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ABSTRACT

The minmax criterion for optimal decisions is spplied to
a special class of infinite games. The existence of a solution is
established, and aome optimal strategles are described completely.
The games considered include the so-called "silent duels",
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1. Introduction.

A zero~sum, two-pei'son game can be defined formally by means
of.a triplet (X, Y, ¥) where X and Y are two closed convex sets
and ¥ 1is a real=valued function whose domain is X X Y, The elements
xeX (or ¥eY) are called pure strategiea, and ¥ is called the
pay-eoff or utility function.

The game is said to have a solution if there exist two
positive measures F*(§) and G*(;) (defined on X and Y respectively
and normalized so that each has total measure 1), such that

jwi.i)dwi) > v, all ¥y e¥,

J‘F(i,;)dG*(i) < v, all x ¢ X,

for some number v, The measures F and G* are called optimal
8trategies, and v is called the value of the game.

Each of the games that we consider below can be described
intuitively as a contest in which each player is trying to achieve a
certain fixed objective, but is allowed to try it only a certain
number of times. If at time ¢t contestant 1 attempts to achieve his
goal, he may succeed, or he may fail. (The probability of success is
given by a function P(t) and the probability of failure by 1 = P(t).)
If he succeeds, he wins one unit from his opponent, and the contest is
over, If he fails, then the contest continues but the other player is
not informed about the unsuccessful attempt. Any attempt made by the
other contestant is handled in a similar way, but the probability of
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success is given by a function Q(t) which need not be the same as
P(t)e In the probléms that we consider the pay~cff function corresponds
| to the expected gain for the first contestant. He is allowed n
attempts, and his opponent is allowed m attempts.

A special exémple consists of a combat between two enemy
airplanes. The number of attempts correspends to the amount of
ammnition that they carry, while the functions P and Q correspond
to the accuracy of the firing machinery. In this example it is also
assumed that a pilot is not aware of the number of times that his
eneny has fired and missed, He knows, however, how much ammunition can
be carried by each plane, and he also knows the form of the functions
P and Q. Then the function ¥ represents the probability of
survival.

The type of problem just described is often called a silent
duel. A special example has been considered by L. Shapley [1}, who took
P(t) =q(t) = ¢ and allowed cne attempt for one player and two attempts
‘for the other. The pay-off function is

x + [1 = x] {71*'[1"?1](‘72)} 05X<Y1<Y2.<.1
¥(x,¥) = -y,+[1-y1]{ x + [1 =x] (-yz)] Oy, <x<y,51
Tty w1 -5) }  osy <y, <xst

Here x represents the time of the attempt by contestant I, and
Vs Vo represent the attempts by contestant II.

A slightly different problem (called a noisy duel) has been
considered by D. Blackwell and M.A. Girshick [2]. Despite the similarity
of the problems, it appears that the recursive method that they used

cannot be applied to the problems that we consider. Finally, it may be
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pointed out that the games discussed below are related to a large class
of action games f.hat have been considered by M. Shiffman [3] and

Se Karlin [4]. Their problems include a large class of utility functions
but allow only one actien by each player.

2. Definitions of X, Y, ¥.

1) Let P(t) and Q(t) be two real=valued functions defined on
the interval 0 <t < 1. We assume that P and Q are continuously
differentiable, and that they satisfy the following conditions:

P(0) = Q(0) =0
P(1) = Q(1) =1
P'(t) >0, 0<t<i
Qt(v) >0, 0<t<1,
2) Iet
X={§£.En|0§x1§x2§“‘$_xn51} ’
and
Y={§5En|05y15y25"'5ym51} .

In these definiticns, o and o denote the n and m—dimensional

Euclidean spaces,

3) let XeX and y €Y be two vectors such that each component
of x is different from each component of 'y'. A new vector z ¢ En-l-m

is defined by rearranging the numbers Xy9 coe 9 X9 Y9 ees 9 ¥y in
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mcreaéing order. Thén, for each ccmponent zZ, of E, two functicns

| r(zk) and s(zk) are defined as follows

P(x, ) if 2, =x,
r(zk) = _
-Q(yj) if 2 =y,
and
P(xi) if 2, =X
S(Zk) =
Q(yj) if 2, = vy .

We may point out that this definition can be applied to a single vector
X (or ¥), provided that we know that it is associated with the space
X (or Y). In this case we shall say that the other vector has no

components,

4) A function ¥(Z) 4is defined as follows: if 2z has only ome
camponent, then

?(z) = r(z1) .

While if ; = (21, 52’ soe 9 zk)’ then

¥(z) =r(z1) +[1 = s(zt)] '@'(22, vee 3 zk) .

5) The pay-off function ¥(X,y) is defined as follows: if X
and ¥ satisfy the conditions of definition 3), then 2 and ¥(3)

are constructed as indicated, and ¥(X,y) 1s defined by

¥(x,y) E9(z)
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On the other hand, if some component of X equals some component of

Ys ¥(X,y) 1is defined by

¥(x,y) = 11m% {‘Y(x T e, y=e) t¥x =€ 5+ 5)} .
£+0 '

In this definition x + € 1is the vecter vhose 1th component is the

th

minimam of + £ and 1; similarly, the i~ component of x, - € is

X3

the maximm of x

i"& and Q.

3. Description of the Optimal Stratezies.
It will be shown below that it is always possible to find
optimal strategles of the form

¥ n *
F()=IIF()0
BERFR R A

* - B. *
G (Y) = rT Gj (Yj) .
i=t
Farthermore, all these measures are continuous except at x = 1 or
¥, = 1o The support of each measure F:(xi) is a non~degenerate
interval [ai, ai-l-‘l]’ and in the interior of this interval F. is made

i
up of a finite nmumber of absolutely continuous measureswith densities

Q' (x,)
hiyy 3 — s
Q (xi) P(xi)

*
Fi'(xi) = j = 1’2, ese 9 ri .
A more detalled description of the optimal strategies will be given
in Theorem 1 and in Theorem 4. The location of discontimuities in the

densities is established, and some simple equationsbetween h

g and

hi 341 are established,



4o Some Properties of ¥(x,¥).

The definition of ‘I’ shows that this function is continuous
as long as the relative order of the components of x and ; is not
changed. Furthermore, it is easy to verify that this function is also
skew-symmetric in the ‘two vector variables x and ; if the roles of
Xy 79 X and Y are completely interchanged. Other simple properties
of ¥ are given by the following lemmas.

L_B_ml: Let ; = (21’ soe 3 zt, 5t+1’ cee 9 zk)o Then -

W(;) = ‘F(z1, ses 3 Zt) + g [1 - a(zi)] W(zt'l'", sees 9 zk) ™

Intuitively, the lemma asserts that the total probability of success
equals the probability of success in the first + attempts, plus the
probability that the contest has not yet ended,multiplied by the
probability of success in the remaining k = t attempts. The formal
proef, involving a simple induction, is amitted.

M: let .2' = (31, see 9 Zt_.l, zt’ zt+1’ e 9 zk). Then

‘l"(;) =W(21, ess 9 zt"i’ zt+1’ o0e 3 zk)

+ ﬁ [1 - s(zi)) { r(zt) - S(zt) W(zt"’"l, see 9 zk)} .

Proof: By Lemma 1,

‘I’(;) =W(Z1g ese 3 zt"1) +ﬁ [1 - 5(21)] 1I’(zt” see 9 zk) ’



and

W(zt, zt""" ese 9 zk) = r(zt) + [1 - B(Zt)] v(zt_‘q’ cse 9 Zk)o

These two equations can be cbmbined, collecting at the same time all
the terms that involve zt. Then

W(;) =‘F(Z1, eee 9 zt_1) + ﬁ [1 - 3(31)] w(zt_l_." cos zk)

+ ﬁ [1 - s(s;)] { r(zy) = 8(z,) ¥z 49 oee s Zk)} .

The first two terms can be combined by Lemma 1 to give the desired
result. ‘

Iemmg 3: For any fixed ¥, ¥(X,y) is a monotone increasing
function of each. component, xq of x as long as this component ranges
over an open interval bounded by two successive components of J'r'.
Similarly if x 4s fixed, V¥(X,y) is a monotone decreasing function
of each component yj of ; as long as yj varies between two

Xeo

consecutive components of

Proof: If X has one component and ; has none, then

¥(x,y) = P(x).
This function is monotone i reasing because P' > 0, Similarly, if
y has one component and X has none, then

‘F(;’;) = =Q(y).
This function is monotone decreasing because Q' > O, We can proceed

by induction and assume that the lemma is valid when the total number
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of components in x and y is k = 1, Finally,

¥(2y5 0o s 3, ) =r(zy) +[1 - 8(21)] ¥(250 eve 5 2, )e
In this equation the factor 1 = s(z.l) is non-negative and vanishes
only when 3, =1; furthermore, !’(32, cos 9 zk) depends only on
'k = 1 components so that the lemma is valid when applied to the last
k-1 components. Thus we only have to show that the result is valid

when it is applied to the component Zqe If z4 is a component of x

the last equation can be written in the form

qf(Z.l’ ess 9 Zk) = P(x.l) + [1 - P(x1)] W(zzn ses zk)

= P(I.l) [1 _?(22’ sce 9 zk)] +q(32’ ses 9 zk)o

But if 4 is a component of 'y', then

‘F(z1, ees 3 zk) =~ Q(y1) + [1- Q(yt)] w(z2’ sees zk)
= - Q(y.l) [1 +W(32’ ses 3 zk)] + ‘F(zz. ese 9 zk)o

- In the first case we have a monotone increasing function of . Xy and
in the second case a monotone decreasing function of ¥qe (It is easy
to verify that |¥(x,y)] < 1 always.) Finally, we may point out that
the first function is strictly increasing unleass \F(zz. ese zk) =1.
This requires that ¥ be missing and that Xy EXg S ve0 S = 1o
5. Strategies of the Claag Q.

The expected value of ¥(X,y) with respect to a measure
F(x) is a function R(y) defined by.

R(y) = gw(E,i) ar(x) .
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The function R(y) depends on F(x), and its explicit form may be
difficult to find; However, it can be computed explicitly for a special
class of measures which includes a particular pair of optimal strategies.
These optimal strategies will be exhibited explicitly later.

Any positive measure, with total measure 1, is called a
strategy. A strategy F(Xx) is sald to belong to the class O if it
satisfies the following conditiona:

1) F 4is separable, i.e.s
- n
Fx) =T [ F(x)s
1 1'i
i=i
vwhere each Fi is a positive measure with total measure 1.

2) The support of the measure F, is a non~degenerate interval

[ai, a:l+1h also a; >0 and a ,, =1.

3) Each measure F; (xi) is continuous, except for Fn(xn);

this may be discontinuous only at x =1

Notation: The expected value of P(t), taken with respect

to Fi(t)’ is denoted by Di' Thus

8+
D, = P(t) aF (t) ’ 121, ees 9 Do
i i
a
1
A vector D (analogous to x) and a function @ (analogous to ¥)
are defined as follows:
B = (Dl’ ene 9 Dn)

() =D

ﬂ(Dk’Dk"q, sse 9 Dn) = Dk + [1 - Dk] ¢(Dk+1’ soe Dn).
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lemng 4: If F(x) belongs to the class O, then
Sw(:?) aF(x) = (D) .
In this lemma it is assumed that ¥y has no components.

Progfr If n =1, the lemma reduces to the definition of Dye
The rest of the proof is by induction, assuming that the result is valid
for all vectors x and strategies F(x) of dimension n ~ 1. Then,

ir ;= (x1, see 9 xn)’

S%‘:) aFf(x) = f{P(xl) +[1 = P(x))] ¥xys oee s xn)} aF(x)
= D1 + [1 Lad D1] f?(ng ses 3 xn)sz(xz),...,an(xn)
= D.‘ + [1 - D.l] ﬂ(D29 sse y Dn)
= ﬂ(B) .

Jemma 53 let F(x) be a strategy in the class O, and let
y= (¥4» ess » ¥,) be any vector in Y, with the restriction that y_

lies in the open interval (a, , )e Then
Be? B4

R(y1. sse 9 ym_-l! ym) - R(y-‘! eoe 9 ym_«l)

oo
= 11'_'!' (1 -] :Tj [1 - atry)] (G, -

&+
. 2f P(x,) dF (x, ) + [1 - D J[1 + p(EN o

I

In this equation 'ﬁk denotes the vector whose components are the last
n - k components of D; the function @(DX) is defined like #(D).
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Proof: Let y be the given vector, and let X be any vector
in the support of the measure F(x). Iet 2z be defined in the usual

| way 80 that Lemma 2 can be applied, selecting for z, the component

ymo Then, if Bk < xk < ym

W((X1, see 3 xn),(y1, ese 9 Ym)) ""Y((X.‘, ses 9 xn)’(yiv eoe ym_1))

X v 1
= I;]; [1 - P(xi)] j:] [1 - Q(yj)][-Q(ym)][t + W(x_k_ﬂ, ess o xn)]

= H [1 - P(x,)] T:} [1 - ayy)] [=a@,)]"
i=1 3=t

hd [1 - P(Xk)] {l +W(Xk+1) see 9 xn)} .
But if 3, < %, < 8

W((x-t_, soe 3 Xn)’(yls cee 9 Ym)) -W((x‘l’ sne 9 xn)’(y" ces 9 ym_t))

k= e |
= Ij [1 - P(xi)] g [1 - Q(YJ)] ['Q(Ym)] [1 + ‘F(xk’ see 9 xn)]

k= -
= _]j [1 - P(x,)] Tj [1 - Q)] =G, »

.{ 1+ P(x) + [1=Plx)]) ¥x 49 cee s xn)}

oo T - 001 161 -
i=1 3=

. {2P(xk) + =Pl )] [1+¥(x 0 eee s xn3]} .
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In either case, the right hand side is continuous and can be integrated

with respect to F(x). Then,

R(y.‘, ses 9 ym) o R(y." see 9 ym_l)

H’h-n]Hh-w N QG .

1=1
m L d
{ Lk (1~ Px)] dFk(xk)} [1 + #(55)]

H {1 -p,) H [1 - a6y)) [=0,)]
i=1

St
. { j { 2p(x ) + [1 = P(x )11 + 'ﬁ('ﬁk)]} dFk("k)}
Y ' -

T"]’ [1-0,] ﬁ (1~ e ll=al,)?
i=1

%+ |
*y 2 J P(x, ) 4B (x.) + [1 = D[1 + #(F) p .
y

n

Iemma 6: Let F(X) be in the class O, Then
Sw&.}') dF(x)

is a continucus function of ¥, provided that Y 1.

Proof: The result follows from the fact that ¥ is a function
with simple discontinuities while F is a continuous measure, except at
1e It is also possible to verify the result by means of Lemma 5; indeed,
a simple calculation shows that the right hand side of the last equation

varies continuously as T increages from a =-¢ to 8 + €o



6. Cerresponding Strategies.
let PF(x) and G(y) be two strategies contained in the
class O, with

n
F(x) = ﬁ' Fy (xg)s ay) =T Gj(yj).

We shall say that F and G form a pair of corresponding strategies
if both of the following conditions hold:

1) If y 4s in the support of G(y) and ¥, # 1s then

Sw(i,}') dF(x) E y (1)
2) If x is in the support of F(x) and x #1, then
SW(E,S") aG(y) v (2)

The numbers y and Vv are of course independert of y and X,
respectively,

In the following sections we shall show that it ié alwvays
possible to find two corresponding strategies which are also optimal
for the game. In order to determine the conditions under which

equation (1) will hold, we adopt the following standard notation:

Notgtion: The support of Fi(xi) is denoted by [ai, ai+1],
and the support of Gj(yj) is denoted by [bj’ bj+1]‘ The numbers
b1, cee 3 bm are rearranged into subsets, one subset for each of the

intervals [ai, ai+1]. The resulting array can be written in the form



€ oo £ b

a4 £byy < by, Ir,

8y S byy S by, < 000 <b2r2 <a,

*® & @& 6 & 5 ¢ & B & O & & 5 o

a €b

n - n1<b

n2<".<bnr<a =1,

0 n+1

When y ranges over the support of G(¥), its last component

T,

n Tapges over the interval [bnr s 1], and any other ccmponent ranges

n

over an interval bounded by two adjacent b's; then it is possible to

identify each component by means of the interval over which it ranges:

with this notation y Sy, and y denotes the component of ¥
m nr ik

that ranges over the interval [b, , b,, +1]' Whenever two adjacent btls

are separated by one of the a's, we may write

a, =b

1 io0*

In this case Yy and Yi0 denote the game component of ¥y

b T
In the following theorem, a denotes the discrete mass
that Fn(xn) may have at x = 1. The number D, is defined as on

page 9.

Theorem }: Iet F and G be fixed, and let y be my

vector in the support of G(y) with ¥, # 1+ Then
J\F(i,}') df(x) E y

if and only if all the following conditions are sstisfied:

1) In the interval bij <x, < bi.‘l"“ the measure Fi(xi)
is absolutely continucus, and
' t
Q (x;) i
(xy) Plx,)

F(xy) = hy, e
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2) 1+ 2a= D, + Zhnrn
hij-‘] = [1 - Q(bi )] hid’ ' j = 1’.‘0!1'1; i= 1,000’!1

hiri--[ D] i+10 121’000311"10

Proof: The proof is by induction. In the first step we
determine necessary and sufficient conditions for R(y) to be
independent of the last component of ; when this component ranges
over the interval (b ., 1)s In order to simplify the notation, a

n
function K (y“, cee s Vo _,1) i3 defined by

i
Kapey = 1T 110 T<‘|'y [1 - aly, )1,
st ‘nr
where the second product is to be taken over all components of ; that

precede Yor ° Then, by Lemma 5
n

R(;) = R(Y“’ see » Y _1) '
: n
1
- Kn:rn Q(ym_n){ 2 5; P(xn) an(xn) +1 = D}
nr

It is clear that R(y) is independent of y op Lf and only if the
n
coefficient of K n,r_ is a constant; this constant is dencted by

th. . Thus R(y) is independent of ¥, if and only if
n

A0, {E P(x)dF(x)+1-D}§2hm.. (3)
n
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Since ' F(x) belongs to the Class O, F, is the sum of a discrete mass
a at 1 and a continuous measure F. Interms of F this equation

can be written in the form

2hnrn ] .
G =2 P(x ) dF (x ) + 22 P(1) +1-D_, (3a)
nrn ynrn

and it is possible to integrate by parts since P! is continuous; then

2h
nr
Bez2p(1) F(1) -2P(y ) F(y._ ) +2a+1=D
Qz;;rnj ( (ynrn (yhrn @ n
1 %*
-2 F (xn) P'(x ) dx .
ym.n

In this equation q(ym_n) and P(ynrn) are bounded below by Q(bm.n)

and P(bo ). Since all other terms are sbsolutely contimuous, F.
n

mist be absolutely continuous too. Then, in equation (3a) we can write
dF (x ) = F(x )
nXp! = Flix ) dx, .

A simple differentiation shows that

-2p ) ) = h B
(ym'n (ynrn QZ(y )

as was asserted in the theorem. Now that the form of Fn(xn) is

known, equation (3) becomes
Ao
n

Qy... ) —Cv——-y-Zh +2a+1=D E2n .
nrn Qnrn nrn n m'n



It is clear that this equation is satisfied if and only if

2hnrn=20+1 -D (4)

as was asserted in Theorem 1. Finally, we notice that if we substitute
the result of equation (3) into the expression for R(y) we obtain

R(y) = R(y11’ see 9 ynrn"’i) - 2Kn’rn hnrn .

For convenience, the previous results are summarized as follows:

R(y) is independent of y . if and only if the following conditions
n
are all satisfied:

a+1

(a) Q(ym,){zj * P(xn) an(xn)”‘Dn =2n . .
n Yor
n

n

(b) Ft(x ) =h 2Q'(anr) ’ b <x <1,
non Ta Q"(x ) Plx) mr, B

(e) 2hnrn=2a+1-Dn.

,I'n nrn

(@) R =R(yyqs =oo » ann-i) -2 . h._ .
These conditions are not independent since (b) and (c) together
determine (a) and (d).
The proof of Theorem 1 continues by induction: a set of
functions Ki,j(yﬂ’ cee 3 yu) and a set of constants Yi,j are

defined as follows:



Ky,q = H [t=-p) TT [1=all.

831. : y8ﬁ< Y1
1(ﬁ,rn = hnrn .
Yi,9 SPigt Yignm J=0seesry =13 1 =nm-lyeees 1o
Yi-ri =[1 -1, Yitg,n ¥ hi’ri 1= 1yecen~ts

In the definition of the second product is to be taken over all

=W
componente of y that precede Yige The definition of Y 1,1

is applied only when the corresponding hi 3

Iet us assume now that R(;) has been made independent of all

has been defined.

components of ; that lie beyond ¥y 3 and that the function so obtained

is given by
RG) = BOqps eee 0 73g) = By g Vim0 JFTy

RG) = ROyps eoe 2 735 ) = Hyyg Vi 3 3=y

We shall show that we can continue one step further if and only if
the analogues of conditions (a), (b), (c),(d) hold for the indices i

and je. Two cases are considered, depending on the value of j.

Case 1: #:L.- By assumption

R(y) = R(y11’ vee 9 yij) - 2Ki,j+1 Yi,j-{-‘l ¢

Applying Lemma 5 to the first term on the right,



RG) = R(y11.»... .’ yij"i) - 2Ki’j+1 Xi,j"“

8341

- Ki’j Q(yij) 2 gy

Furthermore, by definition,

P(x;) aF, (x,) + [1 = p,](1+ p(F1)]
i

The last two equations can be combined, collecting the terms that

depend on yij' Then,

R(;) = R(y‘n, ses 9 yij"i) = ZK-_[’J Yi,j+1

8341 "
P(x,) dF, (x,) + [1=- Di]“ + B(D™)]

i3

-2 ¥y,

It is clesr that R(y) 1s also independent of yyj 1if and only if

the coefficient of Ki j in the last term is a constanty this constant
4

may be denoted by 2h:|. j so that

%141 " _

(a) Q) 2 P(xy )y (x;) + [1-D)[148(F))-2 Y 5,4 b & 20,
y:l;] |

The argument that was given when we were dealing with the component _

can be uged to show that the last equation is satisfied only if

J,
Ty

Q! (xi)

b <x, <5 .
Q2(xi) P(xi) 1] i ij+1

(b) Filx,) = by g
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With this value of F,, the integral given in (a) can be evaluated

explicitly over the interval (bij" ’o‘,“J +1);

| 2h ' 2h %141
25 = Ql7y4) E(;j} - Q—@-ﬁp +2 - P(x;) dF, (x,)

) e -2 Y

then

Thus, equation (a) is satisfied if and only if (b) holds and also

2h ' a
- 1+1
(e) mﬁty = 2 S P(xi) dFi(x:t)

by 541

+t =] 1+pEN =2, ;-

Finally, when equation (a) is combined with the equation that precedes
it, we obtain
R(Y) = R(y11’ ses 9 yij-i) - 2K1,j[ Xi,j"" +h13]

or

(d) R(y) = R(y.n, ess 9 yij_1) - ZKin Yi’j

by definition of Y 1,3 The induction process can then be continued.
We point out that in this case conditions (a) and (d) again are implied
by (b) and (e).

Case 2, j = Ty and 1 < n. (We recall that in the preaent notation

Yy r, and ¥y41 .0 denote the same component of y.) In this case
the induction hypothesis is given by condition (d), with indices

i+1, 1; explicitly, R(;) is independent of all the components of



¥ that 1lie beyond y,, only if
/ i

R(F) = R(yyqs ooe s yi“.i) ~ %y Vi, -

By means of Iemma 5, this equation can be written in the form
RG) = Rlyppe oo Tanot) = Fyyg g Vingg
_ a
_ i+1 ot
K e Q0 ) 2 P(x,) aF, (x, }+[1-p, 1[14(D)] ¢ .
i i ¥ir
. i -
Furthernore,

Ki"‘"." = [1 - Di] [1 - Q(yiri)] Ki,ri .

The last two equations can be combined, collecting the terms that

depend on Vip o Then
i

RG) = R(y", ese 9 y1r1_1) - 2K13r1[1 - Dj_] Yi+1,1
“ ai‘H -
“E Q(yiri) 2 . P(x,) aF, (x,) + [1-D,1[1 fﬂ(D )
i

-2 Yw .t]}

It is clear that the last term is independent of Yip if and only if
4 _

the cosefficient of Ki.r is a constant; this constant is denoted by
i
2h, . Once b is defined, the usual steps show that R(y) is
ry :!.r:L
independent of Vip if and only if the following conditions are all
i
satisfied:

*1+1
(a) Q(yh.i) 2 Xy P(x,) aF, (x,) + [1-1)1][1+¢(‘151)

iry
- ZY1+1 ,1]} = 2“11-1
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Q! ("1)
S ———
T3 Q (x;) P(x,)

(b) Fi(xi) = h:l ’ b:l.r <x; <ay

r

(e)
ey

y =01 =00 [1+4E) =27, ]

and

RG) = R(y“, soe 9 Yiri-1) - 2Kj_,ri { [1-Di] Yi"“‘ ’1 + hil‘i}

or

{a) RG) = R(y": ses 9 yiri_.l) - 2Ki’ri\(1"r-i ’

by definition of }(i,r o These equations are not independent;
indeed, (b) and (e¢) imply (a) and (d). The induction argument is now
complete,

In order to complete the proof of Theorem | it is sufficient
to show that the second condition that is given in the theorem is
equivalent to the set of conditions that have been denoted by (¢) above.
This equivalence is established as follows:

1) For the indices n, r s condition (c) coincides with the
equation

1+2Q=Dn+2hnrno

2) For the indices 1, j (with J # r;) the equation

can be obtained by subtracting the equation (c) (with indices i, j+1)
from the corresponding equation with indices i, j. Indeed, (c) may
be written in the form



-23 =

7&-,:2"' 2 i P(x,) aF, (x,) + [1-D,1[1+ #(5*)] Y.
= _ dF, (x + {]=D + §(D -2
CICH ) oy 10 = S A} 1 1,3#1

or

-(-1-1—-, -TJ-L-)- -rid-—l)- +2 P(x,) @F, (x,)
Wbsgag!  Qbygyy)  Qlbyyyy S ry) ary Gy

ij+2

+ 01 =001+ 86" =2 Y, 4,

Algo (for the indices i, j+ 1), (¢c) has the form

2h,, . S i+1
- mﬂ:b +2 P(x,) aF, (x;) + [1-D,1[1+8(5*)]-2 1,142

1j+2
Subtracting,
;j ij-f-!
Q bij"" Q bij+1 ’j+2 -2 )/iij*"
2h
+
=3 -y e
ijH
Simplifying,
h

gy = 11 = Alyg)] Bygyy

3) The equation

=[1=~-D

h 3 By o

ir,

can be derived similarly. First, equation (¢) (with indices i+1,0)
is written in the form
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2h  2h 2h %142
_ +1,0 +1,0 _ _itls0
D aﬁ-i‘-; + aé‘l"" a%""—y +2 P(xi+1 )dFi+1 (xi.*.‘)
141 i+ i+1,1 bj_+1 o1
+[1 -0, 001+ gt - 2 141,1
2h .
= a%iﬁ_ + 2+ (1 =D 10+ 6ED -2 ¥,
2h

_3+l.0
=-W+1_+¢(Bi)“2 Xi+1’1 N

Next, equation (c) (with indices i, ri) is written in the form

2hy ..
- =i
m-ﬂ -Dil [1 +#(D") -2 i+1,1] .

Finally, the last two equations are combined, and the result follows,
immediately.

Conversely, it is clear that each of these steps can be
reversed. Therefore, the two sets of conditions are completely
- equivalent. |

Some additional remarks. It may happen that one of the b?s coincides
with one of the a's so that there is no need to introduce the constant
hi +1,0° In this case it iz easy to show that

By, = [0 = DyJ01 = Qay )1 By g0
= T
whenever 85 11 bi +1,1° hls equation is derived like the equation
h"i = [1 - Di}
but in the firast step condition (¢) is written for the indices 1 + 1, 1

h1+1 1] '

instead of 1 + 1, o. It is important to notice that h:!. r is a
i
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continuous function of the parameter b1 +1,1° Indeed, if bi +1,1 >

81412

Byr, = (1 =01 h, o

=1 - D, 111 = Q(by 4400 Bivt,1

As bi +1,1 adLIPEE this expression approaches the value

h

4, = 11 = p) [1- Q(ai_HH by

i
that was derived Independently when

1,1
141,01 = 241

Theorem 2: let F(x) and G(y) be a pair of corresponding
strategies, Then

S‘F(;&) ar(x) > v, all ye¥Y
and

Sw(i.y') aG(y) < v, all x € X,

In this theorem n and m are fixed,

Proof:s It is sufficient to show that the first inequality
holds, The validity of the second one will follow from the fact that
¥ 1is skew-gymmetric if the roles of Xs ¥» X and Y are interchanged.
Farthermore, it is necessary to consider only those vectors ; that
have no components smaller than a,. (a‘l denotes as usual the first
point in the support of I"1 (xi).) Indeed, it follows from Lemma 3
that for every X in the support of F(x), ¥(xX,y) 1= a monotone
decreasing function of any component of ¥ that is contained in the
interval [0, a1]. Hence

jw(?:,;) dF(x)



is also monotone decreasing in this intervale Finally, if F(x)
has a discrete mass a at 1, all vectors ; with 1 can be
neglected; this follows fram the fact that

W((XI’ see ;xn_1’1)’_(y1s see 9 ym_101)) 2
Z w(x1’ see 9 Xn_1s1),(y1’ ese 9 ym_ipl - C)).

Intuitively, the pay=—off function ¥ favors the contestant who
anticipates hia opponent.

In order to prove the theorem, we shall consider each component
of ;7 separately, starting with A We ghall show that we cannot
increase R(y) if we replace ¥ by a component y* ¢ [bnr »1)e The
notation of Theorem 1 iz also used below, .

If y, 1is already contained in the interval [bm,n,f) we
choose y; i A But if Y is contained in some other interval,

say [bij’bij-ﬂl’ we apply lemma 5 to R(¥)e Then,

R(;) = R(y1, vee 3 Ym_“) -g [1 - DS] t‘!‘ [1 - Q(yt)] *
#1441 4
*aly,) 4 2 P(xi) aF, (x,) + [1 - ni]U + g(b*)]
y _
m

Furthermore, since F and G are a pair of corresponding strategies,
F satisfies all the conditions derived in Theorem 1; in particular,
if § <r,;, condition (a) in Theorem 1 (with indices i, J) implies that

P+
Ay) 2J P(x;) aF, (x,) + [1 = p,][1 + s - 2\(1 3+1} = 2n,
y ?



for all y € [bij, byj4q]e Tms, by substitution,

R(y) = R(Y1O vee 9 ym_"

'H' (1 -p.] T'?' [1 - aly)] {2“1: +2 ¥4 40 Q(ym)} .

Similarly, if j=1r

R(;) = R(y,, PR ’ ym.1)

H’ (1 -3.) H (1 -, ) {21111,1 + 2101 ¥, 4 4 QG )}

g=1

In either case, R(y) is a monotone decreasing function of Y,s and it
achieves its minimwm value when Yn is at the right end point of the
interval. But this end point is also in the next interval, and the
argument can be repeated., In this manner we deduce that R(Y) can
only decrease if we replace Y by bnrn; we write y; = bm'n-; the

remaining components are kept fixed. Finally, we notice that condition
(d) in Theorem 1 is applicable to Y. Thus

R(y) z R(y‘l’ ses 9 ym_‘ij y;) = R(719 s2e ) Ym_1) - Kn’rnr n’rn .
The proof continues by induction. We assume that there exists a vector

(yl’ tee y ’ q+1’ see 3 y*) €Y with the following properties:

1) The first q components of this vector coincide with the

first q componsnts of ;.

2) The last m - q components coincide with the last m - q components
of some vector in the support of G(y).

‘ 3) RG) 3R(Y15 see 3 7 ’ Yqﬂ $ sse 9 Y*)-
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Then, in order to prove Theorem 2, it is sufficient to show that we
can contimue at least one more step, since R(y?l*, cee 9 y;) equals y
(by Theorem 1).

For definiteness, let [by; i byy,,] denote the interval
that contains y;_l_.'. Then, condition (d) in Theorem 1 can be applied
to all the starred components, and

R-(Yp see 3 ¥ Y;H: coe Y;)

= R(y1’ sees 9 J'q) - 2Kk,1+1 rk,l“'t (5)

At this point we must consider three distinct cases:
Case 1: Y4 € [bkl’ bk1+1]’ In this case we take y; = g

Case 2: yq < bkl' In this case we repeat the argument that was given
for y : Lemma 5 is applied to equation (5), and the result is
simplified by means of the appropriate condition (a) from Theorem 1;
if y € (v, 3* Py +1] the term involving y  will be of the form

j:j' (1-p,] ﬁ' (19, )] {_ +-2Q(yq){\fi,j+,-ﬁ [1-D¢]Xk’1ﬂ]}

The definition of the Y 's shows that this is a monotone decreasing

function of yg. Hence, we may t ake y:l" = bkl'

Case 3: vy q > bkl +1° In this case yq must be contained in the
interval [bkl*l sby 14015 becanse ¥ < y* 4+ and ¥* q+1 € {bk1+1 By g0l e
Since the interval that contains y(_11 is known, lemma 5 can be applied

to equation (5), and the result can be simplified by means of the
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appropriate conditi_on' (a) from Thecrem 1. Then

R(y1, ces § yq, Y;+19 see y;)

= R(y1, cen 3 Yq.1) k
k= -
-2 lj [1-p] ij [1=Q(z, )] {_ Xk,lﬂ + hk1+1[1.Q(yq)]}

It may happen that the component Eq—'i is also contained in the interval

[bkl +1? Pirs ]. Then, the previous steps may be repeated,and then

R(y.l, eose 9 yq. y’q('+1g ses 9 y;)

= R(y.l) sae 3 Y .2) -2 ﬁ [1-98} ﬁ [1'Q(Yt)]°
- g= -

. { V14 ¥ B (100 ) {1+[1-Q(y_q)]}}

The process can be repeated for all the components of ; that lie in
the interval [bkl +? P +2]. It is clear that the result is a monotone
increasing function of these components, and the value of R(y) can
only decrease if all of them are replaced by bkl +1° In particular
we take yq* = b1 which is contained in the interval [bkl’ by _H]
and hence satisfies the induction hypothesis. However, the other
components that were in the interval [bkl 1 bkl +2] no longer agree
with the components of y. DBut they are now contained in the interval
[bkl, by ﬂ], and by the previous argument, we only decrease R(y) if
we replace all of them by bkl’ in particular we take y;_ = bkl;
the process can be continued until we obtain a vector of the form
(313 cse 3 Yp_1’ Y;: see 3’2{_10 y‘q*. see 9 Y;)
that satisfies the induction hypothesis. The proof of the Theorem is

now complete.



Corollary. .The equation
Yuc) ar) = &
is valid only when ¥y is in the support of G(¥).

This result follows fram the strict monotonlclty of the
functions that appear in the proof of Theorem 2.

Theorem 3: Suppose that F(X) and G(¥) are a pair of
corresponding strategies, and that at least one of them is continuous at 1.
Then y = v, and F(x) and G(y) are optimal for the game generated
by VY.

Proofs For definiteness we assume that G(y) 1s continuocus
at 1« Then, by definition of ¥,

SW(E’F) ar(x) = ¢

for all y in the support of G(y), provided that ¥, # 1; furthermere,

the vectors with T =! have Ge-measure 2Zero, and
5 Sw(i,ir') ar(x) aey) = 3 ¥ d6(y) = v, (6)
Similarly, by definition of W,
gw(i,;'r) dGy) = v
for all vectors x in the support of F(x); this result is valid
even if x = 1 because the left hand side is continuous. Then
ij&.}) aG(y) ar(x) = S; ar(x) = v. (7)

Equations (6) and (7) imply that ¥ = ¥, and this number is denoted
by Ve Then’ by Theorem 2’



‘ SW(E,?) aF(x) > v, all ye¥
and

S\f(i,;) aG(y) < v, all x € Xo

Hence, F(x) and G(y) are optimal.

Remark: It is well knowm that if F and G are optimal for a geme,
then

S Y(x,y) dF(x) = v
for all points ¥ in the support of G(y), provided that y is a point
of continuity of the integral. Furthermore, & similar result is valid
when F and G are interchanged. In particular, sy palir of optimal
strategies that belong to the class O must be a pair of corresponding
strategies; and it is easy to show that at least one of them mst be

continuous at 1. This remark may be taken as the converse of Theorem 3.

7. Existence of a Solution.

The problem of finding a solﬁt:lon for the given gaﬁe has
been reduced to the problem of finding two strategles F(x) and G(¥y)
that satisfy the hypothesis of Theorem 3. The new problem can be
simplified considersbly if F(x) and G(y) are described by meens of
the equations derived in Theorem 1.

We begin by reviewing the necessary notation, and at the
same time we introduce the notation that is needed in order to apply

Thecrem 1 to G(¥). The strategies F and G are of the form

- n -
‘F(x) = I_:_l' Fi(xi), 6ly) = j]j Gj(yj)



The support of the measure F, 1is denoted by [ai,ai +1]. and the

support of GJ is denoted by [bj’ bj+1]3 furthermore, 8 . = b .= 1,
and Fn(xn) and Gm(ym) may have discrete messes a and & at

x, =1 and y_=1. Each measure is normslized so that

j; 84+1 ‘S~ it
. aF, (x,) = 1, b de(yj) = 1. (8)

The constants Di and B 5 are defined by the equations

#4141 P54
D, = . P(xi) dFi(xi), EJ= b; Q.(yj)d(}j(yj).

In order to apply Theorem 1 to F, the numbers b1, eos 9 bm
are rearranged into subsets, one subset for each interval [ai, &y ﬂ] .
Thus

a.lgb <b,,<** <D

1" 12 1r1 2

€ o0 & b

85 £ byy < by ar, < 3

¢ ® » @ & & & & ¢ 2 S & & & ¢ > @

& Sbyy <P

€ e < Db <
n2 nr a

= ‘]'
e n+i

In order to arply Theorem 1 to G, the numbers 81y eee s By

are rearranged into subsets, one subset for each interval [b 3 b j +1] N
Thus

by Say<ay << *s, © b,

by S8y <y, <000 < %28, by

e & ¢ & & 8 ¢ 4 ¢ & & 0 " S PO

b £a

<8
m ml

<.00<a
m2 ms

<b =1,
- m+1
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In terms of this notation, the previous results may be
sumparized as follows: the given strategies F(x) amd G(y) are
optimal if and only if they satisfy all the following conditions:

1) For each i and j,

= 1t
T B v ECRRRE
For each j and 1,
- P! (%
Gj'(t.) = kji Pz(t) Q(t)’. | aﬁ <t < aji+‘l .
2) 1+2m---nn+2hm,la
1+ 2,83 Em + 2km3m
3) hij = [1 - Q(bij+1)} h13+1’ j = 0,...91‘{'1; i= 1’..0,!1
kji = [1 - P(aji‘{")] kji"‘" is= 0,...,8;“1} = Toeoos,
4) hirig [1 - Dil hi+1 ,0 i= 1,0.0,11"1
kjsj:‘ {1 - Ej] kj+19° J = 1,..0’3"10
5) a, =b, and ag =0,

Note: The equation a B = O 1is equivalent to the continuity hypothesis
of Theorem 3; the equation a; =b; is derived as follows: in order
to apply Theorem 1 to F it is necessary that a < b‘; in order to

apply it to G, b1 < 849 hence a8, = b1. It should be pointed out that
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if a solution is congtructed from this system of equations, it is
necessary to havé éach measure normslized in the usual way. Thus,
equation (8) should be added tc the system,

In order to show that the given system has a solution,it
is convenient to transform it first into an equivalent system in which
the number of unknowns and equations is smaller. The numbers
b1’ eos bm are regarded as a fixed set of parameters, and a dis-
continuous function f*(x) is defined as follows:

f*(x) = T'qu)_’ b <x<1
“(x) P(x) "

(x) = [1 = Qb)) ____q_(_)__

s b
(x) P(x) =1 n

etc. In general, as x moves to the left of b 3 the factor

(1 - Q(-bj )] is excluded. Formally,

@) = TT 01 = alb,))

b < <b
541 z(x) Px) " ¥

k+ °

If the numbers 819 eee 3 8 are also regarded as parameters, then

a discontinuous function g*(y) can be defined by

8*(Y)=T§T[1-P(a)]—-“z)'— ak<xgak+1.'
1=+ () o) T
The factors that appear above are precisely those that relate two con~-
secutive h's (or two consecutive k's) in condition (3). Thus a single
by (or kj) is sufficient to describe each F, (or GJ); then the given
condition can be elimim ted completely if condition (1) is replaced by



the simpler equations

Fi(t) = h, £*(t), a, <t <a, o)
G3(t) =k, g*(t), by €t <bsy e

The coefficients hir
i

new coefficients h1 and k ] by means of the following equations:

and kja can be related to the

hmn=hn

= Xy
hi-t=i+1[]j[1"Q(b )]]hi’ i=1,...,n-1
kja t—j+1 [Ij [1 P(&ti)] ] k ’ 331' e ,m-1o

The equations that appear in condition (4) can be expressed now in
terns of the new coefficients; the result can be simplified because the

same factors appear in both sides of the equation; then

=[1=-01h,,,

Finally, the normalizing equations and the definitions of Di and E 5

can be expressed in terms of f* and g*. The complete system of

equations is as follows:



Definitions of D, and E,:

. S )

1
D =h, Sa P(t) £*(t) dt + a

n

1
E =k, Sb‘ Q(t) g*(t) at +3

5".&1
D =h P(t) £*(t) dt, 1 = 15e0e9n-1
i 1,
1.
by
E, =k Q(t) g*(t) at, 3 = 1yeesym=l
J I e
J
Nopmalizing Equationg:

1-hJ\ £*(t) dt + a

=k g*(t) dat +
S, e

1+1
1= hi S\ f*(t) dt, i= 1,..0,!1"1
a
i
b;)+1
1= kj g g*(t) dt, j = 1,...,1“‘1
®3

Equations from Theorem 1 and Theorem 3:

1

1 +c=hn{ g P(t) £*(t) dt+2}
8'rl
1

1 *ﬁ =km{ Sb Q(t) g*(t) dt.+2}
m

(10)

(1)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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hi = [1 Di] hi+1 i = 19... 9n-1 (20)
kj = [1 - Ej] kj+1 j = 1’.oo’m-1 (21)
a, = b, (22)
a ﬁg =0 . (23)

Theorem 4: The given system of equations has a unique solution,
and this solution determines two strategies F(x) and G(E) that
are optimal for the geme with pay~-off V¥(X,y). Furthermore, these are
the only optimal strategies that belong to the class O,

In order to prove this theorem it is sufficlent to show that
there is a unique set of numbers a,/g, By ses 5 85 Byy ees s B,
b1, see 9 bm, k1, ess 3 km that satisfy the given system of equations.
The strategies F(x) and G(y) are determined by means of equation
(9), and then the other assertions of this theorem follow directly from
Theorem 1 and Theorem 3.

In order to show that the given system of equations has
a solubion, it will be necessary to prove a series of lemmas, As a
preliminary step, we develop a méthod for computing 8ys ees s 8 a8
functiong of b1, see 3 bm and ae Since the problem is symmetric, this
method will also serve to compute b1, vee 9 bm in terms of a1, cee 3 B e

The coefficient h is eliminated from equations (14)

and (18)s Then,

]
2(1 = a) = f [(1 +a) = (1 =a) P(t)] £%(zx) dt (24)
a
n



Also, equation (20) can be written in the form
D
- - ’ = Tpeoegnn. ™ 1.
by By By
The left hand side of this equation can be simplified by means of
-(12) and {16). Then,

814 | -

5 [1 = P(t)] £*(¢t) at = h—l- ’ 1= 100090~ 1 (25)
a, i+

Here h, ., 1is to be determined by equation (14), or (16). It is shown

below that these equations can be used to compute 8.2 B 49 e00 s 8qe

In the following lemmas it 1s assumed that the parameters b1, ees ’bm
satisfy the following restriction:

0<b, <D <ctt<p <1

1 2

lemmg 7: Iet b‘l’ ses » b be a fixed set of parameters,
and let a be any number such that 0 <a <1, Then

1=PH)] £*(t) dt = + w,
x-@‘j [ ( (
Progf: let M= fT 1-Q(bj)] > 0, Then, for all t,

f*(t) > M —-—.Q—&).—.
Q(t) P()

Furthermore, since P is a continuous function and P(0) = O, there
exists a number c¢ > 0 such that
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-p
Fle) =1

for all t < c. Then, if x < ¢,

e ¢ . Q _ i 1
jx [1 = P(t)] £%(t) at > L Mig&))-dt-n[m-m] .

The last expression clearly tends to + « as x - O, Since the
integral is finite over the interval [a,c], the lemma is valid for
all a,.

lemma §: lLet b1, ese o bm be a fixed set of parameters,
and let a be any number such that O < a < 1. Then, equation (24)
has a unique solution a  which is contained in the interval (0,1).
Farthermere, this solution a, is a monotone increasing function of

ay and it approaches 1 as a approaches 1.

Proofr If 0 < a <1, then

[(1 +a) = (1=a)P(t)] £%(x) 2 [1 = P(¢)] £*(t) 2 0
for all t. The right hand side of the equation

1

2(1 = q) = 5 [(1+a)={(1=a)P(t)] £(t) dt
a
n

is then a continuous, strictly decreasing function of 8 s and it
achieves the value zero when a = 1. Furthermore, as a, = 0, the
right hand side approaches + o (by lemma 7). Thus, for each a,
there exists‘ a unique solution. Farthermore, the quantity

[(1+a)=(1=a)P(t)] £%(¢)



- is a monotone increasing function of a, while 2(1 - a) is a
monotone decreasing function. Hence, as a increases, the solution
a ~mst also increase in order to preserve the equality. Finally,
when a = 1, the equation becomes

1
0=2 S\ £*(t) at.
a
n
The only solution is a = 1.

lemmg 9: Under the assumption of the previous lemma, it is
possible to find a unique set of numbers a4 < a, < eee £ a, that

satisfy equations (24) and (25).

Proofs The number a_ has already been determined in Lemma 8.
Then h can be computed directly from equation (14) since the
parameters b1, cee 9 bm and q are given. Then, lemma 7 implies
that the equation

a8
5 " - P6)) £x(8) at = 51-
a

g1

has a unique solution a

n=1 <g n® When a.n..1 is known, hn-‘l can be

computed from equation (16). The process can be continued until all
the numbera al, see 5 8, are determined.

lgmma 10: For each fixed a, the solution a, of equation
(24) is a monotone decreasing function of the parameters b1 9 ose bm.
(It is a strictly decreasing function of the parameters that lie to

the right of a n.) Furthermore, a approaches Oas b ~approaches 1,



Proof: The definition of Q(t) implies that [1 = Q(bj)]
is a decreasing function of bj‘ Then, for each t < bj’ £*(t) is
a monotone decreasing function of the parameter bj; and for t > bj’

£%(t) 1s independent of b,.

3 Thus, in the equation

1
2(1 =a) = S [{(1 +a)=(1=a)P(t)] £%(t) at
. an .

the integral decreases as the parameters b‘l s eoe o bm increase. Then
a_ must decrease in order to preserve the equality. Farthermore,

n
for t < bm’

pe(t) < [1 = )] 5L,
Q (t) P(t)
Then, as b -~ 1, f*(t) tends to zero uniformly over any interval
of the form [ec, bm] with ¢ > O, Therefore,

1
S [(1 +a)=(1=aqa)P(t)] £%(t) at
(]

also tends to zero., Hence, a, -+ Q,

Proof of Theorem 4: Let a and /3 be two fixed numbers
that satisfy the conditions

0< q<1, 0sp<t

LE) =
Then a set of numbers a1, ese a* b‘l’ see b; .is computed as

follows: first, a is computed from equation (24), without any

parameters b‘l’ eee 3 bm; similarly, b

n is computed from the equation



1
21 -p) =,5b [A+8)=(1=2) Q)] g«(t) at, (26)

m
and in this equation g* is defined without any parameters. Next,

the numbers a and b n  are compared, and the larger one is kept

as a parameter; the smaller one is completely neglected. For definite-
ness we may assume that a, is the larger one, and define a: =2.
The corresponding h* can be computed from equation (14). In the

next step a mmber a _, is computed from equation (25) (without
parameters), and a new b, 1s computed from equation (26) (with the
single parameter g¥). The two numbers a ., and b are compared,
and the larger one is kept as a parameter; the smaller one is completely
neglecteds For definiteness we may assume that a a1 is the larger

number, and define a:_1 =a

n-1® 1be process continues in this manner :

at each step a new ay and a new b 3 are computed, using as parameters
the previously starred a's and b!'s. The two numbers are compared,

and the larger one is kept as a parameter, dencted by ai" (or b*J“).

When ay (or b’j*) is found, the corresponding h¥ (or kg') is computed
by means of the appropriate normalizing equation. In this manner it is
possible to construct the numbers 8fs oo 9 8y b¥s ees » b and

the corresponding h;_", kj_]*. Furthermore, the construction shows that

these numbers satisfy the system of equations (10) through (23) except

for equation (22). |
In order to show that there exist valuea of « and A

for which equation (22) is also satisfied, one may begin by applying

the previous construction with

a=/.-3=0.
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If it happens that a"f = b*f, then all the equations are gatisfied.
Othervise, either a} < b} or b < af. For definiteness, it may be
agsumed that b*l < a*] « In this case the same construction is epplied
with a=0yand B8 =1 ~-¢, for small €. By taking &
sufficiently close to 1, bm can be made to approach 1; then a a < bm’
and b;-= bm‘ It follows from Lemma 10 that in the next step a = C.
A1)l the b*'s are computed without parameters, and they remain bounded
awvay from zeroj but a: is computed with the parameter b;', so that

it must appfoach zero. Since a¥ < af, it follows that in this case
a‘f < b*]; Thus the inequsl ity has bee‘n reversed. Finally, since all
the a:*{ and b}" are computed as limits of integration for the densities
f* and g¥, it is easy to see that a?l* and b?l" are continuous
functions of a and f3 . Since the direction of the inequalities

is reversed when P increases from 0 to 1, there must exist some
positive 8 with the property that the previous construction gives

: a'f = b1*. Thus, in this case, the game has a solution with o = 0,

R >0

If it happens that the given construction (with a = A= o)
leads to the inequality a'{' < b'}{ s then the system of equations has a
solution with A =0, a > O,

Unigueness. It is easy to see that the solution of the given
system of equations is unique. Indeed, suppose that there are two
solutions 81y see 5 By b1, ese 3 bn and a.?, eee 9 a;, b?f, ete 9 b;;
these solutions give rise to two péirs of optimal strategies F(x), G(¥)
and F*(x),G*(¥)s Then, since F and G* are optimal, it follows
that
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for all y in the support of G*(y) (with ¥, # 1) Then the
corollary to the Theorem 2 implies that the support of G*(y) mst

be contained in the support of G(y). Since the argument is symmetric,

the supports of G and G* must coincide; thus b*j" = bj’ for all j.

A similar argument shows that a; =8y, for all i,

8. Example.
It is very easy to compute the sclution for the completely
symmetric problem in which n=m and P(t)  Q(t). In this case,

by symmetry,
a =/8 = 0,

Then, by equation (24),

P(a, ) = P(b ) =-} ;
 and by equation (25)
P(an_k) = P(bn-k) = E{_‘j 'y k= 1’.oo’n"10

The optimal strateglies are of the form

(t) n-k 4(k+15 PB(t) *
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