INVESTIGATION OF SHOCK FRONT TOPOGRAPHY

IN SHOCK TUBES

Thesis by

Robert Marcus Bowman

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1966

(Submitted May 6, 1966)



ii

ACKNOWLEDGEMENTS

To Dr. H. W. Liepmann I am deeply indebted for his imspiration,
his patient assistance, and his wise counsel. It gives me great
pleasure to acknowledge his part in this work.

To Drs. Roshko, Coles, and Sturtevant I am indebted for their
having been instrumental in bringing into being the marvelous
GALCIT 17" shock tube, the use of which I was privileged to enjoy.

I would also like to thank Capt. D. S. Johnson, who first
aroused my interest in shock tube research and taught me to operate
the GALCIT tube. A special thanks must also go to the technical
staff of the GALCIT fluild dynamics laboratory for their assistance
with the experimental apparatus.

The figures were prepared by the Graphic Arts department of
Cal Tech and the typescript was accomplished by Mrs. John E. Hoffer
of Dayton, Ohio. Their patient cooperation and excellent accom-
plishments are sincerely appreciated.

I wish to express my appreciation to the United States Air Force
for granting me the opportunity to pursue these studies and to NASA
for theif sponsorship of the experiments through NASA Grant NsG-40-60.

Finally I want to thank my wife Margaret for her Iinterest and
encouragement, but most of all for her love and for the six children

to whom I dedicate my work.



iii

ABSTRACT

An experimental investigation of the shape of shock waves in
a circular shock tube is conducted. It is found that there are three
distinct regimes governed, in a given tube, by the initial pressure
in the test section. |

At very low pressures, where the shock thickness is greater than
about half the tube radius, the axial extent (deviation from a plane)
of the shock is roughly constant and dominated by the viscous inter-

action between the "shock", the boundary layer, and the driving piston

of gas. This range of pressures is called the viscosity-dominated
regime, |

At intermediate pressures, the shape of the shock is very nearly
that predicted by the theory of de Boer, the shock curvature being
produced by the boundary layer and the axial extent being roughly
inversely proportional to the square root of the initial pressure.

This is the boundary layer regime. de Boer's work is extended and the

shock shapes for both' the two-dimensional and axisymmetric cases are
computed and plotted.

At high pressufes, the shape of the shock is complex and varies
periodically down the tube. This shape is determined by transverse
waves produced at the diaphragm (or other upstream disturbance) and

reflecting back and forth across the tube, decaying with the square

root of the distance down the tube. In this transverse wave regime,
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the axial extent of the shock is essentially independent of initial
pressure and i1s much greater than had been expected.

The square root decay of the transverse wave disturbances is
in contrast to the 3/2 power decay predicted by Freeman and appar-
ently verified by Lapworth. The experimental data of Lapworth is
re-plotted and it is shown that if this data is analyzed in a slightly
different manner it appears to exhibit square root decay.

It is shown that the shock perturbatiéns which exist in the
transverse wave regime are absent at lower pressures. The transition
region where these disturbances suddenly disappear seems to corre-
spond approximately to the initial pressure at which the boundary
layer (appropriately defined) at the disturbance fills the tube.

A rule of thumb is developed from which it should be possible to
predict the transition initial pressure (which separates the trans-
verse wave and boundary layer regimes) in any given shock tube. This
pressure occurs when the quantity L/le2 is of order one, the tube
dimensions being in millimeters and the initial pressure in milli-
meters of mercury. This rule of thumb is used to analyze the
results of several shock tube experiments published by other
researchers.

Using this rule of thumb as an important constraint, a low-
pressure shock tube design chart is developed, from which,vgiven
the type of experiments contemplated and the nature of the instru-
mentation available, the proper shock tube dimensions and operating

pressures may be determined.



Finally, avenues of future research are suggested, wherein it
may be possible to design a new type of "hi-fi" shock tube, capable
of producing more nearly plane shock fronts for use in shock
structure and relaxation time studies, especially where methods
such as integrated schlieren, optical reflectivity, or electron

beam scattering are to be used.
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I. INTRODUCTION

I.1 Historical Development of Shock Shape Research

I.1.1 The Plane, One-Dimensional Shock

The ideal shock tube 1s completely one-dimensional, the plane
shock wave being formed instantaneously by an ideal diaphragm re-
moval and propagating down the tube at constant speed ahead of a
sharp, planar ceontact discontinuity. In the early years of shock
tube technology it was considered obvious that the shock waves
were indeed plane and one-dimensional, any effect of the finite
opening time of the diaphragm being felt at most a few dlameters
downstream, and viscous effects at the walls being completely
ignored. Indeed the.early experiments of Bleakney, Weimer, &
Fletcher in 1949 (Ref. 1) seemed to confirm this view. They found
that shock waves deviated from a plane by less than 1/10 of a degree.
This result was often guoted without any mention of the particular
experimental conditions involved. The measurements were made with a
shadowgraph technique at high initial pressures in a fairly rough
rectanguiar tube. That the results might not be valid for all tubes

under all conditions was not immediately suspected.



I.1.2 Lin & Fyfe 1961 (Ref. 2)

While early shock tube researchers had been primarily interested
in producing a slug of high-speed, high-temperature gas between the
shock and contact surface for aerodynamic testing, toward the end of
the 1950's interest began to shift to the shock front itself. This
shift in emphasis was caused by increased interest in the problems of
high speed, high altitude flight and the study of chemical kinetics,
including reaction rates and relaxation times. Since the character-
istic times involved are proportional to the mean free path, it
became necessary to work with highly rarefied gases in order to
obtain times sufficiently large in comparison with the response
time of available instrumentation. It has already been noted that
the length of the test gas slug was less than ideal and that this
effect increased greatly at low pressures due to increased leakage
of the test gas past the contact surface througi the boundary layer.
Thus 1t was recognized that in order to maintain a definite separa-
tion between the shock front and the contact region it would be
necessary to use shock tubes of much larger diameter if initial
pressures were to be less than about 1 mm Hg. This reasoning led
to the comstruction of several large diameter, low pressure shock
tubes. In one of these, the Avco 24" diameter shock tube, Lin §
Fyfe attempted to measure the translational/rotational shock thick-
ness in air at Mach numbers between 12 and 22 and at initial
pressures ranging from .02 to .5 mm Hg. They found that the

apparent shock thicknesses were much greater than theoretically



expected, that there was little correlation with Mach number, and
that the apparent thicknesses were inversely proportional (approxi-
mately) to the square root of the initial pressure. Since their
technique consisted of passing an ultraviolet beam across the full
diameter of the shock tube and monitoring its intensity, they
recognized that most of the apparent thickness they measured was in
fact due to curvature of the shock caused by the boundary layer

and was proportional to the boundary layer thickness.



I.1.3 Duff & Young 1961 (Ref. 3)

Following Lin & Fyfe's "discovery" of shock curvature, serious
research into this phenomenon and its causes guickly took place. )
On the experimental side, the first investigation designed specifi-
cally to analyze shock shape was conducted by Duff & Young in,
surprisingly, a shock tube only 28.6 mm in diameter (about 1 1/8").
Despite the difficulties inherent in attempting to measure shock
shape in a tube whose radius (over which the variation tekes place)
is only about 5 times the diameter of the sensing probes, Duff §&
Young obtained several significant results. No variation of shock
curvature with Mach number was noted over a range of Mach numbers
from 1.84 to 6.33. As did Lin & Fyfe, they noted the inverse
dependence of shock curvature on the square root of the initial
pressure. More iﬁporténtly, however, they also noted a deviation
from this dependence at the lowest pressure and correctly predicted
the existence of a regime of extremely low pressures where the flat
plate boundary layer approximation does not hold. This regime, in
fact; does exist and is discussed in more detail below.

Duff & Young came close to making an even more important dis-
covery when, in explaining the scatter in their data, they commented
that the shock shape seemed to be oscillating about its equilibrium
shape as if it still remembered some of the details of its birth at
the bursting diaphragm. It was apparently not suspected that this

effect, if real, might have more than academic Importance. Most

researchers, in fact, seemed to pass it off as fancy. It will be



shown in this paper, however, not only that this effect is real but
that there exists a broad regime of conditions in which it com-
pletely dominates the shock shape and possesses a magnlitude many

times that which might be expected.

Because of the scatter in their data and the unfavorable geom-
etry of the experiment, all Duff & Young were able to determine
about the shock shape itself (vs. radial position) was that it
could be approximated by a spherical section. They also introduced
the logical argument that in an extrapolation of the shock shape to
the wall, the shock must approach the wall at a finite angle such

that the normal component into the wave (cutside the boundary

layer) is supersonic.



I.1.4 Hartunian 1961 (Ref. )

The theory relating the growth of the boundary layer behind
the shock to the shock curvature is very straightforward and will
be cutlined in the next chapter. The first theoretical solution of
this problem was accomplished by Hartunian as a masters thesis at
Cornell in 1954 but was not published until 1961 when the experi-
ments of Lin & Fyfe and Duff & Young gave increased significance
to the work. The case solved by Hartunian is that of a shock in a
semi~infinite medium passing over a flat wall. The equations are
solved for this geometrically simple "one-wall" case with only
slightly more ease than in the subsequently solved two-wall and
axisymmetric cases. The great simplification of this case lies
in the ease with which the resulting analytic expression for the
shock shape may be converted into numerical or graphical form. The
more complex geometries result in infinite series and integrals
which converge only slowly and were thus unavailable in graphical
form for comparison.with experiment until their evaluation in the
present paper (see appendices C, D, and E). The parabolic profile
of Hartunian's one-wall case is appropriate for comparison with
experiments in the shock tube only in a limited zone not too near
either the wall or the center of the tube.

Nevertheless, Hartunian's paper is extremely significant since
the more useful gecmetrical cases have been solved using the same

- general method.



I.1.5 Johnson 1962 (Ref. é)

At this stage in the development of shock shape knowledge what
was needed was clearly a set of experiments combining the advantages
of the large diameter shock tube (e.g. Lin § Fyfe) and the deter-
mination of shock shape by the measurement of arrival times at
various end wall stations (e.g. Duff & Young). This need was
recognized by Liepmann (see acknowledgment, Ref. 5), and under his
supervision the first shock shape experiments in the GALCIT 17"
shock tube were carried out by Johnson using specially constructed
plezoceramic pressure transducers (similar to those used by Duff &
Young) in the end wall. Unfortunately, the range of initial pres-
sures covered in Johnson's experiments was limited by the same
instrumentation problems which plagued Duff & Young. Initial
pressures ranged from .03 to .1 mm Hg, practically the same range
covered by Lin & Fyfe and comparable tc the range of .1 to 20 mm Hg
covered by Duff & Young in their smaller tube. Because of the
favorable geometry of his experiments, however, Johnson was able
to determine the shape of the shock wave in this regime with greater
precision than were his predecessors. Thus it happened that all
the shock shape experiments up to 1962 were conducted in the fairly
narrow pressure regime in which the boundary layer theory of
curvature production is valid and in which the gross curvature or
apparent thickness varles with the inverse square root of the initial
pressure. There was some evidence that this variation might not

hold at extremely low pressures, but there was evidently no suspicion



that there might be a regime of higher pressures where the boundary
layer theory fails completely to describe the shock shape. It was
confidently felt that at higher pressures all deviations from

planarity would be immeasurably small.



I.1.6 Daen & de Boer 1962 (Ref. é)

In the course of an experimental Investigation of relaxation
processes in an integrated-schlieren-equipped shock tube, Daen §&
de Boer encountered unexpectedly large apparent zone thicknesses,
much as had Lin & Fyfe in their similar experiments. Daen & de Boer
were, however, aware of Hartunian's theory and were operating at
higher inifial pressures where the predicted curvatures were small.
Their experiments, though, indicated the probable existence of
curvatures 2 to 10 times those predicted by theory and which did
not seem to follow the inverse square root pressure rule. Because
they had no direct knowledge of the shock shapes, but could only
infer their gross extent from density measurements integrated across
the tube, they did not recognize that other, non-viscous, sources
of shock non-planarity were present, but pointed out possible
reasons for the discrepancy between their results and the predic-
tions of Hartunian's theory. In particular, they presented a
qualitative description of the flow at the foot of the shock.
Considering the good agreement between Hartunian's theory and all
the earlier experiments, it is not surprising that Daen & de Boer
apparently did not realize that they were operating in a regime to
which Hartunian's theory did not apply, but for which a new theory,
based on upstream disturbances of the shock wave, would have to be
developed.

At about the same time, other shock tube relaxation rate studies

were being performed by Wray (Ref. 7). In these experiments, instead
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of integrating across the entire tube diameter, Wray reduced the
optical path length in recognition of the experiences of Lin §&

Fyfe. This technique improved the data at low initial pressures,

but the data at high pressures had to be discarded because of
tremendous scatter. The results of this paper indicate that this
scatter was probably caused by the same type of upstream disturbances

that troubled Daen & de Boer.
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1.1.7 de Boer 1963 (Ref. 8 and g)

Probably motivated by the difficulties which he and his asso-

3

ciates encountered with their integrating-schlieren experiments,
de Boer undertook a detailed and comprehensive study of the theory
of shock curvature produced by a boundary layer. In this theory,
he extends the analysis of Hartunian to the two-wall and axisym-
metric cases and includes analyses of the effects of the flow at
the foot of the shock, boundary layer transition, and the position
of the contact surface. The main contribution of the analyses of
the latter effects is that they are shown to be negligibly small.
The correction for the flow at the foot of the shock is a quali-
tative step in the right direction and helps explain ﬁhe deviation
from inverse square root pressure dependence at very low initial
pressures. The value of the correction for the partially turbulent
boundary layer is yet to be demonstrated, since this correction is
only of importance at extremely high pressures (above 100 mm Hg)
and so far no shock shapes have been observed at Tthese pressures
which were not completely dominated by non-viscous transverse dis-
turbances from upstream.

In his doctoral thesis (Ref. 8), de Boer alsoc reports the
results of a series of experiments with the integrating-schlieren
apparatus similar to those of Daen & de Boer (Ref. 6). The zone
thickness results of these experiments agreed quite well with the

theory at initial pressures below 30 mm Hg. At higher pressures

the apparent zone thicknesses were all much greater than predicted
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by the theory. de Boer concluded that the deviations from theory
were caused by irregularities in the shock tube surface. While
irregularities such as windows and ports can definitely cause per-
turbations in the shock shape, it is more likely that the greater
part of the deviation was caused by disturbances originating at the
diaphragm. This is clearly indicated by the fact that de Boer was
able to reduce the deviations from theory only very slightly (from
say © times the theoretical value to about 4 times theoretical) by
inserting a precision glass inner tube within the shock tube. That
he blamed the remaining deviatlon om entrance effects at the
beginning of the glass tube is an excellen% example of the belief

of most shock tube researchers that disturbances from the diaphragm

could persist no more than a few diameters downstreanm.
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I.1.8 Liepmann & Bowman 1964 (Ref. 12)

The research reported in the present paper is a continuation
of the research on which a preliminary report was given in
reference 12. In that publication it was indicated that there
was a regime of high pressures in which upstream disturbances were
dominant. It was also reported that definite evidence of shock
shape dependence on diaphragm configuration in this regime had been
obtained and graphs of typical shock shapes in the different regimes
were presented. This paper will present the results of subseguent
experiments which make it possible to analyze these regimes in

detail. A chapter will also be included on the regime of extremely

low pressures, which was not covered in the preliminary report of

reference 12.



I.2 Possible Sources of Non-Planarity

The sources of non-planarity of the shock waves in a shock tube
fall into two general categories——étatianary and non-stationary
effects. The stationary effects are steady in shock~-fixed coordi-
nates and include the influence of the boundary layer and through it
surface roughness. At moderate pressures the boundary layer is thin
compared to the tube radius and straightforward flat plate theory is
applicable. At lower pressures the shock shape is complicated by
the viscous interaction region at the foot of the shock and by the
transverse curvature of the wall {in a circular tube; in a rectan-
gular tube, corner effects become important).

The non-stationary effects produce shock shapes which vary with
time and distance down the tube and include disturbances of protu-
berances and area changes, effects of non-plane contact surfaces,
and disturbances originating from the non-ideal opening of the
diaphragm. All these non-stationary effects take the form of
transverse waves which originate at the disturbance and reflect
back and forth across the tube, thus intersecting the main shock

at different positions as the shock moves down the tube.



15

I.3 Shock Shape Regimes®

I.3.1 The Viscosity-Dominated Regime

'The experiments reported herein show that the two general types
of sources of non-planarity cause the shock shape theory to be
divided into three regimes, two of them dominated by the stationary
effects and one dominated by the non-stationary effects. Like any
description of physical phenomena, this division is somewhat
arbitrary and the regimes are not separated by perfectly sharp
divisions, but by somewhat hazy zones. Nevertheless three quite
distinctly different theoretical treatments must be given for the
three regimes and the regimes of applicability of these theories
are much broader than the transition zones between them.

The viscosity-dominated regime covers the very low initial
pressures from the free molecule limit up to the pressure where
the shock thickness has decreased to about 1/2 the tube radius.
The shock thickness and boundary layer thickness (these really
cannot be defined in this region and the use of the terms "shock"
and "boundary layer' is éxtremely loose) in this regime are both
too large to be assumed "small" in comparison with the tube

diameter. Moreover, the shock curvature is too great to be treated

*Here and throughout, the word "regime" is used to denote a set
of conditions under which a particular phenomenon governs the shock
shape with a particular set of physical laws. The word "region",
on the other hand, is used to denote physical location, such as the
"region behind the shock".
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by a "small angle" analysis, and the irrotational testing region has
disappeared, the contact surface (or turbulent mixing zone) being
very close to, or even overlapping with, the shock. As can be seen
from the results of chapter IV, the viscous interaction region where
the shock and boundary layer join extends well into the tube and
cannot be ignored. The shock thickness and shock strength varies
considerably from the center of the tube to the walls and there are
large variations in the properties of the flow behind the shock,
these variations being both radial and axial. Although the shock
shape 1s stationary in this regime and can be determined experi-
mentally (see chapter IV) it would seem that a complete theory for
this regime will be a long time in coming. |

Because this regime is best understood as one in which there
is a progressive departure from the predictions of boundary layer
theofy, the chapter devoted to the viscosity-dominated regime is
deferred until after those in which the theory of the boundary

layer regime is developed.
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I.3.2 The Boundary Layer Regime

The boundary layer regime encompasses a fairly narrow band of
pressures immediately above the viscosity-dominated regime. It is
in this regime that the shock shape is closely predicted by the
theory of Hartunian and de Boer, the axial extent or apparent
thickness® varying as the inverse square root of.the initial pres-
sure. This regime is characterized by the boundary layer being
thin enough that there exists a reasonable testing region of nearly
irrotational flow behind the shock, and yet thick enough that
transverse waves produced at the diaphragm or by protrusions in the
tube are ''choked off" and dissipated before the shock wave reaches
the test section. The shock thickness will normally vary from
about 30% of the tube radius at the low pressure end of the regime
to about 3% of the radius at the high pressure end. The latter
figure will depend on the length of the tube for the boundary layer
regime extends to higher pressures in tubes of greater length/

radius ratio.

*These are not identical in general, for the apparent thickness
is the sum of the axial extent and the actual shock thickness. It
is, of course, only the axial extent which should follow the pl‘l/2

law.
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I.3.3 The Transverse Wave Regime

The transverse wave regime takes in all initial pressures
above the boundary layer regime. The shock shape in this regime is
unsteady and describable by a weakly damped periodic function for
geometrically symmetric disturbances (and hardly describable at all
for asymmetric disturbances), the shape at any time or distance
down the tube being dependent mainly on the magnitude and phase
position of transverse waves created at the disphragm or other
disturbance. These waves reflect back and forth across the tube,

_1/2), the boundary layer being too

decaying only slowly (like t
thin to cause a noticeable speed-up of this decay.

The transition zone between this and the boundary layer regime
is quite narrow and seems to occur at the initial pressure for
which the boundary layer iIs just thick enough to cause closure at
the disturbance when the shock is arriving at the test section. No
upper limit on this regime has been discovered.

Figure I.1 gives a qualitative comparison of the shock shape

regimes.
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I.4 Application of Shock Shape Knowledge

It has already been noted that shock tube experiments in which
the shock wave itself is investigated using instrumentation which
integrates across the tube may not be performed without due regard
for shock shape. At the same time it is not sufficient to merely
recognize that deviations from planarity* exist and introduce
correction factors blindly, forcing the data to assume the expected
form. In order to get meaningful results from experiments using
schlieren, optical reflectivity, electron beam, or other such
methods, 1t is necessary to know the precise shock shape for each
experimental condition and correct the data accordingly. This
procedure becomes easier and more successful if the experiments are
conducted under conditions such that the deviations from planarity
are as small as possible. It will be shown that this suggests
operation in the upper part of the boundary layer regime. Thus a
knowiedge of the initial pressure corresponding'to the transition
from one regime to another becomes imperative. This pressure will
vary from one shock tube to another. Its estimation in the important
case of the transition between boundary layer and transverse wave

regimes is discussed in chapter VII.

“In the past the word "curvature" has been used indiscriminately
to describe all deviations from planarity other than tilt. Shock
shapes under the influence of transverse waves, however, are so far
from being spherical (see Fig. I.1) that its use in this regime seems
111 advised. Statements to the effect that protrusions "increase
the curvature" of the shock miss the point completely.
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These same considerations are important when a new shock tube
design is being considered. Not only may the length, radius, and
operating range of a shock tube be matched with more intelligence,
but it is possible that new concepts in shock tube design can lead
to tubes capable of producing shock waves of much greater planarity
then 1s presently attainable. These considerations are discussed

in chapter IX.
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I.5 General Experimental Procedure

All the shock shape measurements were made using the same basic
tecﬁnique: recording arrival times of the shock wave at various
positions on the end wall on a set of carefully synchronized oscillo-
scopes and converting the arrival time differences into displacements
by multiplying by the shock speed. The sensing gages were specially
constructed thin-film heat transfer gages (see appendix B) providing
up to 18 radial data points along a single radius and additional
points on other radii, including a set of points extremely close
to the wall for use 1n the viscosity-dominated regime. There were
also symmetrically located gages for the detection of tilt. In
addition the entire end plate could be rotated to check on angular
variation of shock shape. In the transverse wave regime, for example,
a quadrantal warp shows up which 1s related to the petaling of the
diaphragm. In the boundary layer regime, however, the shock shapes
were élmost perfectly axisymmetric. See figure 1.2 for a schematic

diagram of the experimental procedure.
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1.6 Preliminary Comment on Curve-Tracing Technique

The standard technique used in tracing curves through experi-
mental data points involves drawing the smoothest, simplest curve
possible through the vicinities of the data points or using a least
squares fit to a known function. Often neglected is the fact that
the size of the "vicinity" of a data point is determined by the
accuracy and certainty of the measurement and that the least squares
fit should always involve a weighting function expressing the
relative accuracies of the various data points. Often the weighting
function varies linearly over the range of the measurements. Many
times it is quite complex, especially when (as in the present case)
the data points are not independent. Only under special circum-
stances is the weighting function a constant (which therefore can
be ignored).

A distinction must be made between two different types of plots.
In a plot such as figure III.6 the data points from a great number of
shocks are superimposed. If one were to draw a ''mean" shock shape
through this data it would not necessarily go through the center of
all the points. On the other hand, in a plot such as figure V.4 or
V.8 the data points for each case were obtained simultaneously and
pertain to one particular shock wave. The curves drawn through them
attempt, as closely as possible, to represent the actual shape of
that particular shock. The next shock under identical conditions
might have a very slightly different shape, but that one shéck has

only one true shape. The curve must therefore pass within the limit
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of error of each data point. In these experiments that limit of
error is a A(x/R) less than 10™%. The limit of relative error
between two adjacent gages located on the same glass plug and
recorded on the same oscilloscope is even less. Thus shock slope
measurements from two adjacent gages are very reliable.

A feel for the general shape of even the complex shock shapes
was gainea by observing optical studies of shocks produced under
similar conditions and by imposing certain boundary and symmetry
conditions, where applicable.

, Since the shock shapes in the transverse wave regime could
become quite complex, each has been drawn ds the most likely shape,
in the light of the above considerations, passing through each data
point.

For a further discussion of data reduction technique, see

appendix F.
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II. BOUNDARY LAYER REGIME: THEORY

II.1 Formulation gg_the Problem

Consider a shock moving in a tube. Let the coordinate system
be attached to the shock and move with it and be as shown in figure
II.1. Then a detail sketch of a small segment of the shock with
slope dxgp/dr = o will be as shown in figure I1.2. From the latter
it is evident that if ¢ is small, then to order ¢ the induced
vertical velocity behind the shock will be given by

v(xgn,r) = v(o,p) = (Uj-Updo = (U-Up) o= (Eqn. 2.1)

sh

Here we have made the above small angle assumption and, consistent
with it, have applied the condition at x = 0 instead of at the
actual shock position. Once v(o,r) is known, then xgn(r) may be
determined by integration of équation 2.1. The determination of
v(o,r) i1s made by assuming irrotational potential flow (valid for
small o) in the region behind the shock and calculating v(x,r)
throughout the field bounded by the centerline of the tube and the
fictitioﬁs wall located at the displacement thickness of the
laminar wall boundary layer.

In order to complete the problem, we need the boundary condi-
tions on v at the other edges of the region--along the centerline

of the tube and at the wall. The first of these is, by symmetry,
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simply
v(x,0) = 0 {Eqn. 2.2)

We assume that the equivalent inviscid flow is parallel to the
fictitious "displacement thickness" wall and thus using the usual

slender body approach the last boundary condition becomes

as®

V(X,R) = U2 —&‘ (Eqn. 2-3)
where, in the laminar case,
1, ola l . '
8% = AY x /2 (Eqn. 2.4)

Though the analysis can be carried out for a more general dependence
of 6% on X, 80 as to apply also to turbulent boundary‘layers, it

turns out that only the beginning of the boundary layer significantly
affects the shock shape and throughout the entire regime in which the
theory has any validity, this part of the boundary layer is entirely

laminar. Thus the analysis here will be for the laminar case.
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I1.2 Results of the Potential Solution

In appendix D it will be shown that the preceding boundary con-
ditions applied to a region of potential flow behind the ishock lead

to the following solution for the vertical velocity in the region:

oo

UpA™ Iy (mpr) cos px
Vors I (mpR) /o

v(x,r) = dp (Egn. 2.5)

o]

This in turn leads to the following shock shape:

2 2owtu, [o1ottn) - 1

Xgp = (2wm 5o, (Eqn. 2.6)

3
o Tty £ 72

- 2>l/2’

where n = r/R and m = (1 - M
Thus we see that the shock shapes are similar for all flow con-
ditions within the regime, for the integral which contains the varia-
tion with r does not contain any flow variables. Thus in order to
analyze the theoretical effect of the flow variables, it is sufficient

to explore their influence on the axial extent 6 which is just

Xgpy Tor n = 1.

In appendix E the shock shape integral is evaluated and its
value vs. n leads to the shape marked ”boﬁndary layer theory'f which
appears in many of the figures. At n = 1 this integral has the

value 2.78. Thus the axial extent (non-dimensionalized with respect

to the tube radius) is given by
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2.78 A¥U
= 2 (Eqn. 2.7)

- 1
(2mmR) /2 (U,-Up)

s
R

In appendix D it will also be shown that the radius of curva-
ture of the shock at its center can be calculated (this gquantity
is very important in optical reflectivity measurements, for
example). Its reciprocal, the curvature at the centerline, 1is

given by the following expression:

2 %
d“xgy UgA Yt ot

a2 i S, | T

(Eqn. 2.8)
1/2 3
r=0  2(2mm) (U;-Uyp) R
o

The integral in this expression is evaluated in appendix D and has
the value 6.38. Thus the ratio of the tube radius to the shock
radius of curvature at its center is given by

6.38 UyA¥
= = 1.15 o

— - a (Egqn. 2.9)
R % lpz0 2(2mR) /2 (U1-Up)

2
R R d“xgh

Thus the determination of the theoretical axial extent and the
theoretical radius of curvature at the centerline are dependent on
the calculation of the same function of the flow variables. The
problem then reduces basically to the determination of the displace-

ment thickness coefficient A™.
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o . .
IT.3 Determination of A", Final Results

If the boundary layer equations for the compressible flow
behind a shock wave on a flat plate (we ignore the transverse
curvature) are transformed using Stewartson (Ref. 14) variables
and properly renormalized to eliminate Mach number dependence
(approximately, of course), then the Blasius equations are obtained
with non-Blasius boundary conditions. Since the flow 1s compress-
ible, any solution must involve the energy equation. The Crocco
integral relation is used and the particular boundary condition
chosen (for the first iteration) that hw.:‘hl, "It can be shown
that the velocity profile solution obtaineé from this analysis is
exact only in the weak shock limit. Nevertheless, this analysis
due to Hartunlan (Ref. 34) is widely used. The resulting expression

for the displacement thickness is

§% = % ST o _ _£90 (Eqn. 2.10)
/T C
where
+1 4
Y=y 201 4+ e(2-/2)] -
Syl U . 2172
a = . = (Egn. 2.11 a,b)
, i v a2
y-1  u
and

Pouz

[l + €<2‘/—2—)] 2 § =

Pyt
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Now the above is a fairly complicated function of Mach number.
If, however, we concern ourselves primarily with Mach numbers
~greater than three, then we may make strong shock approximatioms,

in particular that

for vy = 5/3
u
ML Xi%-: n (Eqn. 2.12)

U2 L e.g. Argon

and the equation for A¥ simplifies to

9. Uy ~up RM Tl“w
.
A% = 475 | uz) Q“Re g’%m (Eqn. 2.13)

where we have introduced the undisturbed Reynolds number which is

defined as

R, = (Eqn. 2.14)

The one term involving the velocities which we have not evaluated has
been left in order to cancel a réciprocal term in the equation for

A It is at this point that the assumptions made can greatly affect

Rl

the Mach number dependence appearing in the solution. If one assumes
that Ty = Ty, then the square root Mach number dependence will
remain. If, on the other hand, one assumes that some mean value of

the temperature within the boundary layer should better répresent Tw

in this equation, then

Ty .
"T'—l— -1l1=e -1 (Eqn. 2.15)
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and if we arbitrarily choose e = 1/2, (the result is not very sensi-
tive to this choicej and linearize for high Mach numbers where

T, >> T;, then Ty, ~ = T, and

o
m 1-w 1-w
] == L — -
= == 2 = 6‘é 7 = 1.32 Mt (Eqn. 2.16)
W My

Then the equation for A® becomes
— ty
KX u]~u ; _ /2
A% = pog L2 \/3— u® (Eqn. 2.17)
Uo Re

and the Mach number dependence has been weakened. A physical
picture of how this takes place can be gained by considering the
displacement thickness to be the sum of two separate fhicknesses——
one due to the velocity profile (and for the shock tube problem this
part is always negative) and one due to the temperature profile. If
it is assumed that Ty, = T;, then the cold wall induces a flow toward
itself, thereby increasing the negative displacement thickness. If,
on the other hand, one assumes Ty > T;, then this thermal contri-
bution is reduced. As the Mach number (and thus T,) goes up, the
wall temperature deviates more and more from T;, therefore the
negative displacement thickness does not grow as quickly with in-
creasing Mach number.

When this result 1s substituted in equation 2.7 and M, is computed

from the strong shock limit, the final expression for the axial extent

becomes
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This is the strong shock limit for argon (or any other monotomic
- gas) based on a rather simpleminded approach. In actuality the co-
efficient is not .737 but a function of Mach number and has been

plotted by de Boer based on Mirsls' (Refs. 15,16,17) boundary layer

work. Using this plot (Fig. 9, Ref. 8), we find that over the entire

Mach number range of these experiments (about 3 < M < 11) the vari-
ation in the coefficient jus:t about cancels out the w-1/, power
variation and the axial extent is independent of Mach number. This
result will be adopted and the following expression for the axial
extent will be consistently used to represent the theory for the

boundary layer regime:

= 128 [y=5/3] (Egn. 2.19)

/Rg

el Keo)

The minus sign has been dropped. Its significance was that the
deviation of the shock from a plane was in the negative x direction.
In comparing the experimental data with theory, tThe origin will be
placed always at the center of the shcock and xgy and € will be
positive in the positive x or "up thektube" (toward the diaphvragm)
direction.

Using equatlon 2.9 and equation 2.19, one can determine the
theoretical radius of curvature of the shock at its center to be:

a>

[ O

R
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If the boundary layer for vy = 7/5 (e.g. nitrogen) is calculated,

an equation comparable to equation 2.18 is obtained:

It will be assumed that the coefficilents of equations 2.18 and
2.21 are in the same ratio as the axial extents in argon and nitrogen
at all Mach numbers, and therefore that an equation for nitrogen

comparable to equation 2.19 for argon exists, in which case:

o

[y=7/5] (Eqn. 2.22)

6. .71
R @i;
Then for the central radius of curvature of the nitrogen shock,

the relation is:

—> = 1.22 /Ry [y=7/5] (Eqn. 2.23)

Note that the vy dependence implied in the above equations is
very close to the (y-1) dependence predicted by Johnson on the basis
of a spherical shape. In fact, equations 2.19 and 2.22 can be

combined into one equation which sheould approximately represent the

boundary layer theory for all gases:

. .88
§ . 202 (rol) (Eqn. 2.24)
R /R

e
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III. BOUNDARY LAYER REGIME: EXPERIMENTS AND RESULTS

IIL.1 Shock Shapes: Comparison With Theory

The data from 22 shock tube runs is plotted in figure III.1
along with the theoretical curve. Considering all the assumptions
in the theory, the agreement is as good as can be expected.

The theoretical shape reaches a physically impossible point of

tangency with the wall at

(x/R)Rel/2 = 1.13 (from Eqn. 2.19)

while the actual shape approaches the wall at a finite angle. This
angle of intersection with the wall is, of course, distorted by the

stretching of the x/R coordinate in the normalization. The shock

shape for p; = 10p Hg 1s replotted to true scale in figure III.2

along with the corresponding theoretical shape. The shock thickness
as determined from the rise-time of the heat transfer signal is also
shown on this plot.

Up to p; = 170u Hg, there is a consistent approach to the
theoretical curve as p; is increased. At higher pressures, however,
the shocks are not completely axisymmetric and the shape can deviate
elther above or below the theoretical curve depending on the angular
locétion of the radius along which the measurements are taken. The

|

deviations also depend on other factors, such as the Mach numbers,

the diaphragm configuration, and the tube length. These deviatioms,
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which are just noticeable at 300u Hg are quite pronounced at 500u Hg
and are huge above a pressure of 1 mm Hg. This is the transition
region to the transverse wave regime and thus data for runs above

p1 = 170p Hg will not be further discussed in this chapter.
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I11I.2 Variation gﬁ‘”AXial Lxtent" With Re

Using thin-film héat transfer gages flush with the end wall of
the shock tube, it is possible to measure shock shapes out to within
about 1 mm of the side wall (depending on how small one can make the
film and how accurately 1t can be located), but since the film must
be insulated from the walls, it is impossible to measure the shape
all the way to the wall. Therefore in order to avoid the necessity
for extrapolation and the consequent introduction of error, the
axial extent out to some arbitrary percentage of the radius will
actually be used for comparison with the theory. This has the addi-
tional advantage that at some point away from the wall the theory
is less affected by its "incorrect boundary condition" at the wall.
For this purpose 80% of the radius has been arbitrarily selected
and a quantity 4x(.8) is defined in figure III1.3. In the boundary
layer and viscosity-dominated regimes this quantity is simply equal
to xgp(r/R=.8), but it has been defined in such a way as to have a
more general meaning which will be important in the transverse wave
regime where the shock shapes are complex. In figure III.4 this

quantity is plotted vs. initial pressure.
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II1.3 Effect of Mach Number

The analysis of chapter II predicts that the normalized shock
shape will be independent of all flow variables and that the axial
extent will be independent of Mach number within the range 3 < M <11,
Then shots at different Mach numbers but otherwise identical condi-
tions should produce identical shock shapes. In order to test this
independence of Mach number a series of shots were made in argon at
10u Hg with identical diaphragm configurations, but with half the
shots using helium as the driver gas resulting in M = 9.1 and half
the shots using nitrogen in the driver, yielding M = 6.4. The re-
sults are plotted in figure III.5, each data point shown being the
average over all the shots at that Mach number at the indicated
radial position. The use of more than one shot at each Mach number
was necessitated by the random fluctuation in shock shape noted by
Duff and later by Johnson. Though such fluctuation is very small
at 10y Hg (which is why that pressure was chosen for the test) it is
still larger than the variation due to Mach number.

The results of the test show the shock at the lower Mach number
to have a curvature apparently very slightly larger than at the
higher Mach number. The difference is so slight, however, that it
is easily within the expected statistical variation. If 100 shots
were made at each Mach number and such a difference remained, then

it could safely be attributed to the Mach number. As it is, the only
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conclusion that can be drawn is that if there is an effect due to
Mach number, it is extremely small. The theoretically predicted
independence of Mach number is therefore, for all practical purposes,

confirmed.
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III.4 Miscellaneous Geometrical Dffects

In the preceding sections, the effects of Ry and M have been
covered, both thecretically and experimentally. The influence of w
has only been partially taken into account. The effect of v as
given in equation 2.24 has not been verified. Since the theory
involves only that curvature caused by the vertical velocity induced
by the boundary layer, the shock shape predicted is independent of
the diaphragm configuration, the blades used to rupture the diaphragm,
the length of the tube, etc. In order to evaluate the actual effect
of these details, a series of shots at an initial pressure of 100p Hg
was made, using various combinations of the above menticned geometric
details. The results of this test are plotted in figure III.6.
Enclosed in the rectangular markings are all the data points for
tests using the full length of the shock tube, the ratio of tube

length to radius being 96. These tests Included the following

variations:

(1) Diaphragm material. Thickness varied between .006 and
.020 inches of aluminum.

(2) Blade shape. Two sets of knife edges were used to rupture
the diaphragms. One curves deeply away from the diaphragnm
in the center in order to allow the diaphragm to bulge
out considerably under the pressure difference before
contacting the blades and bursting. The other set of
blades is flat and, for the same diaphragm material, causes

rupture at a smaller pressure difference.
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(3) Diaphragm aperture. For several of the shots part of the
diaphragm sectlion was blocked off, creating an area dis-
continuity at the diaphragm. For part of these shots the
top half of the tube was blocked and for others the lower
half was blocked. Thus for the same area ratio there
were different asymmetrical configurations. The remainder
of the shots were made with the entire tube unblocked.
The partial diaphragm configuration and technigue will be
treated more fully in the next chapter.

(4) Driver pressure and Mach number. As a consequence of the
above variations in geometry, driver pressure and Mach
number varied. Since their theoretical effect is also

nil, no attempt was made to prevent this variation.

As can be seen from figure III.6, all the shock shapes through-
out these tests at L/R = 396 were identical. There d1d not even seem
to be any increase in the random variation present in shots produced
under identical conditions. The data points which deviated the most
were those nearest the wall when the diaphragm was blocked asym-
metrically, and the maximum displacement of these data points from
the othér peints was only 2/10 of a mm. :

The data points in the circles and triangles are for shots made
with the tube shortened to allow less time for damping of disturb-
ances from the diaphragm. For L/R = 42.8 we see that a slight tilt

has been introduced, the data points being displaced as much as 1 mm

from the normal points. As the tube is shortened further, it is
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evident that a complex "wiggly" shape 1s superimposed on the normal
equilibrium shock shape. These results indicate that it is possible
to pass into the transverse wave regime by shortening the tube as
well as by increasing the initial pressure. How these are connected
will be discussed in detail in chapters VII and VIII.

It is concluded that as long as the shock tube is operated
within the boundary layer regime, upétream geometry and diaphragm
configurations have no significant effect on the shock shape.
Moreover 1t appears likely that the small random variation in shock
shape which does exist, since it is not increased appreciably by
artificially varying the diaphragm rupture shape, is due to some
statistical process such as the turbulent mixing in the contact
region. If this is the case, then even if a shock tuge were infi-
nitely long, assuring the damping of all waves originating at the
diaphragm, the random variation in shock shape at low pressures

(admittedly very small) would still persist.
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IV. VISCOSITY-DOMINATED REGIME

A description of some of the difficulties which must be faced
by a general theory of shock shape in the low pressure viscosity-
dominated regime has been given in section I.3.1. Only one of those
difficulties has been faced theoretically thus far--that of the
interaction between the shock and the boundary layer which it induces.
This problem was considered as an order of magnitude correction to
the axial extent by de Boer. His approximate analysis was undertaken
to explain small deviations from the theory at the lower end of the
boundary layer regime. A more ambitious analysis of this inter-
action region was performed by Sichel (Ref. 13), in which he/gets
an approximate solution by linearizing both the boundary layer
equations and the transonic eguations and matching‘the solutions in
the viscous shear layer and in the non-Hugoniot shock. His lineari-
zation limits the applicability of the results to Mach numbers below
about 1.2 and his geometry (two-dimensional) and other restricting
assumptions do not well represent conditions in the shock tube.
Nonetheless, his work is an invaluable first step toward the solution
of this difficult problem. Perhaps the few experimental results
presented here will spur further work, both theoretical and experi-
mental, in this area.

These experiments are definitely exploratory in nature. The

instrumentation was pushed to its limit in many respects and measured

quantities cannot be determined with the accuracy possible in the
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experiments in the other regimes. For example, measurements of
initial pressures of .00l mm Hg (lu Hg) and .0005 mm Hg (1/2 u Hg)
are probably accurate only to within 10% to 20%, whereas measure-
ments of much higher pressures have about the same absolute uncer-
tainty, making the relative or pevcentage errors much less. At
these extreme low pressures there is probably significant contami-
nation of the test gas (argon) with water vapor, oil vapor, and
traces of air (leak rate of the tube was about 5 ¥ 107® mm Hg/min).
Thus while the shock shapes were measured with considerable accuracy,
the pressure and gas to which these shapes correspond is not known
with great precision.

It has been shown that if the shock shape is normalized with
respect to the tube vradius and a properly defined Reynolds number
(which is proportional to the initial pressure) the shock shapes
for all conditions in the boundary layer regime fall on a single
theoretical curve. Figure IV.1l is a plot of the shock shapes in
the viscosity-dominated regime. It shows that as the initial
pressure 1s lowered, the shock shape departs further from the theo-
retical curve. The axial extent vs. initial pressure is plotted in
figure IV.2 without having been normalized with respect to the
Reynolds number. This plot shows that down to about 3u Hg the
inverse square root pressure law is followed fairly well, the shock
extent being less than predicted by boundary layer theory, ﬁut still
increa§ing as the pressure is lowered. Then as the pressure 1is

reduced beyond 1lp Hg we see that the shock curvature has apparently
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reached a maximum. Thus in the GALCIT 17" shock tube (and, we would
expect, in any other tube of similar radius) the upper limit of the
"fully developed" viscosity-dominated regime is about 1lu Hg. Above
this pressure there is a very gradual transition to the boundary
layer regime.

Figure 1IV.3 1s a plot of the shock® profile at .5u Hg, showing
both the shape and thickness of the shock. On the same plot is a
- graph reflecting the shock strength variation between the tube
centerline and the wall. It is seen that the shock strength drops
off to well below its central value well out in the tube, then
decreases rapidly toward zero in a sub-layer of the boundary layer
at the wall. DNote that in this experiment the shock thickness at
its center is of the order of the radius of the tube.

The shape of the response of the thin-film heat transfer gage
is mérkedly different at these extreme low pressures also. Instead
of the smooth response résembling the ideal Navier-Stokes profile
which is obtained at all higher pressures, the gage at these pres-
sures produces a response with an almost discontinuous increase
in slope about halfway to its peak. This response is shown in
figure IV.4 and may be an indication that the contact surface is

partially overlapping the shock.

*As noted on page 15, the words "shock" and "boundary layer' are
‘used loosely in this regime. This 1s particularly true at the lowest
pressures where such terms are really inappropriate for describing
the complex non-equilibrium zones encountered.
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IN CENTER OF TUBE

FIG. . 4
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V. TRANSVERSE WAVE REGIME: EXPLORATORY EXPERIMENTS

V.1 Departure From Boundary Layer Theory

In chapter III it was noted that the shock shape begins to
deviate from theory as either (1) the initial pressure is raised or
(2) the tube 1s shortened. All the experiments reported in this
chapter took place over the full length of the tube, and in argon.
Thus there is a one-to-one correspondence between the initial pres-
sure and thé Reynolds number. In the text and in the titles of
graphs the term "pressure' or "initial pressure" is generally used
so that a physical "feel" for the conditions is retained as much as
possible. The independent variable on the graphs, however, is given
both ways so that the data may be used as a gulde to shots in other
tubes. Even though the Reynolds number is the proper independent
variable for the boundary layer theory, it should not be expected
that departures from the theory will also be universal functions of
this same Reynolds number. The proper universal functions will be
developed in later chapters on the basis of the experimental results.

Figure V.1l shows the variation of shock extent [Ax(.8) to be
specific] with initial pressure. TFigure V.2 shows the tilt of the
shock at the centerline of the tube which arises in the transverse
wave regime as the axial symmetry is lost. This loss of axial
symmetry and resultant tilt is due to asymmetrical disturbances at

the diaphragm, either natural or induced.
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The succeeding two figures, V.3 and V.4, show typical natural
shock shapes at representative initial pressures within the

transverse wave regime.
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V.2 Partial Diaphragm Experiments

The shock shapes recorded in the experiments reported in the
last section were unexplainable in terms of the boundary layer.
Since there were no windows, protrusions, or irregularities in the
shock tube, the search for a source of disturbance narrowed to the
contact surface and the diaphragm. It seemed reasonable that if
the diaphragm opening time was responsible for the deviation from
boundary layer theory and if the small asymmetry in this opening
process caused the asymmetry of the shock, then it should be possible
to produce shocks with much greater asymmetry by artificially in-
ducing greater asymmetry in the diaphragm opening and thus in the
shock formation process.

This artificial asymmetry was achieved by blocking off part of
the diaphragm section by stretching sheet metal, many times thicker
than the diaphragm, between the knife blades, as shown in figure V.5.
The ruptured diaphragm which results from this technique is shown
in figure V.6. The decreased cross-sectional area of the diaphragm
section and the increased bursting pressure resulting from the
technique offset one another to produce the same Mach number (within
a few pércent) shock as is produced with the normal full diaphragm.
The resultant shock shape is shown in figures V.7 and V.8. A
marked and repeatable effect was achieved. The scatter in the shock
shapes using the partial diaphragm technique was, in fact, no
larger than that for the full diaphragm shots. This seems to be

the first experimental proof that disturbances caused by the diaphragm
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bursting configuration continue downstream for many diameters (48
in this case), far past the classical "shock formation distance'.
It can also be noted that a steady state explanation of the shock
shapes based on a non-planar contact surface being the driving
piston is not in agreement with observation. In the partial
diaphragm shot of figure V.7, for example, since the top part of
the diaphragm section was blocked, one would expect the contact
surface and initial shock shape to bulge forward more at the bottom
of the tube than at the top. If this were a steady (in shock-fixed
coordinates) effect, this shape should persist, qualitatively at
least, down the tube. The actual shape, however, is just the
opposite, bulging forward more at the top part of the tube,
suggesting that the shape 1s due to non-steady disturbances which

reflect across the tube causing the shock shape to oscilllate.
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V.3 Effect of Blade Shape

In the GALCIT 17" shock tube, the diaphragm is ruptured auto-
matically when the pressure difference across the diaphragm forces
it against a set of crossed knife blades. This arrangement, first
reported by Roshko & Baganoff (Ref. 18) and later by Liepmann,
Roshko, Coles, and Sturtevant (Ref. 19), has been modified and
improved since the above descriptions were published. One of these
modifications involved providing‘a set of interchangeable knife
blades of various shapes. These blades were designed so that the
diaphragm would be in contact with the full length of the cutting
edges at the time of burst, rather than just with the center of
the blades. With the same diaphragm material and thickness, then,
the more deeply curved blades will cause diaphragm rupture at a
higher differentialvpressure.

Since diaphragm disturbances affect the shock shape, it becomes
of interest to know if the bursting configuration can be optimized
for minimum disturbance. For example, the same driver pressure and
hence Mach number can be obtained (other things being identical) by
using a flat knife blade and a thick diaphragm or by using a deeply
curved Rnife blade and a thin diaphragm. Since the thicker diaphragm
will have the greater opening time, the advantage of the flatter
shape at burst initiation tends to be offset and it is not obvious
which configuration should result in less disturbance to the shock.

An experiment was performed to answer this question., Blade

shapes and diaphragm thicknesses were chosen so as to produce the
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same bursting pressure and Mach number, fired into the same test
gas. The counter readings which are conver%ed into shock speed
and Mach number were identical for the two cases, thus the Mach
numbers were identical to within 1/2 of one percent. The resulting
shock shapes are shown in figure V.9.

The unsteady nature of the shock shapes limits the quantita-
tive significance of the results. Still, there seems to be a
definite indication that the flat blades with the thicker diaphragm
produce a more nearly plane shock. If this is true, then one can
envision the possibility of reducing the deviation from planarity
still further by forcing the diaphragm to burst with a reverse
(toward the driver) bulge, thus partially compensating for the
opening time. This would involve pre-straining the diéphragm with
the blades removed, then turning it around and using a set of blades

with reversed curvature (convex). See chapter IX for additional

discussion.
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V.4 Effect gg_Driver/Test Sectlon Area Ratio

The low pressure shock tube being a very new instrument, it is
natural and healthy that there are differences of opinion about its
optimum design. One of the most obvious differences concerns the
relative cross-sectional area of the driver and test sections.

Small drivers opening into much larger test sections introduce
transverse disturbances to the shock wave geometrically. Large
drivers (like the GALCIT 17" driver, whose cross section is identical
to that of the test section) introduce similar disturbances through
their much larger opening times.

An experiment was performed to compare the shock shapes pro-
wuced by the two types under the same flow conditions (Mach number
ind Reynolds number or initial pressure). In order to simulate the
small driver, a shiéld with a small (3.5" diameter) central opening
was placed between the diaphragm and the knife blades. Since an
area reduction at the diaphragm greatly reduces the shock Mach number
obtained at a given driver pressure and composition, it was necessary
to adjust these parameters to obtain the same M at the same p; for
both driver configurations. By using a higher driver pressure with
‘the smail driver and diluting the helium with nitrogen in the large
driver, the difference between the Mach numbers obtained was kept
to less than one percent.

The resulting shock shapes are plotted in figure V.10. The
similarity between them is striking. Not only is the overall ampli-

tude of the disturbance exactly the same for the two shocks, but the
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character and general shape of the two is identical. There is

a very slight phase shift which is not much larger than is
occasionally observed between two shocks produced under identical
conditions.

Because the magnitude of the disturbances are the same we can
conclude that there 1s little to choose, so far as shock planarity
is concerned, between a small driver and a large one with curved
blades. We have seén, however, that it may be possible to sub-
stantially reduce the disturbances in the large-driver tube by
changing the diaphragm-blade geometry. Moreover, we may gain some
insight as to how this may be accomplished more practically and
effectively by an unexpected and more significant conclusion which
can be drawn from the results of this experiment.

Because the character of the disturbances are the same we can
conclude that it is possible to consider the shock produced by a
real diaphragm to be equivalent to a shock produced by an ideal
diaphragm with an area constriction just downstream of the diaphragm.
This apparent equivalence suggests undertaking a detailed investi-
~gation of the disturbance produced in an initially plane shock by
an area -constriction of known amplitude. If one could determine
the nature and decay rate of such a disturbance and learn how to
cancel it out, then one could intelligently tackle the problem of
eliminating the transverse waves caused in a shock tube by a real
diaphragm. Moreover, it is hoped that such knowledge would enable

one to predict under what conditions and to what extent transverse
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wave disturbances will exist in any given shock tube, i.e. deter-
mine the factors which govern the extent of the transverse wave

regime. Such an investigation is the subject of chapter VI.
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V.5 Superposition of Viscous and Non-Viscous Effects

If one examines the shock shapes of, for example, figures V.8
and V.9, the following fact may be noted: No matter what wild
variations in the shock shape are produced by different diaphragm
configurations, the angle at which the shock approaches the wall
appears to be the same for all shocks at a given initial pressure.
Moreover, this angle is approximately that which, on the basis of
the previous experiments in the boundary layer regime, might be
expected from the boundary layer effect alone. This empirical
observation suggests the assumption that the shock shape near the
wall is governed by the viscous boundary layer and is independent
of disturbances intersecting the shock away from the wall.

Since the angle at which a shock deviates from a plane is
always very small throughout the transverse wave regime, it should
be possible to consider the shock shape to be caused by a linear

superposition of the deviations due to the boundary layer and those

due to transverse waves. From the results of the experiments in
the boundary layer regime it is clear that the deviations not too
close to the wall due to the boundary layer are given gquite accu-
rately by the theory above p; = 100u Hg. Thus if one subtracts
this deviation due to the boundary layer from the experimental
shock shape the resuiting adjusted shock shape should be that which
is due solely to the transverse disturbances.

The conclusions of the preceding two paragraphs lead to the

reasonable expectation that such adjusted shock shapes should all

i
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intersect the walls é}_right angles. This expectation seems to be

supported by the experiments. The use of this superposition
principle greatly clarifies the nature of the transverse wave dis-
turbances by eliminating the viscous effects from the shock shape.

When normal wall intersection is applied as a boundary condition
to the adjusted shock shapes the results bear a striking resemblance
to the shapes recorded optically by Lapworth (Ref. 11) for an
initially plane shock® perturbed by a rooftop or area constriction
disturbance. This fact lends further weight to the conclusion
reached in section V.i regarding the nature of the diaphragm dis-~
turbance in a shock tube.

In the next section both "raw'" and adjusted shock shapes will
be presented. The results of the experiments reported in chapter VI,

however; will be given entirely in the form of adjusted shock shapes.

“Lapworth's experiments were performed at sufficiently high
initial pressures that viscous effects were negligible compared to
the large scale disturbances induced.
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V.6 Effect gﬁ_MaCh Number: Phase Shift

The experiments reported in the first five sections of this
chapter were all conducted at constant Mach number. To determine
the effect of Mach number on the shock shape an experiment was
conducted in which the Mach number was varied by changing the com-
position of the driver gas, all other parameters remaining
constant. The results of the first such experiment are plotted
in figure V.11l.

The gross magnitude of the deviation from a plane is the same
at both Mach numbers. If we assume the shock shape to be oscil-
lating as transverse waves reflect back and forth across the tube,
then the change in Mach number appears to have caused 'a phase shift.
These results are not surprising. Since the diaphragm configura-
tion, blades, material, and differential pressure were all identical,
then the geometry of the bursting diaphragms and thus the disturb-
ance inherent in the shock formations should also be the same. The
change in Mach number changes the speed at which the transverse
waves cross the tube as well as the forward speed of the shock.
These effects, while partially compensating, do not cancel completely
and there is a net change in the wavelength of the disturbance. The
"wavelength" of the disturbance 1s defined as the number of tube
radii which the shock travels while the transverse waves make a
round trip across the tube and back to their original position. If
the disturbance is completely symmetric, then the shock shape will

repeat its cycle twice during one of these wavelengths. If, however,
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there are asymmetric cdmponents in the disturbance, as are evident
in figure V.11l at p; = 1 mm Hg, then the shock will travel a com-
plete wavelength before repeating its shapes.

The fact that the magnitude of the disturbance is approxi-
mately (at least) independent of Mach number means that the decay
of the disturbances as they travel down the tube is either small
or nearly independent of Mach number.

Since, to this point, the oscillatory nature of the disturb-
ances had been only an assumption, it was deemed necessary to carry
out a more detailed experiment to show the slow shift in shock
shape as the Mach number is changed in small increments. Accordingly,
a series of 14 shots were fired at various Mach numbers, all other
conditions being the same. The resulting shapes, plotéed in
figure V.12, show clearly a slow, gradual phase shift in the dis-
turbance with M. Note that these are "adjusted" shock shapes, that
is the curvature due to the boundary layer has been subtracted out
from’the raw data. The spacing between the shoék shapes in
figure V.12 (which were all measured at the same tube length) is
conceptual, and represents the change in "effective tube length",
measured in transverse disturbance wavelengths, which occurs when
the Mach number is changed.

The results of this experiment can be considered as sufficient
proof of the periodic nature of shock shape disturbances due to the
diaphragm opening and other tube-fixed sources. Thus is justified

the use of the name "transverse wave regime'.



80

The experiments reported in the next chapter probe more deeply
into the nature and decay of these transverse waves and seek to
answer the riddle of why such waves are not apparent at all initial

pressures.
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VI. TRANSVERSE WAVE REGIME: "ROOFTOP EXPERIMENTS"

VI.1 The Riddle of Pressure-Dependent Disturbances

The experiments of the previous chapter proved that disturb-
ances to the shock shape due to diaphragmropening do exist, propa-
~gating downstream in the form of transverse waves, reflecting
across the tube with some M-dependent wavelength. On the basis of
these experiments alone, one would be tempted to predict that the
shock shape deviations so caused should exist at all initial pres-
sures with about the same gross magnitude, and that these deviations
can be ignored only when the initial pressure is so low that the
curvatﬁre due to the boundary layer is large in comparison with
these deviations. One finds, however, that such a prediction is
resoundingly contradicted by experimental fact.

Such a prediction would require that the adjusted shock shape
have about the same gross deviation from a plane at all pressures.
In contrast to thils, the actual deviations are of about the same
magnitude for pressures within the transverse wave regime, but at
about p; = 1 mm Hg the magnitude of these deviations falls rapidly
as the ﬁressure is lowered, till at about p; = .1 mm Hg (lOOﬁ»Hg)
the deviations are almost totally absent. Certainly, between these
two pressures, while the thickness of the boundary layer is changing
by a factor of about three, the mean deviation from a plane of the

adjusted shock shape is changing by several orders of magnitude. At
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even lower pressures the deviations remain very small, but never
vanish entirely.
Granted, then, that these are the experimental facts, two main
questions remain to.be answered:
(1) Why are these transverse wave disturbances not pressure-
independent? What causes the observed dependence?
(2) What determines the initial pressure at which the tran-
sition between the transverse wave and boundary layer

regimes occurs in any given shock tube?

The answer to the second question can obviously be found only
through knowledge of the answer to the first (unless one resorts
to the unwieldy empirical approach of doing experiments such as
these in a great number of shock tubes). Thus it is the first

question to which an answer will next be sought.
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VI.2 Possible Causes of the Pressure Dependence

The fact that the deviations from planarity of the shock shape
(adjusted) are much smaller at low pressures than at high pressures
can be explained by any one or more of the following possibilities.
Either

(1) The same diaphragm configuration somehow produces weaker

transverse waves at low pressures,

(2) The same transverse waves produce smaller changes in the

shock shape at low pressures, or

(3) The decay of the transverse waves is greater at low

pressures.

The first of these possibllities is listed for completeness
although its existence seems much more remote than the other two.
Since the pressure difference across the diaphragm is very nearly
the same at all p;, then the opening time should be constant and so
should the shape of the initial compression waves which form the
shock. Since the strength of the main shock is held constant, it
is difficult to conceive of the transverse waves being otherwise.
(The experiments of this chapter show that the transverse waves are
initially of constant strength, as one would expect.)

The second possibility is not so easily disposed of. It is
possible to conceive of a shock wave as possessing some inherent
"stiffness-1like" quality which increases with shock thickness and

therefore with decreasing initial pressure. The mechanism for such
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a quality might be the size of the Intersection region of the

shock wave and transverse wave. Since each has a finite thickness,
their intersection is not a point, but a finite region which
increases in size as the waves themselves thicken. Thus, as the
pressure is lowered the slope-changing power of the transverse wave
i§ spread out over a larger portion of the shock, smoothing out its
effects, and leading to overlapping of compression and expansion
regions. There is no doubt that such an effect can exist at
extremely low pressures. Whether or not such an effect can be
significant at p; = 100u Hg, where the shock thickness is still a
quite small fraction of the tube radius, is, however, a matter to
be answered by the experiments. (It will be shown that the experi-
ments answer in the negative: the initial shock shapes produced

by identical disturbances at 100u Hg and at 3 mm Hg are identical
and therefore this possible effect cannot explain the observed
pressure dependence. )

The third and final possibility is that the decay of the
transverse waves is greater at low pressure. FIrom an inviscid
point of view, there is no basis in theory for such an effect. The
shock stability theories of both Freeman (Ref. 10) and Whitham
(Ref. 20) result in predicted disturbance decays which are inde-
pendent of initial pressure.

In these inviscid theories, however, the transverse waves are
reflecting off rigid walls, while in reality they are reflecting

off boundary layers. Thus an attractive explanation for the
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pressure dependent decay is based on the gradual growth in the
boundary layer as the pressure is lowered. The change in the decay
rate, however, is not a gradual thing, but is nearly discontinuous,
occurring in the GALCIT tube at about p; = 300u Hg. Thus several
difficulties and uncertainties remain unresolved by speculation.

To resolve these and hopefully solve the riddle of the pressure
dependent disturbances an exhaustive series of experiments were
performed wherein initially plane shocks at the same M but at pres-
sures both above and below the transition region of SOOu‘Hg were
perturbed by identical disturbance sources and the resulting shock
shapes observed over the length of the tube. These experiments and

their results are described in the next sections.
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VI.3 The Axisymmetric Rooftop Disturbance Experiment

The eventual goal of the axisymmetric rooftop (see FTig. VI.1)

disturbance experiment is, of course, to answer the questions

raised in the last sections. To this end, the immediate objective

1

of the experiment is the comparison of the shock shapes produced

by the same disturbances at p; = 3 mm Hg (well within the transverse

wave regime) and at p; = 100p Hg (in the heart of the boundary

layer regime). In order to obtain this objective, the experiment

must satisfy the following requirements:

(1

(2)

Prior to reaching the disturbance, the shocks must be
effectively plane. This requires that the disturbance

be located far enough downstream of the diaphragm so that
the diaphragm disturbances have at least begun to decay
and the shock is well formed, if not plane, and that the
rooftop disturbance be large enough so that it produces
shape deviations much larger than those remaining due to
the diaphragm. This requirement was satisfied by placing
the disturbance approximately 22 diameters downstream of
the diaphragm and using a disturbance which blocked off
about 58% of the cross-sectional area of the tube.

The undisturbed Mach numbers of the shocks must be the
same for both initial pressures and held constant through-
out the experiment. This requirement was satisfied by
performing all the 3 mm experiments with a pure helium

driver and all the 100p experiments with a driver mixture
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containing 45.0% nitrogen and 55.0% helium. The diaphragnm
configuration and driver total pressure were the same for
all the runs and the Mach number was recorded for each
run. Variations in M were usually less than one percent.

(3) The results must be independent of the curvature due to
the boundary layer. This requirement was satisfied by
using adjusted shock shapes, the shapg given by boundary
layer theory being subtracted from all data.

(4) The disturbance must be simple enough to produce a
distinct set of transverse waves causing a simple,
regular, periodic fluctuation of the shock shape, quali-
tatively similar to that produced by the diaphragm
disturbance. This requirement was satisfiea by the
axisymmetric rooftop disturbance shown in figure VI.1
and alternatively describable as a "doughnut with a
triangular cross section".

(5) The data points downstream of the disturbance must be
such as to reveal the nature of the shock shapes, the
wavelength of their periodicity, and the amplitude of
each peak during the decay process. This requirement was
satisfied by allowing the distance between the disturb-
ance and the end plate where the shape was recorded to

be controllable in 1 inch increments from zero to 451".

Figure VI.2 is a schematic diagram of the experimental setup.
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VI.4 Results of the "Rooftop" Ixperiment

The first major result of the experiment was that the shock
shapes immediately downstream of the disturbance were independent
of initial pressure. This finding rules out the first two possible
causes of the pressure dependence set forth in section VI.2. Since
the shock shapes at 100y and at 3 mm are identical initially (see
Fig. VI.3) and are known to be vastly different at the end of the
tube (this was confirmed with the rooftop disturbance), then there
must be some great difference in their rates of decay.

A second result was that the shock shapes produced by the
axisymmetric disturbance are qualitatively very similar to those
produced by a two-dimensional rooftop in the experiments of Lapworth.
Compare, for example, figure VI.3 with figure 6 of reference 11.

A rooftop disturbance does not produc; a single compressive
transverse wave, but a complex system containing two compressions
and a rarefaction. The effect of the rarefaction is, however,
spread out and soon disappears and for a particular rooftop length
the second compression coincides with and reinforces the first from
the opposite wall. This condition was approximated in Lapworth's
experimehts. In the axisymmetric rooftop experiment, although no
attempt was made to satisfy such a reinforcement condition, the very
complex shock shapes which would correspond to a complex wave system
were not observed. Whether the apparent existence of but a single
compressive transverse wave was due to a fortuitous combination of

Mach number and geometry, the effect of the focusing at the center
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of the tube, the separation of the flow on the downstream side of
the disturbance, or some other cause is not known. Nevertheless,
because the observed shock shapes are explainable in terms of a
single compressive transverse wave, this idealization of the
transverse wave system will be used throughout this and the
following chapters.

A third result was that the shock shapes were indeed regularly
periodic, "oil-canning" back and forth with a constant wavelength
of about three tube radii. Since the disturbance and shock shapes
are completely axisymmetric, this wavelength corresponds to the |
distance required for the transverse waves to cross the tube once.
A distinction must really be made between the transverse waves and
the trace of their intersection with the main shock. fhis inter-
section trace (which Whitham calls a Shock~shock) is what controls
the periodicity of the shock shape. From the experimental value of
the wavelength, the angle 8 which this intersection trace makes

with the walls of the tube can be calculated.

= tan™! .656 = 33.3° (Eqn. 6.1)

This result leads in turn to an estimate of the strength of
the transverse wave. Figure VI.4 shows the geometric relationship
between the shock, the transverse wave, and the intersection trace.
It can be seen that the angle B is a function of My, the strength
of the transverse wave. All the other parameters are fixed, Mt

being the Mach number of the main transmitted shock wave after it
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has interacted with the disturbance scurce. This is somewhat less
" than M, the strength of the incident shock. M;' is the Mach number
of the flow behind the shock relative to the walls of the tube.

The following relationships are obvious:

a1

My — - Mp!
¥ = cos™! 2 (E 6.2)
= —_— n. 6.
mﬂ ; q
and
Y = M, sin ¥ (Eqn. 6.3)
and
1 Y a2
= - . Bk
8 = tan o (Eqn. 6.4)

In the rooftop experiment M = 4.81, My = 4.u48, Mp' = 1.196,
ap/a; = 2.68. If the transverse wave were a Mach wave (M, = 1)

then the above equations would give ¥ = 61.6°, Y = ,880, and

B = 27.8°. However, if My = 1.2 then
Y = 66.6°
Y = 1.10
B = 33.3°

which agrees with the experimentally observed value based on the
wavelength of the shock shape. Of course the strength of the

transverse wave decays somewhat as 1t moves down the tube and its
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strength also varies within each period, increasing as it is
focused near the center of the tube. Nonetheless we may conclude
that the mean value of the strength of the transverse wave is given
approximately by My = 1.2. It will be seen that this applies to
the p; = 3 mm shock over the entire length of the tube, but to the
p1; = 100u shock only for a limited distance downstream of the
disturbance.

We are led to yet another result as we note that the strength
of the transverse wave is (within the accuracy of the calculation)
equal to the flow Mach number MZ'. This means that rather than
being swept downstream as in figure VI.4, leavigg an oblique shock
or Mach wave envelope, the original transverse wave disturbance
- grows with time but its trailing edge remains stationary at the
disturbance as a normal detached shock as shown in figure VI.S5.
This is just what one should expect, since the rooftop disturbance
wedge angle was greater than that which can allow an attached
oblique shock at a Mach number My'. It is to be expected that if
the wedge angle were reduced or M,' increased (the latter possi-
bility being extremely limited) the geometry would then be as in
figure VI.4. It should be noted that figure VI.5, which agrees
with all observations of the experiment and satisfies all the
boundary conditions of the flow, is basically unaffected by the
reflection from the bpposite wall. This case is shown in figure
VI.6 and can obviously be extended through any number of reflections.

Figures VI.4,5,6 are for M2' > 1. The corresponding subsonic case
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is similar and will be presented in connection with a discussion
of Lapworth's experiment.

The sixth and by far most significant and surprising result
concerns the rate of decay of the shock shape deviations caused by
the transverse waves. This decay is characterized by the decay
constant n which is the exponent of the distance down the tube

(or equivalently, the time) in an expression such as

A o z“yL

where A is the amplitude of the shock shape deviation. Although
Whitham's theory leads to n = .5, the most widely accepted value

has been n = 1.5 predicted theoretiéally by Freeman and apparently
verified experimentally by Lapworth. It turns out that this apparent
verification is dependent upon the manner in which the data is
analyzed.

The data from the axisymmetric rooftop experiment lead con=-
clusively to a decay constant of © .= 0.50. This may be seen from
figure VI.7. This figure will be discussed in more detail in the
next section.

The -final result of the experiment leads to the solution of
the riddle of pressure-dependent decay. After being almost
identical with the 3 mm shock, the shape of the 100u shock‘suddenly
at about 13 radii down the tube begins to oscillate with a much
smaller wavelength and decay much faster. The details of this

process will be discussed in chapter VII.
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VI.5 Discussion of "Rooftop" Results

In discussing the results of the axisymmetric rooftop experi-
ment, notation has been used which parallels as closely as possible
that used by Freeman and Lapworth for the two-dimensional equivalent.
Some of the quantities, however, must be redefined in order that
the experimental results may be compared with a more realistic
theoretical model.

Freeman characterizes the amplitude of the shock disturbance
by a quantity £ which he defines as the "total perturbation', a
quantity which is similar to 4x(.8) defined in figure IV.4 except
that it takes in the entire diameter of the tube. In his theory
the shape of the shock wave 1s always a standing cosine wave whose
amplitude is oscillating about zero. Thus the "total perturbation'
is synonymous with the horizontal displacement of the shock at the
wall from its position at the center in such a theory. This shape,
however, does not exist in reality and is inconsistent with the
boundary condition that the shock (after boundary layer effects
have been subtracted) meet the wall at right angles. The real
shock, then, has "higher modes" and never possesses a total per-
turbatioﬁ of zero. TFor this reason, and because the 'total per-
turbation"” of a complex shock shape cannot easily be classified as
positive or negative, the "total perturbation' so defined is an
extremely inconvenient gquantity for relating experiment and theory.

A more meaningful quantity experimentally (and one just as easily

measurable from Lapworth's optical data) i1s the horizontal (or
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axial) displacement of the shock-wall intersection from the shock
location at the centerline. This quantity does pass through zero
and oscillates in a regular manner as predicted by the theory. The
shock shapes resulting from the axisymmetric rooftop experiment
were, however, obtained not optically, but from a number of discrete
data points sensing arrival of the shock. Thus a guantity, related
to the above but requiring no extrapolation, is the simple axial
displacement of the shock position at the outermost data point

(r/R = .896) from its position at the centerline (r/R = 0).
Accordingly, & is herein redefined to be this quantity after being
~adjusted by subtracting the boundary layer curvature from each data
point. - The difference between these two definitions of & can be
seen more clearly by noting that in figure VI.8b, & as herein
defined is zero, while according to Freeman's definition it is
finite.

The independent variable 1s the distance down the tube and is
denoted by z when measured from the trailing edge of the rooftop
disturbance (Freeman uses %) and by ¢ when measured from the origin
of decay. 1In Freeman's theory the difference between these two
quantities is fixed by the geometry. However, since Freeman's
theory is an asymptotic one, invalid near the origin, this differ-
ence will herein be left free, to be determined from the experi-
mental data. One other difference in the definition of these
variables will be introduced. In Freeman's work ¢ is dimensional

while z is non-dimensionalized with respect to the diameter. In
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this chapter both will be treated as dimensional quantities and

the non-dimensionalization will be explicitly indicated in the

equations.

Freeman writes the results of his theory in a form which, in

the above variables, becomes

G . 1
..g_: _.___2.__.7 Lin (L;—-% -+ \p) (qu’l- 6«5)
(¢/2R)

where ¢ = z + 1.776R and n = 1.5, G, ¥, and m are functions of
Mach number. Alternatively, in order to more realistically evaluate
the experimental data, it has been found necessary to herein use a

1

“unction of the following form:

£ 2G me ’
2z 2y (_~.+ w) (Eqn. 6.6)
R eyt R

where ¢ = z + 2adR and n, G, ¥, m, and & are all to be determined by
the data. Figure VI.7 is a plot of £/R vs. z/R for the axisym-
metric rooftop experiment and from it the above parameters are

determined to be:

n = 0.50

G = .113

Y o= L7487 (Eqns. 6.7)
m o= 4,12

a = -.25

The differences between equations 6.5 and 6.6 are small but

critical to the analysis. If the actual shock shapes were standing
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cosine waves as in Freeman's theory, then these differences would
disappear. They are:

(1) W(J) is an empirical function which can be considered to
be a "distorted sine wave'. This function is periodic
with a constant frequency. The details of its cycle
shape are peculiar to the axisymmetric geometry (see
Fig. VI.9). Of these details, only the ratio of peak
heights (negative to positive) S = 1.39 affects the
analysis. It is, in effect, a sixth free parameter to
be determined from the data along with the five in
equations 6.7.

(2) Freeman considers only the absolute value of the function.

The necessity for introducing these changes 1s explainable in terms
of the shock shapes shown in figure VI.8. Note that, as was
explained in section VI.4, the treatment of the transverse wave
gystem as a single compressive wave is an idealization which may
not be universally applicable.

When the transverse waves intersect the main shock at the walls
of the tube, the shape of the shock is convex forward as shown in
figure VI.Ba and £ takes on its maximum value. This shape is fairly
similar to the theoretical shape in VI.8d.

As the transverse waves move in toward the center, the shock
has a compound shape as £ passes through zero. Note that the
"total perturbation'" as defined by Freeman is not zero. This shape

is shown in figure VI.8b and contrasts with the theoretical shape in
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VI.8e. In the axisymmetric case, at least, the shape for £ = 0
occurs when the transverse waves are closer to the center than to
the walls, causing the negative half of the cycle to be narrower
than the positive half. 1In VI.8b the value of ¢ is somewhat greater
than W; while the theoretical shape VI.8e occurs at ¢ = 71 exactly.

When the transverse waves meet at the center of the tube the
shape of the shock is concave forward as shown in figure VI.8c and
£ takes on its maximum negative value. In the axisymmetric case
there is a focusing of the waves at the center which causes the
amplitude of this negative half of the cycle to be slightly larger
than that of the positive half. Notice that this shock shape is
nothing like the theoretical shape of VI.8f which is physically
impossible.

The net result of all these considerations is that the function
W(J#) has the shape shown roughly in figure VI.Q.

This function shows up in the data plotted in figure VI.7.
From this figure one can readily see the significance of the differ-
ences between equations 6.5 and 6.6. The use of W(§) allows the
amplitudes of the positive and negative peaks to be independently
determined. The separation of the positive and negative peaks allows
their decay envelopes to be independently determined. These two
independent decay calculations each lead to the values a4 = -.25
and 1 = 0.50. Although all the other pafameteré determined from

,

figure VI.7 are peculiar to the particular geometry of the experi-

ment, there is no reason to believe that the value of the decay
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constant n should not apply universally to all transverse disturb-

ances in all shock tubes and, in fact, to the problem of shock

stability in general.

Because of the extreme importance of this decay constant and
the large discrepancy between it and the one arrived at by Lapworth,
it was felt necessary to re-evaluate his experiments in detail.

This is accomplished in the next section.
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VI.6 Re-Evaluation of Lapworth's Experiment

Lapworth's experiment differed from ours in two important

respects:

(1) The geometry was two-dimensional rather than axisymmetric.
(2) The post-shock flow past the disturbance was subsonic

rather than supersonic.

The second seems to tie in with an apparent discrepancy between
"high" Mach numbers and "normal" Mach numbers in Freeman's theory.
(This turns out to be coincidental.) Nevertheless, it was thought
advisable to replot the data from Lapworth's experiments and recom-
pute the decay constant, fitting the data to equation 6.6 (but with
W' particular to the two-dimensional geometry) rather than 6.5.

This replot for M = 1.41 is figure VI.10 and corresponds to figure 9
of reférence 11.

It is immediately apparent that the data of Lapworth's experi-
ment fit beautifully the same decay constant (n = 0.50) which was
determined in the axisymmetric experiment. This raises the question
of why Lapworth obtained a decay constant of about 1.5 (1.u45 for
this Mach number) from the same data.

This question may be satisfactorily answered by the following

comparisons of Lapworth's analysis with ours:

(1) He used a fixed position for the origin of decay based on

the asympototic form of Freeman's theory (which is invalid
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near the origin), while in our analysis this position was
left open as a free parameter to be determined by the

data.

(2) He discarded the downstream data, regarding it as anomalous,
whereas we believe this downstream data to be most valuable

in calculating the decay constant.

(3) He made no distinction between the positive and negative
(or convex forward and concave forward) halves of the
'cycle. This makes the downstream data look more anomalous
than it would otherwise. This was probably the most serious
effect of his choice of the "total perturbation" as depen-

dent wvariable,

(4) He apparenfly used a constant weighting function in his
least-squares fit, while we have used a repeating delta
function, using only the peak values in the determination
of the decay envelope, thus making the decay fit indepen-

dent of the cycle shape of the periodic function used in

the fit.

In order to show explicitly how the choice of the origin of
decay dominated the results, equations 6.5 and 6.6 will be'rewritten
in terms of z, the distance from the trailing edge of the disturb-
‘ance, rather than r, the distance from the origin of decay.

Equation 6.5 becomes
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%: 26 sin En (& + .883) + {2 (Egn. 6.8)

(& + .883)" 2R

It is to this equation that Lapworth fitted his data and got

n = 1.45, G = 066, m = 3.31, and ¥ = -2.3. On the other hand,

equation 6.6 becomes

o T

- - 2G - W' En (EZ-}-{—+ a) +11] ) (Eqn. 6.9)
('2'§+ a)

to which his same data were fitted, yielding n = 0.50, G = .0194,
m = 3.31, ¥ = 1.24, and @ = ~.175. [As noted on page 111, the fit

for n, G, @ is independent of cycle shape.]

Consider the general problem of determining the decay constant

of some function of the form

A

£ = —2—p
(z-a')

- with data available for & vs. z at, say, two points. Then

£ zZo-a'\1
E;.. = (""”‘zra') (Eqn. 6.10)

and .for small values of a'/%Z, this becomes
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£ z, nll +a'/z]
o (——') (Egqn. 6.11)

£, \z1
which leads to an apparent value for the decay constant of
n(apparent) = n(l + a'/z)y [a'/Z << 1] (Egqn. 6.12)

and for large (of order 1) values of a'/z the error in n tends to
infinity.

This general result can now be applied to the problem at hand.
In Lapworth's work the quantity a'/Z corresponds to the ratio of the
difference in placement of the origin of decay to the mean distance
from the origin to the points used in the computation, and this
guantity has a value of about 1/2. This easily accounts for the
difference in the decay constants obtained from the two analyses.

Intimately related to the placement of the origin of decay is
the failure (noted by Lapworth) of Freeman's theory to properly
predict the phase angle ¥, which might be called the "origin of
periodicity". The point is that these are not "failures'" of the
theory at all, but limitations of it due to its asymptotic nature.

Figure VI.5 showed the transverse wave geometry for the axisym-
metric rooftop experiment, where the post-shock flow was supersonic
with respect to the disturbance. Figure VI.1l is a corresponding

diagram for Lapworth's experiment where the disturbance was
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subsonic. In the subsonic case the transverse wave propagates back
toward the diaphragm instead of being held at the disturbance, but
the cases are otherwise identical. The angle at which the inter-
sectlon trace meets the walls is still given by equations 6.2,3,4
and for Lapworth's expériment (M = 1.41 in air) these equations

lead to ¥ = 42.7°, Y = .678, and
B = 28.4° (based on My = 1)

The experimental value, based on the wavelength of figure VI.1O0 is
28°, There is some uncertainty in the calculation of the theo-
retical B since only the incident Mach number is known. The trans-
mitted Mach number was not measured in Lapworth's experiments but
could not have varied much from the incident value. Thus it is
concluded that My was very close to 1.

On the basis of this re-evaluation of Lapworth's experiment,

the following conclusions are drawn.

(1) There is no essential difference in the mechanism or
.‘geometry of downstream transverse wave propagation between
the cases of subsonic and supersonic post-shock flow past

a disturbance.
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In either of the above cases and for either rectangular
or cylindrical geometry, shock shape perturbations due
to symmetric disturbances seem to die out with a decay

constant #© = 0.50 as they travel down the tube.
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FIG ML

TRANSVERSE WAVE GEOMETRY
FOR SUBSONIC DISTURBANCE

(Mg 2 | > M3 )
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VII. TRANSITION BETWEEN THE TRANSVERSE

WAVE AND BOUNDARY LAYER REGIMES

VII.1 The Rooftop Experiment at p; = 100u Hg

It was shown in figure VI.3 that the shock shapes produced by
the axisymmetric rooftop disturbance were the same at both pressures
tested. This similarity of shape, including both magnitude and
phase of oscillation continued down the tube for approximately
14 radii before ending rather abruptly. Figure VII.1l shows how the
experimental values of shock perturbation at 100u Hg compare with
the experimental curve followed by similar data at 3 mm Hg. Three
different regions can be observed. In the first region, corre-
sponding to the transverse wave regime, agreement between the two
sets of data is excellent. Then in the second region, corresponding
to the transition between regimes, the 100u perturbation decays
much more rapidly and the shock shape oscillates with a much shorter
wavelength. In the third region, corresponding to the boundary
layer regime, the perturbations at 100u Hg have essentially dis-
appeared and the shock shape is just that predicted by boundary

layer theory.
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VII.2 Physical Explanation of the Transition Region

Back in section VI.2 three possible causes of the pressure
dependence were suggested. The rooftop experiments definitely
eliminated the first two. It is now obvious that the third possi-
bility i1s the correct one, but that it must be modified as follows:

The decay of the transverse waves 1s greater

at low pressures for a particular tube length.

Thus it is not really correct to speak of a pressure dependent
decay, for the decay, as shown in figure VII.1 is really dependent
upon some dimensionless combination which includes both the tube
length and the initial pressure. Such a combination is the ratio
of the boundary layer thickness to the tube radius, measured at the
disturbance. This boundary layer may be thought of as a variable-
density atmosphere which is diffracting the shock wave. Alterna-
tively, the boundary layer may be idealized as a fictitious wall
closing in on the transverse wave system, shortening the wavelength
of reflection until the waves are completely '"choked off". While
the first of these two explanations is probably closer to the truth,
the second leads to a simple rule of thumb which works well for the

experiments available.
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VII.3 Rule of Thumb Transition Condition

Whatever the mechanism through which the boundary layer effects
-the accelerated decay of the transverse waves, the experimental
observations can be correlated with the ratio of some boundary layer
thickness to the tube radius.

Let the boundary layer thickness at a distance L behind the

shock be

8t = 10%/ L (Eqn. 7.1)
P1

wﬁere L is in mm and p; is in u Hg, then for argon and air this
represents a positive thickness which is (to within 10% or so)
numerically equal to the displacement thickness of a completely
laminar boundary layer. The experiments with both the rooftop
disturbance and the natural diaphragm disturbance indicate that
transition from the transverse wave regime to the boundary layer
regime always takes place when the boundar§ layer as defined above

is about 1/4 to 1/2 of the tube radius, or

1 §' , 100L 1

where L and R are in millimeters and p; is in u Hg.

Changing the pressure units and squaring equation 7.2, one

obtains the equivalent condition:
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L
p1R?

.6 < < 2.3 (Eqn. 7.3)
where L and R are still in millimeters, but p; is in mm Hg. Of
course the constant of proportionality used in the definition of
the boundary layer thickness, for a real boundary layer would be a
function of the coefficient of viscosity and of the ratio of
specific heats of the gas and is also a weak function of Mach
number, the Mach number depgndence becoming more importént as the
viscosity-temperature coefficient departs from w = .7. Other
possible effects not explicitly taken into account are those of the
contact surface and of transition. We have, however, qualitative
evidence that these do not significantly affect the results. At
p1 = 3 mm Hg the decay folloﬁed the n = .5 scheme far past where
other experiments in the same tube by Roshko and Smith (Ref. 21)
indicate transition and contact surface occur. At p; = 100u Hg,
where a marked increase in the rate of decay and a rapid shift in
disturbance wavelength occur, these effects take place well past
the contact surface and long before transition.

‘Thus it is felt that in the absence of accurate boundary
layer growth, transition, and contact arrival measurements in a
particular tube, the best one can do is use the rule of thumb that
transition between the transverse wave and boundary layer regimes
-takes place when the quantity L/p;R? is of order 1, where L and R

are the tube length and radius in millimeters and p; is the initial

pressure in the test section in mm Hg.
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It must be strongly emphasized that this rule of thumb, being
dimensional, must be applied with care. If one is operating in an
"unusual" gas such as hydrogen or xenon, or at exceptionally low or
‘ high Mach numbers, one might wish to resort to the more fundamental

/R ~1/3. However, because

dimensionless transition criterion, | 6%
of the "order of magnitude" nature of the analysis and the fact

that the boundary layer closure is merely a conceptual convenience
(the trﬁe mechanism not being fully understood) the results of any

such effort should not be taken too seriously.
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VIII. IMPLICATIONS FOR DATA INTERPRETATION

VIII.1 General Considerations

It has been found that in the absence of boundary layer closure
acceleration of the decay process, the transverse waves set up by
a disturbance such as an area change or the diaphragm opening
persist indefinitely, decaying only like zﬂl/Q. In the GALCIT 17"
tube the disturbance due to diaphragm obening produces shock slopes
at the centerline of the tube (tilt) of as much as 1 1/2 degrees
after z/R = 96. In order that this disturbance be reduced to say
half a degree, 1t would be necessary that tﬂe tube be nearly 900
radii long. This is, of course, impractical. “

The relationship between diaphragm cpening time and tube radius
is such that the initial disturbance magnitude is probably of the
same order for all conventional diaphragm-operated shock tubes.

Thus in all such tubes the three-dimensional effects of transverse
waves can only Dbe considered negligible after the boundary layer
has ''choked off" the disturbance by essentially filling the tube at
some point between the disturbance and the test section.

The rule of thumb derived in the last chapter therefore should
be applied to all shock tubes when the shock shape is important in
the experiment (such as in Schlieren, light refraction, electron

beam and other such experiments).
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When L/p;R? is significantly less than one, then the shock
shape will be completely dominated by transverse wave effects from
the diaphragm (or other disturbance if present).

When this quantity is significantly larger than one, the shock
shape can be expected to be governed by the boundary layer theory
of Hartunian and de Boer, with no influence of diaphragm opening.

It must be noted that if there are other protrusions in the
tube (such as ports or windows) large enough to cause disturbances
of significant magnitude, then the above criteria must.be applied
to this disturbance, with L being the distance from the disturb-
ance to the test section.

The next section contains example applications of the rule of
thumb. The results are summarized in figure VIII.l, where the
range of the parameter L/le2 covered for each experiment is shown.
Where the bar is cross-hatched, the data showed definite signs of
being in the transverse wave regime. Where the bar is dotted the
data followed roughly the predictions of the boundary layer theory
but considerable scatter was evident. Where the bar is clear the

data agreed exceptionally well with the theory of the boundary layer

 regime. .
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VIITI.2 Example Applications

VIII.2.1 Duff & Young (Ref. §)

R = 14,3 mm
L/R = 268

pi(max) = 20 mm Hg

L 268

bRZ (200 1B.3 -9

in the transition region. Accelerated decay should be occurring,
but probably is not oomplete. Some scatter in data due to diaphragm
disturbance is to be expected. However, in the same tube at

pp1 = 10 mm Hg:

L _ 268

SRZ . (10) 14.3 1-88

Decay of transverse waves should be about complete. At this and
lower pressures less scatter in’data due to these effects (see
section I.1.3).

The experiments show very little scatter except at p; = 20 mm Hg
and at the lowest pressures. The scatter in the very low pressure
data could be due to the difficulty of reading low amplitude

responses (see figure 4 of reference 3).



VIII.2.2 Lin § Eyfe (Ref. 2)

R = 305 mm
L/R = 4l

pi{max) = .30 mm Hg

L 5]

= = .45
DRE 8 (305) T

probably near the limit of the transverse wave regime. Expect

scatter with M and apparent thickening of shock. In the same tube

at p; = .10 mm Hg:

L _ 41
5RZ (-1) 305

Accelerated decay should be taking place. Deviations, though
detectable iIn shape should have little effect on apparent thickness,
which is quite large at this p; (see section I.1.2).

Only the low pressure data in Lin & Pyfe's experiments cover
a range of Mach numbers. This data shows considerable random
scatter but no Mach number dependence. The expected Mach number
scatter at high pressures cannot be confirmed because the data were

isolated points.



128

VIII.2.3 Linzer & Hornig (Ref. 22)

R = 35 mm
L/R = 98

pi(min) = 310 mm Hg

L _ 98
7 " 0 (3sy T -0

This is orders of magnitude too small for any damping of the trans-
verse waves by the boundary layer. Decay is definitely n = .5.
Pressures in these optical reflectivity experiments ranged from
this to a factor of ten higher still. Any curvature due to the
boundary layer should be completely negligible. Data‘shculd be
completely dominated by disturbances of the diaphragm and other
sources (there were windows protruding 1/16" into this small tube).
Tilt of 1/2 a degree is sufficient to change optical reflectivity
measurements by 50%. It is very possible that tilt angles much
~greater than this were present.

It is interesting to note that in the experiments of Linzer &
Hornig, the data were adjusted for "shock curvature' with the
1/2

correction factor scaled according to p1 Such a scaling law

is, of course, only valid within the boundary layer regime.
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VIII.2.4 Wray (Ref. 7)

R = 205 mm
L/R = 60

pi(max) = 10 mm Hg

L _ 60 _
ST % T0(309) .0197

This experiment is definitely in the transverse wave regime. Shock
shape should be dominated by disturbances from upstream. At the

lowest initial pressure,

pi{min) = .25 mm Hg

L _ _ 60 ]
b RZ 25 (305)

.79

the shock shape should be entering the transition region. Transverse
wave effects should be still evident, but possibly of lesser
magnitude.

This explains why Wray., even though he reduced the optical
path length to take in only the center section of the tube, had to
discard the high pressure data completely because of "tremendous

scatter" (see section I1.1.6).
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VIII.2.5 Daen & de Boer (Ref. §)

R = 12.7 mm
L/R = 197

p1{typical) = 127 mm Hg

L 197

oRZ 127 zy Tt

This should be well within the transverse wave regime, which
explains the apparent shock zone thicknesses 2 to 10 times

those expected which were observed in their experiments (see

section I.1.6).
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VIII.2.6 de Boer (Ref. 8)

In this reference, de Boer notes that there seems to be a
dividing line at p; = 30 mm Hg above which the shock apparent thick-
ness no longer decreases as predicted by theory. This dividing
line is evident in figure 42 of reference 8. If the theory of
chapter VII is to hold, then p; = 30 mm Hg should correspond to
the t?ansition region in de Boer's experiments and the shock shape
regime parameter L/le2 at this pressure should be of order 1. The
half-heights in de Boer's rectangular tube were 3/8" and 5/8'".

Thus 1/2" will be chosen as R, the effective mean radius.
R = 12.7 mm
L/R = 384

pi(transition) = 30 mm Hg

L _ 384

k2 30 (z7y oY

" which is indeed of order one. (Since this calculation 1s only
accurate to one significant figure due to the nature of the deriva-
tion of this rule of thumb, nc claim is made that the extreme

proximity of this value to 1 is anything but fortuitous.)
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IX. IMPLICATIONS FOR SHOCK TUBE DESIGN

IX.1l The Conventional Shock Tube

The implications of these results to the design of conventional
shock tubes are obvious. If any kind of work is contemplated in the
tube in which shock shape 1s important, then the dimensions of the
tube, its strength (or pressure capacity), its vacuum capability,
and its instrumentation must all be compatible with an operating
regime for which the relationship L/p;R? 2 1 holds.

Because of the extremely small testing time (and therefore
possibility of interaction between contact region and the main
shock) at very low pressures, it 1s desirable that the upper limit
of the testing regime be at as high a pressure as the instrumenta-
tion rise time and resolution will allow. For shock thickness,
shock structure, and relaxation time studies, this means pj(max)

should be about 1 mm Hg. This leads to the requirement that the

tube geometry satisfy

L/R% = 1 (dimensions in mm) (Eqn. 9.1)

Now the low pressure limit to the operating regime is dependent
upon the testing time analysis. For example i1t may be required
that the testing length &,, as defined by Roshko (Ref. 23), be a
particular multiple of the shock thickness (say 10, for example).

Using the value of & given by the somewhat refined theory of
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Mirels (Ref. 2u4) for the case of argon or air, and converting the
units to mm and mm Hg for pressure, we obtain for large Mach numbers

and a laminar boundary layer:
L3 = .346 pR? (Eqn. 9.2)

The shock thickness 3 has been measured as a by-product of the shock
shape experiments and under the above conditions, and in the same

units, is found to be given approximately ﬁy

3 = .8 p, /2 (Eqn. 9.3)

Then the ratio of the testing length to the shock thickness is

R? : (Eqn. 9.4)

If it is required that this ratio be at least 10, then it follows

that the minimum permissible initial pressure is given by
pi1(min) = 8/ Rq/3 (Eqn. 9.5)

There is an additional restriction on the initial pressure
imposed by the geometry which, it will be shown, is important only
for the very smallest tubes. This is the requirvement that the tube
radius be large (again say by a factor of 10) compared with the

shock thickness. From equation 9.3 this requirement leads to

p1(min) = 8/ R? (Eqn. 9.6)
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The two restrictions on the initial pressure given by equations 9.5
and 9.6 coincide for R = 1 mm. For all larger radii the restric-
tion imposed by the testing length (equation 9.5) is the more
restrictive. In fact it 1s easy to show that for the type of shock
tube being considered, equation 9.6 is completely academic, for the
smallest possible shock tube has a radius greater than 1 mm. Such
a tube would be one for which p;(min) and p;(max) coincide so that
the operating regime is just a point. Since pj(max) has been
chosen to be 1 mm Hg from instrumentation rise time considerations,
the radius of this "smallest possible useful shocktube' is obtained
by setting pj(min) = 1 in equation 9.5. THe reéult igs R = 4.8 mm.
As the tube radius is increased from this value, the operating
regime widens indefinitely. However, this widening of the operating
regime takes place only provided equation 8.1 1s satisfied. Thus
as R is increased, the tube length L must increase as RZ. Now the
initial cost of a shock tube 1s roughly proportional to the weight

and thus will be given approximately by

Initial Cost ~ L R3/2 " R7/2 (Egqn. 9.7)

Moreover the operating cost of a shock tube is roughly proportiocnal

to the internal volume and thus will be approximately
Operating Cost n L R2 o RY (Eqn. 9.8)

‘Thus it is advisable to set a practical limit to the tube radius

(and thus to the operating regime). It seems desirable to be able
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to vary the initial pressure by a factor of 100. This leads to

pi{min) given by

py(min) = i~?%6§§~= 10u Hg (Eqn. 9.9)

This in turn requires that the tube radius be (using equation 9.5)

R = (8/.00)%"% = 150 mm = 6" (Eqn. 9.10)

i

and from equation 9.1 its length must be
L = R? = 23,000 mm = 900" = 75! (Eqn. 9.11)

Then from the above determined tube dimensions and operating
pressures, all the other design factors, such as vacuum capability,
necessary driver pressure, wall thickness, driver dimensions, etc.,

can be easily determined.

The operating regime of the shock tube resulting from this
example design and that of the GALCIT 17" shock tube are shown in
figure IX.1l. This figure is a Low Density Shock Tube Design Chart

incorporating the limitations

8/ Ru/s

p1(min)
(Eqns. 9.12)

L/ R?

tt

pi (max)

The instrumentation limit of pj(max) = 1 mm Hg may, of course,
be adjusted as desired for the particular equipment available. It
is based on the best gage-electronics combination available at this

time for shock structure experiments, Baganoff's (Ref. 25) pressure
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gage, which has a rise time of about .1 usec. The shock passage
time should be at least ten times this, or 1 usec. The slowest
shock speed normally used is roughly .5 mm/usec, which corresponds
to a Mach number of about 1.5. Thus the thinnest shock amenable
to accurate structure analysis is one .5 mm thick. This corre-
sponds roughly to an initial pressure of 1 mm Hg.

Note that some types of instrumentation impose a lower limit
on usable initial pressures. Pressure gages such as Baganoff's,
for example, lose response magnitude rapidly as p; is decreased and
are practical without amplification (and hence distortion) only
above about 10u Hg. The heat transfer gages designed for the shock
shape study, however, are essentially without a lower pressure
limit (see appendix B). They, of course, are unable to faithfully
reproduce shock structure in the way that is possible with
Baganoff's gages. Such considerations, then, as the type of
experiments contemplated and the type of instrumentation anticipated
may help establish the desired operating regime gf a shock tube
and hence, through figure IX.l, the tube dimensions.

The shock deviation from planarity through and on either side
of the operating regime of the GALCIT 17" shock tube is shown in
figure IX.2. This figure is basically a combined replot of the

data presented in figures III.#, IV.2, and V.1l in previous chapters.
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IX.2 The "Hi-Fi" Shock Tube

The results of the last section indicate that in order to avoid
the transverse wave regime in a large radius shock tube at moder-
ately high pressures it is necessary to make the tube prohibitively
long. Yet the instrumentation capabilities of the large shock tube
are so dramatically superior that it seems profitable to search
for alternative means of extending the operating regime of such
tubes.

Using an extremely long tube to insure boundary layer 'choking"
of the transverse waves created at the diaphragm is perhaps the
"brute force" approach to the problem. It would be more desirable,
from both an economic and an esthetic point of view, to eliminate
or greatly reduce in magnitude these waves at their source. The
resulting "hi-fi" shock tube could be essentially disturbance-free
over a wide operating regime and need be only long enough to insure:

(1) the coalescence of the compression train into a well-

defined equilibrium shock and

(2) the attainment of sufficient testing length between

shock and contact surface.

The first method which comes to mind for eliminating the trans-
verse waves at thelr source is simply to eliminate the source--the
bursting diaphragm. The perfection of an entirely new flow
initiation device is an undertaking with tremendous possibilities,

but one which is fraught with difficulties. Many configurations



140

suggest themselves which have many of the attributes required of

such a device, but so far none which has them all. Some of these

elusive attributes are listed below.

A flow initiation device should:

(1)

(2)

(3)

(4

(5)

(6)

be strong enough to withstand the differential pressures
applied to it.

be completely vacuum tight even while subjected to the’
stresses caused by the differential pressure.

be either automatic or controllable from outside the tube
without noise-generating electric signals which could
prematurely trigger other instrumentation.

initiate the flow within a very short time interval

(a millisecond is typical for diaphragms) ig such a way
that the flow will be coaxial and uniform in the tube.
be capable of operating over as wide a range of driving
pressures as possible, consistent with the tube design
and operating regime.

preferably be capable of being reset for the next shot

remotely, without the tube being opened.

B

A second method for eliminating the tlransverse waves is to

cancel them out as soon as they are created or, looking at it

another way, prevent them from forming. One possible method for

reducing their amplitude by using a reverse-bulging diaphragm has

already been mentioned in section V.3.
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In Whitham's (Ref. 26) theory of shock dynamics he shows that,
to the approximatioﬁ of the theory, the shock propagation problem
is identical to the analogous steady supersonic flow problem. If
one can calculate the equipotentials of éhe latter, then he has the
successive shock positions of the former. Based on this analogy,
the method of characteristics might be used to design a transition
section just downstream of the diaphragm of a shock tube, such that
the shock wave, which is roughly spherical when produced, may leave
the transition section plane. The problem is analogous to designing
a supersonic inlet subjected to an inflow which has a radial com-
ponent of velocity and which must be turned parallel, producing a
uniform pressure at the compressor. Figure IX.3 shows how such a
transition section might look.

Note that there is the possibility that early boundary layer
closure might occur in the transition section. In that case the
device could extend the boundary layer vegime as well as modify
the transverse wave pegime. In fact it may be possible to extend
the operating regime of existing shock tubes by merely inserting a
set of concentric cylindrical sleeves within the tube downstream of
the diaphragm, thereby multiplying the number of transverse wave
reflections and promoting premature boundary layer closure within
the sleeve section.

It should be pointed out that these are merely suggested as
possibilities warranting further study. Follow-up research is

being conducted under the direction of the author at the Air Force



142

Institute of Technology. First results from a pilot experiment

in a small shock tube are inconclusive.

Even if the above suggestions do not bear immediate fruit, the
mere existence of transverse waves Jjustify the hope that one day

they will be overcome and researchers will work in a new generation

of "hi-fi" shock tubes.
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DRIVER i—e  TEST SECTION

DIAPHRAGM

FIG.IX.3

TRANSITION SECTION FOR A
"Hi-F1" SHOCK TUBE
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APPENDIX A: SHOCK TUBE DESCRIPTION

A.l Description of the GALCIT 17" Shock Tube

The best general description of the GALCIT 17" shock tube is
contained in reference 19, while additional supplementary information
is in references 18 and 21.

Since publication of the above references, the following modifi-
cations to the fube have been made:

(1) All valves, pumps, and instrumentation were made operable
by remote control from a central control panel, enabling
the tube to be operated safely and conveniently by one man.

(2) The movable diaphragm cutting blades were replaced by a
set of interchangeable fixed blades of different cutting-
plane curvatures.

(3) The diaphragm section was equipped with four squaring
plates, enabling each quadrant of the ruptured diaphragm
to fold, rather than tear, and'eliminating petal loss over
a wide range of bursting pressurés. This modification
produced a slight area reduction at the diaphragm and
resulted in the Mach number produced at a given diaphragm

pressure ratio being reduced to 94% of that predicted by

ideal tube theory.
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APPENDIX B: FILM GAGE DESCRIPTION

B.l Film Gage Response Theory

Consider the basic film gage circuit shown in figure B.1l (note
that in this appendix only, the symbol R stands for resistance,
rather than radius). Sometime prior to shock tube firing, the switch
is closed and a steady voltage

Eg R
E = '-ma (Eqn. B.l)

becomes impressed across the gage. A steady current I flows through
the circuit. When, after the tube is fired, the shock wave passes “
(or, in the case of the end wall, reflects from) the gage, the tem-
perature of the gage is raised suddenly. This temperature jump
causes the gage resistance to change by an amount AR. The relative
resistance change 1s known as a function of the initial pressure of
the gas and the shock Mach number. For the case of the end wall
~gage, this relation leads to the plot in figure B.2. The details of
the analysis are given by Roshko (Ref. 27).

When the ballast resistance Ry is large compared with R, the
current is constant, and the output signal ratio, Ae/E is equal
to AR/R. 1In this case the signal Ae can be increased only by
increasing E. If Eg is fixed, then E is increased by decreasing Rg.
Eventually, the assumption that Rg >> R is violated and, finally,

- 1f Ry is decreased to zero the signal also goes to zero for E = Eg

regardless of R.



luag

It is clear, then, that the signal Ae must have a maximum for
some particular value of Rp. Since the existence of this maximum is
inconsistent with the assumption that Ry »> R, this assumption must
be discarded during the search for the Ry which yields Ae(max).

By simple analysis of the circuit both before and after the

resistance jump, it is found that the signal Ae is given by

Ae _ AR R [ AR R 3

Considering Ey and R as constants, this equation is differenti-
ated with respect to Ry and the result set equal to zero. This
leads to a quadratic equation for the Ry® for which Ae is a maximum.
There is an explicit approximate solution for the case when

AR << Rg,R. It is simply

Rp™ = R (Eqn. B.3)

the optimum ballast resistance being equal to the gage resistance.
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B.2 Non-ideal Gage Performance

Thin film gages have not been operable at the "optimum'" con-
ditions derived in the last section because of non-ideal behaviour
associated with gage heatup. In the past, only small currents
(typically 10 ma) have been passed through such gages so that the
I%R heat produced would be negligible. If the current were raised
(Ry lowered) the gage would fail, usually at the junction between
the platinum film and the silver paint leads. Such gage burnout
imposed a serious restriction on gage operating current (or voltage)
and thus on gage response. This restriction has been removed by
means described in the next section.

Once this burnout barrier is passed, an additional effect is
encountered, also caused by the I2R heating. As the steady state
current is raised, a point is reached above which the heat produced
cannot be lost through radiation and conduction and a rapid rise in
surface temperature occurs. There is an associated rise in the gage
resistance which alters the ratio between Rj; and R and produces a
slow rise in the voltage applied to the gage. Since the total
circuilt resistance is increasing, however, the current through the
~gage decreases slowly, reducing I%R until a new equilibrium is
reached. Because of this downward creep of the gage current, the
gage response is less than ideal. There is a critical point above
which attempts to pass more current through the gage will actually

produce a lower response.
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An effective current I gf can be defined as that gage current
which would be required to produce a measured gage response in the
absence of these non-ideal effects. Figure B.3 is a plot of effec-
tive current vs. actual applied initial current for a thin film gage
of R = 220Q. It can be seen that the effective current is a maximum
for an applied current of 120 ma. This corresponds to a gage voltage
of E = 26V. This, then, is the greatest voltage which should be
applied across that gage, regardless of what Ep 1s available. If Ej
is fixed, then this E(max) fixes Ry, usually at a higher value than

that given in equation B.3.
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B.3 Prevention of Gage Burnout

It has been found that gage burnout can be eliminated by making
the evaporated film and the low-resistance painted leads of the same
metal, platinum. This eliminates the metal-to-metal mismatch which
occurs between platinum films and silver leads.

The leads are painted on first, in several layers, each layer
baked on before painting the next. After the legds have been built
up to the point where their resistance is aéceptably low {(around
5 ohms) the film itself may be evaporated onto the cleaned sﬁrface
of the gage and baked on. Experience shows that the film is usually
damaged by subsequent application of the leads if it is applied first.

All-platinum gages of approximately 200 ohms resistance have
been successfully produced in this way which are capable of with-
standing impressed voltages of up to 50V and gage currents of 200ma.
The surface areas of the films varied between .004% and .1 in?. The

films survived over 400 runs in the shock tube, at Mach numbers up

to 12, without failure.
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B.4 The Multiple-film Gage

The standard instrumentation ports in the GALCIT 17" shock tube
accept gages on cylindrical rods of one inch diameter only. The
mounting pads are nearly 3" in diameter, thus requiring the same
(8") minimum distance between gages.

Because of the complex Shapeﬂof the shocks étudied in this
investigation and because of the lack of axisymmetry in many cases,
it was necessary to have as many data points as possible located
along a single radius of the endwall. This was accomplished by
putting several parallel films on each gage cylinder, each film
being provided with its own set of leads.

Each fiim actually integrates information received over its
entire surface area. Thus to be considered a data "point", the film
must have dimensions. which are small compared with its radial loca-
tion. The film at the center of the tube must have dimensions
small in comparison with the radial distance over which a significant
change in the measured quantity is expected to occur. Figure B.4
shows two types of multiple-film gages, the first for general use
and the second for use at the center of the tube. The improved gage

could also be used 1in smaller tubes.
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APPENDIX C: RE-FORMULATION AND EXTENSION OF

DE BOER'S TWO-DIMENSIONAL SHOCK SHAPE THEORY

C.1 Formulation of the Problem

g The same assumptions are employed here as were used by deBoer:
(1) the region behind the shock and outside the boundary layer is a
potential flow and (2) the shock makes a small angle with the
vertical.

The "wavy wall" approach will be used, solving first for a
sinusoidal wall as in figure C.1 and then integrating over all
possible frequencies to obtain the actual wall shape as a Fourier
integral.

Since the boundary conditions are expressed in terms of the
vertical velocity v it seems more direct to use this as the unknown,
rather than the velocity potential.

The potential equation in the applicable region is

1 -
bxe a§.¢yy =0 (Egqn. C.1)
where
m? = (1 - Mu?) (Eqn. C.2)
Differentiating equation C.1 with respect to y,
1
byxx + =5 dyyy = O
v + 4£-V =0 (Eqn. C.3)
xx T 15 Vyy qn. L.
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Now let 4 = " Then

5|

Vas t Vyy = 0 (Egn. C.4)

which is Laplace's Equation.

The boundary conditions will now be formulated. By symmetry,

along the plane midway between the two walls,

v(4,h) = 0 (Eqn. C.5)

From the small shock angle assumption it follows that just behind the

shock,

v(o,y) = (%) (U1-U3) (Eqn. C.6)
sh .

which will be used to give the shock shape, once v is found, as

follows:

y
1 .
Xgpn(y) = ﬁztaz-jo v(o,y)dy (Eqn. C.7)

The boundary condition along the wall is simply that
v(4,0) = Uf'(4) (Eqn. C.8)

where f(4), the shape of the wall, for the wavy wall is just

£(s) = A sin —2—;@-— (Eqn. C.9)

Then equation C.8 becomes
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271AU 274

v{s,0) = T Cos =

(Eqn. C.10)

and the formulation of the problem is complete.
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C.2 Solution gﬁ_the Problem

The general solution to equation C.4 is

v = [A' cos ps + B' sin ps] [c'efY + pre™PV] (Eqn. C.11)

Applying equation C.5,

D' = - credY (Eqn. C.12)

and thus

v(4,y) = [A" cos ps + B" sin ps] [epy - e(2h—y)p] (Egn. C.13)

Now applying equation C.10,

B = 0

_ 2w
p =5 (Egns. C.14)
A" = 27 AU

A (1-e%M)

When these are substituted into equation C.13 and the definition of

the sinh is employed, the result is

2m
sinh ~— (h-y)
_2m 214 A
vi(s,y) = 5 AUy, cos 5 : R (Egqn. C.15)
sinh —

A
At this point the wavy wall is replaced by a fictitious wall
located at the edge of the displacement thickness boundary layer.

The equation of this wall is
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. i
F(x) = - &% x /2 (Eqn. C.16)
Thus
A%Uq
vix,0) = - (Egqn. C.17)
’ oV

Returning to x variables and integrating over all %§3 equation C.15

becomes
. 2m
_ om omx  Sinh 5= (h-y) on
vOuy) = |5 MUe cos ST e 4
o sinh ~———
A
27

Now introducing the quantity k = Xa-and Jumping all the constants
into a new set of coefficients Ak = g-mZkAAUm, this can be written

2 % sinh mk(h-
v(x,y) = F’J Ay cos kx mkhy> dak
[@]

(Eqn. C.18)

The coefficients Ay are evaluated from the boundary condition along
the fictitious wall and the definition of the Fourier cosine

integral. From equation C.18,

vix,0) = %—J Ay cos kx dk (Egn. C.19
o

where

Ay

1}l

j v(x,0) cos kx dk (Eqn. C.20)
o

Substituting equation C.17 into this, one cobtains

1

Ay [ - A o5 kx dk
)
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A%, [T
Ak = - "'—E—‘ —é—k— (Eqn. C-Ql)

and the complete solution for the v field is obtained when this is

put into equation C.18 giving

- A%Us [ cos kx  sinh mk (h-y)
v(x,y) = = JO o s o gk (Eqn. C.22)

Evaluating this at x = 0 leads to the shock shape as follows:

v(o,y) = -~ 20 J sinh mk(h-y) g (Eqn. C.23)
Vom Jg Yk sinh mkh

and using 3.524-3 of reference 28,

A*U 1 1 1
v(o,y) = - = T{= - (Egqn. C.24)
’ Y2mm (2) k=0 | vh(2k+1)-h+ty  vh(2k+1)+h-y d

o~ 8

then substituting this into equation C.7 and noting that Us = Uy,

Xsh(}’) = - _...._..:A_‘..E,Z...._. v [Y dy -
v2m (Ui-Uz) x=g o Yh(2k+1)-hty

y
J dy (Eqn. C.25)
o Yh(2k+1)+h-y

A%y, o
z e 2vk(2k+1)-hty - 2/f -
/EI_H. (UI'UZ) kgo {

[- 2vk(2k+1)+h-y + 2vg 1}
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where § = h(2k+1l)-h and g = h(2k+l)+k

Lo

A%y
2 ¥ [V2hkty + /2hk+2n-y - Y2hk - /2hk+2h ]
U1-U2 2

2
%sn(y) = - o

(Eqn. C.26)

Introducing the dimensionless variable 7 =

SRS

, this becomes

% e

m Ul_UZ

A®y
xgp(R) = - 25 2 ¥ [V2kt® + /2kt2-7 - V2k - V2k+2 ]
m Ui1-Uy k=0
(Eqn. C.27)
A%U,
xgp(f) = - % 28 [V/F + V2-7 - V2 + Y247 +/a-7 - /2 -

Vi +/5th + V-1 - /4 - VB + . . L] (Eqn. C.28)
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C.3 Evaluation of the Shape

The shock shape has been determined by numerically evaluating
equation C.28 at various values of n = 1 - f. The series has the
value .761 for n = 0. Shifting the origin of x to the plane through
the shock position at the centerline (for consistency with the
experiments), and defining xgh(n=1) = 6 (the "apparent thickness" or

"axial extent"), it is found that

_ 2h a*u,
=Y T T, (Eqn. C.29)

and that the shock shape is as shown in figure C.2.
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APPENDIX D: RE-FORMULATION AND EXTENSION OF

DE BOER'S AXISYMMETRIC SHOCK SHAPE THEORY

D.1 Formulation‘gg the Problem

As in the two-dimensional case, the sink velocity v will be
used as the dependent variable. The procedure is analogous, with
the Fourier Bessel integral converting wavy wall results to the
desired solution. Since the analogy is obvious, the boundary con-
ditions for the displacement thickness wall will be used immediately.
The origin is on the centerline of the tube (see Fig. D.1).

" The axisymmetric potential equation is
2 1 =
Mgy + Opp T ;‘¢r =0 (Eqn. D.1)

Differentiating with respect to r,

m2¢pyx * dppp * %’¢rr Jé ¢p = 0
mzvXX t Ve t %’Vr - j%—v =0
rzvrr + Vv, -V = - mzrzvxx (Eqn. D.2)
Assuming a product solution, let
vix,r) = F(r) G(x) (Egqn. D.3)

then

r2F_G + rfy6 - FG = - m2r2FG,,

and
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Frp  Fp 1 m2G 5 9
—F—---f-E’—F--;E-——-—-G-———-pm (Eqn.DaL\L)

The radial equation is then

r2Frp + oF, - (p?m2r2 + 1) F = 0 (Egqn. D.5)

This is the modified Bessel equation.

The axial equation is

Gy, + p%6 = 0 (Eqn. D.6)

XX

and the boundary conditions are similar to those for the two-

dimensional case:

v(x,0) = 0 (Eqn. D.7)
by symmetry, and along the wall, whose equation is
f(x) = R + A" V&% (Eqn. D.8)
the condition is
Uya®
v(x,R) = Upf'(x) = (Eqn. D.9)
2vVx

As before, the shock shape comes from the boundary condition at the

shock, and gives
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r
Xgh = ﬁz%ﬁz-j v(o,r)dr (Eqn. D.10)
o

This completesvthe formulation of the problem.
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D.2 Solution of the Problem

The solution to equation D.§ is
F = AI; (mpr) + BKy(mpr) (Egqn. D.11)
and that to equation D.6 is
G = C' cos px + D' sin px ‘ (Eqn. D.12)

so that the general solution for the velocity v is

I; (mpr) cos
vix,r) = px (Egn. D.13)
Ky (mpr) sin

The symmetry boundary condition yields B = 0 and if v(x,r) is
to be an even function of %, then D' = 0 also. Thus the above

solution integrated for arbitrary wall shape reduces to

vix,r) = %—Jo Apll(mpr) cos px dp (Eqn. D.14)

The wall shape is introduced into the Fourier integral relation

to solve for the coefficients Ap as follows:

v(x,R) =

EETINS

j Apll(mpR) cos px dp (Egqn. D.18)
o

where
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Apll(mpR) = J v(x,R) cos px.dx

o i

= cos px dx
Jo 2V
UzA* T

= ——E— '53 (Eqn. D.16)

Thus
UpA¥
A, = o2 o) (Eqn. D.17)

p T 2T mpry ¥ 2p

Substituting this back into equation D.14, one obtains the complete

solution for the sink velocity:

U, A% I, (mpr) (Egqn. D.18)
v(x,r) = 2 Il(mpR) cos pPx dp which is also
vom 5 1{mp 13 (Egn. 2.5)
Evaluating this at the plane x = 0,
UZA* Iy (mpr)
v(o,r) = a4 (Eqn. D.19)
Nory I;(mpR) o

one can then use equation D.10 to find the shock shape:



H]

Xsp(r)

o d
Vom (U1-Up) I,(mpR) Yo
o
1
A*Uz _ITT):J- [Io(m)ﬂr’) - Ig(o)]
/Q—TT- (Ul-UZ) Il(mpR) /)5.
o)
A*U, To(mpr) - 1 .
P
- 3
/2? (Ul Uz)m Il(mpR) P /2
0
Now if we introduce new variables n = %-and ¥
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A™U,

: r
. ' J I; (mpr)dr
O

xgplr) =

A*U, VR

To(tn) - 1.
at

Y2mm (U1-Uy)

3
1.8y £7/2

(Eqn. D.20)

(Eqn. D.21)

(Eqn. D.22)

mpR, this reduces to

(Eqn. D.23)
which is also
(Egqn. 2.6)
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D.3 Evaluation of the Shape

The numerical evaluation of the integral in equation D.23 is
carried out in appendix E for various values of n. Again defining
6 as the axial extent, it turns out that the integral has the value

2.78 for n = 1 and thus

A*U, VR

= [2.78] (Eqn. D.24)
n=1 v2mm (U;-Ujp)

GEXSh

which leads directly to equation 2.7.

The shock shape calculated in appendix E is shown in figures
I11.1, I111.5, I1I1.6, and IV.1l and is reproduced in figure D.2
in non~dimensional form. When plotted in this way thg two-

dimensional and axisymmetric shapes are nearly identical and differ

little from a quarter circle.
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D.4 Central Radius of Curvature

The slope of the shock at any point is given by

%%-Sh = %f%égl (Egqn. D.25)
and 1s of course zero at r = 0. The curvature at the centerline of
the tube, however, is finite and can be calculated by putting the
expression for v(o,r) from eguation D.19 into the above, differen-
tiating with respect to r and evaluating at r = 0. The result is of
interest for such applications as optical reflectivity experiments
such as those by Linzer & Hornig (Ref. 22) or for short path optical

experiments near the center of a tube (electron beam or integrating

Schlieren for example).

o0

d
2 U,A% = [I; (mpr)]dp
ax < 2 dr (Eqn. D.26)
dr®ish  (Uyp-Up) v2r I (mpR) vp
e}
i UZA* gga[lo(mpr + Iy (mpr)ldp
(U1-Up) V2m I;(mpR) Vp
O
i} UyA¥m Vo [To(mpr) + I,(mpr)ldp
21/‘2? (Ul‘UZ) Il(mpR)
o)

(Eqn. D.27)
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Although this could be evaluated at any r, its evaluation at r # 0
is extremely difficult and, fortunately, of little practical use.

At the center of the tube, however,

a2y UpA™m [Ig(0) + I,(0)1 | /7 ap
£x = (Eqn. D.28)
drz sh 2v2n (Ul"Uz) Il(mpR)

r=0 o)

Now Ig(o) = 1 and Ip(ec) = 0. If a new variable £ = mpR is introduced,

the above reduces to

d?x U A" JE at (Eqn. D.29)
dp2 - 3 I,() which is also
¥ [sh 2v2mm (U;-Uy) R /2 (Eqn. 2.8)

r=0
o)

The integral in this expression has the value 6.38 (see section D.5)

and thus
42 6.38 U,A¥
a*g' = 2 5/ (Egqn. D.30)
"len 2/2m (U-Up) R 72
r=0

Since the shock slope can be assumed everywhere small, the radius

of curvature is approximately the reciprocal of the curvature (and

at r = 0 it is exactly so), thus equation 2.9 follows immediately.
deSh 6.38 UZA* (Eqn. D.Sl)

éi%_ = R 5 = ; which is also
0 dr r=0 2(27mmR) /2 (U: (Eqn. 2.9)
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D.5 Numerical Evaluation of P = /£ at
- I; ()
O
Let
@ 7 2 = 11 7z o u
_ T dt _ T at T at T at _
PEl o] Tt Tt o 1ttt
° ° .2 11

(Egqn. D.32)

respectively. To calculate P} one can use the small argument

expansion of the Bessel function:

(i)l+2P
RS ot 3 25 7 19
L&) = rgo T T2y 2t 15t 3en * Teusz T T57ese0 |
" (Eqn. D.33)
Then
.2 .2 2
VE dt -1/2 /2
Py = 75 - 2 bl dt 2 75
O (e} O
P, = 1.,78885 (Eqn. D.34)

To calculate P3, on the other hand, one uses the large argument

expansion of the Bessel function:

I;(8) =

y 3
e 1.3 4365 L (Eqn. D.35)
Tt [: 5 7 S(at)? =
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and

Py = ont /T 4t (Egqn. D.36)

11 11

=V | et at+

.000518 - (Egn. D.37)

as}
w
i

P, was evaluated by numerical integration using Gregory's
formula (page 157, Ref. 29, for example) carried to the second
difference. Intervals of .l were used from .2 to 2.5, of .5 from
2.5 to 6.0 and of 1 from 6 to 11. The values of the Bessel functions

were obtained from pages 218 and 221 of reference 30. The result

was

P, = 4.59036066 (Eqn. D.38)

Thus the entire integral has the value

P =P, +Py+ Py = 6,37973 (Eqn. D.39)
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APPENDIX E: NUMERICAL EVALUATION OF

i+

-1
IgCtn) at

i

3
I,(t) ¢ /2
e}

E.1l Expansion for Small £

Just as with the integral P in section D.5, because of the
non-availability of expansions for the Bessel functions uniformly
valid for all size arguments, it 1s necessary to break the integral
Q into three integrals. Expansions are available for both small
and large arguments, and the intermediate argument integral can be

evaluated numerically.

© .1 11 ©
Io(tﬂ) - 1
Q = ——————-—-———3—;——th= ()at + ()at + ()at = Q; + Q2 + Q3
I t’2
o 1) o a1 11
(Egqn. E.1)
respectively.
Tor small arguments,
_t 28 5
Il(t) = §-+ —€'+ §§E'+ [EPE (Eqn. E.
and
2 b 6
To(tn) = 1+ &2 @7 @) 0 (Eqn. E.:

4 6L 2304

Then



Q

H

R
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.1
Io(tn) - 1
3
1,(8) £ /2
o]
1
(£n)? + (£t @b
; - i : 2§ju "
£ 2
J [“2‘*1‘6’*?8‘5]’:
o
rl |
2 L 6
n .~1/2 _ n' .3/2 n° .7/2
[?T't tap T st
JO
.1

2 2 4
nc ,-1/2 n n 3/2
[TF't - (i@'" Eﬁ?)i: B (*—— ¥

>.t7/2 )

n*

256 1152

(Eqn. E.u)

(Eqn. E.5)
tz
"‘é“m}“

.]di

.31614872 n? + .00003950 n* + .00000000610 n® + . . .

Q

jtd

.31614872 n® + .00003950 np*

(Egqn. E.6)



183

E.2' Computation of Q) . ' ;

i

In this intermediate range where neither of the Bessel function
expansions is valid it is necessary to numerically integrate by
brute force at each value of n.

This was accomplished first at n = .2, .5, .8, and 1.0 by hand
calculation using Gregory's formula carried to the second difference.
As in the computation of P, intervals of .1 from .1l to 2.5, of .5
from 2.5 to 6.0, and of 1.0 from £ = 6.0 to 11.0 were used.

Subsequently, with the assistance of Dr. M. Chahine of the
Jet Propulsion Laboratory, Qo was evaluated at n = .1, .2, ..., 1.0
using machine computation and much smaller intervals of Z. The
computer results showed the hand calculations to have.overestimated
the value of Qy by typically .1%.

The computer values for Q, are included in figure E.2 at the

end of the appendix.
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E.3 Expansion for Large in

Since Q3 has been defined such that £ > 10 and the large-
argument expansion is good for values of £n 2 2 the results of this
section can only be applied for calculating Q at n 2 .2. Since the
value of Qo) is known to be zero and the first and second deriva-
tives of the shock shape are also known at n = 0, the inability to
calculate Q3 for 0 < n < .2 by this procedure does not noticeably
hamper dur ability to construct the shock shape. Moreover we can
show that Q3 in this range is of the order of 1077 and thus does
not prevent determination of Q for 0 < n < .2 to several figure

accuracy.

For large arguments (see page 143, Ref. 31, for example),

. b
3 15
I, (&) = — 1 -2 -2, (Eqn. E.7)
! Nors: 8L  19g¢2 4
and
An '
-1 (-1)(-9)
Io(tn) = — 1 + - . (Eqn. E.8)
0 Vordn 81n 2(8%n)?
Then
Ig(tn) - 1
Q3 = "———"“*é—‘-'d/t (Eqn. E.9)
1,0¢) £ /2
” tn ,
1 9
1+ + -1
,/““*[ 81n 2 2]
Q3 = 2nin 7 1262°n at (Egqn. E.10)
Le [1 R ]
Vo 8L 1,g¢2

11



18

5

In-2
-3/2 1 9 3 15
Q3 = e 2y EY; R at -
/n M 19822 12842
11
-t
/Ef%e 1 +-{% 10 at (Eqn. E.11)
8 1281t2 :
11 '

Q3 = Q3  *+ Qg (Eqn. E.12)

where Q3b is not a function of

n and thus can be evaluated

numerically.
Q3. = - V37 f fe et + 27?4 L5 ~8qar (Eqn. E.13)
b 8 128
11
; 3 e‘ll
= - Yom {- Ei(-11) + = + Ei(-11) | +
8 [ 11
15 | -11 1 1 1 ..
m [e (—- '-é-,.z + -5,:2—)-' —2— El("ll)]{ (Eqn. E.lu‘)
Q3 = 1.71351542 Ei(-11) - 1.2244979 x 10°6 (Eqn. E.15)
where (see page 116, Ref. 32)
Ei(-11) = - e ** ( f%-— i, 2 .6 . 2 120 .)
: 112 113 11% 115 118
= - 1.,4003 x 10~6 (Eqn. E.16)
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Thus

Q3 = - 3.6239 x 10-8 (Eqn. E.17)

Now Q3a is a function of n and thus must be evaluated at each n

individually.
Qz_ = = I~3/2 e—I(l—n) + L l-+ 3 1—5/2 e~i(l—n) +
a /ﬁ 8 n
11
3 3 1 5 -7/2 =X(1-n) 3 9 -9/2 -X(1~-n)
A 2n2+n+22€ e +1024nn+5t e +
——iég——'t-ll/z e_t(l—n) at (Eqn. E.18)

1638u4n2

The integration of equation E.18 at each value of n involves the

use of the following relation (see page 331, Ref. 28):

at = u“v I'(v,uu) (Eqn. B.19)

where (see page 954, Ref. 28):

T{v,uu) = e_t IV—l at (Eqn. E.20)

pu

and in turn is evaluated according to
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v+n
(Egn. E.21)

°2° -1 (pu)

F(v,pa) = I(v) - n! (v+n)

n=0

where v # 0, -1, -2, . . .

Now for use in integrating equation E.18, the parameters introduced

in equation E.19 have the following values:

H=1-n
e = 11(1-n) (Eqn. E.22)
v=-X 3 _3> _7 _93

2 ° 22 2° 2 2

each term in equation E.18 having a different value of v.
It is also necessary to use the relation (see page 260, Ref. 33)
T'(n+l) = nT(n) (Egn. E.23)

and (see page 117, Ref. 32)

- m
P=X) = - vy 518 wx (Eqn. E.24)

When all these relations are combined it is possible to derive
a general expression for Q3a in which the infinite series are in
suitable form for evaluation by digital computer. This equation

is given in figure E.1.

The infinite series in this equation are
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n o0
n 2 (11ly) _ T (Egqn. E.25)

g SR ) (nt3)1 ~

where j takes on the values 1, 2, 3, and 4. The ratio R, of two
successive terms is always of order one and thus the computer can
easily generate each succeeding term from the one preceding it by

the recursion formula

T
a0 ona1 1y
Ry = . = =l o= e (Egqn. E.26)

At the larger values of u up to 33 terms were required to obtain

the desired accuracy.

The calculations were performed for n = .2, .3, .4, ..., .9
(W= .8, .7, .6, ..., .1) and the results substituted in the general
equation for an (Fig. E.1). The resulting values for an were

added to ng to obtain Q3 which is tabulated in figure E.2.

Xsh
6

theoretical values of Ax(.8) in several figures in the body of the

Note that (n=.8) = .432 has been used in plotting the

report (figures III.4, IV.2, V.1, and IX.2).



189

=Uu
i(n+u) [ T+Ug (1-) Hnw NEANN n
LT\ ¢ u - T £0C0E0E0E0"
il n My :
+ ¢ i : -+ T R LA
T28HSL200 6SZS00€000 LIHTS6TO000 LAgT
+ i(e+0) [Tade) oy wr.MH + ggeeeee
LD\ Ju
o0
hal
il Ak € ST
+ + - r +
60606060°  Zn9609500°  652500£000° | —/ LAg-
T=u "
i(z+u) fT4ug nl Z
L - - + + n -
O\ ¢ (1) M * 1+ STeteter T Zhosossoor | LI/
T=U
P (T4+U) T4Uuz . 3!
+ - A e ero——
LT Z ulT) M ¢+ GTeTeTeT

£

Lt

Y

GENERAL EQUATION FOR Q3

E.1

FIG.



190

n Q Q2 Q3 Q ﬁgﬁ': 8§;§
0 | .000000000 | .00000000 | .000000000 | .00000000 | .00000000
.1 | .003161491 | .01280639 (0)1077 .015968 . 00574357
.2 | .012646011 | .05157252 | .000007784 | .064L22632 | .02310172
.3 | .028453703 | .11739007 .ooooudlog L14588388 | .052u7333
| 050584806 | .21227657 | 000081239 | .2600u282 | . oons7ang
.5 | .079039648 | .33954832 | .000261498 | .41884947 | .15065699
.6 | .113818658 | .50453609 | .000866893 | .61922164 | .22272936
.7 | .154922355 | .71597695 | .003021586 | .87392089 | .31L3u276
.8 | .202351359 | .988810u1 | .011393820 | 1.20255559 | .43255018
.9 | .256106378 | 1.35004154 | .050108781 | 1.65625670 | .59574305
1.0 | .31618822 | 1.85157275 | .6123918 2.78015277 | 1.00000000
FIG. E.2  RESULTS OF NUMERICAL EVALUATION OF Q

x
(——g——l}- vs. n plotted in Fig. D.2)
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APPENDIX F: DISCUSSION OF ACCURACY

F.1l General Considerations

Possible sources of errors may be conveniently broken down into

two categories:

(1) signal errofs, where the time difference between the
signals put out by the gages does not accurately reflect
the shock shape, and

(2) post-signal errors, where the time differences are not

accurately recorded or read.

Possible causes of signal errors are:

(1) the gages not being located such that their surfaces lie
in a plane normal to the end wall, due either to bowing
of the end wall or protrusion of the gage from the wall.

(2) radial variation of local shock speed.

(3) variations of gage rise-times.

Possible causes of post-signal errors are:
(1) 1lack of synchronization of scope sweeps.
(2) variation of scope sweep speeds.
(35 variation in length of BNC cables from gages to scopes.
(4) variation of scopé rise-times.
. (5) bptical distortion of oscilloscope grid and trace.
(6) variation in picture scribing teéhnique.

(7) errors in reading scribed pictures.
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F.2 Discussion of Signal Errors

‘The gages were mounted flush with the inside surface of a 3/u"
stainless steel end plate. The plate surface was machined flat,
polished, and checked with an optical flat. Even with the instru-
mentation holes, the rigidity of the plate was sufficient to prevent
detectable strain when subjected to the pressure difference caused
by evacuation of the test section.

Whenever gage protrusion occurred it was measured and the data
corrected accordingly.

When shock shape oscillations are occurring, there must be
radial variations in the local shock speed. These variations depend
on the amplitude of the shock perturbation and their effect, in
turn, on the determination of the shock shape is a higher order
quantity which can be ignored when £/R is small.

The response characteristics of the film gages were very
uniform. Their rise-time was small compared with the shock re-
flection time at initial pressures below 10 mm Hg.

It is felt that the total possible shock shape error due to
these causes could be no more than a few hundredths of a millimeter,
this being due mainly to gage protrusion.

This could be checked if one had éccess to a perfectly plane
shock. Indeed the apparent shock perturbations do uniformiy approach

zero as L/p1R? approaches infinity.
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F.3 Discussion of Post-Signal Errors

All the individual possible causes for errors of this type were
'cargfully considered and eliminated as far as possible. All oscil-
loscopes were triggered from a single source. Sweep speeds were
periodically checked. All scopes were Tektronix type 555 with

type L amplifiers, operating on the same sweep speed. It was found
that under these conditions timing errors were on the order of 2 to
5 nanoseconds, whereas if different scopes were employed or even
different sweep speeds on identical scopes, the timing errors could
be ten times as great.

Fortunately a simple means for checking on all the post-signal
errors at once exists. The equipment is set up just as in an actual
shock shape experiment and a signal is applied to all the gages at
once, simulating a perfectly plane shock with zero signal error.
Oscilloscope pictures are taken, scribed, and read and a "shape" for
this electronic shock wave determined. This procedure was accomplished
periodically and errors were of the order of a few hundredths of a
millimeter. An abbreviated form of this procedure, wherein the
scope synchronization and sweep could be checked, was performed
before and after each day's experiments.

Considering both sigﬁal and post-signal errors, the data seem

to be reliable easily to a tenth of a millimeter.
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F.4 Sample Adjusted Shock Shape Determination

Figure F.l contains the oscilloscope pictures for the eight
data points for run 1401. This run was a part of the axisymmetric
rooftop disturbance experiment and yielded the point E£/R = -.1ll at
t/R = 2.51 on figure VII.1. It can be seen that the data is
carried to the nearest hundredth of a millimeter, which leads to
four decimal places in £/R. This is then rounded off to three
places; all of which can be considered significant. Note that two
decimal places would have been sufficient for use in plotting
figure VII.1.

Figure F.2 is a true scale plot of the shock shape determined
by the data of run 140l1. By comparing figures F.l and F.2 one can

see how the shock shape can be visualized qualitatively even before

reducing the data.
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t M X Xp X
usec usec mm mm mm

4.12 -18.87 ~22.40
~12.20 3.53

4.66 -18.01 -20.74
-11.66 2.73

j11.66 ~-7:20 ~-7.88
~-4.66 .68

10.06 -9.67 -10.59
-6.26 .92

3.94 -18.73 -23.93

-12.38 5.20

4,22 -18.30  =-24,00
~12.10 5.70 4
'

FIG. E.1 DATA FROM RUN 1401
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FIG.F. 2

TRUE SCALE ADJUSTED SHOCK SHAPE
RUN 140i



