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Abstract

Part I:

For coupled-inductor and integrated-magnetics design it is of paramount importance
to accurately model leakages. Air gap position has a dramatic effect on coupled-inductor
characteristics. Improved reluctance models that capture this effect are proposed.

For the most common coupled-inductor structures, i.e., UU and UI cores with wind-
ings on different legs, a simple model valid for any gap arrangement is proposed. The
model has a single leakage reluctance that is constant for a given core geometry and can
be determined from a single set of measurements.

A method to estimate this reluctance from core geometry is also suggested.

A new coupled-inductor structure that achieves quasi-zero current ripple without
need for turns ratio adjustment is introduced.

Closed-form design equations for coupled-inductors are given.

Part 2:

The concept of One-Cycle control has recently been proposed. The generality of
this control technique is demonstrated through description of its implementation for
different DC-DC switching converters. It is a nonlinear control technique with significant
advantages in terms of rejection of line perturbation, speed of response and insensitivity
to circuit parameters. Until now, no stability analysis was available and, under certain
conditions, instability was observed. In this paper a stability analysis of a One-Cycle
controlled Cuk converter (a fourth order system) is performed, which shows that stability
depends on the value of parasitic elements. A modification of the control to eliminate
steady-state output voltage error is proposed. Finally, a modification of the control

that ensures stability independently of the value of parasitic elements is suggested. All
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theoretical results are experimentally verified.
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Chapter 1

Introduction

Electrical power conversion is the process of transforming electrical power from a
given input form to a desired output form. The power source provides a certain voltage
or current waveform that the power converter transforms into a different voltage or
current waveform.

The main requirements on power converters are high efficiency (which ideally should
be 100% ), small weight and volume. In some sense, it could be said that power converters
should be as “invisible” as possible, both electrically (high efficiency) and physically
(small size and weight).

In order to achieve these goals, the preferred approach in recent years has been
switched-mode power conversion, in which semiconductor devices are used as switches.
A first advantage over conventional linear power converters is that semiconductor devices
operate in an (ideally) lossless way. Another advantage is that these converters can oper-
ate at frequencies much higher than the 60 Hz line frequency, with dramatic reductions
in reactive component sizes. Much smaller inductors, transformers and capacitors can
be used.

Advances in power semiconductor technology have led to higher and higher switching
frequencies in the quest for reduced size and weight. Eventually, magnetic components
turn out to be the bottle-neck, and in modern switching converters they can constitute
as much as 50% of the overall converter size and weight.

An approach to further reduce magnetic component size and weight is to further
increase the switching frequency, but eventually a point of diminished returns is reached,
because increased core losses at high frequency force the designer to reduce AC flux swing
in the magnetic components.

Another approach to magnetic component size reduction is to magnetically couple



together inductors and transformers in what are called coupled-inductor and integrated-
magnetics structures. The literature reports several applications of this approach to
DC-DC converters [14], [15], [16] and to AC-DC rectifiers [8]. The size and weight
reduction of coupled magnetic circuits is discussed in [5] pp. 27-29 and in [4].

Another advantage of coupled inductors is that if a certain zero ripple condition is
met, current ripple in one of the inductors can be eliminated. As a result, ripple filtering
requirements can be satisfied using smaller reactive components.

In order to meet this zero ripple condition, accurate models for the leakage in coupled-
inductor structures are needed. The goal of this work is to improve understanding
of coupled magnetic structures and leakages. The immediate objective is the analysis
and the design of coupled-inductor structures, and for this purpose improved leakage
models and methods to estimate leakages in these structures are presented, but the
gained understanding proves useful in the analysis of interesting magnetic structures like
the one presented in Appendix A.

In chapter 2, the different tools available for the analysis of magnetic circuits are
reviewed.

In chapter 3, the zero ripple condition is derived in different ways, in an effort to
improve understanding of the zero ripple phenomenon.

In chapter 4, it is shown that sensitivity of the zero ripple condition to errors in turns
ratio, in leakage estimation and other factors is decreased by increasing the total leakage
of the structure.

In chapter 5, it is shown that air gap position has a dramatic effect on coupling and
on effective inductances of the coupled-inductor structure. Reluctance models used in
the past were unable to model this behavior. A new reluctance model that captures
this effect is proposed. This model is very simple and it has a single leakage reluctance,
constant for a given core geometry. The success of the new model is attributed to the
fact that it is a physical model and it faithfully represents physical leakage fluxes in the
magnetic structure.

In chapter 6, a general procedure to find the physical model of a magnetic structure

starting from core geometry is given and applied to various examples of two-winding



structures.

In chapter 7, the zero ripple condition is generalized to multiple-winding structures.
In order to use these structures, reluctance models are needed. Therefore, the procedure
to find physical reluctance model presented in the previous chapter is applied to various
three-winding structures of practical interest.

In chapter 8, a new magnetic structure for coupled inductors is presented. This struc-
ture achieves quasi-zero current ripple without the need for turns ratio adjustement, is
easier to design and gives a one order of magnitude reduction of radiated noise. Reduc-
tion of radiated noise is an important issue in switching converter applications due to
the sensitivity to noise exhibited by electronic equipment.

In chapter 9, design procedures for coupled inductors are presented for various gap
arrangements of practical interest.

In chapter 10, a method to estimate the leakage of a given coupled inductor structure
from its core geometry is presented. Derivations of the approximate formulas used are
given in Appendix C.

In Appendix A, an interesting problem in magnetic circuits is presented. It is felt
that this problem has a good educational value and puts to a test one’s understanding

of magnetic circuits and transformers.






Chapter 2

Models for Magnetic Circuits

In order to understand coupled-inductor and integrated-magnetics circuits, it is nec-
essary to have a thorough understanding of magnetic circuit models.

There are three different types of models for magnetic circuits:
1. Coupled inductor models

2. Circuit models

3. Reluctance models

None of these models is intrinsically better than the other ones. Depending on the
application one model may be more convenient and easier to use. These models are
equivalent and there are standard techniques to go from one model to the other.

In this chapter these three models are briefly reviewed.

2.1 Coupled Inductor Model

2.1.1 Single Coil

In a single coil with N turns (Fig. 2.1), current 7 generates a flux ¢. The relationship

between voltage and flux is given by Faraday’s law

v=N— (2.1)

Flux is proportional to the current that generates it, so that we can define the in-

ductance as flux linkage per unit current

>

L

]—";f (2.2)



Figure 2.1: Single-coil inductor.

Equations (2.1) and (2.2) can be combined to give the usual circuit equation describing
an inductor
di

UZLEt-

2.1.2 Coupled Inductors: Current in One Coil Only

Let us consider now two coils, which will be called coil 1 (or primary coil) and coil
2 (or secondary coil). Their number of turns is N; and N; respectively. Different flux
components can then be identified. Since the general case of currents on both coils is
rather complicated, we start considering two special cases: current in the first coil only
and current in the second coil only, as shown in Fig. 2.2a-b. In each case, two flux
components can be identified: flux that couples with the other coil and flux that does

not. We can write

Current 1, Current ia

P11 = ¢ + P2 $22 = diz + P12
The two indices have the following meaning: the first index indicates whether the flux

links the other coil or not and the second index indicates which current generates the

flux.



Figure 2.2: Two-coil coupled inductors. Current in coil 1 only (a), current in coil 2 only
(b) and superposition of two previous cases (c).
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2.1.3 Primary and Secondary Coupling Coefficients k; and k,

We can define coupling coefficients k; and k; as

Primary only excited Secondary only ezcited
A ¢n A& P12
k= ky = == 2.3
' on *7 b (23)

Coupling coefficient kq, for example, is the ratio of mutual flux to total flux when only
coil 1 is driven. Therefore, these coefficients are a measure of coupling between the two

coils and are always smaller than unity.

2.1.4 Coupled Inductors: Current in Both Coils

The general case of current in both coils can be studied by superposition of the two
cases of Fig. 2.2a-b and it is shown in Fig. 2.2c. Flux ¢ represents flux that couples with
both windings and it is the sum of fluxes ¢2 and ¢;;. Total flux linking primary coil is
called ¢; and total flux linking secondary coil is called ¢,. Using superposition we can

write

1 = on + o ¢2 $12 + o]

o —— e

= ¢n + P + o12 b2 + P12 + o (2.4)

i

It

N —— NI —
= 11 + ¢12 = $22 + on

2.1.5 Definition of Inductances

The following inductances can be defined

Primary only ezcited Secondary only excited
Ly 2 N1.¢11 Ly 2 Ng¢12
11 t2
N
L, 2 1'¢11 Ly, 2 N2_<,1522
(3] t2
N N
2'¢>21 & g4 2 1‘¢12 (2.5)

11 12
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The last equality is due to reciprocity. Lj;; and L;; are the leakage inductances of the

two coils, L1; and Ljy are the self-inductances and M is the mutual inductance.

2.1.6 Coupling Coeflicients in Terms of Inductances

Coupling coefficients (2.3) can be rewritten using (2.5) as

MM N M
TN Iy TNy Lo
The usual “coupling coefficient” is defined as as

M2
Li1Loy

o>

There is an interesting relationship between ki, k3 and k. From the equations above it

is
Ny M N, M M? 2

kiky = oL 2202 =
1%2 Ny Lyy Ny Laa  LiiLoe

2.1.7 Coupled-Inductor Equations
From Faraday’s law (2.1) terminal voltages of the two coils are
o o
N ¢, v2 = N3¢,
M (;11 + 2512> Ny (2522 + 221) (2.6)
= Lyt +M 1 Ly ta +M 1

i

U1

il
1t

These are the usual coupled-inductor equations.

2.1.8 Coupled-Inductor Equations for Multiple-Winding Structures

The generalization of coupled-inductor equations to circuits with n windings is

n Liw My -+ Mg 1
vy _ M.12 L.22 " A{[.Zn 2.2 27)
| Un L Mln M2n v+ Lpg i i ‘in i

Notice that the inductance matrix is symmetric due to reciprocity.
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(a)

a:1
(b)

Figure 2.3: Equivalent circuit that satisfies coupled-inductor equations (a). Insertion of
ideal transformer (b).

2.1.9 Circuit Equivalents of Coupled-Inductor Equations and Insertion of

an Arbitrary Ideal Transformer

It can be easily verified that coupled-inductor equations (2.6) are satisfied by the
circuit of Fig. 2.3a, which therefore represents an equivalent circuit for the coupled in-

ductors.
It is possible to insert in the equivalent circuit an ideal transformer with an arbitrary

ratio a as shown in Fig. 2.3b. It can be easily verified that the coupled-inductor equations

are still satisfied.

2.1.10 Circuit Model: Ideal Transformer Ratio Equal to the Turns Ratio

The case a = Ni/Nj, i.e., transformer ratio equal to turns ratio, is particularly

interesting because in this case inductances in the equivalent model assume a physical
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N;:N,

Figure 2.4: Circuit model for coupled inductors.

meaning with respect to the physical picture of Fig. 2.2. In fact from (2.5) and (2.4) it
follows that
- Mién _ N _ Nogpp _ N
Ln-—*—;i'“——Ln“N;M le——{r—Lzz*leM
AN
L, = Ni»M
where L,, is the magnetizing inductance. The equivalent circuit of Fig. 2.3b becomes the

circuit of Fig. 2.4. Notice that this is the usual circuit model of a transformer.

2.2 Reluctance Model

There is a striking similarity between static electric circuit equations and static mag-

ﬁ'f.d:s‘:o ﬂ?-dﬁ:o (2.8)

netic circuit equations.

emf:V:Q?E-dz mmf:NI:SéF-dZ (2.9)
1://57-0(5 ¢>=/[9§~d§ (2.10)
J=0oFE B=uH (2.11)

Equation (2.8) represents Kirchhoff’s current law and equation (2.9) represents Kirch-
hoff’s voltage law. These equations are the basis of circuit analysis.
A simple electric circuit and the analog magnetic circuit are shown in Fig. 2.5a-b.

These circuits have a uniform cross-section S and average length {. For the magnetic
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=“' L -

(@ (b)
Figure 2.5: An electric circuit (a) and its analog magnetic circuit (b).

circuit, from (2.9) it follows that

NI = H¢ (2.12)

Equations (2.10) and (2.11) applied to a cross-section of the magnetic circuit give

¢=BS=puHS (2.13)
Substituting (2.13) into (2.12)
¢
= — 2.14
NI 5 ¢ (2.14)
~~
R

The quantity R is the reluctance of the magnetic circuit. The reciprocal of this quantity
is called permeance and is indicated by the symbol P.
An analogous derivation based on the electric circuit leads to Ohm’s law and to the

definition of resistance R
¢

oS
~

R

The electric circuit model based on (2.15) and the analog magnetic circuit based on

V=—1I (2.15)

(2.14) are shown in Fig. 2.6a-b.
There are, however, two main differences between electric circuits and magnetic cir-

cuits that make the study of magnetic circuits more complicated:
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I 0

(@ (b)

Figure 2.6: Electric circuit model (a) and magnetic circuit model (b).

e Ferromagnetic materials normally used in magnetic circuits like the one in Fig. 2.5b
have a nonlinear and double-valued B — H characteristic. This means that per-
meability u is not constant for ferromagnetic materials. In particular, the B — H
characteristic exhibits saturation, i.e., after reaching a value Bgar, flux density

increases very little with excitation H.

e In electric circuits the conductivity o of the conductors is usually more than 10'°
times bigger than the conductivity of insulators, but the permeability 4 of a mag-
netic circuit is only 100 to 10* times bigger than the permeability uo of air. There-
fore, leakage currents in an electric circuit can be almost always neglected, but

leakage fluxes in a magnetic circuit usually need to be modelled.

2.2.1 Magnetic Saturation and the Introduction of Airgaps

The B-H material characteristic of a ferromagnetic material is shown in Fig. 2.7a.
The slope represents (incremental) permeability u. To study its effect on the magnetic
circuit of Fig. 2.5, the B—H characteristic, neglecting losses, can be scaled to represent
the magnetic structure characteristic. In Fig. 2.7b the z-axis is scaled by the length of
the magnetic path £ so that it represents Ampere-turns (equation (2.12)) and the y-axis
is scaled by core cross-section S so that it represents flux ¢ (equation (2.13)). The slope
now represents permeance P of the magnetic structure. After flux density reaches the
value Bgar, the permeance value drops.

If a coil has a DC current that would make it operate in the saturation region, an air
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B [ B S+ B S+
SAT SAT SAT

(a) (b) (©

Figure 2.7: B-H loop for a ferromagnetic material (a) is scaled to represent core charac-
teristic (b). Core characteristic with air gap (c).

gap can be introduced. The air gap reluctance appears in series with core reluctance in
the model of Fig. 2.6b and its value is

- _*
HoS

where z is gap thickness and pg = 47 - 1077 H/m is the permeability of air. Since yu is

Ry (2.16)

100 to 10* times bigger than g, R, usually dictates the total reluctance. The effect on
the core characteristic is shown in Fig. 2.7c. Notice that the core reaches saturation for
a higher magneto-motive force NI and that the core characteristic below saturation is

linearized by the airgap.

2.3 Circuit Model

The circuit model for the generic coupled inductors of Fig. 2.2 was derived from the
coupled-inductor equations in section 2.1. In general, circuit models can be derived from
reluctance models. This approach is preferred because the circuit model so obtained
is closely related to the physical structure of the coupled inductors. This issue will be
discussed in chapter 6. The derivation of the circuit model from the reluctance model is

illustrated through an example.

2.3.1 Derivation of Circuit Model from Reluctance Model

The magnetic structure studied here and its reluctance model are shown in Fig. 2.8.

Reluctance R, is given by (2.16). Leakage reluctances R; and R, represent leakage flux
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o
N BN
<7

P Ty

.._________
N<

Nii(®) 3Ra 3R. (HNi
e

Oy

(b)

Figure 2.8: Erample of magnetic structure (a) and its reluctance model (b).

paths in air. No simple formulas exist for these reluctances, and the only correct way to

calculate them theoretically is to solve the three-dimensional magnetic field problem.

Duality Transformation

We want to go from the reluctance model to a circuit model. It can be observed that
in the reluctance model mmf sources act as voltages and fluxes act as currents. This
is in some sense the dual of a circuit model, because mmf sources are proportional to
currents and fluxes are proportional to (the integral of) voltages. Therefore, the first

step in the derivation of the circuit model is a duality transformation.
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Duality

In circuit theory two networks are dual if the loop equations for one network are
identical (with consistent change of notation) to the node equations for the other network.
Therefore, if the solution for one of the networks is known, the solution for the other one

can be immediately obtained if appropriate transcriptions are used.

Procedure to find the dual of a resistive network

The following procedure allows to obtain the dual of a given resistive network.

1. A dot is placed inside each loop of the network and a dot is placed outside the

network. These dots will become nodes of the dual network.

2. The dual of each element is places across the original element, connecting the dots

on both sides. In the case of resistive networks duals are

Resistor <=> Conductor

Voltage source <=  Current source

The dual elements have the same numerical values of the original elements. For
example, a 5 ) resistor becomes a 5 Siemens conductor. Equivalently it may be
said that the dual of a resistor is a resistor with a numerical value equal to the

reciprocal of the original element (a 5 () resistor becomes a 1/5 § resistor).

3. The direction of dual branches is obtained by rotating the direction of the original

branch counter-clockwise until it coincides with the dual branch.

Application of the above procedure to our example is shown in Fig. 2.9. The resis-
tances of the dual model have numerical values equal to the reciprocal of the reluctance

values and therefore are represented by permeances.

Steps of Procedure from Reluctance Model to Circuit Model

1. Duality transformation. The first step is the duality transformation described

above.
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WA

) N;i,

N, C+> £
£1

(ax)X
P P.,
VW 'A'A Amm—
Ni; (1) : " p§ 0 "0, (D N,
(b)

Figure 2.9: Application of duality to reluctance model (a) gives dual permeance model
(b).

2. Current scaling. Current scaling is done with respect to the primary number of

turns and the result is shown in Fig. 2.10a. Currents are divided by N; and

resistances are multiplied by Ny, so that voltages are left unchanged.

3. Voltage scaling. In Fig. 2.10b voltages and resistances are scaled by N; so that
currents are left unchanged. Notice that after this transformation voltages are

numerically equal to flux linkages.

4. Inductance model. Realizing that v = N d¢/dt and L = NZP the inductance

model can be immediately derived as shown in Fig. 2.11a.

5. Ideal transformer. An ideal transformer can be inserted to match terminal voltages

and currents to those in the original circuit as in Fig. 2.11b.

Note that in steps 2-3 the dual circuit could be scaled by any number. Fig. 2.12

shows the final inductance model if the dual model is scaled by N2 or scaled by 1.
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Figure 2.10: Current scaling (a) and voltage scaling (b) with respect to Ny.
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Figure 2.11: Inductance model (a) and insertion of ideal transformer (b).
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Figure 2.12: Inductance model scaled by NZ (a) and inductance model scaled by 1 (b).
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Chapter 3

Zero Ripple Condition

In this chapter the zero current ripple phenomenon is studied using the models re-
viewed in chapter 2.

In section 3.2, current ripple distribution in a coupled-inductor structure driven by
identical voltage waveforms is studied. It is shown that current ripple in one of the
windings can go to zero and even become negative for certain values of turns ratio and
coupling.

In section 3.3, a more intuitive derivation of the zero ripple condition based on circuit
model is given.

In sections 3.4 and 3.5 zero ripple condition is derived from coupled-inductor equa-

tions and from reluctance model respectively.

3.1 Introduction

As discussed in [1], if two (or more) inductors in a switching converter have propor-
tional voltage waveforms, they can be magnetically coupled. In the following, without
loss of generality, the case of equal voltage waveforms on all windings is studied. The
proportional waveform case can be reduced to this case by scaling using winding turns
ratio. In this chapter the case of two coupled inductors is considered. The extension to
more than two windings is done in section 7.1.

A first advantage of coupled inductors with respect to separate inductors is size and
weight reduction. This issue is discussed in [4] and in [5]. An interesting characteristic
of coupled inductors is that by proper design unequal current ripple in the two windings
can be obtained. Current ripple can be made zero or negative (decreasing current when

a positive voltage is applied) on one of the windings. The case of zero current ripple
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is particularly interesting from a practical point of view and represents a big advantage
of the coupled-inductor approach: all current ripple is steered into one winding and the

other one has ideally a purely DC current.

3.2 Coupled Inductors and Current Ripple Steering Effect

The current ripple steering effect is an intrinsic property of coupled inductors and
can be studied without reference to a particular switching converter. Advantages of this
approach are simplicity and the possibility to distinguish between intrinsic properties of
the coupled inductors and effects of interactions between the converter and the coupled
inductors. For example, a coupled-inductor structure designed for zero ripple can have
some residual current ripple due to the fact that the turns ratio used is not exactly
equal to the one required for ideal zero ripple. This is an intrinsic property of coupled
inductors. But even if the exact turns ratio is used, the coupled-inductor structure will
have some residual ripple when used in a switching converter due to the fact that the
voltages applied by the converter to the two windings will not be exactly equal. The
magnitude of this ripple depends on the switching converter characteristics.

Coupled inductors in a switching converter are subjected to 1) an AC voltage and
2) a DC current. As a result, flux in the core has a DC component due to the DC
current and an AC component due to the AC voltage as shown in Fig. 3.1. As long as
the magnetic core does not saturate, the effects of DC current and AC voltage can be
studied separately. This is illustrated in Fig. 3.2. The DC current will be considered
in chapter 9 where design equations are developed and conditions will be derived that

ensure that the core does not saturate.

3.2.1 Choice of Transformer Circuit Model

In the following the case of coupled inductors driven by identical AC voltages is
studied (Fig. 3.3) to determine currents #; and i;. Notice that this situation is different
from a standard transformer, where voltage is applied to the primary and some load
is applied to the secondary. In this case both primary and secondary have an applied

voltage.
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Figure 3.2: Coupled inductors driven by a Cuk converter (a) and by equivalent AC voltage
and DC current sources (b).
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Figure 3.3: Coupled inductors driven by identical voltage sources.

In order to determine currents i; and i,, it is necessary to define more precisely what
the transformer symbol means. Transformer models with various levels of complexity
are used in the study of electrical circuits. If a too simplistic model is used, it may be
unable to capture whatever behavior of the circuit is of interest. The simplest possible
transformer model is the ideal transformer that obeys the well-known voltage-scaling
and current-scaling laws. A first nonideality that may be introduced is magnetizing
inductance. A next step is to introduce leakage inductances. Finally, more complicated
models exist that take into account winding losses, core losses, interwinding capacitance
and so on.

The simplest model that describes the current ripple steering effect is the model with
leakage inductances. In fact, in the case of an ideal transformer, the problem of Fig. 3.3
is not well-defined because the two voltage sources are connected directly in parallel as
shown in Fig. 3.4. The circuit of Fig. 3.4 does not satisfy Kirchhoff voltage law. The
problem becomes well-defined only if there is some impedance in the loop containing
the two voltage sources. The situation does not improve if magnetizing inductance is
introduced in the transformer model because magnetizing inductance is in parallel with
the two voltage sources. The problem becomes well-defined if leakage inductance in
series with the voltage sources is considered. Therefore, the circuit model used for

coupled-inductor analysis is the usual transformer model of Fig. 2.4.
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Figure 3.5: Circuit model used to determine currents i; and iy. Ly, L, and L}, are
constant, N, varies.

3.2.2 Current Ripple Variations and the Possibility of Negative Ripple

In this section current ripples ¢; and ¢, are calculated as a function of turns ratio.
A coupled-inductor structure with a fixed number of turns Ny and a variable number
of secondary turns N; is considered. Primary leakage inductance L;; and magnetizing
inductance L,, are assumed to be constant. For simplicity secondary leakage inductance
Ly, is reflected to the primary and called L}, as shown in Fig. 3.5. The advantage is that
the primary number of turns is constant and inductance L}, can also be assumed to be
a constant. In conclusion, all inductances of Fig. 3.5 are assumed to be constant.

The question to be answered is what happens to current ripples ¢; and ¢; as N

varies. To calculate current ¢, the portion of circuit to the right of points AB of Fig. 3.5
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Figure 3.6: Thévenin equivalent model is used to calculate current iy (a) and iy (b).

is replaced by its Thévenin equivalent. The Thévenin equivalent voltage is the secondary
voltage scaled by the turns ratio and the inductive voltage divider formed by L}, and
L., i.e.,

Nl Lm Nl

= e ——— = — k
Y2Th Nj Lm+L§2v Ny 2v

where k; is the secondary coupling coefficient defined in (2.3). The Thévenin equivalent

inductance is
L2 Th — L;2”Lm

The equivalent circuit is shown in Fig. 3.6a. Therefore, current i; is

) M )/ v
=|1-=k ———dt 3.1
. ( N2 7)) Lo+ LllLm .

In the same way, current 75 can be determined by calculating the Thévenin equivalent
circuit to the left of points CD in Fig. 3.5. This time all quantities are reflected to the

secondary side of the transformer. As before

= 2z om0 D2
“1Th N1Lm+an M 1

i
TN
5
N—”
[ ]
=
T;
3

Lytp

The equivalent circuit is shown in Fig. 3.6b. Current ¢; is

~— N
_1 Ny

i b / Y dt (3.2)
2 (&y Lo||Lm + L, '
N
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Figure 3.7: Normalized plot of amplitude of current ripples iy and iy as a function of
turns ratio.

Notice that the expressions under the integral sign in (3.1) and (3.2) are approximately
equal if Ly, > L1, L},. From these equations it is also evident that if v is a square voltage

with zero average (typical case in PWM converters), currents 7q and iy are triangular

waveforms with amplitude proportional to the expressions in front of the integrals.

. Ny
1-—k
11 X Ng 2
1- Rk
i2 x __NLi_l. (3.3)
(%)
N

Equations (3.3) represent normalized values of current ripple and can be plotted as
a function of turns ratio N2/Ni, as shown in Fig. 3.7 in the case k; = k2 = 0.7.
The interesting thing to notice is that current ripples go to zero and become negative.

The ripple currents for different values of N;/N; are shown in Fig. 3.8. Notice that for

Ny 1

Nk
the secondary current ripple goes to zero. For bigger values of N;/N; current ripple

becomes “negative,” i. e., when voltage is positive current decreases and vice versa. This
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Figure 3.8: Current ripples for different values of turns ratio.
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Figure 3.9: Total current ripple is always positive.

kind of behavior cannot be obtained from a network formed by a single voltage source and
any interconnection of inductances only, because in that case the equivalent Thévenin
impedance is inductive. This behavior is due to the presence of two voltage sources. If
v is a sinusoidal voltage, in the negative ripple region current i; leads voltage vy by /2.
In some sense the circuit behaves as a capacitor.

In any case, the total current ripple ¢; + ¢; is always positive, because the impedance
of the parallel connection of primary and secondary is inductive (Fig. 3.9). This means
that if ¢; has negative ripple, then 7; must have a positive ripple bigger than i, as shown
in Fig. 3.8c. This situation is highly undesirable from a practical point of view.

The case of Fig. 3.8b is particularly important. It shows that zero current ripple can

be achieved and that equation
N

=¥ (3.4)

k1

is the zero ripple condition. Fig. 3.7 shows that for

N,

ky =
2 Nl

there is zero current ripple on the primary winding. This is the zero ripple condition for

the primary winding and all ripple is steered into the secondary winding.
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Figure 3.10: Voltages in coupled-inductor structure with open-circuited secondary side.

3.3 Intuitive Derivation of Zero Ripple Condition from Circuit Model

A more intuitive derivation of zero ripple condition from the transformer circuit model
is given here. A coupled-inductor structure, represented by the equivalent circuit model,
is driven by identical voltage sources in the primary and secondary. If the secondary
voltage source is temporarily disconnected, voltages in various points of the circuit are
as shown in Fig. 3.10. Leakage inductance L;; and magnetizing inductance L,, form an

inductive voltage divider, so that voltage v, at the primary of the ideal transformer is

Lm kv
vy = v =
P Lll + Lm !
The voltage v, at the transformer secondary is equal to v, scaled by the transformer
ratio
vy = sz = N2k )
s = Nl P — Nl 1

The turns ratio can be chosen in such a way to compensate the attenuation of voltage v

due to the inductive voltage divider. In particular, if
—k =1 (3.5)

then v, = v. If the switch § of Fig. 3.10 is closed reconnecting the secondary side voltage

source, no current will circulate through Lis (provided that L;; # 0) because the same
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voltage is applied to the two terminals of Lj;. Therefore, there is zero current ripple
in the secondary. Equation (3.5) is the zero ripple condition (3.4) derived earlier. In
conclusion, zero current ripple on the secondary is obtained if the primary voltage source

by itself induces on the secondary a voltage identical to the secondary voltage source.

3.4 Derivation of Zero Ripple Condition from Coupled-Inductor Equa-

tions

The zero ripple condition can also be derived from the coupled-inductor equations

(2.6). If the same voltage is applied to both windings, these equations become

o diy iy
v o= Lll—a{’ '-c—l—t-
o di dis
= M—(—i—t- + Lzz*d—t— (3-6)

Eliminating di;/dt and solving for diy/dt gives

dip  Lin—Ln v
dt — Li1Lyy — M2

Imposing the condition dia/dt = 0 gives
Liy=M Lyp#M

These conditions can be shown [5] to be equivalent to the zero ripple condition (3.4).
Equations (3.6) can be represented by the three-inductor model shown in Fig. 3.11a.
Fig. 3.11b shows the three-inductor model in the special case of zero current ripple in
the secondary. This model can be useful for analytic and numerical analysis of switching
converters with coupled inductors. For example, a Cuk converter with coupled inductors

and zero ripple in the output can be represented by the equivalent model of Fig. 3.12.

3.5 Derivation of Zero Ripple Condition from Reluctance Model

The zero ripple condition can be derived directly from the reluctance model. This is
the method that will be more frequently used in the following chapters. The procedure

is demonstrated through an example.
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Figure 3.11: Inductance model from coupled-inductor equations in general (a) and for
the special case of zero current ripple in the secondary (b).

(a)
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Figure 3.12: Coupled-inductor Cuk converter (a) and equivalent model for zero current
ripple in the output (b).
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Figure 3.13: Reluctance model for Nyiz = 0.

The magnetic structure considered in this example and its reluctance model are shown

in Fig. 2.8. Reluctances R;; and R, represent leakage flux of the primary and secondary

windings respectively and R, is the reluctance associated with gap z. Sources Nyi; and

Njiy represent flux linkages of primary and secondary winding respectively.

Notice that in this model reluctance of the magnetic core is neglected. This is a good

approximation for cores with substantial air gaps where main flux ¢, is determined by

air gap reluctance. This approximation will always be made in the following.

The first step is to impose the zero ripple condition Nji; = 0. Notice that in the

reluctance model current linkages are represented by voltage sources, so the condition

Nyt = 0 means that voltage source Njiy is shorted, as shown in Fig. 3.13. As a result,

the secondary leakage reluctance Ry is shorted and does not appear in the zero ripple

condition. From this circuit the ratio ¢91/#11 can be calculated as

$ul  __Ru
$11li,=0 Rz+Ran

Application of Faraday’s law to the primary and secondary windings gives

1
én = 'N‘;/vldt

1
pa1 = -N—z“/vzdt

At this point condition v; = vy is imposed. From (3.7), (3.8) and (3.9)

b _ Ru
N2 Rz + Rll
This condition is identical to (3.4). This can be seen directly from (3.7), since
k= o2

#11 liy—0

(3.7)
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or, with an intermediate step, it can be seen from

Rll _ le/R:r Lm

= = =k
Re+Rn  N2/Ro+ N Ry  Lpm+Ly
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Chapter 4

Sensitivity of Zero Ripple Condition and the
Need for High Leakage

In the previous chapter the zero ripple condition for coupled inductors was derived.
Ideally, if this condition is met and equal voltages are applied to the coupled inductors,
one inductor will have zero current ripple and all ripple will be steered into the other
one.

In a real-life situation with coupled inductors used in a converter, the zero ripple
condition will not be perfectly met (zero ripple condition mismatch) and also the voltages
imposed by the converter on the two windings will not be perfectly equal (applied voltage
mismatch). As a rtesult, there will be some residual ripple due to these nonidealities. It
is important to determine the sensitivity of the zero ripple condition and estimate the
residual current ripple as a function of applied voltage mismatch and zero ripple condition
mismatch.

The sensitivity analysis in the next section shows that low sensitivity can be achieved
if the magnetic coupling is not very good and there is significant leakage between the
two windings. This explains why “leaky” magnetic structures like the ones shown at the

end of this chapter are used for coupled-inductor applications.

4.1 Sensitivity Analysis

A coupled-inductor structure is driven by voltage sources v; and vy, not necessarily
identical. Moreover, zero ripple condition (3.4) is not exactly met. The transformer
circuit model of Fig. 3.5 is used for this analysis. The residual ripple on the secondary
side can be evaluated as in section 3.2 calculating the Thévenin equivalent voltage of the

circuit to the left of points CD in Fig. 3.5 (see Fig. 3.6). The only difference is that now
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Figure 4.1: Fquivalent circuit to evaluate residual ripple.

v; and v, are not equal. The resulting circuit is shown in Fig. 4.1. The voltage source

_ NZk
Vsens = V2 — ]—V_ 1V1
1

represents deviations from the ideal zero ripple case. In fac‘t, if v1 = vy (the driving
voltages applied by the converter are identical) and zero ripple condition (3.4) is met,

voltage vgens is zero. The inductance

N 2
Lsens = Liz + (ﬁf‘) (Ln|lLm) (4.1)
limits the residual ripple. Since Lj; < Lps, equation (4.1) can be approximated as

N, 2
Lgens =~ Li3 + (J_VI> Ly

Therefore, Lsens is approximately equal to the total leakage inductance reflected to the
secondary side. In order to minimize residual ripple, it is necessary to maximize this
inductance. Unlike in the design of conventional transformers, high leakage is a desired

property in coupled inductor design.

4.2 Magnetic Structures with High Leakage

In order to have magnetic structures with high leakage, two different approaches can
be taken.

A first approach is to add a separate series inductance that acts as leakage inductance.
This is a brute-force approach and it requires a separate inductor. The advantage of
reduction of number of separate magnetic elements provided by the coupled-inductor

approach is lost.
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The other possible approach is to maximize the leakage inductance of a single-core
coupled-inductor structure. This is the preferred approach that takes full advantage of
coupled inductors. Standard UI and UU cores with the two windings wound on separate
legs as in Fig. 4.2 exhibit significant leakage inductance and have been successfully used
in the past. Since inductors in a switching converter usually have a DC current, an

air gap is needed to prevent core saturation. In the case of Fig. 4.2 both core legs are

gapped.
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Chapter 5

New Reluctance Model

From the derivation of the zero ripple condition given in chapter 3, the importance of
accurate leakage models is apparent. As explained in the previous chapter, the preferred
coupled inductor structure is UI and UU cores with windings on different legs as shown
in Fig. 4.2.

In section 5.1, the reluctance model currently used for coupled-inductor design is
reviewed.

In section 5.2, an experiment is presented that shows that air gap position in the
coupled-inductor structure has a dramatic effect on coupled-inductor characteristics. The
old reluctance model is unable to model this behavior.

In section 5.3, an improved reluctance model is introduced that successfully predicts
the effect of air gap position. This model has three leakage reluctances that are constant
for a given core.

In section 5.4, experimental results verifying the accuracy of the new model are
presented. It is found that two of the leakage reluctances can be neglected, leaving a
simple model with a single leakage reluctance.

In section 5.5, a method to model fringing flux at gaps is suggested.

5.1 Old Reluctance Model

The reluctance model used in the past [3] for coupled-inductor analysis and design is
reviewed. This model will be referred to as “old model” in the rest of this work.

A UI core and its old reluctance model are shown in Fig. 5.1. Each winding has
its own leakage flux, which is modelled by reluctances Ry, and Ry;. Flux paths in air

are assumed to be independent of gap sizes and therefore these leakage reluctances are
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(b)

Figure 5.1: Ul core (a) and its old reluctance model (b).

assumed to be constant for a certain magnetic core. The reluctance of the main flux
path in the core is called R,. Since the core of Fig. 5.1 has a gap on each leg, R, is the
reluctance of the two gaps combined together and is given by

T1+ T

R_’z; -
poS

where S is core cross-section and z; and z2 are gap widths. In this model, as in all
models described in the following, the reluctance of the high-permeability core material
is neglected.

Notice that in this model the two gaps are lumped together and only total gap size
T1 + z2 is considered. Individual gap sizes are not taken into account by this model. For

example, the same reluctance model is obtained for these three gap arrangements:

1. 1 = 2z, x5 = 0: gap concentrated on the primary leg.
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2. 1 = 0, z; = 2z: gap concentrated on the secondary leg.

3. Ty = z, 23 = z: gap evenly split between the two legs (spacer gap).

5.2 Effect of Gap Position

The following experiment dramatically demonstrates the effect of gap position on the
characteristics of the magnetic structure and at the same time the inadequacy of the
old model. In the experiment shown in Fig. 5.2, the two windings of a UU60 magnetic
core (represented for simplicity as a Ul core in Fig. 5.2) have the same number of turns.
Winding 1 is driven with a sinusoidal voltage source v; and winding 2 is left open.
The following measurements are performed: coupling coefficient k; (which is equal to
vg/v1 because the two windings have the same number of turns), inductance L; seen
from winding 1 and radiated noise measured using a telephone pickup placed at a fixed
distance from the core. The issue of radiated noise is very important in power supply
design, because power supplies can be physically close to noise-sensitive equipment like
a magnetic storage device in a computer.

These measurements are repeated for three different gap arrangements: gap con-
centrated on leg 1 (Fig. 5.2a), gap concentrated on leg 2 (Fig. 5.2b) and spacer gap
(Fig. 5.2c). The total gap is kept constant in the three cases so that reluctance R, has
the same value. Very similar results for the three sets of measurements were expected on
the basis of the reluctance model of Fig. 5.1, but the measurements in Fig. 5.2a-b-c are
very different. For example, coupling coefficient k; varies dramatically from 0.98 (almost
perfect coupling) for gap concentrated on the primary to 0.57 for gap concentrated on
the secondary. These variations cannot be explained by the old model. Since R, is the
same in the three cases, the only way to obtain good agreement between model and
experiment is to arbitrarily assign three different values to leakage reluctance R;; in the
three cases (R;; does not have any effect because winding 2 is open and the equivalent

voltage source Njis is shorted).
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Figure 5.2: Same total gap distributed differently results in very different measured values
of coupling coefficient kq, inductance Ly and radiated noise.
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5.3 New Reluctance Model

The experimental results of Fig. 5.2a-b-c can be qualitatively explained as follows.
Let us look, for example, at coupling k; for the structures of Fig. 5.2a and Fig. 5.2b:
in the first case coupling is almost perfect (0.98) while in the second case it is only
0.57. In the first case the gap is very close to winding 1. The mmf due to the current
in winding 1 drops on the gap, so that most of the Ul core (except the small portion
between winding 1 and the gap) is at a constant magnetic potential. As a result, the
leakage in air is small and most of the flux couples with winding 2, so that coupling is
good. In the second case the gap is far from winding 1. The upper part of the U piece
and the I piece are at a different magnetic potential, so that there is significant leakage
flux and coupling is much worse. |

An alternative explanation goes as follows. The leakage flux can be divided into two
parts, ¢;; and ¢y, as shown in Fig. 5.2a-b. Flux ¢;; closes before the gap on leg 1 and flux
¢; closes after it. Flux ¢, is not affected by the size of the gap on leg 1 and is the same
in the two cases. On the contrary, flux ¢; goes through the gap on leg 1 and therefore is
affected by it. As an effect of gap reluctance, ¢; is smaller in the case of Fig. 5.2a and
therefore coupling is better.

The different values of inductance L; and radiated noise can be explained by similar
reasoning. As explained above, leakage flux is bigger for the structure of Fig. 5.2b.
Leakage flux contributes to the value of inductance Ly, making it bigger in the case of
Fig. 5.2b. Radiated noise is leakage flux in air and therefore it is also bigger in the case
of Fig. 5.2b.

From the previous discussion the conclusion is that leakage flux from a winding must
be divided into two parts: flux that closes in air before crossing the gap and flux that
closes in air after crossing the gap. This is shown in Fig. 5.3a.

A modified reluctance model that distinguishes between these two leakage flux com-
ponents is shown in Fig. 5.3b. R;; and R, are the reluctances of gaps z; and z;. Ry
and R, are the reluctances of flux paths in air that do not cross the gaps. R; is the
reluctance of leakage flux paths that cross the gaps.

Measurements on different cores (some of them presented in section 5.4) show that
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Figure 5.3: New reluctance model separately models flur ¢; with reluctance R;.

for a given core geometry, reluctances Ry, Rz and R, are constant irrespective of gap
arrangement and gap sizes used. Only R;1 and R.2 depend on the gaps.

Leakage reluctances R;;, R;; and R; can be experimentally determined from a single
set of measurements. Since gap values are known, reluctances R;; and R.p can be
calculated from the well-known formula. That leaves three unknowns, R;;, Rz and R;.
A non-saturated coupled-inductor structure is a linear reciprocal two-port, and three
independent measurements can be performed. Therefore, the three unknowns can be
experimentally determined. The main advantage of this model is that from a single set
of measurements on a certain core with any value of gaps, reluctances Ry, Ryz and R;
can be uniquely determined. These leakage reluctances completely characterize the core,
and the model accurately describes the magnetic structure for any other values of gaps.

In particular this model is valid for concentrated gaps. For example, if gap is concen-
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trated on the primary, the model has R,2 = 0 and R; and R, are directly in parallel.
It is interesting to notice that in the case of concentrated gap, the old model and the

new model are identical with the following equalities between reluctances:

Primary gap Secondary gap
0= Rx2|new 0= 72x1|new
Ritlpid = Rulnew Rulold = RullRilpew (5.1)

Rflold = Retlnew Rr'old = Ra2lnew
Rl2lold = Rl||Rl2|new Rl?lold = Rl2‘new

In the case of concentrated gaps, leakage reluctances of the old model are constant and
independent of gap size because they are equal to combinations of leakage reluctances
of the new model. However, as can be seen from eqﬁations (5.1), different values of
leakage reluctances need to be used depending on whether the gap is on the primary or
on the secondary. Therefore, using equations (5.1) it is possible to obtain the new model
leakage reluctances from data expressed in terms of the old model leakage reluctances.
Equations (5.1) give only two conditions on the three leakage reluctances of the new

model. However, a symmetry argument implies that for symmetric cores

Rll|new = Rl?lnew

and therefore all three leakage reluctances in the new model can be determined.
The old model and the new model are different if gaps are present on both legs and it
is not possible to obtain the new model leakage reluctances from old model data unless

the gap sizes used in the measurement are known.

5.4 Experimental Verification of New Model

To validate the proposed reluctance model, measurements are performed on different
standard Ul and UU cores for different values of spacer and concentrated gaps. These
experiments show that reluctances R, Ri2 and R; are approximately constant for a
given core geometry.

The measurement procedure is as follows:
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1. An equal number of turns is wound on each core leg. The number of turns is chosen

to fully utilize the window area.

2. Primary and secondary inductances are measured using an HP 4261A LCR meter,
and coupling coefficients k; and k; are measured using an HP 3577A network

analyzer. Measurements are repeated for different values of concentrated and spacer

gaps.

3. From each set of measurements reluctances R;;, Rjz and R, are determined. These
values are then averaged to obtain a unique value for each reluctance. It is worth
noticing that more accurate values of leakage reluctances can be obtained by per-
forming measurements on cores with substantial air gaps, because leakage reluc-
tances appear in parallel with gap reluctances and measurement sensitivity is high
if gap reluctance is much smaller than the leakage reluctance that appears in par-
allel with it. Therefore, in the averaging of measured reluctances, bigger weight is

given to measurements performed in the case of substantial gaps.

4. Measurements are compared with predictions using the reluctance model with the

measured average values of leakage reluctances.

Both at points 3 and 4 corrections for fringing flux at gaps are introduced in the
reluctance model in the form of a fringing reluctance as described in section 5.5.

Tables 5.1 and 5.2 show comparison of measured and predicted values of coupling
coefficient k; and inductance L; for a UI60 core with 80 turns on each winding in the

case of spacer gap, primary leg gap and secondary leg gap.

5.4.1 Simplified Reluctance Model

Measurements for various standard cores are shown in Table 5.3. From these mea-
surements it appears that R;; and R, are an order of magnitude bigger than R;. The
same result was found for various EI cores (the reluctance model for EI cores will be in-
troduced in section 7.2.1). Therefore R;; and R, can be neglected without introducing

significant errors. Experimental validation of this approximation is given in section 5.4.
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Spacer gap
gap k1 L,
[mm] [nH]
Th. | Ezp. | Err. || Th. | Ezp. | Err.

0.39 | 0.80 | 0.77 | 3.8% | 2842 | 2740 | 3.7%
0.69 || 0.70 | 0.68 | 2.9% | 1820 | 1830 | 0.5%
1.00 || 0.62 | 0.62 | 0% || 1400 | 1450 | 3.4%
1.31 || 0.57 | 0.57 | 0% || 1176 | 1220 | 3.6%
1.63 || 0.52 | 0.53 | 1.9% || 1033 | 1100 | 6.1%
1.94 | 0.49 | 0.50 | 2.0% || 937 | 1000 | 6.3%
2.25 | 0.46 | 0.47 | 2.1% || 867 | 910 | 4.7%
2.57 | 0.44 | 0.45 | 2.2% | 812 | 880 | 7.7%

2.89 | 0.42 | 0.43 | 2.3% || 768 | 837 | 8.2%
3.20 || 0.40 | 0.41 | 2.4% || 734 | 800 | 8.2%
3.51 || 0.39 | 0.39 0% || 706 | 770 | 8.3%

Table 5.1: Comparison of measured and predicted values of coupling coefficient ki and
inductance Ly for a UI60 core in the case of spacer gap. Reluctance values
used in the model are: Ry = Ryp = 60 [1/pH], R; = 6.1 [1/pH], R fring =
18 [1/pH]

An intuitive justification for this approximation can be given looking at Fig. 5.3a: wind-
ing 1 is very close to gap 71, so that flux ¢;; that closes in air before crossing gap ; is
small compared to flux ¢; that closes in air after crossing the gap. Neglecting reluctances
Ry and Ry, reduces the reluctance model to a 7 model. An advantage of this model
with respect to the complete model of Fig. 5.3b is that it can be fully determined from a
single set of measurements. In the previous complete model it was necessary to assume
that reluctances Ry and R o were known.

At this point it is instructive to compare the old model with the new simplified model.
Fig. 5.4 shows a comparison of the old and the new model. It is clear that one model can

be obtained from the other with a Y~A transformation. In general any two-port has an
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Primary leg gap

gap k1 L
[mm] [uH]
Th. | Ezp. | Err. || Th. | Ezp. | Err.
0.52 || 0.97 | 0.96 | 1% | 3942 | 3740 | 5%
0.95 || 0.95] 0.95 | 0% | 2367 | 2410 | 1.8%
1.30 [ 0.94 | 0.94 | 0% || 1854 | 1810 | 2.4%
1.45 (1 0.94 | 0.94 | 0% || 1710 | 1660 | 2.9%

Secondary leg gap

gap k1 L
[mm] [uH]
Th. | Ezp. | Err. || Th. | Ezp. | Err.
0.52 || 0.77 | 0.75 | 1.9% | 4991 | 4800 | 3.8%
0.95 || 0.66 | 0.65 | 1.2% | 3416 | 3500 | 2.5%
1.30 || 0.60 | 0.57 | 4.6% || 2903 | 2930 | 9.2%
1.45 || 0.58 | 0.56 | 3.6% || 2760 | 2800 | 1.5%

Table 5.2: Comparison of measured and predicted values of coupling coefficient k1 and
inductance Ly for a UI60 core in the case of primary leg gap and secondary leg
gap. Reluctance values used in the model are: Ry = Riz = 60 [1/pH], R =

6.1 [1/uH], Rfring = 18 [1/uH]
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Core R, R, Riz
(1/uH) | [1/pH]

UI60 6.10 60
Uu60 | 5.71 250
UI45 6.99 40

Table 5.3: Measured leakage reluctances for various standard cores show that Ry, Ry >
R;.

R

X

Nily (%) SR, R, H)Ni,

IT model
R ,; and R ;; dependent on gap

(@)

Rxl Rx2
VWA VVV—

Nii, (¥) §R@ @ Nai,

T model
R, independent of gap

(b)

Figure 5.4: Old reluctance model (a) and new simplified model (b) are equivalent for
given gaps. The advantage of the new model is that reluctance R; does not

change with gaps.
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equivalent IT model and an equivalent 7" model. A natural question is:
If the two models are equivalent, what is the advantage of the new model?

The advantage is that R; in the new model is constant and independent of gaps, whereas
R and R, in the old model vary with gaps.

The fact that R; in the new model is independent of gaps has been experimentally
established (see Tables 5.1-5.2). The fact that R;; and Rz change with gaps can be
proven as a consequence of R; being constant. The argument goes as follows: for a certain
gap value the reluctances in the new model have some value that can be experimentally
measured. Using a Y-A transformation reluctance Ry in the old model, for example,

can be calculated as
RiRz1 + RiRe2 + Re1 Rz
R.r2

If gaps are changed, R,; and R,y vary accordingly but R; remains constant. Therefore

Ry = (5.2)

Ri1, which is a function of Rz and Rz, has to change with gaps.

5.4.2 Experimental Verification of Simplified Model and Comparison with
Complete Model

The same experimental data on a UI60 core used in section 5.4 are compared with
theoretical predictions using the simplified reluctance model. Leakage reluctance R; and
fringing reluctance R fring 1€ reevaluated for a best fit of the experimental data using
the same procedure described in section 5.4. Results are shown in Tables 5.4 and 5.5.
The maximum relative error on k, is less than 7% and the maximum relative error on
L, is less than 11%. Figures 5.5-5.6-5.7 show a comparison of experimental data and
predictions with the complete model and the simplified model. The fact that very similar
predictions are obtained from the two models justifies the approximation of the simplified

model].

5.5 Modeling of Fringing Flux

In order to accurately describe the behavior of gapped magnetic circuits, it is im-

portant to model the fringing flux at gaps. It is well known that flux going through a
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Figure 5.5: Comparison of predictions using the simplified model and the complete model
in the case of spacer gap.
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Figure 5.6: Comparison of predictions using the simplified model and the complete model
in the case of primary gap. The prediction plots are obtained in the following
way: predicted values are calculated only for the values of gaps used for
measurements and these values are then connected by straight lines. This
ezxplains why prediction plots are not smooth. In the upper plot the two
prediction plots are practically undistinguishable.
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Figure 5.7: Comparison of predictions using the simplified model and the complete model
in the case of secondary gap. The prediction plots are obtained in the fol-
lowing way: predicted values are calculated only for the values of gaps used
for measurements and these values are then connected by straight lines. This
ezplains why prediction plots are not smooth.
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Spacer gap

gap k1 L

[mm] [uH]

Th. | Ezp. | Err. || Th. | Ezp. Err.
0.39 | 0.79 | 0.77 | 2.6% || 2860 | 2740 | 4.3%
0.69 || 069 0.68 | 1.5% || 1820 | 1830 | 0.5%
1.00 | 0.62 | 0.62 0% || 1400 | 1450 | 3.4%
1.31 | 0.57 | 0.57 0% || 1170 | 1220 | 4.1%
1.63 || 0.53 | 0.53 0% || 1020 | 1100 | 7.3%
1.94 | 0.50 | 0.50 0% || 927 | 1000 | 7.3%
2.25 || 0.48 | 0.47 2% || 855 | 910 | 4.6%
2.57 || 0.46 | 0.45 | 2.2% || 798 | 880 6%
2.89 |1 0.44 | 043 | 2.3% || 753 | 837 10%
3.20 || 0.42 | 0.41 | 2.4% || 718 | 800 | 10.2%
3.51 | 0.41 ] 0.39 | 5.1% || 689 | 770 | 10.5%

Table 5.4: Measurements and predictions using the simplified model in the case of spacer
gap. Reluctance values used in the model are: R; = 4.6 [1/uH], Rfrz'ng =

14[1/uH]

gap tends to spread out decreasing gap reluctance. This effect becomes more and more
significant as gap size increases. A usual way to take this effect into account (which
we can call “standard method”) is to add to leg dimensions a length equal to the gap

thickness. For a leg of dimensions a and b with a gap z, gap reluctance is calculated as

T
Re = @ )b+ 2)

(5.3)

An alternative way suggested in [5] (which we can call “fringing reluctance method”) is
to put a fixed reluctance Rfrz'ng in parallel with the total gap reluctance as shown in
Fig. 5.8. This reluctance is constant for a given core. The effect of this reluctance is to
put an upper bound on gap reluctance regardless of gap size. Fig. 5.9 shows a comparison

of gap reluctance values measured on a UI60 core and predicted using the two methods.
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Primary leg gap

gap k1 Ly
fmm] uHl]
Th. | Fzp. | Err. || Th. | Ezp. | Err.
0.52 || 1.0 | 0.96 | 4.2% || 3937 | 3740 | 5.3%
0.95 || 1.0 | 0.95 | 5.3% || 2360 | 2410 | 2.1%
1.30 || 1.0 | 0.94 | 6.4% | 1850 | 1810 | 2.2%
1.45 || 1.0 | 0.94 | 6.4% | 1705 | 1660 | 2.7%

Secondary leg gap

gap k1 L,
[mm] [nH]
Th. | Ezp. | Err. || Th. | Ezp. Err.
0.52 || 0.74 |1 0.75 | 1.3% || 5330 | 4800 | 11%
0.95 | 0.63 | 0.65 3% || 3750 | 3500 | 7.1%
1.30 | 0.57 | 0.57 0% | 3240 | 2930 | 10.5%
1.45 || 0.55 | 0.56 | 1.8% || 3100 | 2800 | 10.7%

Table 5.5: Measurements and predictions using the simplified model in the case of pri-
mary leg gap and secondary leg gap. Reluctance values used in the model are:
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Fringing
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Figure 5.8: Fringing fluz at gap (a) is modelled by a constant reluctance Rﬁ"ing in parallel
with theoretical gap reluctance (b).

The fringing reluctance method is more accurate for big gaps. Therefore, correction for
fringing flux at gaps can be introduced in the models discussed previously by putting in
parallel to each gap reluctance a fringing reluctance R fring If the simplified model is
used, fringing reluctances can also be easily measured. From a single set of measurements
it is possible to calculate values for R;1, Rz2 and R;. Fringing reluctance for leg 1 can

be calculated from
Rz1 =Ry theorl Rfrz'ng

where R is the theoretical value calculated from the well-known formula. In an

r1theor

analogous way, fringing reluctance for leg 2 can be calculated. Since UI and UU cores

are symmetric, the same value of fringing reluctance is used for the two gaps.
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Figure 5.9: Comparison of gap reluctance measurements with predicted values using two
different corrections for fringing fluz.



60



61

Chapter 6

Physical Models

The success of the new reluctance model for UU and Ul cores introduced in chap-
ter 5 is attributed to the fact that it faithfully describes physical fluxes in the magnetic
structure. In this chapter this approach is generalized.

In section 6.1, the difference between physical models and equivalent models is dis-
cussed.

In section 6.2, a procedure to derive “physical reluctance models” for generic gapped
magnetic structures is presented.

In the following sections three examples with experimental verification are presented.

6.1 Equivalent Models and Physical Models

The concept of physical models has been introduced by [9] and further discussed by
[13]. Given an electrical circuit, for example the “black-box” two-port shown in Fig. 6.1,
two different approaches can be taken to describe it.

On one hand, it is possible to develop an equivalent model to describe the external

o—)>— e *]
+ +
v, Two-port v,
Lo — ———0

Figure 6.1: A black-boz two-port.
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behavior of the two-port. This type of model does not try to describe what is actually
present inside the black box, but to give a model that behaves in the same way as the
black box and is indistiguishable from it on the basis of external measurements.

On the other hand, it is possible to develop a physical model that describes what
is physically happening inside the black box. In a physical model there is a one-to-one
correspondence between elements inside the black box and elements in the model. In a
magnetic model, for example, there is a reluctance corresponding to each flux path in
the physical system. Element values in a physical model can sometimes be calculated
as a function of physical quantities inside the black box. For example, a gap reluctance
in a magnetic circuit can be calculated as a function of cross-section and gap thickness.
This type of model can obviously be much more complicated than an equivalent model.

Equivalent models like Thévenin and Norton equivalents are very useful in the study
of electric circuits because they give a simple description from which quantities of interest
can be calculated. The limitations of equivalent circuits are twofold.

First of all, in equivalent models there can be elements that do not make sense
physically. A well-known example is the class of equivalent transformer circuits shown in
Fig. 2.3b, where the transformer ratio a can assume any positive value. It is clear that
transformer ratio a can be chosen in such a way to make inductance Ly; — al s negative.
A negative inductance does not have a physical meaning, even if the equivalent circuit
is still perfectly valid.

The second limitation of equivalent models is that any information on what is present
inside the black box of Fig. 6.1 is lost and, therefore, if something is changed inside the
black box, it is not clear how that will affect the equivalent model. This limitation was
clearly demonstrated in the previous chapter. The old reluctance model of Fig. 5.1 is an
equivalent model, whereas the new reluctance model of Fig. 5.3 is a physical model. It was
shown that a variation of gap (which is a change inside the black box of Fig. 6.1) affects
all reluctances in the old model, but it does not change physical leakage reluctances R;,
R and Ry, in the new model. Therefore, the superiority of the new model lies in the
fact that it is a physical model and physically describes the leakage fluxes in air. In the

new model there is a one-to-one correspondence between flux paths and reluctances in
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the model.

6.2 Procedure to Determine Physical Models

In this section a procedure to find the physical reluctance model for a given magnetic
structure is described. The magnetic structure consists of a high-permeability core with
air gaps to prevent core saturation. Various windings are wound around the core. In
section 5.2 it was shown that the position of gaps with respect to the windings has
a significant effect on electrical characteristics of the magnetic structure. A physical
reluctance model that accurately describes these effects is desired. The assumption is
made that permeability of the magnetic material is infinite. In all reluctance models
discussed so far, this assumption was implicitly made since no core reluctance was used.

The procedure to determine the physical reluctance model can be divided in two

steps:

1. Main core model. Only flux paths in the core material are considered at this
stage. Each winding is modeled by an mmf source, and each gap is modeled by a
reluctance. Since the core material is assumed to have infinite permeability, the only
reluctances present in this model are gap reluctances. Interconnections between
model elements are determined as follows: if there is a continuous magnetic path
in the core between two elements, they are connected together in the reluctance

model.

2. Addition of air reluctances. Air reluctances are added to the main core model
to model flux paths that close in air. A brute-force approach is to put leakage
reluctances between every couple of nodes in the main core model. Except for
extremely simple magnetic structures, this approach leads to models with a big
number of air reluctances, many of which have values significantly bigger than
air gap reluctances and could be neglected without introducing significant errors.
Another problem with this approach is that if the model has too many reluctances,
their value cannot be determined from measurements. A much better approach is

to use engineering judgment to decide which air flux paths are important and which
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ones can be neglected. In case of poor agreement between model and measurements,

the model can be refined by adding more air reluctances.

Various examples are given to illustrate the method and discuss some interesting

special cases.

6.3 Example 1: UU Core with Side Gaps

The core structure shown in Fig. 6.2a is considered. It is a two-winding UU structure
with two side gaps. This structure is different from the ones considered until now due
to gap position. The first step in the procedure is to find the main core model, which
is shown in Fig. 6.2b. It has two mmf sources modeling the two windings and two
reluctances modeling the air gaps. The circuit represents the main flux path inside the
core and through the air gaps. This is the end of the first step of the procedure.

The second step is the introduction of air reluctances. The main core model has
four nodes, A-B-C-D. The brute-force approach of putting an air reluctance between
every two nodes would give six reluctances as shown in Fig. 6.3. The two air reluctances
Rap and R¢p in parallel with gap reluctances Rz and Rzg are the fringing reluctances
introduced in section 5.5 to model fringing flux at gaps. As mentioned in that section,
fringing reluctances can be neglected in the case of small gaps. As has been done in
the previous chapters, fringing reluctances will not be explicitly drawn, but they are
considered as a correction to gap reluctance values.

At this point it is a good idea to look at fluxes corresponding to the various air reluc-
tances to decide whether some of them may be neglected. Fluxes corresponding to Rpc
and R 4c¢ are shown in Fig. 6.3b. It seems reasonable to say that flux ¢4¢ will probably
be bigger than ¢pc. If Rpc (and R4p, by symmetry) are neglected, the resulting re-
luctance model is shown in Fig. 6.4. This approximation will be experimentally verified
in the following.

It is interesting to notice that the two gap reluctances R, and R,y can be lumped
together in a single reluctance, and then this reluctance model is identical to the old
reluctance model of Fig. 5.1. This model is a physical model for the magnetic structure

of Fig. 6.2a, but it is not a physical model for the magnetic structure of Fig. 5.1 due to



65

N, i, (@ @) N, i,

Figure 6.2: Ezample 1: core structure (a) and its main core model (b).
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(d)

Figure 6.3: Ezample 1: an air reluctance is added between every two nodes of the main

core model (a). Fluzes corresponding to Rac and Rpc are shown in (b).

c Raobp

N,i, Ci) R,

Ru (3) Niis
A B

Figure 6.4: Ezample 1: simplified reluctance model.
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Figure 6.5: Example 1: measured values of air reluctance R 4¢ as a function of gap. The
fact that R 5o is constant verifies the model.

the different gap positions.

Measurements to validate the model are performed on a UU60 core with 26 turns
per winding and various values of spacer gap. Since the structure is symmetric, it is
Rac = Rpp and Rz = Rzo. As usual, inductance L; and coupling coefficient k; are

measured. From the model of Fig. 6.4

N2
L=—31 6.1
1= Racll2Ron) (6.1)
Rac
by = ——A9 6.2
V7 Rac + 2Ra (6:2)

From (6.2) an expression for R;; can be derived and substituted in (6.1). From the
resulting expression R 4¢c can be calculated as

N?

-—————(1 Y (6.3)

Rac =

Air reluctance R ¢ is expected to be approximately independent of gap size. A de-
pendence of R 4c on gap may indicate that the model is not accurate enough and that
reluctances Rge and Rap cannot be neglected. The plot of R 4¢ as a function of gap

in Fig. 6.5 shows that R 4¢ is indeed constant and therefore validates the model. Gap
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— Predictions with correction for fring. flux

Figure 6.6: Example 1: gap reluctance R, as a function of gap. Introducing a correction
for fringing fluz (Rfring=18 [ 1/nH]) improves predictions.

reluctance R, is calculated from (6.2) and plotted in Fig. 6.6. In the absence of fringing

flux, gap reluctance is
T1
Ko

and it increases linearly with gap. The experimental data show that Rz increases less

Rz = (64)

than linearly with gap due to fringing flux. A very good fit can be obtained if a fringing
reluctance R g5 = 18 [1/uH] is put in parallel with the ideal gap reluctance given by
(6.4). As explained above, fringing reluctance R fring is represented by reluctances R 4p

and R¢p in Fig. 6.3.

6.4 Example 2: UU Core with Windings Overlapping the Gaps

A UU60 core with spacer gap and windings overlapping the gaps as shown in Fig. 6.7
is considered. In this case the main core model is not obvious because the windings cover
the gaps and, therefore, the relative position of the mmf source modeling the winding and

of the reluctance modeling the gap is unclear. A method to solve this problem is to break
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N, N,

Figure 6.7: Ezample 2: core structure.

up the winding in two parts at the position where the gap is, as shown in Fig. 6.8. The
advantage of this method is that the main core model preserves the physical structure of
the magnetic core. This is important for the second step when air reluctances are added.
For example, if the two voltage sources Nyi;/2 were lumped together as an Nqi; voltage
source between nodes B and C, a node would disappear from the model because nodes
A and F would coincide (capital letters refer to Fig. 6.8b).

At this point air reluctances can be added. Since in the main core model there are
six nodes, which means a maximum of 15 air reluctances, it is important to limit the
number of air reluctances introduced. First of all, it seems reasonable to neglect flux
paths from the left leg to the right leg, i.e., reluctances between nodes A-B and nodes
D-E. Therefore, reluctances Rap, Rag, Rep and Rpg are neglected.

Of the remaining air fluxes, the most important one is ¢; of Fig. 6.8a, which is flux
between the bars of high-permeability material a-3 and ¥-6. This flux is modeled by
reluctance Rop. The remaining air reluctances model air flux in the regions close to
the two windings. Given the symmetry between the two legs, attention is focused on
leg 1. There are five possible air reluctances as shown in Fig. 6.9a. In general, all these
reluctances will be rather large because the copper winding acts as a shield and limits
the air fluxes represented by these reluctances. Since R is surely much smaller than all

these reluctances, a small error is committed if one of these reluctances is moved across
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Figure 6.8: Ezample 2: windings are broken in two parts (a) to give unambiguous main

core model (b).
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Rz1. For example, reluctance Rpr can be moved across R,y so that it appears directly
in parallel with R 4r. The same can be done with R 4¢. This is shown in Fig. 6.9b. By
symmetry it is Rac||RBc = Rar||RBF and, therefore, the two voltage sources can be
combined together as shown in Fig. 6.9c. Air reluctance 2(Rac||RBc) appears directly
in parallel with voltage source Nyi;. Reluctance R 4p is the gap fringing reluctance and,
as usual, it is merged with R;;. The final reluctance model with a simplified notation
for reluctances is shown in Fig. 6.10, which is identical to the new model for UI cores
introduced in section 5.3.

To validate the model measurements are performed on a UU60 core with 160 turns per
winding. As mentioned above, R;; and R, are expected to be rather large. Therefore,
it seems legitimate to neglect them in a first attempt to model this magnetic structure.
The resulting model is identical to the simplified new model of section 5.4.1, and it has
only a single leakage reluctance R;. Values of this reluctance as a function of gap as
obtained from the measurements are shown in Fig. 6.11. This reluctance is approxi-
mately constant, thereby validating the model. Gap reluctance R, is also calculated
from the measurements and, as in Example 1, a correction for fringing reluctance is in-
troduced (Rfring = 20 [1/pH]). Comparison of predictions and measurements is shown

in Fig. 6.12.

6.5 Example 3: UU Core with Two Side-by-Side Windings on the Same
Leg

As alast example, the UU60 core structure with spacer gap and two windings shown
in Fig. 6.13a is considered. In this case the two windings are on the same leg in a side-by-
side arrangement. In order to maximize the leakage flux, an empty space is left between
the two windings. In any case, the leakage is expected to be smaller than in the case of
Example 2, where the two windings were on different core legs.

The main core model is shown in Fig. 6.13b. Important air flux paths are shown
in Fig. 6.13a. Notice that fluxes ¢;; and ¢i; are leakage fluxes of winding 1 and 2
respectively, whereas flux ¢; represents mutual flux that closes in the air. These fluxes

are modeled by reluctances R;;, R;; and R; in the complete reluctance model of Fig. 6.14.
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Figure 6.9: Ezample 2: complete reluctance model for a core leg (a) and successive sim-

plifications (b)-(c).
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Figure 6.10: Ezample 2: final reluctance model. Measurements will show that reluctances
Ry and Ry, may be neglected.
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Figure 6.11: Ezample 2: leakage reluctance R; as a function of gap. The fact that R,
is approzimately constant justifies the approzimation of neglecting Ry and
Ria.



74

R.’L‘I

7]

0 | | | i | 1
0 3.5
gap [mm] »

Figure 6.12: Frample 2: comparison of measurements and predictions for Rz as a func-
tion of gap.

Given the symmetry of the system, reluctances R;; and R, are equal.

Measurements are performed for different values of spacer gap. From these mea-
surements leakage reluctance R;; is calculated as shown in Fig. 6.15 and it is indeed
approximately constant. It should be evident from Fig. 6.14 that it is not possible to
distinguish between reluctances R;1, Rz2 and R;. All that can be measured is the total
reluctance in series with the two mmf sources, that is reluctance R gopjes = Re1+Raz2|| R
A possibility to check the measured value of this reluctance comes from Example 2 in
which the same core was used and reluctance R; was found to be R; = 6 [1/uH]. Us-
ing also the value of fringing reluctance found in Example 2 (Rfring = 20 [1/pH]) and
knowing gap thickness, it is possible to estimate reluctance R g.pjes- The comparison of
measurements and predictions in Fig. 6.16 shows a reasonably good agreement. The fact
that values of R; obtained from a different set of measurements with a different type of
windings could be succesfully used shows that air reluctances are approximately constant

for a given core geometry.
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Figure 6.13: Example 3: core structure (a) and its main core model (b).
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Figure 6.15: Ezample 3: leakage reluctance R; is approzimately constant as expected.
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Figure 6.16: Ezample 3: reluctance Rz + Ry2||Ri as a function of gap: comparison of
measurements and predictions.
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Chapter 7

Multiple Winding Structures

In certain switching converter topologies there are more than two inductors that have
proportional voltage waveforms when the converter operates in steady state. Typical
examples are multiple-output forward converter and isolated Cuk converter [4]. All these
inductors can be coupled together and zero current ripple can be achieved in all but one
of them. For example, in the case of an isolated Cuk converter, all ripple can be steered
into the isolation transformer, so that input and output inductor have approximately
constant current.

In the first section, the zero ripple condition is generalized to multiple-winding struc-
tures.

In the second section, commonly used multiple-winding structures are considered and
their physical reluctance models are established using the procedure of section 6.2 and

experimentally verified.

7.1 Generalization of Zero Ripple Condition to Multiple Winding Struc-

tures

In this section a procedure to find the zero ripple condition for a generic multi-winding
structure is briefly described.

First of all, a definition is needed. In section 2.1.3 coupling coefficients k; and k; for
a two-winding structure were defined (a slightly different notation is used here) as
where ¢; is the flux linking the i-th winding. Coupling coefficient k;, for example, is

the ratio of coupled flux to total flux with the secondary winding open (i3 = 0). This
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Figure 7.1: Black-boz reluctance model for an n-winding structure (a). Zero current
ripple condition is applied to all windings except the first one by shorting the
mmf sources (b).

definition can be generalized to the n-winding case. For each winding n — 1 coupling
coefficients with respect to the remaining windings can be defined. For example, the

coupling coefficients for winding 1 are

kyj = 2] (7.2)

P1 lig=iy=-min=0
where ¢; is the flux linking the j-th winding.

The zero ripple condition is now derived for a multi-winding structure with n wind-
ings. The special case of identical voltages applied to all windings is considered. The
case of proportional voltages can be reduced to this case by voltage scaling using the
winding turns ratio. The multi-winding structure is assumed to have n windings and
ripple is steered into winding 1. The starting point of the procedure is a reluctance model
of the magnetic structure, which is represented by the generic n-port in Fig. 7.1a. Zero

ripple conditions ¢; = 0, j = 2...n, are imposed as shown in Fig. 7.1b by shorting the
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corresponding mmf sources.

Faraday’s law applied to the k-th winding gives

1
= — dt 7.3
bk Nk/Uk (7.3)
Substituting (7.3) into (7.2) gives
1] = e .
! NLl-fvldt

The condition of identical voltages on all windings gives
kij = , j=2.n (7.5)
If the n — 1 conditions (7.5) are satisfied, all ripple is steered into winding 1.

It is important to realize that all n — 1 equations (7.5) must be satisfied for zero
ripple. If one of these conditions is not satisfied, in general all windings will have some
ripple. For example, if the zero ripple condition is not satisfied for winding 2, then the
mmf source Nyi; cannot be set to zero as in Fig. 7.1b. Since the zero ripple conditions
are derived under the assumption that all mmf sources but one are zero, they are not

valid any more and in general all windings will have some ripple.

7.2 Reluctance Models for Multiple-Winding Structures

In section 6.2 a procedure to determine the reluctance model of a gapped magnetic
structure was given. The procedure was applied to three different two-winding core
structures and the resulting reluctance models were experimentally verified. In this
section three more examples are given, all of them three-winding structures. These
examples cover the most common practical cases.

As explained in chapter 4, high-leakage magnetic structures are desirable for zero-
ripple applications, because leakage inductance reduces the sensitivity of the zero-ripple
condition to nonidealities. For this reason, in the structures described in the previous
chapters, windings are placed on different core legs.

In Example 4 the natural extension of this approach, a three-legged structure with a

winding on each leg, is considered. Standard cores like EE and EI cores can be used.
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Sometimes it is desirable to put more than one winding on a core leg, especially if
there are many windings and it becomes impractical to use a core with so many legs.
Since loose coupling is desirable, windings should be physically placed as far as possible.
Two different winding arrangements are considered.

In Example 5 a UU core is used with one winding on a leg and the other two windings
on the other leg in a top-bottom arrangement.

In Example 6 the same UU core is used but the two windings on the same leg are in
a side-by-side arrangement.

Experimental verification of the reluctance models is provided by plotting predicted
and measured values of inductances and coupling coefficients as a function of gap thick-
ness. In the previous chapter experimental verification was done in a different way:
reluctances in the model were calculated from measurements and the verification was
done as follows for gap reluctances and for air reluctances. Gap reluctances were com-
pared with predicted values based on gap thickness and corrected for fringing flux. Air
reluctances were plotted as a function of gap thickness to show that they are approxi-
mately constant as expected. These verifications ensured good agreement between model
and measurements because the number of degrees of freedom in the model was the same
as the number of independent measurements in the magnetic structure. All examples
in the previous chapter were symmetric two-winding structures, which allow two inde-
pendent measurements, and the reluctance models had two degrees of freedom, an air
reluctance and a gap reluctance. In the examples in this chapter the number of degrees of
freedom in the model is usually smaller than the number of independent measurements

in the magnetic structure. A generic three-winding structure can be described by the

equations
" Lu L Lis || %
v | = | Liz Ly Las || 42
v3 Liz Ly La || &2

Since the inductance matrix is symmetric, the structure has six degrees of freedom. In
some cases considerations of symmetry allow the number of independent parameters to
be reduced even more. For example, in the case of the EE core of Example 4, there is a

symmetry between the two outer legs. If the windings on these legs are called winding 2
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and 3, then
Lig = Ly3 Lyy = L33

and therefore the structure has only four degrees of freedom. In the reluctance model
for this structure, there are only two unknowns (assuming the gap thickness is known):
leakage reluctance R; and fringing reluctance Rfrz'ng' As usual, gap reluctances are
calculated from gap thickness, leg cross-section and fringing reluctance.

The two unknowns in the model can be determined from two of the four independent
measurements, but there is no guarantee that the model will correctly predict the values
of the other two independent measurements. For this reason, model verification in this
chapter is done by comparing measured quantities with their predicted values from the

model using constant values for reluctances R; and Rfrz'ng'

7.2.1 Example 4: EE Core with a Winding on Each Leg

The EE core with a winding on each leg and spacer gap is shown in Fig. 7.2. The
main core model is shown in Fig. 7.3a. As discussed in Example 2 of the previous chapter,
very little leakage flux can leak through the winding as flux ¢ of Fig. 7.2 does. If this
type of leakage flux is neglected, the only other possible leakage flux path is of the type
of flux ¢;. This flux path corresponds to a leakage reluctance between nodes A and B in
the main core model. The complete reluctance model is shown in Fig. 7.3b. Notice the
simplicity of this model that has only one leakage reluctance R;.

Measurements were performed on an EE60 core with 120 turns per winding. Leakage
reluctance and fringing reluctance (the same value of fringing reluctance is used for
all gaps for simplicity) are found to be R; = 6 [1/pH] and Rpypg = 17.5 [1/uH].
Comparison of measured and predicted values of inductances and coupling coefficients
are shown in Fig. 7.4. The agreement between calculated and measured values is very

good.

7.2.2 Example 5: UU Core with Top-Bottom Winding Arrangement

The structure under consideration is a spacer-gapped UU core with a winding on one

leg and two windings on the other leg in a top-bottom arrangement as shown in Fig. 7.5.
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Figure 7.2: Example 4: spacer-gapped EE core with a winding on each leg.

A paper spacer is inserted between winding 2 and winding 3 to increase leakage.

The main core model is shown in Fig. 7.6a. Different types of leakage flux are shown
in Fig. 7.5. It is interesting to notice that the path of leakage flux ¢, is partially inside
the core and it crosses the leg air gap. Therefore, the corresponding leakage reluctance
Ry, is in parallel with the series combination of mmf source Nzi; and gap reluctance
Rz2 (nodes A and C) and not directly in parallel with the mmf source (nodes B and
C). Another interesting observation is that flux ¢;3 is completely in air and therefore the
corresponding reluctance R;3 is expected to be rather big.

The complete reluctance model is shown in Fig. 7.6b. Notice that if winding 3 is
left open, i.e., mmf source Naiz is shorted, the model becomes identical to the model
of Example 2 in the previous chapter with R;|g, , = Ri||Riz. This is hardly surprising
since the magnetic structure of this example becomes identical to the one of Example
2 if winding 3 is removed. Since a spacer gap is used, gap reluctance Rz is equal to
R 2 and the model with winding 3 removed is symmetric. Therefore, it is expected that
Ly = Ly and ki3 = k1. Measurements performed on a UU60 core with 60 turns per
winding showed that this is indeed the case.

From the measurements it was found R; = 5.6 [1/pH], Rip = 60 [1/uH], R;3 =
190 [1/puH] and R fring = 25 [1/uH]. Notice that as expected R;3 > Ry, Ri2. Therefore,
Ri3 could be neglected without introducing significant errors. Comparison of measured

and predicted values of inductances and coupling coefficients is shown in Fig. 7.7.
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Figure 7.3: Ezample {: main core model (a) and complete reluctance model (b).
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Figure 7.4: Ezample 4: comparison of measured and predicted values of inductances Ly,
Ly and coupling coefficients ki3, ka3.
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Figure 7.5: Ezample 5: spacer-gapped UU core with two windings on the same leg in a
top-bottom arrangement.
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Figure 7.6: Ezample 5: main core model (a) and complete reluctance model (b).
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Figure 7.7: Ezxample 5: comparison of measured and predicted values of inductances Ly,
L3 and coupling coefficients k13, ka3 and ks;.
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7.2.3 Example 6: UU Core with Side-by-Side Winding Arrangement

The structure under consideration, a spacer-gapped UU core with a winding on one
leg and two windings on the other leg in a side-by-side arrangement, is shown in Fig. 7.8.
In this case we will see that the reluctance model obtained following the usual proce-
dure with the usual approximations is not very accurate and a refinement is necessary.
An improved model with an additional leakage reluctance gives good agreement with
measurements.

The main core model is shown in Fig. 7.9a. Different types of leakage flux in air are
shown in Fig. 7.8. The complete reluctance model is shown in Fig. 7.9b.

Given the symmetry of the core structure, it is Rz1 = Re2 and Rjp = Ry3. Notice

also that from this reluctance model it follows that
ka1 = ki2ka3 (7.6)

This is true because R;1 = Ryz and

k _1?’_’___
12 Ri+ Raa
ks = Rio
RIZ + Rz2 + RxllIRl
ky = R Riz

Rl + Rxl RIZ + RJ;Z + R:L‘IHRI

If measured data do not satisfy equation (7.6), then predictions from the model of
Fig. 7.9b will be wrong regardless of the reluctance values used.

Measurements were performed on a UU60 core with 50 turns per winding. Fig. 7.10
shows a plot of quantity ky;/(k12kz3), which the model predicts to be unity (equation
(7.6)). Measured values are as much as 30% off. Using the reluctance model of Fig. 7.9b
would therefore give at least a 30% error. A way to improve the model is to add a
reluctance Ry in parallel with mmf source Njiy as shown in Fig. 7.11. Calculated values
of reluctances in this model are R; = 8 [1/uH], Ry = 51 [1/pH], Rz = 17.5[1/pH] and
R fring = 36 [1/pH]. Comparison of measurements and predictions is shown in Fig. 7.12.
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Figure 7.8: Ezample 6: spacer-gapped UU core with two windings on the same leg in a
side-by-side arrangement.
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Figure 7.9: Ezample 6: main core model (a) and complete reluctance model (b).
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Figure 7.10: Ezample 6: the reluctance model of Fig. 7.9 predicts ka1 = ki2ka23. Measured
values of ka1 /(k12ke3) show that the model is off by as much as 30%.

Figure 7.11: Ezample 6: refined reluctance model with additional leakage reluctance Ry;.
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Figure 7.12: Ezample 6: comparison of measured and predicted values of inductances Ly,
Ly and coupling coefficients k13, ka1.
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Chapter 8
Zero Ripple Condition Sensitivity and New

Coupled-Inductor Structure

In this chapter a new coupled-inductor structure is proposed that does not need turns
ratio adjustment for zero current ripple. In fact, the new structure achieves zero current
ripple with the same number of turns on the two windings, significantly simplifying
design. Another advantage of the new structure is that it has greatly reduced radiated
noise. It is also shown that sensitivity of the zero ripple condition is as good as the
sensitivity of conventional coupled-inductor structures that use the same magnetic core.

In section 8.1, a sensitivity analysis of the zero ripple condition is presented based
on the the new reluctance model of chapter 5. The main result is that sensitivity of the
zero ripple condition depends on the leakage reluctance of the core. Since the leakage
reluctance of a given core is constant and does not depend on gap position (see chapter 5),
the sensitivity of the zero ripple condition is also independent of gap position for a given
core.

In section 8.2, the new coupled-inductor structure is proposed and its advantages and

disadvantages discussed.

8.1 Sensitivity Analysis

As discussed in chapter 4, in a real-life converter application coupled inductors de-
signed for zero current ripple will inevitably have some non-zero ripple due to nonideal-
ities, which will be called residual ripple.

The coupled-inductor structure can be represented by a two-port as shown in Fig. 8.1.
As usual, coupled inductors are designed for zero current ripple on the secondary, i.e.,

port 2. Residual ripple is the current i; of Fig. 8.1. Voltage sources v; and vz, not
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Figure 8.1: Two-port representing coupled-inductor structure.

necessarily identical, represent the voltage waveforms imposed by the converter. The

residual ripple can be divided in two components as shown in Fig. 8.2. The causes of

these two ripple components are different and can be so identified:

1. Zero ripple condition mismatch. The zero current riﬁple condition will not be
perfectly met in a real design. A common reason for this is that one is restricted to
integer number of turns. Another common reason is that the gap thickness may not
be exactly equal to the value required by the zero ripple condition. Therefore, this
current ripple component is due to nonidealities in the coupled inductors themselves

and does not depend on the rest of the converter.

. Applied voltage mismatch. The switching converter will not apply identical voltage
waveforms to the two windings of the coupled inductors. Differences may be due to
non-zero voltage ripple on capacitors, resistive drops on the coupled inductors due
to DC current components, noise due to the switching action and so on. Therefore,
this current ripple component is due to reasons external to the coupled inductors
and depends on the converter design. For example, the voltage ripple on the

capacitors can be reduced by increasing capacitor size.

Calculation of Residual Ripple from Inductance Model

Fig. 8.3a shows the reluctance model for standard UI cores derived in chapter 5, and

Fig. 8.3b shows the inductance model obtained by duality. Inductances in this model

have the following values:

N?
Rzl

L:xl =
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Figure 8.2: Residual ripple is divided into two components: residual ripple due to zero
ripple condition mismatch (a) and residual ripple due to applied voltage mis-

match (b).
N2
Ly = =
? R:c2
N2
L[ = —7—2—11—

The two applied voltages v; and v; are not identical due to the voltage mismatch
described in the previous section. In order to evaluate current i3, the Thévenin equivalent
of the circuit to the left of points A-B is calculated as shown in Fig. 8.4a.

In Fig. 8.4b the primary is scaled by the turns ratio and reflected to the secondary

side. The two voltage sources can be combined together as
Veg = V2 — ki —v

This voltage source can be divided in two components representing zero ripple condition

mismatch (veq1) and applied voltage mismatch (veg2).

N
Veqg = U1 (1 —kl_]\f_j> + vy — 1y
| EE———

Vegq2
Veq1
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(b)

Figure 8.3: Reluctance model for standard UI cores (a) and inductance model obtained
by duality (b).

Inductance Leg is
N3
Ri+ Rz2

The value of inductance L., is dominated by leakage reluctance R; because in a normal

Leg= (8.1)

design it is R; > Raza.

The residual ripple current 2 is

) 1
i = Leq/ Veq dt (8.2)

The residual ripple due to zero ripple condition mismatch and applied voltage mismatch
can be estimated from 8.2.

From (8.2) it is evident that increasing the value of L, reduces the residual ripple
i3. In other words it can be said that a coupled-inductor structure with high leakage
has less sensitivity of the zero ripple condition to nonidealities. The same conclusion has

been reached in chapter 4.
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Figure 8.4: Simplifications of the model of the previous figure to calculate residual ripple
i.

8.2 New Core Structure

A new core structure for zero current ripple with same number of turns on the two
windings is introduced here. The simplification in the design resulting from the fact
that no adjustment of number of turns is needed for zero ripple is paid for in terms of
zero ripple condition mismatch bigger than the one obtainable with other structures.
It is shown, however, that the sensitivity to applied voltage mismatch is approximately
the same as in other structures. Since applied voltage mismatch is always present in
switching converter applications, the zero ripple performance of the new structure can
be comparable to that of conventional structures.

From the zero ripple condition

Ny

b= (8.3)
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Figure 8.5: New structure gives zero current ripple on seconddry side with equal number
of turns in two windings.

it is evident that the same number of turns can be used for the two windings if primary

coupling coefficient k; is unity. From the reluctance model of Fig. 8.3a, it is

R

b= Rz

Therefore, if R,2 = 0, i.e., no gap on the secondary leg, coupling coefficient is unity and
the zero ripple condition (8.3) becomes N; = N, identical number of turns on the two
windings.

It should be remembered however that the reluctance model of Fig. 8.3a was obtained
by neglecting two leakage reluctances, namely R;; and R;z, directly in parallel with the
mmf sources (see section 5.4.1). Due to these reluctances, in the case of primary leg gap,
coupling coefficient k; is less than unity. It can be easily seen that k; will be very close
to unity if neglected reluctance R;; is much bigger than primary side reluctance R.;.
Therefore, a core structure with a big value of leakage reluctance R;; is preferable for
this application. From Table 5.3 it appears that a UU-type core satisfies this requirement
better than a Ul-type core. The suggested core structure for zero current ripple with

identical number of turns is shown in Fig. 8.5.
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8.2.1 Sensitivity of New Structure

The proposed structure exhibits almost ideal coupling between primary and secondary
when driven from the primary side (k; ~ 1). In the past this kind of structure was not
used for fear of high sensitivity of the zero ripple condition due to the good coupling
between the two windings. It is therefore natural to question the sensitivity of the zero

ripple condition in this case. The question may be asked in the following terms:

Given a certain magnetic core, zero current ripple coupled inductors can be
realized using different gap arrangements. For example, primary gap, sec-
ondary gap and spacer gap may be used. The primary gap case is the new
structure proposed here. The question is: is the zero ripple condition sensi-

tivity for this case worse than for the other gap arrangements?

As explained in section 8.1, the sensitivity of the zero ripple condition depends on the
value of inductance L., in Fig. 8.4b, which limits the residual ripple. This inductance is
given by equation (8.1). Since reluctance R; is constant for a given core and does not
depend on gap arrangement as shown in section 5.4, inductance L., will be approximately
the same for the three gap arrangements. Therefore, the answer to the question above

on sensitivity is:

the sensitivity of the zero ripple condition is as good as for conventional gap

arrangements.

This statement seems to be contradicted by the fact that the structure of Fig. 8.5 has
a primary coupling coefficient k; approximately unity, but in reality this means only that
if the primary winding is driven, there is no leakage flux. The fact is that leakage needed
for low sensitivity is all on the secondary side. In fact, the secondary coupling coefficient
is far from unity. This can also be seen from the inductance model of Fig. 8.3b with
L,z = o (no secondary gap). This model is identical to the usual transformer model
with no primary leakage inductance, magnetizing inductance equal to L;; and secondary

leakage inductance equal to L;.
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8.2.2 Advantages and Disadvantages of the New Structure

One advantage and one disadvantage of the new structure have already been discussed
above. The advantage is that design is simplified by the fact that the two windings have
the same number of turns. The disadvantage is that zero ripple condition mismatch is
bigger than for other gap arrangements.

Another disadvantage is that this structure is inherently less efficient than, for ex-
ample, a secondary leg gap structure in the following sense. For the same design re-
quirements in terms of primary inductance L; and same DC currents I; and I, the new
structure always has bigger DC flux than a secondary leg gap structure realized using the
same core and the same number of primary turns N;. This fact is proved in chapter 9.

This structure, however, has a definite advantage in the case of a design with very
small number of turns (e.g., a design with big DC currents in which minimization of
copper losses is important) because it avoids the “integer number of turns” problem
discussed in section 9.4. This problem will be illustrated with an example.

Assume a primary number of turns N; = 2 appears adequate for the design. The
secondary number of turns must satisfy zero ripple condition (8.3) and must also be an
integer number. If coupling coefficient k; is less than unity, then N; must be bigger than

N; and possible integer values for N are
Ny =3,4,5...

The smallest possible number of turns is Ny = 3. Zero ripple condition (8.3) requires
k1 = 2/3. This means that one third of the flux generated by the primary must be
leakage flux. The only way to achieve this is to put a big gap to reduce the permeance
of the flux path in the core. Notice that gap size is dictated by the zero ripple condition
and not by DC saturation. As a result inductance L; will be much smaller than it could
be based on DC flux saturation and the design will be rather inefficient. Increasing
secondary number of turns N; makes the problem even worse.

No such problem exists with the new structure because N3 is equal to N;.
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8.2.3 Experimental Verification of New Structure Sensitivity

In order to compare the new structure with other structures, the following three zero
ripple coupled inductors are built using a UU60 core. In order to simplify comparison,
the primary number of turns N; and the total gap are the same in the three cases.
Number of turns is adjusted for zero ripple on the secondary side. Characteristics of the

three designs are:
e New structure N; =30 Ny =30 z1 = 0.55mm zo =10

o Secondary gap N; =30 No=41z, =0 zo = 0.55mm
e Primary gap Ny =30 Ny =36z, =027Tmm z9 = 0.27Tmm

The two types of residual ripple of Fig. 8.2 are considered separately and measure-
ments are shown in Table 8.1. The residual ripple due to zero ripple condition mismatch
is quantified by the ripple rejection ratio #; /i; measured under the conditions of Fig. 8.2a.
This ratio represents the ripple reduction due to the coupled inductors. As expected the
ripple rejection ratio is worse for the new structure due to the non-perfect coupling. The
residual ripple due to applied voltage mismatch is quantified by inductance L., that
limits it. This inductance is the secondary inductance measured with short-circuited
primary (see Fig. 8.2b). Notice that this inductance is in the same range in the three
cases verifying the claim made above that the new structure has zero ripple condition
sensitivity as good as the other structures normally used. Differences are due to different
secondary number of turns and to the R, term in equation (8.1). Inductance L., can be
calculated since leakage reluctance R; for a UU60 core has been measured (see Table 5.3).
The agreement between measurements and predictions is very good. A comparison of
the performance of these three coupled-inductor structures in a switching-converter ap-

plication is presented in section 9.4.
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Leg
/12 (nH]

meas. | pred.

New Structure 13 0.16 | 0.17

Secondary Gap | 64 0.23 | 0.23

Primary Gap 95 0.19 | 0.20

Table 8.1: Comparison of three magnetic structures. Ripple rejection ratio i1/i; and

inductance L., that limits residual ripple are measured for the three gap ar-
rangements.
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Chapter 9

Design of Coupled Inductors

In this chapter a design procedure for zero ripple coupled inductors is given based on
the reluctance model of chapter 5.

In section 9.1, design equations for arbitrary gaps are presented.

In section 9.2, three special cases of practical interest are considered and design
procedures are presented. One of the special cases is the new coupled-inductor structure
introduced in chapter 8.

In section 9.3, a method to estimate core cross-section needed for a given design is
described.

In section 9.4, the three design procedures are applied to a practical coupled-inductor

design. The coupled inductors are then built and their performance compared.

9.1 Design-Oriented Analysis of Two-Winding Gapped UI Cores: Gen-
eral Case of Arbitrary Air Gaps in the Two Legs

The design problem for coupled inductors can be defined as follows. The coupled-
inductor structure considered here is shown in Fig. 9.1a and its reluctance model is shown

in Fig. 9.1b. Gap reluctances are given by

Ra = poS
T2
7 = — 1
Ra2 oS (9.1)

where S is the core cross-section. In the case of big gaps, a correction for fringing
reluctance can be introduced as described in section 5.5. The inductance model obtained

by duality from the reluctance model is shown in Fig.9.1c. Inductances in this model are
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given by

N?

L.'z:l - Ra:l
N2

Lyg = —2 9.2

2 Roa (9.2)
N2

L = =2

! R

It is assumed that the magnetic core has already been chosen and its cross-section
S, leakage reluctance R; and maximum allowable flux density Bps are known. From
the converter design specifications, peak currents I; and I; in the coupled inductors
are known. These currents determine peak flux in the core as shown in Fig. 3.1. Zero
ripple current in the secondary is desired. There are four degrees of freedom in the
design: primary and secondary number of turns N; and N,, primary and secondary gap
thicknesses r; and z5.

Design specifications are as follows:
1. Zero current ripple condition on the secondary must be satisfied.

2. Primary inductance L; must have specified value. L; is designed to give desired

current ripple in the primary.

3. Flux density everywhere in the core must be below saturation value Bps. This

means that fluxes ¢; and ¢; on both core legs must be below saturation level.

9.1.1 Zero Ripple Condition

The zero ripple condition (3.4) is

M

=% (9.3)

ki

Coupling coefficient k; is the ratio of secondary flux ¢, and primary flux ¢; under the
condition of open-circuited secondary. This condition is equivalent to shorting the mmf

source Nyio in the reluctance model. From the reluctance model it follows that

Ry

k= ——mm
! RI+R1’2

(9.4)
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Figure 9.1: Two-winding UI core with different gaps on the two legs (a), its reluctance
model (b) and its inductance model (c).
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From (9.3) and (9.4) the zero ripple condition is

~M R

—_— ——— 9.5
Ny Ri+ Rz (9:5)

9.1.2 Primary Inductance L,

Primary inductance Ly can be obtained from the inductance model of Fig. 9.1c

Ly = Ln||(Le2 + Li) (9.6)
Substituting (9.2) into (9.6)
N2
L= o 9.7
! Rl‘l + RzZHRI ( )

9.1.3 Saturation Condition

From the reluctance model peak fluxes in the two legs can be calculated (using, for

example, superposition) as

51 = NI NoIp Ry (9.8)
Rz‘l + RIZHRI R:c2 + RJJIHRI RI + R:vl
ML R NaI,
— + 9.9
¢2 Rzl + RJ;Z”RI RI + RIZ R:ﬂ + RJ:IHRI ( )
In appendix B it is shown that for a generic coupled inductor structure it is
L, ( N, )
=— L+ k=T 9.10
é1 ~ \n + k1 N, (9.10)

This result is completely general and is valid for any two-winding coupled-inductor struc-
ture. The only assumption made is that the structure is a linear reciprocal two-port. If

the zero ripple condition (9.3) is satisfied, (9.10) becomes
$1= (L +1) (9.11)

This equation can be used instead of equation (9.8). The advantage is that equation
(9.11) contains a single unknown, primary number of turns N;. This equation was
derived in the past [5] for a specific reluctance model and was the key that allowed to

obtain design equations for coupled inductors in closed form.



109

Another observation is that no such simple equation exists for secondary flux ¢;. It
is possible to write an equation similar to (9.10) by making an index substitution 12,

2—1, but the resulting equation

Lz( M )
= 2 (L4 ko—T
&2 A 2+ 2N21

is not useful because it is in terms of the secondary side inductance L; and the secondary
coupling coefficient k3, both unknown.

In order to avoid core saturation, peak fluxes must satisfy conditions

¢ < BuS

¢2 < BuS . (9.12)

In order to fully utilize the core material, these equations can be taken as equalities for
the design.
9.1.4 General Design Problem
At this point, the design problem for coupled inductors can be summarized as follows:
o Unknowns: N;, Nj, 1, T2
e Equations:

— zero ripple condition (9.5)
— inductance condition (9.7)
~ two saturation conditions: equations (9.12) with peak fluxes given by equa-

tions (9.8) and (9.9). Equation (9.8) can be substituted by equation (9.11).

These equations are rewritten here for convenience:

Mo R

_ ko 9.13
N, Ri+ Rz (9.13)
N2
L, = ————1 9.14
LS Rt Rl (9-14)
NI NI
BuyS » ¢1=——mt Mol Ry (9.15)

B R:vl + R:L‘Z”RI RzZ + R.’L‘IHRI RI + Rzl
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L
or ¢ = "‘A‘%(Il + I3)

NI Ry NoI,
Rzl + R.’L‘2“RI RI + R.’L‘2 R:cZ + RxIHRI

ByS > ¢ =

(9.16)

The design problem becomes well-defined if we take the two inequalities (9.15) and (9.16)
as equalities, so that there are four conditions and four unknowns. As mentioned earlier,

these conditions guarantee full core utilization.

9.2 Design Procedure for Special Gap Arrangements

It should be pointed out that the core structure of Fig. 9.1a with greatly different

gaps on the two legs is rather impractical. Special cases of practical importance are
1. secondary leg gap = z; =0
2. primary leg gap = 22, =0
3. spacer gap => 1 = I3

The second case is the new coupled-inductor structure proposed in chapter 8. In all
these cases a degree of freedom in the design is lost because the two gaps cannot be
independently chosen. Therefore, it is not possible to satisfy both (9.15) and (9.16)
saturation equations as equalities. One of the two legs will have an higher flux density
and the best core utilization is obtained when this leg reaches the maximum flux density
Bpr. Only one of the saturation equations is satisfied as an equality. It is important
to apply the saturation condition to the leg with higher flux density. If the wrong leg
is chosen, the other leg will saturate. In the following sections design equations (9.13),
(9.14), (9.15) and (9.16) are specialized for the three gap arrangements listed above. It
is then determined which leg saturates first and finally closed-form design equations are

given.

9.2.1 Secondary Leg Gap

For the case of gap concentrated on the secondary leg as in Fig. 9.2, it is

z1=0 = Rzl =0 (9.17)
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Figure 9.2: Two-winding Ul core with secondary leg gap (a), its reluctance model (b) and
its inductance model (c).
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Equation (9.17) is substituted into design equations (9.13), (9.14), (9.15) and (9.16),

giving
% - le;z:zﬂ (918)
L = R;ij (9.19)
BuS > ¢ = R]::HI;Q, + 17\;2;2 (9.20)
or ¢ = %(Il+12) (9.21)
BuS > ¢p= b Ri_ , Naly (9.22)

" RoalRi Ri+Rez Reo
From inspection of equations (9.20) and (9.22), it is evident that inequality (9.20) is more
restrictive. This means that the primary leg always saturates first. This fact can also be
seen from Fig. 9.2b because fluxes are positive in the directions shown and primary leg
flux ¢, is the sum of secondary leg flux ¢, and leakage flux ¢;. Therefore, the saturation
design equation to be used is equation (9.21) taken as an equality.

At this point, closed-form design equations can be derived from (9.18), (9.19) and
(9.21).

Design Procedure for Secondary Leg Gap

1. Primary number of turns N, is calculated using (9.21).

_ Li(h 4+ L)

Ny = 9.23
O (9:23)
2. Secondary leg reluctance Ry is calculated from (9.19).
Rag= — 1 (9.24)
7 Li/N? - 1/R, '
From R, the gap thickness z2 can be calculated using (9.1).
3. Finally, the secondary number of turns Ny can be calculated from (9.18).
Ny = N, Bt Rar (9.25)

R
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9.2.2 Primary Leg Gap

For the case of gap concentrated on the primary leg as in Fig. 9.3, it is
22=0 = Ryp=0 (926)

Equation (9.26) is substituted into design equations (9.13), (9.14), (9.15) and (9.16),

giving
N, = N, (9.27)
NZ
Ly = ! 9.28
1 R (9.28)
NI Ny, R
ByS > = 9.29
MS 2z $ Rz RalRi Ri+Ra ( )
or ¢1 = £—1— (Il + Iz) (930)
Ny
NI Nyl
B > = 9.31
MS - ¢2 Rzl + Ra:lllRl ( )

From inspection of equations (9.29) and (9.31), it is evident that inequality (9.31) is more
restrictive than (9.29), which means that the secondary leg always saturates first. This
fact can also be seen from Fig. 9.3b because fluxes are positive in the directions shown
and it is

P2=h +h (9.32)

Therefore, the saturation design equation to be used is equation (9.31) taken as an
equality.

A couple of steps are needed to put this equation in a form suitable for design. First
of all, equation (9.27) is substituted into equation (9.31) to eliminate N;. Equation

(9.31) can then be rewritten in the form of equation (9.32) as

Ni(L + 1) NI
ByS = .
M2 Ror + R (9.33)
b2 |
1 o)
Substituting (9.30) into (9.33)
Ly NiIy
B = —(L + I 9.34
MS N1( 1+ L)+ R ( )

S —
b2 —

) ol
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Figure 9.3: Two-winding Ul core with primary leg gap (a), its reluctance model (b) and
its inductance model (c).
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Notice that equation (9.34) is a second-order equation in Nq. It can be easily checked
that the two solutions are both positive. Therefore, it is not immediately evident which
one should be chosen. It turns out that the solution with the smaller number of turns
gives a more efficient design.

To understand what happens it can be helpful to plot equation (9.34) as a function
of N; as shown in Fig. 9.4. The horizontal line is the saturation flux By S. The two
solutions are the intersections of the two curves, which are Ny = 2.8 and Ny = 78. In
Fig. 9.5 the two components ¢; and ¢; are plotted separately. Their sum gives the total
flux ¢o. It can be seen that for Ny = 3.1 coupling flux ¢; is much bigger than leakage
flux ¢;. On the other hand, for N; = 78 leakage flux ¢; is much bigger than coupling
flux ¢; and a big number of turns is needed to obtain the desired inductance L;. The
second design with such a big number of turns is very inefficient due to copper losses in
the windings. For this reason, the solution with smaller number of turns should always

be chosen.

Design Procedure for Primary Gap

1. Primary number of turns N; is calculated from the second-order equation (9.34).

As explained above, the smaller solution is chosen.

_ BuSR (BMSR,)2 ( 11>
N = o, —\/ oL LiR, 1+12 (9.35)

2. Primary leg reluctance Rz is calculated from (9.26).

_ N

= 9.
- (9:36)

R:cl
From R, the gap thickness z; can be calculated using (9.1).

3. Secondary number of turns N, is identical to primary number of turns N;.

9.2.3 Comparison of Secondary Leg Gap and Primary Leg Gap Design

A comparison of coupled-inductor design with secondary leg gap and with primary
leg gap can now be performed. To distinguish between the two cases, an index p is used

for the primary leg case and an index s is used for the secondary leg case. Let us assume
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Figure 9.4: Flur ¢ and saturation fluz By S as @ function of primary number of turns
N;. The following numerical values are used: Iy = [, = 5A, R; = 6 [1/pH]
and Ly = 20 uH. There are two possible solutions with different number of
turns given by the intersections of the two curves.

that an inductance L, is desired and the same primary number of turns N; is used.

Equations (9.28) and (9.19) give

Primary leg gap  Secondary leg gap

2 2
Ny L = i (9.37)

Ly = = —
! R:zlp Rz2s”Rl

In order to have the same inductance L; it must be
Rxlp = Rst”RI (938)

Substituting (9.27) into (9.31) and (9.18) into (9.20), the following expressions for the

peak fluxes in the two cases are obtained

Primary leg gap  Secondary leg gap
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Figure 9.5: The two components of flur ¢;, namely flur ¢; and fluzr ¢;, are plotied sep-
arately to show that the solution with bigger number of turns is undesirable
because leakage fluz ¢; is much bigger than coupling fluz ¢;.

N+ 1) | NIy Nl + 1)
_ + ,= it ) 9.39
¢2 P R.’L’l p Rl ¢)1 Rz2 s “Rl ( )
From equations (9.38) and (9.39) it follows that
NI
$2p = P15+ R

Therefore, it is always @2, > ¢15, i.e., the primary leg gap design has bigger peak flux,
which means that for the same design specifications, a bigger core is needed in this case.
The conclusion is that the primary leg gap design is inherently less efficient than the
secondary leg gap design. Intuitively, this can be explained looking at equations (9.37):
in the case of secondary leg gap the leakage reluctance contributes to inductance L,
whereas in the other case it does not. However, in both cases leakage flux ¢; contributes

to the saturation flux.
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9.2.4 Spacer Gap

The third and last special case considered is the case of spacer gap. For this case it

is
T1 =23 = Rs1=Rz2=R.: (940)

Equation (9.40) is substituted into design equations (9.13), (9.14), (9.15) and (9.16),

giving
Ny R
Mook 9.41
N2 ! RI + R:c ( )
N2
L4 = ——1 9.42
N1[1 NZI2 RI
ByS > = 9.43
M - ¢l R.’L‘ + RJ:HRI Rz + R.’L‘”RI RI + Rz ( )
L
or ¢1= 5 (i +12) (9.44)
1
BuS > &, MLy s Nalz (9.45)

As in the previous cases, it is necessary to determine which one of conditions (9.43) and

(9.45) is more restrictive. Substituting (9.41) into (9.43) and (9.45) we get

Ny
= e ([ + I 9.46
d)l R, +R$”R1 ( 1+ 2) ( )
N ( .[2)
= —— kW1 + = 9.47
o2 Rt R\t (9.47)
From these equations it is clear that ¢, > ¢, if
I,
L+L>kL+ =
k1
This condition can be rewritten as
k> -1—2' (948)
I

Therefore there are two cases, i.e.,

Casel k1> —? = primary leg saturates first
1
I
Case2 k; <=2 = secondary leg saturates first (9.49)

I
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In the first case, equation (9.44) can be used and a closed-form solution found. In the
second case, no simple closed-form solution was found. This is due to the fact that no
simple equation like (9.44) relating flux to number of turns exists in the case of secondary
leg flux. In fact, equation (9.44) can be directly derived substituting (9.42) into (9.46),
but the analogous substitution of (9.42) into (9.47) for the secondary leg flux gives

14 Iz)
= [k — 9.50
b2 A ( 1h + r ( )

This formula still has two unknowns, namely k; and Nj, and cannot be solved by itself.
A method to overcome this problem is to estimate the value of k1, plug it into (9.50)

and determine primary number of turns N;.

Estimation of k;

Coupling coefficient k; can be estimated as follows. Equation (9.42) is divided by

equation (9.47) squared to eliminate N;. The result is

!/_l _ Ra: + Ra:“Rl
¢3 (ki + I/ky)?

This equation still has two unknowns, namely R, and kq, but from (9.41) gap reluctance

(9.51)

can be expressed in terms of k; as

-k

R (9.52)

Re

Equation (9.52) can be used to eliminate R, from (9.51). The result is

Li _ Ri(A/ki - k1)
63 (ki) + Io/ky)?

If flux ¢, is taken to be equal to saturation flux ¢,q;, this equation has only one unknown,

(9.53)

k1, but it is a fourth order equation.

It can be useful to plot equation (9.53) as shown in Fig. 9.6. For this plot arbitrary
values for Ry, I; and I are chosen, but it turns out that the plot shape is always the same
for all practical choices of these quantities. The solid-line plot of Fig. 9.53 represents the
right hand side of equation (9.53). From design specifications the desired value of L;/¢3
can be determined and results in the horizontal dotted line of Fig. 9.6. Intersections

between the two lines determine values of k; that satisfy design specifications. From this
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Figure 9.6: Plot of Ly1/¢2% as a function of ky for arbitrary values of Ry, I and I5.

figure it is apparent that there are either two solutions for &y or no solution. In the case
of no solution, the desired inductance Ly cannot be obtained from the given core without
exceeding specified flux ¢;. In the case of two solutions, the one with k; closer to unity
should be chosen, so that the secondary number of turns N, will be close to the primary
number of turns Ny, minimizing copper losses.

Instead of solving equation (9.53) graphically, it is more practical to linearize it in
the region of interest. Since solutions with k; close to unity are sought, equation (9.53)
can be linearized around ky = 1. The result is

% = (—1%)7(1 ~ k) (9.54)
The right hand side of (9.54) is the dashed line of Fig. 9.6. Once k; is estimated using

(9.54), equation (9.50) can be used to calculate primary number of turns N;.
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Design Procedure for Spacer Gap

In the design procedure it is necessary to distinguish between case 1 and case 2 defined

in (9.49).

Case 1: k; > L/,

1. Primary number of turns Nj is calculated using (9.44).

Ny = ﬂ%}};—,-]—ﬂ (9.55)
2. Leg reluctance R, is calculated from (9.42).
2
From R, the gap thickness « can be calculated using (9.1).
3. Finally, the secondary number of turns N; can be calculated from (9.41).
No=NMN; _731_7-;12_1 (9.56)

Case 2: k1 < /I

1. Estimation of k; is done using (9.54).

Li(I + I)?

bl = R (BuS)

2. Primary number of turns Ny is calculated using (9.50).

Ly

Nl:BMS

(krh + I/ ky)

3. Leg reluctance R, is calculated from (9.42).

2
- N NEY L, NE
Rz-——(RI—E)-FJ(RI“E +f1_Rl

From R, the gap thickness x can be calculated using (9.1).

4. Finally, the secondary number of turns N, can be calculated from (9.41).

RI +Rz

Ny=MN; 7
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Remark about case 2 In case 2 there is an approximation in the first step of the
design procedure. Notice, however, that step 3 guarantees that inductance L; has the
desired value and step 4 guarantees that the zero ripple condition is met. The approxima-
tion is in the remaining design specification, i.e., saturation flux density ¢o55: = By S.
Flux ¢, will be somewhat bigger than the desired value, and in some cases a design

iteration may be needed with an increased value of N;.

9.3 Choice of Core: Estimation of Core Cross-Section

In the design procedures described above, it is assumed that the magnetic core has
already been chosen and its cross-section S and leakage reluctance R; are known. There-
fore, some method for the sizing of the magnetic core is needed. In this section a pro-
cedure to determine required core cross-section is given. Once this value is determined,
the designer can pick a core with a cross-section close to the value so calculated and use
the design procedures described in the previous section.

The estimation of cross-section is done for the spacer gap case, but it is intended to
be used regardless of the gap arrangement in the final design. Since only an approximate
result is needed, it is felt that there is no need for separate procedures for different gap
arrangements. The procedure is as follows.

First of all, a leakage parameter £ is defined for a given core according to the equation

14

Ri=—
: HoS

(9.57)

Since R; is constant for a given core, so is leakage parameter £. It is a measure of how
“leaky” a certain core is. This quantity has already been defined in [5], where it was
found that for many standard cores it has an approximately constant value £ ~ 2mm.
This value will also be assumed in the following.

The procedure starts by picking a value for ky, usually in the range 0.6 + 0.9. Using
(9.49) it is possible to see whether primary leg or secondary leg saturates first (case 1
and case 2 respectively). Substituting (9.57) and (9.1) into (9.41) we get

oo HS)
€+ 2)/(uS) ~ T+
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From this equation gap z can be calculated as

-k

T = klf

The quantity N;§ is calculated next. In case 1 from (9.44)

Ny § = Lih+h) (9.58)
By
and in case 2 from (9.50)
k

Bm

From equation (9.42) the core cross-section S is

_ po(N15)?
Ly(z + z||£)

Note that N;S is known and is given by (9.58) or (9.59).

9.4 Experimental Verification of Coupled-Inductor Design Procedures

Three coupled-inductor designs using the three design procedures described above
are realized for the same converter specifications. This is done for two reasons: the first
reason is to verify the design procedures and give a practical design example, the second
reason is to compare the performances of the three coupled-inductor structures for the
same design.

In the design process, an “integer number problem” is encountered, due to the fact
that windings can have only integer number of turns.

The design process consists of the following steps:
¢ Extraction of coupled-inductor specifications from converter specifications.
o Measurement of leakage and fringing reluctance for the core used in the design.

o Application of design procedures given above.
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Figure 9.7: Soft-switching Cuk converter prototype.

9.4.1 Extraction of Coupled-Inductor Specifications from Converter Speci-

fications

The converter used for this experiment is a soft-switching isolated Cuk converter
shown in Fig. 9.7. We want to couple input and output inductors and have zero current
ripple on the output inductor.

Converter specifications are:

Input voltage Vo =38V
DC input current Lipc=15A4 (9.60)
Output voltage vp =5V
Output current IL=9A4
Isolation transformer 3:1
Reflected output voltage =15V (9.61)
Reflected output current I,=3A4A
Switching frequency fs =175 kHz

The input current is calculated by imposing an input-output power balance assuming
80% converter efficiency.

The current in the switches is the sum of input inductor and output inductor cur-
rents (neglecting the isolation transformer magnetizing inductance). Therefore, the DC
switch current is 4.5 A (sum of (9.60) and (9.61)). In order to ensure soft-switching, the

switch current must change sign at every cycle, which means that the switch current AC
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Figure 9.8: Inductor voltages and currents.

component must be bigger than the DC component.
The switch AC current is due to the input inductor only, because the output inductor
is designed for zero current ripple. Considering that some contribution to the switch

current ripple comes from the transformer magnetizing current, an input inductor ripple

amplitude I, ripple = 4.7 A is considered sufficient to ensure soft-switching at full load.
From the waveforms of Fig. 9.8 it is clear that
DT,
s dt D
p=h wmdt VD o
21 ripple 21 ripple fs
and that peak input current is
Ii = lipo + I pipple = 6.24
Summarizing, the design requires
I, = 624
I, = 34 (9.62)
Ll = 65HH

The small value of inductance L; makes accurate modelling of leakages a prerequisite for

successful coupled-inductor design.
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9.4.2 Measurement of Leakage and Fringing Reluctance for the Core Used
in the Design

The core used for all designs is a UU13 core, which has a cross-section § = 23 mm?.

A saturation flux density Bps = 0.337 is used.
In order to perform the design, it is necessary to determine leakage reluctance R; and
fringing reluctance Rfrz'ng' A coupled-inductor structure with nine turns per winding
and a spacer gap ¢ = 0.24 mm is built. Open-circuit inductance is measured to be
Ly = 8.3 pH and short-circuit inductance L, g4,r4 = 3.9 pH. From the reluctance model
of Fig. 9.1b, it is
N2
Rz + Rzl Ry
N2
1short = R.+R;

L1=

L (9.63)

As explained in section 5.5, reluctance R, is the parallel combination of the ideal gap re-
luctance (9.1) and fringing reluctance Rfring' From equations (9.63) it is R; = 16 [1/uH]
and Rfrz'ng =60 [1/pH].

9.4.3 Application of Design Procedures

Finally, the three design procedures are applied to the design specifications of (9.62).
Notice that, after the design procedures are completed, the secondary must be reflected
back through the 3:1 transformer. Therefore, secondary number of turns N, must be a

multiple of 3, so that N;/3 is an integer number.

Primary Gap Design In the primary gap case, equation (9.35) gives N; = 10.85 and

for primary gap it is N3 = N;. The closest integer multiple of 3 is chosen. Therefore,
Nl = N2 =12

Gap reluctance is calculated from (9.36): Ry = 22.1 [1/pH]. Taking into account

fringing reluctance, the required gap is found to be z; = 1 mm.
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Secondary Gap Design Primary and secondary number of turns are calculated from
(9.23) and (9.25) respectively: Ny = 7.95, N = 20.21. The closest acceptable numbers
are N; = 8 and N = 21 (multiple of 3). Gap reluctance is calculated from (9.24):
Rz2 = 25.6 [1/pH]. After correction for fringing flux, gap is found to be z; = 1.33 mm.

Spacer Gap Design To start the spacer gap design it is necessary to determine
whether primary or secondary leg saturates first. From condition (9.49), it follows that
primary leg saturates first if

I, 3

—=—=0. 9.64
ki > A 6.2 0.48 ( )

We can assume that primary leg saturates first, complete the design and then check if
condition (9.64) is satisfied.

Equation (9.55) and (9.56) give Ny = 7.95 and N, = 10.71. The closest acceptable
numbers are N, = 8 and Ny = 12.

Since the adjustment of secondary number of turns is substantial, it is possible that
zero ripple condition be met with an inductance L, significantly different from the de-
sired value. The problem is that the zero-ripple coupled-inductor design is completely
determined by N; and N,. With small integer number of turns, inductance L; can take
only a finite number of values, and in some cases it may be impossible to get the desired
inductance. This “integer number problem” exists for secondary and spacer gap but not
for primary gap, because in that case Ny = Nj.

For the case of spacer gap, the “integer number problem” can be clearly seen in the
following way. From equations (9.41) and (9.42), it follows that

N2k,

L= 18
T R(O-ED)

(9.65)

with k; = Ny /N,.

We can use equation (9.65) to find out which values of inductance L, can be obtained
using integer number of turns. For Ny = 8 and Ny = 12 it is Ly = 4.7uH. Primary
current ripple would be 38% bigger than the desired value. This design does not appear
acceptable due to high AC copper losses.

We could try increasing the primary number of turns to Ny = 9. Equation (9.65)
gives L; = 8.68 uH. This time, primary current ripple would be 75% of the desired value
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Primary Gap Sec. Gap Spacer Gap
Ny 12 8 10
N, 12 21 15
Ny=22 4 7 5
gap zy=1mm | 22=133mm | z=0.27mm

Table 9.1: Summary of three coupled-inductor designs.

and the converter would not operate in soft switching at full load. This also appears
unacceptable.

We can try increasing the secondary number of turns to' N3 = 15 (closest number
multiple of 3). If we pick N; = 10 we have k; = 0.66 and equation (9.65) gives L; =
7.5 uH. This value appears acceptable.

Notice that condition (9.64) is satisfied and therefore primary leg saturates first.
Equation (9.43) can be used to calculate peak flux density, which is found to be By =
0.27T, below the value (Bpr = 0.337T') we were designing for.

Equation (9.41) gives gap reluctance R, = 8 [1/uH| and after fringing flux correction

gap is found to be z = 0.27 mm.

9.4.4 Comparison of Three Design Performance

The three realized designs are summarized in Table 9.1.

Primary windings are realized using two AWG 22 wires in parallel with a total
cross-section of 0.77 mm?, and secondary winding using a square-cross-section wire with
2.9 mm? cross-section. The large secondary cross-section is chosen because at full load
secondary DC current is 9 A.

Table 9.2 shows experimental results with the three designs.

Inductance L, is very close to predicted values (max error 10.6%) even if inductance
values are fairly small and leakage has a significant role in determining inductance value.

As explained in section 8.2, residual ripple is higher for the primary leg case, where no

turns ratio adjustment is made. Another reason for the higher ripple is that the primary
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Primary Gap | Sec. Gap | Spacer Gap
Theory 6.5 6.46 7.5
L, [uH] Ezp. 6.9 5.9 6.7
Error 6% 8% 10.6%
Pk-to-Pk Res. Ripple [A] 1.5 0.8 0.8
No-Load losses [W] 10.2 12.2 9.5
Full-Load Efficiency ™% ™% 80%
Radiated Noise [V] 12 125 70

Table 9.2: Comparison of performance of three coupled-inductor designs.

gap design has a smaller secondary number of turns and leakage inductance (that limits
residual ripple) increases with the square of the number of turns.

Fig. 9.9 shows main switch voltage and currents ; and i, for the secondary gap case
measured with an AC current probe. Notice that residual ripple current 3 is mainly
due to a fast variation at the turn-off transition. We can conclude that residual ripple
is mainly due to “applied voltage mismatch” (see section 8.1). The zero ripple condition
is met as demonstrated by the fact that current is almost constant for the rest of the
switching cycle.

The no-load converter losses and full-load converter efficiency for the three cases
are comparable. The primary gap design has bigger primary number of turns and conse-
quently higher AC copper losses. Secondary gap design is suboptimal due to the “nteger
number problem” that forced us to increase number of turns.

Radiated noise was measured moving a phone pickup at a constant distance from
the core and recording the highest induced voltage. Radiated noise appears to be the
biggest difference among the three design performances. Primary leg gap gives the lowest

radiated noise, and secondary gap gives the highest, as expected (see section 5.2).
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Fi 1gure 9.9: Digital scope measurement of main switch voltage and coupled-inductor cur-
rents for the secondary gap design. Upper trace: gyt .ps 50V /div. Medium
trace: i1, 4A/div. Lower trace: iy, 1A/div. Time scale: I1us/div.
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Chapter 10

Estimation of Leakage Permeance

In chapter 5 a new reluctance model for coupled-inductor structures was introduced.
The model has a single leakage reluctance, constant for a given core. A method to
estimate this reluctance based on core geometry is given here. Detailed derivation of the

approximate formulas used is given in appendix C.

10.1 Introduction

In chapter 5 it was shown that a UI core with windings on different legs has the
reluctance model shown in Fig. 5.3. This model has two gap reluctances, R;; and Rz,
and three leakage reluctances Ry, Ri; and R;. Notice that the reluctance model does
not depend on core material. The assumption is that core material relative permeability
is so high that the reluctance of flux paths in the core material can be neglected with
respect to gap reluctances. In other words core permeability is assumed to be infinite.

Measurements on various cores showed that R; is usually an order of magnitude
smaller than Ry; and Ry. Therefore, these two reluctances were neglected without
introducing significant errors. The simplified model is shown in Fig. 5.4b. This model
has a single leakage reluctance R;, which is independent of gap arrangement. This
reluctance is like a fingerprint for a given core, and it is a function of core geometry only.
Once the value of this reluctance is known for a given core, the reluctance model can be
used for analysis and design of coupled inductors using that core.

The value of reluctance R; can be determined from a single set of measurements with
any gap arrangements. However, sometimes it may be desirable to obtain an approximate
value for this reluctance without a direct measurement. A method to estimate the

leakage reluctance R; from core geometry is described here. This method can be useful
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in different ways:

e It can be used for a first-cut design of a coupled-inductor or integrated-magnetics

structure.

e It can be used to estimate leakage permeance of custom-designed cores before they

are actually built.

o It can be used to better understand the distribution of leakage flux in air. Leakage
flux is present in all free space surrounding a core. A natural question to ask is
where most of the leakage flux is. This method gives some answer to this question
because it breaks up the free space surrounding the core in different regions and

estimate leakage flux in each region.

10.2 Estimation Method

For convenience, the leakage flux will be expressed in terms of permeance rather than
reluctance. Permeance is the reciprocal of reluctance in the same way as conductance
is the reciprocal of resistance. It seems more convenient to use permeances because
the estimation method gives the contributions of different regions to the total leakage.
In order to find the total leakage, these contributions must be combined together. If
reluctances are used, the combined reluctance is equal to the parallel combination of
the reluctances of each region, whereas the total permeance is equal to the sum of the
permeances of each region.

A Dbrief description of the method is given here. A generic Ul core is shown in
Fig. 10.1a. Leakage permeance P; represents flux linking one of the windings, crossing
the gap and closing in air without linking the other winding. Legs AD and BC are
covered by windings of highly conducting material that act as shields and prevent flux
from leaking through the windings. The approximation is made that legs act as perfect
shields so that the same flux links each turn of a winding (notice also that part of the
leakage flux through the windings would be more correctly modeled by reluctances R
and R, of Fig. 5.3, which are neglected here). As a consequence leakage flux is the

flux in air between the I piece A-—B and the upper part C-D of the U piece. Therefore,
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Figure 10.1: To calculate leakage fluz a UI core is approzimated by two right prisms
corresponding to the I piece and the top part of the U piece.

the two legs can be eliminated and leakage flux can be approximated as the flux in
air between the two prisms of Fig. 10.1b. The assumption of infinite core permeability
implies that each of the prisms of Fig. 10.1b is at a constant magnetic potential. The
problem of determining the leakage permeance for the core of Fig. 10.1a is reduced to
the problem of determining the permeance of the flux paths between the two prisms of
Fig. 10.1b (a minor point: regions physically corresponding to legs AD and BC should
not be considered, because there is no leakage flux there).

A method to do this has been proposed by Roters [6] and is also described in Boast
[7]. In the following a brief description of this method and the formulas needed for the
estimation are given. The formulas are derived in appendix C. The method is called
“estimation of the permeance of probable flux paths.” The space between and around
the two prisms is divided in regions of simple shape. Assumptions are made on the
geometry of flux lines in these regions. Approximate formulas for the permeance of these
flux paths are found. Adding up the permeances of the different regions gives the total

leakage permeance. Fig. 10.2 shows a top view of the prisms of Fig. 10.1b. Only the
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3 2 3

Figure 10.2: Top view of prisms. The free space surrounding the prisms is divided into
three regions.

upper face of the upper prism is visible. Region 1 is the space between the prisms. The
space surrounding the prisms is divided into region 2 and region 3. The permeances of
the different regions are

Region 1 P = uoﬂd;f

2b
Region 2 P2 = 1o [0.26 + ;rl—ln (1 + E)] - length

Region 3 P3 = uo(0.308d + b) (10.1)

Dimensions a,b,c,d are shown in Fig. 10.1b. The formula for region 1 is the usual
formula for the permeance of a gap. The variable "length” is equal to the perimeter of

the rectangle of Fig. 10.2 and its value is 2a+2c.

10.3 Validation of Estimation Method

Finite element simulations To validate this estimation method, finite element sim-
ulations were used to calculate permeance of regions 1-2-3. A two-dimensional finite
element program called GE2D was used. Finite element simulations of different cross-
sections of the core were performed following the approach suggested in [13]. Comparison
of estimation, finite element simulations and measurements for a UI60 core are shown in
Table 10.1. There is a good agreement between estimation and simulation. This result
shows that the estimation method gives a good description of the spatial distribution of
leakage flux. It is also interesting to notice that most of the leakage is in region 2. The

flux in region 1 accounts for only 20% of the total. That means that most of the leakage
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Region | Estimation | Simulation | Measurement
nH nH nH
1 37.7 29
2 115 110 213
3 24.7 33
Total 177.4 172 213

Table 10.1: Comparison of estimation, finite element simulation and measurement of
leakage permeance for the three different regions.

Core | Estimation | Measurement
[nH] [nH]

E130 63.4 81

ELL0 84.5 107
EIo 105.4 120
EI60 119 141
Uu6o 146 175
Ulys 142 143

Table 10.2: Estimated and measured values of leakage permeance for various standard
cores.

flux goes between side surfaces of the core (regions 2 and 3) and not directly from top

to bottom (region 1).

Calculation of permeance of standard cores The estimation method is also ap-

plied to other cores and comparison with measurements is given in Table 10.2.

Design of custom cores with high or low leakage The estimation method gives
leakage permeance as a function of core dimensions. It can be applied to existing core
geometries to estimate their leakage or can be used to determine a core geometry that

minimizes or maximizes leakage flux. The custom cores that were designed and built are
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Core 1 Core 2

Figure 10.3: Core geometries designed for high leakage permeance (core 1) and low leak-
age permeance (core 2).

shown in Fig. 10.3. In order to make a fair comparison, the cores had the same cross-
section and window area of a UI33 core. Core 1, which was designed for high leakage,
is short and fat and core 2, which was designed for low leakage, is tall and skinny.
Values of estimated and measured permeances are shown in Table 10.3. The estimation
method correctly predicts that core 1 has the highest leakage, and core 2 has the lowest
leakage with UI33 core in between. The estimation method appears less precise for these
“extreme geometries” than for the standard cores of Table 10.2. However, it correctly
predicts that core 1 has the highest leakage, and core 2 has the lowest leakage with UI33

core in between.
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FEstimation | Measurement
nH nH
Core 1 167.7 210
Ul33 89.3 130
Core 2 60.6 110

Table 10.3: Estimated and measured values of leakage permeance for custom-designed
cores. Core 1 was designed for high leakage, and core 2 was designed for low
leakage.
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Chapter 11

Conclusions

The goal of this work is to improve understanding of coupled-inductor structures and
leakages. Improved leakage models for magnetic structures with air gaps are presented
and experimentally verified for the case of two-winding and multiple-winding structures.

It is found that air gap position has a dramatic effect on coupling and on the effective
inductances of magnetic structures. This effect is explained and, for the magnetic struc-
tures more commonly used in coupled-inductor applications, i.e., Ul and UU cores with
windings on separate legs, a general model valid for any gap arrangement is presented.

The success of this model is attributed to the fact that it is a “physical model” and it
accurately represents fluxes in the magnetic structure. This approach is generalized and
a procedure to determine the physical model of any gapped magnetic structure is given.
The method is applied to various cases of practical interest and experimentally verified.

A new magnetic structure for coupled inductors is proposed that achieves quasi-zero
current ripple without the need for turns ratio adjustment. An additional advantage of
this structure is greatly reduced radiated noise.

Design procedures for the most practical zero-current-ripple coupled-inductor struc-
tures are presented.

In order to use the reluctance models presented in this work, leakage reluctance values
must be determined. A first method to do that is to measure them. Another method is to
estimate them. A simple approximate estimation method is presented and its accuracy

is verified through finite element simulations.



139

Part I1

One-Cycle Control of Switching Converters
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Chapter 12

Introduction

One-Cycle control is a new control technique that has recently been proposed.

In chapter 13, this control technique is briefly reviewed and application of this tech-
nique to Buck, Boost and Cuk converters is discussed. In the rest of this work the case
of a Cuk converter (a fourth-order system) is considered.

In chapter 14, it is shown that this control technique is particularly advantageous
for converters with Buck-like output stage (e.g., Buck converter with input filter, Cuk
converter). In the case of a Cuk converter, it decouples the output stage from the
input stage, allowing their independent design and ensuring rejection of line voltage
perturbations. Moreover, by proper design of the output stage, a very fast dynamic
response can be achieved. It is also pointed out that the control works in discontinuous
conduction mode as well.

In chapter 15 the problem of internal stability of the One-Cycle controlled Cuk con-
verter is discussed. No previous analytical stability analysis was available. It is shown
that the system is stable if some parasitic resistances are in a certain range.

For a typical design the resistances required for stability can be too large to allow
an efficient design. Therefore, a modification of the control law that guarantees stability
regardless of the value of parasitics is proposed in chapter 16. The dynamics of this
control are studied through numerical simulations, and it is found that the modified
control has a more damped response, which is a desirable feature.

A disadvantage of this control technique is that the output voltage is only indirectly
controlled, so that there is a steady-state error due to parasitics. A solution for this

problem is suggested in chapter 17.
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Chapter 13

Review of One-Cycle Control

In this chapter One-Cycle control is briefly reviewed. Application of this control

technique to Buck, Boost and Cuk converters is described.

13.1 Control of Switching Converters

DC-DC switching converters are used to convert power from one DC level to another
DC level in a controllable way. Different converter topologies like Buck, Boost, Buck-
Boost and Cuk converters are used. All these converters have two switches: an active
switch S and a passive switch D.

By proper control of the state (open or closed) of the active switch, it is possible
to control the power conversion process. In particular, it is often desired to control the
output voltage of a converter, and the purpose of the control circuit is to control the state
of the active switch in such a way to force the output voltage to be equal to a reference
value. The active switch is alternatively turned ON and OFF, and the time interval
between two successive turn ON (or turn OFF) transitions is called switching period 7.
For various reasons it is desirable to operate a converter at a constant switching period.

Switching period T can be divided in two subperiods, ON period and OFF period,
characterized by the state of the active switch. Duty cycle d is defined as the ratio of ON
period over total switching period T, and it can have any value between zero (switch
always OFF) and one (switch always ON).

The nominal operation of a switching converter involves a periodic steady-state with
period equal to the switching period.

The control must satisfy both steady-state and dynamic requirements. In case of

output voltage control, the main steady-state requirement is that output voltage be
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equal to reference voltage. Since a converter is subjected to inevitable disturbances,
such as supply voltage variations and load variations, that cause circuit operation to
deviate from nominal, control must guarantee a well-behaved dynamic evolution leading
back to the desired steady-state condition.

In this work a control method called One-Cycle Control (OCC) is described. In the

next section a brief review of this method is presented.

13.2 One-Cycle Control

One-Cycle Control has been introduced in [18] and [19]. This research effort is a
continuation of that work.

In DC-DC converters, whether in steady-state or not, each switch has some average
voltage and current through it at each switching cycle. The main idea behind One-Cycle
Control is to control the average voltage or current in a switch cycle by cycle, forcing it

to be equal to some desired value. It is easier to understand OCC through some example.

Notation To simplify notation all equations in the following will be written for the
switching period 0-T;, with the understanding that the time origin is shifted to the

beginning of the period of interest. For example, in this notation the expression
Switch S ON for 0 <t < dT,
means

Switch § ON for nT, <t < nT, + dTs n=-00,...,—1,0,1,...,4+00

13.2.1 Steady-State Operation of a Buck Converter and One-Cycle Control

Steady-state operation of a Buck converter As a first simple example, a Buck
converter is discussed. Steady-state voltage waveforms for this converter are shown in
Fig. 13.1. Supply voltage V; is constant. The active switch is turned ON and OFF at
a constant duty cycle d. When the active switch is OFF, passive switch D turns on to

ensure continuity of inductor current (a different mode of operation called discontinuous
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Figure 13.1: Steady-state voltage waveforms in a Buck converter.

conduction mode is discussed in section 14.3.2). As a result of this switching action,

diode voltage vp(t) is

Vo 0<t<dT; ON period

vp(t) =
0 dl,<t< T, OFF period

In steady state the inductor current is the same at the beginning and at the end of a
period. This means that the average voltage applied to the inductor in a period is zero
(this is called the volt-second balance condition and it is used to characterize steady-
state of switching converters). Therefore, output voltage vg is equal to the average diode
voltage, i.e.,

1

T, 1 pdTs
v =Vp = _TT A vp(t) dt = T--/O Vo dt =V,d (13.1)
8 8

One-Cycle control of a Buck converter Equation (13.1) shows that steady-state
output voltage vp is equal to the average diode voltage and therefore it can be indirectly
controlled by controlling the average diode voltage. In One-Cycle control diode voltage
is controlled cycle by cycle and its average value is forced to be equal to the desired
output voltage V,.s in each cycle. This is done at all times, even if the converter is not

in steady-state. A One-Cycle controlled Buck converter is shown in Fig. 13.2. Switch
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Figure 13.2: One-Cycle controlled Buck converter.

turn-on is decided by a clock, so that switching period T is constant. When the switch
is on, the line voltage V, is applied to the diode. The integrator integrates this voltage.
When the integral reaches the desired value V,.;T;, the comparator switches state and
the controller turns off the switch. At the same time the controller sends an impulse to
reset the integrator. During the turn-off interval the diode conducts and ideally there is

zero voltage across it. The control law is
1 (T
Vies = / op() di = V,d (13.2)
Ts 0

where d is the duty cycle, V;.s the reference voltage and vp the diode voltage. This
control law should be interpreted in the sense that the control imposes a value of duty
cycle d that satisfies equation (13.2).

Notice that this control is very similar to a standard PWM control with line voltage
feed-forward (see however section 14.3.2 for a discussion of One Cycle control in discon-
tinuous conduction mode). The ramp with slope proportional to line voltage V; used

in line voltage feed-forward is in effect an integral of the line voltage. This ramp starts
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from zero each cycle in the same way as the integration in One-Cycle control. In both
controls the turn-off instant is decided by a comparator which compares the integral with
a reference. Similarities with conventional control techniques, however, disappear when
One-Cycle control is applied to other converters or even to a Buck converter with input

LC filter.

13.2.2 One-Cycle Control of a Boost Converter

The case of a Boost converter is now considered. In steady-state the diode voltage is

equal to the difference of output and input voltage. Therefore, the control law is
1 T
uﬁ—nzT/ vp(t) dt = vod (13.3)
s JO .

As before, the meaning of this control law is that the control selects a duty cycle d that
satisfies equation (13.3). Notice that there is a slight abuse of notation in this expression,
because output voltage vg is not a constant and it cannot be taken out of the integral.
However, in a well-designed converter output voltage ripple in one switching cycle is
small. The control implementation, shown in Fig. 13.3, is the same as for the Buck
converter. The only difference is that the diode is not referred to ground and its voltage

must be measured differentially.

13.2.3 One-Cycle Control of a Cuk Converter

One-Cycle Control can be applied to any other DC-DC converter. However, the
control has special advantages in the case of converters with Buck-like output stages,
like a Buck converter with input filter and a Cuk converter. A One-Cycle controlled Cuk
converter is examined here.

A One-Cycle controlled Cuk converter is shown in Fig. 13.4. This converter has
an input filter (or input stage) L;-C; and an output filter (or output stage) L,—C.
During the on-period the energy-transferring capacitor voltage vci is applied to the

diode. Therefore, the control law is
1 (%
mﬁz_/ vp(t) dt = verd (13.4)
Ts 0

The same observations made about control law (13.3) can be repeated here.
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Figure 13.3: One-Cycle controlled Boost converter.

In the rest of this work, One-Cycle control of a Cuk converter will be studied in
detail. An equivalent dynamical model for the output stage of this system is shown in
Fig. 13.5. It consists of a controllable voltage source V;.s that drives the output filter of
the converter. The voltage ripple on the diode can be neglected due to the L2~C lowpass
filter that is designed to reduce this ripple. Notice that the input stage of the converter
does not have any effect on the output voltage dynamics. In fact, this dynamical model
is identical to the dynamical model for a One-Cycle controlled Buck converter. This is
true as long as the input filter dynamics are reasonably well-behaved. If, for example, the
energy-transferring capacitor voltage vcy starts oscillating, the control may be unable
to apply the desired average voltage to the diode. This internal stability issue will be

discussed in chapter 15.
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Chapter 14
Properties of a One-Cycle Controlled Cuk

Converter

In the first section of this chapter some additional interpretation of One-Cycle control
applied to a Cuk converter is given.

In the second section advantages and disadvantages of this control technique are
discussed.

In the third section some observations on the implementation of this control technique

are presented.

14.1 Interpretations of One-Cycle Control Applied to a Cuk Converter

Two different interpretations of this control technique can be given.

1. Decoupling. The control decouples the input stage from the output stage of the
Cuk converter. Regardless of what happens in the input stage, the desired average

voltage is applied to the diode at each cycle.

2. Partial linearization. A Cuk converter is a fourth order time-varying system and

is described by the following averaged model [21]

;

by
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where duty cycle d is the control variable and it can assume any value between 0

and 1. Notice that in these equations there are three nonlinear terms, d - v, d - ¢
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and d - i;. In an averaged sense One-Cycle control imposes the condition
vad — Ve f= 0

as shown in equation (13.4). Therefore, the nonlinear term d - v, in the first and
the third equation of (14.1) is forced to be a constant. The control linearizes this

term. Only the second equation of (14.1) remains nonlinear.

14.2 Advantages and disadvantages of One-Cycle control

At this point, advantages and disadvantages of One-Cycle control are discussed with
reference to a Cuk converter.

A first advantage is that it gives greater freedom in the converter design. If a con-
ventional control technique is used, the input and output filter corner frequencies must
be well-separated in order to avoid a very fast 360 degree phase change that would make
compensation difficult. No such design constraint exists in the case of One-Cycle control,
because this control decouples input and output filter dynamics. This fact was verified
in [19].

Another advantage of this control technique is rejection of input line voltage pertur-
bation in one switching cycle. Regardless of perturbations in line voltage, the average
voltage applied to the diode each cycle is equal to the reference voltage. Refer to [19] for
an extensive discussion and experimental verification of this fact.

Still another advantage is that switching frequency is constant. In other control
techniques, like sliding mode control, switching frequency depends on the operating point.

Finally, a very fast dynamic response can be obtained with this control technique.
As shown in the dynamical model of Fig. 13.5, the dynamics are solely determined by
the converter output filter, which can be designed for fast response. In a conventional
control, compensation needed to stabilize the system usually slows down the dynamics
of the system.

A disadvantage of One-Cycle control is that in general there is a steady-state output
voltage error. This is due to the fact that output voltage is controlled only indirectly by
controlling diode voltage. Inductor L; of Fig. 13.5 has some parasitic series resistance

Ry that causes a DC voltage drop and therefore a load-dependent output voltage error.
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Another potential problem is evident from Fig. 13.5. In an efficient design the lowpass
filter Lo—C has a high quality factor @ that can cause overshoot and lightly damped

oscillations in the dynamic response. This problem is particularly severe at light load.

14.3 Implementation of One-Cycle control

Implementation of One-Cycle control for a Cuk converter is shown in Fig. 13.4. The
flip-flop that controls the switch is set by a clock signal and reset when the integral of
the diode voltage reaches the desired value. When this happens, the pulse generator
sends a short pulse to reset the integrator. The flip-flop output does not directly drive
the converter switch, but goes through a duty cycle limiter. It is worth discussing the
reasons for the introduction of the duty cycle limiter and for the use of impulsive reset
of the integrator (the pulse generator of Fig. 13.4 is not strictly necessary: it could be

replaced by a short keeping the integrator output at zero for the entire OFF period).

14.3.1 Duty Cycle Limiter

The duty cycle limiter ensures a minimum OFF time in each cycle. This is needed
for the following reason. At startup, capacitor voltage v, is zero. Therefore, when the
clock turns on the transistor, no voltage is applied to the diode. The integrator output
cannot reach the reference value and, if there is no duty cycle limitation, the transistor
never turns off. Energy is stored in the input inductor, but is never delivered to the

output.

14.3.2 Impulsive Reset of Integrator and Discontinuous Conduction Mode

The pulse generator allows instantaneous reset of the integrator at the beginning of
the off-period. Integration restarts immediately after the pulse and ideally (for infinitely
short pulses) it continues for the entire period until another reset pulse arrives. If, for
example, the pulse generator were replaced by a short, the integrator would be off for
the entire off-period.

Using a pulse generator gives the following advantages:

1. It gives complete decoupling between input and output stages.



154

2. It ensures proper control in discontinuous conduction mode.
These advantages are briefly discussed here.

1. Decoupling of input and output stages. A real diode has some voltage drop
during conduction. This voltage is taken into account by the control if the integra-
tion continues on during the off-period also. If this voltage drop is not taken into
account, the diode resistance, which has the current i; + i during the off-period,

introduces a coupling between input and output stages.

2. Discontinuous conduction mode. Fig. 14.1a-b shows the diode voltage wave-
form in Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode
(DCM) respectively. In CCM (Fig. 14.1a) the voltage during the off-period is zero
(or very close to zero), and therefore changes little if the pulse generator is replaced
by a short. In DCM (Fig. 14.1b) when the diode current drops to zero, the diode
stops conducting and the output voltage vo (dashed line) appears across the diode
(the oscillatory waveform during interval d3 is a more realistic representation of
converter behavior in DCM, and it is due to oscillation between diode capacitance
and the parallel combination of inductors L; and L3). The output voltage is equal
to the average diode voltage over the entire period. In this case, if the pulse gen-
erator is replaced by a short, the control causes an output voltage error, as shown
in Fig. 14.1b, because only the diode voltage during the on-period is integrated
and taken into account by the control. This is experimentally verified in Fig. 14.2.
The upper trace shows the diode voltage and the lower trace shows the integrator
output. The dotted line shows the output of the integrator without the pulse gen-
erator and the shaded area shows the voltage that would not be integrated in that

case.

The necessity of integrating the diode voltage during the entire period in discon-

tinuous conduction mode has already been discussed in [19].
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Figure 14.1: Diode voltage waveform (a) in continuous conduction mode and (b) in dis-
continuous conduction mode.
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Figure 14.2: Measurement of diode voltage (upper trace) and integrator output (lower
trace).
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14.4 Experimental Prototype

The prototype Cuk converter used for experiments has the following component val-

ues:
Li=Ly=2700pH C,=60pF  C =1000uF

R = 2092 Rp, = 0.33Q2 Rp, = 0.33Q (14.2)
Rc1 = 0.240 Ve =10V fs = 60KHz
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Chapter 15

Stability Analysis of One-Cycle Control

Until now, no quantitative stability analysis of One-Cycle control was available. The
output stage, whose dynamic model is shown in Fig. 13.5, is always stable, since it is a
passive filter driven by a controllable voltage source. On the contrary, it is not clear if
the input stage is stable. If the input stage is unstable, One-Cycle control may be unable
to reject oscillations in the energy-transferring capacitor voltage, which may show up in

the output.

The small-signal stability analysis presented here follows the lines of State-Space

Averaging [20].

15.1 Small-Signal Stability Analysis of One-Cycle Control

The averaged dynamical model of a Cuk converter is described by the following

differential equations

diy —Rpi—Rea(1-d) _1-d . Ve
at 1 I 0 0 (31 I
dv 1—-d 4
= T 0 o 0 ver |, 0
dip 0 d —Rio—Rcyd 1 i 0
dt E Lo Ly 2
dug 1 —-1
&t 0 0 oj RC Yo 0
(15.1)

where R is the parasitic series resistance of energy-transferring capacitor C; and Ry,
and Ry, are the parasitic series resistances of input and output inductor respectively.
These equations are identical to (14.1) with the only difference that parasitic resistances
Re1, Rpy and Rp are introduced. The reason why these second-order terms are consid-

ered will become apparent as the analysis unfolds. Taking into account the parasitics,
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control law (13.4) becomes

(vm - RCIiz)d el ‘/ref =90 (152)

The analysis follows the following steps:

1.

Equations (15.1) and (15.2) are perturbed. DC quantities are represented by capital
letters and perturbed quantities are written as low-case with a hat. For example,
perturbed duty cycle is

d=D+d

The resulting equations are divided in DC and AC (dynamic) parts. The DC
equations determine the operating point, and the AC equations represent dynamic

behavior around the operating point.

Dynamic equations are nonlinear due to the presence of terms containing the prod-
uct of AC terms. Under a small-signal assumption, these terms are neglected

resulting in linear equations.

. In this analysis parasitic resistances are supposed to be small, so terms proportional

to these quantities are neglected when compared to terms coming from the ”ideal”
converter. Moreover, steady-state currents and voltages are expressed as a function

of steady-state duty cycle D, load resistance R and supply voltage V.

As an example, this procedure is applied to control equation (15.2).

1. Perturbation gives

(Vo1 + tc1) = Ror(Iz + i2))(D + d) — Vyep = 0

2. DC and AC equations are

(Vo1 = Ro11)D — Vies =0 DC equation
(Vo1 = RerI)d + Digy + dord — DR — Royied = 0 AC equation
(15.3)

3. Equation (15.3) is linearized, giving

(Vo1 — Rerlz)d + Dogy — DReyig = 0 (15.4)
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4. In equation (15.4) the term R¢yl; is neglected with respect to Vi;. For the DC
equations obtained from equations (15.1), it follows that DC voltage V¢ is written
as Vo1 = V,/(1 — D). With these two changes, equation (15.4) becomes

Vo

I_DJ+Dmn—DRmb=O (15.5)

This is the AC small-signal control equation.

At the end of this procedure we have algebraic equation (15.5) and four small-signal
differential equations obtained from (15.1).
Equation (15.5) is then substituted into the other four perturbed equation to elimi-

nate perturbed duty cycle d. The resulting equations are

% _ RL1+RE~11§1—D! —2,11' E%}Q 0 3
ol I 2 Guom ~& 0 b
4y 0 0 e 2 (15.6)
4 0 0 L L o
A

As mentioned above, this procedure is similar to State-Space Averaging. Notice, however,
that equations (15.6) describe the small-signal closed-loop behavior of the One-Cycle

controlled Cuk converter.

At this point, an interesting observation can be made. The system matrix A can be
partitioned in four 2x2 matrices
A A2
Ay Az

A=

Notice that Az; = 0. Therefore, the eigenvalues of A are simply the eigenvalues of
Ay and Ay, This is just a consequence of the decoupling of input and output stages
performed by One-Cycle control. The eigenvalues of A;; are the poles of the output
filter. The control has no effect on them. This is consistent with the dynamical model
of Fig. 13.5.

Defining parasitic equivalent resistance R, as

R, =Ri1+ Rci(1- D)
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the eigenvalues of A,y are the roots of the equation

R, 1 D* 1\, (1-D 1 D' R
2 ke A At - “El = .
’\+’\< )+(I,16’1 LG, 1-D R) 0 (15.7)

Routh criterion says that the roots of the second order equation above are in the left half

plane if and only if the two terms in parenthesis are positive. Defining the characteristic

Rn..,/c1

impedance of the input filter as

the stability conditions are

1- D)2

Rp < (—WLR (15.8)
D? R?

Rp > i—:-'l‘j‘ —1—2— (159)

At this point some important observations can be made. First of all, inequality (15.8)
is satisfied in a normal design: parasitic resistance R, is smaller than the reflected load
resistance. Therefore, attention can be focused on inequality (15.9). Notice that this
condition is not satisfied in the ideal case (R,=0). An ideal 100% efficient Cuk converter
is always unstable under One-Cycle control. However, in a real-life converter R, has a
non-zero value. Since D?/(1 — D) is a monotonically increasing function for 0 < D < 1,
condition (15.9) puts an upper limit on the duty cycle for a given value of Ry; and Rog.

As a practical example, let us take
L, =100pH R =1Q
Ci=100uF D=05

The stability condition (15.9) becomes
Ri1 +0.5Rc > 5Q

Such a big value of parasitic resistance may be unacceptable for efficiency reasons. There-
fore, it is desirable to find a way to stabilize the system regardless of the value of R,.
This is discussed in chapter 16.

In the previous analysis, parasitic resistances of the switches may also be introduced.
Equations (15.1) and (15.2) would need to be modified. However, it turns out that
they contribute only second-order terms to stability conditions (15.8) and (15.9), which

remain correct to a first order.
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Figure 15.1: Critical duty ratio D. as a function of load R: theoretical predictions and
experimental results.

15.2 Experimental Verification of Stability Condition

Stability condition (15.9) is experimentally verified as follows. For a certain value
of load R, equation (15.9) taken as an equality gives a critical duty cycle D, that is at
the boundary between stability and instability. This critical duty cycle is experimentally
obtained by slowly increasing the reference voltage until instability occurs. This experi-
ment is performed for different values of load R. Fig. 15.1 shows critical duty ratio D, as
a function of load resistance R. Continuous line represents theoretical predictions given

by (15.9) and rectangles represent experimental measurements.
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Chapter 16

Modified One-Cycle Control

In the previous chapter it was shown that a One-Cycle controlled Cuk converter is
unstable in the ideal case. In the nonideal case, the system is stable if the parasitic
resistance Ry, is in a certain range given by equation (15.9). The question arises whether
it is possible to modify the control so that stability is guaranteed independently of the
value of R,. This can be accomplished if an additional term proportional to the input
inductor current error is introduced in the control equation.

In the first section the modified control law is introduced and some sufficient stability
conditions presented.

In the second section the dynamics of modified One-Cycle control are studied numer-
ically.

In the third section some aspects of practical implementation of this modified control

are discussed.

16.1 Modified One-Cycle Control Law and Sufficient Stability Condi-

tions
The following modified control law is suggested:
vCld—‘/ref‘{"Kl(il ‘Ilref) =0 (161)

where 7, is the input inductor current, I;,.s is the operating point input inductor current
and K is a constant gain. Control law (16.1) will be referred to as modified One-Cycle
control and control law (13.4) as standard One-Cycle control. For this analysis the
same procedure used in chapter 15 is followed. In this case, parasitic resistances are not

included, because they are not needed for the stability analysis. The linearized equations
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of the controlled system are

4y -5 - 0 0 i
42 -5 0 0 -£ iy (16.2)
4 0 0 L -4 o

A

Obviously equation (16.2) reduces to equation (15.6) for K1=0. In the first equation of
(16.2), K, acts as a resistance in series with inductor L;. Moreover, there is a — K131/
term in the third row, so that the system cannot be broken up in two parts as (15.6). In
order to study stability, the entire fourth-order system must be studied. This can be done
using the Routh criterion. Unfortunately, the stability conditions are very complicated
and do not give much useful information. However, the following fact can be proven by

assuming K big and neglecting all terms which do not contain K.

Fact: Any Cuk converter is stabilized by control law (16.1) for K sufficiently

big.

Proof of this fact is given in Appendix D.
This result provides two useful pieces of information. First of all, it says that any Cuk
converter with any component values can be stabilized by control law (16.1). Moreover,
it says that increasing the gain K; improves stability.
In the case of a third order Cuk converter (output capacitor C=0), the following
sufficient stability condition can be derived

1> s (16.3)

Proof of this fact is given in Appendix E. This condition is the same as the condition on

Ry in equation (15.9).

16.2 Dynamics of Modified One-Cycle Control

The introduction of the input inductor current term in control law (16.1) has a

significant effect on the dynamics of the system. The equivalent model of Fig. 13.5 is not



165

valid any more, because the input inductor current is used in determining the control.
Input and output stages are not decoupled any more and a perturbation of the line

voltage has an effect on the output. Three main questions need to be answered:
1. How is the dynamics of the system modified?

2. It has been shown in the previous section that a minimum value of K is needed

for stability. How does an increase in K7 modify the dynamics of the system?

3. How does the relative position of the input and output filter corner frequencies

affect the dynamics?

Qualitative answers to these questions are obtained through numerical simulation. The

converter specifications are the same as in (14.2) except that C;=100pF.

1. Modified dynamics. Fig. 16.1 shows the simulated response to a step change in
reference voltage. The output filter has a quality factor @=9 and, therefore, in
the case of standard One-Cycle control, the response would have an overshoot 80%
of the step amplitude. On the contrary, the response of Fig. 16.1 is monotonic.
The conclusion is that the new term in the control has a damping effect on the
dynamics. This damping slows down somewhat the dynamic response of the system

but has the positive effect of reducing overshoot and oscillations.

2. Effect of variation of K. Fig. 16.2 shows a plot of the rise time ¢, versus K. The
rise time increases from 16ms to 25ms as K; goes from 15 to 190. Notice that,
as K increases, the rise time approaches a constant value. This is due to the fact

that, for K'; big, equation (16.1) becomes approximately
il = Ilref

When the step is applied, 7; jumps to the new reference value and stays there for

the entire transient.

3. Effect of variation of input filter corner frequency. The value of energy-transferring
capacitor was varied between 0.1-C and 100- C, where C is the output capacitor.

Fig. 16.3 shows a plot of rise time versus C;/C. Since L; = L the quantity
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Figure 16.1: Response to load step change in reference voltage with conventional One
Cycle control (a) and with modified One-Cycle control for K1=30 (b). No-
tice that modified One Cycle control has a well-damped response, whereas
standard One Cycle control has significant overshoot.
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Figure 16.2: Rise time t, versus gain K;.

C1/C gives a measure of the relative positions of input and output filter corner
frequencies. As long as C; < C (input filter "faster” than output filter), rise time
is approximately constant. On the other hand, for C; > C (input filter "slower”

than output filter), rise time increases as C; increases.

16.3 Practical Realization of the Control: Highpass Filter for ¢,

In a practical realization of control law (16.1), a problem arises because the desired
input inductor current I,.s is not known. It could be calculated from an input-output

power balance as

2
Vg

Ilref - E‘_/—
g

but such a calculation involving multiplications is complicated and expensive.
A solution is to use a highpass filter to get rid of the DC part of ¢;. Control law

(16.1) becomes
sT

1+ T

In (16.4) there is a new free parameter T, which determines the corner frequency of the

vcld—‘/.,-ef+K1 il =0 (164)

highpass filter. Too high a corner frequency will cause instability, and too low a value
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Figure 16.3: Rise time t, versus Cy/C.

will slow down the tesponse of the system with respect to control law (16.1). With an
appropriate choice of filter corner frequency, control law (16.1) and control law (16.4)
give very similar dynamic behavior of the controlled converter. To demonstrate this,
experimental results using control law (16.4) are compared with simulations using control
law (16.1). Output voltage vo and input inductor current 7, are shown in Fig. 16.4 and
16.5 for a reference voltage step from 4V to 9V. For both simulation and experiment,
it was K,=12. For the experiment, the corner frequency was chosen to be 30Hz. Notice

the similarity of the waveforms.
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Chapter 17
Elimination of Steady-State Output Voltage

Error

As explained in section 14, the parasitic inductor resistance Ry, causes a steady-state
output voltage error. If Modified One-Cycle control is used, another possible cause of
output voltage error is that the high-pass-filtered current term in control equation (16.4)
may have a DC component due to noise.

Whatever the cause, this error can be corrected by introducing a term proportional

to the integral of the output voltage error in the control law. Equation (16.4) becomes
d—Vies + +Ey—L '+K/( Vies) dt = 0 (17.1)
1 ref 1 1+ stl Vo ref = -

where K is a constant. The value K can be chosen small enough so that the dynamic
response is not affected. The practical implementation of this control law is straightfor-
ward. The same modification can be applied to One-Cycle control law (13.4).

Fig. 17.1a-b show the response to a load step change from 100Q to 2082 without and
with the additional correction. The upper trace represents output voltage error (scaled
by a factor of 3), and the lower trace represents the output inductor current. The CH1
gnd and CH2 gnd signs show the ground levels for channel 1 and channel 2 respectively.
In Fig. 17.1a (control law (16.4)) the output voltage error before the transient is 45mV
and after the transient is 100mV. The increased error is due to the additional current
through Rps. In Fig. 17.1b (control law (17.1)) both before and after the transient, the
output voltage error is zero. In this case, the value chosen for K (K=250) is big enough
to have some effect on the system dynamics. The response is faster but more oscillatory.
If a smaller value of K were chosen, the transient would be less affected, but output

voltage error correction would take more time.
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Chapter 18

Conclusions

In this work issues regarding One-Cycle control of switching converters are discussed.
The generality of this control technique is demonstrated by its application to Buck, Boost
and Cuk converters. Moreover, implementation of this control is fairly simple.

One-Cycle control gives complete rejection of line perturbation, decouples input and
output stages, which can be designed independently, and gives fast dynamic response.

A method to eliminate output voltage error, which is a problem of this control
method, is suggested.

A small-signal stability analysis is performed that shows that system stability depends
on the value of some parasitic resistances. Since resistance values required for stability
can be too large for an efficient design, a modified control is suggested that is stable
regardless of the value of these resistances. The stabilization is achieved by feeding
back the input inductor current. It is shown through numerical simulation that the

modification has the beneficial effect of damping the dynamic response of the system.
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Appendix A

Orthogonal Winding Coupling

In this appendix an unusual transformer structure is studied. Even if it is unclear
whether this kind of structure could be of any practical use, this problem appears to be
an interesting exercise in magnetic circuits that puts to a test one’s understanding of
coupled magnetic circuits and transformers.

The beauty of this problem lies in the fact that, although the structure is fairly simple,
completely different answers can be given depending on the way one looks at it. People
with diverse backgrounds tend to look at this problem differently and give surprisingly
disparate answers. As a matter of fact, this project started from a controversy on the
correct answer to this problem.

There is a strong similarity between this problem and the gapped coupled magnetic
circuits studied in the first part of this thesis. In both cases it is of paramount importance
to understand and model leakage fluxes, and in both cases the behavior of the structure
is very “directional,” i.e., it changes completely depending on whether the primary side

or the secondary side is driven.

A.1 Problem Statement

The transformer structure is shown in Fig. A.1. It consists of two windings. The
first winding, also called primary winding, has N; = 100 turns and is wound around a
toroid in a solenoidal fashion. The toroid is made of non-magnetic material. The case
of a toroid of high-permeability material will be considered later. The second winding,
also called secondary winding, has a single turn and runs along the center of the toroid
and is therefore “inside” the primary winding.

Suppose a signal v; is applied to the primary winding. The secondary winding is



Figure A.1: The transformer structure under investigation. The one-turn secondary
winding runs along the center of the toroid.

left open-circuited and the induced secondary voltage v; is measured. We can define the
primary voltage gain as the ratio vy/v;.

The question we are interested in is

What is the “primary voltage gain” G = %’- i 0?
1=

A.2 Different Points of View Lead to Different Answers

It is possible to approach the problem from various points of view and obtain com-

pletely different answers. This situation is pictorially represented in Fig. A.2.

o An electrical engineering point of view could be to consider the structure a 100:1

transformer as in Fig. A.2a and say that “primary voltage gain” should be

o A physics approach would be to point out that flux generated by the primary
winding flows along the toroid, and it is parallel to the secondary winding as in
Fig. A.2b. As a result, there is no flux linking the secondary winding and the

answer is

G=0
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e An antenna engineering point of view would be to consider the primary winding as
an antenna. The 100-turn primary forms an equivalent one-turn winding parallel
to the secondary winding and well-coupled to it, as shown in Fig. A.2c. Therefore,

in some sense this is a one-to-one transformer and the answer is

G=1

As you can see, different approaches lead to completely different answers.

NOTE: The three answers are called “electrical engineering,” “physics” and “an-
tenna engineering” approach just to show the different points of view and not to pass
judgments on specialists of these disciplines. For example, the “electrical engineering”
answer appears rather unsophisticated and clearly incorrect, since it completely dis-
regards the physical structure of the problem under investigation. A good electrical
engineer would definitely come up with a better answer than this. The author is himself
an electrical engineer and obviously he is not trying to make bad publicity for his own

specialty.

At this point it is appropriate to critically examine the three answers listed above.

The electrical engineering approach does not appear correct, because it does not take
into account leakages and assumes perfect coupling between the two windings, which is
quite far from the actual situation, as pointed out by the physics approach. This answer
would be approximately correct if the geometry were different and the secondary winding
were wound in the same way as the primary winding around the toroidal core. Such a
configuration is indeed used in the realization of practical transformers, where maximum
coupling is most desirable.

It is interesting to notice that the electrical engineering approach is the only one that
gives an answer dependent on number of turns. The other two answers do not change if
the number of turns changes. Since a dependence of “primary voltage gain” on number of
turns is expected in a coupled-inductor structure, the other two answers appear suspect.

The physics approach appears an idealization of the real situation, and the “antenna

engineering” observation that the 100-turn primary forms one equivalent turn coupled
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a) electrical engineering ° l i ° G= 1
approach

b) physics approach

C) antenna engineering
approach f | 1

Figure A.2: Different approaches to this problem lead to different answers. The electri-
cal engineering approach (a) considers the structure as a transformer, the
physics approach (b) looks at flur geometry and the antenna engineering
approach (c) looks at the structure as an antenna system.

with the secondary appears valid.

The antenna engineering answer suffers from the same problem of the electrical en-
gineering answer: leakage is not taken into account.

In conclusion, all three answers appear unsatisfactory. In the next section an alter-

native answer is provided.

A.3 Analysis of Orthogonal Winding Structure

The way to analyze this structure is to construct a transformer model. It is clear that
this system can be described by a transformer model. It is less clear what the turns ratio
is, what the magnetizing and leakage inductances are. To clarify this, the transformer
model is constructed piece by piece. The analysis is made in the general case of Ny

primary turns and N, secondary turns.



179

Turns ratio: the antenna engineering approach correctly pointed out that the Ny pri-
mary turns form an equivalent one turn around the toroid that couples with the
secondary as shown in Fig. A.1. In the general case of N, secondary turns, trans-

former turns ratio is 1: N3 as shown in Fig. A.2.

Magnetizing inductance: coupled flux ¢,, is shown in Fig. A.3a. It is the flux that
flows through the hole in the center of the core. Magnetizing inductance is the

inductance of the equivalent one-turn primary winding.

Primary leakage inductance: primary leakage flux ¢;; is shown in Fig. A.3b. It is
the flux that flows along the toroid. Notice that the usual analysis of a toroidal
solenoid (see for example [11] pp. 408-409) considers only this flux component and
neglects the flux component of Fig. A.3a. This is usually a good approximation,

but in our case we are particularly interested in the coupled flux.

Secondary leakage inductance: to complete the model a secondary leakage induc-
tance Lj; can be added as shown in Fig. A.3c. Notice, however, that this inductance

has no effect on the value of G as long as there is no secondary current.

It is instructive to look at the current components that generate fluxes ¢,, and ¢;;.
If the individual turns are neglected and the current flowing on the toroid surface is
considered, the toroid can be visualized as having a uniform sheet of current flowing
on its surface. This sheet current has two orthogonal components: a primary leakage

current Ny7; and a magnetizing current i; as shown in Fig. A.4.

A.4 Estimation of Voltage Gain

From Fig. A.3c voltage gain is given by
Ly, N,

G = m . T (A.l)
e e’ S~~~
“leakage loss” turns
ratio

where the first factor represents the effect of leakage, and the second term represents the

turns ratio scaling.
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(b)

— BB 000 58\ o

L o . Le
© V1 ("’) L > 3|k V2
1:N, i

Figure A.3: Coupled flur ¢, (a) and primary leakage fluz ¢;; (b). Complete transformer
model (c).
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magnetizing current leakage current
(a) (b)

Figure A.4: The two components of primary current.

Equation (A.1) is the correct answer with no approximation. In the following, some
approximations are introduced to clarify the dependence of gain G on physical character-
istics of the structure. The approximations are valid only if some additional assumptions
on the system are made.

Inductances are proportional to the square of the number of turns, to permeability
of the flux path and to the “cross-section” S of the flux path (shown in Fig. A.4). If we
call u,, the permeability of the mutual flux path and y; the permeability of the leakage

flux path, then

Ly & pmSm

Ly o NS

Using these expressions, equation (A.1) can be approximated as

Lm ~ ,U‘mSm

——ee . Ny & . A2
Lo+ Ly ° P Sm + N2 S (A-2)

G =

From this equation we can see that if S, — 0, then G approximates turns ratio N,
(perfect coupling). This is reasonable because if cross-section S; goes to zero, then the
100 turns “disappear” (see Fig. A.4) and the primary winding becomes a single turn
well-coupled with the secondary.

If cross-sections S, and 5; are comparable, it will be Lj; 3> L., and equation (A.2)
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can be approximated as

G ~ — A3
I (A.3)

Ny Sn Hm
N o — A4

This equation tells us that G is the product of three factors: a factor dependent
on number of turns, a factor dependent on cross-sections and a factor dependent on
permeabilities.

In the case of Fig. A.1, there is no high-permeability material and expression (A.4)

simplifies to

N2 S‘m
22 0m A5
Since cross-sections are comparable, a further simplification leads to
N,
Gr — A6
9 (4.6)

For the structure of Fig. A.1, this approximate expression gives G = 1/10000.

A.5 Experimental Measurements

A prototype of the structure of Fig. A.1 is built using a standard Scotch tape roll
as shown in the photo of Fig. A.5. It turns out that the groove present in Scotch tape
rolls seems to be built expressly to host the one-turn secondary, as shown in Fig. A.5a.
Primary turns can then be wound around the Scotch tape roll as shown in Fig. A.5b.
The prototype has 136 primary turns.

Measured amplitude and phase plot of G as a function of frequency obtained using
the HP3577A network analyzer are shown in Fig. A.6. There is a fair amount of noise
at low frequency and peaking at high frequency due to self-resonance, but there is a

mid-frequency range with constant gain

1
= = A.
G=-T2dB= g (A7)

The figure is included mainly to show that the non-zero secondary voltage is real and
not an artifact of measurement noise.
The measurement value is in reasonably good agreement with the value G = 1/1362 =

1/18 496 predicted by the simplified expression (A.6).
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Figure A.5: Prototype and detail of secondary winding.

REF LEVEL  /DIV MARKER 72 610.683Hz
0.000dB 10.000dB  MAG (UDF)  -72.136dB
0.0deg 45.000deg MARKER 72 610.683Hz
: PHASE (A/R) 6.207deg
|
| Ampl. Bl
//
L~
B‘IMM TH M dAn gt ]
Phase
ﬂ oA M AA o
T
1K 10K 100K M
START 1 000.000Hz STOP 1 000 000.000Hz

Figure A.6: Network analyzer plot of G as a function of frequency.
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Iy

(@ (b
Figure A.7: Definition of structure dimensions (a) and short solenoid approzimation for

L.

A.6 Model Refinement

A better prediction can be obtained directly from expression (A.1) without introduc-
ing the approximations of (A.6).

In order to use that formula, we need to evaluate inductances L,, and L;;. Leakage
inductance Ly is the inductance of a toroidal solenoid and a formula is given, for example,

in [11] (pp. 408-409)
_ poD - N
B 2r

where 71, ry, D are shown in Fig. A.7a. The measured total primary inductance (ap-

Ly ln(%) = 66 uH (A.8)
proximately equal to Ly) is Ly = 71 uH, in good agreement with the value calculated
here.

Magnetizing inductance is harder to evaluate accurately given the strange geometry.
However, we can consider the sheet current of Fig. A.4 and make the approximation that
all this current flows on the inner surface of the toroid, as shown in Fig. A.7b. This
approximation appears reasonable since the mutual flux we are trying to model mostly
flows through the hole in the middle of the toroid as in Fig. A.3b. An approximate
formula for the inductance of the short solenoid of Fig. A.4b can be found in [10] pg. 192.

Using this formula

2
HoTTy

= ——— = 19.7nH A9
Im=pi00n - 107" (4.9)
Using these inductance values equation (A.1) gives
1
"~ 3350

with a 19% error with respect to the measured value.
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high-permeability
// core

Figure A.8: A high-permeability core is used to increase the permeability of the coupled
fluz path.

A.7 Two More Orthogonal Winding Structures: Changing the Perme-
ability of Flux Paths

Equation (A.4) shows that measured voltage gain is proportional to the ratio of
permeabilities of the two flux paths. To verify this, two more experiments are performed
varying the permeability of the flux paths.

In the first experiment the same Scotch-tape structure is used, but the permeability
of the coupled flux path is increased by putting a UU60 core with a 0.5 mm gap through
the center hole of the toroid as shown in Fig. A.8. Leakage inductance is unchanged and

magnetizing inductance is

12 [toS
Ly == = =2 =565nH
T Ra x "

where R, is gap reluctance, § is core cross-section and z is gap thickness. Calculated
voltage gain from equation (A.1) is 1/118 and measured voltage gain is 1/130 with a 9%

€error.

In the second experiment the permeability of the leakage flux path was increased
by using a high-permeability toroid. Two toroids manufactured by Magnetics, order
number 2 55585-D4, with relative permeability p,.; = 125, were stacked with the one-

turn secondary sandwiched between them. Physical dimensions are different from the
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air-core toroid used so far and primary number of turns is N; = 103. A smaller voltage
gain is expected because permeability of the leakage flux path is increased.

The measured voltage gain is

1
=-91.6dB = ———rov
G 91.6 dB 38396

and the value predicted using (A.1), (A.8) and (A.9) is

1

G =358

In this case the error is 40%.

A.8 Secondary Voltage Gain

Until this point, only the “primary voltage gain” has been studied. The primary is
driven and the induced secondary voltage is measured. It seems natural to look at the
voltage gain in the opposite direction, i.e., the “secondary voltage gain”

o
V2 li;=0
where the secondary is driven and the induced primary voltage is measured.

An attempt was made at measuring this voltage gain for the magnetic structure of
Fig. A.5. The result is shown in Fig. A.9. Amplitude and phase of gain G’ vary with
frequency, and there is no frequency range over which the gain is constant like in the
“primary voltage gain” plot of Fig. A.6.

This behavior cannot be explained by the model of Fig. A.3c. Qualitatively, the
plot can be explained by introducing secondary parasitic resistance R, and parasitic
capacitance C in the transformer model, as shown in Fig. A.10.

Like in every transformer, resistance R; dominates at low frequency and is respon-
sible for the +20 dB/dec slope of the magnitude plot of G’. At high frequency, the
parasitic capacitance C self resonates with the secondary inductance, and that explains
the peaking appearing in the magnitude plot of G'.

The difference is that in a conventional transformer between the low-frequency and

the high-frequency regions, there is a mid-frequency region with constant gain. That is
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REF LEVEL /DIV MARKER 1 340 103.014Hz
0.000d8 10.000d8 MAG (UDF) -12.651dB
0.0deg 45.000deg MARKER 1 340 103.014Hz
PHASE (A/R) 14.080deg
I
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Figure A.9: Network analyzer plot of G' as a function of frequency.

the range of frequencies where both R; and C can be neglected. The operating frequency
of a conventional transformer is in this mid-frequency range.

Notice that this constant gain region is practically non-existent in the plot of Fig. A.9.
To understand why this happens, we need to remember that the secondary is a one-turn
loop in air. It is hard to say whether it is an inductor, a resistor or a capacitor. Our
lumped model fails, and probably a distributed model would be an appropriate way to
describe this system.

From this discussion it seems that our model would work if we could boost the
secondary inductance above the level of parasitics. This can be done by increasing the
permeability of the mutual flux path as shown in Fig. A.8.

Looking at the transformer model of Fig. A.3c, it is

m Lm

G, = -— — T ————
vlii=0 Lm+ L2

Given the presence of the high-permeability core, we can safely assume that L,, > Lj,

and, therefore, it should be G’ = 1, i.e., perfect coupling. A value of G’ = 0.9 was
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Figure A.10: Transformer model with parasitics.

measured.

A.9 Conclusions

The orthogonal winding structure puts to a test one’s physical understanding of
coupled magnetic structures. The dependence on physical paramenters such as numbers
of turns, permeability and structure geometry is verified by experiments that very closely

match theoretical predictions.
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Appendix B
Derivation of Important Result for

Coupled-Inductor Design

In this appendix a formula useful for coupled-inductor design is derived.

Suppose we have a generic coupled-inductor structure with N; primary turns and
N; secondary turns. It is a reciprocal two-port and it can be represented in complete
generality by the black-box reluctance model of Fig. B.1. Coupling coefficient k; and
inductance L, are defined as usual. For convenience, definitions are repeated here. Cou-

pling coefficient is defined as

k £ o2 (B.1)
¢1 =0
and inductance L is
A N}
Li= B.2
25t (B2)

where R, is the equivalent reluctance seen from the primary with secondary mmf source
N3I, shorted (which means open-circuited secondary). This is illustrated in Fig. B.2.

We want to prove the following result:

q)tt
y REL.
N, MODEL Ci N,
——_——

Figure B.1: Generic coupled-inductor structure represented by its reluctance model.
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O
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I ®

q)(ot ¢a ¢b

NI, MODEL NI, NI, (%) [mopeL + MoDEL| () NI,

Figure B.3: Superposition is used to calculate ;..

Statement The coupled-inductor structure shown in Fig. B.1 is considered. The as-

sumption is made that reciprocity holds. Primary fluz ¢4 1 given by the expression

L N
it = jv-l; (Ix +k YV—%IZ) (B.3)

Flux ¢t can be calculated by applying superposition as shown in Fig. B.3 and it is
given by
Ptor = Pa + &b (B-4)

Flux ¢, can immediately be calculated from Fig. B.2 as

_ ML
=

Pa (B.5)

In order to calculate flux @, the reciprocity theorem can be used. This theorem can

be stated in the following form:

Reciprocity Theorem Given a linear time-invariant two-port consisting of resistors

only, consider the following two situations shown in Fig. B.4. Connect a voltage source
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Figure B.4: Reciprocity theorem says that iy = ).

REL. : REL.
0, A MODEL +)NI, NJ, MODEL 10,
TR, — e ®

Figure B.5: Reciprocity applied to the reluctance model says that fluz ¢ is equal to flux
bs-

ey at terminals , short terminals and measure current i,. Next connect the
same voltage source to terminals , short terminals and measure current ij.

The reciprocity theorem states that it is

Applying this theorem to the two-port of Fig. B.3c, we can interchange the short and

the mmf source as shown in Fig. B.5 and it is
b= Py
From the definitions of k; given by equation (B.1), it follows that
¢p = k1¢a

and @, is
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Therefore, it is

NI
% = b = k1o = k12— (B.6)
eq
Putting together equations (B.4), (B.5) and (B.6)
1
brot = 7 (NI + Ky NoIo) (B.7)

eq
Substituting (B.2) into (B.7) we get the final result

L N

bt = 3 (Il + ks Z—foz)

Importance of derived result Equation (B.3) has been demonstrated in a very gen-
eral case. The only assumption made is that the coupled-inductor structure is reciprocal.
The importance of this result is that it simplifies significantly if zero ripple condition on

the secondary side is satisfied. The zero current ripple condition for the secondary is

M
ki = — B.8
1=, (B.8)
In that case equation (B.3) becomes
L,
Ptot = YV“'(II + I3) (B.9)
1

This equation has been derived in [3] for a specific reluctance model (II-type reluctance
model), and it was the key to obtaining closed-form design equations for coupled induc-
tors, because primary number of turns N; can be immediately calculated from (B.9) by
setting ¢yo; equal to the desired maximum flux in the core.

We would also like to stress the similarity of equation (B.9) with the design equation
for a conventional inductor. In the design of an inductor L with peak current I, the
following equation is used

LI
DSAT = N

Notice that this equation has the same form of equation (B.9). Therefore, for a given
value of inductance L; and maximum allowable flux ¢s47, the primary number of turns
N; of a coupled-inductor structure is identical to the number of turns N that would be

used in the design of a conventional inductor that carries a DC current [ = I; + I5.
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Appendix C
Estimation of Leakage Permeance from Core

Geometry

In chapter 10 it was stated that under certain simplifying assumptions the leakage
permeance of a UI core is approximately equal to the permeance between two right
prisms of infinite permeability immersed in a material of permeability po. The goal of
this appendix is to derive the approximate formulas for this permeance as a function of
prism geometry given in equations (10.1). The method used is described in [6] and [7].

Fig. C.1a shows the two right prisms. An mmf source ¢ applies a magnetic potential
difference between the two prisms and causes a flux ¢ to flow between them. The
permeance P is given by

'le—b'

In a region with no currents, the magnetic field H is curl-free and there is an equiva-
lence between magnetic field equations and electric field equation. The equivalent electric
field problem is shown in Fig. C.1b. An emf source V applies an electric potential differ-
ence between the two prisms and causes a current I to flow between them. Conductance
G is given by

I
g=v

Since the equations describing the magnetic and electric field problem are identical (ex-
cept for scaling factors pg and o, see section 2.2), permeance and conductance are

related as follows:

P G

I—k; a0
The problem of Fig. C.1a-b is still a complex three-dimensional field problem. How-

ever, the flux path geometry in different regions can be approximated by simple geomet-
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Figure C.1: The magnetic field problem of determining permeance P between two prisms
of infinite permeability is equivalent to the problem of determining conduc-
tance G between two prisms of infinite conductivity.

ric shapes, and approximate formulas for the permeance of these regions can be found.
Adding together the contributions of all the flux paths gives the total permeance.

The first step is to divide the space around the prisms in different regions. This is
shown in Fig. C.2. Region 1 is the space between the two prisms. Regions 2 and 3
represent space around the prisms.

The second step is to consider each region separately and estimate probable flux
paths. This estimate is somewhat arbitrary, but the following guidelines should be kept
in mind:

o Flux lines at the prism surface are always perpendicular to the surface due to the

infinite permeability of the prisms.

e Flux paths in air between any two surfaces always arrange themselves in such a
manner that the maximum possible flux will be produced for a given magneto-

motive force.
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3 2 3

Figure C.2: Top view of the prisms. The free space surrounding the prisms is divided
into three regions.

C.1 Permeance of Region 1

Region 1 is a rectangular parallelepiped region. Fig. C.3 illustrates this region. The
flux field is assumed to be parallel and uniform, and it flows from the top to the bottom

surfaces S. The flux is therefore equal to flux density B multiplied by top surface area.
¢=B-a-c

The magnetic potential is given by magnetic field intensity multiplied by the distance

between the two prisms.
v=H-d
The permeance of the region is then

B.a-c a-c
H'd = Mo d (C‘l)

_0_
P=3=

Notice that this expression is identical to the expression for the permeance of an air gap

of width d between two surfaces of area a - c.

C.2 Permeance of Region 2

Region 2 can be divided in two subregions as shown in Fig. C.4. The two subregions
have the shape of a semicircular cylinder and a half annulus. Notice that Region 2
extends to infinity, but the two subregions are finite. The approximation is made that

flux further outside the two subregions is small and can be neglected.
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Figure C.3: Region 1. Fluz lines are vertical and go from top to bottom surfaces.

Half annulus Flux paths in the half annulus are approximately semicircles as shown

in Fig. C.5. The length of a flux path is nr and the magnetic field is

g = Mo¥

Tr

Flux is

b+d/f2
¢=l€ngth/BdT=length.H_:£/ ﬂ=“0¢1n<
’ d

1+ ?—é) - length
/2 T T

d

Permeance is

P =

<o

) n (1 + 2—b) - length
T d

Semicircular cylinder The permeance of this subregion is not as easy to calculate as
the other regions considered this far. An approximate method can be devised by looking

at equation (C.1). That equation shows that the permeance is given by

[ cross-section of fluz path |

[ length of fluz path ] (C.2)

quo

In the case of a non-uniform path, a mean length and a mean cross-section can be

considered.

[ mean cross-section of flur path |

[ mean length of fluz path | (C3)

P = po
(C.4)
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Figure C.4: Region 2 can be divided into two subregions: a semicircular cylinder and a
half annulus.

Ir d/2+b
It

Figure C.5: Side view of the half annulus subregion with dashed fluz lines.

In some cases mean cross-section will be evaluated by dividing the volume of the region

by the mean length of flux path. Equation (C.2) becomes

_ [ volume of region ]
o= ”O[ mean length of fluz path ]2 (C.5)

In the case of a semicircular cylinder, the mean length of the flux path can be con-
sidered to be equal to the length of a line drawn midway between the diameter and
the semicircumference of Fig. C.6, and by graphical measurement it can be found to be

approximately 1.22d. The volume of the region is 7d?/8 - length, so the permeance is

rd?/8
= po——s - | = 0. - length
P uo(1.22d)2 ength 26p0 - leng
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Figure C.6: Semicircular cylinder subregion with dashed lines representing the mean flux
path.

C.3 Permeance of Region 3

This region can be divided in two subregions, a spherical quadrant and a quadrant

of spherical shell.

Spherical quadrant The spherical quadrant is shown in Fig. C.7. The mean length
of the flux path now is different from that shown in Fig. C.6, and it can be approximated

to be 1.3d. From (C.5) the permeance is

Quadrant of spherical shell The quadrant of a spherical shell is shown in Fig. C.8.
The mean length is

T
S(+d)

The maximum cross-section of the flux path will be

2
”(b‘*‘%) T (d\? =
=51 (5) =pera

The average area of the path may be considered to be 7 /8 b(b+d). From (C.3) permeance
is
Th(b+d) _ b

P = poS7i—v = o=
”Og(b+d) #04
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mean flux
path

Q d

Figure C.7: Spherical quadrant subregion with dashed line representing mean fluz path.

To
mean flux
path
d
Tb

Figure C.8: Quadrant of spherical shell subregion and side view representing mean fluz
path.
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Appendix D

Sufficient Stability Condition for Modified One

Cycle Control

The following fact is proved in this appendix.

Fact: Any Cuk converter is stabilized by control law

verd — V;'ef + I(l(il - Ilref) =0

for K; sufficiently big.

Proof The Routh-Hurwitz criterion is applied to the linearized equations (16.2) of the

controlled converter, which are repeated here for convenience

4 -5 -+ 0 0 i
s || A (1-D4B%) AuBm -2 0 | |
%itz ‘Ili 0 0 —13—2 iz
L 0 0 I -4 o
A
The A matrix has the form
a1 a2 0 0
Ao |9 2 0
az; 0 0 a3
0 0 a43 ay

The eigenvalues are the roots of

M4+aX+8X24+90+6=0

(D.1)
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where
Q@ = —a1 — G2 — G4y (D.2)
B = =—a34a43 + (@11 + a22) as4 + a11a22 — aj2a2; (D.3)
Y = Q340443 (an + 022) — 011022044 + (12021044 — 12023031 (D-4)
6 = —a11022a34043 + 012021034043 + 012023031044 (D.5)

From Routh-Hurwitz criterion the stability conditions for (D.1) are

a>0 (D.6)
af~v>0 (D.7)
afy -yt -a?6 >0 | (D.8)

Now let us calculate approximate values of a, 83, 7, 6 under the condition that K; be

big.
Ky
N — D.9
and (D.9)
1 D

~ K D.10
A=K (Llc'R + LlclR) (D-10)

] D D
~ K D.11
7R A (LngC tIcicre T L1L201) (D.11)
Ky 2D (D.12)

"“LLOCE
These equations are obtained neglecting all terms that do not contain K.
Condition (D.6) is trivially true. Condition (D.7) is true because a8, which is a
positive quantity, is proportional to K? and 7 is proportional to K only. Therefore, for
K big, the term proportional to K? dominates.
Condition (D.8) can be simplified because a3y and a?é are proportional to K3 and

~? is proportional to K? only.
0< afy —7* - % ~ afy — a6 = a(By — ab) (D.13)
This condition can be simplified to

By —ab >0 (D.14)
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Substituting (D.9), (D.10), (D.11), (D.12) into (D.14)

(e ) (e + e * )~ e )2
VIN\LiCR " LiCiR) \LiLoC " LiC,CR? " L1L1,C;)  L?L;C:C R

(D.15)
This expression simplifies to
1 D D2 D?
(2 0 D.16
ki [LngczR tTccir T cicr T L%chfR} > (D.16)

which is always positive. This proves the statement.
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Sufficient Stability Condition for Modified

205

Appendix E

One-Cycle Control Applied to Third Order Cuk

Converter

We want to find sufficient stability conditions for a third-order Cuk converter (no

output capacitor C) controlled by the law

vo1d — Vies + K1(11 — Iires) = 0

The perturbed equations of the controlled system are

di K 1
any ~ D1 —
dt L I 0
dicy = | L(1= D K\ 1 _D? -
di o (1 D+i3p3R) oa-pr —G
di K R
22 — —_——
dt 2 0 Lo

The A matrix has the form

a;; a2 O
A= az1 azz a3

az; 0 az3

The eigenvalues are the roots of

where

N+ar+8r+7=0

a = —a11 — Q2 — as3
B = ajrag; — a1za21 + asz(a; + azz)

Y = G23012G31 — ass(anazz - a12a21)

7

1

(E.1)

(E.2)
(E.3)

(E.4)
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From Routh-Hurwitz criterion the stability conditions for (E.1) are

a>0 (E.5)
af—-v1>0 (E.6)
Condition (E.5) is
a1+ az +azz <0 (E.7)
After simplification, condition (E.6) is
(@11 + a22)[—aq1a33 — azza33 — a3; — a11az3 + a12a21] — azaaizaz > 0 (E.8)

Notice that —aj3aj2a3; > 0. Therefore, a sufficient stability condition is
(a11 + azz)[—a11a33 — @zza33 — @35 — @11823 + arzaz] > 0 (E.9)
If it is
a1+ a2 <0 (E.10)
then (E.9) becomes
2
a11033 + ag2a33 + a3z + a11a22 — d12a7; > 0 (E.11)

which can be written as

[asz (@11 + ag2)] + a3 +(a11a92 — ajaa31) > 0
S’ S~
<0 <0 >0

Therefore, a sufficient condition is
ajasz; — G122 >0 (E.12)

Substituting expressions for the a;;, coefficients the first term of (E.12) becomes

1 K, D? K, D
R 1-D R 1-D

fluazz'-alzazl:m ~— ——=+1-D+ - ——

which simplifies to

1
11822 — Q12021 = 1.0, [-—R—D +1- D]
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This last quantity is always positive and so (E.12) is always true. Therefore, (E.7) and
(E.10) are sufficient stability conditions. Notice that (E.10) implies (E.7) since as3 < 0.
Therefore, (E.10) by itself is a sufficient stability condition. It can be written as

. Iy D? 1
K, > 2L il
1> G 1-DR

This is the desired sufficient stability condition.
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