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ARBRSTRACT

This thesis studies the stationary flow field at large distances
from a finite obstacle moving uniformly in a viscous, incompressible
fluid. The principal results consist of asymptotic expansions, uni-
formly valid for large distance, of the velocity and the pressure of the
flow field. |

The expansion procedure employed is based upon the intro-
duction of a small, extraneous parameter; the coz;zstruct.ioa is thus
recast as a perturbation for small values of the pammetef. Owing
to the presence of a viscous wake, the perturbation is in general a
singular one, and is treated accordingly, using methods developed
for related hydrodynamical problems. |

The calculated results include the following: for the case of
asdally~symmetric flow, a uniformly valid expansion of the velocity
to order r~% inclusive, and of the pressure to order e 3 inclusive,
r being the distance from the obstacle; for the general case; an

3/2

expansion of the velocity to order =z~ and of the pressure to

order ¥ Z. inclueive.
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I. INTRODUCTION

Problems related to expansions of Navier-Stokes solutions
for large distance have been discussed by a number of authors, egpe-
cially by Imai (1) and by Chang (2). In particular, it has been shown
in reference 2 that the basic problem of construction may be treated
by hydrodynamical expansion procedures of the type discussed and
illustrated by Lagerstrom, Cole, and Kaplun {3, 4). In the present
thesis, the methods of references 2, 3, and 4 are applied to axially-
symmetric and strictly three-dimensional Navier-Stokes solutiona.
Expansion procedures for the three-dimensional cases are discuased
and several terms of the expansion are given. It is pointed out also
that the procedures are slightly different for the case of three (or
more) dimeneions, due to certain changes in the nature of cross flow
and in the role of the pressure (see Chapter IV, Section 4.1). The
axially-symmetric case, regarded as a problem in two dimensions,
is discussed separately (Chapter III).

A certain class of Navier-Stokes solutions shall be studied.
The basic problem in mind is that of a stationary viscous incompres-
sible flow past a finite three-dimensional solid which tends to a uniform
stream at large distance and satisfies the no-slip condition at the solid.
Assuming that such a solution is given, we are interested in an asymp-
totic expansion of the solution for large distance at fixed Reynolds
number, meore precisely, in an asymptotic expansion valid to all

n

orders ¥ " as r - o, where r is the distance from the origin.

The problem studied here, however, will be of a slightly different
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nature. In the first place, the class of Navier-Stokes solutions studied
will be somewhat larger: Given an asymptotic series, it is difficult
to determine whether the related Navier-Stokes solutions contain a
"golid, " i.e. a closed streamsurface. On the other hand, a cextain
class of Navier-Stokes solutions is related to our series. In the
second place, in the present thesis we shall be concerned exclusively
with the problem of construction of the series, which, of course, is
only a part of the complete problem of asymptotic equality. The
special nature of the relationship between our series and the class of
Navier-Stokes solutions studied (be it e. g. that of actual asymptotic
equality or even that of total equality) is then immaterial for our
purposes. On the other hand, a statement of the intended validity of
our results is desirable. The class of Navier-Stokes solutions studied
and the sense in which our results are intended to be valid are de~
scribed in Chapter II {see Sections 2.1, 2. 2).

The methods of reference 2 will be used: An extraneous non-
dimensicmal parameter € {(also called the "artificial parameter")
is introduced into the exact solution, in such a manner that the ex-
pansion for large r may be replaced by a parameter-type expansion
for small €. In the present problem, ¢ may be regarded as the
ratio of a characteristic length to the length of an extraneous standard
of measurement. An "outer" and "inner” expansion are then con-
structed, representing respectively the repeated applications of an
"outer” and an "inner"” limit process. The outer expansion is valid
for large distance exclusive of the wake, while the inner expansion is

valid in the wake. The regions of validity of the two expansions overlap
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in the sense of reference 4. A "composite" expansion, uniformly
valid for large distance may then be constructed {rom the twé princi-
pal expansions (see Sections 3.1, 4. 2). An advantage of the parametric
procedure is that one is {irst led to approximate partial differential
equations, of considerable intuitive importance, while coordinate~type
procedures would lead directly to ordinary differential equations.

A number of shortcuts will be used in the course of the con-
struction. However, the construction procedures are explained in
Chapter II, where references are also given concerning points which
require more elaborate diecussion. In particular, reference will be
made to two principles: (i) the principle of eliminability and (ii) the
principle of transcendental decay of vorticity. The two principles

are discussed in Sections 2. 3 and 2. 4.



II. THE EXACT SOLUTIONS AND THE EXPANSION PROCEDURES

2.1. The Exact Solutions

We consider stationary flows of a viscous incompressible fluid

in three dimensions. The following notation is used:
q = velocity; p = pressure; ® = Cartesian coordinates,
¥ =X Xy =y, %3538 ¥ =41(xi) ; (2-1)
1
p = density = constant; v = kinematic viscosity

The governing equations are the Navier-Stokes equations:

@ - 9F =~ $Vp+ Wi (2-2a)
Vg =0 (2-2b)

Without loss of generality, we pass directly to the non-dimensional

form
(T T =T e VT, (0<Re< ) (2-3a)
T egT =0 {2-3b)
b3
v = (<2 (2-3c)
6:&%

of the Navier-Stokes equations. The transformation
q=Uq | (2-4a)
p=pl’p +PF {2-4b)

. :
X = in {2-4c)



Re = =L (2-44)

o
sends every solution, (q , pg' ), of equations 2-3 into a family of solu~
tions of equations 2-2 which depends on the dimensaional parameters
U, I, P, p, v; and, conversely, every solution of equations 2-2 may

be so obtained. The question of existence of a characteristic length

for a given solution of equations 2-2 is thus expelled from our con-
siderations. We shall consider solutions of equations 2-3 which satisfy
the following conditione:
o) There exists a sphere S such that fé{* and p* are regular
outgide 5 and continuous at infinity.

g) At infinity,
q = i, p =0 (ZOS&)

We shall also require

qa P 3
" 3% ag¥=0 (2-5b)

H
@/

Condition {y) is not essential, but leads to a number of well-known

dynamical relations conceraning flow at large distance. Above, solu-

tions of equations 2-3 are regarded as distinct for distinct values |
— .

of the Reynolds number, Re, Hence a solution, {(q ,p ) of equations

2-3 is a function of the x? only. ZLZxpansions will be constructed for

*®
r - m.

“

2. 2. Limits and Expansgions

o %
Given a solution (g ,p ) one may introduce an extraneous

parameter ¢ and new independent variables x;, or ?&i, by the sub-
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stitutions

{Cuter variables) {2-6a)

R
i
24

0-'?6*

X = X, ; = él/z'i?, z = 61/3'5 {Inner variables) {2-6b)

The parameter ¢ and the variables ;;i admit the following
evident interpretation: ;z'i = i/R are the coordinates of a point re-
ferred to an extraneous standard of length measurement, of length R.
In the outer limit process, R and ;;i are fixed while the chma.cteris-v
tic length, L =€R is decreased to zero; the Reynolds number,

Re = UL/v is held fixed in the process. By repeated applications of
the outer and inner limit processes to a given flow quantity W one obtains
(providgd the limits exist) two expaneions, outer and inner, of the form

q’&

W z; 6i(é)\;i(§i) (Outer expansion)  (2-7a)
i=0

W ~'> 6i(€ )'\Eiﬁi) {Inner expansion) (2-7b)
i=0

Here {Si(é 1} (6 =20,1,2,...) is a sequence of functions (called orders

or gauge functions) such that

TN :
1im0 S =0, i=0,1,2... (2. 7¢)
€ — i

If domains of validity of partial sums of expansions 2-7 overlap, as dis-
cussed in reference 4, it is then possible to construct a composite
expangion which is uniformly valid for r - o

The terms of expansions 2-7 are defined by the form of the ex-

pansions 2-7a and 2-7b, except for the trivial freedom allowed in the



T -

choice of &'s. The "form" of the expansion, understood in an ex-
tended sense to include the stipulated domainse of uniform validity,
also determines the equations, the boundary and matching conditions
which the terms must aatisfy. (The equations may be found by g
formal substitution of the series in equations 2-3.)

In the present thesis, matching series of the form 2-7 will be
constructed on the basis of equations, boundary, and matching con-
ditions (and an additional condition, namely that of eliminability of the
extraneous parameter, see Section 2. 3). The existence of an actual
asymptotic expansion of the form 2-7 is not absolutely essential and is
in fact not stipulated in the present thesis; this question is discussed
explicitly below. Different quantities, W will be introduced as needed
in each case (see equations 3=5, 3-6, 4-1, and 4-4, which give the
explicit forms for the several cases treated). The gauge functions,
6i(e ), will be determined iteratively, but not in strictly consecutive
order; the iteration process involves "switchback" (as does that of

Chang (2) ). The &'s will be reindexed in the form

8 =6 (2-74)

where the v's are chosen as convenient in the iteration process
(each v represents what is regarded as a definite step in the pro-
cedure).

The stipulated domains of uniform validity of 2-7a and 2-7b
may be described as follows: under the outer limit process E}'# tends
to T and p* tends to zero uniformly over the entire X~ space ex~

cluding the point at the origin ;:i = 0. This is evident by hypothesis
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(i. e. from the boundary conditions 2-5a). However, in general, the
outer expansion is not uniform at the positive x-axis. This is due to
the presence of singular perturbations which represent the decay of

the wake and are, in general, of order éz/ a

(e. g. in the presence

of 1lift) or of order € (drag but no lift). The inner expansion, on the
other hand, should be valid in the wake region, or, more precisely
in the right half of the §i~ space, excluding the plane % = 0. The
regions of validity of 2-7a and 2-7b should overlap for large p
{small 5). * The non-uniformity of the inner expansion at the plane

% = 0 is not important: it is stipulated that the outer expansion is .
valid at that plane, excluding the point at the origin ii = ., Hence,
the two expansions, inner and outer, @50&1& match also for small

% > 0. An additional stipulation will be added in order to derive the
boundary conditions at infinity for the outer expansion: it is stipulated
that the outer expansion is uniform at infinity excluding only the positive
;r.'-axis. and that the two expansions, outer and inner, jointly cover the

point at infinity.

Intended Validity

In this thesis, matching series of the form 2-7 are constructed
on the basis of the associated equations and conditions. The results
are intended to be valid in the following sense:

(i) For every partial sum of the expansion, and for every choice

of the arbitrary constants of the series, there should exist

*See equations 3-2 and 3-4,
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a related Navier-Stokes solution of the class defined in
Section 2.1 (i..’e. an "exact solution").

(ii) Whenever an exact solution has an expansion of the form
2-7, then the expansion should be given correctly by our
results.

Statements (i) and (ii) tell us in what sense our series is "correct”
or "grossly incorrect. " No other questions enter the construction pro-
cess. The guidance supplied by statements (i) and (ii) is, however,
needed in the construction procedure.

In the {irst place, statement (ii) determines the associated
equations and boundary conditions for each term of the series. This
has already been discussed in a proceding paragraph (see Section 2. 2).
In accordance with (ii), therefore, we should admit, for each term of
(2-7), the most general expression which is allowed by the boundary,
matching, and eliminability conditions (provided only that the expres-
sion is not in contradiction with (i) ). In the present expansions, there
exist complementary solutions of the associated equations {(called
“eigensclutions”) which satisfy homogeneous boundary and matching
conditions and the condition of eliminability (see Section 2. 3). (Here,
by "boundary® and "matching" conditions we understand, of course,
those conditions which are governing for the term in guestion, i e.
those conditions which may be derived from the overlap principle or
from condition 2-5a. Thus e. g. it is not required that an outer "eigen-
solution” vanish at the positive ;;"-axia. since no such fact derives
from the basic premises. ) The most general expression for each term

is obtained by finding all possible eigensolutions which are admitted
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by the governing conditions for the term in question. In particular,

it appears that the question of so-called "intermediate orders" or
"phantom terma" (i. e. the question of existence of terms of order not
listed explicitly in each case) may, in principle, be decided entirely
on the basis of th;e’conditions. This is illustrated in Section 3. 4.

In accordance with (i) it is necessary to take into account the
pessible "integrated effects® of the forcing term: the domains of
validity do not become evident until such effects are considered. In
general, the "integrated effects™ include the possibility of resonance
and also other possibilities, e.g. that the solution may be rendered
multivalued, )In the present case, however, an estimate of the effects
of the fcrcing term is provided at each step by a subsequent term of
the series, and will be here, in principle, taken into account by in-
spection. The forcing terms appear to be entirely harmless within
the stipulated domains of validity.

It is believed that no other essential coneiderations need to be
taken into account: although the theory of constructions such as the
present ones has never been fully discussed, it has been sﬁggeated to
the author that a favorable estimate of the possible effects of a small,
arbitrary forcing term is probably sufficient, i. e. may lead directly

to a rigorous proof of {i).

2. 3. The Principle of Eliminability

All governing conditione for our series are derived from the
definition of the exact solutions, by means of the hypotheses on the

validity of the series {cf. Section 2. 2). It should be noted, thercfore,



that the definition has changed: after the parameter has been intro-
duced, we are dealing with functions q*(x i€) and p (xi;é) which
satisf{y the Navier-Stokes equations 2-3, the conditions a), £), and

v} (Section 2.1, equation 2-5), and the following eliminability con-

ditions:
Tixgee) = Hm G (xgese) (2-8a)
[FRE .
pixtee) = Hm  p(x €5€) (2-8b)

Conditions 2-8 state that ¢ is eliminated by the substitution of x’zé
for :;i. Cf a partial sum, Spe of series 2-7a and 2-7b it is then re-
quired that, in ite stipulated domain of vaiidiéy. Sn be sxpressible

in the form

% L 3
S, = £(xi ) + R(xi €) {2-9a)
where
R ie uniformly small (2-9b)
5n(é J y 8n

The condition 2-9 will be referred to as the eliminability principle;

itis a gmverziing condition for the series.

2. 4. The Principle of Rapid (Transcendental) Decay of Vorticity

It is a certain (although possibly unproved) hydrodynamical fact
that, for a finite or semi-infinite solid in a uniform stream, the vor-
ticity decays at an exponential rate with distance outside the wake or
the boundary layer, as the case may be. It is a corocllary to this fact

that
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The vorticity must also decay transcendentally

in every term of our inner expansions 2-7a {2~-10)

as x — 0,
The term "principle of rapid decay"” is in general applied to both the
theorem and the corollary, and the corollary is also often understood
to stipulate 7 -- o rather than X — 0 (cf. equation 2-10). In this
thesis, by "principle of rapid decay" we shall understand the corollary
2-10 rather than the theorem, and ¥ — 0 rather than p — . The
reason is the following: the corollary is a direct consequence of the

matching conditions at the plane X = 0, which supply the initial condi-~

tions for the partial differential equations inveolved. (Those solutions
which decay algebraically have non-zero vorticity at the plane % = 0
and, hence, cannot be matched to the outer solutions there. )

The "principle of rapid decay® is not a governing condition,
but rather a consequence of the governing matching conditions at x> 0.
In the present construction it is almost equally convenient to use either
2-10 or the proper governing conditions, since the equivalence of the
two iz evident at every step. However, reference to 2-10 makes it

possible to reject algebraic solutions at sight.
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1II. THE ASYMPTOTIC EXPANSIONS FOR THE
AXIALLY-SYMMETRIC CASE

3.1. The Principal Expansions

In the present chapter we shall consider solutioans which are
symmetric about the x*-a.:ds. The axially-symmetric problem will
be treated as a problem in two dimensions (i. e. in two independent
variables). For discussion of the axially-symmetric case as a "special
case" of the general three-dimensional problem, see Chapter IV,

“The velocity field §  may be expressed in the form
o %o % ‘
q «u*_{xw%v ip+w T:G {3-1)

where (Tx. 3’;9 TG) is a left-handed orthonormal set of vectors corre-

sponding to cylindrical polar coordinates x*. p*. 8, where

#
0% = (y* 24 2" o= ran V) (3-2)
Z

The governing equations for the axially-symmetric case are obtained

by passage to polar coordinates (see equation A-1 of the Appéndix) and

putting

pu _ev. _Bw _8p
o 75 56 “3r 0 (3-3)
in equation A-l. The independent variables are then x* and p*. The

corresponding inner and outer variables are

-~ -3 ~
X=¢€x, p=ép (Outer) (3-4a)
* 1/2 *

(Inner) . {3-4b)

The limit process expansions to be obtained below are of the form:
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-t i 2» ™ A . e ~ A
Outer: g =1 +¢ qy{xp)+ e *log ¢ qz,(% P) + € 3 a3(x p)
+ ofe d) (3-5a)

-] o e -~ ~ o~ ~ e e
p* = ¢23, 5+ e loge By (%, P) + € Bal® B) 4 ole®)  (3-5b)

Iner: u' =1+ cuy(®F)+ € log € u, (%F) + ¢ 2u,(%F)

+ ofe?) (3-6a)
7 = M22 €vy(%F) + € Plog e v, (K, F) + ... (3-6b)
5= V2 s ew®F) 4 .en (3-6c)

3.2. A Remark Concerning the Outer Expansion: Irrotationality of

the Outer Flow Field

We shall eshow, once and for all, that the outer flow field is ir-
rotational to all finite orders €™ as ¢ — 0, or, equivalently, to all
-1

% %
finite orders r ag r — 00

The general Navier-Stokes equations in outer variables are

e ift

a - VT T = T (3-7a)

5.8 =0 (3-7b)

V=) (3-7¢)
axi

If the outer expansion 3-5 is inserted into 3-7, a term by term calcu~
lation may in principle be carried out. It is possible, however, to ob-
tain the result by a direct argument. One first ocbserves that an irro-

tational, solenoidal vector field ’?{* is a solution of the Navier-Stokes
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equations. In particular, the term of order ¢ in equation 3-7ais
zero for any such solution. L e. now impose the condition that the
vorticity of the related Navier-Stokes solutions be zero at upstream
infinity. This determines the outer limit to be an irrotational flow.
In the succeeding calculations, the right-hand side of equation 3-7a
will always vanish. We conclude that the outer expansion of the
vector velocity consists of a series of terms each of which is the
gradient of a harmonic function of §i‘ The outer expansion of pres-
sure is then a consequence of the constancy of total head in potential
flows.

In particular, if the expansions 3-5a and 3-5b are inserted

into Bernoulli's equation, one finds

3. 3. Equations for the Inner Terms

The exact equations for the axially-symmetric case, written

in inner variables, are

% ) ' 1 2
i /] téu - Bu € &Tu
H{u)-&m?-a T e e = Ve {3-92a)
o5 8% o7 L° a2
—ce ' ey -y
Bpu  B8pVv _, (3-9b)
8% 8p
* — _ -l 2 ol
ep 19v |, —8v w €” 8"v
Lz HE +uw 2= V= - ] : (3-9¢)
87 1 8% o5 7 = TRe gzl
e —— - ) -
Hl(‘ﬁ)z-u';ai._‘__’f’ oW VYW € ;3:%"_ (3-94)
8p P Re 8%
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where u', V, and W are defined by

W eaten, T VR GV (3-9e)

) 1 9 1 9.
H =L ( b ) {3-9¢£)
ox " Re op ? op
H, = H + 1 1 ‘3"9 )
1 T ReZZ g

Each term of 3-9a-d tends to a uniform limit under the inner limit
process. By a repeated application of the inner limit procéas to

the exact governing equations, or equivalently, by formal substitution
of the inner expansion, one obtains governing "approximate" equations
satisfied by the terms of the inner expansion. The approximate partial

differential equations are

H{u_) %Py £ (3-10a)
U ) b o = f 3«10a
v 332 v
8ou o v
v + Y. = ] {3-10b)
9% 8p
6pv
i gv (3'10(:,
ap
Hl(w } = h, {3-104d)

Note that v is not necessary an integer {(cf. 3-6). The forcing terms

£, &, h, vanish for v < 2. Equations 3-10a-c form a simultaneous

system; 3-10d may be solved independently.
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3. 4. The Leading Terms of the Inner and Cuter Expansions:

Yp Vi Wi Py 9,

The equations for Uy Vp W and py are

BPI .
H(ul) 4 =0 {3~-1la)
ox
8p 8pv
1,200 (3-11b)
8% op
apl»
— =0 {3-1lc)
8p '
The relevant solutions are
arRe e 7 a @ _-¢
WeEegy T M Tcoamo—e {3-12a)
x P X
w, = - BRe 0 oo =0 {3-12b)
17T S5t Py '
where
— ®2
o= E%Le; f: = %?f. g‘"ﬁ"’ (3-'12(':)
x ®

and a and m are arbitrary constants. As a consequence of condition
2-5b, the constant a may be related to the dimensionless drag ex-
perienced by any closed streamsurface; the constant m mnay be related
to the moment {s8ee Section A. 4). The constant a also represents the
aetrength of a "viscous sink® placed at the origin. This may be seen by

considering the streamfunction 4»1{52.'5) for the terms uy and vy



a _~¢ 1
T @ H Uy B oo o, Vg B oo o s {3~13a)
R 153 % 0 YV T 3w
Onz sees that, for ¥ > 0,
27 44(%, o) - (% 0)] =-a (3-13b)

To obtain 3~-12, one first observes that the principle of elimina-
bility requires that p; be a constant multiple of 7L, By matching
with the outer expansion 3-5b, it follows that p, = 0. Also, again by
eliminability,

u = 2 f(o) (3-14)
- |

Ve require that f(¢) be regular at ¢ = 0 and vanish exponentially as
¢ ~ . Inserting 3-14 into 3-1lla, one obtains a second order ordinary
differential equation for f. It is shown in Section A. 2 that { is deter-
mined by the conditions stated above to be a constant multiple of e™°.
This determines u, to withiﬁ a multiplicative constant. vy may then
be found by integrating the continuity equation; the constant of inte-
gration is zero since v; is regular on the line P = 0. The calculation
of wy is similar to that of uy and will be omitted.

| The ocuter terms of order ¢ 2 appear as a consequence of the
existence of a non-zero drag. ?{3 is determined by requiring that the
mass flux through any closed surface containing the solid be zero.
This condition has been stated above by equation 2-5b. In order to

balance the mass inflow in the wake (cf. equation 3-13b) a term repre-

senting the flow due to a potential source must appear in the outer ex-
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pansion of § . One finds

Goe- g VRN Fe G O (319)

One notes that, if condition 2-5b were relaxed, the multiplicative
constant in 3~-15 would be arbitrary.

The possibility of terms of orders other than those exhibited
explicitly in 3-5 and 3«6 will not be discussed {n full detail. However
we shall eliminate terms of all orders ¢% {0 €a<2, a# 1) This
is accomplished by referring to the principle of transcendental decay:
First we shall consider the outer expansion. Our solutions must be
regular except at 0 and oo and possibly along the positive x-axis,
it is evident also that the outer solutions are regular on the positive
X-axis {except poesibly at ) unless they match with non-trivial
solutions of the homogeneous system 3-1l. Hence it is sufficient to
restrict attention to (i) the homogeneous system 3-1l1 and (ii) solutions
of Laplace's equation which are regular everywhere except at the origin
and . We next discover that the outer solutions are regular at oo
since there the condition 'Ei* = T must be satisfied (in virtue of a
basic stipulated regions of validity of the outer expansion). Hence the
solutions of Laplace's equation are poles and proceed in integral powers
of T or equivalently in integral powers of €.

Turning next to the homogeneous system 3;11, we shall denote
inner terms of order ¢° by subscript a. One sees immediately that
Py iz a multiple of A By matching with the outer expansion, we

conclude Py = 0 (0 a<2) Also, we have u, =% 'o‘ia(a). From



-20~

the results of Section A. 2 one finds that if p o= 0 and L satiafies
the condition of transcendental decay, then necessarily a=z1l An

analogous statement holds for W

3.5. The Inner Terms of Order t":Z: Uz Vo Wy Py

In this section the terms Uy Va Wy and Py will be given.

The relevant equations are
2

H{u,) + P2 .1 %™ £ ‘ (3-16a)
Uy) + = = + £ -16a
2 " ow  Re g2 T2
8pu 8p v

¢, 2.9 (3-16b)
6% 8p
8p ’
~2 -0 (3-16c)
8p

6T |

where the forcing functions £, and h, are defined by

aul 8111 2 e-Ze'
fyeefuy— +v,=—)=2aqa {3-17a)
A L 3>
Sw. 8w VoW 20
_ 1 1 171 oe
h, = « {u + v 4 )} = aB {3-17b)
2 lexs 1o 3 7%

The constants appearing in the last equations are not new and are

given by

o= 272, p= XRe (3-17¢)
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The correct solution of 3-16c is

p, =cX V (3-18)
where ¢ is a constant. NNoting that the inner expansion of 1 - Ei} is

i- g ]

5 = % — + Ofe) : (3-19)
X
one sees that, by matching,

- a

C-"z-i

Solving now for u,, it is convenient to divide the forcing term

fz into two parts:

, |

d) = 2 (e 4 Jo-1e™] (3-21a)
x

d2) | o® l-c)e” " | 3-21b

2 = :g?;:s ( ‘G')e ( - )

i ¢l

3 appears in place of fz in 3-16a, there exists a particular

solution from which the parameter is strictly eliminable. It is

2
M_a 1, % 2% %1 -Gy
2 %% 2t Re gzt F gz ((-oleTlEN-0) - log d]
X X X

- 2e7%- &7 %%) (3-22)

The notation for the exponential integral is that of reference 5. A

particular integral for the forcing term f(zz) is

2 —
g 18X (g™ (3-23)
) p 4



as is easily seen from the fact that

:-!Z (l-c}")e"‘y (3-24)
%

is an eigensolution. Using this fact, we arrive at the general solution

of 3-16a:
u, =ub 4 W) (3-25a)
2 — a
1 - -
ol = 8 .._2._"_5 X (1-c)e” + i}z (1-0)e™" (3-25b)

(1)

where uy is given by 3-22 and a, is an arbitrary constant. One
sees that, due to the presence of the term involving log x in 3- 25b,
€ is not eliminable from ézuz. This will necessitate the introduction
of a term of intermediate order (see Section 3. é).

Integrating the continuity equation and adjusting the constant of

integration so as to make vy regular at p = 0, one finds

vy = vyt vy | (3-26a)
where
2
(1) _a p , x 3V o ¢ -Of
Y2 ST I3t We —Z ' ZTReo2 (2-e [ Ei(-0)-log o]
X ox px ,
+ -3'-7- e+ o720 2) - 3e7°- e'zq} (3-26b)
Za 2 -
2 1 - 1 -
vg_ ) = %@_.Z.E; (2-0)e” T+ S B_ﬂz—; X o(2-0)e”7 (3-26c¢)

In order to determine Wy, One first notes that if we define
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o =Bl 9P 1‘_; X (1-0)e” | (3-27a)
then
_@.H(“)zgq(iu)aﬁff?_=_4h (3-27&:)'
55 P Lapg P ° 43 2
Thus 2
wy = - -14 %1;—? + %é %:Z-lgr m) ——, (2-c)e”" (3-28)

where my is an arbitrary constanﬁ. Note that Wy decays exponen~
tially as X - 0. It is evident also that every partial sum of the inner
expansion of W decays exponentially, since otherwise the pressure

would be multivalued.

3. 6. Switchback. Terms of Intermediate Order: Uoae Vour Wpoo

We have noted above that the parameter is not strictly eliminable

5/2 5/2

from the terms ezuz. € Vo € W e For example,
N LI az 1 -¢
€ ua(x. p) = uz(x P )+ loge - T;;-Z(Lo')e {(3-29)

On the other hand, ¢ is eliminable from

¢Zu (% F) - ¢clog e - o? 1 (l-o)e”® (3-30)
AR 4 i *_;2
The second term appearing in 3-30, of order Ezlog €,
is precisely the term Uy occurring in 3-6a. Terms which arise

in this manner will be referred to as "switchback terms. " Cther ex-

amples of switchback have been discussed by Chang (2). In our con-



struction, switchback terme are uniquely determined by the principle
of eliminability.

No attempt will be made to explain precisely the reason for
switchback. It should be noted, nowewver, that it is here a non~-linear
phenomenon. Switchback terms do not appear in the expansions of
Oseen solutions. Also, one observes that a particular integral for a
forcing term which is an eigensolution will always require a switchback
term (cf. equation 3-2lb, see also reference 2, Appendix).

By writing relations analogous to 3-29 for A and W the
switchback terms Via and Wy, mway be found. In each case the
switchback term is observed to be a solution of the homogeneous
equation. This can be checked by deriving the equations for the inner
terms of order &alag ¢ in the usual way.

3. 7. The Cuter Term of Order t:3: Ei}

One finds from 3-26 that the outer expansion of the inner ex-

'
pansion of v {s

-~ 2 .
~ .da P 3a 1 ) . .
v=eloam --«3; - € e ;;«-,2;; + of€”) (3-31)

The first term represents the flow in the wake due to the potential

gource and matches with Ef’z; the second matches with a term of order

¢ in the outer expansion of ‘c'f*. This term is

3 ~Z
q3 = V3, Vé3=0 (3-32a)

where



~

~ ~ ~ [ ~y a' -
by = Spr, mp [ Xlog (F-%) + T - 2R log 7] + o 29 (3-32b)
Cor r

The first term on the right of 3-32b ie required by matching, and is
associated with the switchback term EBa‘ The second is a potential
dipole of arbitrary strength; this dipole is the eigensolution of order
€ 3, i. e. it is the most general harmonic function homogeneous of

degree 2 in the variables % and regular everywhere except at the

origin.

3.8. The Inner Term Pj -

The term of order ¢ 3 in the inner expansion of pressure

satisfies
2
_op 8%p, Of
e e AT A B LD
p Bp dp &x ox p 9p
where fz is given by 3-17a and
. 8v1 av1 wlz
fZ 2 - ul-—- - Vl—--—- to— (3-34a)
% op P
2 2
3a Re B T 20
= { we T 7 )_5 §3e {3-34b)

One may obtain 3-33 by taking the divergence of 2-3a, expressing the

resulting equation in inner variables, and expanding. The solution is

-2 2
3 -2¢
Ps“séiﬂ m.{zzl( Zv)oze - 2 log o}
) -2G e <
-3 et °11 - ‘% (3-35)

x
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The constants c¢; and c, can be determined by matching. One findse
by expanding in the overlap domain that the inner and outer expansions

of p* match to order ¢ 3 inclusive if and only if

2@2 .
¢ T wo {(3-36a)
az ~
€y Txmy (log Re = 9} + ay (3-36b)

where 51 is the arbitrary constant appearing in 3-32b. Note that
3-35 is associated with a switchback term Py

The term pg leads to the following conclusions regarding the
inner expansion of p* for the axially-symmetric case: (i) to order
€ 3 exclusive, the preesure penetrates the wake, i.e. all terms are
functions of x alone, (ii) due to the non-linear effect, there exists
a term of order 63 which is discontinuous across the wake; the pres-
sure discontinuity of this order is

, ) 2 2
Py (% @) - p3 (% 0) = =5 [ B4 - 2o (v + 4log 2 - 1] (3-37a)

K'J,_.

where

- 3a
P3=P3 ~ 7 {3=37b)

4ol

and y = Euler's constant.

3.9. Higher Order Termas.

Terms of higher order have not been studied in detail. How-
ever, it appears that the construction proceede indefinitely, involving

no change of the basic form(3-5, 3-6) of the expansions. A suitable
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sequence of orders, {6k(e )}, seems to consist of functions &i(log € )j,
where j is bounded above by i-l. It has been brought to our attention
that a similar conjecture seemed justified in reference 2.

Partial sumse of the inner and outer expansions involve a num-
ber of arbitrary constants (e. g. a, m, ay ;1. ml). A general fact
may be pointed out concerning these constants: the number of arbitrary
constants and the eigensolutions are unchanged if the Navier~-Stokes
equations are replaced by the OUseen equations. Hence, insofar as
our construction procedure indicates, given any Navier-Stokes solution
which has an expansion of the form conaidered here, one can find an

Oseen solution with the same constants, and conversely,
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IV. THE ASYMPTOTIC EXPANSIONS FOR THE GENERAL
THREZ-DIMENSIONAL CASE

4.1, Cross Tlow and Pressure: The Multidimensional Problem

In the present chapter, expansion procedures are given and
expansions are constructed for the general class of three~dimensional
Navier-Stokes sclutions defined in Chapter I (see Section 2.1). Axial
symmetry is no longer required. However, a different expansion
procedure suggests itself (and will be here adopted). due to certain
differences in the nature of cross flow and pressure in the wake region.

For problems invelving a two-dimensional continuity equation
{e. g. (2) or Cﬁapter 1i1), whenever u*‘ is given, the order of the
cross flow (and, indeed, the cross flow iteelf) is fully determined by
the continuity equation alone, together with a suitable boundary or
matching condition. Consider, e. g. the axially symmetric case: here
uel is of order ¢ in the wake region. ?{*- 1 is of order ¢ in the

outer region. Hence, by the continuity equation and matching (1), *\r“g

3/2

is of ovrder ¢ in the wake. On the other hand, v¢ is Y"small®

with respect to the momentum equation, which then degenerates to
8p" /6F = 0. |

For a problem involving a multidimensional continuity equation,
however, the situation is different. Here, the continuity equation does
not determine the cross flow. Hence, the cross flow may be large
with respect to the continuity equation and also with respect to the

matching conditions for large p. A striking illustration is given by
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the so-called "lifting case" (see Section 4. 4). For the lifting case,
the axial velocity disturbance, u - 1, remains of order ¢ (equiva-
lently, rmi) in the wake region. The cross~-flow components, v
and w‘. are, however, also of order ¢ and, hence, are obviously
"large® with respect to the continuity equation. The large cross flow
in the lifting case arises from the "horseshoe vortex" term of the
wake expansion, Zi;* {equation 4-15b), which, in particular, vanishes
for large P and therefore satisfies homogeneous matching conditions.
On the other hand, v* and w* are no longer Ysmall® with respect
to the momentum equation: the governing system of approximate ‘
equatione is a syetem of three simultanecus partial differential equa-
tions for V*, w*. and p*, namely the two momentum equatione (4«65}
and the continuity equation (4-6¢) in the cross~flow plane. Hence,
procedures for the multi-dimensional case involve a differeunt sequence
of stepe, which, in a sense, is opposite to that of Chapter Il and
rveference 2.

The three-dimensional procedures are introduced in Sections
4, 2 and 4. 3, below, by a statement of form of the expansion {equations
4-1 and 4-4), and explained further in subsequent sections. The
methods of Chapter Il are certainly not a "special case" of the multi-
dimensional methods: solutions with axial symmetry may, of course,
be treated also by the three-dimensional method and the results must
agree numerically. However, the construction is entirely different.
This, however, engenders no paradox, since in Chapter III axial syme

metry is introduced into the governing equations, while in the present
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chapter it is a consequence of the boundary conditions.

4. 2. The Inner and Outer Expansions

The three-dimensional solutions of equations 2-3, Chapter II
will be studied. Given the solution of 2-3, the x -axis is parallel
to the velocity at infinity {see condition 2-5a). The (xﬁ. y*) plane
will be chosen parallel to the total force which acts upon the body,
or at least upon a closed surface in the flow field. The dimensionless
variables x: . X , and §i are defined in Chapter II (see equation 2-6).
Under the outer limit process (;i fixed), ﬁw —»T uniformly. An

expansion of the form

s

3 il — 3 ) e ~ 3»-0 ~ “
g =T+ (izq_z(xi) + € log € Ty (R) + € STyl%,) + ofe 3" (4-1a)
& P 3 ~ -~ B L AN
P = eZpU%;) + € log € By (%) + €25 + ofe ) (4-1b)

shall be constructed. The outer expansion is in general non-uniform
in terms of order € or higher at the positive x-axis., The non~
uniformity represents the wake. The inner expansion will be treated
differently than in the axially-symmetric case. The velocity 'Ef* |
shall be expressed as the sum of a cross-flow velocity § @ and an

axial velocity uT:

3T + 5 {4-2)

In order to obtain an indexing of terms such that each value of the index
corresponds to a definite "step” in the construction, we introduce new

dependent variables
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eVt pae /Y (4-3)

For '551 fixed, an expansion of the form
T=e20 , F)+e logéu, (R)+ eu(®) + olé) (4-4a)
/2% s FAS 1'%

gt = éﬁ’f(ﬁ‘ii) + 63/22&:@ € Zf;/z&(iii) + 63/2%/2(%) + ofe 3/‘?‘)

{4~4b)

p=¢ 3/2P3/2{§i) + ofé 3/3) {4~4c)

will be constructed. In particular the plane of the variables v and

2z will be referred to as the "cross-flow plane?; ¥ may be regarded

as a parameteyr in the inner expanaion.

As explained in Chapter 11 {see Section 3. 2), the terms of the
outer expansion satisfy the Laplace equation,

V=g, =99 =0 (4-5)

The terms of the inner expansion satisf{y the following equations:

&p
('TS; - T 4 = =4, (4-6a)
4 ®
(fg& "ﬁ%’évf’q:*v-&pv =8y (4-6b)
-4

v ‘“é;"z =h

+ (4-6¢)
where Vé denotes the operator
v,=t 2, L (4-7)
gy 98z
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in the cross-flow plane. The forcing terms fv, g, and hv {v>0)
may be determined reiteratively from the exact equations A-l. In
particular f vanishes for v<1, and g, and h vanish for

v < 3/2. Equations 4-6b, ¢ constitute a simultaneous system for the
cross-flow and the pressure. At each step the cross-flow and the
pressure may be determined first, and then the axial velocity may be

found from 4-6a.

4. 3. Fourier Analysis of the Inner Terms. Eigensoclutions.

It will be convenient to carry out the solution of 4-6 in cylindri-
cal polar coordinates (see Section 3.1). In particular, each term of
the inner expansion may then be expressed as a terminating trigo-
nometric se#;ieé in 6, the coefficients of the series depending only
upon X and p. We define the cross-flow terms v, and w by

P o ot ‘ s
9, =V, ip + WVTQ (4-8)

I FV(S‘:.E. ©) denctes any of the terms u,, v, w, or p  expressed
as a function of the variables ¥, p, and 6, we shall ussume that there

exists a Fourier expansion of F_ of the form

N
F %P, 0) = FOETF) + }fiFﬁ(fc.'ﬁ)ain né + F' (%, F)cos no] (4-9)
n=l
where N is a suitable upper bound, depending upon v (see Section
4, 5). F? and gg will be referred to as the orthogonal Fourier

coefficients of order v and degree n. The Fourier expansion 4-9

will be constructed for several of the inner terms (see Sections 4. 4-4. 8).
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. n
‘The Fourler coefficients uz‘:. vﬁ, L) and p?, {n=12,...)

satisfy the following system of equations:

| op),
ﬂh(u?;) 4 --_-:E = 51: {(4-10a)
ax
8pn
HEV)+P— =g (4-10b)
ap ‘
apv™
- T aw) =nd {4-10¢)
&5 -
L (p,) =K (4-104)
where the differential operators H, and L, are defined by
8 1
B ozl - L {4~10e)
é 2
8 1 9 n
L % ey ¢ = e o B (4-10f)
B g%z p &p %’Z

The lower sign in 4-10c is understood to apply to the equations for
the orthogonal coefficients, obtainable from 4-10 by replacing uﬁ

n

by up, v

wgﬁ by w., fx: by ‘gﬁ, ete. The forcing terms f‘;‘, g?,
h’:, .__fnv , etc. (ns},2,...) may be computed from the Fourier ex-
pansions of the forcing terms in 4-6,

The case n = 0 must be treated somewhat differently, since
4-10 is then a redundant system of equations. Equation 4-10b is in

this case replaced by the equation for wi :

Hy(wl) = g (4-11)
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Equations 4-10a, 4-10c, and 4-10d may be solved for u:, vz. and ?3’
and ws is given separately by 4-1l.

The sigensolutions of the "inner equations" are defined to be
the relevant solutions of the homogeneous system of equations corre-
sponding to 4-6, that is, homogeneous solutions satisfying the principles
of eliminability and transcendental decay of vorticity {see Chapter 1I).
If the eigensolutions are expanded in Fourier series of the form 4-9,
there exists, as a consequence of these principles, a condition on
the order and degree of the coefficients: an eigensolution which is

of order 3V(¢:) =€¢" in the inner expansion 4«4 will have a non-zero

Fourier coefficient of degree n (n=0,1, 2,...) if and only if
v « n/2 - 1/2 = non-negative integer < (4-12)

This result follows from the discussion in Section A. 2 of the Appendix,
Whenever condition 4-12 is satisfied, then the Fourier coefficients of

the eigensolutions {denoted below by subscript h) are defined by

n : n ,

v T 3 s1/27 WPy (4-13a)
b2 -

n v _n X .n _

h'v © 3 Wy-1/2* = 1Py (4-13b)
1

h?iﬁ X3 _8% @h"z) {4-13c)
hpfj - gﬁﬁ -{vin/2+1/2) (4-134)

whenever n = poeitive integer, and by
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Bl ® 3, qu/z " WPy (4-142)
WYy = 0 {4-14Db)
R e
w0 = 50% -(v1/2) (4-144)

for the case n = 0. The eigensolutions Wﬁ are defined in Section A. 2
{cf. equation A-1l}. The quantities ag‘. bf:,. and ;ﬁ {(n=0,42,...)

are arbitrary constants; the orthogonal coefiicients involve the constants

n 0 i
& Ev’ and a,-

4, 4. The Leading Terms Due to Lift and Drag: uy /2 Z{f. 3’2 .

The leading terms of the inner expansioa are

uy/5 = uy/2(% F) (4~152)
G5 = vi% Flein 0 + wi(% Fleos o (4-15b)
where |
-
w2 e = (4-16a)
b4

el .é.zee‘“- 1), w = - %Flz[(am;e‘”-zl (4-16b)

Here a and b are arbitrary constants, related to the drag and lift,
reep@ciively {cf. equation 3-12a, see also Section A. 4).
To obtain 4~15 and 4-16, one first notes that the leading terms



«3b=

are eigensolutions, and hence may be constructed {rom 4-13 and 4-14,
subject to condition 4-12. Two cases are significant: (i) v =1/2,
n=0, and {ii) v =1, n =1 The first case gives the leading term in
the inner expansion of the axial velocity 4-15a; all other terms are
eliminated by matching. The second case gives the leading term of
the cross-flow 4-15b; the corresponding pressure term is zero by
matching. Note that the coefficients orthogonal to 4-16 vanish as a
result of the orientation of the coordinate system (see Section 4. 2).

The term ’HZ of the outer expansion (cf. 3-5a) consists of

two parts:
T, =T 63T ) + ¢5(% F)ein 8] (4-17a)
2 2 2
where
Q=-2 1, T2 (4-17b)
r .
1_b p :
2" T (r-x%)r

The potential q&é’ is required by uf/z. as explained in Section 3. 4,
Chapter lIl. The remaining term in 4-17b is the potential of a
"herseshoe vortex® extending downstream from the origin along the
positive x-axis. The horseshoe vortex term in the outer expansion
is required by matching (cf. Section 3.4), as can be seen from the

outer expansion of "Téff .
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4.5. A Remark Concerning the Non-linear Effect

We have seen above (Section 4, 3) that the order and degrae of
the coefficients in the Fourier expansion of the eigensolutions of

equations 4-6 are subject to the condition
V*n/a*l/gza,l.z,-.- (4"'18)

where n may be any non-negative integer. It can also be shown that
the forcing te rms in 4-10 vanish unless 4-18 is satisfied. This places
an upper lirnit of N = 2v - 1 on the degree of the coefficients of ovder
v in the Fouriey expansion of an inner term (cf. equation 4-9). Thus,
coefficients of large degree are necessarily of large order.

In order to prove the last assertion, it is couvenient to intro-
duce the notation (v, n) for a term of order ¢’ in the inner expan~
sion 4-4 whose Fourier expansion involves a non-zero coefficient of
degree n {(n=0,1,2,...) * The forcing terms in 4-6 may be divided
into linear and non-linear parts. As a result of ihe linear parts,
{2, b) generates a higher-order term {a+l, b). The non-linear parts
of the forcing éermﬁ, however, may generate higher or lower hare
monics. In particular, {a, b) and (¢, d) may interact non~linearly to
generate any of the terms (a+c+l/2, c+d), (atc-1/2, c+d), {ate#l/2, [c-dl),
or {at+ec-1/2, |c-dl). *¥ oA simple calculation shows that, whensver
E3

The discussion of the present section may easily be extended to include
terms of intermediate order, e.g., of order €V{log ¢ W, p>0

**Note that, as a result of our choice of dependent variables, a term
{v, n) may generate a "higher order® term of the same formal order.
The question here is entirely one of numbering the terms in a manner
consistent with the possibility of cross~flow. In fact, no such terms
appear with respect to the expansions of the cross«flow.
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{a, b) and (d, d) satisfy 4-18, so do all terms which they may generate

in the higher-order computations. Since the leading terms are eigen-

solutions, the assertion follows by induction.

Table 1 shows several terms of integral order which arise as

a result of the non~linear effect. The eymbol (a, b)i{c, d) denotes a

term generated by non~linear interaction of (a, b) and (¢, d}).

v 0 1 2 3
Leading terms ‘
1/2 due to drag
Leading terms
1 due to lift
(1/2, 0%ty 1)
3/2 (1/2, 0):(3/2, 0) (1/2, 0%:(3/2, 2)
(L, 1s(L 1) (L1x(L 1)
(1/2! 0)3(13 1) (1/23 0):{30 3)
, (3/2, 0)(1, 1) (3/2, 0x{1, 1)
(3/2, 2):(3, 1)
(1/2, 0):(1, 1)
. —4

It can be shown that, to compute the entry v =z a, n=b in the

above table, it ie necessary to consider only the terms which appear

on or within the upward running diagonals from the point v = a, n = b.

Similarly, one finde that the "domain of influence" of a term {a, b)

consists of the entries on or within the downward running diagonals.
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4, 6. The Effect of Wake Displacement: u;.

The Fourier expansion of the term of order ¢ in the inner ex-

pansion of the axial velocity is
; 1 =  J— -
u) = uz(i':. p) ain 8 + _1_3:3(?:. p) cos & {4-19)

The coefficients in 4-19 satisfy {cf. equation 4-10a}
1

8p.
JP |

Hy(ug) + ?3:% =6 (4-20a)

81

Hlt}_::%) + --'EI— = fl

- =1

{4-20b)

The equation for pressure is homogeneous, and, by matching (cf.

equation A-14),

p% 32} =0 {4-21)

The forcing terms in 4-20 are

2]
fl z - vl -ill.g = 2 geug- B-Z@) {4-22a)
1 i 65 "4
p P X
§=0 (4-22b)
where
a= 3Re  ,.bRe | (4-23)

The solution of 4~20 is

3“'% = 'IZG'“..»E{@‘WE“““') + %(Q-Za"e.q’) - 6-g10g g+ e-ﬁlog %)
P x

4 hui (4-24a)



wdQw
&% & hgi {4-24b)

4-24a represents perturbation of the flow due to "displacement
of the wake. ® The non=linsar interaction is between the leading terms
due to drag and lift. The downwash field associated with the trailing
vortex displaces the wake below the positive X-axis. The first cor-
rection for this effect appears in the term U {The croas~flow
asgociated with the deflection of the wake is of higher order, of order

e?.)

The switchback term u§ 5 M2Y be obtained from 4-24a in the
usual way (see Section 3.6). The appearance of a term analogous
to “ia in the expansion for the two-dimensional case is linked historie

cally with the so-called "Filon Paradox® (see reference 2). .

4, 7. The Cross-Flow of Order EB/;:: Eg/z. 93/3;

The terms of order € 3/2 in the inner expansion of the cross«

flow components and pressure have the representations:

v3/2 = vg/zﬁzo?) + vg/z(ﬁ,ﬁ)ein 20 + zg/a(i.?i) cos 20  (4-24a)
W3/2% wg/gfi.'@') + wi/a(fz.‘;?) gin 28 + gg/zﬁ.ﬁ)cos 20  (4-24b)
Pg/g = ngaﬁa-?) + Eg/z{i?) cos 28 {4-24c)

The coefficients satisfy the following systems of equations:

Hy{w 2) = 0 | (4~24a)
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o ) . .0
= (P v3/p) =h3/p

Lo{p3/2) = K3/,

Hylp "g/z;’ +P ‘% Pg/a =0
f.;p‘: (° "g/z’ - 293/, = 0
Lylp3/a) = 0

Hzﬁig/z) +P ‘5%2%/2, =§§/z

8 = .2 2 _
a5 P Ys/2)t 2¥s/p =0

2 2
Lalp3/a) =k3/,

The forcing terms are

372 =" =Py
12 1-18 1 1.1
kg/z"““;‘;“wl’ "valg%"l‘vlﬁll

where vi and y_zi are given by equation 4-16h.
The solution of 4-25 is

-G mRe L

Vo R - a -i'—.e T -
3/2 T =% ' 3/2 L

B

-G

1.1
_";".1]

(4-25b)

(4-26)

(4-27a)

(4-27b)

{4-27c)

(4-28a)

(4-28b)

(4-28c)

(4~-2%a)

{4-29b)

(4-29¢)

(4-294d)

(4-30)



where m is an arbitrary constant, related to the axial torque.
vg /2 and wg /2 are therefore identical with the terms of equivalent
order which were constructed in Chapter LI (cf. equation 3-12).

Integrating 4-26, one finds

2
Py =4 E‘fz [ Ei(-0) - Bi(-20) + L(e™7- ™%

1 - -2 1
+ P (2e77- 7%= 1)) - T (4-31)
X
The last term on the right was obtained in Section 3. 4. Equation 4-31
ghows that, if the lift is not zero, pressure does not penetrate the

wake, even to the first approximation. The difference in pressure

across the wake has the following expansion:

2
Tﬁ&.m)-ﬁ(;g,o)ae3/3§‘§:z(amga~1)+ oc ¥/2) (4-32)
X

The term exhibited on the right balances centrifugal forces within
the trailing vortices.

The adlutions of 4-27 and 4-28 are
2 _ 2 ;
V3/2 = n¥3/2 {4~33a)
2 2 ;
X3/2 " n¥3/2 (4-33b)

pg/z =0 {4-33c¢c)
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2 2
w3, =2 L (Glmu-20) - Bi(-oll+ §le™%- 2670 e Clog o
= ‘

+ e Ei(-0)] + gle - 40”4 2™ Ei(-0) - 2¢™log &

- 2Ei(-20) + 2Ei(-¢)] + 3(3 + log 2 - y)w + ™"

+ 3 (log o +1)e™"- %iog'i } + V5 /2 (4-34a)
2 18 ~.2

w = - — (P v275) {4~ 34b)
3/2°° 25z P Y372

2
2‘3/2 = %— ;zg{cEi(-zw) - gEi{-0) + }z(e"?*”’.. lge"@'
x

- %(Se“k- 4e~%) - -é; ] {4-34c)

Equation 4-33¢c follows fromn matching. From 4-34 one sees that

2 2 2
33/2 and WB/Z are associated with switchback terms X3/2a and
w% /25 {ci. Section 3.6). The switchback term in the inner expansion

of the cross-flow (cf. equation 4-4b) is then

ey e 2 —
qZ/Za = wi/aa(ii,p) 6in 20 + v5 /, (% Flcos 20 (4-35)

4, 8, The Cuter Term of Order ¢ 3: ‘53'3.

The outer term gy (cf. equation 4-la) may be expressed in

terms of a potential:

e

43 =V, T¢3=0 (4-36a)
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as can bé verified by a direct calculation. It can also be shown that

E]é. decays exponentially, and therefore no similar term appears in
4-37¢c. The terms involving % and ‘% are required to match with
eigensolutions in the inner expansion of pressure. * @ég and ég

are required to match the outey expansion of 'E}f* with the term of

order € 3/2

in the inner expansion of the cross-flow (cf. equatiansb
4-33, 4-34).

It can be shown aleo that q; is given precisely by 4-36, L e.,
there’ are no terms of the inner expansion which match with terms /

of order € 3

in the outer expansion other than those considered abaove.
This can be proved by considering the terms of the inner expansion
which decay algebraically; the irrotationality of the ocuter flow requires
that the outer expansion c}f any such term consist of a finite sum of terms
each of which is of the form évﬁ(ﬁ)}iﬁmﬁain nd, cos nd), where £ is
determined by the principle of eliminability. One easily verifies that

all terms of this form which are of order ¢ 3 in outer variables have

been considered in the construction of %}

%Nate that the terms of the outer expansions of velocity and pressure

{equations 4~la, 4-1b} are related by equation 3-8, Chapter IIL
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APPENDIX

A.l. The General Navier-Stokes Equations in Dimensionless Cylin-

drical Polay Coordinates

In dimensionless cylindrical polar coordinates {see Section 3. 1),
the Navier~Stokes equations for the stationary flow of a viscous, income

pressible fluid are

% & ® % &
% gu % Hu w 8Su & 1 %2 =%
— bV e 75 - 7V "u =0 {A-1a)
Bx dp ? B Re
% % w W 52 &
% Pv ¥ By w 8v B
L 4 4 - +
v e B T + =k
ox Bp p LL ¢ bp
e ®
w3 2
- é@iv v - -gz: --ﬁ %% })=0 (A-1b)
g # Y S %
® Ow *® Sw w ew VvV W
W e Ve & 5 + —— -5%-
dx 8p ? p ?E
& &
%D %
N AL A A L (A-1c)
14 2
% % &
8p u & “—%P v 0 W@W =0 {A-1d)
8u 8p
where
2 2 2
#2 B 2] i1 8 1 8
V' 7 %5 g & + — {(A-2)
o 8o 2 o 8ot o2 pet 4
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A. 2. Similarity Solutions of the Equation Hn(W) = 0,

We geek solutions of the homogeneous equation HR(W) =0

which are of the form

n
W S We) , {A-3)
where n=0,1,2..., m=> 0, and ¢ is defined by
-2 %2
Re . Re v
o =g~ L = o L {4 -4)
% x
By direct substitution,
n
& 113 .
%@““ﬂﬁfmwm19mW7 (A-5)
where
D% (4) = oy + (enil)y + (m + n/2) (A-6)

the prime denoting differentiation with respect to ¢. Two linearly

independent solutions of the equation I};(q;) =0 are
iy = &(m + /2, n+l; o) {A-T7a)
- ,
4 =i S‘ e-ss—(ml)g%ga’} -2 4, (A=)

where & denotes the confluent hypergeometric function. Since

@{a, b;0) = 1, one sees from A-7b that Wa has a pole of order n
(n=12,...) at the origin, and behaves as log ¢ if n = 0. Thus for
all non~negative integer n, W is regular on the positive Z-axis

if and only if ¢ is a multiple of dye

As ¢ — o, we have (cf. reference 6, p. 265)
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o~ ﬁgé%‘??xﬂ)‘ e,~(m+n/2)2§. o(m*w/ 2, m-n/ Eze'i)

(A-8)

One sees from this expansion that {, decays exponentially if and only
if
meonf2=2132... {A-9)

¥ 2m=n, A-8 may be replaced by the expansion
%ni’% tous (A-10)
T ,

where the dots indicate a transcendentally small remainder. The
right-hand side of A-10 is replaced by log v for the case n = 0.
Comparing A-3 and A-10, one sees that there exist solutions of
Hn(‘\é‘i) = 0 whose algebraically decaying part is a function of §

alonej for these solutions 2m =n =0,1,2,... . These exceptional
solutions appear as eigensolutions in the inner expansion of the trans-
verse velocity components. The case m =n = 0 is then eliminated

by matching.

The Eigensolutions W?n

The solutions W of interest in Chapter III and IV are regular
on the positive X ~axis and satisfy homogeneous matching conditions

at P = . We define

n .
wo apwi-..m m + n/2, miljer) (A-11)
’Wh@f% mﬂn/zgl,z,.-.. nao.l'oe-. Oramaﬁal,ag'ooo Thﬁ&ﬁ'

sired eigensolutions are constant multiplee of the solutions W:;. :
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A. 3. Several Solutions of Laplace's Equation

We consider fivet solutions of Laplace's equation which are of

the form

R;t(;.g. 8) = B:}:&;,y)(sin nd, cos nd) = r '(?\'M)G;(p }sinn6, cos nb),

o= G, 1' z. K] (A.lz)
where
- %
TRV LKL X (a-13)
r r

By direct substitution, Gg is a solution of Legendre's differential
equation. If Gi;t is required to be a regular function of y on the
interval -1 sy < +1, then A =0,L42,... and G;: = P?; , the associ-
ated Legendre functions of the first kind. Under these conditions ﬁ’;l
is within a multiplicative constant, the potential of a term in the outer
expansion of - E;?”* + i which matches with the eigensolutions of order
I n/2 + 3/2 in the inner expansion of P. Since P’i = 0 whene
ever n~A=l2,... , we have, by matching,

av=a,=0,{3/2n-v+12=0,L,2...) (A-14)

in the eigensolution 4-13.

In order to match the inner and outer expansions of v* and
w for the general three-dimensional case, additional solutions of
the form A~-12 are required for which A =n -1l For details concern-
ing the golutions of Legendre's equation applicable to these cases, see

reference 7. For our purposes, we define
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™(2n-1) (147 2

25 )] © () T

Go ) = F(l, 1-n, 2-2n; I;%" (A-15)

n

where F denotes the hypergeometric function. The function €Ro

{¢ = arbitrary constant) is the potential of a term in the outer expan-
sion of %’* which matches with the eigensolutions cvg /aﬁsin nb, cog nd)
appearing in the inner expaneion of v and w.

A final class of harmonic functions which are raquix-ad in the

construction are defined as follows:

S, 4 8) = CA{T, . Noin 06, cos no) = ¥ ~MH [P ()

- Gylu)log ¥ }(sin nd, cos nd) (A-16)
where
Gy ) = (£-17a)
Ky ) =p log (lq) 4 1 {A-17b)
‘ 2
o) == FUEE) (a-17c)
/2 : |
) = FUEE) log (i) (A-17d)
Glip) = -1 - p 22 (a-17e)
1/2
i) = FE) - e 2 2108 (1) (A-178)
2
e (A-17g)
2
i) = 01+ 2+ B2 log €3] (A-171)

The solutions S‘; are regular everywhere except at the origin and along
the postive n-axie., Note also that these solutions élways require

switchback terms {see Section 3. 6).
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A. 4, The Calculation of Force and Moment

The expansions given above (cf. equations 4-1 and 4~4) allow a
determination of the fiorce and moment experienced by a solid {or a
closed streamsurface) in terms of the arbitrary constants. We define

the dimensionless tensor @gx by
4 ¥t e L S :
A =q ogq +p;~§%da£*q {A-18)

B % R
where ] = identity tensor and def ?q“'* = dimensionlese deformation
tensor. The conservation laws for moment and angular momentum are

respectively

V4 =0 (A-193)
R v z\éx* = 0, .a&»z* a?*zs@* . {(A-19Db)

If Gauss' Theorem is applied to A-19, the surface integral will consist
of two parts: the first may be taken to be the body surface S o the
second may be chosen as a sphere of arbitrarily large radius centered
at the origin. The asymptotic expansion may be used to evaluate the
integral over the latter. One finds

it ot - | '

gg zg cde =at +b7y (A=-20a)
B A

EN

!) %ﬁg' d“"*zm“‘{’_(‘g 1 ‘%W 1)3

5,

SRR %ﬁ?ﬁwiogz-mi? (A-20b)

where d“éw is the dimensgionless area element, directed toward the
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interior of the body, and y = Eulér's Constant. The terms on the left
of A-20 are respectively the dimensionless force and moment ex-
perienced on the body. The term on the right of A-20b, involving aw,
is the contribution toc moment caused by "deflection of the wake. " This

contribution vanishes when either the 1lift or the drag on the body is

ZeT0.



