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Thks theeis B E U ~ B B  tha eertationerry flow field at large distseees 

Prom a finite obstacle, maovfag unlfordpr in a vlscoue. tnconnptar~lsPble 

fluid The p ~ i n e f p d  recults conslat of aieynpeotic s q ~ n s i o m .  uni- 

f w d y  vdid far large, eiistance, ol the =lacity and tlns pressure of the 

flow iielkd, 

The e~paasioa procedure eanplowd f e biasled upon the intro- 

duction of a enwaP1, ~&raneoua pa~~nmeter: the construetion. is thus 

value& of the parametter. Qdng 

ta the praeeslcs Qf a viacous w&e, the perturrbia9ioa l e  in genarali a 

eriingdar one, md i s  treerted accordfngly. ueiag method@ desrelopd 

The edculaled reeults include the followtag: for the case of 

trie Bow, a u n i l o r d y  valfd axpansion of the velocity 

to  order 3-' fnclueive, and of t h  preseure to  cr&@r rh3 inclu@fva, 

p being the &staaes from the obstacle; for the g ~ w r a l  case, &a 

sxgan~ion of the velwilty t o  o r d e ~  r '3/2 and a~ the presteure t o  

order ra2, inclueive. 
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I. INTRODUCTION 

Probleme related t o  expansions of Na*er-Stokes solutione 

for lalrge dietsnce have been discucpsed by a n u d e r  of auti%ore, eepe- 

cially by Xmaf (1) aad by Chang (2). In particular, it has b e n  slhown 

in reference 2 that the basic problem of construstion lvlay be created 

by hydrodgrnamical expaneion ptocedu~es a4 the type caiscuaeed erd 

. ilustrated by Lageretronq Cole, and ZCapiun (3,4). In the prcsaent 

thesis, the methds of referemes 2, 3. and 4 are applied t o  d a l l y -  

metric and ~trlct ly three- d m  Navfar- Stokea eolutione. 

Expansion procedure@ for the three-dimenc~icntal casee are diecu~eeel 

and eeveral terms QP the axpaneion are give& It i s  pointed out s l s ~  

that the pvocedures are slightly aEEerent for the case af three (or 

more) dfmenefona, due t o  certain changes in  the nature of croae now 

and Pni the role of the preseure (see Ghap te~  IV, Section 4.1). The 

tric case, regarded as a problem in two dinremaloas. 

io  discu~sed separately (Chapter a]. 
A cafiafe tzlasa a!! ~%sarfe%-~toke@ eolutione c m h  ba otudtad 

The baeic problem in mind ie  that of a etaticnary viecous incomprcso- 

siible flow past a fipllte three-dimensional solid which tende to  a u~uilorrn 

stream at large aetance and aatiefies the no- elip coadfticn at the eclirl. 

Aeeudng that such a solution is given. wa aze Pantereeted in an asqp-%p- 

totic aqansfon the ~ o l u l f o n  for large distance at fixed Regmolde 

number, more precisely, fu an a@ 

orders r*n ss 2 ' -  we where 1: i~ the cUetance from the origin 

The problem studied here. however, will be d a slightly Wtgerent 



nature. In the firet place, the claas cf Mavier-Stoke8 eolutione studied 

will be eomawhat irzrgsz: Given aa saymptotic eerie&, it le Uficult 

to determine wbther  the refated N&d@g-Stob@ solutf 008 cont$k%~ a 

"sallbd, $' k. e. a clogad st.i~samaurfacg?. Qa. the other bnd ,  a ab&=te*ain 

c%aa@ of Noder-St~keo a91sluti~wl 89 relatad to  our sapfea. Xn %he 

second place, In the present t h e a i ~  we shall bs concerned exclusivePy 

w%th the problem of construction of the scprfes, wlalch. of course, is 

only a part of the complete problem of alsyanptctic equality. The 

special nature d rel~tionahip batmen our seriee and the cliasrs of 

Navier-Stokes eclutione, studisd (be it e. g. that cb actud as 

equality or even that of total e ~ s l i t y )  i8 then fanmElteria1 for our 

purpoees. On the other bad ,  a. atatemeat of the intended vdidity of 

0 % ~  r$;41u1e& %b d @ @ i ~ a b ~ & .  The class N&~ib~-St~k@l ao%utfons ~ t u a a d  

and the asnee in $*bMch our results age Hntanded to  be vdfd are dew 

scribed in Chapter U: (eea Sectione 2.1, 2. 21, 

The m~thods of ~efaranee 2 dPt  bs used: An e*zaneou8 non* 

dimensional paribmeter ti ( d e o  cdled the Wal.tificial pa,arameteaw ) 

f o  Bntroducsd jk~eo the axact aoI&hon, in such a maaner that the ex- 

panefcn for large r may be replaced by a pzrsameter-type expaneton 

1 . In the present problem, 6 y be regarded ae the 
9 

ratio of a characterietic leaJth to  the length d as edraneaab~ starad~d 

of measurement. An "outer8* and Rtnnejru expansion arc thepl eon- 

strutted. represerntfng reepectively the repated appllcaticms of sn 

woutcrE8 art4 an "innerR limit P ~ O E B Q B .  The outer expaneion is valid 

f QP large distance exclusive of the wake, wiaile the inner exgannion SB 

valid in the w&e. The regions of vdldity of the two eqanekono over la;^ 



- 3- 

i n  the aense of referent;? 4. A Mcon~posttem expansion# uniformly 

valid for l u g e  distance may then be constructed Ppom the two princi- 

pal expansions (gee Secticna 3.1. 4. 2). An advantage oiC the parametric 

procedu~e is that cne i s  first led to  approxP 

equationo. ~f considerable intdtive importance, while coorrpinate-t 

pr ocehree  v40uld lead directly tc orslinary differential aquattcns. 

A number d ohosrtccuts dStl bo used in the cour@ga of the COW 

etruction. I-Icwever, the conatrhlction proceduree are expzaf ned in 

Chapter II, whese references are also given concerning pofilte which 

~equire more slabcrate discussion In particular, reference will be 

de to  two principle@: (i) the principle af alminabflity and (it) the 

principle of transcendental decay of vorticity. The two ptfnciplea 

aye &63d=u@sed iw $action@ 2. 3 and 2 4, 



11- T13.E EXACT SOLUTHDNS AND TEQE EXPANSION PROCEDURSS 

2. 1, %he Ex@$z~ S C S S P U ~ ~ O ~ ~  

in three dimeneione. The following notation is used: 

e 
q = velocity; p = preseure; xi s Cartsslan ccordinatea, 

3 

W ithout log8 06 gew~ality,  W@ paor@ directly t o  the awnn-dimensional 

farm 
-w* -# @ * g *&-,m@ 

( q  v )q = p + r e v  q ( O < R B < Q ) )  (r 2- 3a) 

rsf the Navier -Stoke@ e qatlone. The t+anefogmation 



-.-caQ * 
sends every solution. ( q , g ), of equation@ 2- 3 into a. family of solu- 

tion@ of equations 2-2 which depends on the dimensional parametera 

U, L, p8 pp, v; and, conversely, every s~ltltion of ~svat ione 2- 2 may 

be so obtain@& The question of edstsnce of a characterlatic length 

for a given eclutfon of equation@ 2-2 is thubla expelled from our con- 

siderations. '&;'@ shall consider aolutione of aquatione 2- 3 whit k eatisty 

the f ollo\atitng conditions: 

a )  There, exist@ a sphere S aruch that T* and p are ~egulaiar 

outside S and continuous at inPiraity. 

W e  shall a l ~ o  require 

Ccladition ( .y) i o ,  no% eesentiall. but lead@ to a number of well-Bmown 

dynamf cal relation@ concerning flow at large distance. Abow, solu- 

tiona of equations 2-3 are regtlsded as cliatinct for distinct values 
-=+a# * 

of the Regmolds n u d e r .  Re, Hence a aolutf on, ( q . p ), ob sqaaticns 
* 

2- 3 i a  a functican of the xi only. Eqansiens will be constructed for 
* 

$f - c o o  

-* * 
Given a solution (q , p ) one may lntsduce an extraneours 

ly - 
parameter (: and new independent vatfeablee xi, or xi, by the sub* 



The parametar 6 and the variables gi admit the follodng 
n* 

evident interpretation: xi = X ~ / R  are the eeosdinatae of a pdnt  re- 

lerred t o  an sxttaneoue stirndarrd cf leash measurement, of l e w h  8. 

In the outer l i d *  process, R and < are fixed while the chaerracterls- 

tic length, L tR i s  decreased to  zero; the Rcgmolde number, 

Re = U L / ~  i o l  herd fixed in the procese. By repeatad applications of 

the outer and inner limit processes t o  a given flow quantity W one obtains 

(provided the limit@ exfst) two expaaneicae, outer and inner, of the farm 

mI *D 
~ < , 7  .u lk  gi(" wWI(xI) (Outer eqanoicn) (2-3a) 

L 
f =8 

(Inner eocpaasicsn) (2- 7b) 

Were (gi(6 ) 1 (i = 6.1, 2, . . . ) is a requcsnce of functions (called orders 

or gauge functions) aueh that 
.LI 

Zf domains oi validity of partial sum8 of expansions 2-  7 overlap, ~ e ,  as- 

cugsed in rsferenca $, it fo then poeeible t o  conettuct a. compoeite 
Q 

expansion which i s  uiaiEormly valid fol r -- oo. 

The term@ of expansions 2-7 defined by the form ol the ex- 

pangions 2-7a and 2-7b, except for the trivial freedom allowed ia the 



choice of W e .  The M f ~ m w  of the expaneion, understood in an ex- 

tended senee t o  include the stipulated domaine of unIPorm validity, 

also determines the e quations, the boundary and mate king c onditions 

which the terma must satiefy. (The equations may be found by 3 

lorma1 @&stitastion of the eeriso in equation8 2- 3. ) 

In the preeent thesis, matching eeries of the form 2-7 will be 

constructed ow the basis QP egutionar, boundary, and 

diti ona (and an additional condition, namely that of clidnability of the 

extranews parameter. see Section 2. 3). The exietence of an actual 

aeymptotic expan~ion of the form 2-7 is not sbaolutely essential and is 

in fact not etipulated in the present theaie; thie question is diacusasd 

explicitly below. Different quantitiea, VJ will be introduced as needed 

in each case (eee equations 3-5, 3-6, 4-1. and 4-4, which give the 

explicit foams for the several case@ treated). The gauge functions, 

tii(& ), Will be determined iteratively. but not in strictly coneecutive 

order; the iterationprocesa involves wawitchbackF8 (as doee that of 

Chang ( 2 )  ). The 6% will  be reindexed in the form 

where the v ' e  are chosen as convenient in the, iteration parcacesPs 

(each v represents what i s  regarded as a definite step in the pro- 

cedure). 

The stipulated domdns of uniform validity of Z- 7a and -2-7b 

may be deecribed aa followe: under the outer limit procesa T* tande 
rpl N 

t o  and p tends t o  zero uniformly over the entire x-space ex- 

cluding the point at the origin Zi = 0. Thia is evident by hypothesis 



(i. e. from the b ~ a n b r y  conditf on& 2-59). Mowevar, in general, the 

outer expansion i s  aot unifoirm at the positive G-sxia. TMs i s  due t o  

the preeance of ~fiingular perturbation@ which represent the decay of 

the wake and are, in general, of or&r t 'I2 go in the presence 

cf lift) or of order k (drag but no lift). The inner expeneion, on the 

&her hand. should be valid in the w;ake region, or. more p~ecisely 

in the right half of the Sii-space, exclusliw the plane 2 = OO. The 

regions of validity ok 2-7a and 2-7b should overlap for large - * 
(small p). Thenon-unifcrdtyofthsina~erexpsnstonsttheplarne 
llli 

x = O is not importrsat: it ILP @tipdated that the outer sxpenefon is 

valid at that plane, sxcludiw the point st the origin Zi = 0. Hence, 

the two eqarniooa), inner and outer, shodd ch d g o  for amaU 
- 
x > 0. An ardditfod stipulation will ba added in o r b r  tc derive the 

boundary conditicnp, at infinity for the outer expanrion: it is etipulated 

that the cuter expansion is unfforim at iildfdty excluding only the positive 
CU 

s, and that the two eqaasion9, outer and inner, jointly cover the 

In (hie thesis, matcldng series of' the form 2-7 are constructed 

on the baeie cf the i~e~oeiated equatiohns and condttione. The results 

are iaten&d t o  be vdfd in the following senrte: .) 

(i) Far every partial eum of the eqansion, and Lor every choice 

of the arbitrary conetanta of the eeries, there should exist 

% 
See equations 3-2 and 3-4. 



a related Havier-Stekao @elution t34 tha ~la~ltl3 ddfiaed fn 

Section 2.1 (i. e. an *exact solution"). 

(ii) 1;:;henever an exact solution has an expsnaion dP the form 

2-7, then the expaneion ahouPd be given correctly by cur 

rei%;uIga. 

Statameat8 ($1 and (ii) &ell u@ in wha* eelmBs our @@ria@ i a  wcosrrsctH 

or "gsosely incorrect. Mc o t b r  qaeetions eater the conetructfon prc- 

cess. Tlla guidance supplied by stsLtePnents (i) and (ii) ia ,  !?-owever, 

needed ia the can~tructi@n procedu~~b~ 

In the first place. statement ti$) &t@rda@@ the? ass~ciated 

eqaatirsns and bcundazy conathone for each term of the setlee. Thio 

has already been diercussed in a procediag parsagraph (aec Section 2 .2 ) .  

In accwdance with (ii), thereitore. we rsh~uld sdmlt, f as each term of 

(2-7),  the most general ex~~reesian whtck i s  allowed by the boundary, 

matcung, and elinaiaabiLity condillcns (provided only that the ewree- 

sfon i s  not in contradictioa with (1) ). h bha, preaeat ~xpaneione, there 

exist cormplenaentar y eolutions of the aesocfated eqwtlons (cdled 

neigensolutf o w o )  which satisfy homogeneous bounbryr and 

ccndtitfono and the eonditicn of' eiirrainabfuty (@a@ SecWon 2. 3). (He%@, 

by wbeuadaryD and * 
those cooation8 wEdch azs for the term in que~tion, L e. 

those cancfitionae wldeh may be &rived lrom the OV~TI&~ principle og 

from conation 2 - 5 s  Thus e. g. it i s  noL ~equfred that en outer "eigan- 
k 

saluti~ei~n* vanish at the goeftive x-ad@, since nac such fact derive8 

horn the bzrafc preadsee. ) The moet general expressioa for each t e ~ m  

i e  cbbtained by f inang all poseible efgensolutions which are admittad 



by the governing, conditions for the t e ~ m  in queetlon. In particular, 

it appears that the question of so-called "itltermediate orderaN or 

@phantom termsn (i. a. the question of existence of t e ~ m s  of order not 

listed ewlicitly in  each case) y, in principle, b% decided entirely 

on the beaf o sf the cond i t f r~n~~  T U a  i s  Qllbuetzatsd in Section 3,4, 

In accorciance with (i) it is nscs@@ary to  take i d o  account the 

possrole "integrated affectsM of the iozcing term: the do 

validity do not become evident until such effects ase considered In 

general, the "integrated effect@" include the possibility of reeonanco 

and d o o  other possibilities, e. go that the solution may be rendered 

multivaluad. In the present caee, however, an estfmate of the e a ~ c t a  

of tbe forcing term f e provided at each etep by a sub~equent t e ~ m  'ot 

the series, and will be here, in pdnciple, taken into account by in- 

emction. The forcing telrmo appear to be entirely harmlese within 

inhi of validity. 

It i s  baliavad $bt no other sa~satial considerstions t3aad t a  be 

taken info account: although the theory d ccnetructiona such ae the 

present onea has never been fully discuesad, it ha@ been auggeated to  

the author that a favorable eetirrm&e of the possible effect@ of a smdl, 

arbitraty forcing term is probably edfieient, i. e. 

t o  a rigorme proof of (i). 

L 30 

A l l  golregatng eondtf once for car eerie@ ape &rived from the 

definition of the exact eolutioas, by meane of the hsotheses on the 

validity af the eeriee (do &%ction 2. 2). It should be n&e& therefore, 



Chat the definition ha8 ehaaged: after the parameter has baren idrcp- 
-+@ " a -  

dace& we are dealing with fundlona q [xi;& ) and p (xg;t ) which 

satisfy the Navieg-Stokao eqwtiona 2-3, the condition@ a), B), and 

y) (Section 2.1, eqat ion  2-55], a d  the toflowing slimiwbility eon- 

ditf ksna: 

@ 
Conditions 2-83 edate that 6 is ellmiararted by the subetituticn ot x r: 

CY 

for xi. Of a pargid auinn. Sn, of series 2-78 and 24% i f  i r a  tlar?n rcl- 

d e e d  thart, in its stipulated domain of vallidfty, SE1 be eqresstble 

$n the farm 

The c~ndit icn 2-9 dl1 be referred t o  as, the e10minabiPiOy principle; 

it l e  a governing cond&icn for the ~ s r i s s .  

that, Lo+ i% ftdge 0% @emf - i d  solid fa a+ U & O P ~  at  re2hxq f ha BTC~X- 

ticity decays at en exponential rats d t k  &etanet outside the wake o~ 

the bcundarry layer, ae the caee may be. It fe a corollary t o  thla fact 

that 



Tkrc vorticity must also daeay transcendentally 

in every term of our inner expansions 2-711 (a-10) 
aa z. - 0, 

Tlw term "principle of rapid decay" is in general appplled to  both tha 

theorem md the co~oUary. and the corollalary fe alrso o&en underetocd 

t o  stipulate 7 - a maather t b n  3i - O (cf. equation 3-10). In thie 

theele, by wprlaciple of gapid decayB .ura ahall und~rertand the corollary 

2-10 rather than the theorem. and 5 -+ O rather than p - ar. Th@ 

reaeon i a  the following: the corcllal~qr i s  a arect coasequsnce of the 

ticna Par the parOial dit2e~ential oquatfon~l iigvolv@d. (Those oolutlona 
__CL 

widch decay dgebraicdly have non-zero vosticitg at tlze plane 2 O 

The. "principle of rapid decays i a  not a governiing conditicn. 

but sather a consewenee of the gcverni~g matching conditiotas at 2 > 0. 

In the presed construction ft i e ,  aln%oct equdly consredenst t o  use citl%ar 

2-10 or the pro;** governiag conatioaa, ~ i n e e  the, sqivalsnce of the 

two i a  evident at every step. I-loweve~, rafelrence t o  t-10 make@ it 

possible to reject dsebraic oolutions at sight. 



IEX. THE ASYMPTOTIC EXPANSPONS FOR THE 

AXULLY-SYMb!fETR%C a S X  

3. %.a 

In the preeent chapter we @hall coneider eolutions which are 
* 

aymmatric about the x -axie. The axially-& ymmetric problem wfll 

be treated 81. a problem in two dimensions (i. e. In two indepndent 

variables). For discuesion of the adally-spmetric care a e  a "spcial 

casew at the general three-amenstonal problem. see Chapter IV. 

-The velocity field y* may be expreesad in the form 

- - P -  where ( ix, sp, ig) i s  a left-handed orthonormal set of vectors corre- 
* * 

~pgsnang to  cyIindr%cd polar csor&mtee x , p , @, where 

The governing equertione for the dally-cry etrtc: c a m  are obtained 

by paresage to  polar coordinatee (see equation A - l  of the Appendix) and 

rP f 
in equation Awl. The independent variables &re then x and p . The 

c orrespanding inner and outer variable@ are 

U 9 - * 
;89=ex, p = e p  ( O&a s) (3-4a) 

.I * - ,1/2p* 
x = & x ,  p =  (Irma r (Jll4b) 

The limft process sxpsnsfons t o  be obtained below are of the form: 



oBc - 2 - I 2 - -  
Inner: u = l . + e u l i , S j ) + t  l o g t u Z a ( x . p ) + E  U ~ ( X P )  

2 + o& ) (3- 6a) 

la' lli. .L 

v = e  2 *'/'v" = rvl(x. p) i t r v ~ ~ ( z ~ P )  t . . . (3- bb) 

-- 

V i e  @ b L P  @haw, ORLCB and for d B B  that the outer flow field io %r- 

rotational to all finite order8 t " aa r: - 0, or, equivdently, to  all 

The gemurral Mavier-Stoker equations in o u t c ~  variables age 

U the outer expanaton 3-5 i s  ineerted into 3-7, a term by term calcu- 

lation may in principle be carried out. It irs poseible. Bowver, t o  ob- 

tain the result by a direct argument. 8ne first obscrvca that m irro- 

taeioml, solenoidal vector field T* is a solution of tha Naviar-Stcleee 



equaticne. In particular, the term of order t. in squation 3-7a le  

zero for any ~ u e h  solution I e. impage, the condition that the 

vofticity of the related Navier-Stokee eolutions be liero at upstream 

intinitye Thf s determines the outer limit t o  be sn irrotaticmal flow. 

In the o u c c s e d i ~  calculation@, the right-hand side of equation 3-7a 

will alwaye vanish. B e  conclude that the outer expansion sf the 

vector velocity consists of a seriee cf terms each of which i s  the 

gradient of a hsimoplic function of Zio The outer expanelon af pres- 

eure ie  then a conaeqwncs of the constancy of total head in potential 

sows, 

In patticular, if the axpaneione 3-5a and 3-5b are inesrted 

into B ~ r n ~ u l P i ~ s  eqwgbon, one find8 

3, 3. E~;~u~%oP'BI for %ha baar Terma 

The exact equation& tor the axiallpsymmetrie caes, wr 

in Inner vaziabfeae, Elirs 



and the linear differential operators N and HI are defined by 

proceare. By a remated ~pplicatdon of the inner llmit proceaa t o  

the exact governing equation@, or equivalently, by for 1 sub@catb$uttsa 

of the inner expaneion, on@ obtains gaverniag: "approximate @ equatione 

satisfied by the terms of the i m r  ~ ~ - i b n ~ l o [ ~  The approximate partial. 

differential equations are 

Note thst v is not necessary an integer (cf. 3-6) .  The forcing tsrm~s 

fV, g,, h, vanish for v < 2. Equations 3-lOa-c form a simdtanewe 

system; 3-10d  nay be solved indepenhntly. 



The squotf one fog ul, vl, wl and Q are 

The re%svsnt @oIutbon@ o m  

and a and rn ere arbitrary conetaate. Aa a coneewence aE condition 

2-5b, the ccnrrtant a may be, related t o  the diimenafcnleee d+ag sx- 

perienced by any efaeed etreamsurface; the conatant rn may be related 

to  the mcmeple (BBC Section A. 4). Tbe conetant a also rapresente the 

etzength of o wvfecous @inkB placed at the origin This may be seen by 

coneideriag the streadunction ~i(Z7) for the term ul and vl: 



To obtain 3-12, one first observe@ that the principle of eltmina- 

- -31 bilit y rsquiree that pl be s cona-nt multiple of x . By matchiw 

with the outer expanerion 3-5b, it follows that 4 = 0. A l s q  again by 

climinabilit y, 

'Vie require that f ( ~ )  be regular at B = O and vanish exponentially acr 

G - OD. I n ~ ~ ~ i n g  3-14 into 3-Ua, one obtsins a second order ordimry 

dillferstrrtfd equation tor fa 1% is ark n in %e=tll~ A. 2 that f %a ddfez- 

mined by the con&tions stated above to be a aunetant muftipls of e-@. 

Thie determine% ul t o  within a multipllcatfve constang. vl 

be found by i-grating the continuity eqution; the co 

eration i s  eeto since vl is regular on the line = 0. The calculation 

a% t o  that of ul and will  be ~ d t t ~ d .  

The outer t e r m  of order 6 appaar as a consaquencs of the 
4 

existence of a non-zero drag. q2 is Getermlnsd by requiring that the 

maes flux through any closed eurfact? containing the eoUd be eero. 

This condition has been sttrted above by equstion 2-5b. In o~rler t o  

b*gclance the as i d o w  in the wake (cf. sqluation 3-13b) a term repre- 

senting the flow dus t o  a potential source muet appear in the outer ax- 



note@ that. Sf eonation 2-5b -2s relaed, the multipl%eative 

emstsat in 3-85 would b arbitsary. 

The poesibillty ot terms of orare, other thsn those exhtbfted 

explcitly in 3-5 a d  3-6 d n  not be aecussed in full detaif. Homvsr 

a terns Qf sl ordere &a f O  4 a <  2, a +  1). TUe 

ie aceompUoked by refe~riryg to the principle of trgnscanbntal decay: 

First we ehafl conefder the outet srpaasicn. OUP B O ~ U ~ ~ O E L B  mullt bs 

regular except at 0 and a, and possibly along the poeftive E - e e .  

It ia evident also that tha outer solutions are regular on the poeltive 

;-axis ( a x e @  possribly at a) u d c s ~  they 

eolutionsl of the hhormoganeoue system 3-U. Pienee tt Pa sufficient to  

restrict atterntion to (I) the homqeneoua syetam 3-11. and (ti) eolutions 

oP %aplakcst*rs c9 ion whfch are regdar everywhere except at the cttgia 

and me %V'e next disc over that the outer solutions are rag 

aince there the condition z* = f, muat be satfefted (in drtue of a 

basic etipulinted regf cns, of validity af the o u t e ~  expansion). Hence the 

eoluticns of Laplaesvg equation are polce and proceed in integral powirs 

of ; or equivalenay in intcgrsl powere d 6 .  

Turniw naxt tc  the homogeneous syetem 3-11, wo shall denote 

inner terms cf order ti" by subecrifl a One &see imm~&ately tM 

--a 
Pa ie s multipie of' x . By matchi% +th the outer expanrrfon, afa 

- - conclude pa = O ( 0  & a < 2). Aleo, ws haw ua = x ' fO(q). From 



the +esults of Section A. 2 o m  find8 that if pa = 0 and u, ~atiefiars 

the condition of trm~cendental &cay, then nac~srarily o m 1. An 

analogme etcitenntsnt holde for woe Y 

2 3.5. The Inner Terme cf mder c : u2, v2, w2, p2. - 
In this aecOfan the terms u2, v2. wZ, and p2 will be given. 

The relevant squstiona arc 

where the forcfag kunctione ft and k2 are, &fined by 

The constant@ appearing in the Isat @quatione are not new and arri 

given by 



- d l -  

where c is a constant. Noting that the inner expaneion of c2 ifs 

sne oae8 that, by 

Solving now for u2, it is convenient t o  divide the forcing term 

f2  into two parts: 

If f(2l) appear8 in place of f2  in 3-16a, there exiets a particular 

ecluticn from which the parameter is strictly elirninable. It is 
.. 

The notation for the exponential integral i e  that of reference 5. A 
* 

particular integral for the forcing term f!!' ie 



as is easily seen tro-m the fact that 

is an eigensolution Using this fact, we arrive at the geneial solution 

sf 3-1Qa: 

aZ log % = , .-=+1-~)e -o &l + =Z (~-c)e'@ 
X x 

where u(Zf' i~ given by 3-22 and al i s  an arbitrary constant. Oae 

seea that, due to  the greeence of the term involving log in 3-25b, 

t i s  not elfminable Prom t 'uZ. This will necessitate the introduction 

of a term of IntermediZLte order (see Section 3. 6) .  

Integrating the continuity equation and adjusting the constant of 
- 

integration so ae to make v2 regular at p = 0, one finds 

In order to determine w2, one firat notes that if we define 



where y i s  an atbitrary conatan?. Note that w2 decays exponen- 

tially ae 'ji -.. 0. It is avident also that every partial eum of the inner 

axpangion ob decays exponentially. since otherwise the pressure 

3.8. Swftchback. Terms of Intermediate Order: uZa, vZa, wZa. 

W e  have noted above that the parameter ie not strictly eliiminabls 

from the terrnr c ut. L 5/Zv . 5/2w2. YO, example. 2' 

2 - -  roo * a 2 
u2(x, p)  = U ~ ( X  p ) 6 ' 

X 

Om the & b ~  hand. e is etliminable from 

2 - -  2 e u2(& p )  - t log e * 
aZ 1 (b@)e"@ 

X 

2 The second t e rm appearing in 3-30,  of order  t log t ,  

is precisely the term u2& occurring in 3-6a. Tarms which arioe 

in this manner wil l  be referred t o  as 'sswitchbsncket tentme. * C~heot ex- 

amples of switchback have been discussed by Chang (2). In our con- 



etruction, awitcmack ternna arc uniquely detezmined by the priaciplc 

sf elfn9iaablPity. 

No attempt will be made t o  explain precisely the peaeon for 

owitchback. 1% should be noted, nowaver, that it l a  Bere a nsm-linear 

phenomenon. Swftchback terms do not appear in the expanricns of 

Qeeen solutlone. Alsio, one cbservee that a pa~ticular integral for a 

forcing term which i@ on elgensoluticn will always raqaire a switchback 

term (cf. equation 3- 21b, see ol@o reference 2, Appctndlx). 

By writin8 relaione analcgcae to 3-29 for v2 and wy the 

switchback terms vZa and was may be found in each caee the 

edtchback term ie observed t o  $e a sollbatioa of the homogatneouo 

aquation This can be checlred by deriving the equation& for the inne+ 

terms of order k 2 1 0 ~  c in the usual way. 

3 --s 3. 7. The Outer Term of Orcler e : qj. 

One f i d e  Prom 3-26 that the outer expansion of the tnmr ex- 
* 

pension of v i e  

The firat term represents the flow fn the wdce due to  the potcntlal 

chee with Tz; the aeccnd matches 4 t h  a term of order 

e in the cuter expansion of T*. T M s  term is 



The firat term on the right of 3-321, ie  required by matching, &ad is 

a~ecpciated with the switchback term T3&. The second is a potential. 

dlpole of arbitrary strength; this dipole i s  the efgeosolution of order 

k 3  Lo e. it is the most general harmonic function homogeaeoug of 
e4 

degree 2 in the variables xi and regular everywhere except iat the 

origin. 

3.8. The Panel Term p3 . 
The term of order r in the inns@ axpaneion of preeaure 

where f2 is given by 3-17a and 

2 
B v ~  "1 

' V 1  + -  - 
@P P 

One may obtain 3-33 by taking the divergence of 2-3a, expressing (ha 

reeulting aquation 4n inner va~iables, and expanding. The solution 19 



The constants cl and c Z  can be determined by matching. One finds 

by evanding in the overlap domain that the inner and outer caxpenelon. 
* 

of p match t o  order F. incluaivo i f and only if 

Llv 

where is the arbitrary conlstant appealing ia 3-32b. N d e  that 

3-35 i s  aaeoeiated with a switchback term pja. 

The term p3  lead^, to  the fallowing conclusions r e g a ~ d l q  the 
* 

inner expansion of p fortheaxlafiy-symmetric case: ( f )  tc order 

t exclusive, the pteesura penetrates the wake, i. e. dl ter 

functions of 3 alone, (ii) due to  the non-linear effect, there exist@ 

a term of order e 3  whtch is &seoatlnuous acroas the wake; the pres- 

sure discontinuity of this order is 

3- 9. 

Terrncl of higher order have not been studfed in detagl. Wow- 

ever, it appear s that the conatructfcn proceeds indefinitely, tnvolvingr 

no change of the baeic form (3-5,  3- 6) af the expanstoar. A suitable 



i sequence of ordare, (bk(& )I, @@ems tc  conefet of functions r flog t ).g, 
where j i e  bounded above by i -L  it has been brought to our arttention 

that a oimilar codecturc seemed juetified in reference 2. 

Partial eume of the inner and outer expansions, lnvolv~ is nurn- 
(.r 

ber d arrbitrar y constante (e. 8. 4 m, %, al, ml). A general fact 

y be pointed cut concerning these conetante: the number at arbitrary 

conetantcl and the sigeneolutfone are uncbnged if the Navier-Stolcer 

squatfens are replaced by the Bseen equations. Hence, insofar ae 

our construction procedure indicatee, given any Mavier- Stokea ool*lon 

which hae an expansion of the form considered Aera, o m  can f i d  an 

O ~ e e n  eoluticn with ths same caneftants, and convereely. 



4, 1 4  

expanelone are eonatruetea for the genera8 clae s of t h e  -dimeneional 

Navies-Stskeo solutioacl daflned in Chapter I (see Section 2.1). Axlall 

eymmetry i s  Be ioager rraqufred. Haarewr, ar different @-&ion 

procedure suggest@ ifseU; (and will be here adopted), due t o  ccrOafn 

diffenrencee in the nature of croee flow and preeoure in the wake region. 

Fop problems iavolviq a two-dfmenaional continmy equation 
Q 

(e. g. ( 2 )  02 Chafiar IlI), whenever u i s  given, the order of the 

croao flow (and, in61eed. the crcas flow itesU) i s  fully determnined by 

the continuity equation &lone, together wfth a euftable boundary ot 

* d 
u - f i e  og order t in. the wake region. q - I fs  ot order r ' in the 

rEc 
outel region. Hence, by the caatfnuity equation and matching (!), v 

Bo of O~F&F ti 'I2 inthe wake. On the other hand, v* i s  HsmslL1m 

with respect to  the momentum aquation, wMch then degeneratee to  

e p * / @ ~  = o4 

For  a problem itlvolving a mult%ditraeneioml continuity squation, 

however, the eituertion is Wferent. Ware, the continuity equation doc@ 

not deterdne the croee flow. Hence, the crose flow may be large 

with r'arapact t o  the continuity equation and d s o  with reepgct to the 

ehiw condit5cns for large A st 



the eo-called *1Lfflng caseW (&@e Sectton 4.4). For the lifting caae, 
Q 

the axial vslccity aeturbance, u - re ins of order C (eqtiiva- 
8 

Icntly, r**') In the w&e regtea. The croes-flow component@, v 
a$ 

and w , are, howover, at&o ol ordar 6 and, hence, are obviouely 

@kogeH wrigh reepect to the colnefnuity cilqwtioa The large croas f l o r r ~  

f n  the BUtin@i cage arieea horn the '%horscshoa vortexw hrm 4 the 

far large sad therefore estlrfies homogeneous matc?liq ccnditione. 
* a the other v and w are no l a q s r  esmall* with ~espeet 

$0 %he equation: the gwerninpl system of app~wriznate 

equsticne i s  a system af three slmdtamwe pagtia). dSffereatial eqaa- 
* gB3g * 

tianslfor v ,  w ,  and p ,  aa Ip the two rn 

and the ccntlnuity s ~ ~ t i o n  (4-6c) t ~ l  the cross-now plans. Heme, 

procaduiurels for the multi-dimnolad caea involve a Wsxent @a 

of stepo, whfch, in a sense, is oppotsfte t o  that of Chapter III and 

The three-di~neneional pr ocsdurers are latzduced ik Section& 

4. 2 and 4. 3, below, by a state, nt of form of the expansion ( a  

4-1 and 4-4), and aqlafnsd further in subsequent seetione. Ths 

method@ d Chsgter IIl[ are caltainliy nat a "egeeial ewew ab tb m a i l  

y, of courea, 

be treated P L ~ B O  by the three-dilllsnelonal method and tb rersas mu#% 

try is introduced into the, governing e Lona, while fn the preasnt 



- 30- 
c h p t e ~  it i s  a consequence of the boundiary codittone. 

Ths thrse-dlmeneional. eclutiona of eqwtions 2-3, Ghapter 11 
C dl1 bo studied Gtven the eolution of 2- 3, the x m a x i @  i s  parallel 

rgP * 
t o t b  .velocity at indinity [sacs conddtion 2-$a). The ( x  , y )plane 

will be chosen parallel tc the total force which acts upon the body, 

or at least u p ~ a  a claesd surface io the now field The dlmentlionless 
* -  

varfalee xi. xg, a d %  are defined in G h a p t e ~  U (see eqwtion 2-6). 

Under ths oees lid* prceess (5 fixed), T* -f, uniformly. An 

expansion ob the foam 

ehdl be constru&e& The cuter eqaasion i s  fn generat g on-uniform 

in terme of c r d ~ r  6 or higher at the positive Z-axis. Tbe non- 

uniPcrmity rep+eec&s the w&e. The imer expansion will be treated 

ric caw. The velocity 

Xn order to  obtdn an fnderdw of tarsnrs such that each value af the inbx 

corresponds t o  a definite "atepa in tb construction. we introduce new 



For 3 ftm$ an exgansion af the form 

will ba contltructed In pcrtttculaz the pkm cd the varleb1e)es 7 and 

Z wlU, be referred ta ae %ha "cror8e-flow planeH; 3i 

as a parameter in the tnner eqgtwafon 

Ae axplaintea in Chapter II (sea Secticn 3. LJ, tha terms of the 

outer expaneboa sllfiefy the Laplace e q u a t i o ~  

5 x <  P ? @ - i i y P ~  64-54 

The terms of thta lnntr ~lrparnsfon sattsfy thc follodwtng eqwrtiom: 

--+ vtO Q* = h p  

where, V,  denote@ the operatot 
T 



in the ezocls-flow plane. The forcing t e ~ m s  Pv, g y, and hv ( v > Oh 

may be determined reiteratively fzom the exsct equations A-L la 

particular f, vanfehes for v < 1, aa d g, snd hv vadrh for 

v < 3/2. Equation8 4-6b, c conotftut~ a eimdtansoua e y ~ t e m  far the 

croekflow arnd the preeeure. At hteech step the eroee&ow a d  the 

y be deeermfned first, md then the exfd velwfty 

fwnd f ~ ~ $ l m  4-6a. 

4. 3. Foarfer A n a l ~ ~ f e  ,d the Inner T e r ~ s .  Eiaeneolutlcns. - 
It will  be ccnvenient t o  carry out the solution of 4-6 in cylindri- 

cal pobr coordfnatea (eee Section 3. If. In paarticular. each term ob 

the inner expanelon naay then be expreesed as a terminatiw trigo- 

nometric aeries in @a tthe eoef#ic%entri of the aertee depnding oafy 

upon jind 7. Wc deffne tlze crorre-fiowterme vv and wnry by 

If ~ ~ G i j '  43) denote@ any of the term u,, vd wy. or py B ~ C P I B B B C ) ~  

a8 a funcMon af the variables %, 7, and 8, we @ball %seame %hat t b r e  

exiats a Fowie~  expansion of Fv d tb form 
F 

rv6 K 8 )  F:E 7) + 1- ~ ~ : f i ~ ) s i n  ne r F" - V  @ ~ ) c o s  a@] (4-9) 

where N i s  a suitable upwr bound, dependng upon v ( m e  Section 

4.5). ~ f f  and wiU be referred t o  ss the orthogonal Foarfer 
-V 

c~efficiente of order v and degree a The Fourier expaaefon 4-9 

will be constructed for aatvaral of tha inner termrs (aee Sections 4.4-4. 8). 



The Fourier coefficik&o u:# v: z; a d  pE fa d, &.. . )  

wheze Oka differentid operators Ha end Ln are defLned by 

Thc lowgr eign in 4-1Dc ie  undsrstood to  awly t o  the equstfons for 

ERe orthogo& coetkicfmts, obtaPnabla, fiom 4-10 by replacing: u: 
n n SiZ a 

by u,, E, by ~9 if; by it8 etc.  fie forcing tsrme i$ gv. 

h: 2. etc. (a L Z* . . 1 y be computed from the r o u ~ i ~ r  ex- 

paneione of the forcing terms in 4-6. 

thie co@e zsplscerd by the equation for WE : 

~ ~ ( w z ~  gz (4-11) 



Q and w, is given eclporatsly by 4-U. 

The eigeneolutions af ths *inner aquatfoasU ape deftned to bs 

tRa relevant solu$ionsr of the homogeahroucp eyetern of equaUone corrs- 

sponang t o  4-6, that is,  homogenecue eoiuatone eatiofying the prlneiglee 

of eudnabflity artel transceadantal decay a f  vorUcity (eeca Chapter XI). 

It the eigea~orutionsl w are eqanded in Fourier serfse af the form 4-9. 

there exfots, aa a eonsequence of t h e e  principlae. a conditiw w 

the order and degree of the coetffcfents: an eigsneolution svhick ie  
gr of order S,(c ) ti fn the inner expaneion 4-4 wfU have a non-sarc 

Fourier coeaclent 05 degree n (n = 0,1,2.. . . ) if and only Lf 
v - n/2 - 112 = non-negatfve integer (4,121 

This result follow@ from the diacugsion in Section A. 2 of ths A p p a d ~  

Wbeolretlezr c=sn&tloa 4-12! is il~atElfied, then tkle FwarJreac ewate8soBtrs of 

the sig~neolutione (denoted below by subscrifl h) erre defined by 

whenvever n poeitive integer, and by 



for tb case n .: O. The e$gensolug$ons iare definlad in Sectian A. 2 

-4 - 4. d The Leading Terma Dus to Lift and Brag: u ~ / ~ ,  q1 . q2 
The leading t@:erm@ of the f nagr 

H e t s  a and b rare arbitrary coaet 8, related 2 0  the: drag and Uft, 

~cse~activcel~ (ct. swation 3-12% oee d e o  Section Ao 4). 

To *gain 4-15 snd 4-16, one Lire n@ss that tke l e a d f ~  term& 



ate  eigensolu*ione, and hence may be cctaartructed from 4-13 and 4-14. 

subject t o  cond2tion 4-12. Two caeee are eignificstnt: (i) v 

n = 0, and (ii) v t n = 1. The first caoe givee the leading term in 

elirninded by chin@. The atrcond cwa gfves the leading: tarm of 

the eroes-flow 4-15b; the corrfrslponding pressuzs tezm ie aero by 

chfqg. Note that the coefficients orthogoslal t o  4-16 vanish ap, a 

regult of the o~ientatlon of the cocrdiruate ayetern (see SectSon 4.2). 

The term 5 of the auter excpsnaion (cf. 3-5a) conei~te of 

two parts: 

The potential 420 f r  req&*red by u;,~. &B ewMned in Seetion 3. 4, 

Chapter $Xi. TM rernaialw term in 4-17b i e  the patenthi of a 

CI, 

@. The horseshoe vortex term in the oMr axpamion 

is required by [cf. Section 3*4), 53~1 beg eeaa Byom tbc~ls 

orator e~plrpansion of 



& 5. A Rematk Concerning the N9-liaear EBect 

W c  have seen a b m  (Section 4.3) that tRe ozder and degisa, of 

the coefticients in t h  Fourier expanstan of the eigensolutiorns af 

equations 4-6 arc subject to  thb condftion 

where n may bs any no&-negintive integer. It can alsla bs ehom tka$ 

the forcing t e r m  in 4-10 vadsh unleee 8-18 fs satisfied. TAts pl;rces 

sn upwr limit ad N = Zv - 1 on the atgrecs of the cwfPieie&ra of order 

w ia the F~uriex  ctxpan~i~a of an inner term (cf. equation 4-91. Thufs, 

ccefffcbnts of large agree  are nscessla~ity of large 02dBr. 

In order to prove the last assertion, it i s  convenisat to  intro- 

duce th@ notation ( v ,  n) fez a term d ~ r d s r  6 ' fn  the T $ q a ~ w  

sf on 4- 4 whoere! 60urier expaneion involve@ a non-sero coefffcfent af 
* 

degree n (n m 0, I , & .  . . ). The forciw term& SR 4-6 

info linssr a& non-Uneez partr. PBa a reeat d the ilmar patts, 

(a. b) generatea a bighe~srder  term (a+l b). T b  non-liaelrr paite 

of the tmcing %elms, homwr,  genera& hlghas OF lo-r 

monies. In pilaticdar, (a, b) sad (c, d) interact am-finearly t o  

generate m y  of the te s (a+c+l/tQ c+d). (&+a-X/t, c+d), (%+c+1/2, I c-d I ) ,  
** 

or {a+@-I/& I c-d l E A eimge cal 

y sasily bs elbteadad to include 
of inte~x~e&a.t;@ oz&r, e. g. , der ev(log ( : ) fLQ p >  0. 

sCa* Note that, as a *as& of ous choice af &pendent varliables, a term 
(v ,  n) may generate s *higher ordera term of the emrms fot 
The question here fs entirely one of numbaring tha terms 
consliatent with the poeeibllfty of c+oas-now. In fact. no 
appsar with reepect t o  the expawions of the croscr-flow. 



(e. b) aod (4 d) aatidy 4-18, so do all Wrme wNch they 

in the higbv- or&r ccmputatlorm. Since the isadlq terms ans @@an- 

aolationer, t b  a@sertion follow@ by 

at L&eg~al oclles which arbs aa, 

term gensraLed by awalinear intesa&on crf (a, b) %ad fc. a). 

B caa Bs sb thaf. to corn@@ tha entry v * g, o b fn ther 

on or within the upmrd ~ u n a i  

SimtPaarly, one find@ that the *d 

caasf oto a$ the uistl*s$~t*tea 013 or d running d9sgonals. 



4.6. The EEfect of Wak@ Dieplace 

The FourLr cxpensfon of the term t&f ozder 6 in the ianes ex- 

paneion of the: d a l  velocity l e  

3 = $6:) sin e .I Eifip) t- e (ects) 

The equation for pressure i e  homogancsous. ad, by 

ce quation A-141, 

The forcing terns in 4-20 aze 



d tha 

vorter dteplacee ths belour the posftivs %-axle. The ftrrt cog* 

rectfon for thls effect w a r e  in, th6 term (The cross-now 

aeeociatsd with the deflection of tb@ w k s  ir~ of higher ord@~, af ~ r d e r  

be $gbt&a@d from 4-24a $he Tha, ewitchbaek tern ula 

usud way (see, Sectioa 3.6). Tbra apwapance of a tcs~m analogwara 

to in the sxp;wia~ion ~ c s  tke tm-amcsa~iooal case i s  ~ a k o d  ~ e t c f i -  

cslly wiZh the so-edfeb "Filon Perad-* (eae refersnce 2). 

'i2 in the inaer ewaasfon at &ei croee- 

flow compoaente anel pressure have the rerpraeafct-Bf ons: 

6 
V3/2 v3/267) + v t l t % ~ ) s i n  28 + -312 vZ E F )  cos 20 (4 -2k)  

The cocEicientrj satisfy the following systems of equattonra: 

(4- Ma) 



a st where vl and ZJ are given by equation 4-1410. 

The ~olutlon d 4-25 b~ 



where m is an arbitrary constant. rdtated to the axial torque. 

0 v31t and wo 
3/2 

ax+@ theredore identical d t h  tha terms of equivalent 

order which were constructed in Chaptelt IJX (cf. aqustion 3-12). 

The laat term on the right m s  obtained in Section 3.4, Equatrcn 4-31 

showe that, eP the lift ie  not zero, ptesPure does not penetrate the 

wake, even t o  the first approxi erenee in pzereure 

acrose the wake hae the f ollowfag expaasion: 

"s 

4 
-*m) - 5 f i Q l = e  3/2 ( 2  log 2 - 1) t o(6 3/2) 2 

The term exhibited on the right bdanees centrifugal forces within 

the trailag vortices, 

The /0q1dican8 of 4-27 and 4-28 are 



1 3  - 2Eit-Za) 4 2~1( -o) ]  -4- -qf 3 t log t - y)(a += 1)6*" 

Equation 4- 3% f ollcwe from chin@. From 4-34 one @sea that 

and w 1 3 / 2  are aoeoclated with switchback terme x3jZa 
3/2 

~ I l d  

it (cf. Saetion 3.6) .  The crwiechtaack t s ~ m  in the inner c~rxpwnsian w 3 / a  

of the ctoas-flow (ct. equstion 4-4b) i s  then 

The outer term 5 (cf. equedtion 4-1s) y ewre@~ed $ f ~  





as can be verlfsed by a direct cdc&tlon It can also be qho 
1 gZ &cay@ eqonentiaUyt and tbererfara no a i d l a g  term appear8 in 

are rs@red 2 0  ck the outer expasleioa 04 z* Mth the term of 

order '1' fa the insel. expaneion of the crose-now (cb. equations 

4-33, 4-36). 

of order r in the outer sqansrlon &her than those conraldercld abave. 

TMe can be prcwed by coaefdesilag the ter of the fawr e 

which decay d g e b ~ a i c d l y ~  the irrotatiarmality the oufer flow xequires 

that the outer expa~@icn of any euch tern cons&@% of o fidta sum of terme 

~ a c h  af which i s  of the form ~'f(7ii)~'~(sin no, coe nB), wh@p@ f, f48 

all terms of thia form whlch are of order 5 in outel. varhbles have, 

bean considered in tha coastru&ica of G. 

rms ot the outer ewaneiona oP velocity a d  prsesu* 
(aqwtfone 4-la, 4-lb) are related by equ;ntion 3-8, Cheptar IIL 
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Xa &mensPod@ss cgrllndsical pofas coor$inates ( s ~ e  Sectfon 3.1). 

the Nades-Stabs equat$a~%s for ths Btationary now cd a viaeoucr, incorn- 

prsa~libls Quid are  



W e  ~ e e k  ~olut ions  aP the homogeneme equation Hn( W) m 0 

where n 3 0. 1.2,. . . ,, m a  0( cr igi &@fined by 

~ 1 1 d  P@ 

rt t DL[+) = cr$ + (o+niI)q t. (an + n/2)+ (A-6) 

denonng differentiation with reepect t o  B. Two iiaaarly 

i n d e ~ n d e d  soliltione af the squation D ~ J I )  = O are 

Sinen 

@(g, biO) = 1, o m  Be@@ from A-7b th& ha@ a pole of o~dar  a 

(n = I., 2.. . . ) at the origin, and behaves as log B if n * 0. Thus f o ~  

son-ne?g&ive integer n, 'W i s  reg 

i f  and onsly if @ i s  a mdeiple of 4~ 

A& B - a, ~8 have (cL refarsnoe! 6, p. 245) 



One sees from tkts e ~ a a ~ i o n  that $ &decays t~xponcntially i f  and on\y 

i f  

m - n/2 = b2.. .. (a-9) 

X f  %m = A 4  y be, repla.cad by the expaneion 

(A* to)  

rig&- aide of A-10 is replaced by log w for the caae n = 0. 

Comparing A-3 a d  A-10, one eeee that there extet aalutkons r\f 

r;I,(W) O whruse algebrafcaUy decayiw parr i s  ;r 4u~ction of 7 
alone$ for these eelntions 2m * n a 0, S, 2, . . . These ex~sptioDB1 

solutfone appdtar as sigensoliltionr f n the inner e 

varss veloct$y componenfs. The C ~ B B  m a n = O 18 then eliminrrtled 

8"1 The Eigensol.urtions Wm 
LLI 

The solutions W of Pntareet in Chapter and nT are re  

M the pceltlm % -&e and eatisfy homogeneme 

at at = j, ddefete 

\Hhbse n - a / ~  = 1.2,. . ., n * O,i,. .  . , or tar n a. r 1,&. .. . The d~r- 

aized eigcsnat olutione are conaeant 



W e  cowraider first oolutions of Laplace's eqUatioa wMch are of 

- -(h+1) n ~ a g , ~ ~  B f  = ~ f \ l d G ~ ~ ~ e t n  nB, coe nQ) = r GktP )(sin no, cos no), 

By direct sdstitution. C: ie a saluoicn of Eegendrese differentid 

e$iucstion Xf i ie  ~aquired tc be? a segulas f u ~ e t i ~ n  oP p on *h 

Interval -1 s y  -5 +& t b n  h O,k g e e . .  and 6: = P:, $1- associ- 

ated Legeracare fundfane of the firet lad Wndetr these conaeian@ 5:; 

f@ wtthin a multiplicative constarrt, the gde&ial of a term \n the ~ O e r  

emspanetion of - i which rnatcht~s with the efgemolutfoas of orc%et 

v = h + P P / Z  + 362 in the ianer taxpatasion of since bj: = o v~hen- 

in the efgeagolution 4-13. 
* 

In order to the irulcr and outer9 ewansione of v and 
* 

w for tb gene~a l  three-dimensioml case, adatPo& solutions & 

the form A-12 me reqpajdred fog wMch X = n - 1. For details concern- 

iag the ~ o l u t i o n ~  af Lggft~1dz~'e) equtboa applicable t o  tb8e cases, see 

reference 7. For ous. parpoeee, v9e clefin@ 



P The function eR,,l 

don  of chee with the cslgenraolutf one ct i~"  (sin a@# cos no) 
C tB 

a /Z 
aapsarfq in the inner crqansfon of v and w . 

A Einal cllses of barmanfe fugctton~~ which ara, ~ s q a ~ a d  fa thtl 

cowtructiaa aza defined ae f ollowa: 

3 % -  nR" sh[r, p, O )  * ~ ~ ( r ,  p. t(.ln a@. coa no) = ; [K~( 1 p  1 

- ~ t b ) l o g  y ]  (s~n a@, cos a@) (A-16) 

The soluttona 8: aze regular evesywhere except at thEI ortgipl and dong 

tkm poative x - d o .  Note axso that these solution8 always rcqufoa 



The @waneion@ given above (cf. squ&ione 4-1 md 434) &oar a 

determia&Oon of the force and moment experienc~d by a eoud (or a 

clcaed @treamourhee) fnr, terma of the aarbLtrary conetirate. WB d ~ l l n e  
@ 

the dinaenaiodess tensor 4 by 

where J ir EdeaaBy t a n r o ~  and &@fa 

reepectivel y 

II Gauss' Tbo~ensa ie applied t o  A-19, the surface integral will consfet 

of twc parts: the first y be talran to  be the body susfaca So; the 

second may be cfiooen as a aphere af sbrbit~srily large F ~ ~ U P  eeatared 

(A- 204 

where d ~ * @  i s  %ha &menelonltsgs area els at, ar~ceed  towe%rd Oh@ 



i&erior of the body, and y = Euler'e Constant. The terma on the left 

af A-20 are respectively the dfmeneicnlaee force and moment ex- 

perienced on the body. The term on the right of A-20b, involving ctw, 

is the contribution t o  moment caused by 'dafiection czf tho w&e. * TNer 

ccntgibuticn vanlehee when either the lift or the drag on thsr body Pe 

aer&8. 


