NON-LINEAR FLUTTER

Thesis by

Edward Richard Fleming

In Partial Fulfilliment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, Califorania

1960



ACRNOWLEDGMENT

The author wishes to exprees his gratitude for assistance
received from several sources during the conduct of this regearch;
first to Doctor ¥. C. Fung who suggested the project and rade
valuable commente during the investigation; to tfée Douglas Alrcraft
Company whose computing facilities were used for a portion of the
numerical analysis ézad whose support made it possible for the
author to attend graduate school and conduct the present work.
Last, it is with specizl pleasure that the author thanke his thesis

advisor, Doctor T. K. Caughey, whose assistance and encourage-

ment throughout the project was much appreciated.



The problem of two degree of {reedom flutter in the presence
of structural non-linearities is investigated. The specific problem
chosen for investigation is that of bending-torsion flutter of 2 two- '
dirnensional airioil in a supersonic flow. The Kryloff-Bogoliuboif
assumption of nearly sinusoidal response with slowly varying ampli-
tude and phase is made and aerodynamic piston theory is used
throughout the analysis,

Formulas for flutter limit cycles are developed in terms of
general structural non-linearities. Necessary and sufficient conditions
are developed for the existence of stable flutter lirait cycles in the case
of an airfoil with non-linear torsional stiffness. Several numerical

examples of this case are given including a case which exhibits flutter

for large disturbances but is stable at all airspeeds for small

@

disturbances,

An analog computer investigation of flutter dependence on

2

initial conditions is given.
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LIST OF SYMBOLE

speed of sound in the undisturbed flow (ft/sec)

airfoil semi-chord (ft)

torsion gpring control function (1b)

bending spring control function (I1b/ft)

deviation from linearity of the bending spring
deviation from lnearity of the torsion spring

bending deflection {ft)

amplitude of oscillatory bending deflection {£t)
pitching moment of inertia about the clastic axis (Ib aecz’?
reduced frequency (“-g—’)

Mach number

airfoil mass per unit span (;—3&'&%;33

sqguared dimensionless airfoil re&ém@ of gyration about
the airfoil center of gravity

elastic axis parameter {1 - 2x )

elastic axis parameter (-% - éx + é%&z }

frequency ratio (%i >L

dimmensionless pitching radius of gyration about the
elastic axis

airfoil forward speed {ft/sac)

dimengionless elastic axis location

dirnensionless airfoil center of gravity location
freguency ratic

airfoil torsiomal dispiacem@nt, angle of attack {radians)

freguency separation parameter
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#

small parameter identified with the deviation from
linearity of the bending and torsion springs
= perturbation parameter for stability study
= airspeed-mnass ratio parameter (;’7;\)
mase ratio (-2 )
2z
% b

perturbation parameter {or stability study

[}

[

= gir deasity in the undisturbed flow éﬁmg%fﬁ%

i@

dimensionless time (U;i)

3]

phase angle {radiuns})

reference frequency for bending spring (rad/sec)

reference frequency for torsional spring (rad/sec)

[}

N
foo
r
w,
“L
W = frequency of oscillation {rad/sec)

In additions to the above symbols further notation was
employed to facilitate presentation. The principal symbols used in

this manner were:

K*(#'- 2RX)
A (P - ;»,3)
K2X R, + N (Pro-rs)

A (Qx, ~Pr2)

i

i

]

= K—.XZX«
= AK(X,-P)
= KT (p-rEZ)+ A (x“-P)

LA w MmO o>
i

e (Pr-Q)
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vﬂ) ék Jg R /7@(4,,5,”9)5,,‘/(9 e,

= ék&ﬁ;(A)



The study of zeroelasticity consists of the application of the
laws of classical mechanics to problems which arise in the flight of
deformable vehicles through an atmosphere, Within the broad frame-
work of classical mechanice the disciplines most pertinent to
acroelasticity are those of fluld mechanics and elasticity. Each of
these, in its fundamental formulation, is mathematically non-linear
and it is thys not surprising that non-linear problems occur in the
gtudy of aercelasticity, In view of the extreme mathematical difficulty
usually associated with the solution of non-linear problems it is
fortunate for the aeroelastician that linearized formulations of the laws
of elasticity and fluid mechanics usually yield sufficient accuracy for
moet of his problems, There are exceptions to this, however, and
pecasions arise in which non-linearity cannot be ignored. One such
exception is the problem of stall flutter. Another is suggested by the
aerodynamic heating assoclated with high flight speeds which intro-
duces non-iinear structural charactervistice., Still another exceptional
situation is encouvntered when unusual control systen:s introduce
non=linearities which influence structural responses.

Even excluding the exceptionzl cases, however, the fundamental
non-linearity of the foundations of asroeclasticity suggests that
characteristics peculiar to non-linear systems will sccur in all aero-
elastic problems. It is well known that linear analyses fail to predict
these factors and it was thus considered desirable to examine a

particular aercelastic problem in the light of non-linear theory. This
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is an admittedly academic point of view for most problems, but should
have the effect of showing at least qualitatively the type of Umiting
behavior to be expected from certaln aeroelastic @Vsmﬁaw. It should
also be mentioned that, for dominantly non-linear problems of the type
mentioned above, the non-linear point of view is essential to obtaining
guantitative results,

The problem chosen for investigation in the present study was
that of beanding-torsion flutter of a wing with non-linear structural
characteristics. Two aspects of non-linear systems were investigated,

narmely, amplitade Mmitation and stability dependence upon disturbance

Throughout the present study it was assumed that the non-
lincarities were small so that the physical system considered deviated
only slightly from a corresponding linear one. The alr speed was
restricted to the range in which linear piston theory iz applicable and
airfoil thickness effects were neglected.

Several mathematical techniques are available for the approxi-
mate solution of vibration problems contzining a small non-linearity,
notably the famous Poincard perturbation method, a variety of phase
planc technigues, the method of slowly varying parameters, and the
method of harmenic lnearization, Except for the last two, the abeove
methods are tedious if not impossible to apply to problemes containing
more than one degree of freedom, Of the last two, the method of
harmonic lincarization is the simplest to apply for the determination
of it cyeles, but stability questions are caly resolved through

Mathicu-Hill techniques. For application to the study of both limit



3
cycles and stability, therefore, the raethod of slowly varying para-
meters was employed. This iz not to say that all of the tedium or
algebraic difficulty is removed by the selection of this method. Quite
the contrary! And in fact, some of the conclusions of the present
atudy were obscured by excessive algebraic complication and recourse
to some numerical empies was necessary. This, however, appears
to be a typical shortcoming of all the existent techniques for solution

of non-linear problems.,



The problem consgidered here is that of bending~-torsion oscil-
lation of a wing, and in particular the self excited type of oscillation
which is known as flutter. The occurrence of flutter requires, in
general, two or more degrees of fre@é@zr; {cf. rvef, 1, p. 161).
Exceptional situations arise in which one degree of freedom flutter
occurs but these are associated with unusual elastic axis locations and
their occurrence or non-occurrence is independent of the stiffness k
properties of the wing. In the present section the equations of motion
for an oscillating wing will be set up and the method of finding limit
cycle solutions outlined in general terms. Next, the method employed
for investigating the stability of the limit cycles will be outlined, and
finally, some comments on the dependence of the limit cycles upon

initial conditions will be given.

2.0 Eguations of Motion

It will be assumed in all of the analysis which follows that the
bending-torsion flutter problem can be treated as a two-dimensional
situation in which the structural resistance o bending can be
represented by a single spring called the "bending spring’ and that the
structural resistance to twisting can be represented by a single spring
called the "toreion spring’. To complement this structural model, two-
dimensional aerodynamics was assumed to apply. These assumptions
are fundamentzl to what is commonly known as two-dimensional flutter
theory, The aerodynarmic assumptions are strictly applicable to

three-dimensional wings of large aspect ratio only, but for the Mach
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number range presently under considerstion they are satisfactory even
for moderately low sepect ratios., This is true since at high supez-
sonic speede the flow over the wing is two-dimensional over all of the
span except for a2 gmall region near the tip.
Figure 1 showse the coordinates and geometry of the two-

disnensionzl airfoil.

Zb

Figure 1

The application of Newton's second law of motion to the system of
Figure 1, gives the following equations of motion:

b+ b x + WGy = - L) {2. 1)

xw\bx*\:\‘ + Lo +xC = ML) 2.2)

where;
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b sec®
.o . 5 Bec
ber = nirfoil maes per unit span {:}2;.3&}
fe~
Ty = bending spring control functica {1b/{t)
Cx = torsion spring control function (lb)

I = airfoil mornent of inertia about the elastic axis (Ib sec”™)

I{t) = aerodynamic lift per unit span, positive upward {(lb/it)
M{t) = serodynamic moment per unit span about the elastic

axis, positive nose down (Ib)
It is convenient in prescribing the spring control functions to introduce
the quantities «,, , the natural frequency of the system constrained to
have only bending deflection, and «J. the natural {requency of the
system constrained to have only torsional deflection. (Both at zero air |
speed. ) In terme of these quantities the spring control terme can be

written

C,= ma)i[;/+~;f;f,(‘\)j {2. 3)

Com Tt [1+ 54T (2. 4)

where
£ (h) = the deviation from linearity of the bending spring
f.&) = the deviation from linearity of the torsion spring
€ = a small constant
It is also convenient to introduce the airfoil pitching radius of gyration
about the elastic axds, ki . When this parameter is expressed in gir-

foil semi-chords the pitching moment of inertia is given by the relation



T =mb (2.5)

In this notation the eguations of motion become:

MA MO, +wu)-t\i_\f\+é:§\0f\>] = -1 (2.6}
’VV\bXdL\t\—r”VV\\C‘)Z\"::o“( + o V;Z“u)‘f[o(-!—éﬁtcxjj =M(t) {2.7)
These equations can be made non-dimensional by introducing the
guantities
T = Z‘Z.—t' ‘2" 8)
b .
(o
X = (2.10)
A()'!_
where
U = wing forward speed (it/sec)
W = frequency of vibration (rad/sec)
In this notation the equations of motion become
h' | x* haoef (BN ox e BLEE 2.11
T*KX/?[DJ’ ()] +xes m U= | ( g
o K R [ e () ] + X, i - Mz (2.12)
WA ‘U 2-
where the primes indicate differentiation with respect to T , and
R= @
wr

The aerodynamic forces are given by



where:

Then

where

oo
5

LYY = 4 b Pl MLE + v (ax )]

M) = - 4 \;’Pooa:"ooM [("‘lxo) (bbi +‘°\>
NN

3!

free stream =ir density Q%Eug@ifﬁg)

Co
Qe = free stream speed of sound {ft/sec)
M = o = free stream Mach number
Looo

elastic axis location {(Figure 1)

8

Xeo

—-_LZ_.'?.S_.«S_} = —-—>\ b—\ A 4 PO('
™ [ o T 1
ML) _ VNP L e ]
W3 }[tﬂ\;‘k > T A
oo
M= gppr = flutter mass ratio parameter
= —
Aoe
P = \—2xe
Q = 4\__4_xc+q-xc

The final equations of motion are then

H

Lo
Yo A

b CERErE RG] _,\[56' v+ =P

PR 2 lare R o0l - O[] ) Pe<a]

{2.15)

(2. 17)

(2. 18)
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Eguations 2. 17 and 2. 18 are in the form c@s%mgrﬂy used for linear
flutter calculations. These, however, are not conveanient for use in
the method to be employed for the non-linear sclution. The difficulty
arises irom the fact that the equations are mass coupled. This |
difficulty is easily circumvented by a transformation of the equations
which removes the mase coupling terms. The first uncoupled eqmé.av
tion is found by multiplying equation 2.17 by v~ , equation 2. 18 by
(-%.) and adding the resulting pair of equations. The second
uncoupled equation is obtained by multiplying equation 2,17 by {- X )

and adding the result to equation 2.18. These operations giver

4+ N CPX““ Q>
T J— Y A ao Z@
(E- R (e pied) e R U e W TE = 08 wdt® (2.20)
- ; + 2k (P ®
These are the equations of motion for the flutter system which will be

used throughout the present study.

2.1 Bethod of Solution

The method chosen for solution of equations 2.19 and 2. 20 was
the one known variously as "the method of slowly varying parameters’,
"the method of Kryleff and Bogolinboff, and "the method of the mean',
This method wase first employed by N. Kryloff and N, Bogolivboff and

wag published in Reference 2. This method has been used almost

£y

exclusively for the study of systems having only one degree of freedom
although in at least two cases it has been successfully employed for the
stucdy of forced vibrations of syetems having several degrees of

freedom: {Refs. 3 and 4).
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The application of this mrethod to the present problem is out-

lined below. .issume colutions to equations Z. 19 and 2. 20 in the form

a - %9(2:) SIN[RT+ £(T)] (2.21)

== Xl ¥) IN[KZ + L ()] (2. 22)

where the amplitude and phase functions %0 (t), (), ¢ (T) and ¥,(T)
are all slowly varying functions of time. The meaning of slowly varying
will be elaborated upon at a later state of the development,

If the amplitude and phase functions were in fact constants, first

derivatives of equations Z.21 and 2, 24 would be

{2.23)

ol -

- ng—'a w cos (KT +@)

<z Ao Cos (KT +@) {2.24)

whereas consideration of the time dependence of the amplitude and
phase functione results in
{2.25)

Lb\( = \r_\‘) SIN(KE+ <P,\) + ng (K+ Q:) cos(K¥+ (P,>
b

o = i SIN(K T Po) + o (K-th;_\ cos (<T+P,) {2.26)

It is apparent that equations 2. 23 and 2. 24 can be used for the {irst
derivatives provided that an auxiliary set of conditions is imposed on

the system, namely:



W, s (kTe @) + he @ cos (kTe @) =0 (2. 27)
5

=<, sk (kT+ @)+, 4/): cos(KT+H) =0 {2.28)

Teking the derivatives with respect to time of equations £.23 and 2. 44

gives

Wk cos(Kt{-LQ)-\gé < (ke® ) S (k24 B) (2. 29)
b b
= kot Q05(Kt+apl)~o<ok(°<+&01') SIN(K2+ <,0,,) {2. 30)
Xxﬁr@éacing the notation
S, = KT+ Y, (2. 31)
Ga = KT f (2. 32)

and subetituting equations 2,21, 2.22, 2.23, £.24, 2.29 and 2. 30 into

equations 2.19 and 2,20 gives:

(rI-x) [K% cos &, - hek (x+ ©) sng)+ KC,I{R_Z_'[.Q_? swg +<4]  (2.33)
~x X [%o SN &, + é.{:'?_]} = A (Px )l %o < Q05 8, +Xo SIN E,)

~

+ 2 (RX - Pyl Yot cos &,

(r-x) [ cos O, -t r (ke ) sw 6, ] + K {E [RoswE +64]  (2.34)
SXg RX[ pesm e SJf = A (P (o cos &+ 50 E,)

4 )\(PXA~Q)°<°K CO5 6,



iz
Eguations 2. 33 and 2. 34 together with the auxiliary equations 2. 27 and
2. 28 form 2 systemn of four simultaneous first order differential
eguations in the variables 4° o, , ¢ and Y. . By algebraic

b
manipulation the systern can be rewritten in the more convenient fornu

{2. 35}

K&a’ ho = [‘\L\J S/ 8, -I—B%O o5 6 #+ Coxo SHE, +Dx,C056,
b b

€ KWV (X, f,- RR):] Cos &,

K ey = [E _Lé\;o SN B, + Fép 0058, + Gk S/WE, +Hx, cos&,  {2.36)

€ KT K2 (4, - ,Q‘_{izﬂq)] cos &,

~np’ %" LP,/ = [A ‘tg siw 8+ Bé_o Cos 8, + Cx, 5w B, +Dx, 058, (2.37)

+ERCE VY (X -RE) [ 510 8,

N ¥, - [E L—g" SV B, + Fé\_o Co5 B, + G X, 3506, +Hx, cos B, (&.38)

AR
- €KXV (£ - /2%70,)]5/,\/ e,

where, due to the obvious need for compressed representation, the

following notation has been employed:



o

(vi-x2) E o= KXRx,

p’o= =

A = C(F-WRX) F 3 xk(X-P)

B o= Ak (Pxe- ) G = <(F-YEX) +A P
O = T Pe)  H = (P

e}
i

A (Qra-PE)
Eqguations 2. 35 through 4. 36 are exact, that is to say ne approxima-
tions have yet been made, Up to thie point in the development the
procedure has been aimed simply toward a reformulation of the
eguations of motion., These originally took the form of two second
order differential equations in the variables h(¥) and «(T) aad
in equations 2. 35 through £. 38 have been transformed into four first
order equations in the more convenient variables h, (%)  «,.(¥), ()
and Y.\Y) . The Kryloff and Bag@lmaﬁmﬁf assumption of slowly vary-
ing amplitudes and phase angles can ROW be utilized to arrive at a
first approximation to the solution of equatione 2.19 and 2. 20.

Since the guautities ‘f_;;‘c L o, , 410|' and ‘Pi/ were
assumed to be small, their percentage changes per cycle must be
assumed small, that is to say of order € . Thus, to the {irst order

in € , the gquantities h‘u )oL' LP,’ and LP_"_ can be replaced by

e
S
their averages over one cycle of motion, and for the purpose of
computing these averages the quantities L&\: s $ and P,
may be assumed to be constant over a single cycle. It will be noted

that the right hand sides of equations 2. 35 through 2. 38 all have a

period of 2w in © . Thuse for the first order approximation we have
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QKF1\';\)° :_‘_‘—F/,Q,(__-) cos &,de, = I (L\o X, LP L,Ol) {2. 39)

Q_KX} —g?f/qz(—"> cos B, Ae I(-ﬁ ., (_p (P2> {2. 40)
T
ey e @) = #fmn Y sine, de, = Ty(he,«,, 0, &) (2.41)
[+
2TC
- axp %, P, - T(_l—‘/f/ql("JslN e.de, = T %’,“e, @ %) (2. 42)

where:

..) = A\'\ SING, +BL\0Q059+C0( s B, +De Qos@

+eR*X (£ -RE)

R, 0--2) = El«o SIVO, +F ko CoSO, + QAL SINE, +Hexy COSEL
- (- Ex.\ve)
Performing the integration, the following result is obtained:

Z =8 LZ\;" “{D Cos ¢ - [CHputs) X, [s/n ;pjozo {2.43)
[[ET 2/( )XKJS/NQQ#‘FCO:S ﬁﬂjl“’ + H K, {2.44)

= [A- v(;ff‘ﬁl:?]égo + Jletp)xJeos g+ Dsm i <o (2. 45)

(2. 46)

= X[E+ W(%)X&j cosy —ijﬁ{ﬂj%’%— [47“-('@7 <o



where
77 .
e KX K-
)LLO%) = —]7'—.;"‘:'/-#,_ (L, sSIN QLJJ/A/QZ O/QL
o

= €KX v (x
€ ~ FHo)

kXis

e X R
7//_/';9: T 4;(%0 5w 8,) 5w 8, dE,
b

o

il

«cKXR 2, (é?)

The equations of inotion have thus been reduced to

° 2.47

Ak he =T, € )
b

anprel =Ty {2.48)

_;Kg'lf ¢ = T, (2.49)

{2.50)

Sag, P, =Ty

The steady state solutions to equations 2. 47 through 2.50 are
obtained by setting % )o(:, ) Q' and LP,,I all equal to zero. The
resulting set of é@&&tﬁaae is 2 set of four non-linear algebraic eguations
in the five unknowns kf’ Ao Lp) K ’am@. X« EFrom these equations

four of the unknowns can be solved for in terms of the fifth unknown.

The existence of bounded solutions to these equations implies the
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existence of flutter limit cycles. The stability of the limit cycle
solutions is determined from equations 2.47 through 2.50. It should
be noted that the steady state solutions are dependent upon the phase
difference, Y , between the bending and torsion displacements but not
upon the separate phase angles, ¥ , and ¢, . This is apparent from
the fact that the right hand sides of equations 2.47 through Z.50 contain
only the phase difference, Y . This fact is not surprising since the
steady state behavior was determined without reference to a time
origin. Had the steady state solutions been found as functions of speci-
fied ipitial conditions, the separate phase angles would retain their
significance. The disappearance of one phase mgzé suggests that the
order of the system of equations determining the stability of the motion
can be reduced by one. This is accomplished by multiplying equation
2. 50 by ke and subtracting the result from «_, times equation 2.49,

b
The resulting sct of equations is

awg he - T, (2.51)
b
ARKF Ay = To {2.52)
- ;K@"oao\ﬁs Q=T {2.53)

where

IA’ = KoLy~ %" an
Let the steady state solutions be denoted by % L, o, and @ ., The
stability of these steady state solutions can now be found fr@n‘a eguations

2,51 through 2.53, Let each of the solutions be perturbed {rom the

steady state by a small amount.
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o '= . N {2. 54)
b M~ !

_ 2,55
HKoT Xy + T { )
o= P+7 - (2. 56)

The solutions are considered stable provided the perturbations die out
or at least remain constent with increasing time. Substituting equa~-
tions 2., 54 through 2. 56 into equations 2.51 through 2. 53 and neglecting

powere of ¥ g, and 7 higher than the first gives:

2 _/ 27, -
e AN Y- £ (2.57)
Df‘:’ 3o< 2
- _/ __,. :
axfsi-2h g .2 < L 25w (2. 58)
zbép Do, z /
(2. 59)

W - 5 2 Ees 2y

Equations 2.57 through 2.59 are a set of three simultaneous, linear,
- first order differential equations and admit solutions of the form P

The condition for a2 non-~trivial solution of these equations is then:

o PN
';;? (% - acp) 2L -0 (2. 60)
v e >¢
b—f ;—;-f:’ w +SLK}:\,L°_,S)_)
g

Expansion of this determinant gives the characteristic polynomial of

the system:



18

(Axya)+ cn(aed)h a,(aega)ra =0 (26l

The condition for stability is then that equation 2,61 have no roots with
positive real parts, and this can be ascertained through application of

the Routh-Hurwitz criteria for the cubic polynomial, namely

PYRCE {2.62)
a,z o

{2.63)

a zo (2. 6¢)

G.,2 0D {2.65)

G.a, ZQ, {2. 66)

A significant general conclusion can be drawn from one of these
criteria, specifically equation 2.65, without treating the eantire prob-

lem. The constant term, @, , is given by

2T, I, 2T

B‘f 2ote 24

2L+ L. T. 2T, I, Iy) {2.67)
a. = o — = —— AT
TR 2 e, 9)

)bgo ko 2




For the steady state

EE,:Est zgé_si =z 0, {2.568)

3 5
but the I's are all functions of the flutter parameters k, and x. Thus

by the usual formulas for parametric partial derivatives,

N I, L, I,) 2T T2, Ts) (2. 69)

N I T )
2K (LT, T a,

2(%",6‘0, CP)

5 56_ L, T, , Is) (2. 70)
5% (X, ot )
a,

2(7, I.,Zy) 2.7
2% L 20K, he Q) - 71)
2K R N

o

2,7, Iy
2% = - (X, he 72
= he, @) (2.72)

Qo

But by equation 2.65 a sufficient condition for instability is @, <O .
Thus it can be concluded that Q =0 is a point of neutral stability and
except for special cases a point of transition from stability to insta-
bility or vice versa. But {rom equations 2.69 through 2.72 it can be
seen that (Q ;O represents points of vertical tangency on plots of

amplitude versus both of the flutter parameters k and x. From this
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fact and from the definitions of k and x it can then be concluded that
these are also points of vertical tangency on plots of amplitude versus
flutter speed. Thus in the treatment to follow, considerable attention
will be given to the existence of these vertical tangents whenever
questions of stability are involved. Unfortunately the vertié&i tangents
only provide sufficient conditions for stability transitions and the
determination of both necessary and sufficient conditions requires
consideration of the c@m@iete system of Routh-Hurwits criteria and

thus a conasideration of all the parameters in the flutter system.
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CHAPTER Il

SPECIFIC ANALYTICAL SOLUTIONS

In this section a linear flutter system which will have later
pertinence to the problem of non-linear flutter is introduced. It is
shown that certain aerodynamic simplifications can be introduced into
the linear system without materially affecting the flutter results. 4
brief discussion is then given of the mechanism of bending-torsion
flutter.

Next, a non-linear flutter system: similar to the simplified
linear system is discussed and completely solved. The existence and
stability of the flutter limit cycles for this system: is then investigated,
Finally, the complete non-linear system is investigated, limit cycle
solutions are found, and stability criteria are developed. The results
for the complete system are then interpreted in the light of the resulis

obtained for the simplified system.

.0 An Examination of the Linear Case

a3

Defore treating the non-linear bending-torsion flutter problem
it will be found useful to examine the corresponding linear problem.
The particular value of this examination lies in the determination of
the relative magnitudes of certain of the physical parameters and in
the suggestion of a simplified approximation. It will be found that this
information is of value in the subsequent non-linear analysis.

The equations of motion for the linear system are obtained by
setting the parameter, € , egual to zero in equations 2. 17 and 2, 18,

This gives



by RERE pxs A [P +<'P] (3.1)
'Z:—"\”"‘ KISl o + % )'T\; ==X [(% +—o<> P+o<'Q] {3.2)

The systemn defined by equations 3.1 and 3.2 will, in general exhibit two
aerpelastic modes of motion. Each mode will have assoclated with it a
characteristic frequency and rate of damping. 7The frequencies and
damping rates will be dependent upon the airspeed as is indicated by the
appearance in the equations of the parameters KX and N . If the
characteristic frequencies and damping rates associated with the modes
are determined for various values of the airspeed it will be found that
below z certain critical value of the airspeed both of the systermn modes
exinibit positive damping, At the critical value of airspeed the damping
in one of the modes vanishes while the other damping rate remains
positive. For values of the airspeed greater than the critical value the
damping in one of the modes becomes negative while the other mode
remaing positively damped, This critical airspeed is called the flutter
speed. The {flutter ssgwes:‘é for this linear system is easily oé:ﬁaixaeﬁ

since it corresponds to a situation in which the set of equations 3.1 and
3. 2 should exhibit & steady state behavior consisting of 2 single mode

of undamped sinusoldal motion, the motion in the other mode having
vanished due to its positive damping. Under these conditions, equations

3. 1 and 3, 2 will adinit solutions in the form
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h 2 ho o7 (3. 3)
» b

LkT
L= K€ (3. 4)

h
o . . .
where e and &, are complex amplitudes, When equatione 3. 3 and

3. 4 are substituted into equations 3.1 and 3.2 and the resulting pair of

real and imaginary equations are solved there results

KX = Wi b™ _ 2K [POU-RE)-X |+ \(Q-F)X (3.6)
v T U-O)U-RX) - <=
X: ___o;L = "‘;LPXJ\'*@"‘L‘V":_ (3. 7)
W™ R&Q + '\

This completely solves the problem of determining the flutter speed
and frequency for the linear case, If, however, it is desired to deter-
mine the system: behavior in the transient sense and thus to examine
its characteristics at speeds other than the fluiter speed it becomes
necessary to account in the assumed solution for the presence of two
modal freqguencies and damping rates. Thie is done by assuming in

place of equations 3.3 and 3.4 that

ol (3.9)
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where, now, -— and oo 2re complex constants and L e
complex as well, When these solutions are substituted into the equa-

tions of motion the following quartic polynomial is obtained:

F e 2P o)+ T RRTUR a(Pm) (510
+}3—QQ —P")j + _Q_{)\E\{LK (e QR}]} +R K_LXK\‘}KIX_ +,\_® -6

While the general solution to this guartic polynomial can be found, the
results would not justify the tedium involved in obtaining such a
solution. Instead, for the purposes at hand, a epecific numerical

solution to equation 3. 10 will be given. The parameters chosen for the

example are

R = 0,500
Mo = 15,708
Y, = 0,250
Xo=  0.200
P = 0,200
@ = 0,333
2 o= 1000 ft/sec

WE = 1.2462 x 10° 1%/ sec?

The airspeed, U , is varied from 3000 to 7000 feet per second.
When the above values are substituted into equation 3. 10 it is

found that, in gemeral, the roots occur in conjugate complex pairs:

Q.. =3 =Lk : (3.11)

b

N,,= € =xid (3.12)



5

P

When equations 3,11 and 3,12 are substituted into equations 3, 8 and
3.9 it is found that the roots are related to the frequency and damping

of the transient solution by

vt LUT LU
)ok —~ a' (C SN T L +C, Cos 5 ) {3.13)
(C SA/Q(__-_-#C cos ‘{UZJ)

eatl

+ Q
The constants @ﬁ. through C 4 give only the amplitudes of the motion
and are depéndent upon the method of excitation of the airfoil, i.e. the
initial conditions, but it can be seen that both the frequency and damping
are completely determined by the roots of equations 3.11 and 3. 12,

The results of finding the roots for the numerical example aré
shown plotted in Figure 2. Here the independent variable, the air-
speed U , is plotted versus both dimensionless {requency and
damping coefficient. It can be seen that the previously mentioned
transient characteristics of the system are present; namely, the |
occurrence of two distinct aeroelastic modes of vibration and the
existence of a critical speed below which both modes are positively
damped, and above which one of the modes is negatively damped. For
the example chosen, the critical speed is 5000 feet per second.

An interesting secondary observation can be made from Figure
z. This is the apparent tendency of the modal {requencies to approach
each other as the airspeed is increased, This phenomenon is one
which ha,s‘ been recognized by flutter engineers for many years and is,
in fact, the basis for a method of flight flutter testing in which the
separation of traneient frequencies is observed as an index to the onset

of flutter. It should be noted, however, that the occurrence of flutter
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is not accompaanied by an actual coalescence of the two frequencies.

This fact is often overlooked and it will be found useful to expand the

idea of frequency separation for later application to the non-linear

flutter problem.

The magnitude of the frequency separation can be determined

analytically from equation 3. 10 when the airspeed is exactly equal to

the flutter speed. This is done by observing that at the flutter speed

one of the reduced frequencies is given by equations 3.6 and 3.7. This

implies that

and hence

A =0 {3, 14)
T =x (3. 15)
Q,,=*lx | (3. 16)

The remaining pair of roots must then satisfy the quadratic equation

which results from factoring out + ik from equation 3.10. This

guadratic is

e+ IR @) [+ (R (4R) £ 1 (P-x) (3.17)

from which

D—sﬁ-‘ .;):_(—an&+Q+ )

+Xe-PY - Y] =0

{3.18)

r.z—;ﬁlf N (-aPrr Gl - ez ( 1#R) 5 (P-x)

J
+)\LLQ_ P'z) —&J_lkz_-l} /7..
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£

Comparing this with equation 3, 12 gives

- -alaPurend) (3. 19)
>
d- Qf\k}iA?[\:; KX (+R) + NP2 )+X(Q-F) - ¥ k] (3. 20)

i
-\ AP+ ® +\~:_L§_j >

As previously noted, the quantity T gives the damping rate associated
with the ﬁ@ﬁ«ﬁmti@?img mode while d gives the corresponding fre-
quency. The frequency separation can then be determined from
equations 3.6, 3.7 and 3.20. For the present purposes the difference,
4, in the sguares of the two frequencies will be computed.

1\ « | (3. 22)

A= W

or, substituting from equation 3, 20

$87 TREMR) PR -2FR + X (@-F) - X (apraae')  (3.23)
oy

This expression will be useful in the discussion which follows.

To complete the discussion of the linear system it will be
necessary ‘m consider briefly the case of flutter of an airfoil in which
the aerodynamic damping is sufficiently small to be negligible. The

equations of motion for this case are



b\; +RK—LZ.LL+X°‘0L=—>\0< | (3. 24)

7y n e = \ " -y
oA + o KX 3 == Wl
o
The characteristic equation for this system, obtained in a manner

fdentical with that used to obtain equation 3.10 is

g+ PIEE (R +n (P ) [P REE (KK 2P - 0 (3. 26)
The roots of this eguation determmine the modal irequencies and damp-
ing rates as before. These are shown plotted in Figure 2 for the same
sumerical case as was used for the aerodynamically damped system.

It can be seen from Figure 2 that while the general behavior of the
undamped or aerodynamically conservative systern is different from

that of the damped case, a number of ite egsentizl features are retained,
A8 would be expected, the aerodynamically conservative system exhibite
sinusoidal motion in each of its modes for all airspeeds below 2 certain
critical airspeed. There does exist, however, a value of airspeed,
above which the system exhibits a positively damped motion in one
acroelastic mode while exhibiting negative damping in the other. Thus,
it might be said that the undamped system possegses a "flutter’ speed,
provided that this speed is defined as the largest value of airspesd at
which undamped sinusoidal oscillation can be maintained, A comparison
of the plots shown in Figure & indicates that the two flutter speeds are in
very close agreement, and that the neglect of aerodynamic damping

results in a slightly conservative estimate of the flutter speed.
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“he variation of frequency with airspeed for the undamped
system can be determined guite simply from equation 3. 26 by

setting 0L = * LK and solving for K°C . This gives

KX = wib = AX[PU-RL) -] {3.27)
UT O—E)(-RY) - x>

The value of X corresponding to flutter can be obtained from eguation
3. 27 by mianbmizing WX with respect to X and solving the result
for X . The result is & bit cumbersome to use, however, and will
not be shown here. & comparison of equation 3.27 with equation 3.6
reveals that the two systems show identical variation of frequency with
airspeed except for the term ):LLQ—P—l)X. The portion of this |
expression given by (Q~P1)X'_ must be finite for flutter to exist as is
evident from the definitions of the symbols themselves, and thus it can
be concluded that the only parameter in this expression which can be
freely varied is the term X\ . Consequently it can be concluded that
the attainment of good agreement between the results of the aerodyn-
amically conservative analysis and the more exact analysis depends
upon the emallness of the parameter X . For compatibility with the
non-linear analysis this condition will be expressed as
= O {3. 28)
where €  is the small parameter previously identified with the non-

linear spring terms.

Examination of the frequency curve for the passive case in

Figure 2 shows that the modal frequencies do in fact coalesce at the
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flutter speed. This leads to the concluzion that the degree of {requency

ends upon the magnitude of the aerodynamic damping and

W
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=) g 2 ) -L 2 > o
thus upon the magnitude of the parameter A . If eguation 3, 28 is
substituted into the equation for the frequency separation 3. 23 the

resuls is

KR

SA = R X (RN (P-X) -2 o+ O®) {3.29)
Y &

If it is assumed that the frequency separation is itsell of order € ,

equation 3. 29 becomes

YOST (4R) & 2 (P-x) -2 FTRT = O (3. 30)
Thie can be rewritten in the notation of section £ as
A+EG = O © {3.31)

In all of the analysis which follows the assumption will be made that

the asrodynamic damping and thus the frequency separation is small.

3.3 A Simplified Non-linear Case

It was shown in the preceding section that the neglect of damping
in the aerodynamic representation gives flutter results which are in
good agreement with more exact aerodynamic theory., It thus secems
probable that the same representation would give a good approximation
to the flutter behavior of the structurally non-linear case providing the

non-linearities are small,
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For simplicity of presentation in this section the structural
non-linearity has been limited to the torsional degree of freedom.
Under this resiriction and neglecting aerodynamic damping the equa~
| tions of motion are obtained by setting the function (%") and all
first order tirne derivatives equal to zero in eguations 2.19 and 2. 20

to give

)

é?% N {EZ% -xX [ou e&(ﬁ)]} = 2ot (Pr- *f) 43. 32)

goa" + WS {[ok‘(» eﬂ(d&]X - %RX— %} = 2t Lx,_—P) {3.33)

Following the method of section 2. 1 the eguations of motion can be

reduced to the four first order differential equations:

QK};% = - {LQﬂuxb SIN LP}OQQ (3. 34)
’l\r;@"-og‘o: QES!N(Q}‘Q; (3. 35)
-2y hoyl = Ahe r <, (Capny cos g (3. 36)

(3. 37)

-2 K}?’L‘*QKQ;_ = QE coes &P> \'_if + A, (6—)#)

where the notation of section 2.1 has been retained,
Steady state solutions are obtained by setting /_1_,_,‘ / d; @, and
J

L\Q: all equal to zero to give



[#5]
(¥}

o(Q(C.*—)..LX,*) SIU\? =

he (E5NQ) = O (3. 39)
\L‘\—)PA ot (T eos @ = o {3. 40)
‘-\gb (Ecos®) + (G-M) =O (3. 41)

From equations 3. 38 and 3, 39 it is seen that
S/N (P = O (Bo ‘%a?

thus @ = O or T . Taking Y=O equatione 3.4C and 3.41 become

\\ﬁ’/\ ol (C+px) =0 (3. 43)
e v (G- =0 ‘ (3. 44)

Eliminating <, and \b\f from these equations gives
A6} = ECCrx) (3. 45)

This, in compressed notation is the equation which relates airspeed
with the frequency of motion. This fact can be seen more clearly by
returning to the conventional flutter notation and solving equation 3, 45

for the reduced frequency to give

<x = MNPO-RI)-x]x (3. 46)
O-REOU-X (g o)) ] -
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1t can be seen from the appearance of the function ;aﬁd\u) in equation
3. 46 that the non-linearity has caused the alrspeed frequency
relationship to be dependent upon the amplitude of torsional motion,
K, » and that except for this term equation 3. 46 is identical with
equation 3,27,

At this point the results obtained can best be demonstrated
through a numerical example. To accompiich this a specific non-
linearity must be chosen and it will be found that the type best suited
to this end is that of a "soft-hard” torsion spring whose character=

istics are shown in Figure 3.

W Ry
N N
g &
v :
N N
Ko Xo
Figure 3a Figure 3b
Asswned non-linearity "flat spot’ non-linearity

Such a spring is not camm@m? encountered in practical structures

but it approximates the ''flat spot” or “free play" non-linearity which
is comnmon to many practical structures. The s@ﬁ«h&ré'sprimg has the
further advantaze of belng casily _az‘i&pmbie to the analytical represen-

tation of either a purely soit or a purely hard spring. The spring
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characteristice shown in Figure 3a can be represented by talking the
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fenction
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From equation 3.47 and the definition of Fa(ots)

i

2T
2, (o) = 7—7’7 /[—é«:sw“eﬂt S«tswe]de (3. 48)
o]
which gives

e z a
2, C4) = - 2 €% +8§A’°<o (3. 49)

For the specific numerical example chosen the parameters € and
S were taken as

€ 4,00

i

§

It should be noted that these values represent small non-linearities

32, 00

provided that

e § << A

2z
°<b
The remeaining parameters are those given in section 3.0 for the
namerical example treated there,

The results of substituting the numerical values into equation

3.46 are shown plotted in Figure 4. The ordinate for this plot is

7rt / - /
1 [— 2 - > 2
DVBEND B8 T P -t , . . .
CADEC 2 o"‘tb'b Q P and the abacissa is ) ‘,1‘_ or x—-" .

Thus, Figure 4 is a dimensionless plot of airspeed versus frequency
analogous to Figure Za for the linear case, The effect of the non-

linearity is apparent since a different curve is obtained for each value



of amplitude, K, , as reflected in the teem ;_L(agt,). The curves can
be interpreted as showing that sinusoidal oscillation of the wing is
possible at any specified amplitude for all airspeeds below 2 certain
masximum, The occurreace of these maxima suggests a sitnation
similar to that encountered for the aerodynamically conservative
linear case, namely that frequency coalescence has occurred and
undamped sinusoidal motion is not possible for airspeeds above this
maximum. Since the system is non-linear, however, the possibility
remaing that an increase in airspeed could result in a corresponding
change in amplitude and {requency and in the maintainance of undamped
sinuscidal motion. Thue the flutter problem for the non-linear case
consists of an investigation of the maximmum points, or points of
freguency coalescence. The problem is better illustrated in Figure
5 where amplitude hag been plotted against the airspeed corresponding
to {requency coalescence, To make the plot nen-dimensional the
abscissas have all been divided by the caai@ﬁcencﬁ gpeed for zero
amplitude or, in other words, by the linear flutter speed, U, . In
the discussion which follows the airspeeds correspoanding to frequency
coalescence will be referred to as flutter speeds,

The flutter speed and its variation with amplitude can be deter-
mined in general form from a@amian 3.46. For this purpose it is

useful to change to variables to

wu=U _ I (3. 50)
u)‘,:.b'z. K?_Z
’U'::' _&)‘__" - (3.513

L
Q- X
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FIG. 4 AIRSPEED -FREQUENCY PLOTS,UNDAMPED CASE



ao-Rod.

0.5
"
/'//
/.4
Stable
0.3
Unstable
0.2 — e
0.1 SN e
0.7 08 09 1.0 1.1 1.2 1.3
2 2
o/ 2
FIG. 5

AMPLITUDE VERSUS AIRSPEED,UNDAMPED CASE
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{E}

Subetitution of these variablss into ecguation 3, 46 gives

w = F(U- ,Q} {v"—:z:[u %7_(0(,,)]} {3.52)
MNP@W-R) -vx]

The value of U corresponding to flutter is then given by the cozles-
cence condition

:‘—)%_ =0 (3.53)

This condition then yields

P

e {PR - [ PR%, ("I-Px) - Rxﬂf(ﬁ@[\ﬁ&«{[}?ﬁ- 54)
| "

Smbstﬁmﬁon of equation 3. 54 into equation 3. 52 gives the flutter speed,
but the result is too algebraically complicated to be useful. For the
purposes at hand, however, it is possible to circumvent this complica~
tion by returning to equation 3.45 from which eqagatmn 3. 46 was
derived. Here the flutter condition can be determined by differentia-
ting with respect to U  and setting j_%_ =0 . If equation 3,45 is
written

L) = AG-R)-E(CHpx) = O

then the flutter condition becomes

4% _ 28 du 2% =
S buc&"«r+§€-’o

or, since %&_Lzo , this reduces to
A

2% _ o
.S-_B,"O {3.58)
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Lguation 3. 55 results in

A+G-4 =0 (3. 36)

This is the condition for flutter. It should be observed that this is the
non-linear counterpart of eguation 3. 31 which was identified there as
the equation for small separation of aeroeclastic modal frequencies.
The fact that these eguations are similar {s, of course, not surprising
since the system presently being considered can only flutter by a
vanishing of the frequency separation due to the absence of aerodynamic
darmping.

The stability of the flutter motion can now be analyzed by the
method of section 2. 1. From equations 2.51 through 2.53 and the
equations of motion 3. 34 through 3. 37 the following results are

obtained

T, = =< (C+rpux)snep {3.57)
T.= b Eswe (3. 58)
I, =

[~ —(6—#)]«65 + [l prn)o- £ é’»:_f]eosﬁp (2.59
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These results can be simplified through the use of the steady state
results 3.42 through 3. 44 to give

2:._['50
2 ke

B
21, - o
2%

= —)\° - 7~ L * Ao
kit (A+G ) » jlx, (o X é)
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Substituting these into equation 2. 60 gives the stability determinantal
eguation
2 A \19
Ay L O b
{3.60)
o - AL - o (G-p) =0
(ArG-p) o _\Aa (A+G ;m>+/u, (o Xt b ).,( 1&3&0%.0_

When the determinant in equation 3. 60 is expanded the characteristic

equation

Q”*K@SL) + (Q+6*/Lx> )*o( (é /L)( X, +() o {3.61)
is obtained. This is more conveniently written as
(3. 62)

QKK’:’LQ = t —_ LA“’&"}&)’:‘# tév/u)(t(‘:—zo xd‘+\>°(
‘ A

The condition for stability as stated in section 2.1 reguives that (L
be a positive number. Since the term Q\Kbo—" on the left hand side of

equation 3,62 is alwaye positive and in view of the 4 sign leading the

radical on the right hand side, the condition for stability is simply that

the right hand side of equation 3,62 be a pure imaginary, or in other

ﬂ'do(éﬂfk)(%\::x*‘f‘l) < (A)+6—/A)L {3.63)
b
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At this point the condition of frequency coalescence, equation 3.56,
can be used to advantage, When equation 3,56 is substituted into

eqguation 3,63, the stability condition becomes

ot (o) (fé;x,d() <o (3.64)
b
In the concluding portion of section 2.1 it was observed that the
occurrence of a vertical tangent in the plot of amplitude versus flutter
speed playe an important role in the deéermismﬁ@m of systemn stability.
It is thus useful to determine the location of this vertical tangent.
The vertical tangent can be found in general by considering the

equations for steady motion, 3. 38 through 3.41. If these are written

I,=°<DCC+j~LX.L> S/n P =0 {3.65)
To= be Esiwp -0 (3. 66)
b
T,- _i_«ﬁ) + o, (CHUR) cos P = O {3.67)
If: ?EQQS‘P‘/—@(G—H = O (30%‘83
it is poesible to consider each equation to be in the form
{3.69)

7 = [[f‘g" (%s) , <o, ‘PMQ/ Kif(o(QJ X‘(%)j

This relationship can be thought of as expressing the fact that equations

3. 65 through 3. 68 comprise 2 system of four equations in five unknowns
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T g - 3 h
end that the system can be solved for four of the unknowns, .7, ¢ K
and X in terms of the fifth unknown <o, . When the syster: 3.65

through 3. 68 is viewed in this manner the vertical tangents are found

by taking

dL | 2T ghe  »T 4 by D, 2T d 3. 70
ety 220 Ak, 2 daf D(Kx)do(o T2X dx,’ s
and setting ;MX) and g{ both equal to sero. The resulting
Ao b

eguations are:

[#olerpr)cos @] Z&%f + [(Ctpxdsmp] + oc‘,).dx_,;w ) {3.71)

kO
A CLE - [_"‘ DKQ*}‘*XQSW (P:( cf_\_() -+ (C+}Ax,:>cos \Q.-foko},L‘XACOSL.P = O {(3.72)
dotg d&e ’
k
T, kE_suulLP)+ d“@ \.\ £ cosP =© (3. 73)
die
(3. 74)

L\Q
(_J___S E cosy - d¢ \L‘é E s +(6—,Lc)-°<°/u'=o

du, da

VWhen the steady state results 3,42 through 3. 44 are substituted into

the above @qmmmas, there results from the first three equations:

dy _ | (3. 75)
dety ©
C/}_LO ) .
. ho e {3. 76)



45
i
sults into

o < i
tats res:

P E i Froymw o > gaded oo B deo ey a6 % N
O L0T 3 VerTical ?:-Luémiﬁﬁo Wy LEIT %ﬁ?"

o
Yoy g e
G CONUIR:

3,97}

oy

Ko b
5
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When the condition for {requency cozlescence, equation 3. 56,

[ %2 xe-p)-A] =0

substituted into this result the condition becomes
{3.78)

i—‘-’x,,\—f—/) =0

Comparison result with the stability condition 3. 64 shows that
e stability of the system i completely determined by the pitching

amplitude relative to the point of vertical tangency.
The conditions for stable flutter limit cycles and for vertical

tangency, equations 3.64 and 3,75, can be greatly simplified through

the use of equation 3. 56 together with the steady state relations 3. 34

Thus
RX %

through 3. 37,
%e_ _E_ . E _

S'\o -
B SH

- oo WKLy (I-RE)

and
\ Ao
w (k) -
! b
From the known positive character of the terins «, KX and é;l
7/
this reduces the stability and vertical tangency conditions to
{3.79)

)ﬁ (I-RX) >0



}*'@frax:) =0 (3.80)
respectively,
For cases of practical interest it can be shown that
(I-RX)>o

which reduces equations 3.79 and 3.80 to

)Q > O (3.51)
),L‘ =0 {3.82)
From the definition of /u these in turn reduce o
A
;‘(‘M _o {3.84)

Ecquation 3,83 is then both the necessary and the sufficient condition for
the existence of stable flutter limit cycles.,
Tor the soft-hard non-linearity given in eguation 3,47, equation

3. 54 gives for the pitching armnplitude corresponding to vertical

tangency
3¢
<= V55 (3.85)

and thus for stability

g >\/f—,—§ (3.86)

For the numerical example, these relations state that for motion with

a pitching amplitude less than \/ %ég or 0,274 radians the system

is unstable, This is indicated in Figure 5. Thus the flutter lmit cycles
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corresponding to the lower branch of the curve are unstable, whereas

those corrasponding to the upper branch are stable.
f) ST

3.2 The More Exact Non-linzar Case

In the preceding section steady state solutions were obtained
for the case in which the acrodynamic damping predicted by linear
piston theory was neglected., The justification for considering this
case lies in the fact that without further assumption it was possible to
develop simple stability criteria for the flutter limit cycles. It will be
é@ez& in the present section that the &@f@éy%&mﬁxcaﬂy damped case
presents a more complicated stability problem and that simplification

rossible only through recourse to the assumption of small modal
2 Vi P

s
5]

frequency separation. For the development of formmulas for the limit
eycles structural non-linearities will be considered in both the bending
and torsional stiffnesses. The cquations of motion for this case ave
given by equations 2. 17 and 2. 18, and the method of solution is

precigely that given in section 2. 1. From eguations 2.43 through 2, 50

the equations of motion reduce o

QKG)"E =B \i‘g"-‘-[DcOsQ-(C-ﬂ.\xQ S/N(P]o(o =T, {3.57)
b
1\&55"0%( = [LE-#UX*)S//\)P +Fca.scp] f'x_bo +Hky L, (3. 88)

~;k6;»_\f Q‘: m-wf)\:\_j +[&c+w,\3cost@+us.w}<°=13 (2.8

S ARF s [E rU)cosa - F sl e AGWke =T, (3.99)
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VWhere the notation of section 2.1 has béen retained, The steady state

2 5 o o N ¢ { f
cquations are found as before by setting ho =, = Q = Q = O

: b
to give:
T,-o0 {3.91)
I,=© {3.92)
T3=0 {3.93)
va: ) (3. 94)

Since the algebraic manipulations involved are somewhat intricate, a
srief outline will be given of the steps emploved in computing the steady
state solutions (it cycles) from equations 3. 91 through 3.94. First,
:quations 3. 91 and 3. 92 are combined by multiplving equation 3,92 by

iin @ and equation 3.91 by cos © and adding the results to give

Y_'([A,U\ri) sivp + Reos LP} L\—\: + Dy = O {3.95)

Text, oguation 3. 93 is multinlied by cos Q  and eguation 3.91 by
= b4 7

{ ~5inQ } and the results are added to give

((A-vE)eos@-Bsimg] ggo + (Sl = O (3. 96)

Lauations 3. 92 and 3. 94 are retained in their original forms. The
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s

BH-DF
D(E+Vx)~H (A-VE2)

Tans Y =

From eguation 3. 97

pin § = BH-DF (3.98)
J
cosp = D(E+PX)-H (B-VKL (3.99)
J
Where
J= {QB W -DF) + [D(E+V&>—H(A~ij]2j - (3.100)

Substituting eguations 3. 98 and 3. 99 into equation 3. 95 gives the

amplitude ratio,

_ F(R-YE)-B(E+Px) (3.101)
J

g

Wext, substituting equations 3. 93, 3.99, and 3, 101 into equation 3.96

gives

(A-UR) [D(E+VR) - (4-vi2)]- E(BH*DF) Hermx)[ AV (3.102)
- 5(&*%@]:0 '

A similar substitution into =quation 3. 94 pgives

(E+7%,) [D(E+V)g.) —a(a-vE)] - F(BH-DF) +(6—,u)[ /—‘(A—V:;‘L) {3.103)
- B(E+ W)Q]-— O
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Touations 3, 102 and 3. 103 can be combined to give the slightly less

urnbersome ‘ezg'aaté@ﬂﬁ

[F (A-VE2)- B(E+vx,)][ (Bt -DF) + (Cepen ) (Ex )~ (G )(A-VE)]-o 13.104)

[F(/)—mj)—B(Eﬂ&z/x,ﬂ[b(&wﬂ)«ﬁ (A?-V';‘)+F(C+/*X¢)'B(6%)]~— O  (3.108)
It can be shown that flutter does not occur when

FA-VED)-B (E+vx)=0 (3.106)

Therefore, equations 3. 104 and 3,105 can be reduced to

BH”DF + (Q‘\-}LX&)(E-f—I/X*)-((q-—#)(é-‘l/&;}) = (3. 3@?}

) LE*'UXok) - H (/Q—Vﬁ;})-/—/: (Cf—/xx*) - 3(6—/‘4> -0 . {3.103)

The occurrence of the functions )AL0L°> and ‘V( L—‘E‘) in equations
3,107 and 3. 108 shows the explicit dependence of the limit cycles on
the amplitudes. In principle, the actual limit cycles can be determined

by eliminating dependence on one of the amplitudes through equation

3

3.101, For the purposes at hand, however, it will be sufficient to
solve aquations 3. 107 and 3. 108 for the flutter speed parameter WX

and for the frequency ratio X in terms of the general non-linear

functions %(%") and 7. ("’\o) . This can be done by removing the
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b

sed notation from the equations. When thie is done equation

R 1 R SR SO
3,107 gives

WL XK {p[)- RE (\«-%‘)}x_jg A(Q-PIX

K‘LX" = = {3,109
U* RO Q-RE U )] - 2D
Lauation 3. 77 gives
X = Wil —aPutQR+\" {3.110)
w

RQU+%,)+ Urg,)

Fouations 3. 109 and 3. 110 compare directly with eguations 3.6 and
3.7 for the linear case. The amplitude dependence is apparent

tis

ko

through the appearance of the functions ,fz,(‘_‘g) and D?,(ato)

- seen that setting 2,= Z—»’ O gives the results for the lincar case.
¥When the non-linearity is %mﬁ.@eeﬂ to the torsional stiffness,

eguations 3. 3?{?? and 3,110 can be plotted in 2 manner identical with

that shown for the undamped case of Figure 5. Such a plot is shown in

Pigure 6 for the same set of parameters and assumed non-linearity as

was used for the undamped example. It can be seen that the behavior

iz the same with the flutter speed being reduced for the smaller values

of amplitude and incressed for the larger onss., A plot such as this

&

completely defines the system limit cycles and the only problem
romaining is an investigation of the stability of these lmit cycles.
The procedure for determining the Hmit cycle stability is
ziven in section 2.1 and will be followed here, Again, for simplicity,

the non-linearity will be confined to the torsionsl stifiness.
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From equations 3. 87 through 3. 90 and the assumption of

steady state behavior

7 - B.}B‘P.;_[Deos P- (Crux) rxu%]xb:—-o {3.111)
T, = [Esmp+Feosplhe + Ho,=O | {3.112)
_Z_f = Eﬁ’(é"/‘t)]o(ol_\b_g + [(C-F/AX,QCoﬁ(IO +D5/,u<p]°<:~ €39 333}

—[Ecos P~ /CS/A/CPJé;;’_ =0

From which:

2T, _
Fre 3

b

DL [-(C+Mr)SIN P +DeosP] - X WX, S
2elo

;_ér = °<°[’ Lc-(»}).,)(*\QOS ¢P - DslM(P]

21+ E sme +Fcos @
D Wne

b

oI~ _ K

on

2T _ E‘—QEEQOSKP‘F‘SIM(’OY
2@ b
2Is . [A-(e-W]xe-2[Ecose -F s Ego

2 e
N

’_D_:E\S“___ A—LG—}*)]\L“+0LD\:‘.E '+9~d.° (C«\» rOQosY +D s +

" N oA M ¢
+o<;‘),x‘x+cosnp

p-) - (.

\_:3;::_—_- e«,‘K‘—KQ«-}uQ SINQ +D Cos \QK +}§L[ES/ML()+F005Q]
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elations 3,91 through 3. 94 to give:

25 P

é_j_:..\:__-B‘,‘%o { ’DI
_)Oko Ao ‘*o)*X.LS'N(P ’ BLQ,z
ZIL A
2Lt e L . (6P
e X 29
2L s _ - 2Ls _
o = (A+e- M), | 2Ls .

%
21s_ k.
S = (B+H)

Thege expressions can be slmplified through the vse of the steady

A b
5

When the above expressions are substituted into the stability deter-

sminant 2, 60 there results

ho
B-akpLL -GE +o<o}£x‘sww>
Hoo

- H H- 2k p

o7 |2

(e @rilg -l

) X‘LQ
___0

e
v

A

-(6-Myxo

os@ —&O%K@B-Hﬂ-’r 1‘&&‘1%

W
-
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5

xpaneion of this determinant gives the characteristic polynomial

i

( .',LK};_O_SS— 2(B+ H)&;K\é‘ﬂj—+ (gnb}_()_}i{B—& H)—L+ (At G- )\A)l
R e (14 forecong) - puH 4 sy 4R - A
(H———X*Qos \9}, e x sm@[H(\am) | {3.115)

+ (A+<1—M(6-}*ﬂ} =

The stability of the limit cycles can now be determined by application
{ the Routh-Hurwits criteria as given in eg&&éﬁ@ns 2,62 through 2. 66.
Defore doing %&gﬁ.é. however, it will be useful to examine the relative
magnitudes of the terme in equation 3. 115,
It was stated in section 3.0 that consideration would be limited
to systems for which the asrodynamic damping is small and thus
systemme for which the modal frequency separation is small, This

assummption was shown to lead to equation 3. 31

A+G =0 (&) {3, 31)

Conseguently, since the function }xkdo) iz of order ¢ , we can write
(G+6-—j0 = O o) {3.116)
Similarly, the condition of smeall doinping expressed as

X(Q-pr) = O (3.117)



together with eqguations 2. 93 and 3,101 and the deflinition of the term
3 leads ¢ b s Wy pmin ] Tome
2 245 t0 the rezuit that
1 %o SINY = O (€) {(3.118)

b
Finally, the term ))J W, ie of order & by definition. Thus, when

termes of order higher than € re dropped from equation 3,115, the

following cubic polynomial is obtained:
3 l T
(2x5a) - 2(@B+WhrFa) + sawxpralBw)

_),Q (G-)A)o(n(l-\— l'gx*cos¢>] +/A1°<°_? (B+H>L<7'}“)Q+%X*Q°S9\}=O(3° 119)

The Routh-Hurwitz criteria, when applied to eguation 3. 119 give the

following inequalities which must be satisfied for stability:

—1QT$+\-\\>O‘ {3.120)
(Ber) - M G-p) e 1+ °—f\;‘:x&Q052(>> N | (3.121)

b
P, (B+ HXG")*)OJ* %;*-L cos ‘P> >0 {3.122)
-2 (B (B4H) - B Lé‘/*)*o(\“‘“%\%‘*c"“{’)] > (3.123)

(BO(G-MWsa (145w, cos @)
o

The inequality 3. 120 is seen to be satisfied imnmediately from the

definitions of T and H which give



n
aa

B+ = ak[2Pr-Q-v] (3. 124)

Eguation 3, 110 applied to the present case becomes

CaPXH @AV (3. 125)
R+ w1+ g.)

“Z
X - Wi
w'l-

Gince XU must be greater than zero for flutter to exist and since the
deaorninator of equation 3. 94 s always positive for small non-

Unearities it is seen that

-&’\DX&+Q+\":‘ >0 {3.126)

Inequality 3. 95 together with equation 3. 93 and the known positive
character of the parameters N and ¥ gives

By L0 {3.127)
which demonstrates the validity of inequality 3. 120. Having established
the validity of inequality 3. 120, a small amount of algebraic manipula~
tion of inequalities 3. 121 through 3. 123 shows that each is satisfied

provided that
froey (gom(u o x*> Lo (3.128)
Be ™

Comparison of this result with inequality 3. 64 shows that the stability
criteria for both the passive and aerodynamically damped systems are

identical throuwgh the first power in € .



In sections 2.1 and 3.1 it was shown that the criterion for
stability could be identified with the relationship between the flutter
amplitude and the amplitude for which a vertical tangent occurs on a
plot of amplitude versus flutter speed. It will now be shown that this
is true for the present case.

A8 in the case of the passive aerodynamic system the vertical

tangent is found from the steady staete equations., If these are written

I, =B\L\:+[—(c+}xx4)$/ucp+DcO$Lplo<° =0 {3.129)
I, = [Esing +Feos@] L‘bs +Heg =0 (3.130)
1, = A% + [(Crprdces® + Dswg %, =0 | (3.131)
1, = [Ecosg-Fsmelhe+ (G, =0 {3.132)

the system can be considered as a set of four equations in the five

unknowns A, L_\\;u LY KX and X . Noting that at a vertical tangent

d(<D) gg o {3.133}

dets ddo

the following result is obtained from equations 3. 98 and 3.99

a

AI/ 2.2.-/ & "\c 211 (P - DI/ . O ‘30 134}

dd\o 2%@ Ao éTp J;(D ~;° .

\\
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w3

dl.. 2L db o7 d¢

ai 2T, = .
doe  2pe Ju, d¢ doy e T © (3.135)

Thus, at the vertical tangent

pEY 21,
DA, 29
21, 2T ) *
abe s S| [Blem-AH] kAP ERdx sy
° = - — = {3.136)
S eto 2L 2% <o\ BlaM) -AH]
D ho 2¢
b
2, 3L
3 b 2
b
°T  »T,
’b‘%’ DK o
-b_]_:_’l- E‘z
2 e,
b L
é_\__'?: —_— - ~—Da—}\-\)A\X°LSlNLP
Ak, 2I. T, S {3.137)
Do P ANY
©
2L, >T.
)\‘/\P VKo
-]
From equations 3.131 and 3,132
ho
4 2I» 9 ¥, 2T5 4@ . 2Ta = © (3.138)
Ad, 2 \'-‘;: Ahg € Ak  Dekg
dTa _ 2Ta e | 2T, Q¢ 4 2T _ o (3.139)

a%e | Phe Ju, 2@ Ik 2%
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These equations, upon substitution of equations 3. 136 and 3. 137 then

give

M(%-: x5 (Al rBH] + :;éx"‘c Bl Allo

il

W {x;fft(_gé\—m‘»r W sive - x{BUq—M) -~ HT& =0 {3.141)
© ,

Egquations 3.140 and 3,141 are the conditions for the occurrence of a

vertical tangent. When the two equations are added the result is

ou)o\‘{(\-\- i’é\:: x,QQS¢>KB(h-)Q -AH]+ %x&s/u(pt((\—)&)(;q+6-p)
° > {3.142)

+ 4 k\?;-\—H)]} = O

Comparison of this result with the last term of the stability equation

3. 115 shows that the vanishing of the constant term and thus a sufficient
condition for the occurrence of neutral stability is the occurrence of a
vertical tangent in the amplitude-velocity curve. Following the order
of magnitude arguments of the preceding paragraphs it can be shown

that up to terms of the order of & equation 3.111 reduces to

o (G- Q+ fé;i x,t\ =0 {3.143)



Gl
which is identical with the vertical tangent condition for the undamped
cage as given in equation 3.78. When the condition of small frequency
separation,
A+ G- = OL) {3.144)
is employed, together with the steady state equations 3. 129 through

3. 132, ecuations 3.128 and 3. 144 can be reduced to
g, >0 {3.145)
F.=° (3. 146)
These relations, in turn, show that for the soft-hard spring character-

istic chosen in the numerical example the system is unstable for

amplitudes less than the amplitude at which the vertical tangent occurs.
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CHAPTER IV
NUMERICAL RESULTE AND LIMIT CYCLE STABILITY

Since the results of the preceding sections are somewhat
obscured by algebraic complication it is felt that several numerical
examples will be useful both for purposes of illustration and for
quentitative evaluation of the assumptions pertinent to the analysis,
In the discussion which follows three numerical examples of steady
state lirnit cycles are given. For one of these examples, the one
chosen for subseguent analysis on the analog computer, the limit

cycle stability is investigated numerically and from the relative sizes

of the atabiiiw roots and the system parameters an a posteriori check

iz made on the "slowly varving” assumption.
g~ &

4,1 Steady State Solutions

The three examples chosen for sumerical evaluation were
variations of the example given in Chapter Three. A single parameter
of this system, the elastic axis location 2 was varied {rom mid
chord to the airfoll guarter chord, Since the elastic axis location is
reflected only in the parameters P and Q these are the only para«
meters which change for the cases inthigateﬁg. A summary of these

parameters is given below,

For an airfoil of fized geometric and inertia properties a variation in
the parameter 3z results in 2 variation of the other dimensionless
parameters of thie system as well. For this reason the three cases
given here represent airfoils with significantly different physical
characteristics,
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Case EN B o
I 8. 50 ] 0. 33333
I 0. 40 0. 20 0. 37333
- 11 0. 25 0.50 0, 58333

ALl mmainmg parameters are given in Chapter Three. From equations
3.97 3.101, 3.109, and 3,110 numerical solutions for the variation of
amplitude reduced frequency and phase angle with airspeed were
obtained for Cases I and Il. The results are given in Figures 7 and 8,
The general features exhibited by the two cases are the same., The
most striking of these features is the double valued nature of the
arnplitude curves, Both the pitching and plunging amplitudes exhibit
this characteristic for airspeeds below the linear flutter speed. It
should be noted that the upper branch of the . curve should be read
in conjunction with the upper braach of the \~T: curve and similarly
the two lower branches should be read together., In contrast with the
amplitudes, however, the reduced frequency and phase angle are each
represented by a single valued curve. At first glance this would appear
to indicate the abasence of amplitude dependence from these two
features of the flutter solution. Emxamination of the defining equations
3. 98 and 3. 101, however reveals that when non-linearity is absent from
the bending stiffness { V=0 ) the reduced frequency and the phase

el s 2 s - o do P
angle are completely determined by the amplitude ratio - and

[
the airapeed, Thus the single valued character of these curves implies
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that for a given airspced the amplitude ratio must be identical in each
of the two possible limit cycles,

Caee III represents 2 sitwation peculiar to non-linear systems,
When the airfoil parameters for this case are substituted into equations
3.6 and 3.7 to determine ﬁﬁae linear flutter speed it is found that no
such gpeed exists, Thus lincar theory predicts that this systern will
be flutter free for all possible airspeeds.,  When the corresponding
equations for non-linear flutter, equations 3.109 and 3.110, are
employed a different situztion is seen to hold true. A brief discussion
of this phenomenon will be given below.

Non-linear flutter of a linearly flutter free systems is not
surprising when the non-linearity @ém:@,ixw a spring softening character-
istic. The torsion spring used for the present numerical example was

of the "soft-hard’ type sketched in Figure Ya.
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I the systers requires a reduced spring rate to exhibit flutter as
illustrated in Figure 9b the soft-hard spring has the potential of pro-
viding this if the softening characteristic is sufficiently pronounced,
#hen this happens the airfoll exhibits a range of torsional amplitudes
for which flutter is possible,
Case III fulfille the requirements for this type of behavior and

the flutter limit cycles are given as functions of airspeed in Figure 10.
The asymptotic values of torsional arnplitude were obtained by setting

K* equal to zero in equetions 3. 109 and 3. 110 and solving for X, .
The abscissa of Figure 10 was not normalized by the linear flutter

gpeed since for thie case the linear flutter speed was infinite.

4. & Stability of the Steady State Solutions

The steady state solutions given in the preceding section were
each enalyzed for stability with respect to small disturbances. For
this purpose equation 3. 115 was used. In Chapter Three this equation
was greatly simplified through the use of the assumptions of small
non-linearity and small frequency separation. On the basis of this
simplified equation it was shown ﬁh&fme necessary and sufficient
condition for limit cycle stability with a soft-hard spring characteristic
was that the amplitude of oscillaton be greater than the amplitude
corresponding to the occurrence of a vertical tangent on the amplitude-
airspeed plot. The assumption of small non-linearity is not well
gatisfied by the torsional spring @:h&f&@termﬁs choeen for this study
and consequently the more c@mggﬁéeam@éqm&ﬁ@m 3,115 wae used for the

stability study., This eqguation is a cubic polynomial in the perturbation
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exponent {1 and as such is extremely cumbersome with respect to
the determination of roots., For this reason only the Ramh-iﬁm@éﬁz
criteria were used for stability study of Cases I and I while a; single
case, Case II was analyzed by determination of the roots of the
stability equation throughout the range of torsional amplitude, &Ko .

Application of the Routh-Hurwitz criteria to each of the cases
investigated showed that the conclusions of Chapter Three were valid,

- namely, the limit cycles are stable provided tﬁ@ir‘&myﬁma‘ies exceed
the amplitade for vertical tangency, The stability ranges ave indicated
in Figures 8, 9, and 10,

The roots of equation 3,115 as applied to Case Il are shown
plotted versus pitching amplitude in Figure 11. It was found that for
ail values of pitching amplitude the roots to the equation consisted of a
single real root and 2 pair of conjugate complex roots symbolized by:

Q\
Q- [Q-:]R-\- Liﬂzr}

[a]e + L]
Quantitative determmination of the roots of the stability eguation

provides an a posteriori check on the assumption of slowly varving

response, It should be noted that the a posteriori viewpoint is a

necessary one since at no point in the analysis was the condition of
slowly varying reeponse imposed on the system. Rather, it was
assumed that the response possessed this character,

From Figure 11 it can be seen that for the range of K, below
0, 274, the point of vertical tangency, the real root of the stability

equation is always positive, For values of <, above this point all



FIG.Il  STABILITY ROOTS, CASE 2, XO=O.4O



71
rezl roots are negative thus substantiating the conclusion of the pre~
ceding chapter that the steady state solutions are unstable below the
vertical tangency and stable above.
The magnitudes of the roots will be examined for two amplitude

values., The first will be an amplitude of 0. 20 whick corresponds with

T
©

T
a value of U of 0.815, This point was chosen since it corres-
ponds to the largeest real roots for the unstable golutions. The second

amplitude to be investigated will be 0. 365 which corresponds to a value

-
A
reported in the next chapter. These cases are summarized in the table

of of 0,905 and 2 case investigated with the analog computer and

below where the values of the roots together with the values of reduced

freguency are given,

U .
®o | g 0, Ml | @l | X

Q, 200 0. 815 0, 0148 -8, D238 0, 004 0,167

eo Bé% Q‘ %65 "@. @3 58 “‘@o @gﬁé Qo @62 go Eég

The nature of the roots for the first case shows that the response
mgwifsts of g divergence together with a damped oscillatory motion. An
index to the rate of variation of the response is the time required for

the perturbation to diverge {ox converge) to twice {or one~half) of its
initial value., The significant unit of this time is periods of the
unperturbed steady state osscillation. The number, 7 , of these periods

is given by
693 K

M T



For the first case:

N = 1.24 (divergeace)

N =0.62 [oscillatory subsidence)

i

For the second case:

MN=1.52 ({subsidence)

N = 1.68 (oscillatory subsidence)
Consgidering only the divergent or subsident motions these numbers can
be interpreted as showing that the perturbation amplitude in the first
case reaches 161 °/o of its initial value in one cycle and in the second
case is dlminished to 33 /o of its initial value in one cycle. These
are not what can be considered slow variations. It should be noted,
however, that when the perturbations are small with respect o the
steady state amplitude {say 10 ° o) the total variation of amplitude per
cycle (6 %/o) and 3 /o respectively for these cases) is within the
admissable range. A further check will be obtained from the analog
solution reported in the next chapter and several conclusions concern~
ing the genecral uscfelness of the method will be given in Chapter Six of

this report.



ANALOG COMPUTER S50OLUTIONS

AND INITIAL CONDITION DEPENDENCE

In the preceding analytical work it was necessary to lmit cone
sideration to steady state solutions and thelr stability. This was due
to the mathematical difficulty associated with the solution of equations
2. 47 through 2.50. To cbtain an idea of the nature of the flutter
dependence on initial conditions, therefore, it was decided to obtair an
exact numerical solution to the equations of motion for a particular set
of airfoil parameters. Initial conditions were provided in the analog

solution by starting the airfoil motion with an initial angle of attack.

5.1 The Analog Set Up

Solutions were obtained using the analog computer of the
Douglas Adrcraft Company, El Segundo Division. This computer is of
the differential analyzer type and had more than adequate amplifier
capacity for the solution of the present problem. The polynomnial none
linearity was generated using a combination of Douglas Cuadratron
sguaring elements and a mualtiplier., 4 schematic dizgram of the
analog set up is given in Figure 12. The equations of motion are given
there with the correct coeflicients for the case chosen to be solved
here, namely, Case II of the preceding chapter. The dependent varia-
bles shown in the figure are rolated to the variables of the preceding

chapters by
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The airespeed, U is determined by the parametey (—3) which is given

by

Initial conditions were imposed on the %, circuit by the conventional
scheme of impressing a prescribed voltage across the capacitor of

the =,y integrator prior to beginning a solution,

5.2 The Analog Solutions

| The general character of the analog sclutions was as follows:
1. For a range of airspeeds below the linear flutter
speed a critical value of initial angle of attack was found
to exist. When the airfoil motion was initlated from
angles of attack above this critical value, the airfoil was
observed to execute oscillations which diverged until
reaching a steady state limiting value., When motion was
initiated from angles of attack below the critical value the
airfoil executed damped oscillations and ultimately returned
to rest.
Z. A critical airspeed, lese than the lincar flutter speed,
was found such that the airfoil was completely stable for
all airspeeds lese than this value. In the present sense
completely stable indicates that no value of initial angle of
attack could be found which resulted in steady airfcil
oscillations, instead for every initial angle the airfoil

executed damped oscillations and ultimately returaed to rest.
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3. For airspeeds above the linear flutter é;@@esﬁ the

rest position of the alrfoil was found to be unstable,

i.e. any finite initial angle of attack cavsed the air-

foil to execute divergent oscillations until reaching

a lmiting value.

4. For each alrspeed (greater than the critical value

wentioned in 2 above) it was found that the amplitude

of steady oscillations had a specific value character-

istic of that airspeed.

5. Initizl angles of attack which exceeded the ateady

state limiting value were found to result in oscilla-

tions which decreased in amplitude until reaching the

steady etate limit. Therefore steady oscillations were

maintained.

The results of the analog investigations of Case II of Chapter
Four are given in Figures 13 through 16, Figure 13 shows the most
significant of the anzlog results. Here angle of attack or torsional
amplitude is plotted versus the airspeed ratio Ui/U;' in m&l@gy with
the plots of the preceding chapters. Shown on the same figure iz a
plot of the theoretical Mmit cycle amplitude~airspeed relationship
previcusly obtained. The analog data are plotted in such 2 manner
that both the locus of critical initial conditions and the steady state
limiting amplitudes are shown on one double valued but continuous
curve, It can be seen from the figure that the agreement between the
anzlog and theoretical stable limit cycles is quite good for the entire

eirspeed range. Move interesting, however, is the fact that the locus
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of initial values necessary to cause fluiter coincides @i&;@ well with
the amplitude-airspeed plot of the unstable theoretical limit eycles.
Thus it would appear that while the theoretical treatment was lmited
to @i’emiyémae behavior, a good catimate was obtalned of the initial
condition dependence of the flutter system. Figure 14 shows the
agreement obtained between the analog and theoretical values of
reduced frequency. Here the analog frequency referred to is the
reduced frequency of the steady state oscillations or limit cycles. It
can be scen that the agreement is good., Figure 16 shows a comparison
of the steady state bending amplitudes, _é_b » 28 obtained theoretically
and by the analog computer. The agreement shown is not as good as
for the torsional amplitude. The error increases from about & “/o at
the lowest flutter epeed to nearly 20 °/0 in the intermediate speed
range. Figure 16 shows the steady state phase angle between the
torsional and bending displacements, the analog amg theoretical values
compared. Here again some error is apparent.

Some typical time histories of displacement versus dimension-
less time { T- %f )} are given in Figures 17 and 18, Figure 17 shows
three plots of displacement versus time for a value of Ut/U;— of
0. 918, The three initial conditions, X; » were chosen as shown in

the sketch below



82

#Q.

248
2 OUS

Figure 17a shows the stability of the rest position. Figure 17b shows
the response to an initial displacement of 0, 20 radians. This initial
displacement lies above the amplitude of the unstable limit cycle for
ﬁxis airepeed and consequently diverges to the stable value, It is
interesting to note that the maximumn chenge in amplitude per cycle is
36 “fo. Figure 17c shows the torsional reponse to an initial displace-
ment of §. 39 radians. Here it is observed that the maximum change in
amplitude per cycle aever exceeds 10 ®/o. Thus it appears that when
initial values lie in the neighborhood of the stable limit cycle the
assumption of slow variation of amplitude iz reasonably well satisfied.
Although no supporting time history data are presented here, it was
also found that a similar situation holds true for initial valuee which
lie in the neighborhood of the unstable limit cycle. In this case it wae
found that a large number of cycles are executed near the initial value
before the system diverges to the stable amplitude. It was concluded

from this that the success of the analytical method in the prediction of
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torsional lirnit cycle amplitudes was due to the validity of the funda-
meatal assumption of slowly varying torsional amplitude near the
liznit cycle itself. Figure 18a shows the bending response of the
systern for the case corresponding with Figure 17b. Figure 18b
shows the torsional response for an airspeed beyond the linear flutter
s‘gméﬁ, mmély %x =z 1,06, The initial éisp?.é@emem was 0,22
radians which placed the system in the rapidly varving category. It
can be seen that for any airspeed ratio, initial conditions which are
far rermoved from any limit cycle, either stable or unstable, result
in rapidly varying behavior. For this reason it was concluded that
the analytical method is not weﬂ suited to the prediction of arbitrary
initial condition dependence unless the system chosen for investiga-
tion is fortuitously slowly varying for the complete amplitude range,
Thus eguations Z.47 through Z.50 are suitable only for the prediction
of limit cycles and their stability.

Figure 19 represents a plot of torsional velocity versus
torsional amplitude. The plot is thus a two-dimensional projection of
the four-dimensional phase space whose coordinates are S < ) 2
and W . The figure represents a plot of « versus « while %

b
and N take on their full range of values. The limit cycle is

apparent from the heavy concentration of trajectories traced out as the
system gradually achieved steady state behavior. A feature which
distinguishes this phase projection from the familiar one degree of
freedom phase space is the fact that the amplitude during the transient

motion can exceed the steady state limit. This fact is attributed to the

influence of the motion in the other degree of freedom.
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CHAPTER VI

CONCLUSIONS

The analysis of the preceding chapters was almed at the evalu-
ation of certain effects of structural non-linearity in a particular flutter
problem The broad range of phenomena associated with flutter in

bie

general and t?;gc, mathematical complication typical of non-linear prob-
lerns makes the drawing of comnpletely g@ﬁ@rai conclusions very
difficult. For this reason the conclusions given below are of & some-
what gualitative nature.

It was found in chapters four and i five by an & posteriori
approach that the assumption of slowly varying response is not valid
for all possible problems of the type considered. This fact is suffi-
cient to lead to the conclusion that a general analyeis of the transient
flutter problem by the Kryloff and Bogoliuboff method is not possible.
It wae shown, however, that transient response to initial conditions
which place the system near 2 limit cycle, lead to slowly varying
response and under this restriction the method appears to be applicable.
This is true, as well, of the sitvation in which a limit cycle is given a

small perturbation and stability is analyzed by observing the transient

behavior of the perturbation.

N

n additional qualification to the applicability of the method is

necessary before the stability analysis given here can be justified.

5;‘*
b

ince the assumed form for the steady state solution consisted of only
the firet harmonic it is necessary that the system coneidered possess
a response in which this term predouninates., /An example of a systemn

for which this &@sum%ﬁ@m is not justified is given in Reference 4. The
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aézai&g computer solutions given in the present report, however, show
that the response is well represented by the first harmonic terra.
In summary, the following list of conclusions is given:
{1) The Kryloff and Bogoliuboff method or method of
slowly varying parameters provides a useful technique
for the approximate solution of flutter problems in which
structural ﬂ@ﬁfﬁﬁ@&?iﬁ? plays a role, This is especially
true when the aerodynamic forces can be represented in
2 quasi-steady manner as was done here via piston theory,
{2} For the case of bending-torsion flutter with a none
linear torsion spring of the "soft-hard” type the limit
cycle solutions are unstable at amplitudes below the one
corresponding to a vertical tangent on a plot of amplitude
versus aimpe@ﬁ. This conclusion is subject to the
restriction that the frequency sep&raﬁa&a of the aero-
elastic modes is small at the flutter speed,
{3) The amplitude of the unstable limit cycles obtained
by the approsimate aﬁaiyeis method of the present study
were found to provide a good estimate of the initial dis-
placement required to initiate fluttesr,
{4) The numerical examples investigated in this study
revealed that the transient behavior of the flutter system
is not, in general, slowly varying. For this reason it is
concluded that the Kryloff and Bogoliuboff assumption is

not well suited to the determination of transient behavior.
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it izs.’ however, suitable for the approximnate deter-
mination of steady state solutions and their etability
since in this case both the assumption of slowly
varying respounse and the assumption that the response
is wéﬂ. approzimated by the first harmonic term are

satisfied,
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