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ADETRACT

Re-examination of the Crocco~Lees method bas shown that the
previous guantitative disagreement between theory and experiment in
the region of flow up to separvation was caused primarily by the improper
Cf £ ) relation assumed. A new C{ K ) correlation, based on low-gpeed
theoretical and experimnental data and on supersonic cxperimental resulls,
as been developed and found to be satisfactory for accurate calculation
of two-dimengional laminar supersonie {lows up to separation.

A study of separated and reattaching regions of flow has led to
a ?E&yﬁsimi model which incorporates the concept of the "dividing"
streamline and the resulis of experimeni. According to this physical
model, viscous m%mm;éﬁn transport is the cspential mechanism in the
zone beltween separation and the begilaning of reatiachinent, while the
reattachment process is, on the contrary, an essentially inviseid
process. This physical model has been translated into Crocco-Lees
language using a semi-cmpirical approach, and approximate C{AL ) and
??é K} relations bhave been determined f@r the gseparated and reattaching
rvegions. The resulis of this analysis have been applied to the problem
of shock wave-laminar boundary layer interaction, and satisfactory

guantitative agresment with experinent basg been achieved.
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I INTRODUCTION

The main object of the present research is to advance the
development of the Crocco=ices "mixing' mearyl* 0 that it can be used
to treat flows that contain separated and reattaching regions. The
problem of separated {lows is au old one, and many examples of such
flows are observed in everyday experience, as well as in diverse tech-
anical problems. For example, the relatively calm air pocket that is
found on the upstream side of a house during a wir&ésmrmg and the '"dead
water' zones behind large rocks in a swiftly flowing river are familiar
examples of separated regions. Knowledge of separated flows is irnportant
to the engineer in such technical problems as the prevention of wing stall,
the calculation of diffuser and compressor efficiencies, the prediction of
lossges in évereanded rocket nozzles, and the estimation of the effective=~
ness of aerodynamic control surfaces. In order to solve his problems,
the engineer has bean obliged to use experimental data almost entirely,
since a practical theoretical method of treating such flows is not available.

Separated and reattaching flows can occur under a vaviety of
circwnstances. For example, the flow may be laminar or turbulent,
steady or unsteady, and subsonic or supersonic. But in all cases, the
main causge of the phenomenon of separation can be ’ﬁraced to the inability
of the low energy viscous region adjacent to & body to adjust to the
imposed inviscid pressure disiribution. Morse specifically, counsider
subsonie laminar {low about a bluff body,suck as a e;yiinder or sphere,in

a high Reynolds number siream. Such a flow generally contains a region

% Superscripis denote references at the end of the text.
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in which there is a fairly large positive pressure gradient. The no-slip
boundary condition of continuum flow implies that the boundary layer {luid
upstream of the positive pressure gradieant region is deficient in energy and
momentam, and this deficiency is especially serious for the fluid pariicles
near the wall., Ag the boundary layer fluid enters the region of positive
pressure gradient, momentumn is transferred o the low energy fluid

near the wall from the more energetic fluid further out by molecular
transport. For turbulent boundary layers, the momentwn transport is
maialy due to maroscap&& turbulent eddies. In either the laminar or

the turbulent case, this momentur transfer enables the low energy fluid
anear the wall to continue flowing downstrearn. At the game time, the
boundary layer velocity profile is distorted in such a way that the velocity
gr&diem normal to the wall, and thus the wall shear stress, is reduced.
The distortion of thé velocity profile is therefore associated with two
effects which allow the boundary layer fluid to continue flowing downstream,
namely the transport of momentum from high eﬁ@x’gy to 'IQW energy regions
and the reduction of the wall shear stress.

However, the amount of velocity profile distortion that is possible
iz limited. After the {low has progressed sufficiently into the region of
positive pressure gradient, the slope of the velocity profile becomes zero

¢ the wall, so that the wall shear siress is zero. At that point for the
two-dimensional and axi~symmetric cases, the flow '"separates’’ from the
wall. For general three-diymensional flowe, the phenomenon of separation
ig more a@mpﬁex3, and the vanishing of the wall shear atress is only a
necessary, but not a sufficient, condition for separation. However, in

all cases, if the flow field ig divided into two regions by & stream surface



starting at the body such that one region consists of all the fluic particles .
upstream of the body and the second region ig éxﬁ isclated ''dead water"
region, the flow ig generally regarded to be a separated one. When the
flow separates, the actual pressure distribution is always markedly
different from the inviscid distribution, vamﬁ in such a way as to reduce
the values of the posgitive pressure gradients. Thus, the phenomenon of
separation is caused by the liranited ability of the flow to supply sufficient
momentim to the low energy poritions of the flow that are adjacent to the
body, thereby necessitating & change in the effective body shape, which is
achieved by the fluid "separating' from the body. Increasing the capacity
for momentum transfer would of course tend to delay separation. This
deduction is readily verified by the well~kaown experimental fact that
turbulent boundary layers can penetrate more deeply into positive
pregsure gradient fields without separating than laminar boundary layers
can. ©

It is often found that separated flows will return to the suriace,
and “reattach'. The sequence of separation and reattachment traps a
separated dead water region between the body and the outer flow.
Examples of this phenoinencn are found in separation "bubbles' on wing
surfacesé, and in shock wave-boundary layer interaczisnsﬁ"'?. The
details of the reattachment pr@cesé are more obscure than those in the
case of separation, and cxperimental studies of reatiachment are only
now beginning to provide a real understanding of the ?rOCQSS?e

It is clear from the above discussion that the details of separated
{low phenomena are quite complex, even for laminar flow. The Navier=

Stokes eqguations, which describe general laminar continuum flow with
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satisfactory accuracy, alse in principle describe the subclass of laminar
separated flows. Unforiunately, the Navier-Stckes sguations are a
highly non<linear set of pariial differential equations that have been
solved only in a relatively few simple cases. The flow geometries and
boundary conditions of separated and reattaching flows are so complicated
that a direct solution of the problemn using the Navier-Siokes équaﬁan@
divectly &05’;6 uot seera to be feasible. Thig realization, and the practical
importance of separated flows, has led to a search for approximate
methods.

it has been observed experimentally that varicus types of separated
flows have many similarities, and indeed, it has been poagsible to correlate
the behavior of separated flows with widely different {low geam«e?:ries?.
The observed similarities suggest that an approximate method that is
applicable to general scparated flows may be feasible. Several attempte
have been made fo formulate such an approximate method, but unfortunately,
the results of thede efforts, while showing some agreement with experiment,
have been either ge‘%era%y ragtricted in generality or quantitatively un-

1,10-12

satisfactory . Of the various approximate methods that have been

o s 1
formulated, the method of Crocco and Less  appears to be the gnost
i
general and promising.

The Crocce-Lees method is similar in many respects to approxi=-

P

mate integral methods that have been developed for the treatment of

513»&?

atiached boundary layer . However, these approximate methods of

17

attached boundary layer theory, with the exception of the method of Tani™ |

employ & parameter that, while satisfactory for atiached boundary

layers, is not appropriate for separated flows. The choice of an alternate
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parameter that is satisfactory for the treatment of separated flows
largely determines the essential differences between the Crocco-lees
method and the other approximate integral methods.

In order to describe the main conceptual aspects of the Crocco=
Lees method, as well as to show the specific differences betwesn it and
the other approximate integral methods, we will briefly consider the
general approach and concepts of integral methods for the case of
attached boundary layers. The original idea stems from the von Karmnan
momentum integral equation, For steady two-dimensional {low, this

equation ig as {ollows:

) 5 :
(&/@x}x\ puz’ dy = ue(e%/&}: S pudy = - TW - 8{dp/dx) (1)
o ]
where

p = density

u_ = veloeity in the x divectionaty= 6= u e(x)

<
]

wall shear stress s/»(&u/&y}y;__,g |
p = pressure = p(x)

= a lengith which measures the boundary layer thickness

]

%, ¥ the coordinates along, and normal to, the wall,

This equation is simply an expression of Newton's second law averaged
over the boundary layer thickness, §. By means of this averaging
process, the original second-order partial differential equation for the
zemomentum and the eguation of continuity are converted into a single
firsteorder differential equation for the dependent variable, §(x), or for an

integral parameter, such as the momenturn thickness, 5%%,



Suppose we consider the case of low-speed, isothermal flow. By
defining the displacement and momentura thicknesses as {ollows:
i
e

{2)

@iﬁw = momenturm thicknegs =

&
@ié‘ = displacerment thickaess ES‘ {1 - ggg dy .
&
I+
S {u/u) (1 - g;j dy
o

the von Karman momentum integral equation can be written as

J00 [ et
Ue G5+ 2/ /z fo /Ue/ayyo (3)

In the usual approxzmaae integral methaés‘a W, the velocity profile is

represented ae '
ey - g0 L, (4)

where \ is a velocity profile shape parameter and f ie either 8, or e’bi@*.

In the Pahlhausenl 3 and Thwaites) 4-16

methods, & second relation is
obtained by satisf{ying the boundary layer x-momenturn equation at the

surface, which gives the following relation

IRy CENCRR e

If the parameter ) is defined as

2
S ~-£-—f--oi,‘~/;‘{i= g O, Ny, (6)

M
then Eqs. {l1) and (6) provide two independeni relations for the dependent

variables, )\ and ﬁ , and the method is completely formulated. If the



velocity profile is expressed in terms of more than one shape parameter,
then the additional parameters must be related to §, or %?;i** by the
boundary conditions, or else additional relations must be supplied. Thus,
if an approximate integral method uses only the von Harman momentum
integral equation and a second relation analogous to Tq. {6), then such

a method generally implies, aad is inseparable from, a one-parameter
ﬁ%scriﬁtian of the flow.

According to Eq. (6), '?:he shape of the velocity profile is directly
related to the local gradient of the external strear velocity., Sucha
formulation may be more or less satisfactory for attached boundary layers,
but it is completely inadequale for separated and reattaching flows, It
imnplies, for example, that the profile must coincide with the Blasius flat
plaie profile whenever {(du e-/ dx) — 0. In the case of shock wave - laminar
boundary layer interaction {(Figure 1), the pressure gradient downstream
of separation decreases steadily and is practically zero in the plateau
region, but the velocity profile bears no resemblance to the Blasius flow.
Similar anomalies occur in the realtachment region. In order to aveid
thig difficulty, the Crocco-Lees method utilizes a shape parameter, £ ,
which is & non-dimensional ratio of the momeniwn flux to the mass flux
in the viscous region. This parameter, £ , is not explicitly related to
{du e/ dx) and is also not uniguely determined by 5. A second relation, in
addition to Eq. (1), is required to complete the mathematical formulation
of the method, and this relation is obtained from a physical modsl. The
flow, according to this physical model, is divided into two regions «=- an
external, izwiséid region and an internal viscous zone (Figure 2). These

two regions interact by the momentum transfer associated with the



mining'', or mass entrainment, of fluid from the high energy external
flow into the low energy viscous region. A continuity eguation, expressing
the vate of mixing, or entrainment, of fluid from the external region inio
the internal region is the second relation between A and § in the Crocco-
Lees method, and basically distinguishes it ixom the other approaches.
Another aspect which characterizes the Crocco«l.ees method is
that the external and internal flows interact, so that the change in the
thickness of the viscous region affects the external inviscid flow. The
earlier discussion of the phenornenon of separation shows that a separated
ﬂéw certainly falls into this category. However, it is welleknown that
for attached subsonic flows, the effect of the increase in boundary layer
thickness on the flow field is sm&ll. at least at high Reynolds number,
and can be neglected as {ar as the determination of the presgsure distri-
_bution ig concerned. Rut if the flow does separate, the whole flow
field is strongly affecied. Thus, subsonic interaction is generally either
trivial or drastic. In the supersonic cage, the situation is the opposite,
with a relatively small thickening of the viscous region causing large
effects locally in the external flow field, especially for the case of nons
cooled walls. Also, if the flow separates, the eifect on the é:aternal flow
’ﬁem is rather localized. These considerations and the simplicity of the
relation between flow angle and velocity given by the PrandtleMevyer
equation show that the problem of supersonic separated flow is much
more amenable to solution than &:&e subgonic problem, and all calculations
that have been performed using the Crocco-Lees meihod have been for
the former casge.

The Crocco=Lees mixing theory is not the only possible way in



which separated and reattaching {lows can be ireated. By multiplying
the x-momentum equation by u™ and integrating across the boundary
layer, one obtains a series of {irst-order moment eguations, with the
von Karman momentum integral equation characterized by m = 0. This
n-raoiment method (n = m 4 1) thus provides n independent relations that
can be used in the formulation of an approximate method. In the case of
m&a;:hed boundary layers, T&nim , following an idea of Walzm , does not
use Eqg. {6), but enxpldyg a forrnulation in which n = 2. He therefore
obtains a pair of first-order ordinary differential equations, instead of
the eingle differential equation and algebraic squation of the Pohlhausen
and Thwaites methods. Since Tani does not use Eg. {6), his method
could be usec’; beyond separation and therefore constitutes a possible
alternate two-rnmoment method for treating separated and reattaching flows.

An nemoment method for u > 2 offers the poasibility of character«
izing the velocity profile by more than a single shape parameter. The
uge of more than one parameter to characterize the velocity proifile
clearly implies an increase in the mathematical complaxity of the method,
and can really be justified only by the failure of one-parameter methods.
The complexity of separated and reattaching flows suggesis that a one=
parameter approach may not be adequate, and the present study is to a
large extent an investigation aimed at determining whether or not the
one=parameter Crocco-Lees method is satizfactory for treating separated
and reattaching {lows.

In this study, only laminar flows will be cansid‘ered since the
present aim is to examine relatively wen«-ugderswad cases with the

method to determine if the present formulation is basically adequate.
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The extension of the method to turbulent {lows is discussed in References
1and 19. Also only two~dimensional cases will be considered in the
same spirit of keeping the equations as simple as possible, but the
generalization of the method to axiesymmetric flows can be carried out
in essentially the same way as in Reference 16. In addition to the above
agswnptions, it will also be assumed for the present that the heai transfer
to the %moéy ig zero. The extension of the method to include heat transfer
ig not obvious, but appr@achés sﬁch as that used in Reference 16 may be
exployed.

The problem of two-diméensional Iamimé supersonic flow over

insulated bodies has been studied both exgerimemanys"g

Crocco-L.ces me%:hodm’ 31. Qualitative agreement between theory and

and by the

experitment has been achieved, but the gquantitative agreement has been
ungaﬁgfamory even for attached ﬂawsm where the assumptions of the
method are least open to question. In the present study, the attached
region of flow will be investigated first with the aim of determining the
reason for the previous quantitative disagreement between theory and
experiment. Then the problem of the separated and reattaching regions
of {flow will be investigated. A physical model of separated flows will

be developed and translated into the language of the Crocco~Lees method,
Finally several caleculations of shock wave-laminar %aeun&a?y' layer inter=-
action will be carried out and shown to predict a complex separated and

reatitaching flow with satisfactory quantitative accuracy.
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II. CROCCO-LEES METHOD

Since imporitant changes in concepts and content of the Crocco-
Lees method have been developed here, it is the purpose of this section
to re~examine in detail the physical and mathematical formulation of the
method. The flow is divided into two regions -- an outer region which is
assume& to be essentially non-dissipative, and an inner region in which
viscosity is assumed to play an important role (Figure 2). The extent
of the viscous region is measured by the length, §, which for the case
of & body in & Ligh Reynolds number stream is the usual boundary layer
thickness, and for a wake, is the extent of the non-uniformn flow in the
direction transverse io the external flow direction. (learly, the definition
of the length, §, is artificial, and physical quantities, such as pressuve,
interaction distance, etc. should not be sensitive to the definition of &.

i, 19-2.1‘ the

‘In several previous studies using the Crocco-Lees method
:aﬁ:iﬁciality of the length, §, was not appreciated and studies were
carried out to determine the proper method of defining §. It has been
found in the present study and in the work of Gadd and Holder>? that
physical guantities do not depend on the definition of 6 as long as the
definition is @ reasgonable one that is seunsitive to velocity profile shape.
Indeed, for the limiting case of weak hypersonic interaction, which is
digcussed in Appendix B, it is shown explicitly that several different
definitions of § give ideantically the same result.

Once some criterion for determining 8 is selected, the equations

of motion for the viscous region can be written. The coimnplete equations

describing attached, separated, and reattaching flows are too formidable
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to allow mathernatical analysis, so many simplifying assumptions have

te be made. The assumptions will now be listed, but a discussion of

their validity will be postponed until Section V. The assumptions can be

grouped roughly into two categories depending on thelr importance and

inherent necessity. The major assumptions of the method are as

- follows:

(1)

(2)

{3}

The gradients of viscous or Reynolde stresses in the flow
direction are negligible compared with the static pregsure
gradient ia the flow direction. |

The pressure gradient transverse (o the stream direction is
negligible.

The flow is steady.

In addition to these major assumptions, the following secondary assumptions

have been made in the present study in order to simplify the problem:

(<)

=)
{6)
{7)
(&)
{9)

The external flow is a plane, isentropic, supersonic flow

over a flat, adiabatic wé.u oriented in the free stream directiion,
with the flow direction at ‘y = § given by the PrandtleMeyer
velation.

Prandil number is unity,

Viscosity is proporiional to the absoclute temperature.

Flow anglés relative to the wall are small.

The gas is thermally and calorically perfect.

The stagnation temperature is consiant throughout the

whole flow,

{10} The viscous region is laminar,
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The squations describing the flow can now be written. The

mornentum equation for the viscous region in the x direction is

difdx = v, {divi/dzx) - (6dp/dx) - T {7)
where 8
.
I = momentum flux in x direction & S pu” dy
o
u, = absolute value of flow velocity at y= 3
&
i = mass flux in x direction = S pu dy
G
p = static pressure of viscous region at & streamwise location

7. © sehear stressat the wall.
The continuity equation for the viscous region can be written as
heodllf 5 JUR S < ab - o
(aF/dx) = p o ( Tz ~ © ) @
where

P, = densgityat y= &

& = streamline direction angle relative to the wallat y = §
{Figure 2)

Since the external flow is assumed to be isentropic, the Bernoulli equation

can be written as
(1/pMdp/dx) = = (1/@ Mdw /dx) (9

where

@
nl

¢ stagnation speed of sound = J 7V R L ¢ ’

(1431 L2

¥ Wg

=N
@
I




w, ¥ (u ..34/&;;3
With these basic asswnptions and equations, it is now possible
to cast the equations into the language of the Crocco~Llees method.
First, the basic parameter of the method, and the one used to characierize

the flow in the viscous region is defined as follows:

K = momentun flux , = I
T mass Hux x JI0CA] external Veiocity =
e
.. actual momentum flux {10)
T momentum ilux of mass lux moving at U= u, ’
= ul/ Yo
where

u, E average” velocity of viscous region.
It is now convenient to introduce some definitions to facilitate

the writing of the eguations. Let

&
g% = 5 (1 - ﬁ_m ydy = displacement thickness
. e e
& .
S = ’ P a}}., P -y 0 7 ~ 3 y
§ 5 Q@u/g@u o) (1 T } dy momentur thickness
° {11)
py = mean density of the viscous region = 7 /alg‘i
Ti = mean fernperature of the viscous :regimz = p/ PR .

The definitions of p; and T, ave made for convenience and no thermo-
dynamical significance is attributed to these quantities, except for the
trivial case of uniform: {low conditions in the viscous region, Weo also

define the following convenient guantities:
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@ii = Qf’ﬂ" s W s T, 8}
(;f = CgﬁK » We 2 T, 6) €2€})
k = {d§/dx) -~ € = K{ Koy W, 5 ¥, 8)

These additional relations are of the same type as those employed in the

14 15

integral correlation methods of Thwaites™ ~, Rott and Crabtree™ ~, and

16. It should be amphaaize& that the data necessary

Colien and Reshotko
to obtain these correlation relations must come from: other s@ur&ee,

either theoretical or experimental. For attached flows, deiailed theoretical
and m:.parimem:al dataare available, while for separated flows, only experie
mental data of a very restricted £xaturaare known. This qualitative difference
vetween atitached and separated flow data will necessitate separaie approachss
in obtaining the correlation relations @, ¢, and k. In order to aveid
confusion, the discussion of the problem beyond separation will be poste
poned until Section IV. It is neverthelesa clear that the same basic
information is necegsary in all regions of flow, and the apparent differences
in approach for the two flow regimes are dictated by the present ignorance

of separated flows. '
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M, Howarth ~,

For attached flows, the theoretical studies of Thwaites
Falkner and Sk@nM, and mrtweZB, and the experimental study of flow
over an ellipse by Schu.iaaueraé provide detailed incompressible flow data
on attached boundary layers for different external velocity distributions.
This detailed data can be exdmined with a view toward finding relations
for {él, ¢;, and k in terms of the variables X, w, , m, and § which are

similar for the several flows. If such relations can be {ound, interpolated



curves for ¢3 s Soo and k in the A , W, m, and & space can be gelected
to represent flows of the same general class. These interpolated curves
ave the ''universal’ curves characteristic of correlation methods.

The errors introduced by selecting ''universal’ curves are not
obvious and are generally faumi by comparison with experiment and exact
solutions. If the correlation curves for the various experiments and exact
solutions can be made to agree closely, the correlation method should
give good results. Therefore, one problem is to try to optimize the
correlation relations to give such agreement (See Appendix D.). No
systematic procedure for such an opiimization is known, and the general
method of determining correlation functions is to iry the simplest functions
consistent with theoretical and experimental knowledge. The general
experience of correlation methods seems to be that a skin friction
correlation can be found that is quite "universal", while the other
correlations are not as satisfactory.

With this discussion of the concepts, aims, and problems in
obtaining correlations for ¢l > ¢ and k, we now proceed to thé methods
by which they have been determined in the present study for the attached

part of the flow. In order to determine the ¢i correlation (related to the

“mean temperature function of Reference 1), it is necessary to introduce
the Stewartson transfarm&tionz?, relating a compressible boundary layer
flow with a prescribed variation of external velocity to an equivalent
incompressible boundary layer with a transformed external velocity
distribution.

The Stewartson transformation is defined by the relations
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where f , 1 are incompressible coordinates, x, y are the associated
compressible coordinates, and the subscript t refers to the compressible
free stream stagnation conditions (chosen as reference valuesg). In Ref-
erence 1, it is shown that if u is the compressible velocity in the x direction

and u, ig the transformed, or incompressible, velocity, then

(u/a) = (u/a)
(u,/u, ) = (u/u)

‘pe 2e
(éi - 5{#) = 5 at (& - &%) , {22}
t

a
(6. ~ §.% « §5.3%) = Pe e (6 ~ &% » §iok)
i Ui i AEN )

so that

K= sy = 59 ' (23

Thus X can be evaluated from the incompressible equivalent of the com=

pressible flow. It is also shown in Reference 1 that

5 = P2 Ty [5- Y21 w6 - 6.% - 5,04 (24)
e T T TTT Ve 187 5T =0

and from the definition of T, given in Eq. (14), one finds that
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(Ty/1) = - Slede (25)
where
(5, ~ 6% < 5.%%) 5. K 8
£z i 1 *é 1 = 1* . (Zé)
(6; = 6% o 8- 6%

For a uniform viscous region, ési* and éi** = 0, so that f and K approach
unity and the relation for T,/T, is the familiar one-dimensional result.
The deviations of f and K from unity thereby measure, in a certain sense,
the non-~uniformity of the velocity profile.

It will be convenient to define an alternate function for £, defined
as f{ollows:

2 (@iw + 5i**)
Fz ((/e7)-1= U . (27)

Since F and K are defined by incompressible boundary layer parameters,
for every incompressible velocity profile there are unigue values of I and

K , so that the @, correlation that is sought is

1 Y1 2 2
%) -W[““"*Z—-We" ]

§

or

§

@ = —= [F(,e) + t] _ (28)

AN
where
= ¥-1 2_.
¢ = bw e W "’(Te/?t}
It should be noted that the compressibility effects are separated out in an
explicit way, since ¥ and £ do not depend on W Thus the problem of

finding the %1 correlation essentially reduces to the determination of the

Pl ) correlation.



Suring the presesnt study it was noticed thai, for a given value of
the form factor, H, , where H, = i%i*/ﬁi**) , the mean-temperature
parameter { is maximum for a f{inite value of §i , while £ generally has
the property that it increases monotonically towards unity with increasing
ﬁi . By choosing 6.1 such that { ie maximum, oae abtairzg a simple
analytic expression for f{K ), which is

2
fleg) = {See Appendix A.)
(2K - 1)
or
Ple) = HoLl L (29)

For attached flows,the function F{ ¢ ) derived from this maximization

method agrees fairly weil with the curve obtained {rom Falkner-Skan
u{d.})
e = 0.95 (Figure 3).

soiutions when &i is defined by the condition
This F{ K ) relation also agrees closely with ex;erimemal turbulent data.
No physical explanation of the suitability of thié F( & ) relation has been
found as yet.

The maximum method of defining ﬁinot only leads to a simple
F{k ) relation, but also greatly helps in obtaining the mixing rate correla«
tion, k, from experimental studies, such as the Schubauer ellipse experi«
ment. The reason this method of defining 5i assists in reducing experi-
- mental data is because it is possible to calculate‘the extent of the viscous
layer using well-defined experircental integral guantities €Hi and éi*);
instead of a velocity ratio, thereby determining the mass flux in the
vigcous region at given streamwise station without large experimental
uncertainty. Inasmuch as k is determined from experiment by finding

differences in mass flux between adjacent flow stations, small errors in
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determining the area under a velocity profile curve can eé.sily make it
impossible to determine mixing rates. {See Skeich A.)

The other two correlation relations necessary to complete the
formulation of the Crocco-Lees method can be obtained by using the
Stewartson transformation [Eq. Qai)] to eliminate compressibility effects
and then examining known incompressible solutions. From Eqs. (21} and

{22), it follows that

Am/dx = (a P /a.p,) (df/d¥F ) . (30)

For incompressible flow,
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“'i = i - * °
my P B (ﬁi &i ) {31}

In order to obtain the functional form of the correlation relations,

similarity solutions,such as those obtained by Falkner-Skan” , have been
. v ,

ermployed. For such soluiions, u, ~ §" and

& Cp, L

. - .* = o ry 32
8- 5 { Pe Big ) {32)

i

where C is a function of the shape of the velocity profile, i.e., C= C(AK ).

It is shown in Reference 1 that

__/_ dm_ e
£ =Fg T8 =

and o {33)

_ ! dm_ ¢
AR TF =

A similar treatment can be given for the skin {riciion correlation.

In Reference 1, it is shown that

DL L) DKL)
¢, = 2o ana o, = £ (34)

i
where D{ £ ) is a function of the shape of the velocity profile.

In previous studies using the Crocco-Lees method, the C{ L ) and
D{ £ ) relations that have been used were those abﬁaiﬁed from the Falkner=-
Skan solutions. However, by investigating other theoretical and experi-
mental resulis for attached boundary layers, it is found that although the
Falkner-Skan mlatim:x for C; appears general (Figure 4), the relation for
i is not universal. In fact, the Falkner-Skan values differ qualitatively

as well ag guantitatively {rom the other boundary layer results (Figure 5).



Roughly speaking, C{& ) for the Falkner-Skan solutions is essentially
congtant {rom separation to the Blasius {low condition, while the other

theoretical solutions' % 3244 25 5

d the experimental Schubauer ellipse
@amaé show a trend in which ©{ £ ) drops sharply going {rom the Blasius
condition to separation.

The reasgon that the C{ £ ) correlation for the Falkner-Skan
solutions is qualitatively different from the other boundary layer solutions
may be seen by expressing the definition of k so that the formal difference

between Falkner-Skan flows and the other flows ig brought out, From

Eqs. (8), (11), (20), aand (21), we obtain

4 = /Aec/; -1 /q/f’,#/a/a‘e df_%ff) . 5)

’

For a general separating flow,

wai/d Fy=>o0

@duiﬁ/d}-') < 0 ' (36)

(/aF)(5#/8) 2 0 .

For a Falkner~Skan similarity solution, {(d/d¥) (&»*/&.}E 0. Therefore,
for FalknereSkan flows, the last (erm is zero, and the remaining two
terms are of opposite sign. By nwmerically evaluating E{i for the Falknezw
Skan case, it is found that the first termn, which is positive, is the larger.
It is therefore seen that the term: that is missing in the Falkner-Skan case
tends, in the general case, to reduce the value of ‘i’{i 25 separation is

approached. This iendency is enhanced by the fact that as separation is
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approé,ched, the ratio, {&i - éi*)/(éi) , is about 0. 4. In Figure 6, the
variation of 5;‘*/ 5, with distance is shown for the Schubauer ellipse
velocity distribution (Figure 7). The term (d/d¥ )(6;“/69 is essentially
zero neay the Blasius flat plate condition, but becomes appreciable near
separation. It is thus clear why the C{ £ ) correlations for Falkner-Skan
and other boundary layer flows are similar near the Blasius condition and
are different near separation. This difference is abssocia,%:@d with the
physical fact that Falkner-Skan flows are similar flows which do not have
“"histories' and do not reflect the essential change in shape of the velocity
profile prior to separation, while the velocity profiles of the other boundary
layer flows change in the sireamwise direction.

As discussed previously, the definition of the length, 8; , should
not affect physical quantities,k guch as separation pressures, interaction
distances, etc. However, the corrvelation functionsg F{ AL ), C{ /C‘), and
D{ K ) are strongly dependent on the method of defining ﬁi; This dependence
is geen in Figure 3, where for laminar flows it is found that the F{ K }
curves differ appreciably depending, for example, on the value chosen for
the u{&i)/ue ratio. The same sort of sensitivity is found in the C{ £ ) and
e ) curvesl’ 1‘9. It should be emphasized that since the method of
defining 8, is artificial, no physical significance can be associated with
the fact that different methods of defining §; lead to different numerical
values of F{(K ), C{ K ), and D{ K ) for the same velocity profile. It is
therefore clear that the choice of the method of defining 8, is tantamount
to choousing 2 method of bookkeeping. However, if can be expected that

phygical siatements such as ''the mixing rates beiween separation and
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shock impingement increase to high valuesg', will be reflected nwnerically
for any definition of 51. These considerations of the artificiality of §; and
the non-uniqueness of the T{ £ ), C{ K}, and I} /(.} relations make it
clear that what is to be sought is a seli-consistent roethod of bookkeeping
in which the behavior of flows which are of the same general type can be
understood and interpreted within the Crocco-Lees framework, s0 as to
allow reliable and relatively simple flow calculations and analyses to be

periormed,



Il. ¥Fi..0OW PROBLEM UPSTREAM OF SEPAFATION

The problem of two-dimensional laminar supersonic flow upstream:
of separation can be approached in several different ways. In 1949, éi..%sw
treated the problem of shock wave-laminar boundary layer interaction
using a wodified von Karman- Pohlhausen method. Cheng and Bw,grzg,
Cheng and Ghangm, and Gadd and Halderzz have made similar calculations
ueing the Crocco-Llees method, with correlation functions derived from
the Falkner-Skan sinilar golutions. As mentioned previously, these
studies showed qualitative agreement with experiment, but the quaniitative
agreement was generally poor.
in the present study, the problem of two=dimensional laminar
gupergonic flows upstream of separation has been treated by two methods.
J“z«‘“"if st, the Cohen-Reshotko metﬁm‘i’ié was modified to introduce interaction
- between the external and viscous flows by equating the “external flow'"
direction with the gradient of the displacemént thickness. (See Appenﬁix
€.} Second, the problem: has been studied using the Crocco-Lees method
with correlation functions obtained by the maximusn principle, and a new
C{x ) relation based on boundary layers that have "histories'.
In order to determine the sensitivity of the theoretical results to
the C{ K ) relation, calculations were performed for a separating flow at
‘a free stream Mach number of 2.0 and 2 separation Reynolds number of
2.87=m 1635 using several C{ £ ) relations, corresponding to the curves
gshown in Figure 5. The F{ £ } relation used in the calculations was the

one obtained by the maximum principle, and the D{ K } relation used was

that obtained by assuming that I{ £ ) decreases linearly from the Blasius
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value at £ = 0.693 to zero at A = 0.630, the Howarth value of £ at

separation. Thus,

- 21 - K
FK) = B
' {37)
DlK) = Z2.2{ K~ .630)
If the variable, 0{ £}, is defined as
Fle) = il (38)

c{i- ) CL LK)

the Crocco=lees equations, when linearized with regard to Mach number,

i.e., M= Mm +& and £ <<M_, become (See Appendixz B.):
(dK/ag) = =L (?-— 5:]

{d€/d%) = - H [%—E]
where

T = (m//t 2) = m/ . isa kind of local Reynolds number
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In calculating a separating {low prabierxi, the free stream Mach
aumber, M,;g , is given and the qua.mii:iea‘.‘fu, N, P, and  are {first plotied
as a function of £ . A value of § is chosen at the separation point,
which is equivalent to selecting the value of the separation Reynolds
number. Then trial values of & at separation are chas&#, and the eguae
tions are nwmerically integrated in the upstream direction. The correct
eigenvalue for € at separation is obtained when the integrated quantities
approach the weak hypersonic interaction limif;w’ 20, 21, 28. The results
are then transformed back into the physical plane using the continuity
equation and performing a single quadrature. (See Appendix B.)

The pressure distributions obtained by four such integrations are
shown in Figure 8§ along with 2 calculation of the same case using the
Conen-Reshotko method. The paim at which the pressure staris to rise
is roughly independent of the C{ K ) relation. It is found that the larger
the value of C{ £ ) near separation is, the larger are the values of the
separation pressure rise and the separation pressure gradient. “Als&) shown
in Figure 8 is the slope of the experimental pressure distribution near
separation (See Figure 9.) at the same free stream Mach anumber and
mughiy the same separation Reynolds number. By comparing the experis
menial and theoretical separation pressure gradienis one sees that even for
Case DI, the theoretical S@@f&ﬁi.@ﬂ pressure gradient is too great. In grder
to obtain & theoretical lower limit for the separation presgsure gradient, a
calculation was performed in which C{A ) was assumed to be zero
throughout the range of integration (Case F). Although this assumption
is in error near the Blasius condition, it is seen o give & separation

pressure gradieni that is in good agresment with the experimental value.
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This resuli suggests that C{ £ ) is essentially zero for some, as yet
undetermined, range of £. The reason that only the experimental
separation pressure gradient and not the pressure distribution is compared
with caleulations is seen in Figure 9 where experimental results obtained
by Chapman, Kuehn, and L&rsan? are compared with those of Hakkinen,
Greber, Trilling, and ﬁ%arbanelﬁ at the same {ree stream Eﬁaeh number
and approximately the same Reynolds number. The experimental pressure
distributions bave similar shapes, with the major difference being a

shift of the distributions in the sireamwise direction. The reason the
distributions are shified is quite clearly the uncertainly in cieterfnining

the seyax'aﬁién point. In the experiments of Chapman, Xuehn, and Larson,
the separation point was determined by an eil film: technigue, while in

the experiments of Hakkinen, et al, the separation point was cbtained

from Stanton tube measurements. It is not clear which, if either, of these
methods reliably determines the separation point, especially since the
interaction distance in which the separation pressure risé takes place in
many of the experiments is only a small fraction of an inch. These
experimental difficulties have prevented the use of experimentally-
determined parameters thai depend directly on the determination of the
separation point for comparison with the results of theoretical calculations.
in Figuré 8, for example, the experimental separation pressure, as
measured by the two methods, indicates only that sepératiom pressures
calculated using a Falkner~Skan C( £ ) correlation are too high, but doss
not distinguish among the other C{ £ } relations.

Also, the uncertainty in locating the separation point prevents



k1Y)

the dotermination of the range of £ neawr separation for which C{ 4 ) can
be set equal to zero. For this reagon, an approximate C{ K ) ¢urve has
been selected for the presgent caleculations., The €{ £ )} relation that has
heen chosen is one that decreases linearly from the Blagius value of

p

C{k }at K= 0.693 io zero at the sepavation value of £, whichis

K= 0,630, i.e.,
ClLE) = 36,2 (K ~.630) . (40

Calculations of the pressure distributions up to separation for two
different cases of shock wave~laminar boundary layer interaction have
been carvied out using this linear C{ K ) relation, and the results are
shown in Figures 10 and 11, It is seen that the agreement between theory
and experiment is quite good for the case shown in Figure 10, while it is
}.‘@58 satisfactory for the case shown in Figure 1l. The scatier of the ex=
perimental data in the latter case is appreciable, and it is not certain
whether the disagreement between theory and experiment is significant,
Based on these calculations, it is felt that although the linear C( K}
relation is not au optimurn, it is capable of predicting pressure digtvi-
butions for a separating flow with an accuracy that is consistent with the
present status of experimental data.

A re-examination of the Crocco-Lees theory up to separation hasg
revealed that the major reason for the previous disagreement between
theory and experiment for two-dimensional laminar supersonic separating

20wl
1,20-22 is that the flow is characterized by low values of C{ £ } near

flows
separation, and not by the Falkner-Skan values. The determination of an
approximate C{ £ ) relation which seems to be consgistent with low speed
and supersonic data completes, albeit roughly, the solution of the problem

up to the separation poiat.
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Iv. FLOW PROBLEM BEYOND SEPARATION

IV.1l. Physical Discussion

The problem of separated and reattaching flows must be treated
in a manner that is different from the way in which the problem up to
&eg#aration was studied, since no detailed theoretical studies of separated
and reattackﬁng flows exist. In order to focus on the main aspects of the
problem, consider the case of the steady two-dimensional interaction
between an incident oblique shock wave and the laminar boundary layer
ou a flat plate {Figure 1}. In a fictitious inviscid fluid, the static
pressure on the plate surface remains constant up to the point of shock
impingement, rises suddenly at this point to the level predicted by the
Rankine-Hugonioct shock relations, and remains constant thereafter., But
in a real fluid, a portion of the overall pressure rise is communicated
upstream through the boundary layer. Unless the shock wave is rather
weak, the laminar boundary hyer separaies from the surface upstream
of shock impingement. The static pressure distribution has the familiar
d@ublywinﬂected shape, with the region of pressure rise extending over a
distance equivalent toc hundreds of boundary layer thicknesses.

In the following paragraphs, it will be shown that in the region
between separation and shock impingement the main physical process is
the rmomentum enrichment of the viscous region through mass entrain-
ment from the external inviscid flow. Thus the flow is '"prepared’ for
the additional pressure rise during reattachment. The reattachment
process itself will be shown to be an essentially isentropic, inviscid

recom:pression in which mass entrainment is not lmportant. This
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general picture of the flow beyond separation is consistent with experi-
mental observations and well-established physical concepts.
In the present discussion of the flow beyond separation, a key

~ concept is Chapman's idea?" 9

of the "dividing {or zero} streamline' ¥,
which may be briefly expressed as follows: for steady flow, the fluid
particle which is adjacent to the wall at separation must be adjacent to
the wall at reattachment. Thus the flow is divided intp two zones -~ the
first being a by-pass {low which includes all the fluid upstream of
separation, and the second being a circulating region of {low that always
consists of the sé,m@ fluid particles, if diffusion is neglected (Figure 1}.

In order to see how the dividing streamline idea contributed to

the present understanding of flow beyond separation, it is necessary to

- -~ p = constant j
u
[e'al

/
/
/
/
/

SKETCH B

* This concept was also discovered independently for_turbulent
separated and reattaching flows by Korst, Page, and Childs,
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SKETCH C

discuss briefly a special separated and reattaching {low that was investi-
gated theoretically and experimentally by Chapman and his co-workers.

3
In a theoretical stuﬁy“g

, Chapman examined the mixing region that is
formed when a uniform stream passes beyond a semi-infinite rearward=
facing ctep. (See Sketch B on page 32.) This flow configuration is of
course similar to that of a éamliel jet streaming into a stagnant mass

of gas. Chapman calculated the velocity profile of the mixing, or (ransi-
tion, region for the case of constant pressure and uniform flow at the end
of the step, i.e., 6% = §%% = 0, using the ordinary boundary layer
equations with the usual no=-slip boundary condition replaced by the con=
dition that the velocity be zero at y = - w. Chapman's resgult is a
gimilarity solution in which the velocity along the dividing streamline
changes impulsively from the initial uniform velocity to a value which

is 0.587 of the initial uniform velocity, and remaing at this value
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thereaiter.

In the experimental study of reatiaching flows by Chapman, Kuehn
and Lars@ﬁ?, a flow configuration was devised which approximated the
boundary conditions of Chapman's theoretical study, so thal a separated
flow with a knowa velocity profile was generated. The geometry of {he
roodel, shown in Sketch C on page 33, insured an essentially zero thick-
ness boundary laver (6% = §%% = 0) at the beginning of the separated zone
and a constant pressure mixing region up to the beginning of reattachment,
which is indicated by the appearance of compression waves. The semie
infinite aspect of the theoretical model was approximated roughly by a
steep slope on the maodel face just downstream of separation. The
separated flow thue generated was then allowed to reattach on a {lat
wall, and it was found that the observed pressure rise during reatiach-
ment cemasp&%mded to izentropic deceleration to rest of the fluid along
the dividing streamline. These experimsnts therefore indicate that
reattachment is an isentropic process in which viscous effects do not
geem to be important. This conclusion is further substantiated by the
fact that the reattachment pressure rise was observed to be independent
of Reynolds number. Thus, it is seen that the most imporiant phenomena
in the reattachment process are the deceleration of the flow and the
canﬁra@sﬁén of the viscous repion, and not mizing -~ a fact which will be
important in later discussions.

For a general separating {low, the velocity proiile at separation
is of course far fvom uniform, but the dividing strearmline concept is
otill valid. The conclusion that mixing is not important during veattach-

ment should also apply for more general reatiaching {lows. These con=
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ditions, and the experimental observation that beyond separation the
static pressure rises monotonically, determine to a large extent the
major physical phenomens that must occur in general separated and
reattaching flows. Consider the fluid particle just above the dividing
sireamline at the geparation point (Figure 1). This fluid particle in
general has a negligible velocity, so that its stagnation pressure is
essentially equal to the static separation pressure. According to the
dividing streamline idea, this f{luid particle has to reattach at a higher
staguation pressure. In order for this reatmc%&n&m to w:cui, ‘work
: must be done on this fluid element, and it is clear that this work is
done by the external flow through viscous momenturmn transfer. In
other words, the external flow does work on the fluid along the dividing
streamline, and thereby loses momentum. This loss of momentun of
the external flow is reflvecmd as mixing, or mass entrainment. From
the reattachment experiments of Chapman, Kuehn, and Larson, it is
‘clear that this viscous momenturn transfer mué?; oecur prior to the
beginning of reattachmenﬁ, and therefore must take place in the region
-beiween separation and the beginning of reattachment.

This physical picture is further substantiated by the experiments
of Hakkinea et alg , where it is found that the reattachment pressure rise
i&cxe&s@e with the distance between separation and shock impingement

| {Figure 12). Since viscous momentum transport is envisioned as the
essential physical mechanism in this region, it is clear that the longer
the region, the higher the stagnation pressure of the fluid element
adjoining the dividing streamline, and therefore the higher the reattach-

ment pregsure rise necessary to stagnate the fluid below the dividing
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streamline.

From the above discussion, it is clear that the flow region
before reattachment begins is & zone in which mixing is the dgminam
physical phenomenon. Chapman, in his similarity solution, finds that
the viscous mixing zone grows roughly three times as fast as an
equivalent Blasius flow, indicating Iﬁigh mixing rates basedona § which
includes the external and inducted flows. Since Chapman's solution
assumes that the velocity is always positive, the velocity profiles do
not contain the reverse flow regions which are known to exist for
separated and reattaching flows. Therefore, no accurate guantitative
conclusions can be drawn from Chapman's profiles. However, the
_qualitative conclusion that the mixing rates beyond separation are high
will be seen to be consistent with the ideas and methods of the present
study.

In Chapman's idealized aése, the reattachment pressure rise for
lamninar flow is independent of eynolds number because the flow velocity
of the dividing streamline is always 0. 587 of the {ree stream velocity.
The length scale of the reaitachment process must also be independent
of Reynolds nuwnber since the process of reatiachment is seen to be
esgentially inviscid. However, we shall show by a simplified analysis
that for general separated flows the length scale for the reattachinent
process must depend on Heynolds number through 5‘33. OUm the other
hand, certain important features of the flow upstream of the beginning of
reattachment are virtually independent of Reynolds number and of the
'agency causing separation.

The physical picture that has been developed for separated and
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reattaching {lows may therefore be summarized as follows: after
separation, the flow is essentially divided into two parts by the dividing
streamline -« one part includes all the fluid upstream of separation and
the other part is a steady circulating flow in which the fluid elements
continuously undergo a cycling action. The fluid along the dividing
streamline is accelerated by viscous momentwn transfer in the region
between separation and the beginning of reattachmsent, and is thereby
“prepared” for the forthcoming r‘eattachment pressure rise in which
fluid along the dividing streamline is isentropically stagnated. This
physical picture is quantitatively translated into Crocco~Lees language

in the next gection.

IV. 2. Crocco-Lees Method

In re-examining the formulation of the Crocco-Lees method
beyond separation, it became clear that in order to determine the
correlation relations quantitatively, experimental results must be used,
since no satisfactory theoretical data are available. The case of shock
wave-laminar boundary layer interaction has 58@11 selected as a repre«?
gentative example of separating and reattaching flows, since it embodies
many of the general characteristics which are observed in other separated
flows (Figure 1 ). The experiment selected to provide the necessary
detailed data was performed at a free stream Mach number of 2.45 and
at a free stream Reynolds number per inch of 6 x Iaé'iﬁ’igure 13)?.

This particular experiment was chosen because of the small scatter of
the data, and because the Heynolds number was the lowest available

from experimentis of shock wave-laminar boundary layer interaction,
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so that the flow is most apt to be laminar throughout the whole interaction
region.

The physical parameters of shock wave-laminar boundary layer
interaction may be readily determined f{rom: the limiting inviscid case,
i.e,, Re . The parameters are clearly the {ree stream conditions,
the shock impingement point, and the incident shock strength {or overall
pregsure ratio). The principal features of shock wave~laminar boundary
layer interaction are as follows (Figure 1): (1) the pressure rise up to
separation; {(2) the pressure rise up to the plateaun; (3) the pressure
rise during reattachment; and {4) the length scales of the varicus regions.
The present task is to relate the correlation functions, F{ K ) and C{ K ),
in the regions downstrearn of separation to these main {eatures of the
flow, in the hope that the "universal' behavior of the funciions can be
determined. ¥

Since the flow configuration that is produced in the case of shock
wave-laminar boundary layer interaction is so complex, it is instructive
to discuss gualitatively what determines the vafiéus pressure riges and
length scales. According to the previous physical discussion, the
separation point must move upsiream as the overall pressure ratio is
increased. This response iz due to two factors -- (1) the separation
pressure rige increases as the separation Reynclds number decre&s@sj
and (2) as the distance between separation and shock impingement is

increased, the energy of fluid particles along the dividing streamline

# The gkin friction is small in this reglon, and D{ £ ) is taken
to be zero between separation and reatitachment in a first approximation.



is generally increased, thus making it possible to support a larger
reattachment pressure rise. Therefore the location of the separation
point ie intimately connected with the various pressure rises, and the
flow responds chiefly to an overall pressure ratio by properly adjusting

the position of the separation poiat.

IV. 2. 1. _Simplified Analysis

»

It was shown in the previous discussion that the various regions
of shock wave-laminar boundary layer interaction are connected and that
the problem must be treated as a whole. By making several simplifications,
it is possible to treat the whole shock wave-laminar boundary layer intere
action problem analytically, and thereby obtain explicitly the effects of
Mach and Reynolds numbers on the main features of the flow, In this
section, such a simplified treatment will be given and in subsequent
paragraphs the method will be refined to enable more accurate deter-
mination of the details of the flow.

It is clear from the physical discussion given in Section IV. 1.
that the pressure rise during reattachment is determined largely by the
morcentum of the viscous layer at shock impingerient, i.e., largely by
K sn flthough the mixing rate, or C{ ), is expected to rise contine
uously {rom zerc near separation {Section IIL ) to & high value upstream
of shock impingement, suppose one takes C{K } = T = constant for this
region., In this same spirit, at {first we ignore the pressure rise between
gseparation and shock impingement. The momentum equation, Eq. (15),

bacornes

(@ £ /dx) = {1« K)(1/m)dm/dx) . (41)



Therefore,
{1 « K} = constant = (I - Kﬁ)ms s {42)
and to this approximadtion,
Ksh = 1 =(l- KB) (mﬁ/mﬁh) . {43}

It is seen from this expression for ksh that when moy > > m,

K

external flow mixes with the relatively low energy viscous flow, the

an > 1. Eq. (43) thus clearly shows that when the high energy
average enérgy and momentum levels of the viscous region are raised.
This same bebavior is present in constant pressure wake flows, where
the low stagnation pressures of the wake region are increased at the
expense of the external flow.

From Eqs. (16), {20), and {33), we have

Pe YeMe

(dm/dx) = S 2’ ctey . (44)

and by integrating this equation from: separation to shock impingement

under the assumptions of constant C{ £ ) and uniform external flow, we

chiain
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It is shown in Appendix B that

; Re)ls A

wel g2y PRegs A | )
rs(l+ 2 Me) - (‘/._,(:) : (46)

where A = 0.44. From Egs. {43), (45), and (46}, it follows that

__(1-ks) ,
[+ 2LCEFE 2 ° e
A Xs

/(slp: /

Therefore, Eq. (47) shows that K sh depends mainly on the product

€ (ax/x ) and only very weakly on Mach and Reynolds number. If an
explicit relation between reaitachment pressure rige and £ sh cén now be
developed, then by selecting a single experimental case of shock wave«
lasminar boundary layer interaction, and measuring the reattachment
pressure rise and the length ratio, (A x/x_), the value of T is obtained.
This value of T is then regarded as "universal’, and is employed in the
analysis of all other separating flows.

So far the F{ kL ) relation has not entered the discussion. However,
the pressure rise during reattachrent and the length of the reattachment
zone depend to some extent on the F{ & ) relation. (See Section IV. 2.3.)
Since there are five original dependent variables {(F, K , Wo s T, and §)
aud five eguations [E’qs. {9) io (1%)] , the first rough approximation,
i.e., Clk)=T, w, = Consiant, between separation and shock impinéem
ment specifies a unigue mlaéian between F a.nci K in this region. By
elizninating 8§ and m from Eqgs. (16), (18}, (20), {33}, a‘nd {42}, the

following differential equation for F( £ ) results:

JdE L L 85 (1K) ! )
dE KK T c K(1-K)* : (48)




This equation can be readily integrated to give

| - )-K\V\K L BFs / /-K.y /—/<
FK) = £ (i) e+ a2 % el - )
If we define a parameter, % . B8
Xz of /2T . | (50)

then the F{ K )} relation given by Eq. (49) can be exhibited for a range of
values of 'X— . By using the Pran&tl-Meyer relation and the separation
pressure correlation of Chapman, Kuehn, and Lar san7, it can be shown
.that

(e (12-1)]
X~ (+ ”’/‘;e) . (51)

It is found that the values of 7‘ for the cages studied in the present
investigation are of the ovrder of unity. Eq. {51) shows that X is rather
insensitive to Mach and Reynolds number for the Mach number range
below five, so that a range of X from 0.1 to 10 may be expected to cover
a fairly wide experimental range. The F{ £ ) curves for this range of Y
are given in Figure 14, and show that F{ £ ) ie approximaiely constant
bfgx’ values of ¥ on the order of unity. This analysis, while admittedly
crude, suggestsa thm; F{/C ) may be approximately constant in the region
between separation and shock impingement, 8 result which is opposite
to the one previously assumed by Crocco and Leesl.. This question will
be discussed again in Section IV. 2. 2.

If it is assumed that F{ £ ) remains constant in the region between

separation and shock impingement, then Fsh = ¥ s ° The determination of



Fen and thfixes the starting point in thfa F- £ plane from which
reattachment starts. Since the terminai point, the Blasius flow cone
dition, is alm& known, the trajectory of the reatiachinent process is
largely determined. It has becn assumed that the reattachment trajectory

is a straight line in the F- £ plane of the form:
Feak+p . | | {52)

where o and  are constanis depending on the values of ¥ ah @nd K ah’

It can be readily shown that

@ =g - N/ (53)

B = FlU-D/(0-1) (54)
where

2z (F/h) T 2.50

7= {F/FL) = 179, since F = F

RV N

In the present simplified analyeis, we shall tentatively assume that the
mixing term in the momentum equation, Eq. (15), is negligible so that
the raomentum equation for reattaching flow is

d £ = KF(dM /M) . (55)

- Bince F=a K + B, Eq. {55) can be integrated to give the result

£ +
fe=Moel i (25 %)] ’ e

where M@:}f = given {inal {low Mach number far dowastrear of the initeraction

and A = Blasius value of £ = 0.693.
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Evaluating this expression for Me at the shock impingement point gives

% |
- Ksh || Kb + 'BAC)]
Mes/: - Moo,c [KA)/K;/, +BAk ) (5?)

Substituting Eqs. {53) and {54} into Eq. (57), we obtain
' _fw-1)

o f3(7-<) |
/%J'/) —Mﬂo,p/fz'-_')' ’ {538)

‘where

w = Ksh ..___/_[ (- Ks) ] ’ (59)

K, ~ K /- 2(/-K)2C ax
: [/ # 2L 4

and ;z : A, K e ). 4 b Fb ‘ FS ., and Mmf are known constants. From

iseniropic flow relations, we have

¥
7/%! :[/ ; %'-’M:]”’ . (60)

80 that :
2 /) ‘}'5?:1:13)) ¥
. <L B ¥-/
Posf — /+%—'M~r(»z)
= — . (61)
P [+ 3 Mog

Eq. (61) shows that pwf/ Py, is only a function of & which, in turn, is
only a function of the product Clax/x ) [ﬁ:q. (59)J . Thus by measuring
the reattachment pressure ratio, pmf/ Pgy » and the lengths Ax and x_
for a single experiment of shock wave-laminar boundary layer interaction
{Figure 13), the value of C is determined.

This simplified analysis can also be employed to obtain approxi-
mate expressions for the Mach and Reynolds number dependences of the

important features of shock wave<laminar boundary layer interaction,
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It has been found experimentally by Chapiman, Kuehn, and Larson that
& 4

l2am 2
(43 ¢ ey

E}&h/PQ 14 [ : ’]‘1/@ 2 %6‘5‘@

“
(M, "-1) Raxﬂ

where the subscript o denotes conditions at the point where the pressure
first starts to rise. This functional relation has also been obtained by

7,86,10,31

rough theoretical considerations . Since the paramef:er'

me/po = (me/psh)wsh/Pa) is a constant that is determined by the
incident shock strength for a given interaction problem, the following
_2W-) —”:/
AN S

PDoof — / *# ‘%_—/Mm:/%) 4 /..24/%’0:Z 6
’/09 — ] # 3:2_-/_ Mca; . / [(Mooa'/)ﬁfxo]/" . {63)

relation results:

From Egs. (59) and (62}, it is seen that the only unknowns in Eq. (63)
are x and xg since € is now assumed to be known. Another independent

relation betweean x ° and g has been found az;perimentally? and can be
7,10

Justified by rough theoretical arguments « This expression is
X £ L
- e
XS o ] ~ E Xo . %64)
A“a /700 "'/ ]
If we define ‘
/E’U - . Joao anS/) )
e"ft‘/y - Moo s {65)

then by using the experimental data of Chapmnan, Kuehn, and Lar san?

and Eg. (C-8), it can be shown that
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0.93 (1. 73 + 2. .ﬁ%ﬁi-w %

~ i/4
x/x = 14 \ B x.. /%) . {66)
s "o {Mﬁ & 1) Reﬁ, i/4 sh/ o ;
@ “sh ‘
¥ we define
0.93 (173 + 2.39 9%3- M %)
v o= rA 7% = ’ {(67)
[gmw - 1) Re,, ]
88
then ,
~ 1/4
x/x, T 14 ' (= 0/ %) / . | (68)

Solving for x, and substituting the result into Eq. (59), we obtain the

X
o = A
Doop - | / # Xl /%)) J.24Ma
P:f /f%-’/v/t: [+ /42-/)? J/(X ) - 169)

condition that

where

K5 / V/ - .7.(/ Ks)*c /’:’;”ﬁ:/x, IT

Thus Z{;q. {69) determines the value of the quantity x@/x b and since

L =

Xoh is a given parameter, the value of x > ° After % is determined, the
value of P@gf’ipsh s Pgp/P, » and x_ can be readily computed from Eqgs.
{61}, (62}, and (66).

The remaining major property to be determined is the reattach=
ment length scale, A %p. The order of magnitude of A x. can be

N £

estimated by
~ qﬁsh/xah)

Ax. /x
XP\& s sh

2 {71)
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where Qsh is obiained by the Prandil-Meyer relation and is a function

only of M, [See Eq. (5?).} , and § sh is found from Eg. {B-13) to be
sh ‘

- b K sh Fs * tah:l ;
é 1, - * - L . {72)
si ¥ Py W

This equation can be pul in the more explicit form

/
R Y R e

R xs/xsh ,’w , and {1 « 58*/65} can be obtained

where msh/ms . M,
sh
from Eqs. (45), {58), (68), (70), and {&-26). Using Eq. {C-8), it can be

shown that

S E): - 0~V ot

(-1) Moo Br-) Mo ¥-1 g2 -
”[H;-'M.o i (/14',,?‘1/‘4‘:)((’*7 O QJ

(74)

where
) p v
Re = 2 K 5
s
M
‘Al
M T $(M. +M )

e €.h P
This simplified analysis shows that parameters upstream of
shock immpingement, as well as the reattachment pressure rise, aré‘
rather insensitive to Reynolds number, However, it is seen from Eqé.
{71}, {73), and (74) that the Reynolds number variation of A x5 is roughly

E ]

i
Re ©. This variation is obtained by noting that the quantities mah/ms

w , and xa/sz gh bave small Reynolds number variation, and tend to
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oppose each other. Thus the term, § fﬁ/ Ry » which ia proportional m
E;‘i@':‘% is expecied to account for most of the Reynolds number variation
of A Ha o

The simplified analysis shows explicitly, although approximately,
how the various pressure rises and length scales arc related when the
viscous region is subjected to a given overall pressure rise. This
discugsion is not only useful in showing the unity of the whole interaction
and in bringing out the Mach and Reynolds number dependences of the
various features of the flow, but also aids in an understanding of the

more refined analysis that is given in the next subsection.

IV. 2. 2. Refined Analysis

In the simplified analysis, attention is concenirated on the pressure
rise during reattachment, and the pressure rise between separation and
‘shock impingement is neglected. By employing the approximations that
Ck)=TandF(K)=F,, cne can now go back and calculate the pressure
rvise from separation up to the plateau (Figure 1). However, if a single
value of C{ K ) = € is employed in the region between separation and
shock impingement, oné¢ finds that the calculated pressure rise betwsen
separation and the plateau is too large when compared with the selected
shock wave-laminar boundary layer interaction exgmrimeat. Thus, in
‘order to obiain the proper pressure rige in the region between separation
ang the plateaun, we introcduce the additional refinement of a two-step

C{ K ) cuzve, i. é,,
(.Ii/C)r-'zczl fprzg$éxsxr

ClK)=C, for xpS x Sx,
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where xp ig the distance {rom the leading edge at which the calculated
pressure gradient is negligibly small, and is therefore the beginning of
the platean region (Figure 1}.

Using a twoe-gtep Of{ K ) relation fnr the region between geparation
and shock impingement, an attempt has been made to determine the
validity of the assumptionthat F{K )= F 6 which was employed in ‘s;he‘
simplified analysis given in Section IV. 2. 1. Two linear F{ K ) relations
pessing through the point {¥ . K 3 } have been assumed, one with a
positive slope and the other with a negative slope. For each F{ K )
relation, a given value of ¢y vields a unique pressure rise from
separvation to the plateau if the conditione at the separation point are
specified. (See Appendix B.) By comparing the calculated pressure
rise with the pressure rise observed in the selected shock wave~laminar
boundary layer interaction experiment, the value of Gl corresponding
to each assumed F({ K ) relation is determined. The proper F{K }
relation and Cl value can then be found by nmtéhing the length scales
of the computed and experimental pressure distributions.

The F{ K ) relations used in these exploratory calculations were

{a) FIK) = 3.851 K + 0,424

(B ¥ K) = F, = 2. 85

(C) F{K) = « 1.926 K +4.063
and éhe corresponding values of C}, which appreximately yielded the

experimental pressure rise were

(4) €, = 7.94
(B) €, = 11.0
(€) €, = 13.7 .
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The results of the caleculations are given in Figure 15, It might appear
that Case A gives better agreement with experiment, but if a more
accuraie C{K ) relation bad been used, the curves in Figure 15 would be
displaced to the right as shown in Sketch D. Thus, the results of this
explovatory éaléalaaion do not select the proper F{ k£ ) relation for the
region beyond separation since the lengih scale is not very sensgitive to
the choice of F'{ £ ) within the limits defined by the three cases A, B,
and G,

The insensitivity of the presgsure digtribution to the F{ L )
relation requires a more precise analysis. If the separation point

could be uneguivocally determined in an experimental case, and the
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pressure distribution accurately measured, the F{ ) and C{ K ) curves
for the reglon between separvation and the plateau could be determined by
agsuming linear F{( K } and C{ K ) relations, with the slopes of the curves
as parameters, and finding the best combination of slopes to match the
obgerved pressure distribution. Because of the present experimental
uncertainties associated with the location of the separation point, such
optimnizing calculations are probably premature. In the present gtudy,
the simplest assumption has been made, namely that F{K ) = g in this
region. The assumption that ¥ ah = F,is found to give good agreement
between theory and experiment in the reaitaching zone, and may be some
Justification for assuming that F{K )= F g in the whole region between
.separation and shock impingement.

In the plateau region, the constant pressure results given in the
simplified analysis (Section IV. 2. 1.) can be used to calculate £ sh * with
the separation quantities designated by the subscript & replaced by the
guantities at the beginning of the plateau region, designated by the

subscript [T Thus

K

sh zim,A Xp .CZ '/z {(73)
1l <
Z: 2 1 + wl M E)Z
F
where
R@ _ ertﬁ@r—v(x P }ir)
Ax - '
r Mer

§

m 8
v - e
- M

3 - L
value of C{ K} f@r :a.ré S
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The value of C, is determined {rom the reatiachment pressure rise in
the selected case of shock wave~laminar boundary layer interaction just

as C was determined in the simplified analysis (Section IV. 2.1.).

Iv. 3.‘ 3. Reattachment

As has been mentioned several times in the previous discussions,
it is believed that during reattachment viscous effects are not important.
The main justification for this belief is found in the reattachment
experiments of Chapman, Kuehn, andALarsan. However, other con-
siderations also suggest, but do not 9rové, that viscous momentum
transfer rmay not be important during reattachment. When skin friction

is negligible, the momentum equation can be written as
dK = {1l - K){dm/m) + KF {dMe/Me) , {76)

where the first term on the right hand side gives the increase in K
caused by mixing and the second terim represents the decrease in K
associated with a positive pressure graéient. The mixing term shows
that for a given change in mass flux, the effect on K is directly
proportional to {1 - £ ), which essentially measures the relative
fractional improvement obiained per unit of high energy mass, and is
inversely proportional to m, whicix measures the "inertia" of the layer.
The ratio of the mixing term to the pressure gradient {erm can be |
evaluated for a specific cage if the value of C{ K ) is @ewn. It is
found for the three shock wave~laminar boundary layer interaction
cases calculated in this study that the ratio of the mixing term to the
pressure gradient tevm is about 0.1 C{ K ). Therefore, if C{ K ) is of

the order of unity, the effect of mixing ig small,



In the present analyeis it is assumed, oun the basis of the above
discusgions, that mixing is negligible during reattachment and that Dgs.
(55) through (57) are valid, Therefore, by measuring the reatiachment
pressure rise in the selected gshock wave-laminar boundary layer inter-

C.'z /PeAXI-.
5‘P:)' (/ ,«.b;_—lMe[f)

[:See Egs. {61} and (75).:] Since all the quantities designated by the

action experiment, the value of

1 is determined.

subscript 1 have been determined by the integration of the equations
from separation up to the beginning of the plateau, aad AxXp= (= %)
can be measured in the selected axp:eriment, the value of <, is detere
mined, and has been found to have a value of 15,

In order to obtain the pressure distribution in the physwal plane,

the continuity equation [ Eq. (16)] is used. Since

CK)
¢ = - ___’ae = 0 = (dgfax}-@ , | (77)
Xt
we obtain the relation
dx = (d§/9) . | (78)
Thus,
| &/% . a(8/x_)
g = 1+ § — . (79)

58h/ *sh
The explicit integration of the equation determining x is carried out as
follows:

5 = w K (F+t)
¥pw,

{B-13)

This equation can then be written in the form
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Xsh +%Me§1\ ms Rex,),

From this equation, it follows that

& (35-1) Me I I (- Me ]
Ql(xh) Xsh ( [R(1+ 5 M) B {F+t)(/+r-/Me.z) d Me o)

* [?, (Fiz‘) dK ]‘JK} .

' A
Using the approximation that ¥’ = o K + p and that M_ g M o Where

331?& E 3 {’Me' + M@sf } . 88 well as the momentum equation [}:q {55) ] R
sh '

it can be shown that

$ ). s -/ 22 _—77
d(Xg/.)- 74: Y1+ 51He) [/+2 rie ] - (m, Lk/w)

=7
+ Me; ex sh

{[36’-/)Me _ L &-1) Me ]Me 1, JK
AR P (Fetfmigyiler P F

‘2)

By substituting this expression iato Eq. (79) and using the results of the
imegrati@m of the momenturm equation, the value of x/ Xen is determined
for every value of K, and therefore for every value of M, and p. Since
Ko is a known parameter of the flow problem, the pressure distribution
for a reattaching flow is determined by the above eguations.
In the above analysis of reattaching flows, it has been agsumed

that the F{ £ ) relation is a linear one joining the points (F s K4y )and
Q?b » K b ) ., aad that C{ K ) is aegligibly small. It should be emphasized

that these assumptions are to be regarded only as a first approximation
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to the actual F'{ K ) and C{ K} relations for reattaching flows. It is
clear, for example, that between flow reattachment and the Blosius
condition, skin friction becomes lmnportant and the positive pressure
gradient tends to zero, so that the relative imporiance of mizing

increases. The general momentum eguation is

dK = KF{AM/M)+{l-K )l -0)(dm/m} . (B-12)

At the Blasius flow condition, 0" = 1, so the mcmeﬂ&m equation is the
same as the equation for C( K ) = 0, which is the equation assumed for
reattaching flow. Since the momentum eguations at both ends of the
region between reatiachinent and Blasius flow are the same, it is felt
that this equation is approximately correct throughout the region. If
this assumption is true, the pressure rise is unaifected by the simule
taneous advent of gkin friction and mixing, which seems possible since
the eifects of these two phenomena on K are in opposite directions.

In the parts of the interaction that are furthest downstream, the
flatness of the pressure distribution prevents an accurate determination
of the onsst of the region in which the effects of mixing appear.

Figures 16 and 17 show the F{ K ) and C{ K ) trajectories for a complete
shock wave~laminar boundary layer interaction. The last part of the

C{ K ) trajectory, i.e., the region between reattachment and the final
Blasius condition, is schematically indicated as a dashed curve. It is
hoped that accurate experiments in the downstream parts of shock wave«
laminar boundary layer interactions will enable the determination of

this part of the C{K ) trajectory. It is clear however that the assumption
C{ £ ) = 0 for the region downstream of shock impingement gives excellent
quantitative agreement with experiment for the major part of the pressure

rise. (See Figures 13 and 18.)



V. DISCUSSION AMD APPLICATIONS

In previous sections, the Crocco-Lees method has been re-
exarcined and approximate correlation functions for the attached, sepw
arated, and reattaching regi{m&s have been determined. The Crocco-Lees
method, using these new correlation relations, is now applied io two
cases of shock wave-laminar &eméary layer interaction. Case A,
which corresgponds to an experimental caseﬁ , is calculated for a free
stream Mach number of 2.0 and & separation Reynelds number of
2.3 % 3@5. Case B is calculated for a free stream Mach nunber of 5.8
and a separation Reynolds number of 1 x 105. Mo experimental data
are presently available at the hypersonic conditions of Case B.

In ?igm}a 18, the resulis of the calculation of Case A are coms=
pared with experiment. It should be emphasized that the parameters
of the problem are the {ree streain conditions, the shock impingement
point, and the overall pressure ratio. It is seen that the Crocco~Lees
method, with the new correlation functions, predicis a pressure distri-
bution that is in good general agreement with experiment. It should be
noted tb@t the pressure rise up to the shock impingement point is
accurately determined, and that excellent agreement is obtained for
the reattaching part of the flow. The agreement with ex@@rim&ni in
the region near separation is only fair, and it is not known whether the
diﬁi’émncés between theory and axperimem are gignificant, or caused
by the gcatter of the experimental data. In any event, it is clear that
the method is able to predict a complicated scparated and reattaching
flow with good gquantitative accuracy.

The results of the hypersonic calculation {Case B) are shown in
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Figures 19 and 20. Again the parameters of the problem are the {ree
stream conditions, the shock impingerent point, and the overall pressure
ratio. Th&e separation Reynolds number in Case B has a value between
that of Case A and that of the experiment used to determine C, and G,
Thus, this calculation egsentially shows the effect of high Mach number.
The general shape of the pressure distribution is seen to be similar to
the cases shown in Figures 13 and 13, indicating that no pathological
changes have occurred at the higher value of Mach number,

After re-examining the Crocco-Lees method and comparing the
results of calculations with experiment, it is appropriate to discuss the
various assuwmptions that have been made in formulating the method.

The various initial assumptions are listed on page 12, and subseguent
ones, suchas the F{ £ ), Cl K ), and D{ K ) correlation relations beyond
separation, are discussed in Section IV. Since the various initial
assumptions largely stemmed {rom attached boundary layer theory,

they are maialy in question only for the geparated parts of the flow.

For laminar flow, it is believed that asﬂumptioms ! to 10 are reagonably
accurate for separated regions and do not introduce serious errors.

The ignorance of the F{ £ ), C{ K ), and D{ K} relations for the separated
region is considered to be far more serious. In the pregent study, all
the ignorance of the separated part of the flow is gathered into the cone
stants, Cl and CZ , and the agsurmed F( L) relation. It is clear that
until the F{ L), Tl A}, and D{ K} relations for the separated and
reattaching i;arts of the flow are firmly established, either by theory or
by experiment, the effects of agsumptions 1 tc 10 cannot be accurately

asgepsed.
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The agreement between theory and experiment for the case of
shock wave=-laminar boundary layer inieraction does not prove that the
method will be applicable to general aep@.y&&eﬁ flows, since the valueg
of C; and C, were obtained {rom the same sort of experiment at roughly
the same {ree stream Mach number. However, the separation Reynolds
number in Case A and in the experiment used to determine C, and C,
differed by over an order of magnitude, and it is believed that the ob-
gerved agreement ig therefore significant. In order to establisgh the
generality of the method, calculations of other separated flow geametﬁess,
such as those obtained with beward»,and rearward-facing sieps, corners,
raxmpeg, cutouts, etc., must be carried out and the results of calculations
ccimpa.mé with experiment. 5Since many experimental studies of separated
flow have been carried out recently, it appears that such a calculation
program can be used to determine the general validity of the assumptions
that have beén employed in the present study of shock waveslaminar
boundary layer interactions.

The extension of the Crocco-Lecs method to turbulent flow

problems has been considered by several investigator a@i’ 19

, and some
- success has been achieved in cases involving no heat transfer. The
physical model developed in the presgent study for laminar separated and
reatiaching flows seems to be appropriate for the turbulent case also, and
it is believed that the same procedures that have been used in the laminar
case can be employed in the turbulent case, and an analogous formulation
developed.

The introduction of heat transfer into the Crocco-Lees method

hag been tried for laminar flow by Gadd and Halderzz, but rather poor
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quantitative agreement between theory and experiment was obtained.
The method by whic& Gadd and Holder included heat transier was not
indicated in their paper so that it is difficult to determine reasons for
the discrepancies. One possible way of introducing heat transier into
the Crocco-Lees method ig to emnploy an additional parameter, analogous
to the wall enthalpy parametesr, Sg » of the Cohen=~Xeshotko meth@&l 6.
However, on the basis of the pregent study of the adiabatic case, it is
believed that it would be imp?rgpriate to use the similar solutions of
Reference 16 to obtain the mixing rate correlation relation. Rather,
it is felt that an additional set of solutions which dn scribe boundary
layers with "histories" must be generated. Howarth's linearly-
decreasing external velocity distribution, for example, might be used
to obtain such solutions. The extension of the correlation relations
beyond separation may pose some difficulty, but the present adiabatic
results should permit the determination of apgﬁrm&m&te non-adiabatic
correlations for this region.

The nemoment method, which was described in Section 1, is a
direct theoretical technique for {reating separated and reattaching zones.
Since the viscous region beyond separation seems to have two charactere
istic lengths, i.e., the disi;ém:e from the wall to the dividing streamline,
T, and the distance from the dividing streamline to the external iaviscid

~

stream, §, a two-moment method with the integral condition that

—

&
S pu dy = 0 fuliills the minimum requirements. A two-moment treatment of

o]
a typical separated and reattaching flow is a challenging problem, but

there is nothing in principle to prevent it from being carried out.
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Vi CONCLUSIONS

Rew=examination of the Crocco~Lees method has shown that the
previous quantitative disagreement between theory and experiment in
the region of flow up to separation was caused primarily by the improper
C{ K ) relation assumed. A new C{ K ) correlation, based on lowesgpeed
theoretical and expéri’mﬁnﬁai data and on supersonic experimental '
results, has been developed and found to be satisfactory for accurate
calculation of two-dimensional laminar supersonic flows up to separation.
Another result of the study of the Crocco-Lees method for attached
regionsg of flow has been the demonstration that the length, §, is
artificial and that physical guantities are not sensitive to the definition
of &. |

A study of separated and reattaching regions of flow bas led
to & phyeical model which incorporates the concept of the "dividing®
simemiina and the resulis of experiment. Accoxdiﬁg to this physical
model, viscous momentum transport is the essential mechanism in
the zone between separation and the beginning of reattachment, while
the reattachment process is, on the contrary, an essentially inviscid
process. This physical model has been translated iato Crocco~Lees
language using a semi-~empirical approach, and approximate C{K ) and
F{ K ) relations have been determined for the separated and reattaching
regions. The results of this analysis have been applied to the problem
of shock wave-laminar boundary layer interaction, and satisfactory
guantitative agreement with expez*irézent has been achieved.

The present study, it is hoped, has also helped to formulate

more clearly the major problems that must be solved in order to
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establish the validity and generality of the Crocco-lees method. It is
felt that the formulation of the method up to separation iz now gatisfactory,
although not optimum. Beyond separation, it is believed that the main
phenomena are understood, bul that many of the present results, such
as the F{ &), C( K), and D{ K ) relations, are to be regarded only as

first approximations.
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APPENDIX A
MAXIMUM CORRELATION METHGD

It is the purpose of this Appendix to derive several relations that
have been used in the present study to obtain the correlation functions

for the attached part of the flow. It is shown in Section Il that

e B ®
&, 62 55*@

- z P
K= —=5z (A1)
. i 5% - 5% & K (8/8%) (As2)
- &y & h @ )
(8; - 6;%) Qﬁi/éi - 1)
Solving for (51/ éi*) from Eq. {A-2), we obtain
éi/ 6% = (/5= Ky . (A-3)

Substituting this equation for 8,/8,% into Eq. (A~1), it can be shown that

f = K[Hi(lnkul:] . {A-4)

where
= %/ 5 ke .

Hy = (8,%/5*%)
If it is assumed that a boundary layer profile is characterized by the
value of ?ﬁi , then for a given profile, H, may be taken &8s constant, and
thus

% |

= H+1-2H K . {A=5)
H, i i

It can be shown from Eq. {(A-1) that

L
K =] /i,%;*‘/_j (A=6)

80 that
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5
gince
& |
*_ U .
e -ty _
then . J:
d(4/%) :L[_/ e oy _ Uil(h)
O/J:«. J:. J), o Uce }Z Upe
_ s o [ i] |
=T U o /] — a/w)// 0 . {A=9)
Thus,

dk
I |y

> 0 . : {A~10)
Therefore, £ increases monotonically with 8; - Thie conclusion is also
obvious from the definition of £ as the ratio of the momentum (o the

mass flux.

It is clear however from Eg. {A-5) that

_dg/_;(f,/ =0 , it H.t!-2H k=0 {A=11)
that —Ol-i :ﬂl’f/ 3/5 = , if t ) - =0 . (Al
850 tha O/J), ///4‘ O/K " C/a:‘,_ n g i /L7,/._+ /7/ { }

Thus it is seen that, for every Hi. , there exists 2 ﬁi guch that f ig an
extremum (@ maximum), and in the present study, thisg condition has

-

been uged to determine 6, . From Eg. {A-11), we {find that
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H; = 1/lek-1) or K= (H + 1)/2%% . {A=12)

Subsgtituting this relation back into E¢. {(A-4), we obtain

_ (Her)®
('ZK'/) ‘ 4/'//0'
or
R =l 12
where
Fosofce1 .

In the present study, the values of 5.*, 6@‘5’*, and H, that have
been used have been those tabulated for & ~—3 25 ., Although this
procedure is not strictly consistent with the definitions of 6;’, éi**,
and E—Ii , it can be shown that the errors introduced by this approximation
are small sinée the values of 51 obtained by the maximum method roughly
correspond to those obtained for uiéi)/ui@ = 0.95.

With the above relations, it is now possible to relate the boundary

layer thickness, {’i , with ﬁi* and 6#’*. it is found, for example, that

(H, + 1) K &*
b =8 Tt TERT (a-14

The C( £ } correlations have been obtained in the present study

by first finding the values of m, at successive siations, where

1

- 2 py u, 8%
&y = 5 #* ‘W -1) = ml > 1) , (A-15)

and then fitting a polynomial in § through these values of @, . The

derivative of this polynomial essentially gives the value of C{ £ ) at each
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station, and this value of C{ £ ) is then correlated with K = (5, + 13/2}9%

to give the desired C{ £ ) relation.

Determination of { 1 - 65*/5$ )

In several of the calculations, the quantity { 1 - é}s*/ & s

) is

required. The value of this quantity can be found using the above relations

and Eg. (23) as follows:

. 6.-§$.§.$$
5 - &% - SkW i i i
K= { ToIw y o= | Ei‘w )

I can be readily ghown that

H [45/5*) - 1] = H, [iéi/ﬁi*) -1 :|

Solving for 6%/8, and using Eq. (A-14), we obtain

(/ ) [/ , H(-K) ]'l
£ He(2k-1)
The next step is to evaluate H It ig shown in Reference 1 that
mK[(F+ t)]: a’pw@ 8 | .
Using Eqs. 5’33) and {A-19), it can be shown that

8/8%% = L(F+t)/t{l-K)

¥ we write £ in the form

N/ Sl
“ 37(;»\-#_/_/

K

{A~16)

(A~17)

(A-18)

{A~19)

(A=20)

: {A-2l)

and substitute the expression for §/6%% given by Eq. {A-20), it is found

that [
yl . 2 ] |
szyﬁl'#‘—z-nme)%l‘ﬂx .
(1-%)

(A-22)
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Thus,
Y. R
ﬁi = T 1 = F 41
Solving for ¥ from Eq. {£~-23) and substituting the result into

Eqg. {A~22), we obtain

H o= (a+ 1) (S5 MPye1 .

This result has also been reported by Rott and Crabtreel5 and Cohen

and aeshotkelé. Therefore, the equation for (1 - §%/§ ) is
-1

/4 [H,: +/)(/+4’Me ) =11 (1-k)
(2K -1)

Evaluating this eguation at the separation point, we obtain
g 31 poing,

-

J} 2,{” (1000 EM2)-1] (1- &)
Zz) S

where the Howarth values of K a and Hi s have been used,

{A=23)

(A=24)

{A-25)

{(A=26)
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APPENDIX B
CROCCO-LEES METHOD

The purpose of this Appendix is to show how the basic eguations
given in Section II are reduced to two non-linear first order ordinary
differential equations. These egquations will then be linearized with
regard to Mach number for use in regions in which the difference
between the local and free stream Mach numbers is small compared
with the free stream Mach nuruber. The linearized equations will then
be examined for the two flow regimes up to the platean, Finally, the
lixniting case of weak hypersonic interaction will be discusged to show
hmv this particular result is independent of the definition of the viscous
layer thickness, 6.

The basic egquations given in Section Il are

Momenturn Equation

w_ €
&/l Kwp) = w, (dm/dx) = 6 (Gp/dn) = —gmgme

=

Continuity Equation

dm/ax = (B/B) ( L - 9)

Bernoulli Equation

dp/p = = (dw /@)

Mean=-Temperature Zguation

m = p&/@,

(B-1)

(B-2)

(B=3)

(B-4)
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In addition to these equations, the three correlation relations are

¥ = FlK)
A= (ds/dx) - 0 = 'cg K ya,/m (E«%
Qf = DK )/«e&t 7%} o

Expanding the momentum equation, and using the Bernoulli equation to

eliminatie the pressure gradient term, we find

(/k)m +(_Q_K/a’w' p_ Cr

Wedx ~g.m 2 | - (B-6)

It can be readily shown, using the equations given in Section II, that

2
(g -K) = Ki/t

: {BeT7)
(l/wet) dw, = (l/Me; dM,
50 the momentum equation becomes
k)L gm /C FdMe_ p_ Cr ,
( ’e)m ax T Dm 2 - (B-8)
Introducing the definition
S mfap , | (B-9)
it is found that the momentum equation can be written as
(/ k) / o’§° KF dMe R le ¢ D(k)
& Ix * Me d X 2pe T2 - (B-10)

The continuity equation can be written as

; IS ClR) AR Uet _
Tdx TTTE e - (-




=
o

Ingerting this form of the coniinuity equation inic the momentum squation
& Y

DKL)
Z(T =Ry CTRY

and using the definition o{ K ) = . it is found that

Q//C /(F Q/Me /
Ix = (1-oXi- K)ET (1-0)(- K)m . (B-12)
It is shown in Reference 1 that
m K{F + t) '
& = 75 W . (B=13)
Siﬁc‘&
d6/dx = 9+ k = 0+ ES%C_)_ (T /T,) , (B-14)
$ 3 %43 o = oo ~ . l Y".‘g -&
and introducing the definition t & (ze/’l o= o =1eZpmw ",
(1 52w b

it can be shown, using Egs. {B~13) and (B-14), that
K . | d,
[F+ ¢+ xdE "/ [K(FH‘)(/—%—' we‘*)+Kz‘(S’-/)%] Mod ,/(”e

dx
g Lo rf(e-ntrd)

- {B=15)

It is to be noted that x appears in Egs. {B-l2) and {B~15) only in the
derivatives, and can therefore be eliminated. Solving these equations
simultaneously, we get the following set of non~linear first order

ordinary differential equations:

- $ [t KlFt) - L 1) - 2 00+ it )| +6f
o (B~16)
G SR T M) # eI F (Pt riGEN




T3

St FE[¢ - klre ) - et ittt +6f
ce 5 KOF+ 87 S MEL) 4k % Aotk GE )j (B-17)

These general equations will now be specialized to the various
flow regions. The first region to be considered is the zone from the
beginning of the interaction up to separation. In this zone, the maximurmn

corralation method will be used so that

2(1-K) | .
L) = -—/EKZ/—_/)—— . {See Appendix A.) {(B-18)

The equation for { £ } is obiained by nati.zxg from Figure £ that a linear
repregentation of IX{ £ ) appears reasonable. The Blasius value of D{ A )
is chosen to be 1,40 at £ = 0.693. It is assumed, following Thwaites,
that D{ &£ ) is zero when the Howarth separation value of A = 0.630 is

reached. Therefore, the eguation assumed for D{ A ) is
DIK) = 22.2{ K -.630) . {(B-19)

The equation for C{ K} is also asswmed to be linear. However,
the scatter in the (A ) curves shown in Figure 5 does not allow an
accurate determination of the C{ A ) relation. Since the experimental
separation pressure gradient seems to agree with calculations assuming
thai C{ A ) near separation is zero {Figure 8), it has been assumed that
Clx j, like B{L'), is zero at the separation value of £ . In order to deter-
mwine another point for the linear C(A ) relation, it is assumed that 0~ {£')
is equal to unity at £ = 0.693. This asswnption is usually made for flows
with zero pressure gradient and insures that the Crocco«Lees method will
give the same weak hypersonic interaction result which is obtained by

the Cohen and Fleshotko method {Aﬁapendix C) and which has been
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found in earlier investigationsBz‘ 33. The equation for C{ £ ), thus

‘ defined, is
C{AK) = 36.2( £ ~.630) . » (B-20)

The general equations are now linearized with respect to Mach

pumber. If is assumed that M = Mw + & , where £<< Mm , and

M -1 &
g = = ~T - {linearized Prandtl-Meyer relation) . (B-21)
M_(1+5=mMm )
&K oo

If terms of order € are kept, it is found that the equations can be cast

into the following form:

dk/a¢g

1]

o] . |
(B-22)

*e].

2k (7 -k) (K% DI M1

4 Mok (7~ 2 S ket )f] + B Y2 __ YMERANDZ T r )3 M- 1)
| (=25 )C@i QR U ) 1HEMSG)  424E2 0 (- HES
LM” - [”m /ZI('/) 4
N= “KF(K) 24 (/-K)

]

- N

-
[

o VI

a&/dg

where

L=

. (M (e olf 2k KM, 41 Mo j £ O-RIF 5 :3)]
M1 [0'/'{7" (24-1) ;I/+"W“) ) @xy)

C’(,CZ _ 2080 K1+ EMS) | (-0)(2 £ .2/c+/))?}
[//K) ) (24-1) Z{/ K (R&-1)

The results of numerical integrations using Eqs. {B-22) may be
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transformed back to the physical plane using the continuity equation asg

follows:
A

o p.u_a put
dm/dx:é?—-—%-—i-——ctﬁ)= S

e

13

This equation can be iniegrated and put into the form

Ky . {B=-23)

‘ Ry Moy
) - 2 @ 5—/"7e
Xs=X / (/+%JMM) 2

- . (B-24
Xs = ey o CO) Me L7+ (524
where
P um xs
Re = B e .

g Mo
The remaining equation to complete the formulation of thé problem
up to separation involves the skin {riction, or wall shear, distribution.
From the correlation equation for ¢ ¢+ We have

Al s .S i
t = 5 (1+932 M5

. (B~25)

Since every {° corresponds to known values of M, , K , and %, the skin
friction distribution is therefore determined. Calculations of the skin
friction distribution for three shock wave-laminar boundary layer inter-
aciion €@ ges are given in Figures 10, 11, and 20.

In the region between separétian and the beginning of the plateau,
the following assumptions have been made and are discussed in Section IV:

(1) F = constant = value of ¥ at separation

(2) 0’= 0, since ¢ is assumed negligible in separated flow

(3) C{L)= C, = 11 (by comparison with a selected experiment)

&
(4) ¢ = - Mw“iczéz .
Mm(i'%'?M%)
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Substituting these conditions into the general linearized equations, we

obtain

Jk _ —F VM1 C‘,Mao//?‘ .*’{—’Mw/ -1 —/f))
9w MM//"?WC" M s

de _~ al [ opMelFEM)E
KA sl ymET %

where

(B~26)

é = /:"'2 Y/:}Mw //‘/w —/)
(/,cx /Mm&? //+ ¥-In2 ER

These equations are integrated in the same manner as Eqs, {B-22),
using as initial conditions the values at separation found in the sclution
of the eigenvalue problem for & g ° The transformation of the results

back to the physical plane is carried out using Eq. (B-24).

Weak Hypersonic Interaction

If 0°( K£) is set equal to unity, corresponding to Blasius flow,

it is seen that Eqs. (B-16) and (B~17) reduce to

ak/a¥ = (~kF/Cq) '{C [t - g”” ")] + 0} (Be2T)

M /df= (~-M_/Cd) EC[" ';‘F * t)] + 0y = (M /AF)aA/dy), (B~23)

where

""'{’W”)U*%*M t) + £{¥-1) Meztz-@wmwcg: )

Therefore, if (&Me/ci?;) and dA/d¥ are assumed tci be of lower order than
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either of the terms on the right-hand sides of Iqgs. QB*Z?) and (B-238),

- then the following relation is obiained:

0 = - c[t«-K(F%»a:)l_ s (B~29)

5 -
K=k,

since the condition, Ov{ £) = 1, implies A=A, . It is shown in Reference

19 that
T = (tRe /(1 =K} {B-30)
and from Egs. (A-24) and {C-8), it follows that
R@ 6** g YK. ,.&Eex . . (B“glg

‘Using Egs. {B-21), {B-29}, {B-30), and (B-31), it is found that

: ) ¥ ) -K 2 -
£, = Maol1# 5 M) COO(T- )// /<F//+X/Mw) - (B-32)
VMoo-/ //A ///eex
K=Kp
In the hypersonic limit, i.e., Mw >>1, we obtain
2 ] R 4
fim & =—C(U//*K) /%—) M /KF , (B=33)

Ma>>1 ¢ ﬁ/féx

which is numerically identical to Eq. (C~19).

K=K

Using four different definitions of §;, it is seen in Table I that
despite large numerical differences in the values of (K ), K, and
Cl L ), the terms C{ANL - £ )2 and { K¥F/1=4) are identical, showing
that the physical quaatity, £ L, » 8 independent of the definition of 8; -

The four definitions of 5{ were the following:



o

{1 8y defined by the maximum method {present study)

{2) &, defined by u({‘”;i)/uie = .95
(3) &, defined by u(éi)/zz,i o =99
{4) & defined by u(ﬁii/&ie =.998

The values of the quantities ¥, A , and C{ K} defined by the several
values of u({;i)/uie were read from curves given in Reference 19, and
it is found that the agreement of the two terms investigated is within
- the ability to read the values {rom the curves. Since the values of &

33, 34, the Cohen and Reshotko meth&dké,

given by earlier investigations
and the Crocco-Lees method {or several definitions of § agree, the
artificiality of § has been demonstrated for a case in which an explicit
physical result can be obiained in a simple analytic {orm, not requiring

numerical integration.

TABLE I
o Ks F(Ks)
Definition of §, Ky z«*q,{’b) ClL) |k )(/-,cé)"z =

Maximurn Method | , 6930 i.591 2. 341 0. 2206 3. 592

af§;)/u, =.95 | .700 1. 557 2.42 0. 218 3.63

ws)/u, = .99 . 794 . 945 5,15 0. 220 3. 64

uwi)/uie =.998 . 834 . 719 7.97 0. 220 3. 61
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APPENDIX C

COHEN-REGHOTKO METHOD

In this section, the method of CahenaResimﬁkom will be uged io

calculate the pressure distribution over a flat plate up to separation for
the cage of steady iwo=dimensional la;minar supersonic flow in which the
Prandil number is equal to unity and the heat transfer is zersc. The

- external streamline direction will be set equal to the gradient of the

- displacement thickness, and in the present analysis, it will be assumed
that &, the deviation of the local Mach number from the free stream
Mach number, will be small compared to the {ree stream Mach number.

From Eqgs. {33) and {34) in Reference 16, we have

LA o [T) Ny Y Y,
n'X,Oo’lv/T) Me / (C-1)

where 71—--— 9 / Oltle KE -é%—f;—}%%— , aud A and B are constants.

From the isentropic Bernoulli equation, we have

¥ M

(1/PMdp/ds} = = —mqeee (dM/dx) . (C-2)
{1+ == M,
Thus
g AM,
no= =AM (1-:--3-M 2y -5-5« (1 %MGE)",&MB'l dx . = {C=3)

o
et Me = Mm + & where M@ = iree stream Mach nwmber > > &

Substituting M e in the above expression for n and keeping only first order
terms in & , we obtain

n = - {(A/M ) (d€/dx) x . L {C-4)



From Zgs. (34}, {39), ana {40} in Keference 16, we have for

Pr = 1 and no heat transfer:

cr* Te NXMe (C5)
A B T )

p.u_x
where Re & -
M
But using Eq. {C-4) for n, it is found that
. 5* A x* Me (C-6)
Hot M2 (Het ) Ve // + EmE))
Thus
* / AX puw o
= A 7‘-/ —_ — ]V . . {C-T7)
§=17 TFELIA| | Mo ae
To terms of order £ , it can be shown that
B = kg Y"‘"[ L€ } (C-8)
where
= ¥-/ 4 A )
k3 = (/+TMao)(/‘}z‘§7l;‘
T = &‘/)Mw + (3y-1) Moo ?‘:
G )
g = H . —L.—,—
[+ LM
Thus,

J){*E%L[?*/‘f] %"X[ (*%&‘7 _O/E] -(C-9)

But
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Gl

YWLE=T &
(d8%/dx) = = =1 . {C~10)
M {1+ - M )

{rom the Prandil-Meyer relation and the assumption that d5%/dx equals

the ocuter streamline direction. Therefore,

| [T & ,@3
an _ _ PAX Mw(/+é-/v/ Zy * / d *7[5)]

£ (C-11)
ax By /)Maoz-:
g} 21+ Y(I+EIM2 }]
ae M&an
I < C .

These two non-linear first o‘rdex ordinary differential equations can be
integrated numerically since the right~hand sides are known functions of
n, £ , and x. Such an integration has been carried out for the Mm s 2.0,
Re = 2.87x 10 shock wave-laminar boundary layer interaction case,
and Sihe results are shown in Figure 8. In the calculation, the n{Hiﬁ

relation given in Reference 16 has been approximated by the following

polynomial:

n=-~1.4992 + 1.1845 H, - 0.29950 i, - 0. 025327 5,° . (C-13)

Weak Hypersonic Interaction

It is interesting io note that if the boundary layer approaches the
Blasius flat plate condition, corresponding to n = 0, the equation dn/dx = 0
gives the weak hypersonic interaction result in the same way as the
Crocco=Lees method does when £ = Kb and d€/dx= 0. KEn= 0= dnfdx,
we have

)sz E k

@ b 3 — =
+ g, +£, &) =0 . (T=14)
Y - A b b b




Solving for & p+ We obtain

éb = — Qﬁ;[ V/;?f;_‘il_gb " = 7?] . {C=15)

Substituting values for Eg;, . f—b s and k‘?» , wWe have

[(os )i+ 513 )-1] Mol ”’/‘7@)1/_
]'C-l&)

553_ 2y -
(] Mod 2 - 1)M= G- )Mo
2 Rey, 015 Z(/ +4 /,{j (M3-]) [/’% *d// + 5] /+4wa)4- M)

If we Ieﬁ

_ [(Hear )14 S M2) =1 Mo+ 5 M:)VA—

é‘ = — - » (C‘i.?}
Z /fexé Waoa"/

then,

55 - . {C-18)

/] — & [ (1) Meo K;r-/) Meo ]
/1,, r-//l/z}:z- 41//_/_3’—//\7:9
This result holds for all Mach numbers if £ p <<M_ . However, if

M_>>1, itis seen that £ p—> € - Therefore,

SIS ALY VIS ¥

lim & = , » o (C-19)
o b
where
A = 0.44
Hib = 2,591

Using Eqs. {C~2) and {C-+19), we obtain



oo
L

¥l 3
0.119 ¥ { == M

lim (Ap/pmg = - = . (C-20)

M >>1 ) zzexb

For low supersonic Mach numbers, & b= E - if & p << 1, since

the bracketed term in the denominator of Eg. {(C-18) is of order unity.



APPENDIX D
ALTERNATE C{K ) CORRELATION

In this Appendix, an attempt is inade to consivuct a C{L£ )
relation that correlates the Falkuer~Skan solutions with flows that have
"historieg', such as the Schubauer ellipse flow. The idea motivating
this attempt is the removal of the term §; {a/ e:lg)(&i*/ §,) since this term
is identically zero for the Falkner-Skan solutions. {See Section IL.)

nS
A new mass {lux parameter, my , is defined as

m, S /VH:&* = . ‘Q o |
\ & ~ ° (ﬂ“"i)
% = o P C (K Me '

i %e ad& 7

It can be readily shown that

ps P: %ie 2, 5 -
clk) = /“; (6,/6,4)° 6,*° (4/aF) (a,, =g 5,%) . (D-2)

i
From the maximum correlation procedure, it is showa in Appendixz A

that

Therefore,

6,/8,% = (H, + I}H, - 1) (A<14)
fo +/ *—%/
ClK),= 2 “*e /’Z"/ , (/oy e )S‘)  (D-3)

For the Falkner-Skan case, H, = constant for each flow. Also,

2
v , Wi
giace u,_ =2 ¥, where a and v are constaats, and §* = bf Re, &

“ie 3"

t

and b is a constant, it can be shown that

where E’gei =
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(B + 1) {a+1
a/d¥ (log wu, T 8% ) = 7?)- . 13‘3*"3:}
so that 2
2 x>
%) Herl )3/ &V Rew | (1#1) . (0e5)
TR He-1 5 2
_ éi* jﬁiei n+ 1 _ . .
But A® = ¥ , ) where A* are values tabulated in
Reference 34. Thus,
ClLK) = [( ;e }A*] {D-6)
and
N MG (a-12)
) 5

For Thwaites' treatinent of the Schubauer enipsew ,

~e & I'/eeﬂ- “e éx -
C(K/ /7/‘—/ u ( 0/5__ [/oy Z‘Cw /Z/_/) fe ] {D=7)

where

pﬁ t'ie::':x'i_"'
M
Fos kD .

~/
Using these formulae for C{ K ), the correlation curves have been
~ .

Re., *
1

computed and are shown in Figure 21. It is seen that although the curves
‘diverge toward separation, the agreement is belter than that obtained
‘with the conventional C{ A } formulation shown in Figure 5, and the
improvement expected by removing the éi*/ ﬁé term has therefore been
largely realized. Also, §;%/§; is seen to be a universal function of K
using the maximum correlation procedure, and ii caa be readily shown

that



53* ‘
(1-_5..__).. 2';“} . (A-14)

Therefore, we can write
=, = 2L -1 ~ . (D-8)
Y. < 1.
Thus,

Im. _ me K, fax-l)® C/K} .
% /anzk-/} de T AR e fi Uce o D9

gince

_ /e ClK) e
4{4' "fé%'e O/j'_- — )‘7‘—1:

It thersiore follows that

ﬂg,{: /) %,-é dk 7
Crx). = Crx },,, KERT) TE Pty e . (D=10)
2K -1 .2

S
C{ K )i and transform the

Let us define: Tl ';i = { = )
results to the compresgsible plane. It ie easily shown that C{ K )i = O{ A}

and Eﬁi = m {See Reference l.). Therefore,

= 2
= 2 dx/d 1 . -
Cle) = Cli) + FEE=IT {dA/dx) m . (D-11)

Clearly, if Falkner-Skan solutions are used, d&/d F= dAfdx = 0, so that

Clk) = Clk) . | D-12)

and the C{ & ) relation is the same in the compressible and associated
incompressible cases. However, for the general case, the term

&= ax )

is v ‘ but generally depends on a
FEET] & pou g 07Ot Eere. bubgenemally depends on
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numerical integration of a specific case, and the C{ K ) relation is
therefore not known @ priori. It is thus seen thati this attempt to improve
the fmiveraality of the C{ £ } formulation has increased the mathematical
complexity of the method. N.e systérﬁatic procedure for trying other

C{ £ ) formulations in ¢rder to obtain an @piimm ic known, and it

is not even clear how to exprese the optimum condition since univere

sality and mathematical simplicity are both important.
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