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3 ~ @ - e a ~ a ; $ ~ t ~ ~ ; p ~ ~  of $he e 2 w e o ~ L @ e s  r ; @ a ~ d  b& @h~$rm f&&t 

1h@ xpegiaa of fkow up $3 scpar@tion was, caused prk~xas i ly  by i.;.poper 

G{ /C ) r @&&ion assqa~2cd. A zew G( K 1 correliat-iou, bsed on low- speed, 

has ijcenl devetop<3ii and gatgiad ta be aaiisfactory f ~ s  accinrate eatcubeion 

il-r--&s~r:emgiop& fsril$ag a q y g o y & : j c  flow3 r;p to aeisraEQafso 

e 14;zy~isal irradeA wlzieh iscarpasate@ the concept cS tim rf'dividingu 

skr- earnline. a& ti16 r estllCs ctf @xp@~ir;aeztr. Aceor6ing to thi his phtisieaL 

rsotlel, viaceus niomsntetm trr?rnoyork i s  the ca~icraCial xziecbnissr. in %he 

~ o i ~ ~ i  between ecpratian and ehc Segiix~iug of re%;tmtclu;leizt, w~~lxile t%,e 

reiat@ci%~ient proee s@ is, on Lire eentror y, an essentiagly ilsviscld 

p2rcpeess0 Tlds; f i j r s i d  rnoaet bas been translated into Czocco-lees 

Z;zizgmge using a semi-cmpi~icsl  s p p r w c i ~ ~  sad approd.s:aee Gf K ) end 

I( K. )I relariona lave bema dctermiixed for the sew~ra&cd and xaattEb~hing 

uegianka. The re~eultg Q& this ibmllpsis b v e  beca arppitcd to the probtsm 

rxl sbcit rvava-iia~~lrari~i. bowt&r;~ ;̂ >per i;zteractio$?, an& ~arisfactory 

q;,librriltative agreewont with exper%z:ent h s  beail iaelliewed. 
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The ralain object of tile present reeeesch is go advance the 

devclcpa2ent of the Gr~cco-  izes "mixingM theory1* so t 9% can ba a@@& 

to tr-t flows L b l ;  ecntairr sepasaetad and reattacMhing regions. The 

grobleux-1 'of sewrated fiows is ail old cue, and n % a r ~ y  examples of such 

blcv~s are observed in e v e z y a y  eqericxlce, as well  a s  iiz diverse tech- 

nical probleme. For e:m~apte, 6E3@ relarivaiy caLm air pocket t a t  irr 

2 four34 an $be upatrean2 side of a house during a windstorza and the *$dead 

water'hzones bauiaind b r g e  rocks i x a  a swift ly l l r~wing river are fan2iliar 

to che engineer in such technical psoblemer as rha prevention of wing stat$, 

tb caleubtion of Mfuoer and compressor efficisacies, the prediction of 

losses in overexganded rosket mzales, sad the! est iml icm a&' the effective- 

m ~ i c  control su~gaces. In order to solve his probleme, 

the enginear has been obliged to rese expa% cntal elmost entirety, 

ciiiirco a graeticinl theopetical n-hetbd of treating such flows ie not avcgibbls. 

Sewrated arad reattaching Elows can occur uaden: a vaxietg cf 

sanees. For elramplea the flow nmgr be isrxxirss. or trrrbulent, 

steady os ansteady, and subsonis cr superaoaic. But in all cases, the 

araain cause of the phenosnenoa ~pf ~epasat io~l  earl ba traced ta the imrlbility 

af the low energy vissous region mdjac@i?% 80 o body tc aeijuet to the 

i~zpseel illviscid pressuse distribution. More spaciffcally, consider 

subsonic tan2iaar flow about a bPubf body, such as a cylinder or sphere, in 

a high IReynolds n&mbe~ 8troa~i.  Such a flow genesally conains a region 

* Slap~rscripta dsasfe references at the end on' the re&. 



in which there is 8. f a i r l y  lc~rge iwsitivc pressure gradient. The no- slip 

tapst~eerm of rile positive pressure grirdiiilnt region is Gcieficieitt in energy a ~ d  

ralomeilrrun, end doficiersey lb especially serious PQP the naid p r t i c l o g  

%- -4~;nr the ~vall. Aa the bow)t&r y Payer fluid enrer t? t l ~ s  reglsn cE p o ~ i i i v s  

pressure gradient, momenttys, i s  trapleierrad &a the low energy Retid 

II from the more energetio fluid furthes out by molglcubr 

wansprt. For tar bulent borenx&r$r layera, the mwaent tran@port i~ 

n a i t l l y  due to macroeeo@c: twbderat eddiee. ]In e i the~  the h~>i - r  or 

the t u b u l e a t  caoe, this anopr,c?ntva~ tranafer gnables the low energy flraid 

sear the wall to contiaua Bowing downsex 

b a r n a r y  layer velocity pslcfile is distorted in such ;a wag t b C  the valocigy 

gradianl normal ro the wail, atad thue the wall slrea~ stress,  i s  reduced. 

The &stortion BP the velmity p~afifile i s  therefaze aseociared with two 

ePEects wl2ilich allow the bowxaarr): layer fluid to continue flowing downstream, 

aely the transport af m from high snesgy tc low energy regions 

a d  the redaetisn of the V J ~ B I  aiiea~ atresee 

However, Che amount of velocity profile distqstiora tlvLt i s  possible 

is Limited. Mter elna Raw 2pas pzogreaoed sufficiently in& the region of 

poeitiv~? pressure gradient. the slope of khe velocity profile becow: raze8 zero 

at the wall, so $hahat the wall shea~ srresa, i a  zero. At kurt pointsfor the 

~o-acaimensional and ad- 8ymmetric caees, the dlow "separate s'qfrom Cha: 

wall. For general three-dibi.iensiona1 flowo, ithe phenomenon of separation 
a is =lore coinplex a aa& the ~%ixis3ziag of the wall shear @tress is only ia 

neeesary, but not a saieiexzt, condition for sewration. Nowaver, in 

all cases, i f  the Row field i s  idLvided into two regions by a stream sufiace 



startiz~g at the body 8ur.C ti-a: 3ac a*e;;ion colxsirt s 3f all the Rai& p x t i c l e s  

apsti-eax~2 ooh the body and iLe  second region in an isobtod ''bead w%texG 

region, iho Elow is generalljr regarded to be a copsated one. W h e n  the 

flow sepzriaees, ihe actmi  pressure distribution 1s always z a r k d l y  

diZfeg*ea$ iron-1 %he i n v i ~ ~ i c l  d%8t.*?i;3ufiiob1* snd in 0e3ck. Z& 5 5 % ~  - Z ~ B  %-a T@&UC@ 

the valve& of the positive preseurs gradents. T k u ,   he igfianaaienon of 

sepration is eaused by ti3e lir,~ited abil i ty ~f the now to supply sufficient 

aiomen$usCp'~ to the low enargy p r t i o n s  of the flaw t 5 t  are adjacent to the 

body, &&reby necessimtlng a c k a ~ g e  in  the effective body sbpe, which i s  

acirieved by the flGd Hsewrat.ti:~g:f Prom th@ heboy. htr,creasing tba cawcity 

for rrkamcntual tranafer would of course tend ta delay separation. Tbjs 

dsdacti~a i s  readily verified 5 y the well-known experinxaneaf. fact timt 

twbuleat - a tunary  layers can pnetratc  more deeply into p s i t i v e  

pressure gradient fi:ieldc vvithou'i separatitlg thaan larnliaar boundary &I y e r  c 

It ia ofgen found that aeparaged flows wil l  return to tlm .esurr*ece. 

and !'reat@chfi. The sequence of separation aad rq techment  traps a 

separated dead water region batween the body a& the o a e r  flow. 

E2ramples of tbis phenoznanon are found in seg~aration "bubblea" 'on vzlng 

4 ~ j v ~ r i a ~ e  s , &ad i k a  a%%cgck vu'eva- %rnu&r>~ layes ix~tera~tiazks 5-9. The 

details of the reat:aitachn~eni- procese are more obscuze t l ~ n   hose ia  the 

case of separsrion, axxi experir~~ental stadia6 ~i reathchseat are only 
7 

now beginiling to provide a real 3anderauaang of t i~c  pr ~ e c s s  

It. is clear from rhe above discussion tltae the details of aepnrated 

fl,ou, phenomena are quite coll>plex, even fos k a h i z 3 a r  flow. The Nader- 

Stokes q w t i o n ~ .  u~hich dacicri be ganessl laminar eaatinu 



sa;isfac-;os>~ accuracy, also i n  p:-iaci.?lc; 4- describe CQE a u l 3 ~ & ~ g  rjf lan;iilar 

scparated ;lawn. u;-x~r;saat ~~~:~ Lhr :  sav ie r -  Stokes eg:a:ionz a+@ 

higidy non-linear set of +mr;ial &l$ferent4al cy'atictns that k&ve been 

solved o d y  in a refafiviily few sis~:plc cases. The flow gzometries and 

baa~&r  y cunditioaa of sepzmatei: am3 rat&c!lin& flows ar s so complicated 

*"a$ .r i, 8 direct ~olut ion uf the proklerfi using ti.&@ Nsvler-,S%okea equations 

cii~ecll;- does not seem to be fcanible. This realization, and the practical 

importance oi  sepsated flows, Pas led to a soarch fa2 approzdrzi&te? 

It has Seen obscrvcd exporimcn&lly t2s-t vari~us types of ~eparated 

flows fiave nriany ~ i ~ f i i l ~ h r i t i e a ~  and indcerf, it &hahas been possibla to corrabte 

7 thc belsvior of reparated ilovis v<ti:,i uidely different flow geos;.cc~ies . 

ap~3licable to  general sepa;*a$ed Sows be fears$b$e. Several attempts 

lave been mxade to forrfiulate such an appro;risna$c methcd, b?& d o r t  

lave bean severe?>- rzstricted in generaLiCy or qilientitatively un- 

satisfactory I i 8  10-12e Of the various appzorzinzlate rxetiwd~ that b v e  been 

B iori~>u';ttcd, the method of C r o c e ~  and Leas a2yeal;s lo 3o the x ~ a s t  
I 

0 * 32:le~al an& prozi-zszng. 

emplay a parameter ;&kt, while nagisfactory for attache6 bom2riary 

layers, is not approprhte for- separated fbws.  The choice of an ii2reri.dtcs 



wrwg~eter t u g  i~c wCisf&etoi-gr fa2 the tseiltgg~cnt cf sews&ge.ted flow e 

I;a~g<ely determines the eoss~;tial diEZorenceo befween tile Crocco-idees 

n:etZto$a and the oghar app~oxh&t@ intega~al &32ethadc, 

Iil order to describe Eike ~"rdin cexacept~l aspeeto af the Grocco- 

Lees nlethod, as wel l  a s  to sl%~lcpw the specific difiarences betwean it &ad. 

the other approximate iutegral zriethod~, wa: will briefly ~ o n ~ i d e r  the 

geu~ral app~wch  arid Goneepte ~f integral merhodsl for +he case oE 
/ / 

atached bouladary layersa. Tha a r i g i ~ l  idea stems from the voa iCarman 

Integral eqmtion. For s taa~dy two-dir~lensicml flow, this 

agwelon ie as followhi: 

yw =  hear stress J ~ ( ~ U / B ~ ) ~ ~ ~  

p = pseeisuse p(x) 

8 s a length which meaetlres the boundasy bye% tbichess 

.q y = the coorclimteo alouag, and ~;.oraz?at to, the wll. 

TMs eqwtion is simply a n  eqressiapt of Mewton'@ second law averaged 

over tha born&% y Eayer tMckneee, 6. By rnsane of this averaging 

prosea s, Che origine;l second-order prtFa1 dlffeseneial e q ~ t i o n  for the 

and the eymtion or* continuity are e~r:verteei ingo a single 

arut-order agfflerential eqahiern ior rhe dependen; uariable, 6(x).  or for an 



Suppose we cot~sider tixe case of low- speeii, israthermarl PLo3.v. By  

defining $he disphcer~*i.lent asd nlo:z~ent ehicknesscs s s  f~PBms: 

the van ~ 6 s m 6 n  moment integral equation can be writtea as 

b thc u s d &  approxin2ate integral meth&ar3-la, lihe velocity pr~ f i l e  i o  

where is a valoclty profile obw p&~ibn?eter sad & is either 6 .  or 6i@#* 
B 

In tlw ~ahl l .ausea'~  and ~ h w & i ~ e s ' ~ * ~ ~  methods, a secoad ralatioa i s  

eqwtioa at the 

swface, which gives &&e fakiowing reliatim 

&f tribe paran~eter A i o  defined as 

tksn Eqs.  ( I $  aed (6) prosride two independent retstions Car the ciepeild~at 

variables, arrnd b ,  and tha method i e  completely forrr~ulated. Xf thc 



velocity profile is expressed in ter;lls of a o r e  W n  one a h p e  Wrameter, 

tiwra tlke ad$~tioml wranleters must be related to 6.  or 5.@* by t8e 
Z la 

b u n d r y  eondlticans, or else additional selatlonfi mlagt he szapplied. Thue, 
/ / 

Ee integral n:eti%ad uses only the van 2;ar;rrian % x a i l ~ o n t m ~  

integsal cquation and a second relation logo~xs to Eq. (B), then such 

ia meehod genarally imptios, and i s  inseprabla from, a one-*ran-~eLer 

d e ~ ~ ~ i p g i ~ ~ b  OP the flaw. 

According to Eg. (61, $he @hapa of the velocity profile is directly 

related to the local gradient 0% the exgerrtgl stream velocity. Such a 

formulrltion m a y  be more OP lese satiefacto~y fcs atmebed borrndazy iayerg,  

bug it i s  completely inadoqlate for separated an4 r a t a c h i n g  flows. It 

b-anplies* for axample, that the pzofile =just coiueidc with the Blasiue flat 

pktc pracilst whenever (due/&) 0. b @age d ~ I B O C ~  .;;v~vB - ~&TPSWP 

dE separation decrea~ss steadily and i s  praetics~lly aero in the phteeu 

region* blpr the velacity profile bear@ ;lo resembhnce the Blasius flow. 

Similar anmialias occur in rhe r a t m e b e n t  zegion. Xa order to avoid 

wuch i a  &. n ~ n *  a ~ i o m %  ~ ~ t f o  d itbe &4"1a"ps:~antm fli*ai to the s a g a  f $ a  

in  the vi~corns region. TBie p~ etcr;~, K , ir;  wag explicitlby xeslatsd ts 

[due/dx) and i~ alas not u ~ q u e l y  Jetesmkiaed by 5. A acean6 robtion, in 

addigion to Eq, (11, i s  required fa cc~=%plete the r~*&t2rem~atical f~rnr~ulation 

o% the mettaad, and this relation 13 obtained $ran1 a physical model. The 

according to thie physicai miode!, ic; divided 51-to two regions -- an 
eserniial, inviscid segion azd an internal v i~cous  Eone [Figune 2). Theae: 

transfer a@aw*ted with the 



!I-- g *  t ~ i * .  or naass entrainrrxent, of nuid Prom the l%igi~ @energy axternill 

Slow into the low energy v3scous regioa. A eorarinuity equation, e q r e a ~ i n g  

tfie rate aP mixing, or entx&~n2ent, oE fluid from the external rcgi~i l  into 

the intesliwl region is the secaa& relation between k and 6 i ra  the Cro~eo- 

teee &>etbd, and k s i c a l y  discingui~12;lses it P r o ~ i  tkm noorher approaches. 

&o*er aspect wwaieh charcactarfzaa kiau G s o c c ~ d i e e s  mathod i~l  

t h e  thp: external and intsr-1 nerws interact, so ciie c b n g e  in the 

tlricheas o i  rbe viecoue regian U e c t s  a%@ exterilal inviecid now. Tl%e 

a r l i e r  &iacussion of the phenomenon d semratioa s h w e  ihat a sewrated 

flow certainly falls illto tMa68 sategclr)i. Howevei., i e  i s  well-known t a t  

far atmcheG subeonic flows, t h~?  ~ d f e c t  of %he incxesse in b u n a ~ ~ r y  k y e r  

~ichkess on tlac fiow field i e  sz:%tt, st least ;a& high F%i.ymolds na~kber, 

and can ba neglected o~ b s  as tke dete~pnsAination of' ikac p2"'esePsre distri- 

butioil i a  concernad. But if  tho flow does aep-ate, &he whole flow 

field i s  strcngiy affected. Tlxua, subsonib: inta~actioxa i a  generally either 

rrivial UP draetic. fn tk@ s u p r ~ m i ~  caere, the @situa~-ion io the opposite, 

with a relatLveXy small thickening of the visccus tagian cer~aing large 

~ i f e c t a  locally in  the estezt~%al ROW field, especially for tho caoe of non- 

Ils. Aleo, if the faow separates. Ehrs eifect on tha external Row 

field i.8 rather icsarlized, Thee;@ ~onoiderations axxi the siaplicity of the 

relation between Row angle and velocity given by ehe R8andtl-Meyer 

eyagiapz skrow t b t  the problani crf super scnic seprated flow is much 

a2-haae amenable to solution Iaan iihe olalasonic p~obferr:, and all calcubtians 

t2mt b v e  been prformed aaiag &he C P O C ~ ~ -  Lseo n-~ee~cct lmve been for 

the fora~es  case. 

The Croceo-Loco mMzssi:lg theory i o  not il-e only possible way in 



which supra ted  and teattaebing f lows cara be rre;nl-ed. By mulriplying 

331 
the x-mon~enthlsri equatios, by as and tntegraging aeroao the B~uad8sy 

h z y s ~ .  an@ o b h i n a  a ecgqiea oi Pirgr-order rr.cra~nt sqtlialions, with the 

sr-az~ozx~cnt method (n = m .c. 1) ght~s provides n independent r c h t i o n ~  t ia t  

can be used in $.he fofornalulstion of m a  approxixirnaic anethod. In i-knc caGe 06 

lE! almched b c u u d r  y layers,  $anti7 , Pallowing an idea d J3:alc . does not 

laoe Eq. (&Ir but empidys a for~nuht ion in wikicb n = 2. H e  kharefore 

obminti a p l r  of first-order or&mry differential ~ ~ j b l ~ t i ~ z i ~ ,  ia~sg-d of 

t b ~  siagle diffeaential e q ~ t i o i l  asld alge braf c ~qlaaeim of the -%hlalhauoen 

and T h w a i t ~ s  meihcde. Siace T a d  does not ails@ Eg. ($), his me&& 

coaid be used beyond oewration and therefore sanstftat~s a gossible 

alterilate two-moment motbod fox i r e ~ t i n g  seprated and reatkchil3g aflows. 

An n-moment method LQP n > 1 o f i e i ~  the paesibllry of cial-actor- 

ising t h ~  velocity profile by nlore t h n  a @.single slaps p~ar~;r ie tar .  Tim 

uea of sroro than one ptaramet~t~ to cbracteaiee the ~ e l ~ c i k y  profile 

clearly implies an increase in tihe methematieat coanpZelzity of &he net&&* 

and can really be justified orzly by the failure 0.f one-ga~amater r~~ethods. 

Tha complexity of sewrated anti reataching flow8 sepggeats that a one- 

large extenr, an investigation aimed &t deterpniuiag whoghor or :lot t2.l.e 

use-prartleter Crocco- Lzes metb~d  is ~srtislsrctary $or treating sew>zrated 

and reattaching flows. 

this s t d y ,  only larnimr Lliowo witwit1 be eonsidered since the 

ps-esenb aim ie Lo emmifie relatively well-iznderstrpo& case& with :ha 

method to determine if the preeest fornaBstion i s  h s i c a l l y  adaqmte. 



Tkss a~ewsian of the r,~i6$hod to turbulent flaw@ i)@ di@ct%@g@d $EX %Leferenc@~ 

1 and L3. Also aaly two-amensiornatl eases w4lt  be cozrsidered in the 

ae spirit of keoping the eqw$iona as simple a s  pes tb le ,  b ~ e  the 

gerae~alieatic~n of the rriethspd to ax$-sgrmmetric f l m s  can be carxied out 

in esaentblty the game m y  a e  in Reference 16. addition to the above 

atrsumptions, it will sdoa be assun~ad for the preeeat tkat  che heat tsaxlafer 

to rh@ body is zero. The e>@ension of the naetPtod to include heat transfer 

is nat obvious. but approaches such am t M t  used in ixeferance 16 r x a y  be 

The pso blem of tw~-dim&~~sion;t% Laminar supex sor;i@ flow over 

insulatd b ~ d i e s  has been stPrdied both eLPcriar7enta~lyw and by Che 

Crocco-Lees methodZ0' ". QwliGertive agreement bemeon (heory and 

eqerimeat alas been achieved, but ghe quantitative agreement has been 

21 
unea'iidastory even for attached nowe where the asswnptions of the 

method are least open to question. In rhe present study, the attached 

region of flow will be irrvestigated first with the aim of de~err~xining the 

s s s o n  for the weviaus qantitative dieaggeamesst between theory aaid 

eqerimenl. Then rhe problem af the sewrated and. reataching regi:ioils 

of f l w  will be investigated. A. giaysical moclel ef seprated blows will 

b ddevcloped azld tsanslsted h ~ o  the larnguags ~f the Crocco- Lees niethod. 

Firpally several calculations of &hock wave-bznirrar boundary layer inter - 
action wil l  be carried out and sEzown to preclict a complex seprated and 

zestaching flaw with 8atisf'actor y quaatttatfve accusacy. 



%nee i n l p r a n t  cbnrnges in  eanfegts and fcrntsnt of the Cracco- 

Lecs method have been developed here, it i s  the purpose of t P l i ~  seseion 

to re-earnine in demil the phys ica l  and ra~athematical fornrxulation of the 

methcb. The flow i a  divided iatc W o  regione -- iaa sutar region which is 

ed to be essentially nou-rliesipstive, and an i n n e ~  region in a r j h i c h  

viscosity i~ aassunled to piety an important role (Figp~se 2 ) .  The extent 

of the viscous regioa fsr n3e~sured by the lengt?l, 5, which for the case 

of a body in B Ugh Reynolds number stream is the urjuat baundrzrgr hyer  

~hicb~eas,  and for a w k e ,  i s  the extent of the non-uniform now in the 

direction tsanaverse ro the extcmal flow dirclctionz Clearly, the definigicn 

of tb length. 6 ,  i s  areificfal, and physical qwn t i t i ee ,  awh as pressare, 

int@raeGon dicance, ete. sbaad not be hlisn~igive 80 the definition of 6 ,  

&% @ev@ra). previous studies using %he Grocco-Eees methodla 19-21a 

artificiatity of Zen@h& 6, was mt appreciated a d  studies weFa 

carried out to determine the proper method of defining 6 .  I$ l a g  been 

found in the present study and in the work of Gadd and kfotder2' t b t  

@l~sical qugntities do not depnd on the definitiora of' 6 a s  Long a s  r!re 

detinttion i s  a reasoabte one thabt is sensitive to velocity profile ahpep 

%E;~deed, for t3-m limiting case of weak h roowic interaction, wuch is 

diseassed in Mpendix B, i t  i s  shown explicitly amt several afferent  

definitions of 6 give identically the ~ a m e  result. 

Once some criterion for determining 6 i s  solectad, (;he q w t i ~ n c  

of 2~iotion for the v i s c o u ~ ~  rsgion can be written. The corfiplcte equagfens 

describing atache&# ~separzttad, ancl reatcaching flows arc $00 forn3;iiable 



to allow rnathenbaticat amlgsis, so arzkily ~ i n ~ p t i f e a g  a s s  

(;Q be made. The asswiptions v i i l l  L ~ O W  be linter%. btu% a &$:locussion of 

their validity will be posepized until Section V. The: assumptions can bc 

graupad roughly tneo two ciltegorie s dcperading cn their i~2-~prtatlce and 

idxorent necessity. $he major assumptions of tl~e rnethod ore as 

f~l%o%v s : 

( I f  Tim gradients of viscous ox Reynold@ atzesse~c in 2ho Plow 

direction are negligij~le coalpared with the static prea sur c 

grsdicnt 5.a tlaa flow direckian. 

( 2 )  The ~ I B E I S U ~ ( ?  gradient transverse to t h ~  streamE direction i a  

aegligiblc. 

(3) Tfie now is a ; t ~ d y .  

In adation to th@se major assursipttcns, tlre icllawing rieeogldar y a~au~:tpttoasi 

ilavc been =&ad@ in the present study in order lo slxaplifj the problem: 

(4) Tho ertarilal ilow i s  a. plane, isentropic, ~upersonic flow 

over a flat, adial-~atic wall oriented in the free ~ t r e a m  diaeetion, 

with the flow dtractloa at y t 6 given by the Prsndtl-M-yer 

2 @&tian. 

( 5 )  dorandtl n be2 is '~;.iity. 

( 6 )  Viscosity i s  pxpraportioaal to the absolute f en-~peraturc. 

(7) Flov~ angles relil'ri%pc to the wall are anall.  

( 6 )  The ga:as is 'bher~"~&Xly and caloricalljr perfact. 

(9 )  The stagnation ter~2paratua.e is constart% throughaut the 

V J ~ O ~ @  ~%Qw* 

[PO) Tlw viscous region is lamiwr. 



nnonlenttnn3 eqwtion for the viraccsus region in t&e x direeiion i s  

2, t shear s$saa& at the -112. 

Tha continuity eqllstion for the viscosls ragion can. be ~ ~ z i t & ~ n  a a  

p, e. density at y e: B 



ry,'itfa these bait ~ s s w ~ ~ @ i o r r s  a~xl eqwtioac, it in now poseibie 

"1 
E (?averageh: volwi ty  of v i seou~  region. 

zt i g  now co~~vsnf ant to Lngraduce same defialtisxzs to faeilfmte 

p1 mean1 density of the viscleus rsgiogl E 2 1  /a1 6 

The &finitlone QE pl aud T1 are msde, f'or eonvcnienee and so ther r~o-  

al~wj~miwl sigatficance is attribraiiad to these qwatitgies, eltcept COY the 

i;sivWral case of unifor~-~ flow cen&iiitione in ekw viscou~i redon. W :  also 

defirge tb6 t'ollctwhg c m2.~~eaiont qwnttti e s : 





These additional relations are af the Bame t y p  aa those employsd in fhe 

tngegral correlaEion mcthdcs cf 5h\vaitesi4, Rott and ~ r a b t r e ~ ~ ' .  and 

Gohsu and ~eslzot:~". ft should bc em sigced that the data necepmiary 

to obmin these correb$ion refatioas must con&@ fxom other aomrees, 

efther theoretical or cxpr imea l .  For attached nowe, dedaile% thear,retieal 

and experimental ateare amilabia, d i l e  for ssmrated fiowa, ozdp e q a r i -  

betwoen attached and separared l low da- will nece sairte sewsate approaches 

ia ~ b ~ ~ b i n i n g  tha car rekkion reliations ep 'ad k. in  order to avoid 

codusion, the dieclnaeoaon d E ~ G  psoblam beyond serwr%%:Bon will  be po~t- 

LPlformation is necegsasy in all regions of flow, and the apgarent: d i l f e r ~ m ~ ~  

in approach for the tvic ifow regimes are actabed by thc psesent fgncranse 

of separated flows. 

23 For aZtached news, a@ LEscaoraCical st&ies of ~h%v&ites'~.  Hovlra~tPl 
24 i 5  

&?aPknrf;g and n , anxi Wartree , and rhe sxperimentral seudy of aovo 

over an ell igae by ~ c h u k u e r "  provides deeilaci i n e ~ ~ p r e s ~ i b ~ e  flaw &a 

on attached boundary l aye r s  f o ~  different exterwl velodty dintributions. 

This demdied &la can. "s e~mr~ined with a view goward finding reltltioas 

c P *  a ~ d k i n ; e r m @ o f t b e m v s ~ i a b l o v K ,  w a;, and6whichslre 
B * 

einilar for $he several flovd~9. Sf such relations caa be iound, izt.terpolated 



curves for G1 . cf a aad k in  the K , w rn3 and 6 space can be aeleeted e * 

co represank f l ov~s  of the same general class, These iz2ter~lated curves 

are ~ k u z  "uaiver s a f  curve@ ~haracteri%tiC 0% t b 5 0 ; @ " ~ @ ~  ride &hods, 

$be errars iatroduced by ae1e~Bing l ' ~ n i v e ~ a a i l t  C U Z V ~ Y  axe not- 

obvious and are generally fouixd by cornpr ison wirh experinlent and exact 

solutions. Lf the correlation curves for the various expesinients and exact 

~olu t ions  can be made fo agree closely. the correlation method ahould 

give good results. Therefore, one problem is to try to optimize the 

correlation relation@ to give sucil agreement. (See Appendix Do ). No 

~yeteniatie procedure for such an optinlization is known, and the general 

n~ethod of deternlining correlation functians is to t r y  the simplest functions 

consistent with theoretical and experimental kncwledge. T'be general 

axparianrce of correktigltn mathods @Gems to be tbt a  kin frictim 

correlation can be found t h t  is quite 'WuniverEaalu, while the other 

correlations are not ae sa~isfactor yo 

Vqith chis discussion of the concepts;. aims, and problems in 

obtaining correlations for gdl , cp , and k, we now proceed to the nlethods 

by which they have been detefmined in the present study for the atrached 

part of the flow. In order tc determine the correlation (related to the 

=hean temperature function of Reference 11, i t  is neceEie&ry to introduce 

the Sgewartson transforn~ation'~, reh t ing  a compressible boundary Layer 

flow with a prescribed variation of external velocity to an equivalent 

incompressible bounda~y Layer with a transformed exterml velocity 

The Stewar t e ~ n  transformation is defined by the sela tions 



where f are incompre~raible coordimtes, x, y are the associated 

eorrxpressible ecordinatesi, and the subscript t refers to the ecrnpressible 

free stream stagnation conditions (chosen as reference value@). In Ref- 

@Fence 1, i t  f B d o w n  t h %  if ek 18 &ha eamprs~aible velocsf ty  in the x direction 

Thus K can be emlared from the incompressible equivalent of the com- 

pressible f law.  It is also shown in Reference 1 ilmt 

and from the definition of Ti given in Eq. 6 141, csas finde that 



For a uniform viscous region, bi@ aud ti.** = 0, sc LUt f and K appcosrch 
-2 

unity and the relation for T ~ / T ~  i s  the familiar one-ciimcnerionarl result. 

The dedationtrsr of f a d  K from uni%y &elreby measure, in a ceretaih sense, 

 he nun-uniformity of the velocity profile. 

1% will be convenient to define an alterate! function %or fa defined 

Since F and K are defined by incompressible boundary layer psameter s, 

for every incompressf ble velocity profile there are unique virlueo ob P an& 

K so that the correlation that i s  sought ie 
T 

It ~hould be noted that the compressibility effect@ a r e  sevsa ted  out in an 

explicit way, since E and X do not depend on we. Thus the probleri: of 

finding the G1 correhtion essentially reduces to the determ~iluation of the 

I?( L 1 correlation. 



L;url~lg the present study i t  was noticed LExas, f ~ m .  a given value of 

eiae Torn2 factor, M where H - (6i*/6i@4) the n-,can-ten2perature 
f "  i 

parameter f is aictxirsa4: for a finite value of d while Kgenerally b s  i "  

*the prowpezty tbt it iillcrearres monotonically towards unity with iitcreasing 
t 

6i . By choooing b .  such that I i e  n~axi~lmm, ogle obtairts a simple 

analytic expression for f( K ), -.vhicla is 

f ( K 1  = K~ (See Appendix A. ) 

(2  K * H) 

For attached flow%, zhe function F( 1 derived frorn this maximization 

mathod agreee fairly well with $he curve obCPrined frcm Fakner-Skan 
4 8,) 

soluticns when 6. is defined by ther condition 7 = 0.99 (Figure 3). 
It 

43 

This I?( K ) relation also agrees clc~sely with exp~imental  turbulent data. 

Mo physical explanation of tjne euitability of this F( ,E (F) relation been 

ximurrh method of defining 6 .  not only leada to a simple 
li 

F ( K  ) relation, but also gseatly helps in obuining rhe n:ixing rate correla- 

ricn, ir, from experimental studies, such a s  the Schubauer ellipae experi- 

ment. The reaeon this of defining 6 ,  assists  in reducing experi- 
30 

rryrea@%, is because i t  i s  posatbBe to calcukte the extent oi the ~ S C O U B  

layer  using well-defined oxperirl3sn&al integral quantities (Eli and Gi*). 

instesd of a velocity ratio, thereby determining the w a s  Ilusr in the 

viscous region at given streamwi se station withcut large experim.ental 

uxkcerminty. Inasmuch as k i p ,  determined f r ~ ~ i  experin~ent by iinging 

aifererracee in m s o e  f l u  between a40eent flow shtians, snrall error  a in 



SKETCH A 

(Hi + 1) 
6i = 6i* - (A- 14) 

(M; 

0 Experimental Point 

- Faired Curve 

determining thi: area under a velocity profile ctlrve can easily make it 

impossible to deternline mixing rates. (See Sketch A. ) 

The other two correlation relatloas neeesaary to eomdpl~te the 

forn~aal8l%ion of the Crrscazo-Leas me"Lod can be ob2tabiaed by uefng the 

Stevvartsoa traneformation Eq. (21)] to eliminate corripressibility effects L- 
and then carnilzing known inearripre s sible solutions. FromA Eqs. (21) and 

For incompressible flow, 



'L1ID 

"1 = pt Uie (tii - ai*) f 0 

Pa sxder  to obtain the fuas&;*foat form Qf the csr-rel&tioa ~ebtiozxg, 

similarity solutions, slach &a those obBined by ~ a l k n e s - ~ h a ' ~  b v ~  beern 

cmpi~yed. For such solucione, ra. F" and 
2@ 

whese C is a function of the of the velacity p ~ d i l e ,  i. e . ,  C = G[/cc ). 

l e  i o  ahown %la. Referenca I x b %  

A ainiilar treatment can be given for the skin Priegion ~or reh t ion .  

R~feretrtce 1, it ahown t b g  

D( X ),Ae 
and c - (I 

Cb = aOD 
0 g 34) ' i ~1 

d 

where X ) i ; ~  a function of the shape of tire velocity profile. 

$a pl-evioaa studies using the Crocso- Lees =lethod, the G[ /tl 1 and 

54 X ) relatione tbr hawe been used were  those obeiained from the Faltuler - 
a ~clutiona. Hiowever, by inveetigating ~ t k e r  theoretigal and expesi- 

menal  r e ~ u l t s  Pcr at&claed bormdary layers, i t  is doland that a l t b u g h  the 

Falkner-Shn relatian for ef appears general (Figuse 41, the relation for 

2% is ~ m t  mfveaeal. In fact. the 2-alknes-Slian mlues differ qalitatively 



ilaughly @peaking, G( ) fol- ths Falfaer -Sari aollations is e s se~ntibslly 

crsne'ang from separilrion to Ebe Biasius Row coaditicm, vd$ile the other 

theoretical oo1utional.l' 23' ''' 25 and the asper imenral Scbclbauer ellipee 

data2' show a trend in wldch @ ( X  ) drops shagply goisg iron1 the Blasias 

car%&tion ta ~ @ p ~ " @ t % ~ n .  

The raason t b t  ithe C( X ) correlation for the Falkner- 

solutions i o qwi i a t i ve ly  differ eglt from the other bolzaar y l aye r  solutions 

 ray be seen by expresslag the definition of k oc Ulst tike far 

begween Falhcncr-Skan flows and the other flows i s  bsought out. From 

@qoo (8). (1  1). (ZO), and (21), ave obhin 

b 

For a generat separating Rorx, 

for Fa1beru n flows, the h a t  term i s  zero, and ikde rar~lalning two 

S d n  case, it is fouad that the first term, which iu ipositive, is the Ldrger. 

j [ ~  1s thrrcfore seen t h t  Eher term that is missing in the X3alkner-Stan caee 

tends, in the general casa, to redwe the =-slue of k as ~eparat ion i 8  f 



approachetil, tho ratio, (ai - ~ ~ * ) / ( 6 ~ )  . i~ about 0.4. In Figure 6, tile 

variaficn of vJith &stance i s  shown for the Schuba~es ellipse 

velocity distribution (Figuze 7). The germ jd/d f )(61'/6i) i~ essentially 

sera asap the Bk;asiils Rat piate condition, but becorriee appreciable near 

sepxatton. PC is thuaus cl&ar why the C( L 1 ~or reb t ions  Car Isa&a@r-Okan 

and other B ~ u n d a ~  y b y e 2  Rswe axe sinlilar near che Bbsius  condition and 

are different near seprati-ion. This difference i s  aseocis~ted with the 

pl%,hysical 2a~t t U t  Falkner-Skan flows are sirnilear flaws which do not have 

"historiesu and 40 not r e f l e c ~  fbe essential fbange in P& af the velocity 

profile prior to sewration, wi~i le  the velocity profilea of the other boaaar  y 

layer flows chrlnge in the streamwise direction. 

As discussed previcusly, thr: definiticn of t h ~  length, tii sholrld 

not dgccl: physical quantief es, giwh as separation pres B l a r e @ ,  interaction 

dishnces, etc. However, the earrelation functions E'[K ), C( K ), and 

Z)(K ) are strongly dependent on the n;..ethod of defining 6.. T b i ~ ,  dependence 

is seen in Figure 3, where for lamiaar flows it is Paraad t h t  the F ( X  ) 

curves differ appreciably depending, for example, on the value chosea for 

the U(6$)/Ue ratio. The 9 e ~ o r t  of sensitivity i s  found in the C( K ) and 

D ( k  ) curves" 19* It should be emphasiaed tWg siszce the method of 

ddidag Si i s  artificial, no phy siclnl sigaificance can be associated witls 

the Eac~ khat differen8 nnetbds of defining tii lead to  different n 

~ I u e s  of f ( K ), 6( K ), and D( K ) for the sams vetocity profile. It i s  

tl+-,rel~re clear tbt the choice of the meehcd of defining: &i is *aatamount 

to chcoaing a meaod d bookkeeping. Hawevex, i t  eian be eqac ted  t b k  

&%ysical s'atements such as "the mi2dng ratas between sapariatio~ i i g % d  



shock i~~xlpingement ihlcseaso to high values", w i l l  be ~eflectod nu23ericallg 

for any b e f i n i t i ~ n  of 6 These colz~idesaticans of the a~f i f i c ia l i ty  of 6 .  and f 0  1 

the non-uzliqueno s s of the F( K ), C( K ), and U( X ) r miations xz3alze i t  

eieax t wkat i s  to be sought is a self-conaiatcnt roethod of booKkee~iag 

iu wlich the behavios a f  flows which are of the a r n e  general type can be 

utldsrstood and interpreted v~4rhio the Crocco- Lees frax:lswoxk. o s  as to 

allow reliable and relatively ~iniple flow calculations and, analyses to be 



of sepsbra.tiora can be approachad in aeveral different way&. Hn 19.99. Leas %Q 

treated the problem cf shack waveelami~mr boua*ry layer interaction 

20 using a modified vcn 2 d r n d ~ -  ,Da usen metimd. Gheng and Ba*ay a 

21 Cheng and Ghang . and Gadd & E I ~  ~ o l d s r ' ~  b v s  nx8de similar calcarions 

using the Cracco- Lees mietkod, with correlation functirsna derived from 

stu&e e showcd qwLitJtiv~?~ agreement with expalmeat, but the qusmtiative 

agreement wae generally gocr. 

Hn the preaent ~ L u c Z g r ,  the psoblem of two-dimcnsioral 2aminrrr 

aupeasoaie nowe up~tream og geparatioa -8 been treated by twc methods. 

Fir st, the Gohen-RcahoCfco methodib was modified tc introduce interaeticn 

bc;.&w@en the ebemal ead viecoas sows by e q ~ t i n g  tho "a4-ernal flcvg" 

direccicn wi& the g~adlerit of LIas dieplacement thieknea~. (Sea Appendix 

C. ) Sejecoo& the problen~ kas bzen studied u s i q  fhe Crocco-Lea;@ m s t M  

w $12~ correlati9sn f u w & o a ~  ~ b a i n e d  by the ximuam principle, and a new 

C(,C rrktion barsed on boundary Layers that jmve ""Iafmrlories:?. 

In order to determine ehc? sensitivity of thc chesretieal r e ~ u l t s  to 

Che 9;( X ) rebtion, calcrPlstions were psfo+;zaed for a separating flow at 

a free stream h%ch n m x ~ b e ~  of 2 . 0  and a sarpration aeynolds number of 

5 2,87 y, 10 using oeveral CQ K ) selaticns, correspoading to the curves 

s b w a  in Figure 5. The F[ X ) xektion used in the caleubtions wac the 

one obtained by the maximum primiple, an6 the a( K ) relation used was 



value at / r 0.633 to z e z s  at = 0.630. the Ea\~;~ai-tl: valze of X at 

aepratfssaz, ghus, 

Ik' the vvarible, ( K ), is defined as 

tiae Crosco-lee pi e q ~ a o n s ,  when linearized with regag6 $0 Mack n m b e r ,  

i M M + E and E < < ibl a. ,become (See Apwndtx 23. ): 
ca ik, 

wixe 22 B 

r r fm/p = ??I$& ia a kind of local Reynolds nwx-k$er a 



%a calcubting a seprating Plow problea.1. the free stream &Tach 

nufiber, PdfgC i a  g ivm an& the quantities La K# Pg &and C. are first pl~tced 

as a functicn of K . A wlue o i  r is chosen ak the sepration point, 

whish t o  equivalent to selecting :.he vihltre of che seg&sation Ze?i.n~lds 

nuMg2baz. Then "tiat v a i a d ~  6f & at ~ e p r a b e i ~ s  @re C ~ O B B ~ Z ~  and the 

t i m ~  are nunnerically integrated in the upstreaas~ diractiosl. The sorrecr 

sigeavaiue for & at sepratisr is obtained whera $.he integrated gwnti t ies  

approach the weak hype~sonic interactican l i ~ n t t ' ~ ' ' ' ' ~ ~ ' ~ ~ .  The raoultc; 

arc then traneiormad k c k  into the plxytrical pbne using- the continuity 

eqwtiorr and wrforming a single qudrature. (See Appe"ii2g E. ) 

The pressure diatributlons obtained b y  four sue& integrations are 

showas in  Figure 8 along with a caleulatfon of the axxpe case using tha 

Cohen-Reshoeko method. The point at which the p e s s u r e  starts LO r ise 

i s  reughly independent as the 6( /C ) relatiorm. XL is found aai the Lilrger 

the value of C ( K  1 near sewratioa is, the larger are the %%lues cE the 

fie~aration pressure x i s e  and the sepration pressure graiiiant. Also showi? 

in Figure 8 i o  the aloge of the oxperinen*dl preasure dketribution i%eas 

a e p r a t i o n  (See FFglsre 9. ) at thc Barn@ free staeilrn R4ach number and 

roughly the -me separation EZsynolds aw2ber. By coz-ilp~ing the erperi- 

xfiental a d  theoretical cepracioia pressure  gradient^ one sees i ;dt  even for 

Case 23. ths theoretical sepra@iorn pressure gradfoni i a  too great. In order 

w ob+bin a theoretical lowur lixrdt f a x  t h ~  separation presstare gsadie:~g, 8 

ca:swla~ion rvad performed in which. G[ K ) war, a s s m ~ e d  to be aero 

CkLFo~hout she range of iategration (Case F) .  Although this assumption 

is in  error n a r  the Bhsiuo cosi&iZion, it is;  seen to give a sewretion 

pressure gradient t i s t  is in gusci agresrfient vdth the eqerinientsrl m h s .  



cc I ~ ' f i i s  resk~lt s~aggeetu that C( K ) is assentially zero for some, as yet 

w~determinad. range of k. Thc rcason ;Wt only t b ~  eLverinrcilaal 

sepratfcn presrsure prad;rent and not the pre aewe distribr~tion is em~mred 

with calculaticns i s  seen in Figure -where exyerimentai reeulta ob~lraed 
7 

by Cbpn~an, Kuehn. and Earson are cammred with t i%~se  of kinen, 

8 Greber. Trilling, and X h r h n e l  at the same free &$rani Bd%ach n 

tely the saaxe Reyl~oids n ber. The experimental pressure 

clistrib~icns have similar shapes, w i a  the major differewe being a 

8lkiPc af tihe dt@tl~"fbution~ in %he str v&aa d$r@@tion. %he zeaaen the 

distributions are shifted i s  qudte clearly the arneereainty in datermining 

ejegeration p in r .  &Q PIG experiments of Chapman, Ecueha* and U r  son, 

ihe ~jepar~ltion p ~ i n t  was detegrr~ined by ern oik filai technique, whils in 

the oxperirnents of tEalJ;fnen, e t  ai. the separation point was obtained 

from Senton tube measuremefidl;. Pt i s  not el-r which, if either, of t h ~ s @  

nleaods selierbly deternrines the sctparetfon point, especierlly n i n ~ c :  the 

interactiorl disance ia which thr separation pressure rise take8 phce in 

many af the experin2ents i s  ~ n l y  a sr~iall fractio~l of ;m h~ch. Those 

@rialentat difficulties have pxsvented the use o i  experimentally- 

determined *ram eter e t b t  tlep@ilrl directly on the detesmi~ation of the 

~epareition point for cm~parison with the res&e of: theoretical calculatima. 

In Figarc 8, for e pie, the exprimen'al segaratican pressure, a a  

~r~easlared by the two met&&-s, indicates only that sel;raration prossurell 

calculated using a F ~ l b e s -  Sican G( X ) correlation are t ~ c  high, 'oat does 

not d i s t ingu iok~  ail2ong $he ather C( X ) relaliozls. 

Also, the uncer'iaintp in locating the sapasation p i n t  prevents 



. -* 
, f - ;*%rx,:~c t;, aE iieait separaii~3n fa;: ~:ilich C ( k  ) can 

7Cs iJc: ;~:i equal to 2cru. this: reitnoa, ar: appx-oien~le C ( K  ) carve Laas 

heen selected for thc prc werat calculationrs. The C( K ) relation that: I z a ~  

!>qea ehoaorl i s  one t:tt  ~ ~ C T G & B I ? S S  .$if3,@81*Ry ~ROU.? .  the B I a n i ~ s  value of 

K ) aL X 6 0. 6<?3 io zerG a i  the ,,iaxation mZr~c of X ,  which i s  

K 2 0,630,  i, e ,  , 

@lcuLai;iotxs of $he preasure d'tntributions up to separation for twa 

ciifferent cascn of shock x~ave-1amiilar boundary laye2 interact iol l  have 

been carziad out using thiis liuear C( K ) relation, and the results are 

s;%owr; in Figures 10 arid 11. It is seen that the agreement between th~orgr 

and eqeriment i a  quite gmd for the case sham in Figure 10, while i t  i s  

Zcss; ,mtls&etosy :or the casc sham in Figure i1. The Eicatter cf the es-  

perin~ental ulam iin the latter case i s  agpuechblc, aad i t  i s  not cc ra in  

Y$-hcther Chc disagreement bet%veen tl3eo~y and cxperimc?.nt i s  significant. 

Based on these calcuW~ioole. it  i s  felt tihat although the linear C( & ) 

relation i s  not an opCk;slurri, i t  i s  capabie tpf prebickiug pregsure distri- 

but ion~  for a sepsrati~xg flow with an aecuracy t I a t  i s  consistent w i M  the 

precjenb s a t u s  af experimental &a. 

rev-led that the c~ajor reason Ear the previous disag~eezient between 

rheosy and experiment f o ~  twa-%lin~ensional lizsriizar duper sonic newrating 
B,Zg;ii*22 saws is that the now i s  claractauized by low vitluss of C( L 1 anear 

~lep?ration, and rlot by the FaZkner- values, T b  d@tarw~inait;i~a e;sf aa 

approximte C( ) relation wkieh seems to be consistent with Low @peed 

and sespzsonic data. ccn~pletes, albeit rougMy, tile solution of the p*oble?m 

ap to the sopration point, 



The prcblem of geprateri and reattaching Rows m u ~ t  be rreated 

in a manner tkat is different from the way in  which the problem up to 

s e ~ r a e i o n  was studied, since no detailed theoretieat studies of sewrated 

and reattaching flows sxist. In order to focus on the w i n  aspecta of the 

problem, consider $be case ~f ~ r h e ?  steady two-dimensiorsl intoriastion 

between an incident cb l i~ue  shock wave and the 

on a flag plate (Figure 1). La a fictitious invi~lcid fluid, the @@tic 

preaaure cn the plate surface zeraains consMnt up to the p i n t  of shock 

impingemant, risea suddenly at this point tc Chp3 level predicted by the 

Rankine-Hugoniot shock relaticms, and remains conaunt  thereafter. But 

in he real fluid, a portion of ithe ovcrall pressure rise i a  conlmunicated 

upstream through the bounbry  layer. Unless t h ~  shock wave  is rather 

weak, the laminar boundary layer separates from the surface upstre 

CPP shock impingement. The static prsaeura distribution has the familhr 

doubly-inflected shape, with the region of pressure rise extending over a 

distance equimlent tc hundreds of boundary layer thickae saes. 

In the fallowing paragraphs, it  will be shown t b t  in the region 

between sepration and shock impingement the in physical process i a  

enrichment of the viscous rsgioa &rough maas entrain- 

ment from the exterm1 inviscid flow. Thus the flow i e ;  "prepred" for 

the additional presaure sf se during reattachento The resttacheat 

psocsss i t ~ e l k  will  be shown to be an essentially isentropic, innviedd 

recsn_prc~saion in which IFPLOSG entsainasent bo not important. This 



geneml picture of the f isw beyond sepra t ion  is c ~ n s i e t e n t  witla expr i -  

mental otagervrations and welt-sslablished pilysieal cmceptg. 

Zn. the present discuesion of the f2ow beyond sepraeion, a key 

concept is Ghapmaiz'~ idea " of  he "dividing (or zero) 

wk~ich a ~ a y  be briefly expressed a s  follows: far steady flow. the fluid 

ra~asttcle: wixirich is adjacent tc the wall at separation z2ru~t be adjacent to 

the wall at r a t t a c h e n t o  $hue the faow i s  div"jied into two Z O Q ~ S  -- the 

first being a b y - p s e  ficw which include& all the Raid upstream of 

se]~aration, and the secoad being a circulating region of flow that always 

consists of tbo same fluid particles, if diffusion is naegtaeted (Figure 1). 

l[n order fo see how the didding streamline idea contributed tc 

%he present understandlag of flaw k y o n d  sepraeion, it i s  r % @ ~ ~ s m r y  to 

00 

p = constant 
C 
e 

SKETCH I3 

* This concept s also discovared independently for tar bulent 
aeprated and reattacldag flows by Korst, Page, and Child.. 30 



:: ' 
SKETCH C 

discuos brisny a special separated and reattaching flow $$at was invesri- 

gated ttraorsncally and erper imsa~l ly  by Chapman &ad hi@ co-woskes s. 

Hn a theoretical studyz9, C d p w n  examined the raixiiring region t h t  i a  

foi~orrr~eol when o uniform streiun psses  beyond it semi-idinite rear.bard- 

facir~g step. (Sue Sketch B on p g e  32. ) This f low codiguration is of 

csurse simitar ta t h e  of a. parallel jet strean3ing into a sagnan t  miass 

of gas. Ch.?pnr.an calculated the velocity profile of the mixing, or tranei- 

tion, region for $ha, cage o% consant  pressure and unifarprnl flow at. thc end 

of &he step ,  i. e . ,  6* = 15@* = 0, rasing the ordinary b o a n a r y  b y e r  

oqmtions with the u s ~ l  no-elip b o u n a r y  condiiition replaced by the eon- 

ditlan %hat the velocity be eero at y = - @. 6 b p  n f s  sesu9it is a 

siai i lar i ty  solution in. which the velocity along the di~riding str eapnliae 

i~ 0.587 of the ienitbE uaifasm valwity, and se%g?,ain8 ~ " k t h i o  value 



Ex the cl~pierinienmi srudy of zeatGchi12g b t w ~ k s  by Charprnaes. XCueka 

7 and Eras sun a Blow soniiguration waa  devised which app~od~na ted  the 

boux%&sy contiitlaas of @lapxn*an's ~hcoretieal study, so that a separated 

Cow w i t h  a knowdl velocity profile was generated. The geometry of ihe -- * 

model, ehowrt in  Sketcl3 C on pago 33, insured a t 2  essenfially zero thick- 

?less baundary layer (&* = 6** = 0 )  at the beginnia~g of the a o p r a t e d  zone 

aa-xd. a. consrant pressure mixing regiori up to tho bcgixzning of reattachment, 

which is indicated by the appearance of comripression vraves. The semi- 

iniiazite asi-ct. cf the theoretical nkodol was appxo3;irilated roughly by a 

steep slope ou  he model gate jus t  downstream of selai.ation. The 

t~cwxated flow k1u.w genrented was then allowe4 t o  rp,atQch on a flat 

~?da 'El ,  ax'ird i$ was L~and t W g  ths ab~e+ved pzeseura ~ i a e  &3~jh~f~g reatach- 

rrasnt earresponded to iseneropio deeelaration to rest a i  the Ruid along 

the dividing str anll inc.  These aqerimenCs t:heref  re iaxdieats ClaG 

zeathciulmenl is an isentropic psoceso in which vietoas efxacto do nor 

noem go be imporant. This conclusion is further oubstagxtiated by tba 

lac: &&UP. t h ~  reatacbment pressure sir;@ was obsesved to be indepertc-ent 

of Reynolds nurrrber;. Thus, it  is seen that the nlost inlportant pheracmem 

iu the reattach2ent pgocesti are the deceleration of the flow an& the 

contraction of ihe V ~ B C O S ~ S  region, and not mixing - - a fact which will be 

inipear&sae in bker diecue aione. 

For a general sewrating flow* the velocity profile at st?mr&bioa 
\ 

i3 of course far Pram wZssrjr;l, 5u",he dividing atrea~21fsae eoncapt is 

o&il% valid, The C F P ~ C ~ ~ Q S ~ Q ~ ~ P  Us& z31ifiag i~ not in3psxtarat 6u~:ing rsattschw 

rcent sh~i i ld  aleo aplaly :or amre general reattachll~g flows. T h e ~ e  con- 



ditiong, and the expesimeil6btl obsarvaiion t b t  beyond eeparrarticn the 

static pxesoure rises monotonically, det@rmine to a large extent the 

rrmajos physical Is&ancnnea tbl; musz osour iar g e n e ~ a l  oeparated and 

seataching flows. Consider the fluid prtiele just above the dividing 

line at the separation p i n t  (Figure 1). Thie fluid particlc ill 

general kas a negligible velocity, so rbar i t s  @&gation preseure i s  

essentially eqaral to  the satic sew*apat$on preceure. According to tho 

avtding otreclinline idea, this Said prticle has to reartarch at a, higher 

sl;9gmticn presourc. In o r d e ~  for t h i ~  raetmctmlent tc occur, work 

must ba done on this fillid elenrrent, and it i o  clear t b t  ilxie work is 

d a ~ ~ e  by the external flow through viscoua momentunz tapa-rasfer. b 

other words, ths e&erHlal ROW doe@ wark on the Quid along the dividing 

This loss of- mornenatuan ~f 

the externs1 flow is reflected as mixing, cr maso entraim~ient. Frarkx 

the realUcharrent experiments of Ghalpman, ;Cueb# and U r  son, it  io 

elear that this viscoua monr;cn"ikq transfer n~uist oceax prior tc the 

beginning of reattac place in the region 

betweerm seprpraticsn and the beginning of reattachment. 

This physical pieture is Parrher substanti&ted by tha experirrients 

d mkkinerm et a18 a where it ie, found ttmt the reatUchmsnt preseure rise 

incras;es with the disfanee between sepaasation and @hack imnpingers2en; 

(Figure 12). Since viscous moment tranapgt io envieion& as "La 

essentbirl physical nleebnism in this region, i~ f s  clear r b e  the longer 

$he region, the higher the stagmcicn pressure of the fluid eleaiient 

adjoining: the dividing streamline, and therefore $he l3igher t h ~  reattach- 

ment preesure rise necesary  La stagnzate the add k l o w  the dividing 



:,ear~?Una, 

the above dis~rrssion~ it i o  clear that the flaw ;-z&ion 

bcfare rmtgaclunent begins is a zone in which midng i s  the domixmat 

pixy sical phenonkeraon. &;hp~n81l, in h i s  sirnibsit y solution* finds t b t  

fia viscous mixing zorse grows roughly three times as fasi a s  &a 

equivslient BZasius sow, inc%icallng high misr9ng ratos kased on a 6 which 

i;icl&e s the exterwl armd iaduc ted flows. Siaca Cbpt~lan '  s aolution 

a s s w - ~ e s  t h t  the velocity i o  always positive. the velocity profiles do 

not contain the reverse Elow regionas which are laown to exist far 

separated and r eattachgag flow a. Tker er'ore, 2 % ~  accurate qmntitative 

concluoians can be drawn irorn Chaprfian' s profiles. Sowever, the 

~ ~ l i r ; l t i v e  conclusicn t b t  the: cjixing rates beyo3%d seprat ion age high 

will be aeea tc be consistent with tins ideas and motiwdg of the present 

sttudy. 

Xi3 Chap~~8n's idealized ease. the reat#aa~c~bkenl pzessure rise for 

kxziiiim+ flow is indepelldent ob Iieynclds numbcr because &c Plow velocity 

of rhc dividing streamline is always 0.587 of the free atream velocity. 

TIM length. scale of the reattacbxient process muet alga be independent 

eaceatially inviscid. Mowover, we ~ b l l  ~ h c w  by a sir~~plified enpilysis 

tlazat for general separated PLcawo the length scale for thc ~eattachrr,er,t 

pgocess depend on F-eyaolda n beg through 6,. O n  the other 

hand, certain iz2c~portant features of zhe flow upatream of the beginning of 

reattac3Iz.a:xx-d are  virtm1l.y independent of Reyn.olclc auccbber and of the 

agency causing separation. 

The physical picture tllat has been developed for separated and 



reattacMng sows nnay berefore be s 

separation, the flow i s  essentially divided into two p r t s  by the &vi$ing 

strean2line -- one part includes all the nuid upskrearn of s e p r o t i ~ n  and 

the orhsr part is a stearly circillating flow in which the fluid elements 

, continbnausly uzldergo a cy~ l ing  action. The tauid along the dividing 

streamline is accelerated by viscous mornentwi transfer in the region 

between sepiaration and the beginning of reattaclunent, and is thereby 

'?preparede for the forthcoming rreattachmcnt pyessure rise in  which 

fluid along the dividing streamline i s  ieentropically sagnzated. This 

physical pffture i a  gmntikatively translatad into Crocco- Lees janguage 

i n  &t next ~ e e t i o l f ~ ~  

In re-examining the forrriulation of the Crocco-Lees mathad 

kys nd  sems~atian, it  bscaaxe claar e b e  in order ts detsrm~iitar: the 

corsclatian relations quntitatfvely, experimental T ~ E I U L ~ B  must be used, 

since no satisfactory theoretical are available. The case of shock 

ixlar.  boundary layer interaction has been ~clocted a s  a repre- 

sent;adivt: esmple  of separating and rearmchin@; flows. since? i t  embodies 

nlany of the gezleral characteristics which are observed in other areprated 

flows (Figure L ). The experiment selected to provicle the necessary 

deailed data was perforriied at a free  stream 

4 "B at a free stream Reynolds nuzribes per inch of 6 x 10 (Figure 11 3) . 
Tlris particular expszimen"iae chosen becauae of the small ~catter of 

dronl experirfisnts of shock wave-laminar boundary layer interaction, 



so t.bt the flow is most apt do be laminar thrcughcut the whale iilteraetion 

regiaa, 

The phynical pa~arrletcrs of shcck wave-laminar b o a ~ & r y  layer 

interastion a;ay be readily determined f r ~ n - ~  the limiting Lnviecid case, 

ie ee a 23 m. The writmeteru are elearly the  f r e e  ~treaa: conditions, 

the sIxosk impingement point, and the incident shock strength (or overall 

pressure ratio). The principill f a t u r e a  of shock vsave-laminar b c l a n a r  y 

layer interaction ere a e  follows (Figure 1): (1) the pressure rise .up to 

sepra t ion~  ( 2 )  the pressure rise up to the plateau; (3)  the preesure 

r i ~ e  during reattachn~enti aa;d (4) the length scales of the various regicne. 

The preeent task $8 to relate the correlation fulaetions, F( X ) and 6( K ), 

in the regions dawnstram of separation to these main features of the 

now, in the hope that the "universalH behavior of the functions can be 

de~srm~fned, * 
Since the flow codigitration that 161 produced in the case of shock 

wave-lami-r bolandar y layer  interaction i e  so cosslplex, it i s  instructive 

to discas,oa q~ali&tiv@ly w&at dcterrgrdnas the various pxmes@2;bre riacs and 

Zengr;h scales. Accorciing to the previcus physical discus~ian, ibe 

sepa~ation point n ~ u a t  move upstrean& as the overaU preeaixre ratio i s  

increased. This response is due to two factoss -- ( I )  the separation 

7 pscssure rise increases a e  * l o  sepnratian I?&YIXOIC;S n~xz~ber  decreases, 

a& ( 2 )  a s  the diaCance betweon separation and shock impingement i s  

increased, the energy of Slirid lparticles along, the ciividiiag ati*eanAline 

* The sicin friction i s  srz;all in  thie region, and i;( K ) is talcen 
to ba gero between sepgration and reattac e~% i o  a Eirsrt approxi 



i s  ge:~uratly increased, $Bus I-iiitkiag i f  possible to snxpport a larger 

ent pressure r i s e .  Therefore the locatios 06 the separation 

paint i s  iniizxatcly cofiaectcd with the various preseure r iueo ,  arid the 

flaw responds chiefly to an overall pressure xsstia by properly au?jucttng 

the p s i t i n t 1  of the separation point. 

It viraa skiown in the pre-Yiaus discu~sio:~ tlwt the vartour regicns 

af sl~ozock wave-letlrtnar bouscbry b y e r  i~lterractiail are coi:nect.ed and t&r 

the prc$blen-& ntuot be treated a a  sr whole. By slaking several! sinmpliflcationae, 

i t  is poosible to treat the whole shock wave-lamilaar bouncbry layer inter- 

action problem anaalytically, alad thereby o b a l n  explicitby the effects of 

Biiach and Reynolds nurnber s on the r r i i n  featurers of the flow. In $hi@ 

section, such a simplified treatrr~ent wil l  ba given and in subsa;quent 

paragrapi3:la the meth~lo.c will be refined to enable nnort. accurate deter- 

;p~*sk-atisn of the de"Lils of the 3s . s~~  

It i s  clear ffonk the pkl~sieal d i s c u ~ s i n n  given i b :  Section IV. 1. 

that the preEsure rise duck-i;ag reattachment is dcterz~iinsd 1a.ar~ely by the 

mosfieixtu~n of the srisconc tage,x at shack inipii~l;cr:,ei?i, i. e . ,  tasgely by 

Ksha Atthough the rriixing rate, or C( K ), ifu elqeeted to rise contin- 

uously fa-un: zero mar scwratiurx (SecPi~r, III. ) io a high value uiB~trcam 

of shock impingement, suppooe one takes 6( K / = = cozstaat for fhks 

zegion. this mm2 spirit, at f irst  we ignore the presailre rise between 

separation and slmck impingeziie:~il. The rnornentum eqt:ation, Eq. f 15). 
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Theze$o2*e, 

(1 - K )m = constant = {l - KB)mB 8 

I t  i s  Peen from this exgrressiora icsr KBh t b f  when mDia > > ns 

X sh -t 1' Xq. (43) thus clearly shows t b t  when ihu high onergy 

external flow mixes with the sehtlvaly low energy viscous flow, the 

levels of the viacaus ~egdon are raised. 

Thie same behavior i s  preaent in constant pressure wake flows, where 

%Re low atagmticn pressure@ of the walw regiotx are iner eased at the 

expenbie of the elsterml flow. 

Fsani Eqs. (161, (20) ,  and (331, we have 

and by integrating thio aqwtion t r c x n z  aeparatiotl to shoeQGk impingement 
d 

u~der the i t~~~acp t i aa~ l  of E O B B ~ ~ P ~ .  C( K )  and uniform external Row, we 



where A r; 0.44. Frcm Ego. (431, (45), and t.161, it foXlows tlaat 

Therefore, Eq. (47) show@ that ksh depends niainly on tha prodwt 

C (nx /xB)  and orily very waakly on Wch and Reynolds awnber. an 

expkieit relation between seattachn~ent prestaure riee sad Ksh Can now ba 

developed, by @electing a e q e ~ l m m t a l  eaa6: of shock wave- 

b ~ n i ~ s  boundax y layer ii~tepactlon* an& maswr ing  the reattac 

pressure rise and the length saiio, A x the value of i~ obtained. 

Th ie  value of C i s  then regarded as uunive~sal", a d  is employed in the 

a w l y a i s  of all oCher separating flows. 

Sa far the F( K ) relacion Ras not eatered the ciisenasdon. However, 

the presaure rise during raattaclm~eni: and tke l enga  oi the rcatac 

gone depekxd to sonie exten& on the F[ K ) ralaticn. (See Section IV. 2.3. ) 

Sinca there are five ~rigiual dependent mriahles (P, X a we m, and 6 )  

a& f i ve  equations [ ~ ~ s .  ( 9 )  LO (1411 , the fir st rough approximation. 

i. e . ,  G( K ) C , we D consant, between separation and shock impinge- 

n;ent speffiea a wique relation batween F and X in this pegion. By 

elimimting S and m from Eqs.  (16), [ 8 (20), (331, and (421, tha 

following differential equation for F( k ) resuls: 



This e ~ " a t i c a  can be readily integrated ta give 

&en ths! 459 /C ) relation g i v ~ n  by a. (49) CBQ be e d ~ b i f e c i  for a range of 

~ l u e s  of . By using tfntt Baadtl-Meyer sslatton and tile separation 
7 

p~@63ure c~zrelatfon of b;&bpSan+, Kuehn, and iar son , it can be shown 

gt  is goand t b t  the values d 31 for the cases st%&ierd in rhe present 

invcsfiga:ation are of the order of Eq. (51) shows t i s t  % i s  rather 

ira~ensitive to &YrJleh and Xe)laold 

bctuw five, ec t h e  a Faage (PE 31 from 0.1 to LO n-ay ba expected tc cover 

a iairly wide experimental range. The F( kf ) curves for this range oP % 

are given in Figare 14. and shcw Lit T( ) i o  appraxknstelg consmnt 

for vaFatues of on order of unity. This analysis, while admittsdly 

crude, suggests t h t  F( ) may be. appr * ately cofiatanl in the region 

bamaen s e ~ ~ a t i o n  and s k irixplngement, o result which  is^ opposite 

P 
to an@ previously a e a ~ ~ b e d  by Csccco and b e s  . This question will 

bc discussed again in SecLicn PV. 2.2. 

Pf i t  is assumed klat P ( X  ) r ~ t  ins coneant In the region between 

sewration and shack implPngement, then Fah - F, . The determiwtion of 



-a r a:ld K - f k t h e  sta~ting p o i ~ t  in the F- M n e  from which sh a iro. 

rea tmebent  starts. Since the terminal point, the BBlasiua now con* 

dieion, is also known, the tr;sjectory of afthe reatacheat  process ia 

hrge ly  determined i(t has been a s s  @d the ~ ~ & ~ 9 = h ~ 8 ~ ~  t,-a~@;;ctazy 

i s  a &txaight line in ehe F- K plane of the farm: 

where a and p are cons t& depenr2ing on &he mluea af sad Ksho 

fk can bs r ~ & & l y  s b w a  tk"d 

- 
N 2 3 (z /zb) zz 1.'74 , since F o F 

8 8 sh 

Ii. the p ~ e ~ e n t  simplified analysis, we? sbL1 tenative1.j ass 

equation. Eq. (15), i s  negligible so that 

equation for rcretaehing flow i o  

Since F zz a X + p . Eq. (55)  can be irategratcd to give the result 

bes far d ~ w a s t r a n i  af the interaction 

and Kb Blsraiue mluo OE /Y i. 0.693. 



Z v a l ~ t i n g  this expcasessioxa for at the shock inlpinger~ient point give9 e 

D;ubstltutiag E q s .  (53) and (54) into Eq. 9571, we obtain 

- 
7 , P). , K g  Z b. F b ,  Fa.  and M m p n r e  kno C O ~ @ ~ Q E @ O  F ~ Q ~  

isontropic fiow relations, we have 

~ q .  (61) show8 that PGf/p,h is only a faaceioil of LJ whfch, in turn, is 
f- "I 

only a fw~ction of theproduct ~ ( A x / x ~ )  Eq. (59 )  . Thu~l by m e a ~ ~ r i n g  1 1 
tihe reatti?chment pressture patio, P,f/p,h and the lengths a x  and x 

8 

for a ai12gle experiment oi' &bock wave-hrr.inay L.ow~&ry Layer interaction 

(Figure 13), the value of i e ,  determined. 

This simplified analy uie can also be en~ploged to obtain approd- 

alate expsessione far the Mach anrd Reynolds a ber dependencaria of the 

bn2parant features of @hock wave-lsrnimr bo ry k y ~ r  i n t ~ z a ~ t i ~ n ~  



where the ~ubtlcript o denotes eonditione at the point v~hcre the pressure 

tirat s a ~ t a  to xise. This funcLiotlal rehfion has also been obtained by 

sough theoretical consideratione'' '' lo* 3P . Since the par 

P,g/pa = (P,f/P,h)(P,dpo) i s  a constant that fs determined by the 

incident shock atrength far a given interaction problem, the following 

From Eqs. (59) and (621, it  Is seen that the only owne in Eq. ( 6 3 )  

are x and x since e is now aers 
Q 6 

7 setation between x and x htas h e n  found experinkentally and can be 
0 8 

.ustifilled by rough theoregical srglunants 7, $0 T h i s  eqreos ion  is 

\ve deff zae 

tbelz by using the experirr-.en%at da t a  of Ckapmaa* K u c b ,  an& U r s o n  7 

and EQ. [c-81, it can de s h o w  t h t  



Solving for x and substituting the rcsult  into Eq. (59)* we obain the? 
8' 

cerandi$ioa tM% 

TIus  E#q. (69) determines the grctlue of the quaatity x d x  sb " sad 

xah i s  a given prarceter, the value of xo & f t e r  xb is daternxiner?, the 

mlue o.f pG3f/pah r psh/po 8 and r can be readily conlptpted fronl Eqs. 
8 

(&I), ($a), and (66). 

The rttsraining major proprty b be deteraninad i s  the reatmch- 

mane lengeh staler, A x,. The order cf magnitude d A x ean be 
h. p& 



whese ash is obained by ths mandtl-hi~it-ber relation and 19 a function 
r -I 

only of 2% 1 See Eg. (57).] . and SyLr i~ found fron-1 Eq. (B-13) r~ be 
8;sh 

This equation can be guC in the ri,ore explicit f osnl 

w i ~ e r e  msh/wAs . M, , xs/xeh w , and (1 - 45 @/d ) can be obained 
sh s 8 

fron: E ~ B .  (451, f5S), (bBJ* (701, and (PA-26). Using Eq. (C-81, it can be 

This eim~plified analysis shows t parameters upetream d 

sbsock irripingemen~, as well  a@ the reattachment pressure rise, ore 

(711, (731, and (74) %ht the Regmclds n ber =riation a i  A xE is rougfnly 
B 

This vsriation i s  obtained by noting that the quantities rilsh/ms , 

h~ , and x /xsh have omall Reynolds a 
I 



oppoGe mck othe.e+. TIXUG termt s&/x, w s c h  $8 proprtfonal ta 
b 

* A. 
Ee a i s  expacted $a account for most of kfieyfi~lds bex ar ia t ion  

visscaue region is sui3je~teid tc a given overall greohiure r fee .  This 

rlLiscusgioi3 i& not only uszful i a  showing ths t y  of Che x~b.vhole integaction 

W L ~  kin b r t ~ i n g  out the W c h  and Reynalds nuarzber dependencsej of the 

.~.aiious feature8 of the flow, but aalsa aids in an undersmnaag a8 the 

mape refined anslyeri~ thiat i a  given fn the next slabaec$i.ion. 

&a the dmp2fifified awlysie, attantion i s  concentrated on the pressure 

rise CIarfng ~ e a C t t l ~  ant, aPhd the prassuare rlsc between ~ i a p r a a o n  and 

~ b e k  impingemega i p i  neglected. By em@oying Cba apprraxirnations tist 

G ( K  ) = Can& F( X )I = Iig , one ean BOW eye, b~aciiaild alcutafe the pr@;esuc 

riee f r m  eegrslrat2on up to &PC pfatesu {figluto 1). Hov~~wer ,  if a single 

mlue af 4;( K ) r i s  smployed in Ehe region begween sepration and 

simlack inx@ngement, ona finills 

sepraeion and the piateau i s  tao b r g e  when c a ~ i p r e d  with  the selected 

shack %'%rave-Lsminar bouoriiar y b y e r  iateraclton eqeriraiclxk Thus, in 

o ~ d e ~  to obtain the proper press%?@ riee 14 tha segio:!: between separation 

and $,he pbteau, we introiueo tl2e s&ditiorul refinement of a two- step 

C( /C ) curve, i. B., 

@ ( X ) =  GI Cpr x d x s x 
@ I' 

c ( K ) ~  e, ~ Q Z X ~ Z  X Xeh a 



\vhere x i a  the disance f r a a  tka. leading edge at wlaici~ calsuhted .r 
pressure gra&iient is nsgligbbly s 1 1  and %a tl3erefor e the beginning of 

the ptat@tzu ragion (Fiw;ure 1). 

Using a kwo-step C( K ) relation for the region between stspration 

a ~ d  shock impingemoat, an attunipt bar been rriade to dotrjrrziine the 

simptified analysis given in  Betion XV. 2. 1. Two linectr P( K ) relations . 

p a s i n g  through the pcinr (Hq8 a X ) h9ve been assme&* one wiehi a 

posiave @lope a$& the orher wi?iz a nessive slop,  For each F( /L ) 

reLatiozb a g i v ~ n  valw of GI yields a que p-reosure ~ i ~ e  fzom 

gayaraticin to the ykatabn if th@ coarditions at a&@ espratian p i n t  are 

npci6ied. (See &&ppetulix B. ) By cor~2prfng che calcukCad pressure 

zisa v~ith the pressure rise obee~ved  in the selected shock wave-t&cdimar 

b u n a r y  hyer  intaraction experiment, the ~ l u a  ctf C1 ccrresponding 

ed F( ) ralation I&: determined. The pzeoper Ff K J 

sgrtatfon and C value can tkea bs f ~ m d  by i l a t ~ h i n g  the iclxgtl3 g s ~ a l t z ~  B 
af tht: ccl~~puted and eseperimeiltal pressure diatributione. 

The F( /C ) relations usted in these exploratory ealcukticns were 

(A) F( /C 1 r 3.891 K + 0.424 
(B) F( K )  = I", t 2.85 

(C )  I"( X ) - 1.926 + 4.063 
and the corre sponang values of CI which appr n~ately yielded the 

expe%im1en@l prCGwra  x b e  W B Z ~  

(A) = 7.94 

(B) Ci " 11.0 
(6) = 13 .7  a 



SKETCH D 

The retsults of the caleulatians are given in Fi,mre 15. It =high$ appws 

ththt Gage M gives bet ter  agroernant with experinaerat. buk i f  a more 

accurate C(k: ) relation had been ueed, the curves in Figure 15 would be 

i g l  S ~ e t ~ h  3. T~uB,  &he 148dt8 of ehia 

regioln beyond sewration sinee the length scale i s  nab very sensitive to 

the choice Q;b r'( K ) within the liniits EteCincd by the three c a s e s  A. B* 

relation requires a =lop.@ precis@ analysis. "Lhe separaCion paizit 

could ba unequivocally deternxtned in an elcpez.imer:al case, and the 



pressure dietribution accuz-szely imeasured, tile F(K ) and C(K  ) cwvos  

f o ~  the region between sepra t im  and the #ateau corkld be determined by 

assu~lling linear F( X ) itad C[ K ) rebtionhi, with &&a slope CPP the curves 

a@ p ~ w ~ e r c r  s, and finding the best combination of s l o p e  to  n;aCch the 

observed pPeBoure astributiou. Because of the preseili expa~imental 

uxlcertainties assocUeed with r h  location of the ~epratioa p in t ,  such 

c~ptirr~izing calcubtfoa~ are grob.bly prenxature. 1x1 :he present studgr, 

the st~~p1,lsst aenraurription hag  been &mado, ely that F ( K )  = Fa in this 

region. The ~assunlptioll tlzait F - F .  i s  f ou~d  LO give good agreement sh - b 

hctv~een theory and expr ixz~en t  in the reatecldi~g zeoi?c, and azay hc some 

;ugtificacioxx for assurriing that lp( K ) = F in the wfiolc regian between 
8 

L? the phteau ragion, the conrJCant presswe results given in t l ~  

simpjlified analysis (Sectloa XV. 2.1. ) casl be used to calcil2atc X a d t h  

the sepration guntities designated by the sabsczipt s replaced by the 

vmntities 8t the beginning of the pbteau region, danigmtcd by the 

subscript E Thug 

G 2  
= valw 0f G ( X )  for I; 6 x 6 x a r @h 



The mlue of CZ i s  determined from the reattachment preesure rise in 

the selected case of shock wave-laminar bounclary layer interaction just 

as 2: was determined in the shplified. antllysis (Saetion IV, 2.1. ). 

A s  !wurs been mentioned several time@ in the previous discuseicne, 

it is believed t b t  during reattachonant viscous effects are soh important. 

The win justification far this belief ia found in chc ra tackment  

experiments af Ghapnan ,  Kuelsn, and Lar son. However, othez con- 

siderations atso suggest, but do not prove, tbkt VLBEOUS P-iUioment 

y not be impshank &ring reattachment. VJhen skin friction 

is negligible, the momen equation can be writterm a s  

d X  = [ l -  X )  

avhere f h ~  first farm on the right hand side gives the increase in X 

cauead by mjurlng and the second term represents the decrease in K 

associated with a paeittve preeerure gradient. The mixing term shows 

t b t  fax a given change in as flux, the eftect on K i s  directly 

proportional to (I. - K which sssantLaUy measwe8 the relative 

fractional impsovamsnt obmlned per unit of high enlexgy rfiass, and is 

invsrsely proprtiontirl to rn, which measures the "inertiatt of tha layer. 

Thg gaao of thg mixtag torrn 6 0  ehe pregsure gradient term can be 

emlurzrtcd for a specifie case if the value of @( X ) is h o m e  It is 

foulsa for the three shock wave-laminar bundar y Letyrex intaractfcn 

cases eaaculated in thia study t la t  the ratio of the mixiug term to the 

preesiare gzadient term ip ,  about 0.1 @( K ). Therefore, i f  C( K ) is of 

the order ofi miry, the effect cb mixing i g  small. 



the p~esezi*, analysis i t  i s  asstznled, on the bas is  of the above 

-5 b cinscussincs, tEat n l ibng  i s  rleyligible cluring ~eattac2ixeat and that Cqg. 

(55) tE:~ough (57) arc valid. Therefore, by meaouring the reatacheat 

pressure rise in the selected shock xqdave-larnimr boundary layer intor- 

action experiment. the =he of 

r 1 
L ~ e e  Eps. (61) and ( 7 5 f . l  Since all the q ~ a n t i t i o s  desfgriated by the 

e u b ~ c r i p t  1 have been determined by the integmtfoa of the equations 

Prorri sepxation up t o  ene beginnl~xg of the ptateau, and bxr= ( x r  - xJh) 

can be nleasured in  'the selected everiment, the mluc of CrZ i~ deter- 

n~iaed, and UP been found to lave ia, vatu& of 15, 

ID. order to obtain the pressure Ctistribution in the physical plane, 

the continuity equiltion i e  used. Since 

The expLicit integration of the equation determining x i a  carried out a a  

foP1sws: 

(E- 1 3) 

This eqqation can then ba written in the form 



6 - Mesh r, K (f + f )  

Proas1 this egmfion, i r  follows 

it can be ah&pmf t b t  

By substituting thic expreosicsn into Eq. (79) and using the results of the 

integraticn of the rr,ome;ltwa eqrmtio;l, the? vglue of dxBh i n  deteirs.irre& 

for every mlae of K , and therelore for ewer pr value of M, anti p. Since 

x is a known parransetek of the Xiow problen?, the pressure distribution ah 
Lor a reattaching flow is determiued by the above eqvationa. 

Hn ihe above amlysis of reataching Rowe, it has bean ;asswrdod 

&h5Lt: the F( K ) rabtion is a linear one joining the poiate (Bygh ,, K gh ) and 

(Fb e K ) , and that C( /Y ) i s  negligibly ss3all. I& shead be enlplaasiaed 

E b t  these ass prions are to be regarded only a s  a fir st app~oxin~ation 



e~ true actual F( K ) snd C( K ) rsiatiows far reatwehing flows. Pt   it^ 

that between Row reattachment and ehe l&:?.siua 

conation, skin f rigtion becan2e s ix~=~wrtant and the poa;Ltive pre a s w o  

gradiant tends to zero. 80 that the relative impor&i%ce of mSi3:iag 

incseases. The general momentm~ equation i s  

equt io~l l  I s  &e 

sattdPcMrrg flow. Since %he moment: aqraationa at b0E18 end@ of the 

t k t  $hie equation is appxoxh%tely correct th~oughout the region. U 

ption i e  true, the p~oslpuse rise is ffected by the s h d -  

'aneouo advent of sMcin frktion and mixing, which seeme poseible since 

rPle effect8 of these two ph&mmew on K are in ~ p p s i t s  &rcctions. 

the parts of the interaction that are far@xest downrptream, the 

fiatness oP the pre ssurc distrf bution prevents an aceupat e detesmimtion 

af the onset of ths region in wl3ich the eifects of mixing appar. 

Figures 16 and 17 show the F[ K ) and 6( /cC ) trajectori~s for a complete 

ci~olock ~ave-knni~mr bclmda~y b y e r  intaractioa Tbc last p;trE of the 

C( K ) trajectory, i. e . ,  the re@on beween reatrack~ient aild the Piml 

Blasiua condition, is schennAatically indicated a s  a *shed curve. lLC is 

&aped that accurate e-rimanty in the do stream parts of &oek wave- 

taminar boundhary layer interactfane will embLe the determiration of 

t M e  part of the C;fK ) trajeetcxy. It is clear howdiver that the ass  

6f X ) = O for the regian do,wzlstremg~ of shock impingen2ent gives excellent 

quantitative agreement with experiment for the pr.ajor p r t  of the pressure 

rise. (See Figures  13 and 18. ) 



In peviolns sections. the Crocco-Lees me thd  Pae  been re- 

e3amined and appradmette carrelation functions for the attached, s e p  

arate& and reattaching regions b v e  beterx determined. The Crscco-Lees 

n~ethod, using these new ccarelation relaticns, is now applied ta two 

wtdeh C Q ; P I B S ~ ~ ~ S  to an axpertmental casea , is calcaged for a tree 

~ t ~ a n :  PJ&ch number of 2 . 0  and a sclpration R e m l d g  naaAber a): 

ape peeently arvallabie at eke hgrporsonic conditions of C a s e  Be 

In Figus  18, tb results of th@ calculation af m s e  A are corn- 

rimeat. Et rshouLcl be empbsiaed t l s t  the parmeters 

of the problem axe the fzee sfr conelitiens, the shock imptngsrnent 

p i n t ,  and the overall presseve ratio. Pt i e  @can that the G r o ~ c ~ - L e e s  

methad, xdth the new correlation fmetions, predicts a p e a s w e  riistri- 

ba ian  char i s  in good general agFeenneat with e z g c r i m a .  It shculd be 

notad thst the preseure ~ i a e  up to the tjhock impingerr~errt mint is 

accurately detarmined, and t&t esrcellent agreement i o  obtained tor 

the ~eattachlng wrt of tha flow. The agreemeat with experi~Aent in 

region n a r  s s ~ r a t i c n  is only fair, and it is act kno ~ ~ h a e h e ~  

riment are signifiwnt, or caused 

by the scagter of the expesl~isnial data. In any event, i k  i s  clsfar that 

EiEe metlwd is able to pre&cr a ~oa~pl icatad  si?wrirtod an& reattaching 

nc~w with good qwntimtive accrrzacyy. 

The s e ~ u l t s  of the hypcr sonic calcufation (-so 18) are shown in 



Figuses 19 and 20. Again the pasasmeters of :he probla;;; are the free 

streanl conditions, the s h c k  Einplngemen& p in t ,  and che ovc... ~ l l  praesure 

tWt of a s e  A and ghat of the: everirnent uscd to  determine G1 aad C2. 

T h e ,  Uzis calculation ec;senthlEy @haws the effect oT high Mach n 

The general sbpe  of 6ha praseuse distribut5on is seen to be simibr te 

CPte cacaee; &own in F t ~ u r e s  13 and 13, iuclicating timr no pathological 

clzangeg have occurred at the bigher value of M8ch numbor. 

ining ibthe Crocca- Lees metbod and cornparirxg the 

x e n a t s  of calcubtions with experiment, it  i p i  a~apsopxiata to discuss the 

vaz i~us .~sss-euxiptisns t have been -lie in formuhting the methat. 

ptiona are listed on p g e  12, and subsequent 

ones, ~tuch as the F( K ). C[ X f ,  and D( K ) copretation relations be yoa% 

sepazation, ara discussed in Section ni'. Since t h ~  aeverrioue initkl 

asswnptions largely stemmed from atmehad boundary Paysr theory, 

they age maialy in qgxerstlon only for the separated p r t  G Oi the fiow. 

For Zersr,imr flo\.i, it i g  believed that sss-e$~.~agtioa~ 1 t o  10 are r e~esanably 

accurate for seprated regions ad. da  not i n t r ~ d u ~ e  sezious ezrorlp. 

Tke igmrance of the F[ X ), GI X ), and B( K J relations for the eeprated 

region i s  considered to be far Elore s e r i ~ u s .  Xn kixe pi.ogont study, all 

the igllr~rance of the separated part of the flow i~. gathere.' iutc the con- 

stants, C1 and C 2  , ;and -tire agswlcd "( K ) relatian. 3% is clear t h t  

*altil tfie F( X ). Cf X ), and @( K ) rektions for the seprated and 

reattacking p r t s  of the flow are firmly established, either by tixaory or 
a 



The sgreement between 'theory and e,uperlrsaent for the case af 

shack wavc3-lar;Ji2ar bouadary hyer  bxtesaction does nat prove t b t  the 

rxiethod will  ba appliearble t~ general sepaaraced flow@, since the mlws 

of C1 u$. C2 were obmined fn.axi %he 

the =me fxec? stream kta~:l n \ w a l ~ ~ .  However, the semr&tion Reynalds 

rimant use& to dctern~ine GI a ~ d  G2 

d f f ~ r e d  by over an o r d e ~  of ri~agslilude, and i t  ire, baEavad t b t  Phe ~ b -  

s e ~ v e d  agreannent i a  thereferre i3igniiieaut. $a oxder tc establish the 

genaxallky of the rrrethad, c a l c ~ k t i c n ~  cd cther sepztrated f low geog~otriea, 

~ u c h  8 s  those obtarined w i a  fos~gazdand r ea~msd-facing steps, corners, 

g*agnp~, cerP;~ata, ate. maat be a s x i a d  ~a sad t h ~  r ~ s d t a  af ~ L C U ~ & $ Q ~ B  

ccrnparad with axpetrimeat. Since vninny experimenml eCtat3feiii of oaparated 

Row have bean carried out recently, it appears that siach a. calcrafation 

pragram can be used to detesndzince ehe general v a l i a t y  oS ihs a ~ ~ ~ p t i o a ~  

t have been employed in the present study of shock watve-bminar 

b o u a r y  liayer ineewcLions. 

Th@ ~xtensi~a of Gzocca- Lea e rraetkkod to oeur bulent ~ Q W  

probleans hers baegl considered by several investig&t6tCorsi' 19# and somo 

sueerjss has been achievod in casee involving no kctat transf ere The 

p i2yg i~~ t l  madel developed in the present study for isaimr separated and 

rmt;*t~ncbing flowe seems to $a alrproprhte for tihe tusbulalent case also. and, 

fk i s  believed thae  the msne procedure@ tbkat b v e  been used in the hnlirmar 

ease, csma be ~mployocl in the tuabbdant case, and an awlogoua forn~ulation 

The in&2&u~tion of h@Z$t. ~ Z ~ X X : B B ~ ~  r ~ D $ Q  CFQCCQ*,L~@ @ 

ima been tried far imdar flow by Gadd and t%lder2'. bug rather ~ o s  



q ~ n t i a t i v e  agreement bemean tlaeory and experiment was obtained. 

T ~ P  rnetk~od by which a d d  aslci Rolder included heat tsansfer was not 

in~dicated in their paper so t lat  i t  i s  difficdt tto determine reascns for 

$be discrepancies. One gossible wiry of inksodwing heat transfer into 

the Grocco-Lees method i s  ta ernploy an addIti~lza1 f ~ i  eter, arnalcgoue 

16 to the watl  eathalpy wranetep, S, , of tho Cohen-Reshotko method . 
However, on the basis cl: the prsi~ent study of the adiabatic caee, i t  i a  

believed t b t  I would be, inappropriate tc use g a i ~ l a r  solutions of 

Skeference 16 to obtain the nAitd3~g rate correfiation relation. Rather, 

i t  is felt tlrat an  additiowl set of golaticns viMch describe bounar y 

layers with Hhiatoricsu must be generated. MowarU1'~ linwpirly- 

decreasing external velocity distri burion, bas e 

to ~ b a i n  a a ~ h  ookutisrzeD The exgenslon of the carzektion rehtions 

beyoad separation y pose soale diffleutry, bag the prescnt adiobaeie 

resags should permit rkre determination of appro 6 6  aea-adhbtic 

~ o s r  elations for this region. 

Thr nz-moment metbd, which was deiescribed in Section i s  a 

&sect maretical technique far troating sepiorated and reattaching zone%. 

Since t h ~  ~ s c a u s  region beyand seg$ration seem@ ro lave two cbracter- 

istic liaagthe, i. e . ,  the d i s a n r e  from the wall to Eke dividing streamlina, 

'w c , and the distance f r w g i  the dividing skreaantine to the esdsmal inviscid 
# 

6 , a two-moment n~ethad with the iategral condition that 

a typieaz s e ~ z a t e d  and ra t taching flow 19 B cbiallenging problem. but 

there is nothing in prtncipl~ to px,revent i t  frolr~ being carried out. 



x@-em=~amti09~ G T O C C O - L ~ ~ ~  ~ g ~ e t b d  

previour, quneitstive disagreemeat between theory and 

the region of fiaw up to soparatian was raused primarily by rfie improper 

ad. A new C( K ) correlat-ion, b a e d  on low-speed 

thecratical an& experimsdal and on sruper eonic ex-perri~~ental 

rs~ults,  We been developed and faclad to be satisfactory for accurate 

mlcubtian af twc-dimensional bnxillg~ super   ionic f lows up l o  ~ewratioa 

hinother result of the etudy of the Grocco-Lees method for atached 

regions of flow &ha+@ been the demonstratian that the length# 6 , i s  

artisicial aad that ghysieerl quan~eies are no6 sensikfve to the definition 

sf 6* 

A study of sepa~seed and reattaching reglone'of flow k a o  led 

to a gxyarical model which incorporates the concept of the "dividingu 

atreiur.line and the raauiulte of elrpesimant. Aecorcling to this physical 

Lranrspcrt is the eeraefntirrl mecharnisnn in 

the zone between sepwEion arnd the beginnine; cf rwttac 

ent process is, on t8e contrary, an ereaentially inviscid 

prrpcass. Tlaia physical model b s  beapl translated ingo Crocce-lees 

' hnguage using a semi-empiria8 approach, and approAvate C( /Y ) and 

2?[ K ) relations b v e  been determined for the separated and rsatbshing 

regions. The results of this a ~ l y s i s  have been applied to the problem 

oE simck wave--imp boua%&r y l aye r  intaraction, and nagiefactor y 

qwntitaclve agreement with experinicnt has been achieved. 

The presene study, if i s  hoped# also halped to farmulate 

more elearly the major problems that must be solved in order tc 



establish the validity and gene~a l i ty  of the Czucco-Lees method. PC is 

fell: t k t  tile formulation of the r-r~ethod up to separation i s  now satisfactory, 

althaugh not o p t i r n t ~ ~ ~ .  Beyoiad sewration, i t  i s  believed that the =&in 

pbemm22ena are under stcrod* Lilt that snzany of the present xesults, such 

as the F ( K  ), C( K), and D{ K ) rc'laticns, are to be xegarded only as 



1. Crocca. Lo and Lees. K : A h3i.uj~a Theory tor the Interaction 
Between D i s s i ~ t i v e  Flows and N ~ a c l y  Isentropic Stranla .  J Q U ~ F ~ ~  

Ule AeroaauTical. Scieace~, Val. 19, No. 10, pp. 649-676, 
Qctobsr, 1952. 

2.  Goldstein, EL : Modern E+evelopmenta in Fluid Dynamics. Vol. X, 
OxP'ord Unfq~ersity Press, tondon, 1938. 

3. Osmtitech, k;. : ME: ~ b l 6 ~ w g ~ b e d i n g m g  van Grenzschichten. 
Proceedings of the Fret burg SJ-nlposi gs-sm Bsm%xy U y e r  R e s ~ ~ ~ c B t l ,  
pp. 357-367, August, 1957. 

4. mat, Do E.  : An Experimental investigation of Regione of Separated 
-&%%=% F ~ o w ~  T N  3505,  1955. 

5. Liapn~nn ,  W. W. : The interaction between Boundary U y e x  and 
S ~ O C ~  $.V&BT@S Ha Trba8iop*~ Flow. Jour~.ml$, of tba $ A e x ~ ~ ~ i r ; i % : 8 ~  
Sciencas, Vol. 13, No. 12, pp. 623-637, Decembex, 1946. 

6 ,  A-cksret, J. ; F e  ott, N. : fnvestfgations af 
C@mpre@sion t3 y myere  in -so& Mavirmg at High 
Speed. NAGA T M  11 13, 1947. 

7. Chapman, D. R. ; Kuehn, D. M. ; and U~ar son, H. X. : Investigatloa 
of Saprated Ffawsl in Supersonic and Subsonic Stre-1s with 
Enipbsie on the Effect of Transition. N A G k  Report 1356, 1959. 

8. Halcicinen, R. 3. i Greber, Z f Trilling, L $ and Abarban~l ,  5. S. : 
The Iaterec+acrion sf an Obtfqae Shock 18Jave with a fmr Bou%%chrg 
Layer. H A S  &ie?ln%e, 2*%8*Sq%'t, Maxckb 19159, 

9. Gad&, Go E. ; Pfolder, D. W. ; and Regan, J. D. : An Eqerinlental. 
&%ve@tigation of the ineoractfon Betu7esn Shock Waves and B o u ~ a r ~  
Layers. Wapoceadigxg~ a" the Royal Society Lond~n, Series A, 
Val. 226. pp 227~253. 1954. 

10. Lees, L : Intaractton btwaen the Larnimr Boune&r y Uyaysr over a 
P h ~ e  Surface and an Incidelxf Oblique Shock Wave. Rincetoa 
Udvcr  dty, Ae~omutical Engineering Uborator y, Rewrt 143, 
January d 4 ,  1949. 

11. Ho[onda, 24. : Theorakical bvestigation csf the Lnteractiora betweell 
S ~ o c k  Viaves and BaunclmLry Myex@.  Jourxtal of tha Aeronsutical 
Science@. Vol. 25. No* 9 1, p p  667-678, Noverr~be~, 1958. 

12. Gad&, G. E. : A TheoseticaS fnvestigation ol azzinar Separation 
in Supers~aic Flow. JcwnaL of the Aeronautical Sciences, Vol. 24, 
Xodo. 10. pp. 759-771, October, 1957. 



13. EJohlbusen, K. : Zur & ~ ~ e r u n ~ s w e l s e n  Intagratia~x der 
DiBerentfalgleichaag der hnxi,saren CrenzeePPlcht. Z. a. &to Me, 
Bd. 1, Heft 4, pp. 252-268, Auguet; 1921. 

14. Thwaites. B. : Apgrorsirriace Galculaticu af the! Unni*ar Bownary 
Eayer. A e r o ~ u t i c a l  Quarterly, Yol. I, pp. 245-280, May-Fsbrusry, 
1949- 1950. 

15. Kott, N. and Crabtree, Lo F. : Simplified iaminar B~undasy U y e r  
Cdculations for Bodies of Revolution and for Yawed Wings. 
Sourxlal of the Aeronautical Sciences, Vol. 19, N o  8, pp. 553-565, 
August, 1952. 

16. Cahen, C. B o  and f i e s b t l c ~ ,  E. : The Compre~~@ib%e Eami-r 
BowdiPr y U y e r  with M e a t  Transfer and Asbitrary Bassure? Gnadient. 
MACA R e p r t  1Z94# 1956. 

J 7. Tani, L : On she Apgroximate Solution of the Lduninar Bounarqr 
-yes Equations. JDUCR~Z cxf the Aeromutical. Sciences. Val. 21, 
Mco 7, ppm 487-504, Jdy, 1954. 

18. WaLz, Ao : Anwendung dee Enasgiesatzes von Wiegqmtardt auf 
einparametrige Geschwinagkeitsprofike in iaminaaer Gr eneschichcen 
Ingeraieur-Archiv, Vol. 16, pp. 243-2.68. 1948. 

16. ~ ~ O C G O ,  Lo : CQB@%&BSB$~QAB 8%3 8 ~-BQW~;%&FY u y @ l  xae@~p 
action. hroeeedfngs of the Conference on NLigh-Speed Asronautic s, 
held at the Polytechnic Institute of BrooWyn, Janwry 20-22, 1955. 

20. Gheng, 5 L and Bray, K o  N o  C. : On the MiuLfxing Theory of 
Crocco and Less and Its Application to the interaction of Shoclt FYave 

inar Boundary Layer. Part 1. Generals and Formulatioa 
n Udvar sity, Departnl ent of Aer cmautiesl Eaglneeriag, 

Repert 376, OSR TN 57-283, May, 1957. 

21. Cheng, S. I. and C g X0 . : On the Wxing Theory of Groceo 
and Lees and Lts ApHication to the Interactiou of Shoek Wave and 
Eamtnar Boundary Layer. Wrt If. Resollte and Bocur3sion. 
Rinceton Univar sit  y. Depsr*cmsnt of Aifronautical Lnginaering, 
Repopt 376. AFOSR TN 53-3, Novemkr, 1957. 

ZZ. Gadd, Go E. and Holder, D. W .  :, The Behervios of Super sonic 
Boundary Layera in the PJresence of Shock V'aves. Institute of the 
hercnerutlcal Sciences, Paper lNco 59-138, pxessnted at the 7th 

epican Aer~~%uki~af Goderams, a t s b e r  5-"8 ,959. 

23. Howareh, L. : On the Solatfan of the Eamimr &m*ry -;aye% 
Equations. P r c c e e d i ~ g s  a f  the Xoyat Society, Series A, Valo 164, 
January-Febswry, 1939. 



24. Falkner, 71. kl. and SZ9;.a;i, C. V:. : Some Approxirnatct Solutions of 
the Borndry  Layer muations. British Rapohts and Memcranda 
soo 3 P.pril, 1930. 

25. &brCree, @. Ro : A Soltxtion ti the Eaundary Layer Eqat ion  for 
Schubauert s Qhssrved a-~ssure Distrf bution for an Elliptic 
Cylinder. Aeronautical Research Council. It.?eport 3966, 1939. 

26. Schulubauer, Go B. : Nr F~oT~! in a Sepra f ing  b a m i a r  Boundary 
Layer. EEhiCA Report 527, ipp 369-380, 1935. 

27. Stewart son, K. : @err ek t ed  Lncornpre elslble and GompressibPe 
Boundary Layers. Proceedings of ~ b o  R o p l  S~ciety ,  Series A, 
Yol. 200, pp, 84-100, December, 1949. 

28. Wayes, W. D. and Probsteih R e  F. : PHow - 
Ac~deslrrir: X?ras@, New Y ~ r k  and Eondo 

30. ZC-~orst, II. N. ; Page. R. W. ; and Childs, M. E. : A Theory for 
Daoe FJressures in Transonic and Super sonic Flow. University of 
akinois, Engineering Fape~imantal Station, Mechanical Engineering 
Dcprtnrient, TN 392-2, March, 1955. 

31. Gadd, 6. E. : A Theoretical inuestig?;stiou of the Effects of Rlach 
Wm~ber ,  Reynolds bar, W a l l  Temperature and Surface 
Gurvature on Laminar Segaration in Supersonic Flowo Report 
NQ. PM 2415, British A. R. 6, , June, 1956. 

33. Lees, E. and Robstein, Et. F. : Mypereonle Viscous Flow over a 
Flat mace. Princeto12 University, Aeronautical Engineering Lab- 
oratory, Report No. 195, April 20, 1952. 

34. &nit& 14, Me 9. : Ernpsovcd %lutfons of the Falkner arrd Sican 
B o m a r y  Layer Earntion. SWZ Fund Paper No. FF-10, hrlarch, 
19540 



for the: atmched p r t  of the flaw. Pt i s  shown in Section a. t h t  

Solving for ( ~ ~ / 6 ~ ' )  from Eq. (A-21, w e  obtain 

Substituting Chihi cqustion lor &&/ai* into Eq. (Ae I) ,  it  a n  be shown t b t  

value ox Hi , then for a given profile, Hi may be tprken ns constant, and 

Ht can be s b w n  from (A- I )  

(A- 4)  



Therefore. K increases monotoaically with 6i . This concluoion i s  also 

obvious fa-on: tba definition of K as the ratio of the! axomenturn $a t b ~  

It is clear however from 2Sq. (A-5) that 

ahus it is seen that, for every Ili , these exists a 5i such that f is an 

and in the present study, this condition h a g  

been aged to determine 6 From Eq. (A-111, we find i "  



Hi = 2 or K = [Hi + l]/25ii e 

Subsritaiizg tMs rebtloaz back izlto Eq. (A-41, v/e obtain 

3 
E a f/kY - i . 

the present study, the ml~aea of tii@, gi**' and that b v e  

bacn used have been thorae tabubted for 6i--+a . Although this 

proccdurr is noc strictly consistent with the definitions Oe 6i11'. Si**, 

and. Hi , it can be sho t h e  &he ~ r r s r  o introduced by t h i ~  apprf~Ama%%an 

are small since the M L u ~ ~  ~f tii obtained by the aabmu8jn method roughly 

correspond to those obtained for u(b.i)/ui, = 0.95. 

VJith the above relzhtiolzs, i t  is now possible to relate the bcuncialpy 

b y e r  tkcknese, Gi . wStPI 6i* and 6i*$. It is found, for example, that 

The C( K ) corrslaeions have. been obtained in the present otady 

by first finding the values of z. at succeseive stations, wheze 
1 

(A* 14) 

&ad then Pitting a polynomial in $ tlwcugh these w l u e s  of gi The 

derivative of this polynorzial eeneneially gives the value of G( K ) at each 



staeioaz, and t&s vatu@ of C( K ) i s  then correlated with K = (Hi o 1 1 1 2 ~ 1 ~  

to gia$g3 %km d e ~ f r e d  6( K ) rektionr. 

In several of r h ~  calcaticns. the quantity ( 1 - s,+/s, ) i8 

required. The value of this qmntity can be found laraixlg the above rehtions 

and 33%. (23) as f~llows: 

It can be readily shown thw6 

Solving for 6*/6,  and using Eq. & -  4 we obtain 

The next ststep is ~o em1uat.e M. Ht ia  shown in iteference 1 t b t  

Using Eqs. (23 )  and (A-19). it can be s h w n  chat 

8/6** = K ( ~ + t ) / t ( l - K  ) a 

E we wrf  ti^! in  the farm 

(A- 16) 

(A- 17) 

e (A-18) 

and subetitute the expl-esaion for 6/6** given by Eq. (A-ZO), it is found 

(A- 22) 



Mi = * 3  = ? : + I  a 

Solving for F fronl Eq. (A-23) and s&etituting the resule into 

q (A-221, ws obtain 

N: = (Hi 9 1) (1  + 
2 

~ ~ 1 - 1  . 
This result has alec been reported by Rctt and ~rabtree" and Cohen 

and r$esbotlscib. Therefore, the eqlaatian for (1 - a@/& ) f s 

Ewlwting thi.ia equation at the separation p i n t ,  .we obtain 

where the Hawarrh valuee of and E+s have been uoed. 



Ths purpose of Chis Appadfx i s  to show Iaow the basic e p d a n t l  

given in Section IX are reduced to two non-linear first order ordinary 

rlifforantiat e q ~ t i c n s .  These e q ~ t i o n s  will then be linearized wita 

regard ro Wch n ber Por use in  regions in which the dil(ferenca 

with the free stream XRaeh n w ~ b o ~ .  Tba linearizsd e q ~ t i o u e  will the:% 

bo e2maamined Lor the two Plcrw regimes up tc the plateau, Finally, the 

lkfiiting case of weak hyrpereonie interaction will be diecussc-d ro  how 

tillis ;e~areicula~ result  is independent of the dofinition 0.f ttbc viscoila 

layer thicfsness, 6. 

The b s i c  equations given in Sectioil 11 are 



Za addition ta, these e q ~ t i ~ n l s ,  the correlation rsb~iosns are 

Expancling the momentum equation, and using the Bal-noulli equation to 

elhi late  the pressure gradient term, we find 

Lt eean be rcadlfy shown, using the o q ~ t i o n s  given in Section U[, that 

her oducing the definition 

c 5 m/a#t 0 

it is fcwxrl that the momentum equation can be written a s  



xase~ting thie form of the continuity equation into the n-lomenturn equtfon 

and uaing the definition r( K ) E , it fa fauad t h t  

xt i s  shown 4x1 R@",%BPB~&:B 1 t b t  

and introducing the definition t G { z ~ / ? ' ~ )  2 e l *  y-B 2 
a 

i t  can ba shown, using Eqs. (6- 13) and (8- 14), thDt 

Pt is to be nocg?d t a t  x appear e in Eqs. (33- 12) and (B- 15) only in the 

derivatives, and can thercgare be eurninatecl, Solvia~g aecie equation@ 

simu!t@neously, we gel the folkowing set cf ncn-lixear fir at ~ r d e r  



Tbese general equatiaaea will  now be apcialized to the -xiour". 

Raw regicns. The first ragion to bc considered i s  tba zuae iron: P41e 

beginning of the intcsractlon up to se?praeion. Hn W s  gone, the! me 

~kc4trrekabion aietimd wf30 be u o ~ d  so t h t  

. [Sere Appndix A. ) (B-18) 

The, equation far i3( X ) $8 obminad by n o ~ n g  from Figu~e  4 t b l :  a linear 

repreeenmtion of D( K ) appwr s reaeomble. The Blssius vellae of D ( /  ) 

i a  cbasosaa tc be 1.40 at K t Q.693. 1t is a s a  

tkat B[ K f i s  zero when tlze Howarth sepasation value of K = 0.630 i s  

D ( K )  .: Z k . Z ( K - . & S O )  (B- 19) 

The equation for C( K ) ie aleo a s e w ~ ~ o d  to be lines~r. However, 

the scatter in tkzc C ( K  ) curves ~ilsowxa in Figure 5 does not orlaw an 

nceuraru detcrmimtion d the GtK ) rchtion. Sirnca the experimental 

separation presaure gradient B B C ~ S  to agree with ~al~ulat ions  asswming 

r b o  69 X 1 near separation is eero (Figuse 81, it baa h e n  ~bsauffdied that 

G(K 1, like D(X 1, i s  zsro at the separation value of & . Xa order to deter- 

mine anothe~ poinr Por the lir-iear C ( K  ] xebtion, it i a  asnw~ied that O- (K ) 

is ecya1 to  unity at /Y = 0.693. Thia answr~ption is usually =.ad@ fcx nowe 

with zero pressure gradient and insues t b t  the Croccs-Leas methcd wil t  

give the mme weak h y p r g o a i ~  interaction result which ia obtained by 

fllB Gohen and H-:esP~otk~ nrrieti~od (hppndix 6) and &ich faas been 



found in earlier investigations3'' 33e The equation for C( k ), thus 

defined, i s  

G ( K )  3 6 . 2 ( / - . 6 3 0 )  . (B-W) 

The general e g ~ t i o n ~  are now linearireed with respect to Web 

number. It is assunlad that An = M + & , where E < < Moo . and 
w 

2 V M ~  * 1 6 
g = -  [linearized Prandtl-Meysr relation) . (Bd21) 

If tarma of order E are kepe, it i s  found that the equation@ can be cast 

into the following form: 

where 

The results of numorlcal integrations ueiag Eqs. (B-22) 



transformed back to  the physical plane using the continuity equation as 

Tbis equation can be integrated and put into the Corm 

The remaining equation tc complete the formuktion of tha problem 

up to separation involves the skin friction, or wall  ahear, distribution. 

Frorn the correlation equation for c f .  we have 

(B- 25) 

Since every reorresponds to known values of M, , K , and x , the skin 

friction dietributic=sn 5s thexefore determined. Galculationa of the skin 

fziktion distribution for three shock wave-lami-r boundarr y layer inter- 

action g&ocs are givan i n  Ffgura~ 161, 11, and 20. 

In the region between separation and the baginning of the plateau, 

the following aos ptions b v a  been =ad@ and atre dfacassed in Section IV: 

(1) F = constant = value of F at separation 

(2) e n  0, since c i s  assumed negligible in eeparated flow 

(3) G( K ) = G, = 11 (by comparison with a selected experinlerat) 



into rhe general l i n a r i z e d  cguationo, we 

Theae equations are integrated in the same manner aer Eqs. (B-22), 

using as initial condirione the ~ l u e e  at separation fcund in the solution 

of the eigenvalue problem for E . The transfor 

back to the physical plane i s  carried cut using Eq. fB-24). 

S f  (r ( X )  ia set equal to uaity, curreaponding to B i a ~ i u s  flow, 

i t  i s  seen that Eqs. (B- 16) and (B-17) reduce to 



either of the terms on rhe r igh t -hnd  sides of Eqs. (B-27) and (B-28), 
C 

then the following relation is obtained: 

since the condition, P ( K )  = I, implies K=Kb . It i s  sbown in Reference 

r =  ( t R e  6*d/(l-Kl * 

and from Eqs. (A-2%) and (C-81, it follows that 

Uoiarg Eqs. (B-21). (B-29), (10-30), and (B-311, i t  i s  fouzld tlat 

erically identical to Eq. (C-19). 

Uoing Pour different definitions of &ii , i t  i s  seen in Table I that 

desfite large n erical differences in the values Etf F( K ) , K and 

2 
@( & ). the terms C( K ) ( 3  - K ) and ( KF/I -0 are identical, showing 

t b t  tkde phyaical g ~ n t i t y ,  & , is independent of the definition of 6i . 
The four definitions of tii were the following: 



(1 ) 6i defined by the xxadm nie'ih~sd (presrsnf; study) 

( 2 )  defined by u ( ~ . ) / u  - .95 
k if3 

(3) 6i defined by q&i)/uie = .99 

(4) Bi defined by ~ ( 6 ~ ) / u ~ @  = .898 . 

The value@ of the quantitiee F, K ;and 6( K )  definad by the several 

~ l u e e  of a(hti)/uie wexe read flrani curvofa given in Refarenee 19, and 

S t  is found that the agseame?nt of Lhe two term@ invas6ipted i s  within 

$he ab i l i ty  to read the m l w s  f r  &ha curves. Since Ciw vviuues oi € 6  

33,344 given by earlier invs stigalions Bb b e  Gohan and Re~hotko method 

allel the Crocco-Lacs n~elhod fox  ~leveral definifione cf S agree, the 

asgificiality of 6 beer2 deri-,ons$rated Jar  a case in wMch an explicit 

phyei~al  result Ean be obtainad in a simple analytic form, not requiring 



fn thie saction, Lhe method of  ohe en-~eabhotko'~ will be used to 

~alculsl-e the presswe distrilaPrtion aver a flat plate up tc r~eparation fos 

the case csf steady two-dimensio-L Laminar superercnic flow in which the 

ber i r a  equal tc unity and the heat tsansfer is eero. The 

e%#cernal streamliae direction will be set ecy-l Cc the gradient of the 

displacea~ent thlcknegs, and 6n tha pre sen$ analysis, i t  will be a s s w e d  

t h t  6, the davkation of the41ccal Wch number from the free stream 

11 corplp?red tc the free stream M c h  n 

From Eqs. (33) and (34) in aeference 16, we b v e  

l i I+ - ( /+0 ) ' i 2 ,  ;y,B-bl~ A ,&A p& Hz- - 
r p  dx Z 

3 
--A 8'@).$k a x s  where R=- and A and $3 are coas&nt~. 

/Clw 

From the isentropic Bernoulli equation, wa have 

Let 
42 
n Pli .f. 6 where M n free rstr 

w GEl 
V ~ C B  nhmbea > 3 & 

Subetitufing Me in the above elrpre@-rssion for a and keeping only first order 

ternr,~ ia & , ws obain 

n = - ( A / M ~ )  (dE / t l x )  x a 4G4) 



From Xqs. (34), (3.)), art& (49) in zL~icre;~cc 16, w e  b v e  for 

Pr = 1 and no heat transfer: 

Bug using Eqo (G-4) for r;, i t  i s  fouud that 

To t e r n i ~  of order & , i t  can be nhown $ha$ 



from $he handtl-Meyez relation and the asswaption t b t  d6*/dx e q a l e  

$he osaateg st% ires%?;~1Pa@ diraetrioa, Thesefare, 

(C- lo)  

Tlzeoe two non-linear fir sr order o+dinar y differential equation8 can be 

erically since the right-h;nnd sides are known functions of 

a, & and x. Such an integration has bean c a ~ r i e d  out for the M = 2.0, 
CZ# 

and the results are oh@ in  Figure 8. Ixl the csr2c&lion, the n(Hi) 

relatiarl given in Reference 16 has becn approxi~rated by Cha following 

It i s  interesting to note t b t  if the bounda~y layer  approaches the 

gives tho weak hypersonic int5raction ~ e s u l t  in  tho sane way a e  the 

Czocco-Lees method does when K = K b  and dK/dx = 0. n zz O n cin/&~ 



ajolving for & b *  w e  obtoiw 

S&sbituting value@ for B, fb , and kj , wa hstve 

- 
M 3 >  1 . i t  i s  seen t b t  & b--+ & . Tharefore, 

A = QQ.44 

Hi b = 2. %$a . 
Uslag Eqs. ( @ - 2 )  and (6*19), we obmarin 



- 
FOP icw supsrsonic U C ~  n bera, E b g  & if E b  4' 1, since 

kine bracketad tern? in tlze denonrinartor of Eq. [G-1 C) is of order unity. 



In this Appendiq aa attempt i e  made to construct. a C(/ ) 

Y ~ ~ ~ O Q  % b t  C Q F ~ @ ~ & Q ; @ ~  th6 Fak~eg~SBaa &o8uin;irsan8 d t h  ~ % E ~ W B  Wt &v@ 

I %A s". bories", sirch a s  the Sehubauer ellipse flow. The id@& motivating 

this afterr,pt i s  the removsl of the term 6% (r;l/d$)(6j@/~i) since this term 

i s  identically zero for the Palher -Sun  solutions. (See Section XI. ) 
N 

h new mags flux parameter, m. irs defined a a  
8 )  

%t can FBI rmdily ahown t b %  

For the Falkner-Sisan caoe, Hi = constant for each flaw. Alhlso, 

V x 
eince a. :: a F , where a and v are consents, sad = bf ~ , e ~ - ~  , xe 



where A * are values tabulated in 

4 

e for C( ), the cor~elafion carves b've b ~ e n  
A: 

computed and are shown in Figwa 21. It is seen tRat although the CwveEi 

diverge toward separation. the agxeement i s  better 

with the eo~ventional Cf K ) fo~mutation shown ic -F'igure 5 ,  and the 

improvement expected by renloving the 6 j@/3, terra 2.3 c t?lerefora been 

targely rwurlized. Also, 8i@/6i i s  seen tcs be a universal function of K 

carrelattan procedure, and i t  caa be readily B ~ O W B  

tbh; 



'$B&rafsr@, we can w i t e  

Let us define: Z X - 1  );! " ( -K cf, K I i  and t..* 3 aratsfarm~ the 

reeultg to eha cotnprabssibte pkne. It i s  aasilg sho that C ( K  G ( K )  

and si i;' (See Reference 1. ). Therefore, 

Clear ly ,  if Faibcner-Sialirn solutions are uaecl, d ~ / d ~  = 2 ~ c k  = O, eo that 

C ( X )  = C W l i  # go- r 2 )  

ar;d the C( X ) relation i s  the sarile in the cow~pressiblc and asacciated 

inconlpresaiblc cases. However, for the general case, the tem-1 

- 2  
3% d h  1 

i s  :lot zero, but genssally depends on a 
P, U@pe 



erical integsation of a spcif ic  case, and the cC( ,C ) relatian is 

thexef ore not known a 
..Q 

. $6, i s  ciaus seen that a s  attempt to improve 

the univereality cf the Cif K ) fo uhk;i[bter U a  i a c ~ a  bed the mathemeticak 

conipla:dtp of the method. fe'o systematic procedure fo t  trying other 

i s  ila% even elear how to expTess the optin coad8thon sine e un;lvcx°* 

oali ty and rA~zthematical simplicf ty are both imporant. 









FIG.  4 -THEORETICAL D ( K )  C O R R E L A T I O N S  



FIG.5 - EXPERIMENTAL AND THEORETICAL C ( K )  

CORRELATIONS 
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Non - Dimensionol D is tonce 

FIG.6 - EXPERIMENTAL A N D  THEORETICAL BOUNDARY LAYER 
PARAMETERS FOR SCHUBAUER ELL1 PSE 



Non - Dimensional Distance 

FIG. 7 -  VELOCITY  D I S T R I B U T I O N  OF SCHUBAUER ELLIPSE 



--- ---- -- * 

FIG. 8 - EFFECT OF G ( K )  CORRELATION ON 1 
PRESSURE DlSTRi BUT1 ON UP TO SEPARATION 

A. Folkner -Skon Mixing Rates  ( ~ ~ z . 6 2 4 )  

B. C ( ~ ) = 2 . 3 4 , ( ~ ~ = . 6 4 O i  

C. C ( K )  = 8.889 K - 4 . 0 6 9 , ( ~ ~ = . 6 4 0 )  

D. C ( K )  = 30.94 K - 19.10,( K~ = .640) 

E. Cohen-Reshotko Method 

F. C ( ~ ) = o , ( K ~ = . 6 4 0 )  

I 

Experimental 
Sepora t ion  





Experiment 
o Pressure 

Pressure ---- 

Rea / lnch  = 6.0 x lo4 

L = 0.9 Inch 

FIG. 10- PRESSURE AND S K I N  F R I C T I O N  D lSTRl  B U T I O N S  UP TO SEPARATION 
AT Ma= 2.45 









FIG. 14 - CONSTANT PRESSURE F(K) RELATION 



Theory : 
A .  F(K)= 3.851 K t 0.424 

8. F ( K ) =  2.85 
C. F ( K ) = - 1 . 9 2 6 ~  

o Experiment 
I, 

II, 

FIG. 15-EFFECT OF THE F ( K )  RELATION ON THE 

PRESSURE DISTRl BUTION FROM 
SEPARATION UP TO THE PLATEAU FOR 
THE Moo = 2.45 CASE 

1 s 
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A. Blosius Flow 
I 0  

8. Seporof ion 

C ( K  ) G. Beginning of Plofeou 
D. Shock Impingement 

0.' Beginning of Reottochment 

5 

0 

FIG. 17 - C ( K )  TRAJECTORY FOR SHOCK WAVE- LAMINAR BOUNDARY L A Y E R  

INTERACTION CASE AT Mm= 2.45 







Distance From Leoding Edge ( I n c h e s  ) 

FIG. 20- THEORETICAL PRESSURE AND SKIN FRICTION 

DlSTRl  BUT1 ONS UP TO SEPARATION AT M, ~5.80 




