mechanlics that the value of v is dirvectly rs-
lated to the number of degrees of freedom, n, of the particular molecu-

lar model of gas, that is

nt 2 (1-2)

v ranges from lto 5/3 for most gases and it is a fixed value after a

certain gas or mixture is chosen.

After the general formulation of the problem, the flow is seen
to be governed by 2 system of quasi-linear first order hyperbolic partial

differential equations as functions of two independent variables. The

fundamental mathematical nature of this system is well understood.

Zxistence, unigueness andcifferentiability of solutions of the corres-

ponding initial value problem have been estzblished by I'riedrichs {1948,

v8

afore the a

1955)
vestigations on 2 special class of the general system satisfying conser

vation laws. detailed proof of many important theorems characterizing

T

Due to the extreme difference of cs.fsg in iong and electrons in fonized
geses, v can be calculated as due to ions only.



-
the solution, especially that of simple waves was given theve. These
fundamental studiee place the physical problem: on a sound mathematical
ground and one is left to examine detailed structures of the solution.
Due to the important property of simple waves that they are
always contiguous to a uniform state and due to their rvelative slmplicity
in mathematical @ﬁmlygig,' they constitute the major portion of the present

D flow is

study. The general sclution of one-dimensional unsteady
not attempted here except that some remarks are made about the specia
case of flow in a purely transverse magnetic fisld. Simple wave solutions
exist only in lsentropic flows. The eantire process of expansion befove
the interaction of waves takes place, the part of the compression pro-
cess before the formation of shock wave, andcontact surface bhetween
different streamlines are described completely by simple waves., These

T .
} shocks, suffice to

solutions, together with jumyp conditions for M

describe a wide variely of one-dimensional unsteady MHD flow problems.
Flows involving interaction of waves have, EMW@V%%, to be determined

by general solutions of the systerm. Since we are considering only

flows of an ideal fluid which enable us to obtain exact solutions, the
diffusion of shear by viscosity, that of temperature by heat conductivity
and that of magnetic flux lines by electrical conductivity are neglected,
Sharp discontinuities of wave fronts and contact surfaces persisting with
time are admitted. Their detailed structures may be studied individually

by including transport parameters in the analysis and by suitable "boundary®

layers.

Ts ump conditions of MID shocks have been investigated by de Hoffmann,
Teller, Helfer, List and Friedriche. An exhaustive treatment by Pazer
and Ericson (1959} is given recently and an extensive bibliography can
be found there.
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waves have been iavestigated previcusly
In his masterly treatment of nonlinear wave

Friedrichs (1954) first illustrated a method of approach

for obtaining solutions and pointed out the reducibility of the systera to
a single linear first order differeutial equation for coupled waves.
Detailed solutions were not given there. Dazer (1958) has extended
Friedrichs method to the solution of a shear flow discontinuity problem.
Centered slow simple waves were discussed with particular emphasis
on the gas of y= 5/3 and an approximation was made to obtain the
analytic solution. The problem has also been formulated by Akhiezer,
Liubarsky and Polovin (1958) who made some general studies of the

mathematical content of the governing equations and classified different

types of simple waves. No final solution is available either. In the

theoretical analysis of MAST flow, Kemp and Petschek formulated

centered slow simple waves in termes of three simultaneous first order
ordinary differential eguations; & numerical integration by use of an

alectronic computer wag carried ocut subseguently to obtain the solution,

o

The special case of simple waves in a purely transverse magnetic field,

2

has been investigated by Golitsyn (1959) and Mitchner (1959). Some
linearized approximate golutions for plane waves with By ¥ 0 and

Pl
>

B ¥ 0 were given by Grad (195%).

In the present work plane & mple waves are analyzed
systematically from a general point of view, After the formulation of

we first
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TE’{: I Z;e; m@teﬁ that the covresponding simple waves in two-dimensional
» flow have been treated by muhica, {19583,
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digress to a brief discussion of some basic properties of a corres-
ponding general system for W dependent variables. This is helpiul

to demonstrate the essential structure of solutions. There exist
totally seven different kinde of 8. :ple waves in cne~-dimensional une
steady MMD flow. Out of these only coupled fast and slow =imple
waves are genuinely nonlinear. They propagate with varying speed

and the wave profile {the distribution of physical unantitiss) alwayse
distorts. The steepening up of compression waves due to nonlineayx
effects leads ultimately to the development of MHD shocks:. The inter-
play of compressibility and MHD effects is wmost pronounced here and
we shall devote most of cur attention to these coupled waves to expound
in full detalls the mechaniem involved. Solutions for contact surfaces
and transverse simple waves are relatively trivialjthey are mentioned
in Section 11l for the sake of completeness., Iarticular attention has
been given to contact surfaces adjacent to & vacuum state because of its
occurrence in actual problems. In Section IV we first give an analysis
of the exact solution of coupled simple waves travelling in a gas of
arbitrary value of y. An alternative method of solving cou; led waves
by graphical means which is especially convenisnt for an immediate
setimate of the outcome of a flow problem is discussed next. Section V
discusses the special case of flow in a purely transverse magnetic fisld.
For this case, the genersl solution of an arbitrary flow is shown to be
governed by a single second order linear partial differential squation
and the coupled simple wave sclution degenerates to a much simpler

form. In Section VI, some examples showing the application of
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our analytic as well as graphical solutions to physical problems are
given. The present investigation is concluded in Section VII by several

general remarks.
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II. PORMULATICON OF THE PROBLEM

With general assumptions stated in the previous Section, we
are now able to formulate the physical problem in a mathematically
amenable form. One-dimensional steady flow of an ideal fluid in ordi-

nary gasdynamics is governed by

8p 8lpy, )
Continuity + =0 Z=la
ntinuity T oA { )
Momentum p(fg.. + oy _%._. ) + E’} = f {2-1b)
Isentropy Ef”' Py gﬁ- = 0 {2-1c)

together with the equation of state 1-1 where T is the body force of any
3 3 % 1 S & i =

mechanical origin. However, we have here T = Lorents force =] w5

P R - = 3 . , :

in MHD with § and B being governed by Maxwell equations. Since

electric current density flowing in a3 fluid must be finite, it follows from

- et st | e S sty
Ohm's law § = ¢{® +u % B ) that

¥ =5 x

fe

)

3 (2-2)

for ideal fluids. Thus only an induced electric field resulting from the
interaction of fluld motion and magnetic ficld exists. It is based on the
afore mentioned assumptions that Maxwell equations for one-dimensional

space variation take the following eimple form:

ﬁ e g i

oS g (TxT) =0 (2-3a)
T = 5}%} % = (2-3b)
93

%;f’ = 0 {2-3¢)
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¢ ?..T_._UE i‘” @ (2-34)

The charge density, w, appears onlyin 2-3d and it can be calculated

after knowing all other quantities. From 2-3b, the Lorentz force becomes

£y

1= 8T =
T = g«;@ex * 73, yu B {2-4)

It ie through this termn that the original system of hydrodynamic equations
Z2-1 is coupled with the Maxwell squations and the interaction between
electromagnetismn and hydrodynamics enters. Substituting 2-4 into 2-1b
and combining the induction equations 2-3a, ¢ with 2-1, we get 2 com-
plete system of equations for the description of one-dimensional unsteady
flow of an ideal fluid in MHD,

It is easily seen from 2-3¢ and the x; ~component of 2-3a that
By = constant {2-5)

throughout. This provides an essential simplification in later analysis.
The constant value of B, corresponds to the minimum amount of mag-
netic field strength embedded in the fluid and it plays a prominent role
in characterizing the actual flow problem.

Writing physical quantities in component form, we have from

&-3b the current density
. 1 8Bg— . 1 88, =
J = }? -%——g & + g:' E-mxi @y {2 5§

which flows on transverse plane. The Lorentz force is



Foa(-2280 2388y o 3 BB B 855 5 (2.7
CEm T BT m s T e (20

Then the governing equations written explicitly in component form read

Continuity g?* 8lowy) o {2-8a)

Hn = TY i iy @u& wda ““@’ 3 @m’j ;, 1’3 ('/ 2 1 35& ’}3 =
¥ -momentum g 4y %—l—%ﬁ T TR, m@f—» TETE - 0 {2-8b)

3% «momenturn _g%%a uy ‘2%‘ - @% %ﬁ = 0 {2-8c¢)

Busg @%’23 3@ @33 P -
%y - momentum ree” 4 U o 3 s 2= 8d
: PN Cie TR (2-5d)

e ms 8%, & . - v
5% =induction I T (Bouy = By ) =0 {2« 8e)
I3 2 @ﬁ@ a e e ;
winaunet ok Sally = Ml = '
xg~induction T mﬁh En qug) =0 {2=8£)
1 : 7 LI S e 0 2«8z
sentropy TR A {2=8g)

together with the equation of state 1-1. These actually correspond to the

D equations {Lunguist 1952). INo

inviscid case of Lunquist's model of I
characteristic length or time can be formed from variables in 2-8 and the
flow is characterized only by varicus speeds which are defined as follows,

The local speed of sound in ordinary gasdynamics is

= /yap¥? (2-9a)

o,

} except serving as a refer-

It has no direct physical significance in
ence of comparison between states of fluid flow with and without magnetic

-~
effects. ILocal Alfven wave speeds based on different components of



c}.Bn

magnetic field strenzth are respectively

by ay_::-_ {2-9b)
P

bg‘ s..j:%i. {2-9c)
VP

by = —2. {2-94)
A P

1f we define f‘% to be the magnetic field in transverse plane,

i. @,

2

3

/
the corresponding Alfven wave speed is

= -4 2
b, = ot [Be_* Ba {2-10b)
v ,\[ P

One may note that & characteristic length of the problem may, however,

be formed irom boundary conditions. It is sometimes more convenient
to eliminate P in 2-8b by making use of the equation of state l-1;

we have then

280, 238, By BBs .o (5
pER AP w00 (80

where A' = A'(S) = %% is 2 known functicn of entropy. Thie, together
with 2-8a, ¢, 4, @, 4, g, gives seven equations for seven unknownse, namely,
Po Wy, Wy, ug, Bz, By and S, Coefficients of derivatives in these equa-

tions are functions of dependent variables only. The equations are a
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system of homogeneous first order quasilinear partial differential
equations. kioreover, they can be shown to be of hyperbolic type.
The general solution of this highly nonlinear system is very difficult
if not impossible to obtain; we confine cur interest here mainly to the
investigation of a special class of simple wave equations defined by
the requirement that all dependent variables are functions of one of
them, which is in turn a function of x; and t. The mathematical
consequence of this solution has the important physical property that
a flow contiguous to a constant state is always described by simple
wavea. The simple waves are basic elements in constructing many
flow problems and essential features of the interaction mechanism in
compressible MHD may be revealed from a study of the solutions.

In view of acquiring a deeper understanding of the mathematical
nature of governing equations and their simple wave solutions, we begin
with a discussion of some general properties of a system of first order
guasilinear hyperbolic equations for N dependent variables as func-
tions of two independent variables. It has theoretical interest in itself
and has been treated by Friedrichs {1948), Lax {1957}, Akheizer,
Liubarsky and Polovin (1958). Many important theorems about this
general system have been established and proved. The simple wave
solution may be regarded as a generalization of those in ordinary gas-
dynarnics (N = 2}. But a somewhat different point of view and formula-
tion of the sclution is presented here. Some basic features and their
mutual connections that have not been pointed out specifically by previous
authors will be shown below. They are believed to be essential in under~

standing the structure of simple waves in a general sense.



.
2t us denote v = {v, vy ..., vwé to be 2 vector in N-dimen-

(13

T
)
.

[{

sional space with components representing dependent variables of a
physical system. The general expression of first order quasilinear
partial differential equations as functions of two independent variables,

x and y, is

s"?vj v,
E’“:X" e B N = G .p.z ) $ e 0 0 g Zuwlld
wﬁ 1} éx + Yij éy + Zl v (1 J E Z ?"éﬁ @&5 M,;

ij° Yij’ Zi are functions of Vi X and y in general. The

summation sign has been omitted in favor of the convention that repeated

where 3

indices signifies summation over all terms.

The characteristics of the system will be determined first. This
corresponds to finding a linear combination of 2-11 for different i such
that each of the dependent variables, ng has a derivative along the

same direction in the (x-y) plane. Thus we write

= = A (¥, +Y,. Z,y =0 (2-12)
L= ALy = N3G e Yiﬁuﬁ, +zZy =0 (212

and require
i“{iig : z\iyij RE N {2-13a)

for each j where ¢ is a parameter along the characteristic direction.
Or

MKy - ¥ ox ) =0 j=1,2,...,N {2-13b)

i) ij7o
The necessary and sufficient condition for existence of non-

trivial values of 'ki is



vy - Yysell =0 (2-14a]
iet us define
oo dx 3”@
"F T
¥4 Y

to be the inverse of the slope of characteristics on the (x-y) plane and
asgume y to be nowhere zero (i.e. there is no characteristics parallel

to the x-axis)., Z-14a becornes
3y, - vyl =0 (2-1b)

.

This is an [N-th degree algebraic equation for N roots of V, namely

2 which are generally fuactions of v,, = and vy, If all
i o

Vs VgoooV
Vj are real and distinct, 2-11 is a totally hyperbolic systern and this
will be our main concern here.

Simple wave solutions exist only for @ vestricted class of the

genereal totally hyperbolic system 2-11 such that “Z?“ii and i

254
o
L&
®

functions of dependent variables, v., only and wl eguals zero. The
J
corresponding equations for N = 2 (e.g. the one-dimensional unsteady

aeny

flow in ordinary gasdynamics) are called reducible (Courant and Fried-
vichs, 1948) since the dependent variable space and independent variable
space have the samme dimension and a2 simple hodograph transformation

can be performed to reduce the governing equations to linear cnes., In

particular, its simple wave solution corresponds to

L

va = valvy

=3

“only. The well known fact that the Jacobian of transformation vanishes
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identically can be seen easily, because

e BV BV, | Bvy Bvy dv; ( ovy 8v, avl @Vz) =

?ﬁm TR T & 5”3”

However, for cases of N > 2, no general method can be applied
to reduce the original system to linear ez;mazi@n@.?
Let us now consider the simple wave solution of the general

systemn 211 which is defined by

%’j = vjévz ) (2-15)
2=11 can be written as
2 8v; ‘3;%
b4 E v? 2»? - by
gaaijﬁﬁv %;E‘" i=zl..., N ﬁg Eé@.b
dv,

For non~trivial values of E’T”J to exist we require

fe BV s OV o ‘
P Sy oy Ll e 2-160
43 Bx “ij By 1 { )
The derivative along a curve of constant v, in the (x-v) olane
24 3 ¥k
is
3 o 5%;,;? . 8y Tur = 7Y
&V; m i& Eﬁ; &3 &
oY we denote
= Do
&V (R .
R o = v 2-1i
ol = Uln ) (2-17)

reasons that a3 general solution of one-dimensional
‘ is very difficult to obtain.



~18-

Since U is constant for each given value of v, it is in fact the inverse
of the slope of a straight line on the (x-y) plane along which not only v,
but alsc all v,,..., vy are constant. The physical state remains con-
stant along this line which is thus termed 2 phase line. In N-dimen-
sional dependent variable space each phase line corresponds to a point.

Substituting 2-17 into 2-10a, b we get

=0 {2-19)

ov ' : - . B
for ﬁg # U in general. This gives N roots of U, namely U, Usp..., Eiﬁ

-

which are all different for » totally hyperbolic system. Ubvicuasly only
one family of phase lines corresponding to one of ‘% can exist in order
to describe a reglon of varying state in the (x-v) plane by simple waves.
The cholce of a particular one of them depends on boundary conditions of
the problem. The notion of phases is most helpful in replacing the inde-
pendent variables m and y for simple waves; it amounts to a reduction
of the original system to ordinary differential equations.

& comparison of 2-14b and 2-19 shows that slopes of phase
lines and characteristics are determined by the same equation. Only
one family of characteristics coincides with phase lines of a given flow
sroblem and consists of straight lines in the (»-y) plane. The other
M-l characteristics are curved in general.

We may write for the k-th slmple waves characterized by

E4

phases of U = U,

&

(X,, - U, ¥V.,.)dv, = 0 (2-2C)
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This is the veduced form of 2-11 and consists of N first order ordi-
nary differential equations showing differential relations among various
physical guantities through a continuous change of phases. FPirst inte-
grals -of these eguations, together with the use of initial and boundary
conditions of the problem, give the simple wave solution. Since 2-20
is homogeneous, there exist only IN <1 linearly independent relations
{assuming no degeneracy) among N physical variables for each value

of U These form a family of k-th Riemann invariants across simple

-
waves. For any glven gyét@m 2-11, there are totally N families of
these invariant relations and only a pertinent one of them is sufficient

to describe completely a flow governed by simple waves.

We shall now discuss the special case that ﬁfﬁj = Ei;? = the identity
matrix. The corresponding system has 2 simple physical meaning in
sbeying conservation laws and has been investigated by Lax (1937). A
somewhat different point of view illuatrating several of its essential

properties is given below.

2«14b has now the form
f = 0 {2-21)

2-18 becomes

Jdv, = 0 {2-22a})

=0 (2-22b)

and has N distinct values U;, Uz,..., .. Fora k-th simeple wave of
&4



= 2=

U =U,, we have from 2-20 or 2-22a2

“é{i
(%5 = Uplygddvy = 0 (2-23)

¥

If we denote the right eigenvector of X ' in N-dimensicnal de-

pendent variable space belonging to the eigenvalue W by r = (2, %,... r?g),

then
= § {2-24a)

(X

- WL,)r
TR T
where W is obtained from the equation

H
H

% - vyl =0 (2-24b)

i 3!
and has N distinct values Wy, Wi oo, ‘iEA Thus for a k-th right

) i 3»5'@, ri’ﬁ, <oy ygk 1 belonging to the eigenvalue Wy

™

eigenvector ¥
we have {rom 2-24a
Xy = Wiy = 0 (2-25)

It is apparent from 2421, 2-22h and 2-24b that V 5 U 5 and
‘%f%?’j (i=1 2, ..., M) are roots of the same equation, they have exactly
the same values. For a flow governed by simple waves, there can
exist only one value of U, say U pertaining to a keth simple wave;
but the inverse of slopes of different fammilies of characteristics are
always eigenvalues of the cperator I.

Since U, = Woe for a k-th simple wave, we obtain from 2-23

&

and 2-25 the following relation

?'Xn contrast to the left eigenvector which is defined to be the eigenvector
of the transpose of matzix . (See Friadman, 195¢)



dy, dv év"*"
""ﬂi) = 3 ... -u-m = constant {2-26)
¥

This gives the complete set of equations for describing a simple wave
flow frorn which Riemana invariants can be found easily, in principle.
let us dencte Rék){vg s Viaooss VN) = constant to be the envelope of the
k-th Riemann {nvariants in MN-dimensional dependent variable space.

i follows from z-zéf:,? that

QE’C)
rék?%:;: =0 (2-27a)
j
or equivalently
T . praawl®) 20 (2-27b)

for the k-th Riemann invariants. Since the gradient of ,“»‘% ) is per-
pendicular to ?QM in an Nedimensional space, there exist precisely
N-l linearly independent k-th Riemann invariants with the gradient
of their envelope spanning the orthogonal complement of ?Q ) {assume
no degeneracy). This result agrees with what we obtained before. 2-27b
can he considered asg an alternative definition of Riemann invariants in
the firat place {Lax, 1957) while the definition of simple wavéeés follows
as a consequence afterwards.

A simple recipe (Friedrichs, 1954) can also be used to reduce
the governing equations to ordinary differential equations. Sewveral

interesting properties of the solution are, however, concealed in carrving

?Se% e. g. Courant and Hilbezt {1937), p. 25.



out this process. I follows from 2-17 that its general sclution ig (see
fig. 1) |

x - Ulwyly = &{wy) {2-28)
where ¢{vy) is an arbitrary function of v, and can be regarded as a
parameter to characierize the phase of a physical state. U takes the
value of one of the roots of 2-22b for iis caz:réz@g@miiﬁg type of aimple
wave. T hne specific one of "}; to be chosen as reference, i.e. vy,
on which cther physical variables depend is judged solely frowm practical

CONVeNisncs. -

In accordance with 2-28 the following simple relations exist

8 _8t d 41 dy 4

S el e = = A (2-29a)
BT Loy T nu'y -
8 _9t a4 _ -UE) 4 __ -UlE) dy 4
e T = e E =7 %2*&@}3)
O T Lue)y 95 nu(e)y o5 o

For the special case of centered waves in which constant phase
lines run through a fixed point, say the ozigin in the (sx, v} plane, 2-28

becomes

x = Ulgly (2-30)

The partial derivatives assume the following form instead

i dvy d

2 d 3
R e - ol %:;.c- 31&)
= Wey B vy T
-U(g) 4 . _U) dy d

5 v (2-31b)
Gey e Ugy o8
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2~30 corresponds to a self-similar flow and no characteristic length
exists in the whols problem.

Since <-1l mmust be homogeneous for existence of simple waves,
upon substitution of either 2-29 or 2-31 into the system for partial
derivatives, a common factor 1/{1+ E",}’p(éﬁ;yﬂ?;/éé} or /(U (E)y)1/as)
appears in sach term and can be eliminated. e arrive in either case
at a system of ordinary differential equations desecribing the change of
physical states across phases. It is equivalent to 2-22a exactly.

Returning now to our problem of plane simple waves in MHED
and in the light of 2-8a,c,d,e,f,g,h, we may identify the dependent
variables vy,vz,...,vy by g, v, uz uy Bz By $, the independent

variables x and y by 353 and t respectively, ¥..=1.. and

i i
iy 8] ¢ 0 Y 0 ¢
2 o »
B2 w4 o o B2 By g vl
E iP Ep
6 8o g 0 -2 o g
P
X, = 6 6 o0 9w 0 -2 g (2-32)
1 Bp
Y gz "'*Bg g Uy ¥ 6
0 By O By 0 w O
g 0 4] 0 G U i3

We obtain either from 2-22a or by substituting 2-29 or 2-31

1

into 2-& the following system of ordinary differential equations.

TThe application of 2-26 to 2-8 to obtain an equivalent set of eguations
as 2-33 is given in Appendix A for reference.



wcdp + pdy; =0 {2-33a)
a? By .. . .t yel
~cpdy + = dp+ =% §.. 2 gm, ~sa§§é%g-@ Ap¥ids=0  (2-33b)
-cp duy - {;-i. ap, =0 (2-33¢)
—cpduy - “f‘ dzg =0 (2-33q)
el + By dyy - By duyy = 0 {2-33e)
~gdBg 4 Dgduy = By duy =0 ’ {2-33£)
-cdS =0 (2-33g)
where
c(§) = U(E) -~ wiE) (2-34)

is the phase velocity relative to longitudinal flow velocity and can be either
positive or negative corresponding to forward or backward facing simple
waves respectively.

We may write 2-33b in anat%@r form by making use of the egua-
tion of state 1-1, then

k]

wcpdy +dP ¢ 5;:&@“1 .&éﬁg = 0 {2=35)

2-33 is still a system of highly nonlinear equations as it stands.
¢ is determnined by setting the determinant of 2-33 to be sero which
actually corresponds to 2-21, 2-22b, or 2-24b. Thus we get the fcllow-

ing equation written in terms of speeds only by virtue of 2-9 and 2-10

c(cg» ’%:a{?'){ (cz-ag)éc ) 2 ‘2.3 = 0 {2-36)

]

his gives seven distinct roots of ¢, each describing a particular
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type of simple wave. They may be classified into three different modes,
namely

{2) ¢ = 0 corresponding to contact surfaces. They are also
called entropy waves due to the fact that entropy may take arbitrary
values alung different phase lines of contact surfaces.

(b) ¢ =4 by corresponding to transverae simple waves. They
are called hydromagnetic waves also and are essentially new features
in MMD.

E.@a

(c) (cg«aawcgubf)- e

or

{2-37)

corresponding to fast and slow coupled siwmple waves. They also have
been called magnetoacoustic waves since ordinary socund waves appear
as a limiting case in the absence of magnetic fields.

The detailed structure of these simple waves is discussed in

subgequent sectionas.



CRSE SIMPLE WAVES

]
&
&
2
@0
<
o

II. CONTACT SURFACES AND

i, Contact Surfaces

When ¢ = 0, the phase velocity is alwaye equal to longitudinal
fluid velocity. Since there is no relative motion between the phase and
fluid particle path, these waves are more properly called contact sur~
faces. A sharp discontinuity of certain physical quantities is admissiblel
here owing to the ‘a@glact of all real gas effects. One may see from
2-~33g that ds = arbitrary, hence entropy may underge any finite jump
across contact surfaces. They differ from shock waves mainly in there
being no mass flow of fluid across the discontinuity surface. Various
properties of contact surfaces in MED are given below, they may also
be obtained by taking the limit of the gensral result of MHD shocks.
Particulay interest will be placed on the special kind of contact surface
adjacent to a vacuum region. Some basic properties associated with
the cavitation zone are also discussed.

Putting ¢ =0 in 2-332, ¢, 4, e, §, g and 2-35, we have

pduy, =0 {3-1a)
15+ B2 dm, +23an, =0 (e BE) = 0 (3-1b)
AP + 2 dB, + =3 dBy =0 - P+ 2E) =0 3=
T T Prgi=o

Ztam, = 0 {3-1e)
E&. A7 g = =14
1 s =i
Bpdy - Bydu =0 (3-1e}

Pgdu, - Bydug = 0 | (3-1f)



and dS = arbitrary. Due to the fact that a finite jump of £ is allowed,
this permits abrupt changes of other physical quantities across a contact
surface which should be governed by jump conditions. The general
method of Riemann invariants is not sppropriate here. Jump conditions
can be obtained simply by replacing ¢ by [ ] in 3-1. Thus the re-
lation of discontinuities of different variables ie seen clearly from 3-L
13 {?‘%} # 0, there exists always 2 current sheet flowing along the dis-
continuity surface. This is seen upon integration of 2-26 with respect
to x; together with B; = constant. The current per unit length in

trangverse direction is

P

”z?@@i%g?%; 43""‘2‘)

Ve recall the density is always related to entropy and pressure by the
equation of state l-1. Solutions for various cases of contact surface
are trivial; we shall mevely state the result as follows
{(A) ¢ # 0 on both sides.

Neither side of the contact surface consists of a2 vacuum region.
It follows frowm 3-la that w; is alwavye continuous across the contact
suriace.

(i) B £0O

Physical quantities “, ?f‘f, 2 should remain the same in crossing
a contact surface. INo discontinuity in transverse velocily or transverse
magnetic field can be preserved. The former differs radically from
ordinary gasdynamics and it sexves as a starting point for the vroblerm of

resolution of a shear flow discontinuity investigated by Dazer (1958).
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Pl

Since By rmust be continuous across the discontinuity, there is no
current flowing on it.

(1) B, =0

e

(a) B, #0 (purely transverse field case)

o “ o o
v, can jump acrose the contact surface, hence the shear flow

discontinuity is allowed in this case. The longitudinal velocity on each

&3

side of the surface remains always the same (see Section V). P and

e

3, may vary arbitrarily under the condition 3-1b

5

{b) ¢ = ¥ (ovdinary gasdynamic case)

» =
¥ is continuous and u, can be completely arbitrary across

T
the contact surface.
{(®) p=0 on one @ﬁ#ﬁen?

A cavitation zone exists on one side of the contact surface in
which we have conly field quantities governed by Maxwell equations. SZince
there are no material particles inside this sone, the current density and
charge distribution vanish identically thers. There ig also no physical
sense to talk about the continuity or jump of W across the contact sur-

face hars.

The reduced set of Maxnwell eguations 2-3 f{or empty space is

0% - 8%
% B %5 ® 05;22 = @ ég‘.gab
st
E"'? @g g}:} = 1 %% 53?
b = 0 {3-3c)
o3
Bz,
¢ gzt =0 (3-34)

e

T The discussion stated here is a generalization of Bazer's result (1958).
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together with the assumption of displacement current being equal to zero,

i. e.

which has already been used in 3-3b. 3-3e is justified on the grounds
that the characteristic speed of the problem of interest is much less
than the speed of light; this holds even for the restricted region of

empty space here. Ume may see immediately from 3-3d,e that

E, = constant {3-4a)
and
By = Eylx) (3-4v)

Similarly, one gets from 3-2a,c

Py = constant {3=5a)
and from 3-3b that
B =E 0 {3-5b)

Thus we may write 3-3a as

el e
+ 8z

8 g
«g{s&“‘j = = @2' =T {3-6)
Xz

E:S

where T is a constant vector independent of 3 and t. Various cases

of contact aurfaces are discussed as follows.

(i) & £0
= = -y .
B, B ez 7% and P shovld be continuous across the contact

s

surface on which there is no current flowing., Since p =2 =0 on one



side of the contact surface and P is continuous, it follows from the
equation of state that p = C oun the other side of it too. There iz no
Jummp in entropy. All physical quantities ave continuous acvross this type
of contact surface which is the straight characteristic (phase line) in
the (% ~-t) plane separating the vacuum region from the varving field
The latter can be shown to be composed of coupled simple waves. He-
cause 21l physical cuantities are kept constant along the separating

characteristics, in particular B and E, we conclude from 3-6 that

T=0 (3.72)
and
?:g‘ & ’.‘;:":’ e 7 " e 'f'”"
By =(By ), =a constant vector (3-75)
fﬁ% = qﬁ}}cav, = a constant vector (3-7¢)

P

or egquivalently we may say that & and & ave constant vectors in

the cavitation zone. The value of = cay, 18 determined by
o F e o » :
g £ wil o G 3‘%
“eav.” “esc. = “ase. esc. (3-8a)

where the gubscript "esc. " is the abbreviation of Tescape® and denoctes

the corresponding values at the tall of the coupled slimple waves in the

continuum region. The escape velogity i?; se and escape magnetic field
sicd 8 a2 2
strength © enc, Bre finite; they can be obtained explicitly for a given

problem {see Section I¥). We know also

" = 5 {3«5b)

‘eav.  esec.
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(a) =, #0 (purely transverse field case)

e
e

P and o, may jump arbitrarily across the contact surface except
that they ave subjected to the condition 3-lb. A jump of density is also
allowed and the gas may in this case possess 2 finite density on the
continuum side. If there is a transverse rnagnetic field QE% )aavﬂ present
in the vacuum zone initially, the balance of pressure across contact sur-

face would be

=2 52
b deav. © g@& o ¥ P

where the subscript "c¢" denotes those guantities in continuum region.
It can be shown that %, is directly proportional to p in a purely trans-
verse field and so is P, hence the gas in the continuum region can ex-
pand {or compress) only a {inite amount such that its density attains a
mindmum (or maximum) possible value. (A fuller account of this will be
given in Section V.) Morsover, (E?% } cav. is not required to be parallel
to ﬁﬁz 3@. When the gas iz allowed to expand to vacuum completely as in
the case of a receding piston problem, a special kind of contact surface
separating the cavitation zone frowm continuum region exnists; P =p =0
on both sides of it. %1 is continuous in magnitude but is not necessarily
@f the same direction on each side of the f{ront.

Q'éﬁ‘ 2y =0 (ordinary gasdynamic case)
P and p are zero on both sides of the contact surface. 3Since

no change of state can take place across the contact surface herve, its

existence is unnecessary and it has no physical significance.
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2. Transverse Simple Waves
When ¢ = 4 by, the fluid velocity undergoes changes only in
transverse direction through the wave region which is thus called a
trangverse simple wave. We assume P £ 0, 3, # 0 and give a general
discussion first. It follows from 2-33g that whenever ¢ is different
from zero dS =0 is reguired. In other words, simple wave motion
causes no entropy change in a fluid always. The transverse simple waves
play an excessive role in aligning the transverse magnetic field in its
proper direction and is essential for solving a general problem in one-
dimensional unsteady MHD flow.
Knowing ¢ = + b, and combining either 2-33c and 2-33e or
2=33d and 2-33f, we get
du, =0 {3=8a)
Subsgtituting this into 2-33a, we have
dp = 0 {3=8b)

It follows from 2-33L that ‘

) 2
anf + Bfy=aB) = 0 (3-8¢)

Hence the density, longitudinal fluid velocity, transverse magnetic field
strength as well as the wave speed ¢ =+ b; remain unchanged across
trangverse simple waves. “”'ipg can, however, change in direction. We
write B; and By in parametric form as shown below
B, = ‘”t €o8 @ {3=-9a)
Tig = *’f% gin o {3=9D)
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where o = ¢(t) is defined to be the angle between the transverse mag-
netic field direction and the x;-axis and is a function of phase only.

FProm 2«33¢ and 2-33d, we have

and
b e

respectively. Upon integration of the above eguations, we pet

1 {3-10a)

and

ug = + ug {3-10%)

H ¢
respectively where w and ug are constants determined by initial cone

ditions.
Alternatively, we may write 310 by making use of 3-9 as
TR ¢ . g
v =% b cos @ty 5 o8 @ + U {3-1la)
\!%W
and
o % R L] _— . 3 .
ug =+ ——k- sin @+ ug =4 bﬁ gin o + ug {3-115)
\IN@
O
2 B 2 z
(v, - | R qt’%g « g Yy o= z..’kt @3-3&3}
and

= tan ¢ {3-12b)
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The magnetic fisld and fluid velocity in the transverse plane rotate as
the transverse simple wave propagates in the x-direction.

The six Riemann invariants through transverse slmple waves
may be enumerated easily, they are constant valves of 3, p, y, B,
together with 3-12a and 3-12b.

For the special case of B, =0 and B; £0 {i.e. c #0) we

have from 3-11

§
U =i = constant

and

H
g = vy = constant

Hence in this case the physical state of the fluid remains cone
stant across the transverse simple wave whose existence is unnecessary.
This situation does occur frequently, e. . at the end of a coupled wave
where the traneverse magnetic field is switched off completely due to
either excessive compression in slow waves or excessive expansion in

fast waves.



LED FAST AND SLOW SIMPLE WAVES
The vanishing of the last bracket in 2-3b gives
2 Sag 2 2 & &
te®s a®he® - bl ) = ] (4-1)

This deterinines speeds of coupled fast and slow simple waves
in which the interaction between fluid motion and magnetic field has the
moot prominent @i@c& Both longitudinal and transverse fluld velocities
vary acroes these waves. In ordey to give a general discussion of them,
we agsume B £ 0 and By #0 heve. Rherwise coupled waves degenerate
to the corresponding ones in a purely transverse magnetic field when
Dy = 0 (see Section V) or to either ordinary sound waves or a special

case of transverse simple waves when By = 0,

L Analyeis

4ol vields the following four roots of ¢

2, o

2 180 2 TN :
m & *§§,§ “gbg “2* \/‘la }%.}E ‘gﬁﬁp - a%}g gg‘%’g&}

o
1

and

(4-2b)

Wave speeds in 4-2a are those of forward and backward facing

fast waves respectively since we may see from 4-1 that

s:g > a‘g and zzg > %}{?’ {4-3a)

in this case. On the other hand, wave speeds in 4-2b are those of for-
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ward and backwaxd facing slow waves respectively since

& 2

) .2 .
2 and ¢ < By {4-3b)

¢ <a

s

in this case.

Ve eliminate du, from 2-33¢c,e and dug from 2334, £,

then
p “
(2-c®¥an, + cBydy =0 (4-42)
{&3 -C )@mg + ¢higdy =0 {£=4b)

‘T

Because 1y #c is lmplied in the assumption @, # 0, the

following relation exicts

or
= k = constant {4-5a)

The transverse magnetic field strongth ig

a e, 1+ kY2 {4=50)

Cne mav alwayve orient the coordinate svetern (%, %3} in trans-
verse plane in such a way that B = 0 ifdentically (k= 0). It follows
from 2-33d that vy = constant whose value may also be reduced to zeve
by a suitable Galilean transformation of coordinates in os dirzection.
2~334d, £ can then be left out of our discussion and the problem may,

"

without loss of generality, be studied in the {(x-:) plane only. 4-1 ia

now

o

2
¢ } g 2’ . ﬁg‘g!“é)

ie:z - @2%@@: - b c by



Only four dependent variablee, p, v, %, B should bs considered

and the flow field governed by coupled waves is described by

sgdp ¢+ pdy =0 {4-Ta)
~cpdy +a“dp ¢ Eﬁmg = 0 {4-7b)
- ':;?"?
cpdy - E—»«d?& = {4=7¢)
wcd; + Bydy - Dyduy =0 {4~7d})

Mo characteristic length or time can be formed frova 4-7, the physical
phenomenon is most conveniently described in terms of various apeeds
from which the fundamental character of the flow can be brought out
clearly. Owing i:es ¢ being different from zero in genseral, the flow is
always isentropic through coupled waves. he local speed of sound, a,
given by 2-9a is thon a function of p only and characterizes the mechani-
cal state of the fuid. Aiﬁv@a wave speeds based on longitudinal and
transverse magnetic flelds, i.e. by and b;, are defined in 2-9b, ¢ and
characterize magnatic fleld strengths in corresponding divections., A
relation between a and by can be obtalned by elix &*@aﬁmg p from
2=%a, b, it is

Z? ?iY"ﬁ = "g”’%é&f ; i=1 (4-8
where the right-hand side is a known constant in the entire coupled wave

region. Ve write 2-9a, b, ¢ in differential form as follows

& 2
P ki

of§

{4=9a)



dBy _dby . 1dp _ db 1 da_ . -
:,5:32 : ‘%”?% ?333 “+ m‘{"i Py 4 M ‘9%}
dB, _db, ,ldp _db, . 1 da -
5ol Pl A iy Sali e (4-9¢)

With the aid of 2-9 and 4-9, the governing equations, 4-7,

may be expressed in terms of speeds, a, by, by, vy, vz, only. They

are
2. 0C g o du =0 ‘ (4-10a)
Y- & !
) 2 2, db 1 da, _ -
~cduy teTyada t %%(qg;% s e {4-1Cb)
db 1 da, _ . .
¢ dug - bgbg{ﬁ ‘?'W -y ) =0 {4=-10c)
db c da b o .
»cﬁ wﬁy"#dﬂg-ﬁgduguv 4@@13&;

e note here that a Galilean transformation in either x; or x,; direc-
tion will not alter the structure of 4-10 except in the former case an
appropriate change of phase velocity U =y + ¢ sioculd be made in the
final solution. Since coefficients in front of differentials in 4-10
depend on wave speeds a, by, bz, ¢ only, the calculation can be

simplified if duy and du, are eliminated. Then 4£-10 are reduced to
.
[ 2a%c?) +3T a2 + (y-DaZd(dd = 0 (4-11a)
e d ? ol
(bf +cAb2a(a?) + (y-DivZ-cFaamd = 0 (4-11b)

The phenomenon ig thus described golely by wave speeds
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characterizing various aspects of the physical problem. 4-11 are homo-
geneocus and a non-trivial sclution exists only if the determinant of their

coefficients vanishes. This gives
- (2P mdmdic? + a%f = (4-12)

which is identical to 4-6, as it should be. 4-12 adds a constraint con-
dition among wave speeds and ounly one of the differential relations in
4-11 is independent. Or equivalently we have from 4-11 one differential
equation and one algebraic equation 4-12 at our disposal. These, com-
bining with the other algebraic equation 4-8, provides three eguations
for four variables a, by, by, €. Either a or by can be esasily elimi-
nated with the use of <4-8, however this has not been done in order to
retain the rather symmetric form of expressing ell variables in terms
of square of wave speeds. The differential form of 4-8 has the desired

form also, namely
bld(a®) + (y-1ad(bd) = o (4-13)

A close inspection of 4-11 and 4-15 reveals that they are in-
variant under a group of transformation (Birkhoif, 1950) in wave

speeds, i.e.
a— {a, by —= Lby, by = by, ¢ — {c
where 0 can be any arbitrary constant. This permits the group

theoretic consideration to apply and any new variables formed from a,

by, bz, ¢ that are invariant as shown above can be used. 'We have then



only three varizbles for three equations which infers the possibility of
reducing the whole problem to the integration of a single first-order
differential equation of two variables. Consequently, we introduce the

following dimensionless variables

., =2 116
L= Pr = =% Pa ==% {4-14)
c . c c

The basic condition 4-6 or 4-12 for wave speeds becomes
la<1){(Py -1} = B2 {4-15)
Fast waves are bounded by

0 =a<l and U=pg <1 (4-16a)

and slow waves are bounded by

a>1 and By > 1 {4-16D)

Making use of differential relations

do _d(ad) _aleh
- - 2

) 2
a c
2 2
dby . dlby) _ dle)
i b{: c*

N

2 2
dB, _ diby) _ dlcT)
ra bs c”
together with 4-11, 4-13, 4-14 and 4-15, we arrive at the following

firat order ovdinary differential equations in any of the planes (¢c-£;),

(e-Pzi or (By-Pal



dfy _ 2(y-1) +yelfy-1) £ '

& T T e e
s . He-D(e-yr y(20-1)]) +yer? (4-17b)
e (2-y)e(z-1)°

dig B -UBy +Pa- L y(By -1) + 2] 2B, B (4=

dpy (Ba UL y(Fr -1{By +P - 1) + 20,] ?f‘ -ttel

This is the condensed form of the basic structure of the problem
and any one of the above equations provides a complete description of
coupled simple waves. The solution of a flow problem is constructed
by first solving any of the first order differential eguations in 4-17 and
satisfying its initial condition to get a functional relationship between
the corresponding two square wave speed ratios. Riemann invariants
among physical quantities, p, wy, uz, Bz, are then obtained from known
equations and initial conditions, these together with the constant values
of 8, ug and By constitute six Riemann invariants for coupled simple
waves. 3o fay the solution is @é&@resﬁed in terwns of phases only and
have to be transformed back to functions of x; and t by identifying
various phases with given boundary conditions on the initial curve in the

physical plane that initiates the fluid motion,

2. Analytic Solution

The analytic solution of coupled simple waves in the presence of
an arbitrarily oriented magnetic field (By# C, E; # 0) is given in this
section. Although the choice of any one of 4-17 to study is completely
arbitrary, it is found to be most convenient to investigate 4-17a and

all of our later analysis will be based on this. A particularly convenient
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variable to use is « = azfcg which has a simple physical meaning in
describing the departure of plane simple wave spesd in MHD from that
in ordinary gasdynamica. All physical guantities can be expres ed
analytically as functions of «.

First of all we shall, as in many other physical problems, intro-

duce the following dimensionless variables which, normalized with

respect to initial phyeical quantities, are defined as

D= aEm P o= e .= B

i 1 3 e gf

= b U, =& a= = (4-18)
1 1 1
?A, % s

By = o By = 2 Cm
21 %1 &1

Since simple waves are always contiguous to an initial state,
the initial state of the fluid has its fundamental importance in the prob-
lem. Let us introduce the following parameters, ¥; and B 2 where

Ky is defined by the expression

by -
fo xlmjl‘: ‘%'En @QJW @sé..i%?a}
21 1 1Py

Une may see from 4-18 that K is identical with E?E‘ in fact and it

provides g measure of the relative importance of the imposed longitudi-
nal magnetic field and the mechanical state of the fluid at the initial
instant. ¥y plays an important role in the present study because

2y is a constant in the entire flow. An alternative form of 4-19a

may be wriltten as



22 . ., 12 P i/e

; :‘9 L L4 ke s 2{2 £ P §
By o= [ 22 o 2] = [ 2] {4-19b)

&l & i 3 3 Y

where émi is the pazt of magnetic pressure based on E@ﬁgimém&ﬁ.
magnetic field and remains constant always., Thus E; i3 also, apart
from a numerical factor, directly related to the sguare root of the ratio
of minimum magnetic pressure to gasdynamic pressure. It shows

actually the relative importance of D effects compared with com-

pressibility effects. The other parameter 35331 ia
By
E;E = ?gg = tan @I

where @I is the angle between initial m&gm@'&:i‘c field direction and x; =
axis in (3, %) plane. The initial state of fluid is completely character-
ized by these two parameters.

Now, we are in position to express dimensionless variables given
in 4-18 in terms of o, £ and K; as follows. From 4-15

i/2 i 1/2
B = ng%glm?«i? = sgn (ByBygll (o-1(1-g=)]  (4-20)

Note the sign of B, cannot change across coupled waves (see section

IVv-4). ZSince

E‘; 2 %5“’5?; EE{‘Z
gL = __% = @% e T dw 2;3};
we have /
S V4
= Euy @ 7
P = 4=22
p = { T%‘“‘ ) { a)
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and from 1-1

T=3V = {4=22D)

From 2-Y%a
, , {y-1)/2
T =/, Ryl e, v/ (4-22¢)
1
From 2-4b
; . 12y
! val .
By = sgn(B) :_157{“2-= sgn(By)K, ¥ Wy %? (4~22d)
p
From 4-20
1/2

, . 1y
B; =5;B; = sgn (B, )&Wﬂw/‘{ﬁ%”% (a1l - g:;, 2

¢

From 4-14

= =) iw'l}’/‘v 1 i ;
= =$-=7-2— = K G 226)
|€ &R &l i &?ﬁﬁ"gﬁ ¢ Al

Flow velocities in longitudinal (x; -} and transverse (x;-) direc-

tions, uw and uz, have to be obtained by first integrals. 4-l0a leads

to
a el e s % 67 }fﬁ, i ’,ﬁ 3 ‘
G =YFe2aTda 1 [—tegd [ -3L] (e-2zg
3P Yoo ep Py

for forward and backward facing waves. u; is determined upon integra-
tion of the above expression and satizfying an initial condition. Simi-
larly for the transverse velocity, we first eliminate a from 4-10c,d,

«

then



-%f‘}a

@uz = ;%‘i—b;a—zﬁu@
bg = £

or in dimensioniess form

du. 3% du, =s8gn €%x§321ﬁ %5\‘% - ] du,
gﬁ e &1
L (y-1)/y L Yy 1/e
= e TR 02 £y [oa=1,0 do 4y -
4 sgn {By5y) ey E%}E “iﬁféﬁ I (=- yiN ) (4-22h)

for forward and backward facing waves. Thus u, is cbtained by per
formiag the integration and satisfying an initial condition.
Now, the central problem lies in the solution of 4-17a. It can

be reduced to a lineay form by the introduction of the following variables

# 1 . a1
@ =3z and N
4=-17a becomes
% B, W ‘
& . L{2-y)-20 10y + {4-23)
da {2-v)a {l-a')

This is a standard linear ordinary differential equation of first

order and can be integrated readily as

A &, % 2=%) e an
s ot ilee® VA2V e L v j
F1 e il-o| = - L=y a} ‘f‘;zizw'ﬁ 32/z2°w }

i

{4-24a)

where the upper sign {(+) in the bracket refers to the case of slow waves

s sk
(0 e <1) and the lower one {-) refers to that of fast waves (a > 1).



C; is a constant and it is determined by the initial condition that

% £ & #
o =a and £ z'ﬁii
Fowaever from 4-21
o8 2 -y
B -8 .2 . P
JE 2 T2 e
a ' By ¥,
and 1 initially, bhence
%
& 9
Fig & =3
1 K

Thus 4-24a can be written ag

#
<, (2-v) 1 re dr,
& =a ll-a + E:L oy
. | | 2‘} = W/é“’ V)= emy “'jeg,? %zil—ﬁizﬂzww }
{4-24b)
. . . ; . %
This is the equation of a family of integral curves in (o = ;)

%
plane characterized by parameters ELE and a; at the initial state.

Bxpressing the solution in terms of original variables o and £,, we
zat the equation for the family of integral curves in the (a-f; ) plane

characterized by parameters ¥, and a, as follows

L2 e !‘a’/gz“‘sf)

feigr

e v(2-v)_ _.2re 2/62-‘*5}

I — g ar »
=Y T ‘3@ 73] (4-25)

where the upper sign {-) in front of the integral refers to slow waves and
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the lower one {+) refers to fast waves. It is recalled that regions of
physical interest in the (a-f£,) plane are bounded by 0 € a<1 and

0= 8, <1 for fast waves together with o> 1and £, > 1 for slow waves.
The parameters ¥; and 84 instead of K; and 5';3 have been used

here to characterize the initial state where y is related to K, and

ﬁgz as follows. From 4-15
i 2
{a=-1)1 - i ) = 5,
At initial state
&
.,g} =z Kﬁz
I
80 that

3

oy iz solved to he

o = = {14171+ 28 J [1+ 41+ 55,05 axf } (4-26)
2K} . ,
for slow and fast simple waves respectively. Therefore, there are always
two values of ag for any given initial state which, together with E{z, cor-
respond to two points in the {e-%;) plans where one is in fast wave region
and the other in slow wave region . The selection of a suitable type of
wave for the description of a glven physical phenomenon is of course
dependent on specific boundary conditions of the problem.

°,

by use of

2

We remark hers that the solution of 4-17b iz ¥Enown

4-15 and 4-25, then



gg . %V/(Z’"‘a’)
X1 @e;m .
¥l = S ?? - e 9
£2 {a 1;% G‘}: !1{/(2'?2 \{E{%Z Fﬁ' Z/(g"sj) 1] {4-27%)
sal TE el
1

which can, however, be verified by direct substitution into 4-17b.

Let us introduce the following notation for abbreviation

| a, ¥(2-y)_ 2 po  ,  2/(2-y)
H = H{aiK;, o)) = %ﬁ‘ai 7 f%i_?g i.g%.i de (4-28)

where the cholce of sign is the same as before. Because of a# 1 and its
being always a finite value for most cases of coupled simple waves (see
Section IV 5), the definite integral in 4-28 i3 well behaved. Its value
cannot generally be written out in an explicit form except for 2/12~v)
being of integers. In that case, we denote v = 2/(2-y) for brevity;

the definite integral consists of a sum of finite series (Appendix 1)

as follows.

{a) Slow waves {g > 1)

vel
re v a-1 & v 1 1 1,
ﬂ %%ﬂa%@{ma)%vm E ey [ . - ]
jgi Z- 1 oyl g::} {Lig)t{v-s-1)1 & i&z“ﬁ% (a-1)°
{4-2%a}
{b) Fast waves (0 <a<l)
g:aﬁ. y ¥ ¥ 1’@3 -
g@ 43:"‘59 dg ={=1) E%a-@ﬁ—v ey |
! vl
N vistl v 1 1 1
2oy 1) : =1 - ]
g'i; gg“?ﬁ‘)g(y"ﬁ"l?% 8 (3‘@)5 gl-&zgg

{4-29b)



o4
We ave dealing mostly with monatomic gases of y = 5/3 and

2/(2-v) = 65 4-29 can thus be applied directly {Appendix B).
Using the simplified notation defined in 4-28, one is able to

{4-30)

write 4-25 as
el

The transverse magnetic fleld strength expressed as a function

of o i obtalned from 4-20 as :
- oy yA2ey) 1/2
S 1% 1} e
'%"Zp,ﬁ-

T = egn (5 By {(e-1)1 -

The density obtalned from 4-22a i5
1/{2-y)
a-l | (4-32a)

Yy - HE/M“@“%

2
- 1 Eya
and the pressure /
R 7A L Y
T= ?g% | {4=32h)
' With the aid of 4-22¢, 4, &, {, the wave speeds &, by, bz, 3
can also be expressed as functions of ¢ only. They are
1/{2-y) (y-1)/2
e ggg/%%é& | ] (4-32c)
.Hl = sgn (B, )é‘?}gy oy | ] {4-324)
e ) 51/3%3*%!} 7 a-l 1*{/€2“Y}a 3/3
B, = sgn (Be) T/Ey BT {ta-1 1+ = 1=~ 1}
{4=32¢)
{y=-1/(2-v)_1/2
| ] (4-329)

A

¢ =l ] a
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According to the general formalism of simple waves given in
2-15, we shall regard p as v, hereafler and express all physical
variables as functions of p.

In principle, we may get a relation between T, and p ?:agr
eliminating o from 4-31 and 4-32a for fast and slow waves respsc-
tively; but a appears in a very complicated manner in these equations
and an explicit analytic expreseion of T; =T (f) caanot be obtained in
general. On the other hand, 4-31 and 4-32a may instead be con-
sidered as parametric equations describing the corresponding Rismann
invariant relation between B; and p across coupled waves and their
specific values depend on initial cmndi@im?z of the flow problem only.
These will be called magnetic field Riemann invariants.

For the longitudinal flow velocity, we have from 4-30

2 2/{2-v)
da d8, _ v de dH B (e 3
E’”“@f{f’ “&%m M= 'ZSLEW§ ‘-}3}-!—«-{! ide

{4-33)

Substituting this and 4-30 into 4-22g and carryving out the integration,

ons obtaims?

1 0% v-l/2y E= U‘WM‘W{ 1

~29; = =R &(o-1}
. w2 o 2h2ey),
¥ ‘%" %{f 5 ] - , (4-34a)
T g

and

?‘E‘h@ general form follows from that in ordinary gasdynamics given by
Courant and Friedrichs (1948).
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o= 1 D% (ye1)/2y (v=1)/2(2-v)

2y, = + 2 T=1 1
RS E@: =5 | | ety

2 2/(2-v).
TR LI ] -§§2 (4-34b)
with

e o o = Dty 17 TR (e

T o 3 ﬁ'; 7 ’@ = & i

f&g z @I"‘ "'“‘! ”@I g‘

for forward and backward facing coupled simple waves re%wcﬁv@ly‘, The
values of 8, and x, are determined by initial conditions of the prob-
lem and are constants for a given flow. Since e is obtained from 4-32a
as a unigue function of p for each of slow and fast simple waves, 434
gives the Riemann invariant relation between u and p across coupled
waves. Consequently we have in 4-32a and 4-34 the parametric egua~
tions of the longitudinal flow Riemann invariant. The lower limit of the
definite integral in 4-34, a', can be an arbitrary constant. It is defined
here in accord with the convention employed customarily in ordinary gas-
dynamics that the integral vanishes when density reaches its lowest pos~
sible value {(say at 7 = 0 in ordinary gasdynamics). It can be shown
{see Section IV 4) that the minimum value of P in slow waves is p = 0
and that in fast waves is given by the value of pat 5; =1 @' for
different types of coupled waves are determined as follows.

{a) Fast waves {1> a = 0)

' is obtained by putting B, =1in 4-25 which gives

oot /2y 2/(2-v) v/(2-v)
a ) -z5 g;@n%x dg zé{%} {4-35)



] 1
so o = o (&), s:agﬁ iz deterrpined.
{b) Slow waves (o > 1)

From 4-29a, p =0 when

1]
(i) When e¢'=1=2a'%/c'?

[H
<&

a =¢ =§ at o

This is a trivial solution and corresponds to the ordinary gas-
dynamic case.

{ii) when H = §, we have

~al o, 2/ Z«y} ) FRY |
It 6 =2 I—--Tl (4-36)
}@I e Yf@,z

]
o is determined implicitly here. It corresponds to the limiting value

of o as gas expands completely to vacuuin.
Let us now consider the transverse velocity of the fluid. 3Sub-
stituting 4-30 and 4-33 into 4-22h and carrying out the integration,

we get

ot

. pe - E?/EVF__}‘E/&@“{?

28y = ug-.@gn{qu e -y _j;@o IE’fﬁz" 1@*..2 w/(z, Y}[l/% { Glo-1)
dL
e b 2/(2=y)
S o 4 :
< %%? f;;“:ﬂl } do (4-37a)
and \ - -
x ° plv-1/2y ) gL 1 |1/202-y)

23"3" EAa *%‘sgz’ﬁlunﬁaﬁ Cy jag !E‘:Z?-éf -1 {Y/€Z°Y§! /2{ G(ﬁ’ i
p

2
T B G 2/(2- 1 a4 ey
tw ["g@‘-“:i | /tz=v) jdo (4-37b)
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ior forward and backward facing coupled simple waves respectively.
By the same reasoning as {or the longitudinal flow Riemana invariant,
we have now in 4-32a and 4-37 the parametric equations of the trans-
verse flow Riemann invariant with s; and rp being constants deter-
mined by initial condition of the problem.

To sum ap the result obtained above, we have six Riemann in-
variants for coupled simple waves consisting of magnetic field, longi-
tudinal and transverse flow Riemann invariants derived from 4-32a com-
bined with 4-31, 4-34, 4-37 Eegpectiveﬁy and constant values of I, uy
and Bg.

The notion of escape speed in ordinary gasdynamics can be gen-
eralized here. It corresponds to the ultimate magnitude of fluid velo-

c ity, whose longitudinal component is in a direction opposite to that of
wave propagation, in a continucus rarefaction process of the fluid up

to a vacuum state. Ubvicusly only slow waves can give rise to escape
speeds, because the gas cannot generally be expanded to vacuum through
fast waves. We have here two values of escape speeds corresponding

to magnitudes of longitudinal and transverse escape velocities respec-

tively. Let us denote

{?‘& -
s & i - s Z e e
fy{a) = ji HY H/ Y= ylv-1/2 Wi*ﬁmig

2 )
£ z -yl & PP
- =4 i"- ) /iz Y4 Ef‘%z (4-38a)
aad o Av=1)/2y {G -1 1/2{4-\;}
: ! By ¢ 1
£a{a) = sgn (ByBa) w4- | =
 Z-y Ja {KE»%—{ @(/{wy 31/4@ a{@f 13

By, o 2/12-y}, . Ao 287k



for abbreviation with
a;, v/{(2-v) .2 po 2/(2-v)
* . I T ":3'.;5‘5,, g:% é’
ST & =, ‘) d
i

and also assume vy;=u, = 0 initially. Then we get from 4-34 and 4-37

-28; =% - fi{e) = -l =0 (4-39a)

2ry =% 4 oila) = fileg) =T o (4-395)
and

-28; =0 - fzle) = *«ézﬁﬁ‘ii? =Ez@§C (4-40a)

2r; = 4 f{a) s 0 (ﬁz) =0, esc (4-40b)

for {orward and backward facing slow waves respectively. Hence escape

speeds avre

(6 ge = malay) (4-41a)
!25;3@ M'I = 2zleyg) (4-41b)

3. Procedures for Construction of Sclution by Graphical Means

An alternative way of constructing coupled simple wave solutions
by graphical means is discussed in this section. The variation of physi-
cal quantities as a wave progresses can be seen clearly from the graph.
It has the advantage over the exact analytic solution of giving the result
immediately as well as showing intuitively the basic structure of the
problem. This is achieved at the expense of the precision of the golution

but is particularly convenient for a quick estimate of the outcomein a
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practical case.

It is most cmweniem'm investigate the graphical solution in
{a=£; ) plane where the integral curves (trajectories) of the first order
differential equation 4-17a can be analyzed precisely. These are solu-
tion curves of the problem and the choice of a particular one of them is
determined by initial conditions.

Let us start with an examination of singular points of 4-172
which are located at (0, 0), (1, 0) and {1, 1) in {(a-§, ) plane and are de-
noted by 1L, M, N respectively. The behavior of integral curves in the
nelghborhood of these points are studied by the usual method of local
linearization. For ¥y inthe range between 1 and 5/3 the result (see
fig. 2) is given as follows.

{2) 1.0, 0) ie a nodal point. All trajectories except ons lying
on the [; -axis ave tangent to a-axis.

{b) (1, 0) is a saddle point with two exceptional trajectories
lying on the e-axis and the vertical line a = L

“ {c) N{L 1) is a nodal point. All trajectories are tangent to the
line {a-1) + {y~-1}{B;~1) = 0 with the exceptional one on a =l

We recall from 4-16 that regions of physical significance in
{e=8;) plane ave bounded by 0 € a<land 0 s £, <1 {for fast waves as
well as e>1 and #; > 1 for slow waves. Having the general behavior
about singular polnts, we may construct the entire family of integral
curves either by an isocline method or more precisely by a numerical
integration method, Their qualitative nature is illustrated in fig. 3-a.
Similarly, one may also obtain the general behavior of integral curves

in {(a-f;) and (B~ 2:) planes; they are shown in fig. 3-b and fig. 3-c
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regpectively for reference and may prove to be more convenient in des-
eribing physical quantities under certain circumstances.

In order to illustrate the general procedure of constructing the
graphical golution, a set of precisely calculated integral curves T
obtained by applying Adam's method of numezrical integration to 4-17a for
vy =5/3 is given here. They are shown together with constant f; lines
in fig. 4% for slow wave region and in fig. 9 for fast wave region. Inci-
dentally, we may mention here that the analytic expression of integral

curves for slow waves in fig. 4 is found from 4-25 and 4-293 as (see

Appendix B)

%
P )
Ky of—)
{jﬁ m {%-%Ea)
o 3 2
where
-1 1 1 1 1 «»
D = {a-n }ufé:im..._..g& - f15( =T MEE +10[ -
E @z" 28 &1' ga_.i}z 6@3'1)27
Tf}'{ 1 1 n}‘?‘gi 1%”‘ ! 43
(e-1)”  (ap~1)” (a-1)"  (eg-1)
. ég 1 _ 1

For fast waves in fig. 9, it 18 found from 4-25 and 4-290 as (see Appen=

dix 2)

2,0 5
Bolys)
5 = -G (4-42b)
{ @ 5
1 o2

T Integral curves are labeled by their value of a at §; =1 respectively.

¥ They are given here in the part of slow wave region hounded by l<e £ 12
andl € 5; <12



where
1~ 1 1 1 1
D, = {a~a,) = 6ln y—m-{15] - y—1 = 10] , =
r 1 1 3¢ 1 1
“Z” wét - 3 o E L] i
T e el 2 (eap? el

1 1 1
* e’ (1-a)”

Physical quantities can be expressed as functions of ¢ and §,
as shown in 4-20 and 4-22. They {except for T; ) are seen to depend
| explicitly on the initial parameter IK;. Furthermore, all velocities have
the same multiplicating factor E{EW"U/ Y, Thus lines of constant values
of these quantities for any given K, can be plotted on the {e-8; ) plane.
For convenience of labeling these lines, we give only those values for
¥y =1 on each curve which are designated by the subscript "%" and

asgume the {ollowing expressions.

P = { % Wy {4-43a)
Ter (4-43b)
5 - g Az | osse)
B, = sgn (B,) ()% (4-434)
Buy = sgn (By ) (129 Yaotyn - 1 31Y/2 (4-43¢)
%, =l—y] e (4-439)

Bl



The values for X; different fromn usity are then obtzined Ly

314

s f? i Pt )/ o, e s o G P o E g s £ g L s
multiplying the aspropriate scaling factors. Thus

EER AT (4-44a)
T = 85, (4-44D)
rYy K{?"Hfﬁ? = (4-44c)
B, = mgwiw’w B {4=ddd)
%, = AR VAT (4=d4e)

It is apparent fromn 4-43 that one of the main advantages of choos-
ing (a=-§ ) plane for cur graphical analysiz lies in the fact that lines of
constant p, as well as those of constant Ty, a, and By, are rays
from the origin. This simplifies the graphical representation a great
deal and provides a clear picture of the variation of physical quantities.
Fig. 3a shows that two different types of coupled simple waves occupy
completely separated regionsg. It can be proved that no direct transition
from a fast wave to slow wave or vice versa is pogsible (see Section IV 4).
Any given state of the fluid always corresponds to two points in the {a=£,;)
plane where one is in the fast wave region and the other in the slow wave
region. Physical properties across waves of different type are entirely
different. This serves as the basis for the selection of a correct type
of coupled waves to satisfy the boundary condition of a given problem,

After the particular wave is determined, we may confine cur attention
¥l
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only to one specific wave region in which each point corresponds to a
unigue physical state.

In principle, lines of constant values of various physical
quantities can be constructed in fig. 4 and fig. 9 for slow and fast waves
respectively; but in order to avoid possible confusion among them, they
have been prepared in separate figures. Relations among various
lines can however be correlated, for instance, by using transparent
paper for graphs. For y = 5/3, constant p, and |E,| lines are
illustrated in fig. 5 for slow waves and in fig. 10 for fast waves respec-
tively; constant T§$ and E’* lines are illuastrated in fig. & for slow waves

nd in fig. 1l for fast waves respectively. Lines of constant 2‘543 R &g& and
"Em are centered rays, they amount only to a simple change of the
labeling of constant '5’@, lines hence are not given separately here. The
constant ’%3* lines can also be constructed sasily; but they are not of
special interest to us usually and do not participate directly in the con-
struction of other @@Zaﬁamsg thus they are omitted also.

Let us now proceed to determine the point corresponding to the
initial state of the problem in each wave region. We form first the

parameters K, and ‘E"Ezi from known initial physical guantities

By = IE’E, . ‘EE]
Jﬁpzal \BE
and
= B
= el
By 2

o - . - L2y
Since pp =1 always and from 4-44a o, = I /v o.. = 1, we have



From 4-43a,this corresponds to

5
a MY £ 1

0 ““Z‘;?"’

which can alsc be obtained directly from

2
(& aI - ’a“wpi
T2
§ 9&1 &3

This relation gives the slope of a particular ray in the (c-8;) plane on
which the two initial state points rest. The specific locations of these

two points in slow and fast wave regions respectively are determined by

= 1/
. v py P Y oy kY
points of intercection of Py = q;ﬁ.z_lg and B,= ;%21 curves. Altere
By

natively, they may be obtained by first solving ¢y from 4-26 to get two

Y

vertical lines with one in each of the two wave regions whzc,@. intersect

pyPp Wy oo —_ .
the ray @,? = m— ) at the point of initial state in each wave region
[
2 : .
respectively. The particular integral curves for slow and fast waves

are selected uniquely by these initial state points. Since one of the two
types of coupled waves should be excluded by boundary conditions, in
any case we have, at our disposal, oaly one integral curve in a pertinent
wave region along which the change of physical state across the wave
follows.

S0 far the flow velocities 4, v, are undetermined; they involve
first integrals and a further numerical integration along a specific
integral curve together with satisfying their initial conditions must be

performed to get the golution,
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For the longitudinal flow velocity, b, we have from 4-22g

e

@?}Tﬁ 3?%%2
P

If we define u = éi;é%*’"z;/y Uy 4, then

qi@,hs:: c %ﬂmﬁb

The differentials mé,y be approximated by fiaite intervals, i.e.

A, = © fﬁf (4-45)
=g - =T
Pa

For each small interval &ET* along an integral curve, we read off
the mean value of 7, and €, within it and obtain the change 4u;,
across that interval from 4-45, The same procedure can be applied
successively along each integral curve and the change of o @8 & function
of 65@, is obtained accordingly. It is convenient for graphicael represen-

tation to introduce a notation wy vh ich is defined by the following ex-

pression

'
g, =+ (wp = wy) (4=46a)

' ¢
where wy is a comnstant {or each integral curve and its value is deter-

mined by the condition that

Wy = g at igg = ] {ﬁ%*‘%éb?

always on each integral curve. The (<) and (+) signs in froat of th

bracket in 4-46a refer to forward and backward facing coupled waves
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respectively. The plot of wy vorsus 25# along different integral curves
for slow waves is shown in fig. 7 and that for fast waves is shown in

fig. 12. Lines of constant L, are given in these graphs also. It is evi-
dent from 4-46 theat the value of w; for each integral curve depends on
specific physical condition of & given problem. In most cases, we are
interested only in the difference of Eg* between two states which is equal
to that of w; and can be obtained readily from fig. 7 or fig. 12. The

‘ -
precise value of w; as well as w, are usually of no direct concern to

. W8,
Similarly, for the transverse flow velocity, Eg, we have {rom

4-22h

L 1/2
wsaw 1 e %‘_p pe—.
duy = sgn (B 35'3313 [%/%LL] duy

We define up = E{?’"w/ v Efaw then

1/2

- ne1dB o
= sgn (ByBy) ﬁﬁ’pfi 1 day,

. Y/2  dp

- {o=1if3 - ®

= ggn iBngﬁ‘? i {zzf ] Cyp =

P

The differentials may be approximated by finite intexvals as

. 1/2  AF
5;' w5 P, 2 .
= ogn (238 4) {«%S%% i S, {4-47)
Fe

A similar procedure of evaluating the change of &E‘Z@ across each

small interval along an integral curve as that for Ay g €an be applied
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here. Let us define wy by the {ollowing expression
- - '
Ug = T SgR f?ﬁag}ﬁgz}éwaa W {4-48a)

where wz iz a constant for each integral curve and its value is deter-

mined by the condition that
wy = 0 at Py =1 (d=48D)

always on each integral curve. The (-) and {4} signs in fromt of the
term on the right-hand side of 4-48a refer to forward and backward
facing coupled waves raspectively. The plot of wy wversus ?$ along
different integral curves for slow waves is shown in fig. 8 and that for
fast waves is shown in fig. 13, The change of up, between two states
can be obtained readily {rom these while the precise value of wy; as

§
well as wjy need not be known in mosat cases.

4. General Behavior of Physical Variables across Coupled Vaves
Sorne basic properties of vhysical variables associated with the
coupled wave problern are investigated. These considerations are help-
ful in understanding the fundamental mechanism involved as the wave
travels and are essential to the choice of a particular type of wave to
describe a given boundary value problem. Zome of the behavior can be
vigualized directly from graphs shown in figs. 4 through 13, however,
a more precise consideration from the mathematical point of view is

undertaken here,
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A, Properties of Integral Curves in (o-§;) plane

o &

It iz seen {rom 4-17a that for both fast waves {(i.e. 1 > a = {,
1>, = 0) and slow waves (i.e. a > 1, £ > 1), g%i > 0 always except
at a =0, By =0 and at o ~ o for any {inite value of ; where %%‘ = U,
{As by — o, o approaches a definite constant as shown in Section IV 2.)
Hence {; always increases monotonically as o increases in crossing
coupled waves,

We shall show next the impossibility of coalescence with the
ordinary gasdynamic sound wave from either slow or fast wave. Let us
begin with an examination Qf 4-17a at a =1 (i.e. ¢ = a); it showe that

dg . e ; i
=il o op except at 8, = U and £ =1. Thus no integral curve in the

da

{a=-;) plane can pass across o =1 except through two singular points,
namely (1, 0) and »M(1,1) as shown in fig. 3-a. It is known from
Section IV 3 thet 3i{1, 0} is a saddle point. The only trajectories able
to reach M are o =1 and £y = U; the former corresponds to the ordi-
nary gasdynamic case and the latter corresponds to a degenerate case
of general XIHD flow in which the longitudinal magnetic field is absent
always. For the general case of coupled waves (B # C), there is no
integral curve that can reach e =1 through k. Consider now the
gingular point N(1,1} which was shown to be a nodzal point. Except for
one of the integral curves lying on @ = 1 which corresponds to the ordi-
nary gasdynamic case, all other trajectories are shown in Section IV 3
to be tangent to the line (a-1} + (y=-1}f; -1} = &, This tangent line has
the slope %1 = - ?}:}T < U and it extends to the physically unrealistic

region {{orbidden region). However, we have just shown that all tra-

jectories should have positive slopes in the slow and fast wave regions.
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Therefore, it iz obvious that there is no way to connect trajectories

in either the fast or slow wave region to a =1 through a physically
possible procesc. This concludes the proof of our statement. As a
direct conseguence to this, since @ =1 is the line that separates

fast and slow wave regions, we may also assert that it iz not possible
to have a direct transition from fast waves to slow waves or vice versa.
In other words, the particular type of coupled wave remains unchanped
always.

#e may remark here that for the special case of purely trans-
verse magnetic field, all integral curves in (o-3;) plane degenerate to
a single line L. OCnly fast waves exist and they are able to coalesce
with ordinary gasdynamic sound waves through the singluar point
¥i(1, 0). The gas expands completely to vacuum and the tranasverse
magnetic field is switched off at this specific point. In this special

situation fast and slow waves ag well as sound waves coglesce,

B, Variation of Density Across Waves
The density, @, is a monotonic function of ¢ along any integral
curve (i. e. for any fixed values of K; and @I}q This is shown as
follows.
We first obtain a total differential equation describing the change
of p across waves as a function of o by eliminating f; from 4-17a

and 4-22a. It reads

=y
o= e
ap 1 p'-Kja Pa At
- = 3 {4=-49a)
dw cfE‘Y \?Y““

ﬁg@"i;'&;«

for both fast and slow waves. This can also be found by direct differenti-



ation of the solution of & as a function of a given in 4-32a. Since
[ @
£y = =L o, 4-49a may be written as
e
(0=
- = -
dp _ 1 phy 3 (4 ed i)
Eé% - 2=y @ XS ) (2=470)

But £y >1, a > 1 for slow waves and 2y <1, 0 = ¢ <1 for fast waves,

%=39b becomes

g ooy J 2
§£§n$m:o$£&“<@ (4=49¢)
€len L=y G 2=y T;*g-i

F

for all finite values of p. Hence p decreases mmounotonically as «
increases together with the increase of £; along any integral curve.
2
. a .
Cr one may say that the square of the wave speed ratio, @ =~ , in-
R L

C
creases across ravefaction waves and decreases across compression

waves,

Let us now proceed to consider some limiting values of p for
fast and slow waves.

{a) Fast Vaves

It iz obvious from 4-32athat p — o at @ =0 always. The
density, p, decreases monotonically as o increases until [ =1 is
reached for any integral curve. Thus p attains its lowest possible
value at this state which is characterized by initial parameters of the
problem. The corresponding value of o is denoted by a' as defined

A

in Zection IV 2 and it can be found analytically frown 4-35., The minimum

value of density, P onin is determined by
& 3
= . wr 5 4-50)
Prain = (Ki'o (£-30)



«79-

o i/‘!

since E = {‘3%:% ) and £y =1 atthis state. A remarkable fact to be
observed is that the gas cannot generally expand to vacuum in this case.
It reaches a final state with the transverse magnetic field switched off
entirely. Since {; =1, the fast wave degenerates to a special case of
traneverse wave. It is due to the basic property of the latter that no
transverse magnetic field can be induced from then on,

{b) Slow Waves

We have shown im Section IV 2 that a tends to a finite value as
g, —~ w., Therefore in this case p = © is possible for any integral curve
as can be seen from 4-22a, o increases monotonically along a given
integral curve as {3y increases describing a continuous expansion pro-
cess of the gas. p attains its minimum value, zero, as f; — w. The
finite value of a at this state is denoted by e and can be found from
4-36. Un the other hand, when the gas undergoes a compression pro-
cess, o decreases monotonically along a given integral curve until it
reaches its lowest posgsible value at 3 = 1. We denote this minimum

o

of @ by e ., at which p attains its maximum p . By
value ¥ ©nin i g atta asiy na ¥

= @ Ky,a.) is
min mimi‘i’ 10 8y

puttiag $; =1 in 4-25 for the slow wave casge, o«

determined from the following expression

e . | %ain i ?y/@-y}‘?‘?}; f @mm% }Z/’{g-y; ;
min'a . -1 L=y J@'I b=
] ©q k\’/i 2=y} ) )
= — ( Eyvn (4-51)
Ly 1
Then }‘;:«:nmz for the given integral curve is obtained from 4-32a

as a function of o _ .
i
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The gas cannot be compressed isentropically to a density higher
than this. The transverse magnetic field is switched off at this state

and a special case of pure transverse wave can start.

€. Variation of Transverse Magnetic Field across Waves
i.et us consider now the behavior of transverse magnetic {ield

strength across ‘caupied waves, wWe have from 4-20
'”f"g i 2
By = (@»'“(i-g ) {4=-53a)
3

Differentiating the above egquation with respect to ¢ and making

use of 4-17a, we arrive at

. 2 1
=y {1~ i ) (4-53b)
For slow waves e > 1, ;> 1; so that
jel E" .
% >0 (4-54a)

always. For fast waves 0 <a<l, €3 <1I; sothat

2
% <0 {4-E4b)

always. Combining 4-54 and 4-49¢ which shows %é < 0 for all finite
values of §, we conclude that across slow waves the magnitude of the
trangverse magnetic fleld decreases as the gas compresses and increases

as the gas expands. On the contrary, the transverse magnetic fleld
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strength increases acrose fast compression waves and decreases across
fast ravefaction waves. Dlioreover, owing to the monotonic variation of
all physical variables across waves, the sense of the transverse mag-
netic fleld direction cannot be inverted through either fast or slow waves.
A further investigation shows that the allowable value of [5; | is un-
bounded in fast waves but it has a maximum velue in slow waves which
is characterized by the initial state of the problem. These values are
discussed as follows.

(a) Fast VWaves

We have from 4-20 that =, =0 at & =1 for all integral curves.
T, | increases continuously as the gas compresses until ¢ = (, 8 =0

is reached. It is found from 4-20 that |7, | — o at this state. Hence
the transverse magnetic field strength is umh@und@d.?
{b) Slow VWaves
It is seen from 4-20 that T; = 0 at £ =1 for all integral curves.
;! increases as P increases until a vacuums state is attained that

H . s
g = 0. This corresponds to o =a and f; — . Thus the maximum

value of [B; is attained from 4-20 that

L = (e (4-55a)
oar
T, = eaa(B, B e )Y (4-55)
{mnin)

) - Py s 2 > s s .5 o £ z
where o' =a (¥, a,) is given in 4-30 28 an implicit function of the initial

gtale parameters.

F’l’“hﬁ;a is merely a theoretical result for ideal gases. Actually for real pases

that we are dealing with in practical cases, o shock wave is formed long
before the gas is compressed to p—= o3. The transverse magnetic field
strength can have only a f{inite value.
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D. IMstortion of Wave Profile as & Function of Time

By wave profile we mean here the distribution of physical quanti-
ties, i.e. velocity, density, magnetic fleld strength, pressure, etc.,
in space at a specific instant. The distortion of simple wave profile
during the propagation of coupled waves results in the steepening of
compression {condensation) waves and the flattening of expansion {(rare-
faction) waves. Conseguently, the former leads ultimately to the for-
mation of MHKD shocks, i.e. fast and slow shocks as defined by Fried-
richs (1984), which involve a similar mechanism as that of ordinary
gasdynamic shocke.

The proof can be given as follows. Let us consider, e.g. the
longitudinal velocity profile, 8vu;/8x, at time t which by making use

of 2«28 and 2-34 may be written as

L e
,1%:%} guﬁ é%; = ulg‘%» (@ﬁﬁ@)

"’K ¥ & 2 1 & 5 ¢ i 7
“EBowm(E) e [w(E) s Gt

where = demotes the total derivative with respact to the phase parameter

£. We shall first show the following inequality

Ay el (4-57)
ouy

always for forward or backward facing {c> 0 or ¢ < 0) coupled waves.

From 4-Ta we may write

= a5, T

where p and ¢ can be obtained from 4-22a and 4-22f respectively as

functions of o and [ . They are substituted into 4-58 together with the



- use of 4-17a, thus one obtains easily the f{ollowing result

dlu +e) _ (y+lalf -1)+3a-1) ~.
R e | {4-59)

for both forward and backward facing waves. Now, it is evident from 4-59
that 4-57 is valid for both fast and slow waves. For a forward facing
rarefaction wave that af(a‘i} > 0, we have from 4-57 m§§€;} 4 c’é{;} > O,
Returning to 4-536, we see the denominator of {g;%; increases with time
always, hence the loangitudinal velocity profile is flattened ocut. On the
other hand, for a compression wave that uféé:é? < @ and ui&é’;’;} sziéﬁ < G,
the denominator of %% decreases with tlme and the velocity profile
steepons up always. The denominator may eventually equal zero and
causes an infinite slops of the pxéﬁﬂa; after that the slope changes sign
and we are given generally three values of velocity at a position
which is impossible physically. The actual sitvation corresponds to the
formation of shock waves which propagates with shock speeds into the
flnid. Tast shocks are generated by 5.&@?& simnple waveg and slow ghocks
are generated by slow simple waves. The maintenance of a constant
profile of shocks may be reasoned by the fact that the steepening up of
wave profile dus to nonlinear effects is balanced by the diffusion mecha-
nism arising {rom heat conduction, viscous f{riction and fipite electrical
conductivity. The change gﬁwave profile of other physical quantities in

the course of propagation of coupled waves may be found in a similar

manner.
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J. DOLUTION PUOR THE CASE ¢ F PRPURELY TRANSVERER

i, The Arbitrary Flow

As a special case of the general problem, we consider now Mz =0
initially. It follows from the %, =commponent of 2-2a that Ez‘ai = 0 at all later
times. The structure of the governing equations is greatly simplified
and certain boundary value problems of arbitrary flow can even be
formulated in a simple form suitable for a éemzz@d study.

We bogin with an i:v:wegtigati@m of the general system of differ«
antial eguations 2-8. SJince the corresponding case of contact surfaces
that entropy is allowed to be different along different fluid particle
paths has been discussed in Chapter I, we assune heve the entropy
is constant throughout initielly. It is seen fromm Z2-0g that the entropy
ramains constant throughout for t> U and the fiuid flow is isentropic.
From a-8¢,d since p ¢ 0 in geneval, Uy and U are constasnt along each
fluid particls path, I Uy and d ug ave constant throughout the entire space
initially, they remain so afterwavds. We get from 2-5a,e,{ the follow-

synations

-&%
;:92 ‘%’; = €5°%§3§
DI fu
3. 1 _ =
gw}g ¥ uis %;‘ - f} (Jwééi}

29

After eliminating - armong them, two ndepandent relations
& o &2 &
“1
exist, namely



i:? 5 ;)3 H o % 5
7 L log ) =0 (5-2a)
and \
T2
D D e
75 [log (== = 0 (5-2D)

For this isentropic case, we have

™
B.,
3
= = k = constant {(5-~3a)
9
P
S73L00
T
%«3—_;)
-;;ﬁ = A = consgtant (5-3b)

¥

throughout the entire flow. However, one may always orient the coor-

dinate system {xz =x5} in transverse plane in such a wayv that o =0

Su da ; 2
i 4,., 8P A 8p y
From 2-9a
z 4P y-1i .
a = f; = yAp {5-5)

with A now constant. After making use of 5-5, we may write 5-4 in

terms of velocity variables, u, and a, as follows:
-

ou
8a d -1 1
| “?&% Lo a o, - O (5-6a)
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&wi @Ll 5
&& L aa Y-l 02 - FIAR
&1 EZ. LX) i “gxw; 0 (56D}
2
™
where /i = mmfmgn-m . The system 5«0 belongs to the reducible type of

pk ¥

aon=linegar partial differential equations. For purposes of a general
study 56 can be put in & linear form in terms of (i@zs&ﬁ as the indepen-

dent variables (hodeograph transiormation). The transformation is regu-

¥ ga 89 g
lar provided the Jacobian of the transformation, | & e e -
v [ @xl @xi

&

&

3 nowhore zaro in the flow region. The transforwation relations are

i
T T S J Ta
{5-7)
e _ . 59 ga _ . B
L3 J @lﬁz @,1 R <15

It is izaportant to note heve that when j = 0, the solution corresponds
to a simaple wave which cannot be obtained from the hodograph repre-
sentation. This is a degenerate case of the general solution and is thus

somaetimes called a "lost' solution. Substituting 5-7 into 5-6, we

obtain
9% o
1 ot y-l 8t . .
£y — a = £ S.8n
g 1 Ed&r £ @ ZE& € v E
ax . 2z-y)
1 & . Za Y= - .
Tmowm e as VT lghe 0 (5-80)
Y u
Llimainating s from above by cross differentiation, we arrive at

a second order linear differential equation for ’ciuy a)



2{z-y)
8% 4 = 8% wrl 1 Bt _ . o
- - 5 E}.saz.a; j““ﬂzwk%ga = €J~§é&§
8a {v=-1} %%3; ¥
Since y = %—‘?‘- from 1-2, 5-9a can also be written as
Z =2 a2
% 2 Bl 9%t ntl &
w—-z--»zz{iha i ) o umte D () (5-9b)
8a du a2 ba

This is a hyperbolic equation due to the fact that /. and a are always

reater than or equai to zero. A typical flow problem demands bounde

o

ary conditions on characteristics, pistons, or shock waves. We shall
content ourselves with the formulation given here and no further study

of its solution is attempted.

2. Simple Vaves
As to simple wave solutions we see that only coupled waves
exist in this case owing to the absence of Ei The entire family of

integral curves in éei—gib slane as well as those in

planes degenerates to a single straight line LAl as shown in Fig. 3.
The situation can be visualized better from the {u- 3;} plane where LA

ie described by o + 4, = 1. The same result can also be obtained from

2

4=15 by setting ;41 = 0. Hence

. =1 Z
2_.2,, L)
¢ =al @f =yhp 7 - P (5-10)

Tme may see readily from Fig. 3-¢ that ¢ corresponds to the
limpiting case of a fast wave. The slow wave has zero speed and it co-
alesces with a contact surface in this case.

et us introduce the following dimensionless variables norma-

lized with respect to initial physical quantities as



- B, &E
f} £ ‘:fL’““ ’ f‘”;?; = ?as‘:ia N E%z s
Py Y2y &1
{5-11)
- & s %33 - g
a= r . E:sg, = - s € B otem
I R | &1
Here L, =p always as is seen from 5-3b
The fundamental parameter of the initial conditions is
B
R ;
;2 = e = o {5-12)
i I [epg
5«10 becomes
e T - Y-l Y &=y
=2l BfeF @+ %7 ) (5-132)
. T &
or
1
BT > %? % ,,'?. . 2‘”? ‘i}: =y
€=tp {L+ " p ) {5«13D)

The gzas can expand to vacuum in this case of fast waves. Eupressing

&

=100 in dimensionless variables

o Z = o
d% =2y T da == 4p
T a 5
and substituting the value of € in 5-13b into the above eguation, we get
y=3 L
o O = . A b 2.‘% “ o T
m's,l =4 p {1+ é:%;,;’ P 5} do
Therefors, the generalized Riemann invariants for the longitudi-
nal flow velocity are 1
o=
, Fd
; ) dw {5-14a)

have assuwmed that BZ = @ﬁi’m%ri e the i £
mz rar get into fluid w@a,&usﬁ of ite infinite electric
0 dizect MHD effect can take place.

wotic fluw lines can
conduectivity, and




and
- ; 2»‘\@' ’
Zx‘l = Uy + W ¥ odo {5-14b)

¢
¥
3

for forward and backward facing waves respectively., These have a
formal resemblance to those in ordinary gasdymamics axcept for the
additional term z:;;‘g? =Y which take into account the magnetohydrodye
namic effect due to transverse magnetic field. An equivalent result to
5«14 bas been obtained by Mitchner (1959) and Golitsyn (1959).

So far the sclution is obtained froin the reduced set @§ differen«
tial equations. We may verify it by taking the limiting process éﬁilw@
of the general solution given in 4-34 and 4-37. From 4-28 and for hav-

ing fast waves only

b, % g
2 P2, leg
o 2 I I I ..
Since }";?“ e sl then
) 2y “1 3
AN
2»%{

1
Fe éw?

The generalized longitudinal Riemann invariants for forward

facing waves is obtained from 4-34a as

S A . { do 5.15
s twtrm) I TR (5-15)
The density given by £-32a ig

1
Pl
7= dg )Y



thus ¢' = 1 and it corresponds to p = 0. If we change the variable of

integration in 5-15 from ¢ to w with @ being defined by

30 that

we have

hence
i
ET ‘g‘
o La s v B g"%é’
=38 = e o ow T (T 0T ) do (5-162)
Similarly,
~ ye3 i
- !@ o 5 > o Z Z”\g La - 2
2;'_;31:: 3 ow QE-%;@,E w ) dw 13-160)
: ;
Yo

7y

for backward facing waves. These agree with the previous result 5-14.
In regard to the gensralized transverse Hiemaon invariants, we
find from 4-37 that

25, = G, {5-17a)
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Py

2r, =, {5-17b)

for forward and backward facing waves. Hence the transverse velocity

remains constant throughout as one may expect from Z«lic by putting

~m

Vi =

% .

W

The trangverss magnetic fx;ﬁﬁ strength, ;2, is obtainad as fole

lows, Since O0<g <land H = (efi-») ¥ we have fror 4-20

: 1
8 - Z

dwy
, E m l 2 £y
A Ty maw{me 2y )} (5-12)
1 e
1
Hat
332” ﬁa ":'{”2,
T e
1 EZE 71

Substituting this info 5.18 and taking the limit as m.,sl” g, we get

& e
- a,;a T
EE &

ZE

{5”i;}
which agrees with the result obtained before.
The definite iutegrals in 5-14 or 510 can be expressed in terms

of a hypergeomatric function (See Appendix C). Then

i
- -‘m £

=Zs = Uy - ooy
=

1]
1

s
“igm



cT 25 Lol yk o 3y 2s2ey
zfl*ﬁz‘%’wgﬁ g[uzsm, ny} «,12 E

2
y-1 3=y «QLTX}

- . 2 . . = e
=y ;;-:T Fl- 2- i e i oy BER ? i {5-20b)

For the limiting case of ordinary gasdynamics {’Z = 0 ideatically,

o - jf%, Zzg}y?; 2(3’;?%;3’ 3] =1, and we recover the familiar Riemann in-

2y
{LJ

variants

&rzil;

“&?:rsl = 13.1 - W 2 = ‘é, @T @5-21&.%
y-1
- A | oo 2 .
2 = " = e 3 AR,

A comparison between 5-20 and 5-21 veveals that the entire mag-
netohydrodynamic effect is contained in the factor of hypergeometric
function, ¥, in this transverse magnetic field case.

For monatomic gas with y = %, we are able to reduce the hyper-
geowmetric function to an elementary function by means of the following

identity. (Magnus and Uberhettinger, 1954).

Flk,4; mrl; 2} = ﬁ? [ F(k-1,4; miz)-Flk,L-1;m;3)]

Then
1
3/2 3/2
ey Z L 23 H = & i e = ;
~ds, =y - — { (" e 7)<l =ay - m:n—ozﬁ_ (1r%,7a)  -1j (5-22a)
Lo EaN
2 2
1
3/2 _ 3/2
= 2 . 2 =73 o A 2 =
2r) =4, + g&zgu.% 57 el =Ty ﬁm K,°8) -1 (5-22b)

These can also be obtained from 5-14 or 5-16 by carrying out the inte-

gration directly for this special case.
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Therefore six Riemann invariants in purely transverse magnetic
field case are u-p from 5-14, B,-p from 5-36 that ?%‘Z‘ = p, together
with constant values of 5, Uy, Uy and B,.
The escape speed can be evaluated easily from 5-14 or 5-20.
WWe note that it occurs culy for fast simple waves now through which a
complete sxpansion to vacuum is possible. {(The slow wave speed van-

ishes identically in this case.) If u = 0 initially, then
-1

e 2 = 1 -l Bey 3
e T Tl ol {"2’92‘}?&’)* =y Fe P -

iz - 1yl
=5 -yrtl-zomby w62

for forward and backward facing fast waves respectively. Thus
8 P ¥y

2a
- I w 1 -1 . 3 -_,?;‘-;:2 4
oy =g FlezogEy i men T (5-24)
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VI EXAMPLES

The general procedure of the application of methods given in
previous sections to solve actual flow problems governed by MHD simple
waves is discussed in this section.

Contact surfaces apply to flows separated by different entropies;
their occurrence is analogous to ordinary gasdynamics. Transverse
simple waves are mainly used to align the magnetic field or flow velocity
in a transverse plane with a prescribed orientation. An ordinary change
in direction is allowed to take place even through a single wave front

which propagates with the Alfven wave speed based on the longitudinal

magnetic field. Transverse waves usually appear adjacent to coupled
waves and thus lie either in {ront of a slow or behind a fast wave region.
Owing to the simnple nature of thelr application, contact surfaces and
transverse simple waves will not be discussed in detail here.

2

Cur attention is now focused on coupled waves. The initial state

&p Fw

L d
of fluid given in éxi, #o %,) coordinates is characterized by the following
wdt

physical variables

L d < »ot a4 Kt L oy
Py Po 1y, u Wome 1 2 =,
i r i T2r sy Lt ar sl
&, P . us
where P, instead of S, is chosen for convenience. First, a transfor-
i 1

mation of coordinates is prefevabls. This is done by rotating the
transverse plane to orient the new x,-axis in the direction of ¥, and
ad i

then performing a Galilean transformation with a velocity

~2  ~2 -1 %31 -1 P,
Lgs *oUgy sin | tan = - tan ijg
Y21 “21
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in new x3—direcﬁ@a. Therefore, the imitial physical variables expressed

in new coordinate systerm: are

The flow can be considered hereafter to be always in the ‘ixl-»xz) plane

without lose of generality. The general initial value problem is posed

ag shown in fig. 4. We are given not only the initial uniform state

ahead of disturbances but also the boundary condition on an initial curve
g in é:sai-%} plane from which the phase lines of a siraple wave issue.

Certainly, only one of g, Up Uy and 2 can be specified on & because

they are governed by a single parameter (8. g. a) through the Riemann

invariants in the entive coupled wave region. It is obvious that %

should not coincide with a phase line of the corresponding wave.

Fromwm p ?g' 1 and %BM (together with the constant p), we

z’
are able to form only three speeds and therefore two dimensionless
parameters, namely ;Ef’;i and 21 s these suifice to characterize the

I

part of initial state for determining p and O 2 OF the magnetic field

Riemana invariant. Due to the Galilean invariant property of g and
Qo dimensionless parameters '{iﬂ and '@zg formed from g, ¥, Uyq and

Uy aTe important only in the longitudinal and transverse flow Liernann
invariants. They depend on the coordinate system chosen and are thus

additive; the physice of the fluid is determined by differences of vy and
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Phase Lines

Fig. 14
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iy betwaen states. A a consequence, constants By» Ty 850 Ty need
not be known in most cases. The situation wmay be illustrated by the
following simple example. L.et ue consider the fluid at 2 given state I
initially, and let it undergo an expansion process across forward facing
slow waves until finally it reaches a state ¥ characterized by its
density "5? The longitudinal and transverse flow velocities are obe
tained from 4-34s and 4-37a mgmcﬁwﬁy

- = 1 7 Hw-wzw M yv-1/2(z-v) { -

fr TR T Iy
o

E«
‘?‘E"%‘“ﬁf y2/2=v)y do
&
and - ;XQV-EVZ}; {e:fd 1/2{2-v)

b O e
Uy = Uyrmagnl 35y 35 | ELE 72 {@»w»f;

e
"1
3T

]

o

oy B
G Eg“&“@

“@

Qgr)a/(z‘v} Yo

‘a

where

ZB

'z
e v/(2-y) v,

o
= Tilarr il = 4 3/‘ 2-y) Ay
= ,-A,A@’,ﬁ,s,i.% 3} w'(g;:r-b W ﬁ%

(o)
Jo (T

)
N

£
Far

‘n-m"‘:

8y is obtained from 4-25 as

a a..z;z {is ﬁlqzmﬂ) + \][zv%qz««z ,1,/,%333] 4% }

P = F e
: oy v/(2-y) yx2 (°F 2/(3‘-‘?5@i 31/'%' op-l 1/(2-)
ez am S
E -

Knowing o.., one may get all other physical gquantities at the

final state fromm 4«31 and 4- 32,
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This result can also be seen easily from graphical sclutions.

-

We may determine P, and T, of a state from (e-£,) plane, but w
v G 2 3 |

and ﬁg must be found fr&m (Eé'%ewl} and gwa»»};@) planes respectively
where only differences of wy and W, are fmportant.

We shall discuss in the following several problems describing
fluid motion set up by mechanical devices as well as by electromagnetic

means.

A. Receding Fiston Problem

l.et us consider an infinitely conducting gas at rest initially with
imposed uniform magnetic field oriented in an arbitrary direction. A
piston is attached to one snd of the gas that extends to infinity in the
ﬁmﬁir@cﬁi@n at the other end. For this one-dimensional problem, the
piston surface can be considered to be perpendicular to the %E%ﬁreeﬁan
and he situated at #y = ¢ initially. At ¢t > 0, the plston moves with a
longitudinal velocity "iiz*l(*s:) in »xfdir@ﬁi@m €“§E}t(?,) < 0); thus the zas ex-
pands near the surface of the piston. This is a typical example of a
fluid motion started mechanically. The physical phenomenon can be
degcribed in the (351'»%‘:) plane as shown in fig. 15a. A wave propagates
into the still gas after the motion of the piston and gas particles are dis-
turbed after the arrzival of the first wave {ront. BSince the flow region is
connected to a constant state at rest, it is described by simple waves.

1. Accelerated Piston Motion

auy ‘. , .

This corresponds to i < 0. In view of the relative simplicity

of the case having transverse magnetic field only, it is studied {irst. A

scheme of solving the corresponding case in an arbitrarily oriented mag-
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netic field by a graphical method is stated subsequently; no provision is
made here to solve it by analytical method because of the complicated

nature of the definite integrals involved.

a. Zupansion in a transverse magnetic fisld @% = Eﬂ%) .

The mechanical boundary condition of the problem is specified by
the requirement that before cavitation occurs the fluid velocity has always
the same value as the piston velocity @E(z} along the piston path. No
magnetic boundary condition need be imposed here owlng to the infinite
conductivity of the gas. Only fast waves exist in this case, furthermore,
they are forward facing ones. The farily of phase lines -;fi = uyt ’ aaé 5313
issuing from the piston path has the important property that all physical
guantities remain constant aleng each of them. The Riemann invariant
5-20a holds across these phase lines. For vy mé, we have from 5-22a

3

the following simple form

2a '
. Irp, w2=1/3,3/2
“Zc‘:ﬁ%i = E}»l - —;—g—'[qi 7 :“g o 9 1]

Here the constant sy is determined by the initial condition @l =0 at

s

Py = 1, hence

Za
3,3 ,2,3/2
z,z}m...z; “H%g Y3)3/2 s 2}’/1@ (6-1)
“2

Y
Applving this relation to the piston path, we obtain the density variation
PRAY & P ? )

along it 2

. 1 . 2 ES U~

Fe L uxd¥2. 2L 170y e
e i
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Thus 7 is expressed here as a function of «, the time elapsed from the
start of the motion, which can be regarded as a parameter characierizing
the phase lines of the satire flow. Due to the constant speed of different

eny

phases, we have for any point (xl, t) in the region xhéﬁ) S xS ct=

{1+ E{é)}'/ zal‘t on physical plane

% - leé 7)

= iji{'?} + ¢7)

ts 7
St
{w'?’
5 = & L A b W |
xlym J UT)aT

and from 5-13b

cf{r) = ai&h*) =a.p 1/351 % f:ié I 1/33 1/2
Then
- 1 UATIET = (e-m){y(n) + aiﬁmu " zﬁzggl/%}/gj’; C(6-3)

Dy elimination of 7 from 6-2 and 6-3, we are able to get
T = plx, t}) which is usually obtained as an ixmplicit function. mqu%, t)
is identical with Plx,, t); all other physical variables ’j?f’éxk, ), “%(xl, t)
and (%, t) can alsc be found easily from kaown relations. The strength

of the current per unit length, I{t) flowing on the piston surface is ob-

tained as follows:

hence

g,{: = W 3(e)5(,)
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,§m -
”zﬁ’) - }92 = pI(t)
_ 1'7‘121 _@}w'% a ey
) == {7, 10 - 1) (e-4)

where ;27“ is the transverse magnetic fleld strength at the piston surface.
It is noted that in the region %y o Qf” the fluid remains in the

initial constant state alwavys.

b, Bxpansion in an arbitrarily oriented magnetic fleld.
The problem is more complicated than the previous one and its
solution can be found readily by use of the graphical method described
in Section IV 4. In order to ensure the possibility of 2 complete expansion
of fluid to vacuura in each case, we consider the fluid motion governed by
slow waves (forward facing) only. The procedure is as follows.

{1} At the initial state

&y =I5y S
-1 1z o 8y
BEy
and
— 21
21 Sq
We bave from 4-44a
e I
Pay = %" T = 1
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Knowing the values of :%1 and "’zz, we may determine the point
I of the initial state on the {ang}z} plane by making use of fig. 5.
{ii) R@aﬂ ofif the coordinates (@T ,g’ismb of volnt I, this
gelects a particular integral curve in fig. 4 describing the given flow

along which the phase of physical states changes continuously. It is

»

tllustrated in fig. 15b
{iii) The point I on 5}*“\3}1? plane can also be deter-
mined by E&q and ?‘?23 in fig. 7, this in turn selects the corresponding

integral curve on the plane. Therefore for each piston velocity Uy

Py

T

corresponding to a state 7, we may find the position of on éf%'-wzb

plane as illustrated in fig. 15c. The values of 5«**%, and *‘%’; are
known from here, and therefore Eﬁgy can be found from fig. 8. Physical
variables at ¥ are now a2ll determined. Incidentally, the point © on
the {a-f;) plane may also be located.

{iv) Phase lines {one family of characteristics) are

always lines of constant slope issuing {rom the piston path. Tor a parti-

cular state I" on piston path, the slope is given by

. 4+ C.

where C.. is found from fig. 6 after kunowing other physical variables.
Thus we may draw the straight phase line leading from ¥ along which
all known physical quantitics associated with E”EF ramain constant and
their values can be assigned thereby.

{v) Carrving out the same procedure for sevsral points

on the piston path, we get a family of phase lines. At any time T, the
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distribution of physical state in space is obtained by crossing all phase
lines with a2 horizontal line t =T on the ixl-ai:} plane as described in

fig. 15a.

2. Coustant Motion of the Piston

To show explicitly the MHD effect on the gas flow for receding
piston problem, let us consider now the relatively simple case that
‘U} = constant. The corraegponding sclution of the ordinary gasdynamic
case i8 well known and at any instant the velocity distribution is a
linear function of space throughout the simple wave region. This serves
as a standard of reference with which the solution of an ideal conducting
gas in magnetic fields of different directions is compared.

a. The ordinary gasdynamic case {c. {. Courant and Friedrichs,
1948)

Because of the uniform motion of the piston starting impulsively
at t = 0, the piston path is represented by a straight line through the
origin in the €2@3~€:§ plane. The simple wave zone Qﬁmis‘%g of phase lines
which are centered rave as shown in fiz. 16, The following equation

holds along each ray

dxﬂ # ~

The Riemann invariant relation across these forward facing

phase lines is

hs! a 21

TTOFT T ST

(6-6)

since uyp * 0 here. Elminating a f{rom 6-5 and 6-6 and introducing the
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N T D 1 .
dimnensionless variables u, = — and x, = » We get
1 a 1 a.t
1 I
2 (% (6=7)

Thus the velocity profile at any given instant is always a straight line.
The gas at the surface of the piston has alwavs the same longitudinal
wvelocity as that of the piston until a critical value of the latter, escape

velocity, is attained which is given by putting a = 0 in 6-6, L. e.

&az
- - fe
"lese = T T (6-8)

el won g1 & " 3 i 2 o AL 7 u
I'he gas is at rest in the region x> I. When Jl i PP
simple waves are bounded by T, <% <l Vhen U;<u , a cavitation
1 1 lesc
o Z .
zone exists in the repion T, <%, < - which separates the piston and
@ _i@ﬁ in the reg 1% YT c PETE D

. . 2 -
the gas; simple waves are coufined to the region - T < <L
gh

‘or the sake of convenience in comparicon of cases with oxr with-

s,
93
i

s

1
UpEe o for all examples

[N

out MHLC

td W
o

eifects, we shall assume y =
calculated in the following. IHence we have in the absence of magnetic
fields

T, = 3 (% -1) (6-9)

and simple waves are in the region I%‘ <x<L

b. In a purely longitudinal magnetic field

The motion must start from ‘”% = 0 and the situaticn can he

lines o =1 and 2, =1. Since the zas must undergo an expansion, we
1 & &

have to exclude the part of the line By = 1 for a<1l The exact position
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on (@"‘ui) plane r@pr@sanﬁmw the initial condition is then determined by
[Py _ P Y

( - I B> > 1, the only solutionis ¢ =a
1 ﬁi

and the motion corresponds exactly to an ordinary gasdynamic one. If

the parametey “’“‘1

Ky <1, two different solutions are possible, either c=a or ¢ = by
The former corresponds to ordinary gasdynamic case and the latter cor-
responds to MHD case with a transverse magnetic field being induced
during the expansion process of the gas. The choice of cne of thess
solutions depends on boundary conditions {e. g. the magnetic boundary
condition at the tail of simple waves), but it is indeterminate in the
present problem.
¢c. In a purely transverse magnetic field .
An analytical solution of the problem: is possible in this case.

e have only forward facing centered waves and

3
=
iﬂl = «?g-» =uy+e {6-10a)

or in terms of dimensionlsss variables

% =T+ < {6-101)

5 o
For y = - we get from 5-13a

Q‘SW

z=7Y 3@1@5}31/ /2 L5, K2 /2 {6-11)

After satisfying the initial condition that ﬁi = , the Riemann invariant

relation 5-22a across simple waves assumes the form

. z »"»“‘ 3 3 !
N LT R LA (R =R (6-12)

£ 2
Tliminating a from 611 and 6-12 together with the substitution

of the corresponding value of € into 6-10b, we get



s a__’
Ju Eou
= 1, 1 .2.3/2 ; 24 2,3 /2,1/3
5 Tl ;:2@1‘”&23/“5»“2-—%(1‘%{) /3y (613
,%2‘

This is an implicit solution of the velocity distribution as a function
of '51:'1. Une may easily verify that it reduces to 6-9 in the limit ¥, — 0.

As fg »> 1, ©6-13 becomes

215 - %) (6-14)

which is again a linear profile. This result is no accident and can be

obtalned also by approximating 6-llat M, >>1 as

T b R Y

¢ = K, / K8 3/ {6-15a)
1 we denote 3 = -»}';5» , 6-15 bacomes

g R (6-15B)

which corresponds to the sound wave gpeed in ordinary gasdynamics for
a gas of y=2. This is the well known behavior of the conducting gas
in a very strong transverse magnetic field.

The escape velocity of the piston ie obtained from 6-11 by putting

20 (or a=0) Then

- 2 g wiy3/2 )
Pleoe BT T Le x3)70%-1] (6-16)
”2,?
As K‘Z - 0,
Ylese -3
jet = - 2K

5 2
lese &
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We have calculated longitudinal velocity profiles for Ifféz = 0, 75,
1. 00 and L. 50 respectively which are compared with the ordinary gasdyna-
mic one as shown in fig. 17. They are very nearly straight lines and are
displaced to the right of the ordinary gasdynamic profile.

d. In an arbitrarily oriented magnetic field

The golution is obtained by using the graphical method mentioned
previously. Some longitudinal velocity profiles at Wg =0, 75, L 50 with
2%@1 = §.75, L 00, L5350 are shown in fig. 18. It is remarkable that they
appear also very nearly as straight lines. The dominant effect dus to
magnetic field consists in displacing them to the left of the ordinary gae-

dynamic velocity profile, since only slow simple waves are considered

in this case.

B. CQurrent Sheet Problem

This is an example of fluid motion initiated by electromagnetic
means. A steady current sheet flowing in sgawﬂimc‘éian is suddenly
initiated at % = 0. 2y > @v contains a perfectly conducting gas at rest
in the presence of an arbitrarily oriented uniform magnetic fleld. At
the surface of the current sheet a tangential magnetic field in the Eae
direction is induced. It exeris a magnetic pressure on the gas next to it
which in turn initiates the fluid motion. There is no characteristic length
or time in this problem; all physical variables must remain conatant
along ravys issuing frowm the origin of the 4%:3-@} plane. As in the one-
dimensional piston problem in ordinary gasdynamics, a shock discontinuity

is developed but we have here a general hydromagnetic shock instead.
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Since there is no movement of mechanical boundary followed by the
pressure jump, the gas behind the shock undersoes an eéxpansion process
governed by MHD simple waves rather than remaining in a constant state.
If the strength of the current sheet is not too large such that the density
of the gas next to it is still finite, the boundary condition at ¥ = 0 is
simply 2y = 0. For large values of the current density, the gas may
expand to vacuum and be diaplaéed from the current sheet by magnetic
pressure. In this latter ca@@.k the boundary condition on the current
sheet should be p = 0. It was shown in Section 3 that 2 constant electric
field exists always in the vacuum region.

This idea has been used to develop an extremely fast shock wave
followed by a very high temperature plasma in a magnetic annular shock

tube. [ Patrick (1959) and theoretically by Kemp and Petschek {1959)]
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VII. CONCLUDING REMARKS

It is important to cbserve that simple waves can be used to solve
only a restricted class of initial value problems. An initially uniform
state of fluid together with judiciously posed boundary conditions from
which waves are gsent cut without interactions is essential. Even so the
sclution may describe physical situations only within a limited period of
time beyond which some new facts, e.g. the steepening of compression

simple waves to the formation of MHD shocks, should be considered.

For arbitrary flows involving interaction of simple waves, the
usual scheme in ordinary gasdynamics of using characteristic coordi-
nates to replace 3, and t to simplify the original system 2-11 is not
appropriate. We have here totally seven distinct families of characteris-
tice while only two independent variables exist. The two degrees of
freedom of the physical plane allows only two families of characteristics
characterized by two parameters to be chosen freely. Cther famlilies of
characteristice must be expressed in terms of these two specific para-
meters. Consequently only two ordinary differential equations can be
obtained; the other equations involve quadratic terms of derivatives
and do not lead to any simplification.

The wave front of plane simple waves corresponds to a special
case of the general three-dimensional characteristic manifold. All
physical variables remain constant on these plane wave fronts so that

the inner derivatives vanigh identically and no attenuation due to geometry

will occur. This simplifies greatly the analysis and an exact solution is
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thus obtainable.

it is of interest to examine the rather peculiar behavior associated
with transverse simple waves across which no changes of p, s and wy
are allowed but only the rotation of ":?; and ﬁz. An abrupt change can
take place within an infinitely narrow region. An aggregate, or merely
a single transverse simple wave can be regarded as a transverse shock
hrough which no entropy chaage occurs -- a fact quite diffierent {rom
our cornmeon understanding of shocks. The absence of a dissipation
mechanism inside a transverse shock shows that it is not developed and
supported in the usual sense of fast, slow, or ordinary gasdynamic
shocks. The transverse simple wave spead, or the transverse shock
speed, is bl and the mass flow through the wave {ront can be calculated
readily. The somewhat strange property of transverse simple waves may
arise from our oversimplification of one-dimensional space variation.

Asg to coupled waves, the definite integrals appeared in the analy-
tic solution have to be evaluated by computation; an appropriate scheme
of calculation is discussed in Appendix . For graphical solutions, a
numerical integration of integral curves by use of elecironic computers
is also suggestive; this should be combined with carefully prepared
graphs of constant values of different physical variables. Due to the

successive correlation of various graphs, errors are induced; it is not

=

o
&

a8 accurate as the analytic sclution. Tesides, the limitation of the &@—{:‘sl)
plane constitutes a further handicap of graphical solution.
As an opposite case to the receding piston problem consider a

piston moving continuously into the gas, the phase lines issuing {rom the
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piston path would converge finally. The waves are necessarily compres-
sive and the slowly progressing part in front is overtaken gradually by a
faster moving part frombehind. The phase lines form a cusp in the
ix}-t) plane eventually. The continuous motion is then terrminated and a
shock discontinuity is developed, The time and position of the formation
of MHD shocks, especiallythe fast shock generatedby certaindefinite accele-
rated motionina purelytransverse magnetic fieldcanbe predictedbytheory.
Since By = constant always, the passage to the limit of ordinary
sound waves from MHD simple waves must be carried out by first as-
suming 31 = U. The slow wave speed equals zero in this case and we

have only fast waves which tend to sound waves in the limit of vanishing

s

2°
The coupled wave solution depends explicitly on the adiabatic
exponent, v, of the gas. Transverse simple waves and contact surfaces

involve no compregsion or expansion process; they do not make use of the

equation of state and hence are not functions of v.

w

_— ; 1
“When the gas expands to very low densities such that —— — oo,

2 . i # .
e = 0, etc. and we still consider the problem from the macroscopic

J}E@ém of view, it is obvious that a relativistic correction must be taken
into account to prevent the disturbances propagating with a speed higher
than that of light.

Whenever there is a variation in transverse magnetic field in
space, current sheets occur and their magnitude can be calculated easily.
Likewise the energy flux s =E xH = %—}{.“? zu) x 7T = Poynting vector,

across the wave front can also be evaluated. These are straizbtiorward

and are not discussed explicitly here.
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APPENDIX A
"fi.j = 1?;. = jdentity matrix in our present problem. Ve shall
find first the eigenvector r = (e, 75, ....2;) of the matrix Xij shown

in 2=32. Thus from 2-24a

(X,. = WL.)e, =0
ij i’ ")

o
™

Since ¢ = "ijuui by definition, the above system: can be written

explicitly as follows

“cry T opE, = 1) (A-1a)
& B B Yl
a - YT T
?;Wfl w @fz v E;;EE ; E‘Z:S fé TP £y = o (ﬁ-}.b)
DE

=C¥y = Y Fg = g {A=lc)
SQE , o o fé =z { (»@*iﬁ}
Borg - = (A-le)
s - 2 - = { LY
Bory = Byry « C¥y 0 {A1f)
-cr., = U ' {Aelz)

Obvicusly ¢ is determined by the same equation as that given in

236,

2 2,2 . 2 22 4
{2) For coupled waves that {c -2 ){c -y | I b~ =0 (““‘fﬁ:”” 0), one may

cbtain immediately from (A-l) the eigenvector



;:n N [:2_ . hlbg %Blbg z..,aﬂi,‘ i?;BQ Q
Slee b TETTE TR r T2 5 Ul
1 - O @1 - ~b§‘ Fnd -4@5&

within factor the eigenvector is not normalized. The following rela-

tion is obtained according to 226

2 2 % 2 ;
O b,%-c” b, ue c?b® an, efn? an,
€ === duy, = au., = du, = = o
g 1 glh > & 5253 3 c Ba < B
= consgtant (a2

A=z contains the entire structure of coupled simple wave solutions. It
can be subjected to detailed study readily.

{(b) Forc = é"%:al # 0 also ﬁt;ﬁ 0, we obtain from A-l the sigenvector

g:gv = E@, @ﬁ’ bga "bgs =55 @.ﬁ
and from 2-26 the following
du du, a5, dB,
Tgué. = ow -T;-?; = o ‘E};‘é =5 m}};;.i = constant 55%“3}
3 2 3 &

A-3 describes completely transverse simple waves.
{c) “When ¢ = 0, the sclutions correspond to contact surfaces which
cannot be analyzed by Riemann invariants. Hence the present method

coes not apply.
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APPENDIX B
>
) k3
For v = ﬁ = an integer

{a) Slow waves {&> 1)

@ : g ; -l -
A SN e, o e vl oomy
L ) de= (=) df = —={ onerél 4
Yo Y.l ° Vg el &7 o *

I I * p=l

I

@ -l Ved,
o~ , o Fay
= L+ =4 , | £ } at
Yoy el & L {*’“'rﬂri
I =0
Vel 1
R " § i 3. . £l *i
= { , ¥ 14 233 By ™ [] ‘g o 1
: {i,au‘ (v*rgor E V*E‘*l gv"‘r"’f @E’E
r= ¢
={&+
vel
_ v i i i 1 E

7 > 5 el ¥ hd
:if,,;l re)ilves-i)l 5 ﬁe{;le)@ (a-1)°
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i - Y i @ N
(2-D% (e-1)° (o1 le-1)

51}

L

{b) Fast waves {(O0so < 1)

¥ ¥
= vt :
Vs ac= 0’ | Ep at
@ &
I I
v-l
=k R v L 1 IR
= (-1)" {{a-e) s vin =y ) v =l - 1}
. Srt g WeReett st en)®
a=1 I
2@0({1‘ v::l V’%"g"é”}a v V? l % I
= (-1 [ (e et vinpt 1) 0 e s L
; : ss-'—‘la - @-«Mz}

o . | 5
For monatomic gases, Y = » and v =6

&9

- 6 },"wz -
w}%g‘ € 3 dé = gfﬁ buz) - éﬁmew
: I
w3} [ 1 i 7 1 1

10 (eg)® ee) ez’

‘ﬂx.‘.«-

3 1 1 1 1 i 1

34 e N
(l-a)” (l-a ? (t-a)” (-ag)
It is possible in this fast wave case to express the definite inte-

- gral explicitly in termes of hypergeometric functions which is valid even

for v# an integer, but the function is shown to consist of divergent series.
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The derivation is given as follows

To evaluate i (Y%») 4, it can be written as
a/‘%:} a«;?
{ @ ¢ v {gl s v v {3‘
) dbsa | ) ds=u i - ds
Jo =6 3@ =8 g (1-as)’

the integral has now the standard formn of a hypergeometric function and

it is obtained (Magnus and Uberhettinger, 1954) as

Flv, Liv; 2rv;a]

b
gz;;m”"iw tv, 2rv; Qﬁf}

Ve have finally

L@

w1

'u&‘

However, a test of convergence shows that

P (L v)e(2tv) = m z%:r;z

1 (z—w) at = 11“ {z Flv,lrv; 3%'%’;@}%:{3

“Evl v; 2+t v

I

1
4

5

J

always, so that the series expansion about ¢=0 is divergent in the entire

°

range O0<a<l and conseguently is not appropriate for actual calculations.

On the other hand, the closed form of the definite integral does have

ez}

ome advantage in foro:al functional operations.
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APPINDIX

vt 5 B

The definite integral is

1
= "MQ i%é 2 2-y 2
)= o L+ 5,0 ) de

2 2
" , wa have

L b gy 1
(o) '-“g% ?F;E%m ?s ey

g
W1+ Ge)” ds

This conforms to the standard form of the integral representa-
tion of a hypergeometric function (Magnus and Uberhettinger, 1954)

i

T (w) PR T YWetrwl wid,
lu,v; w; B] = e e e ’,é ¢ {l-%) {i-tz} ¢
% a;@

with Relw) > Re{v) > 0. Here we have

W o= 1
p4
oy . 2y=5 wl
v = 14 =
é:s"'? W—V
-l
w=zlvrvs
=Y
%=z G= e K257V
Z §
Hence

y=1
¥ ive W Z =& ,,.., E \u‘w}, . 3“/3 & 2: g Z“Y
i) = o ° Fl- AT pecn I e R I ]

Siace uivew ® « 5 < U, the hypergeometric series is absolutely
convergent.
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nvé sek
From l-2, y = «Efm , the definite integral can also be written as

el PR

11 1 PR |
3{5’}:“;’ E?[n- ‘n’ B T —
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AVPPENDIX O

Let us denote the definite integrals by

L (% plvn/2y 1 o (v-1)/2(2-v) ; _ ]
g de) - roil Fe — o=
¢
v
E‘*g & 2/€2"\5’) de
R ) {D-1a)
;«ff I-¢ 572
wly= -1)/ 2y 1“’@' 1/?42 v)
K o H (=
dpelal = 2oy &,\3& [ }g«i- ﬁ/{%«y) _ EJ./Z{O'(G.."H
I "o
w2 y
1 o 2/(2-vy)y i
with / 2
oy v/(2-y) Ky o 2/(2- L
Hle) = (pm-) oy eT&«_é 2420 g (D-1c)
for fast waves, f.e. 1> a2 0 and
o) = (v 2y ot D2z ]
IY "}@ » ay\o -
I
s /
s 2 (Z”“{)‘* 5{@' N
- = (=) =17 {D-22)
ﬁ;&@ @“’ & 2:
% . w-m/aaw ¢- ! z/zgaﬂg;
Ky re {omm 1
Aagl®) =37 gj_,z T T x/(zaw L {#e T
oy g;il—@“( =

k2
- —»—ﬁ ég‘f ﬁz/éz“‘ﬁ’ﬁ }de (D-2b)
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with
el
e W@y By eo 2/(2-v) .
hgw) = { E;-‘T ) T Ty j% { I%?;) dg {(D=2¢)

for slow waves, i.e. a> L

Then, 4-34 can be written exuplicitly as
-28;; =y - [ gy da) - qlﬁ&@—;ﬂ {D-3a)
2vy; = vy + Laygla) - qdegl] (D-35)
across forward and backward facing fast waves respectively and
~20;, = uy - [ay le) - ayfo))] (0-43)
3?13 = vy + qugm) - cgm(a;?jﬁ {(2-4b)

acrose forward and backward facing slow waves respectively. Similarly,

4«37 become
¥
"ZEM T ngg{ﬁ) - ngéﬁ'i)} (2-5a)
H
250 = uy + Laygle) - gy da,)] (2-5b)
across forward and backward facing fast waves respectively and
¢ LN N é
“zsas =us - E‘ng{@') - QQE(@EH {D=6a)
! b i ]
21‘28 = uz + E QZS(@} - ng(as)j éiﬂfwéﬁ)

across forward and backward facing slow waves respectively.

One is usually interested in the difference between two states, say
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the initial state I and final state ¥ only. Thus, e.g. for forward

facing fast waves, we have from D-3a and D-ba
o = Yyt ey
uzry = Y1 * dzeloy)

The definite integrals in D-1 and D-2 assume very complicated
form and their exact numerical evaluation should be obtained by use of
computers. A carefully prepared chart of these integrals is desiratle
for solving general initial value problems.

It is seen that there are three iree parameters, v, [ and ey
in the integrals. vy is determined by the particular gas and is a fixed
value in the problem. Ki and o, are found from initial conditions.
¥For each value of K, we may prepare in the {@»@I) plane the curves
of constant Y and Uag for fast waves as well as Y and P for
slow waves respectively. A flow process occurs along a constant oy
line always. Curves of constant E’Z{gm;iﬂii, azk and E%SQQ;KP s:z,ﬁ on the
imeaﬁ plane for different values of ”g are also necessary in determining

? and E:?; from 4-32a and 4-3L



