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SUMMARY

The applicability of linearized theory to the aerodynamic study
of slender, three=dimensional bodies in supersonie flow is considered
in detail, and figures are presented whiech show the limitations of
body shape and Mach number to be observed if quentitatively reliable
results are to be achieved. Then methods are developed and evaluated
for caleculating the supersonic flow about slender noncireular bodies,
other thean wings.

Sections I‘and II are concerned with the veloeity and pressure
predictions of the linearized theory. It is shown that these éuaﬁtities
do not converge to the corresponding predictions of the exact solutions
for vanishing disturbance, and the reason therefor is found. In Sec-
tion III the inapplicability of wing theory methodé and the theory of
slender circular bodies to the present study is reviewed, and the prob-
lem is carried to the fundemental nonrotationally symmetrical solutions
of the wave equation; the properties of the noneireular funsctions are
developed in Section IV. Jection V contains a description of the Lorentz
transformation for obtaining solutions singuler on a yawed line, and Sece
tion VI a simple statement of the GOthert transformation for changing the
Mach numbere

Sections VII and VIII contain an exposition of the use of the
theory developed in the previous Sections. DBodies in supersonic flow
are classified according to size and orientation, and appropriate methods
for each are presented and evaluated.

The Appendices present tables of the functions used in the analysis,

along with sample computations.
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INTRODUCTION

This thesis has the two=fold purpose of evaluating by detailed
explicit calculation the applicability of linearized theory to the
study of supersonic flow about slender bodies in thres dimensions;
and, having discovered the domain of applicability, of developing suit-
able methods for calculating the flow about such bodies when they are
not rotationally symmetrical.

In recent years a copious literature on linearized supersonic
flow has appeared, but unfortunately little attention has been directed
toward esteblishing in a concise form the limitations on body shape
and Mach number which must bé observed if the numefi@al predictions of
the linearized theory afe to be quantitatively reliable. The evalua-
tion consists of two parts: the determination of the velocities by the
linearized theory, and the calculation of the pressure from the velocitys
It is illuminating to realize that at least six distinet pressure form-
ulas have been in use in the literature, each a simplification of the
exact formula and supposedly correct within terms of a certain order of
magnitude. Bubt it is shown in the text that the linearized theory does
not necessarily prediet the veloecities correctly even for very small
disturbances in three dimensions, and hence the most aceurate repre-
sentation of the exact pressure formula is not necesserily the best
formula to use. A particular formula is recommended.

It may be argued that a linearized theory should not be expected
to yield quantitatively reliable predictions and that one should be

satisfied if the theory properly indicates the trend of the various
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calculated guantities and correctly locates the deeimal point in the
numbers. However it happens that the linearized approach %o supersonic
aerodynemics is the only feasible approach to many of the most importent
problems if an enswer is required within finite time. Conseguently it
is necessary to know for what ccnfigurations the linearized theory does
and does not produce an acceptable numerical prediction; and, when the
prediction is in error, whether the prediction is too large or too
smalle

The main part of the thesis is concerned with the development of
methods for the study of supersonic flow over nonrotationally symuetri-
cal slender bodies other than wingse. It is shown that the methods of
wing theory and the theory of rotationally symmetrical bodies are in
general inapplicable to the problem, and the study is thrown back to a
consideration of the fundamental solutions of the linearized gquation
of flow that may be superimposed in a demonstrated manner to represent
a rather general class of bodies. Thruout the thesis, attention is
given to the numerical reliability of the methods and the practicality
of their use as routine calculation tools. Every effort has been made
to discover and present the simplest calculation procedure for meny of
the problems likely to be encoﬁntered, and to this end extensive tables
of the most important functions have been prepared. These tables are
very usefuls The solutions of the linearized equation are, of course,
tabulated in their exact form.

An excellent chronological swmery of the development of super-
sonic aerodynamics, and in particuler of the linearized theory is pre=-

sented in the introduction to the doctoral dissertation of Wallace Do
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Heyes (l)o The fundamental work dealing with the flow over slender
b@dieé in three dimensions has been published by: Xarmén and Moore (2)
who in 1932 introduced the concept of superposition of conical flows to
represent nonconical flows; Tsien (3) who in 1938 applied the superpos-
ition method to the study of bodies of revolution at yaw and introduced
the important idea of cross flow; Lighthill (4,5) who in 1945 reexamined
the fundemental assumptions of the linearized theory and put several of
the ideas on a firm footing (though some criticism of Lighhill's paper
is offered in this thesis); R. T. Jones (6,7) who in 1946 introduced
the very convenient "slender body"¥ approximation for estimating the
characteristics of certain configurations; and finally We D. Hayes (l)»
whose comprehensive thesis furnished the inspiration for this investi-
gatione Some familisrity with these papers and with the theory of come
pressible fluid flow as summerized by Liepmann and Puckett €8§ an& by
Sauer (9) has necessarily béen assumed by the writere

Throughout this study several words are used with specialized mean-
ings; these words are now definede The words solid body are used to
distinguish the set of bodies under present consideration, which are
essentiélmy fuselage-like, from wing-like bodies. Furthermore, & solid
body is slender and pointed at the upstream end, is not necesserily
closed downstresm, and has no thin excrescences.. The meridien contours
of a solid body have continuous slope, bubt the eross section contours
may have slope discontinuities, other then cusps. The cross section con=
tours are assumed &d bé simple closed continucus curves touched only

once by any straight line from a point on the body axise The set of
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solid bodies is further subdivided in the text. The words circular
and poncircular are used to distinguish a solid body whieh is a body of
revolution from one which is note Also, by square body, ellipiicsl
body, etce., are meant sclid bodies whose cross section coniours are
respectively square or ellipticasl, and so on. &4 ray is any straight
line in the space which passes through the origin of coordinates. A4
conical veloeity field is éne in which the veloeity is constant along
any raye. In speaking of velocity potentials, the words coniecal and
nonconical mean that the velocity field asscciated with the potential
is, respectively, conieal or nonconical.

In the text, underlined numbers in parenthesis (1) dencte the

references to literature, and decimal numbers (8.11) denote equations.
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Io LIVITATIONS OF THE IJINEARIZED THEORY IN THREE DIMENSIONS

This‘study is concerned with the steady supersqnic flow over solid
bodies as defined in the Introduction. On the assumption that this flow
is isentropic (irrotational) end steady, that the effects of viscosity
and heat transfer are negligible, snd that the incremental velocities
are small in compaerison with the sonic velocity, the exact equation of ‘
motion mey be linearized. There result the fundemental equations for

linearized flow (8, Chapter 8)

;:Z[J-Msy

(1.1)
2 499 A% _ ¢ _
(FMT=l)33= "oy ~ 53 = °

In (1.1) ¢ is the velocity potential of the perturbationsgif'is the

free stresm velocity (assumed parallel to the x=sxis), M is the free
stream Mach number, and XY o2 arebdartesian coordinatess When the free
stream is supersonic, M>/= B*>0 emd (lel) has the form of the wave

equation, frequently written

If the surface of the solid body is

S(x,y,Z) =o
then the problem is to construet the solution of (l.1) which satisfies
the condition that the flow be tangent to the body surfaces

(T +grad @) grodS| =0 (1.2)
S

=0
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The precision of the results to be deduced from the linesrized
theory may be estimated by comparison of the numerical values of a
particular flow variable as obteined from solutions of both the lin-
earized and exsct (nonlineer) differential equations deseribing a rep-
resentative problem. Denoting by g the msgnitude of the local total
velocity, the variable selected for ecomparison is 1 - (%%)t the argu-

2 2
ment of the exact isentropic pressure formula, & ["'(é;} -]‘ is
approiimately proportional to twice the longitudinal perturbatione
The formula of linear theory for q at the surface of an unyawed cir-
cular cone of half vertex angle 6 in a steady supersonic stream is
X
g = Z[mesl:l*" é-;—f-/‘—?l-_"—/{z-(w%—% _‘/,;,-/;—1}]
where {sz B2 6; o This quantity according to the exact soluticn of
the problem may be calculated from Kopal's tables (10).

If the meximumm permissible error be established as 10% of the
exact velue, it is possible to plot as a’function of M the meximum and
minimun of 2; and 6% for which the linearized theory yields an accept-
able value of 1 = (%%)25 The result ie presented on Fig. 1, where
the domain of applicability of the linear theory is labelleds The bound-
aries of the domain are not definite because the fundamental peremeters
of the linearized and exact solutions are not the same. The upper
boundary is associated with those combinations of large cone angle and
Mach number at which the assumption of isentropy is beginning to break
downe The left boundéry marks those Mach numbers helow which the conical
flow regime does not exist (vow wave detached)s The lower boundary re-

quires some discussion, for the existence of & lower limit of cone angle
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below which, at a given Mach number, the linearized theory does not yield
an acceptable prediction of the perturbation veloeity challenges the
validity of the linearizing assumptionse

Figure 2 presents a comparison of exact and linear theory pre-
dietions of 1 = (Cg?}zfor unyewed cones of 5%, 7%5, 10° and 15° half-
vertex angle. Apparently the predictions of the linearized theory do
not in general agree with those of the exact solution end, for small
The error in the longitudinasl perturbation component is the Qrdér of
20% for a 5° cone at moderate supersonic speeds. This behavior suggests
that there is something fundamentally incorrect in the lineerized dif-
ferential equation fcr‘rotationally symmetrical superscnic flows, for
otherwise the exact and linearized predictions would coineide for vane
ishingly small disturbences.

Second order theoryr(;;) produces perturbation predictions of
greatly improved accuracy. It is, however, impossible to deduce from
the results of the theory whether or not the functional dependenée of
the perturbations on the Mach number and cone angle is correetly'given
to a first approximation by the simple linear theory, for the iteration
procedure is only a method of calculating correction terms to be applied
to any initial function whiech fulfills the preseribed boundary condi-=
ticnse |

It will now be indicated that the linearized differential equation
inadequately approximates‘the exact equation when the disturbance con=

sidered is very small. The exact differential equation of the problem
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will be d.iscusseé., and an epproximate integral of it fmm& which is
valid for very smell disturbances and low supersonic speeds. The new
solution agrees well with the exact solution; it can be transformed
into the linearized theory result with an added correction term of
order ¢ * . The lowest order term of second order theory is of order
¢ (10g8)" ().

The motion is consgidered on the hodograsph plane, where the differ-
ential equation is ordinary with a single dependent variable, The
exact hodogrsph egquation describing the adisgbeatic compressive flow be-

tween the body surface and the bow wave of an unyawed circular cone is

(12,13)
2 z 2 AUV Uy,
var = (1= %)+ (- F) () = T (1.3)

where w, v, and a are respectively the axiasl and radizl components of
veloclidy, and the local véloci's;y of sound., The intezral curves of (1.3),

named meridian curves by Busemasnn, constitute a two-parameter family.

Bach curve joins s chord of the oblique shock polar to the locus (Buse-
mann gpple curve) of the end point of the final velocity vector on the
cone suri‘acé. A% the apple curve, the meridian curve is normsl %o a
radius from the origin of the hodograph (12,13,10,14,15),

As the present interest centers on the portion of the apple curve
associated with vanishing cone angle (v — o, u— u,= free stream ve-
locity) the following epproximations, which are asymptotically exact,

are mede without altering in any way the character of eguation (1.3):



/-Zu—z-zt consf.=/—/‘7,1 =—~p*
/—-—Z%z—-/
= consl
whereupon (1.3) becomes
e~ = - B B (1e4)

Now the linearized differential equation deseribing the present problem,

nemely
29 ) v
~B 5% f3y t ¥ =0
becomes on the hodograph plane
< 2
ﬁl"U_’uu—-(’U‘u) =—B ‘ , (la_S}

“hence the difference between the asymptotically exact and the linear-

ized equations deseribing the supersonic cone flow problem lies in the

AUV Yy,

inelusion or omission of the term, a

» on the right of (lel),
which term is presumed to be of second order in smell guantities and
ignorable in comparison with mBQ; this term arises essentially from the
erogs=product -1a71¢&4;4§y in the exact equation. Now at the inter-

section o6f a meridian curve and the apple curve the conditions are,

without approximstions

u = U,
U = 6213

-L
Ve = I3
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Quv v 2 2
therefore R e ii:l > B s independently of € »
= :

Here erctan & = €5, the cone half’ vertex angle, and subscript 3 denotes

final velues. For the typical example of a SQ cone at M = 1.2, it is
2

found that 25 = 2.8, whereas WBQ 2 =0e.l)i, and hence over a portion

QZ.
of the course of the meridian curve, the right hand side assumed in the

linearized trestment is not only of incorrect sign, but slso of incorrect
magnitude, for every & , however small. It follows that the solutions
to the lineasrized eguation for circular cone flows cannot be asymptot-
ically correct, and that the usual three-dimensionel linearized theory
is inapplicable to a vanishing rotetionally symmetrical disturbances

The solid line on the following sketch shows qualitatively the bee

WUV Yy

havior of the quentity -B2- 25" as obtained from the tabulations of

the exact solution for a typiecal cone angle and Mach numbere.
2 AU VY
"B———ﬁz

h - / z

/
(
o | .
|
-Bz _———Z_._:______J_
szj; U-=€u5

It is of course desirable tc obtain an explicit integral of (lol)
but this is probebly impossible in terms of elementary functions, for
the egquation can be shown to define an Abelian function of multiple per-
iodicity (16, pe 26ffe)s It is interesting, however, to construct an

approximate integral of (lel), without iteration, which in scme meessure
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takes aceount of the actual behavior of the right hand sidee

The differentiel equations

e 2
V Vi ~ MUl S & (1e5)
‘U’U'uu -y - a® (196)

are expliecitly integrable and each well approximates the exact equation
(1eh) over a portion of the integral curves It is proposed to patch
the solutions of (1e5) and (1e6) in both v and ¥, at the point (z,%).

AUV U,
which is very near the pcint at whieh the quantity ~B*- ¢zfu of the

exact solution venishes. This procedure amounts to replacing the right
hand side of the exact equation by the function depicted qualitatively
by the dashed line on the preceding sketech. The solution thus obtained
is not a true asymptotic integral of (le4), but is certainly a closér
approximation to the truth than the integral of (1e5).

Introduce new variables
u© R
X= 2 ) S5 a

in (lel)s (1e5), and (leb)s These equations become

m’”“(?‘”z =B —axyy’ (1e4)
gy =y =-8" (x, 2% £ X,) (1.5)
77”-c7f)z = —2xyy’ (X, <x = X3 . (16)

The end conditions ares

'

at X=X, ) 75‘ o 2/5 = -pB . (1@?&)



at  Xx=x_ , Ye=Jo 1 ¥s =% (1.70)
{
a‘t X = XJ ) 76 = £X3 7 76{ = ‘; £197c>

where the subsecripts 1 and 3 denote free streem and final surface con=
ditions, respectively; and subseripts 5 and 6 denote the differentiel
equation defining the functions

Equations (le5) and (1le6) may be integrated by known methods,

the results being respectively

yf = dB/ktr‘tv{ X X €198>

[ 4

and

A erf x
7 T Je v (1.9)

where «,¢ ,and A are constants to be determined from conditions (1e7)

and where the definition
: -2
2 s -%
X = —

has been employeds Conditions (1l.7¢) imposed on (1l.9) require

A
X
T e’
R T | (1010)
and xl
Fw e’
P T iz, b
= £x; @ (1011)

Point (X, Yal is defined by the ecuation

2 7/
-~ B _.2;('7575 =—ae]
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that is

ka3 =

‘.
from which it is found thet

@ . =~
R A

3 o« Xy

< (1812)
X‘;_:n= X~ 5; A&gﬁ;:;:

for  is very much less than unity (see equation §1919§L Insertion of

(1.12) in (1.8) then shows
Ve =8 Zx, (1.13)

with completely negligible errors

Conditions (1l.7b) may now be imposed and there appears

A eng %,
al
BV zx, = de (lo1h)
~B,/[ & = , ~* A Lﬁf’xa
> Vx e dde o : (1015)

)

Using (1.12) to write X, in terms of « eand x, in (1leo14) and (1.15),
equations (1e1), (1611), (1o14), and (1015) could, in principle, be
solved simultaneously to find «,d, A4, and X, in terms of € and X, , thus
permi tting the new approximate expression for the meridian surve to be
written explicitly. But interest is focused on only the locus of the
end point, (X,, ¥3) , of the meridian curve as a function of € and X,
This locus is calculated as follows: dividing (1.15) by (1l.14) there

results 2
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and upon comparing this expression with (1.10),

oax = & Xj e ﬁl@lé}

without approximations Finally equation (lell) may be written

= —A_m,%z\’q_
§ = BVzx €

and upon comparison with (1.11) it appears that
2,

B—AWP“ MX]"&’X’W[‘/—gxM]

3
Using (1.16) to eliminate « from the left of this equation, and taking
the logarithm on both sides, it is found

= mp (e ) (X)) = oy [25

€ Xg B+
which may be written

4
X e gt 2 [, [z% (1617)
- - K l
e [3 e C/E = € Xj[/%V B'z’ - (Xd_ - 32}] o
It is apparent in the subsequent development thet the quentity (x’— x5/

< z 2 . - .
'is at most about ‘—;’l-é' X3 /f':y Be and is therefore negligible in
comparison with log i%‘z ; equation (1.17) becomes

2

X 2
X R § 2x,r : R
eV e e = etay G VR (1.18)

Similarly, referring to (1.16)

o=, (1= (R

(1.19)
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Equation (1s18), using (1¢19) and (l.12), velates x,,x,, and &
impliecitly. Several points (X,43,f) from the exact solution have been
tested in (1.18) and found to be compatible with remerkable accuracye
Tables of error function were consulted in evaluating the integral.
Unfortunately, the implicit relationship is not computable, and some
sacrifice is required to mske it s0.

The femiliar linear theory result can be obtained from (1.8) (1%),
and as well from (1.18) on the basis of an invalid assumption. Saying
that inesmuch as X, and X; are very nearly equal, the integrand in
(1-18) is approximated by the constant e‘x:‘9 whence, using (1+19)

and (1.12)

\’2)‘}‘3 2 2
X =Ky = £ X, My g *EH /471/;:,",3

(1020)

= £1x3,/57§%;

which is recognised as a simplification of the linearized result based

on the exact boundary condition
X? = Exj, ‘.
More aceurately
e*’sz X‘;*fz/f's/xte X;Lf:(g =/ XQ[/+ (%5=8) "+ (";; fa)z]df
% 5] Xz

the expression on the right has the value

Xe 2 2 E3 Z
(Xq"'x]) t (Xe = X5 /"'3—‘ (%= %5) (x¢+2'xi)(/ + ———z;j’} (1s21a)
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which, for B¢ <o0.20 may be represented by

R

x . x5 s ¥e ~FT
(xe=x5)(1 + L) =e [ e off - (1.21b)
J

A more accurate representation of (ls2la) is required if Be& >o.20,

Now according to (1.12) and (1.19),

£1 2
X, = %, Xz /&;7!/‘?2/(,”3

therefore, with reference to (1e21b) and (1.18)

2 7 ! 2 ' [2 x, %4
- - — = £ X
(X' X3~ & X /&;7 E2X, x5 1+ X2 g /&7 B*

I

or
i

1+ 5>
2 JZ [yax X ==
(Xi=X5) = € X 7 {E (. ( B J) d } ’ (1e22)

Comparing (120) and (1e22), the error committed in taking the integrand

in (1.18) to be constant is apparente
The quentities X, in the right of (1.22) appear because the exact
boundary condition, y,; = £x;, » has been imposedao Use of the approximate

boundary condition, Yy = Ex 9 which is asymptotically exact, replaces

Ay by x, and introduces an error obviously self compensating to some
degree. The error is certainly of minor consequence, though difficul?t
to assess analytically with precisione.

The ultimate approximate result, which is computable, to be com~

pared over its range of wvalidity with the exact and linear solutions for

slender cones at low supersonic speeds is

I+ x*
z vz V2 X =
X— %, = €K [—E—? (—“’B "/ ‘ } (1.232)
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which may be written

k3
X, = X3 £ ? I R AR, N

X, = Be Trx 5 ‘ (1e23Db)

Formula (1.23) is compered graphically on Fige 2 with the linearized
and exact solutionse The formula for the exact caleculation of the quane

2
s
ity |- (%?? from the longitudinal perturbation is

E4
/—{-3‘/ = J-(ee?)f1- ﬁ'_‘_’izjz

Xy

It must be emphasized that the approximetions made in deriving (1.23)
from (1.18) are valid only at low supersonic speeds.

The foregoing analysis in conjunction with a thorough numerical
investigation of the linearized, exact, and present solutions of the
problem of the slender circular cone in supersonic flow suggests that the
familier linearized theory is quantitatively unreliable for the treatment
of very slender, as well“as thick, solid bodies. The domain of applica-
bility is shown on Fig. 1. For very slender bodies, the simple Jones
slender body theory (£), (7) is reasonably accurate for 1ift end moment
caleulationy and is considerably easier to apply than the general methods
to be presented in this study; some comments on the Jones method are to
be made subsequently. For thick bodies, resort must be taken %o numere
ical integration of the exact equations. Ixcept as explieitly noteds,
the remainder of this study is concerned with the class of solid bodies

to which the linearized theory is applicables
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11. CALCULATION OF LOCAL PRESSUHE

The various methods of deducing the local pressure from the vel-
ocity predictions of the linearized theory are now to:%ppraiseda There
are several formulase in use for this calculation; all are approximations,
of varying accuracy, to the exact isentropic pressure relationship

(8, Chapter 8)

C = L7l= _ { ' ~,
N o —7"7 /+°’"/‘7

<z
Sl = 2

Here subsceript o denotes free streeam conditions and g the local total

&2@1@

veloeitys The components of perturbation in the x(free stream), ¥,z

(or x, ry. ©) directions may be desiénated Uy Ve W, then

2

| — g _ 22 (x4 viqar?
Uz ZZ ZZ—?—

Consider the expansion of the quantity in braces in (2e.1) according
to the binomial theorem. If terms linear in the perturbations are con-

sidered, the familiar Ackeret-Prandtl pressure formula results @Q}

—~d%

Cf = ?[— . (2@2>

Next taking into aeceount all guantities in the first two terms of the
expansion, the gquadratic formula of Busemann appears (12)
-2(11 p it

- 8-
TR = I—"z?,;~ ) (263)

c, =
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and if the x” is arbitrarily dropped from the right of (2.3), the

Hoyes quedratic formula is obtained (1)
- = v ¥y ?
o =-2 v T (204)

Finally, including the term gquadratic in the perturbations from the third

term of the binomial expansiom, a formula of Van Dyke is found (11)

€ = o ¢ wlpes DB (2052)
P 74 2 2t

This formula may be written

% 2 .t
CP = |- Ez + —Z?"‘ . R (255b)

Formula (205) is a simplification of a guartic formula recommended by
Kérmén and Moore (2).

& comparison of ths pressure predictions of these formulae for a
10° cone is presented on Fige. 3, along with the exact pressure predie-
tion taken from Kopal's tables (10). Similar calculations for cones of
5%, 7%5, 1295, and 15° indicate little variation of the qualitative
behavior or accuracy of the several pressure formulace The linear theory
predictions of the perturbation velocities have, of course, been use&
in the formulee, and inasmuch as these velocities are not correct, it is
not surprising that the exact isentropic pressure formula does not yield
the best pressure prediections

It‘is coneluded from.the numerical investigation that formula (2.5)
should be used for pressure estimation in the linearized study of solid
bodies. The inaccuracy of this formula tends to compensate well the ine

accuracy of the veloeity prediction. The use of this nonlinear formula
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usually precludes an analytical integration of the pressure over the
surface of a body, but this is no loss for it will be found that the
velocity functions arising in all but the simplest problems are of such
form as to rule out analytical pressure integration using even the
linear pressure formula. Recommended procedures are described in the
appropriate sections of this study.

It may be remarked that for small cone angles at moderate super=
sonic speeds, the error in the preséure prediction of the linesr
formula (2.2) increases as the cone angle decreases. This observation
casts same doubt on the aceeptability of portions of several investi-
gations concerning rotationally symmetrical solid bodies, where this
formula in conjunction with a passage to the limit of zero body thick-
ness was used to simplify the analysis and derive closed expressions
for 1lift, drag, and moment (17, 18, 3. 4, 19)e In particular, the
findings on optimum projectile shape are in question. In two recent
papers M. Jo Lighthill has used the more satisfactory quadratic formula

(2:3) (5, 20)-
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In general, the methods of supersonic wing theory are inapplicable
to the solid body problem; the reasons for this conclusion are to be
brought forward. An exception is the Jones slender body method (6),
to be diseussed latere

Much use in wing theory is made of Green's formula for the. wave

equation (21, pe 430 f£):

//'[(?aw—wap)b/l/ = /7(¢%- - w/fgf- (3+1)
D S

B 2 9% Q* d*
where ﬂ- Bd(z d? -.ﬁ"

differentiation (1, 21, pe 43L4). Equation (3.1) relates the volume

and a% is the symbol of conormel

and surface integrals of two functions, ¢ and ¥ , and their first and
‘second partial derivatives, over the content and surface of the domain
bounded by the retrogradé Mach cone from the polnt of interest, P,

a plane normal to the free streem upstream from all disturbsnces, and
the surface of the body included by the retrograde Mach cone.

Without going into detail or mentioning the variations of the
method applicable near wing tips, the philosophy of this approach and
its limitations may be described briefly as follows. The function p
can be so selected that the velue of the volume integral on the left
in (3.1) mey be continued to the solution g(PIﬁ of the wave equaticn
(22), end such that the surface integresl on the_righ% extends only over
the surface of the solid body included by the Mach cone from Po The
difficulties arise in the right of (3?1);, in wing theory wse is made of

the symmetry or antisymmetry of the problem in question to eliminate
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the guantity ¢§¥¥ by consideration of the sclution,@ , at points sym=
metrically placed with respect to the plene of the wing. . On the plane
of the wing, the co-normal derivative becomes simply the normal deriv-
ative, hence the function ¢ is related to the integral over a portion of
the plane of the wing of a funetion proportional to the normsl derive
ative of 1% gywhich is preseribed by the boundary conditicne.

In the consideration of solid bodies the simple relationship be-
tween the normal and conormal derivatives of @ at the body surface does
not exist, and it is further impossible, in general, to construct the
function ¥ such that one of the terms in the right of (3.1) vanishes at
the body surface. Thus (3.1) is at best transformaﬁle into an integral
equation of the Volterra type and even though in principle a Volterrs
equation can slways be solved in a step by step menner, in all but the
simplest preblem no further enalytical progress can be mades The ex~
cepticn is the problem of the unyewed slender eircular cone; but in this
case the methods of conical flow are moreefficient (13, ls 23).

The powerful theory of conical supersonic flows (23, 1) capitalizes
Busemann's observation (li) that the wave equation is transformable into
the Laplece equation in planes normal to the free stream, provided the
disturbance is conicale Thus the vast structure of potential theory
may be brought to bear. But if the trace of the body in this normal
plane is other than 2 eirele concentric with the $race of the Mach cone,
or & straight line vefj negr a diameter of the Mach cone, the transform-
ation warps the body trace snd complicates the boundary condition equa-

tion. Nevertheless the formal solution of any conical problem fulfilling
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the linearizing sssumptions exists and mey be written on the basis of
the theorems of potential theory. However the explicit construction of
the solution for a noncircular conicel solid body is impractical, for
one has to deal with a domain having literally irregular boundaries and
boundery conditions. The calculations for an elliptic cone have been
carried out by Laporte and Bertels(24).

To build a method capable of treating in a straightforward menner
the aesrodyneamics of solid bodles, resort is taken to the superposition
of solutions of the wave equation singular along one or more lines within
the bodye This method was inaugurated in one form by The von Kérmén and
N. B. Moore (2), who used the axis of the Mach cone as the line of singe
ulaeritieses The development of the method by various investigatdrs'has
been sketehed in the Intre&uctiene The Karmén=Moore method is suitable
for the consideration of conical or nonconical eirculer solid bodies,
either yawed (3) or unyawed, provided the discussion of Section II (ante)
hereof is kept in minde Se He Maslen has recently published sn inter-
esting approximate method for the study of noncirculer éones (gﬁ)q The
cone ié built'up of several inclined source lines of common origin;
each producing a conical wveloecity field.

It is now to be shown that the generalization of the Kérmén msthod
is in general unsuitable for noneircular solid bodies.

To construct, by superposition, the perturbation velocity potential,

q), which satisfies the wave equation

Ix* 9yz rdr riygz_° (302)
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and which fulfills the boundary condition

(U + grad @) praef S =0 (162)

on the surface, § (5 r, &)=0, of a solid body, the separation of the

azimuthal veriable may be considered:

¢=§%(x,r) ((-; o se “'Ds"":"se) ’  (363)

Kérmén's method arises from the assumption that
_ s
G, (xir) = Focxr)r
which leads to the differential equation defining the Fs (x,r) functionss

3*E

s _
d x* B*

(SF . 22 28) (344)

rz dr

Qo

It is easily seen that

[
F == F

S+1 s

henece it follows that
[ 9 s
Foon = (v £an. (3.5)

By (3eh4), E (x,r) ig defined by the equation

oOF 4k [ Lof .
axzzsl?“ﬁ*'”ar) (9+62

and this equation is, of course, the familiar wave equation for rotation-
8lly symmetrical wavese The solution of (3¢6) as used by Karmen and Moore,

and others, is
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%:E 2{%—7“4,,(" )[(X—vBi'm/fi)G{E

. &
B

!

2 .._L/X-Br{(‘f)c/f ,
AT % ix-¥)*-Br? (367)

which expression is interpreted as the result of superposition, along
the axis of the Mach come, of ¥supersonic sources® of yield f(§J per
unit lengthe As shown in references (2) and (25), the distribution

is simply related %to the body cross-section aree by the spproximate form-

ula

vV dS
Fer Ta (3.8)

For s=t it follows from (3.5) that

o

g = ~(C,cone + D <is 9)7-_—:—;[“%-,_£_ £, (x~Brioahz)erah z d2
- Br
whieh is the correction functi@ng originally used by Tsien Qi},t@ account
for the cross flow over a yawed circulsr soclid bodye A relation similer
to (38) determines the distribution / .

In order to study nopeireculer sclid bodies, the functions t‘; (x,r)
explicitly expressed in terms of the definite integrals, are reguirede
These expressiong repidly inerease in complexity ss § increases, and for
s22 , the relaticnship between the distribution functions /‘ end the

body shape becomes obseure. It is found that

(J' 2 ) = Zsi! f“d"(f*z" )./ / ‘é"} 7
AR SRy sl Oy

_hence Ecx, r) is of the form
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[ ad 7.
1) - _(_S.+_:_—_’l——~ /M? A (20 35) d%
Fon =2, 5 8520 [ S

s-7

2 S s5— ) 7~ 5«- L }/
=N —f%’s—;-jﬁz ('“) (O)Z( Yoy

7' IO

4ty
KA = R

witn 2o - _C}“"
7} = = A s Z C e — 21
Vx*=B2p> B(——r} 'z 4K ""7,‘
BZ
J Q25+ a A 2
Go) =)
end A amtad)] (t)
( = (—/
) ) ) 23N AL ) (=) (s A)

Quite evidently the construction of solutions of the wave equation by
definite integrals becomes impractical for frequencies, S , greater than
3 or 4o It may be pointed out that the functions Jg must be of degree s
in £ in order for the resulting potential function to deseribe a coniecal
flowe
A separation of variables in the wave equation whiech avoids the

previous difficulties can be founde It is obvious that both the total
and p@rmrbstion velocity potentials of a conical flow are proportionsl
to length along any straight line inside the Mach cone passing through

the cone apex, for then the gradient of the potential is constant along
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reys inside the Mach conee It is natural to select the length as dis-
tance along the Mach cone axis and separate the variables in the wave

eguation in scme set of conical coordinatese Let

X=x z‘=%ﬁ , ©=e ; r=\/;y1+z’<' (39)

and, for coniecal flows, assume
9 =UL <M (#) (A _c=me B =imome) (3.10)
For nonconical flows, the generalization of (3.10) is of course

@ = ?/ZZ Z "J %(”(/) (A;")«ooa./me-f@j)/@h”"el . (3.12)
] Pl

The variables (3.9) and assumption (3.10) are due to Hayes (1) A study

of the B(t) functions is now undertaken.



=28

The wave equation (lel)

2

2 3 D=
(-8 5’;—1*’ * gza)io (4o1)

written in the nonorthogonal conical coordinates (3¢9)

X=X <'
= VTE \/Xv‘ﬂ’- = &r (Le2)
e =
becomes
(\, 32 2 JZ [ 2 9 { C)L
(-x7sm randtgEr v (A s L2t e S5 ) =e L (he3)

If solutions of (l4e3) are postulated in the form

W/r'ra}

¢ = ZZ- ;Z ; "4,:/ x 7. (/) sy AR D (4@&.)

the azimuthsl and conical variables aere separated and the differential

)
equation defining the A/ "(# is found to be

I o
22 (- z“)#’ ({}+,z’[/7<z(7~/)12]7;/ Tl [7-(7;,;,:‘1,,,,-'7”’(%:0.(1;@5)

Equation (h4e5) is essentially due o Hayes (1) who Wroterits solution
in terms of hypergeometric functions and mentioned that the solutions
are proporticnal to associated Legendre functions.

Fquation (Le5) is here solved synthetically by enalogy with spher=
ical harmoniec functions. The wave equation and the Laplace equation
can be said to be the same differential equation in spaces of different

metrice The metric associated with the Laplace equation, spx,x,”ﬂry +4 , =0



is the Euclidean disteances

fi = Vaivry2+2"

and the metric asscciated with the wave equation

e _Jd'p sy
&(gfa oy 9z?2

is the hyperbolic distance of (x,y,z) from the origin

R = (F%r=2* = Ve | (4o6)

The solution of the Leplace equation in spheriecal coordinates

= o

is

R, P con Y, 2o o @
(=) e 2
2=2_ A 1?"*"’}{ } s e} ' (4e7)
e

@, (cong)

These coordinates sre =s skeicheds:

It appears from the sketeh that

X4

m¢= Pe

If in (L4o7) the Buclideen metric is replaced by the hyperbolic

metric (lo6), the functions obtained ere the harmonic solutions of the

wave equation, as can be verified by substitution in (4e3)e One obtainss
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Pk /m ! .
(,ﬂ;{xm(z—,t’)ﬁ [a (\/7—:,57) 2t 7 Q

SD = Z A/m ot . _ [mz-n o ( e o
=27 @, (\ﬁ—:"’-‘}"‘:") (4.8)
() ~r37 a7+
having ebsorbed into /L" the multiplieative constants 8 G occur=

x "y In reference (26), Ho Jo Stewart presented the

ring with xﬂ1and
solutions of the wave equation in a form similar to thet of (4.8). The
functions Fiﬂ and ng above are associated Legendre functions of the
first and second kind, respectively. Note that the argument of these
functions is now greater than or equal to unity, owing %o the introduction
of the hyperbolic metric; Hobgon's definition of the fungtions is there-
fore to be employed (27, section 15.6). The associated Legendre functions
according to Hobson's definition obey recurrence relations, differentia-
tion formulae, and so on, of the same fo;m as the formulas for the le-
gendre functions of argument less than unity, but some signs are changed.
Care is reguired.

The implicit boundary condition that all disturbsnces vanish on the

apex Mach cone (where t = 1) requires that (4e8) be used in the form

s a7 1‘7'/2 P [ ' Ma}
@ -21./4m1 x?(-¢%) G@ (JTTYZ) coa &

and upon comparison of this equation with (4.4} it is found that

r) 7/7_ P
T = 9 @7 () (4+9)

1 7

which is thus the solution of interest of (4e5)e

The functions (; (¥) are defined by the relation
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737

Q]. (y) = (u®~1) (;;) @ u) (420)

(27, ante)e The Pirst four Q, () functions are (28):

Ut
Qru=z%"%y 5, ~1 (Lolla)
Ol(u)-:;"(fﬁ{ I) @ Hz- (Zﬂ.ellb)
i 7-{*/ Z 2 !
@, =5 (S -3u)/47 v + 5 (4elle)
3
L3sx’ | 55y o114
Q, ()= (35 u L0 —f.?}/é} P AR (4011a)

G
The explicit caleuwlation of the needed 7{: ##) functions entails the
prior derivation of the corresponding Legendre functionse Using (L.10),

the functions G% ! ) Q].z RIS Q/./H are obtained from (Lell)e It happens

that for m»2> 7+#! @ general explieit form of Q" exists, and this forme

7

ula is readily derived for 7"= lo Then with reference to the recurrence

relation
Q”{(z/)— w Q7 ) t( pmlfwrit @ (4.12)
AL - 7 7 7 ()

the general explicit formula for 0//»,(2{) (= Z g +1) is obtainedo

The results are tabulated in Appendix Ae The explicit general form of

0wy  (mzz) is obtained as follows: Acecording to (le1la) and
[}

(4e20)

QI (u} ‘_2{147 2(4-[ -
Jaiior
J:‘E__.’.[/@(u,u)~/% (2~1) 4 2 ZH’I —-;t'__}]

a
Q, (n = %=! ——~2----..- ( _
z =+ (zes1)? (z(—-l} )

Q' (u)

n




3 (2% )3/"_ 2
u =7 -
Q, x)=—3 [ (ue® " (w ((W'P (u~'l’)]
nyu}=(uidf' A -—éa(__L— IR
. 2 (L+1) (u—-/)a (u+0)? (z~y) ")]

~ %
$ 2 2 -~30 30 {
= (u*4) / +27x ~ =
@ (w0 = =2 Ltwe)? * e ((ZH,)r (7(”)"")]

One may verify by induction that the foregoing functions generate the

formula
= JC SN .
Q, fw) = M (=20l (-1) [(’w+) = (7_”1'-“1‘(4”*’)((1(#/)'" (v~l)“)]
2
or, simplifying
- — (- M(M—ZJ,/ - /m 2y &1
Qe - e ez T ()] e

All the associated Legendre functions Qfm'(w) for -mZj+1 are cbtained
frem (Lel3) and (Le12)s
]
The %ﬂ’;’{f} functions arise from (L.9) and the functions tabulated

in Appendix & by means of the substitution
]
2w = ’_’_‘/-1-’-

In the simplification of the results, the identities

- 2 -
LE T [ty -£7 = 2 coak !
J u~i I =2~

!
z

- VT 4% p o JeVTEE
7 A O AL R

and the definition




have been usede T is the Tschaplygin transform of t and is of great
importance in the theory of conical flowse In the coordinates ( 7:@}
the wave equation becomes the (elliptic) Laplace equation in planes

X = conste

)
The %//».j (#) functions obtained ares

7 =1
N = el F TR (helka)
Bt = Lok (hollb)

for »=zgz

. %f’?ﬁ= 0" ‘L’g—zl'[rm./TT )T 7 4 Conyfigr - /; 7’”"] (holle)
VG S i PO A R WV (ho14a)
W, )= 34 cond L =L 52 gn) (holhe)
%, )= 357 o™= L [ o5 () (4o145)

3T m) 4 (e 2002 T 7 ] (i)

7=3
(3) ~ - .
A, )=t {smsaY) el L -VEE [is i) (hollh)
€3) - ~ Z .
H )= 250t Pead L VL f15 13000 (holhi)

/¢ _ vI/~1£3
/zﬁl

75/:3)(;‘}= /.7”/in~7 [/0-/6"(1~/z,'+3(@—,/‘}2} (Lelk3)
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% (f}—_—,/;,{"wvf? __}__3,_[/6 Yt /}+f? / (Zg,ell;k)

for mzy
297 3, o
3:"13)(//: -n ‘(:”z;y‘,:{[{lf(/m 22 4)4 (e m*= ) 1-27) + /M(/mz‘/)(l—f? Z}T
3y <nn
+[/$(’”'m~/)"(6m z ?,{/—/1},«-,,,,(,,,,2_41,_,:/77’ (ho141)
7=4 ,
waf): ;’[35‘—30(/-/ Y43 (i~72) 7M

. m[/00'~.;‘5"(1-1’~/} (lollym)

‘1
F a2y

¥ e Efr-ss-r) el f - G [rvorrtrotprenirpyy (i)

Nzcwff)z —’-‘g—zz{/— (/-,f'-/]m,l"?f - ———-L.“;’,;: [/dé’~ /g0 ((-,;‘3/7;‘9/ (,_/fz)z] (&ell&.@)

£7) 3 -~ -$2 2
M l)e 1078 emd ™ g 2 VL f120- 120 (1494 22408 R 200 09) (i)

%rﬂ(f)z o5t cad L - g[/f’s’—syﬂw“ﬁfﬂﬁ“f‘/: 277(1-/7"}7 (h-1ha)
for omz2s
7;//):«;2‘/ 0" Y%’-’-’-'/[{-/OY- (1 24m 4 5)S1 42 (5P 24 st g 63 N1-X 2
(G T4 (8 2 5y 2 )11 % (o1 % 3 "= 0 2229} T
+ {/os’+(—-rzrm # 4N + (5P am 2457067 N 1= 22)

3
7 2 72 -
A (= Gom #1823 £ 37 0y ~27)1-2 %) z-a‘ ( 22 ":.?mfy,m "‘+/z»-1)(/-1‘/2}7_ mj .

The recurrence relations, differentiation formulee, and so on, for
(y) .
the 3/4,1//0‘/ carry over from the theory of the Legendre functions, with

the modifications imposed by (Le9). The formula of greatest utility is

(7'Fr) ) rJ p
79//”’7 r) = 2 7/(/7‘/ +* (omT 7‘/'}}{3/ 7 () (4e15)

7 o0~y



which is subsequently to be of use for obtaining the numerical values
. (/) cs)
of the 25:(%9 functions for 4>/ from the %tables of modified ;Z; )
herein pressnted.
v . .
The ;Z; (%) functions consist of two lineerly independent perts,
i ngt 4

nemely | and its coefficient, and T and its coefficient. IBach of
these parts is, separately, a solution of the fundemental equation (4e5).

The conical multipoles ;ﬁ:%&? will prove %o be of paramount utility
in this study and are now o be coﬁsidered in some detail. The derivative

77 . . o n e
of 2ﬁm<ﬁ9 is denoted by a prime; it is found that

;%/ru/ IES &

a //} == ba ; (Lg,.@léa)
s _ , { =L \//"/7(Z
K ) = i (4o16b)

(S N

7 P (o~ / - >y o
) = T L ) T )T (it

Now the (% 4,8) ecoordinzte system is not orthogonal but the (4, v 6/ sys-
tem, to which the perturbation velocities are referred, is orthogonal,

hence in differentiating partially with respect to, say, x, it is neces-
sary to specify whether % or r is %o be held constant. The following no-

tation prevents confusions

d
J}; e t held constant
2
ox, v held constant
Thus
O _ 2,9t I _ 3 _AI
5%, 9%, dx, Jh T Sxp T X dA, (4e17)
and
) _ 9k _ B I
dy, It ot x JE,
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Hence, baving a conical perturbstion veloecity potential writien in the

form

r) |
P = UK F) (A, esme 4 B wir we0) (ho180)

the X, v,e perturbations u,v,w are, respectively, %‘r » Py 7'7%

nemely

w= W (M- %

737

YA A o + B ain o)

3

a2 UST B ) (A ~oe o + B, st a0 (4018b)

74 R
WS = Z[Z 7 W( (/1‘)[-/»1Amw/me +/m€mw/me) .
Bvidently the x,re perturbations are, respectively, proportional to
&
the functions

[OF4

A )=t ¥

e (A7 (4e19a)
B
> (41619b)
B 14/)
F—g//m (#7 . (4e19e)

It is found that

i < _ "’_/_
LAY ARG A = ot ~ (Leo2Ca)
) ! Z
F) =AY () = S rx?
A T (4o20b)
and for ,emzz | (Le202)

gy = 0™ g [z (T T T

The explieit forms of 7;/""(/) and ’é/f”?///) have already been given as
J

(2@.@1&3@@9@2 and a@léagbg@)%o
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A table of modified conical veloecity pobtential functions, calculated
from the exact formulae (lolll, 4ol6, and Le20) and appropriately normalized,.
is presented as Appendix Be. The functions tabulated are defined and dis-
cussed in Section VII on cone flows.

For analytieal considerations of very slender bodies, the three
sets of functions appeering in (L+19) may be rather closely approximated.
The maximu of t for which the re@ommenﬂeﬂ approximation is in error less
than 5% is listed with each appréximationa. The only use to be made of
these formulae is in the demonstration of the general impossibility of
fulfilling the boundary condition at every point on the surface of a

~noncircular cone by the superposition of singularities along & line.

One hass
Function - Max t, 5% error
) Ay -y 0437 (4.212)
1/lro (#) = 3A- }'. 028 (4@21}3)
’».zz,
W(I) (#) = (= (o)) [(,,,,le"" 030 Q."{JEl@)
s /} -~ _ |
7= -4 0630 (ho21d)
,N(/)/ = _ + 7
””—’Z} ! M) = z . 0938 (Lg.c216>
fl)/ - ot (/*’1"2)/ —M(/’Pl—-f)z”
== (= —=
W"" (j) ”? Z [ s ekl ; 0@56 (l}.szlf>
2 ¢ .
A = AK) = /% ;f— 049 (4o21g)
) 2 v . =2
M, =AY TA) = = 0630 (4o21h)
2L
) )’ - vt - '/ ¢ Z,2 -
323 = )T () ”;’Mf;’ . 0.30 (ho211)



Vo LORENTZ TRANSFORMATION

The functions obtained and discussed in the previous section rep-
resent the perturbation veloecity potential and the perturbations assoc-
jated with a distribution of sources of varying strength and azimuthal
intensity located along the exis of the Mach cone from the origin of co-
ordinates. A superposition of these functions is obviously incapable
of representing the effects of a body which is yawed to such extent that
the Mach cone axis lies outside‘the body over part or all of the body
length. In this event other methods are rsquired: either tﬁe line of
singularities must be sufficiently yawed to remein wholly inside the
body, cr the body must be left unyawed to accomplish this end eand a sec=
ondary Peross-flow” imposed on the free-stream to represent approximately
the desired yaw influence.

The mechanism for yewing the line of singularities is the lLorentz
transformation. The transformation may, of course, be used to adjust the
orientation of any line in the space, but a ray originally inside the
Mach cone remains inside, and vice‘versas

The Lorentz transformation (Poblique transformation”) has been used
in serodynemics by Jones (29), Hayes (1), and by Lagerstrom (23) who
gives a rather complete discussion of the various transformations of the
wave equation. The present employment of the transformation is different
from that presented by the writers referenced, who were interested in the
étudy of pianar systems.

The transformation of a differential equation and its solutions may
be considered in either of two ways: as a description of the same space

in two different coordinate systems, or as an actual mapping of one space
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onto another in the seme set of coordinates. In the former interpreta-
tion, a point retains its absolute position but acquires different
numerical coordinates; in the latter the transformation moves a point
to new numerical coordinates in the original coordinate system. The
latter interpretation is used here.

The hyperbolic distance is defined by (Le6). With this definition
in mind, a Lorentz transfcrmati@n is defined to be a linear transform-
ation of coordinates which leaves the hyperbolic distance (and therefore
the wave equation) invariant. The Mach cone is the locus of points of
zero hyperbolic distance from the origin of disturbance, hence the Mach
cone is invariant under Iorentz transformation.

The invariance of the wave equation guarantees that the trans-
Pormed solutions of the equation, obtained by literal replacement of the
original variasbles by the transformed variables, are solutions of the
original eguation. Thus one has a straightforward procedure for comstruct-
ing, from the original solutions of the wave equation, solutions which
vanish on the Mach cone and are singular on any desired ray inside the
Mach coneoe.

The Lorentz transformation may be thought of as a rotation, pre-
serving hyperbolic cﬁs’tances§ of the space about any ray through the

origin of coordinates. Let the coordinates of a space be as sketched:
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Denoting by ( )¥ the coordinates of the transformed point, the Lorentsz

transformation keeping y fixed is

y * / o o Y

&% = o _ ,__i— z 9
Z a: Viaz 3 B (5.1)
x* - | x
— (=5 —
B ) Tt T:: B

This transformation has the properties

() Determinant of Jacobien =/

2% L3, M =
0) ——B‘)—;‘—z'f‘alyz +572“L:—BS—;;—1 +5-;:—;_ +:)2—‘}' (5@2}

i) x i BU(ycezt) = x Btz .
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Matrix (5.1) transforms points originally on a line in the X,z plane
inelined to the freestream at a positive angle of attack, « , (skeitched)

into the x axis, where

= anclin o (503)

More generally, if it is desired to place the line of singularities
at both angle of attack and yaw, the hyperbolic rotation may be accomp-
lished in two steps, keeping first y fixed (angle of attack) and then

z%* (yaw). The resulting transformation is

* ] &
7 = o 22 7
==L ! s . (54
= —— e Z ®
2 Vetlre?) Viar Joraiiie?)
x* & a l X
B \[('*szl-»&z) Vi-a* Ycia?)(i-2%) 5

This transformation fulfills properties (5.2). The angles of attack and
yaw according to (5.4) are
s a/\,«%/y,—g:-
= arcCos __,’g_[—-c_"
g = B
and the line of singularities pierces a plame x = const.>0 in the quade
rant gfs_‘.ﬂ'.

The more general Lorentz transformetion (5el,) does not occasion the
introduction of any conscepts into the following discussion not reguired
by the simpler formula (5.1), hence attention is restricted to (5e1)e
Hereafter skew orientation of the line of singularities is termed yaw,

the parameter is a, and the line of singularities is presumed %o lie in

the z,% plane.



Writing out (5.1) one finds

*_ ~fxaeewm®
Yy =v = B (5@5@)
>+ Qﬂx /f
* _ — X [Ac=m©t
= =t s (5-50)
Bz + x jratcnme®
X ®_ -————a-a/“a—a = X ( ,————-——/‘ =2 (5@5@>

and in addition

t %z BVymiyent
x‘

- \//fzfl-a."'/auze)-\t;?q)“oze +a?

l+e £ com ©

= \//_ (1~a®Ni-472) (5054)

(1+atcme)”

wey/—s* (5e58)
# ByVi—a® _ 4 aniliw Famo VIZ2T
® = — anclay -3217&—— = Hcor &2

It is instructive to consider the mapping of several specific sure
faces by the Lorentz transformation. It has been mentioned that the Mach
cone is invariant, although the cone apex is the only stationary point.

The mep of the cone t=¥ = conste. is given by the parametric equations

o -z’ XNi=2?
2 = i tamel® (505d)

- j;ml-e\/l—-a_"'

ame s A : (505¢)
Z,cn© 4+ a

where © is the parameter. When these equations are combined to elimin-
ate © , the complicated equation obtained does not represent any of the
familisr contourse The accompanying Fige. 4 shows the traces in the plane
X={ of the Mach cone, a cone & = 0020, and the transformed cone for ™
=VT gpg a= =0.50, as calculated numerically. The transformed cone is

more slender than the originsl and rather oblateo
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When the yaw parameter, a, is sufficiently small, an approximate
eguation for the treansformed cone may be obtained as follows: Write

(5.5d) and (5.5¢) in the forms

a
2 -z,
/ZL" = /- / ‘
{+ 2a % cwe (‘5®é)
/ﬁmef-‘-‘- M———- ; (5;?)

/ffme ~+ G

according to (5.6)

-4 d
X _ =1 . — A¢ _ =
wee = 7 [l —Mt—#“ ].. 2o, Csdy) (5+8)

hence

5z
- = + _ A
® - VI/ R
thus, making these substitutions in (5.7) and solving for 4 ,

2 .
/\-‘ Xea ané"—- za/f,fone*,

Now by (5 o8 >

= (- (-7
- /_j’rz
hence
/?‘* 2 = — l—-/?‘cl , (5:9)

I—2a24i, 6 +2a em0®

No approximations other than those implicit in (5.6) and (5.7) have been
made in obtaining (569). ZEguation (5.9) is useful for study of the mapping
properties of (56534 and e) for % <065 andlal< 0.05. In particular it is
observed that the mapped cone JZ,=consts is not asymptotically circular

to first order in the yvew parameter. It follows that within the liberal
accuracy requirements of a first order theory, the map of a cireular cone

is not "approximately® a yawed circular cone. Two consequences of this
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fact appesr in subsequent paragraphs and are poinied outs
The lest exemple of the mapping to be considered is the trace on
%
a plane X=X = conste of the locus £% =.11 = conste The trace is an

ellipse whose center is at

7 =°
Z - ~ @ X, /"’/{t‘
B ,_.a'z/{,*z
whose eccentricity is
e = a I Al (5.10)
I‘—dz)(,‘z

and whose major axis is normal to the plane of yewe Note that the eccen=
trieity (5.10) is proportional to the parsmeter a, as was to be expected
from the discussion in the preceding paragraph. The equation of the

ellipse is

-

z(’*‘i‘}4lz+ 2’_{( "/1-*‘/];—42/)(*’-} = "’«zﬂlc*v: ((~4‘/z
;/ B s ¢ —————Bz

1~a22”7 E?:§?§.

The possibility of yawing the solution of a particular problem to
obtain the solution of the yawed problem is now to be analyzede Consider
a body whose surface is

r= Fcx,e) .
The perturbation veloeity potential associated with the body must fulfill

the eguations

D (P - o (5$ll>

r=rF

(T + gnadp)- pracd(e-Feee)) = (5.12)

let a Lorentz transformation (5.1) be applisd in the space; there is ob-

tained a new function



?*:.?(x*,yf Z*} (5.13)

" which of course sebisfies the wave equation (5.,11), but which fulfills

the condition

— * — - —
(@7 + predd Tp*)- proel T (rP-F 1TV =0 (5.14)
V”""F*
which is not the boundary condition on the yawed body. In (5.14)
*_ 9 .9 7 9 (5.15)
gl =2 s e E s

Note that the constant vector & does not chenge in the trensformation.

Upon introduction of the notation

&

S = r- Fae)d H S = r‘—" Fcx*, ™)

(5.14) may be written in the fomm

A@‘ aS* c) ‘-0)5" (‘) % O)S.ir
W +-5 7= °f. 2° i —
( c)x,fjax,‘ + d’}’*i &7_‘ + d%* ;;—'; = o , (5015)

Azcording to (5.13)

* - .
a R A (5.17)
oxJ ¢ XS D

and o evaluate (5,16) the inverse of the Lorentz transformetion is re-

© guired, namely

J ! °© e ¥

= ! —a * (5.18)
Z o —aZ Viat z .
X x ™




Thus
P 2 J
ox* ~ T—a=dx ﬁa—;
) Y I
LTy = — @l?
c)7" 3y (,‘J )
p) -aB J M)

< = 2% 9 N B
oz \’/"a_" 9 X + \,I-—a-" O

Equations (5.19) are useful in both (5617) and (5e15)e
Upon writing out (5.16) using (5.17) and (5.19), the condition

actually fulfilled by the transformed solution, ¢ o 18 found %o be

%

do " s dJo*Js
o vmaz *a‘}? Baz )(52 _f"—i,) li)"“("qzl +
27 3
+(*G-B)‘? "‘5‘5‘ Q.Bs)f

which may be written

%

23 22 9
R R e

35*f 39" - 520
. 92 ¥ _2p2_ 99 e }
+Ax[<)?<a ,9‘?(6 +a )
In (5.20) the quantity E is
dp*) IS o g~
= Vi=at + —JE g9, _JZ _;Z e 25~
E = (v dx } dx dy —é? Y
(5e21)

(ﬁrwa?*)'y/wJS‘ + O (a?ll)

]

For small a (& ‘<< Yo it follows from (5.21) that the quantity E
must venish at S0 if the yvawed potential function is to be fthe solution

of the yawed problem. The two brackets in (5.20) indicate the extent to
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e

which the boundsry condition is not fulfilled on the transformed bodye
‘One observes that the bracketed terms are of order «U , which iz the
@rder of the terms in I, and mey noi, therefores, be igrnored. It must
be concluded that the yewed solubion of a given problem does not solve,
even approximately, the yawed problem. See the parsgraph vreceding
(5.10).

The foregoing calculations have served 1o demonstrate guantitatively
the divergenece of the yawed solution and the yawed prceblem. The ultimeate
conclusiong however, would have been obtazined without calculéticn on the
simple observetion that the gradient operator is not invarianﬁ under
Lorentz transformation..

It is natural now to seek that problem which the yawed solution of
& particular problem does satisfly. In the study of planar systems,
thet problem can be found (gi)& however in general it is impossible %o
find, by snalytical procedures, the yewed solid body to which & yawed
solution corresponds. The exception arises when the sclution to be yswed
is eonical, so that the yawed funetion is also conical. In this event,
the boundary condition equation (5.16) becomes an ordinary differential

‘equation defining the function 4¢e), where

X
Ace)

represents the surface of the yawed beody to be founde The equation is

=

suitable for numerical integration. These questions are of limited
interest, hence further discussion is foregones
The employement of the Lorentz transformation in specific problems

is described in the sections on conical and nonconical flowse



It is well known that any linearized problem at a given supersonie
Mach nwnbef can, within the seope of the linearized theory, be trans-
formed imo an equivalent problem at a different supersonic Mach number.
Particulerly in wing theory (1)(23), use is made of this fact to trans-
form any given eonfiguration into the equivalent configuration at /7=V2,
where B'(‘ E\/F(T, )= 1, the Mach angle is 45°, end the systematization of
wing theory is most readily accomplished. The rules for msking the
transformation wefe first correctly formulated by G8thert (30), who was
concerned with subsonic flow and the transformation to /‘7=o0 o The
transformation to /7=VZ in supersoniecs is carried out in the same way,
with the obvious change of notation. Alternative formulations and proof
of the transformation are given by Lagerstrom (23) and Hayes (1).

The G8thert transformation may be stated compactly as follows: To
find the perturbation velocity components u,v,w in the x(free stream)y,z
directions, respsctively, associated with the supersonic motion at Mach
number, M, of a slender body the surface of which is

S xy,2) =0
the equivalent body
S(Bxiy;2')=0

may be solved at M_=VZ o Then at corresponding points
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where the prim@a quantities correspond to A7 =vZ ,, and the frees streem
veloclty is imvariante

The convenience afforded in wing theory by the Géthert transforma-
tion to ﬁZ=Jf does not materialize in solid body thegéy and, execept
for the simplest bodies, the rule is of little utility. It is epparent
thet the G&thert rule requires the veloeity potential and the perﬁarbam
tions at M=V tu be explicitly expressible in terms of the configuration
’ dimensions, which is, for solid bodies, in general impractical. For
example, suppose it be desired to study, by mesns of the G8thert trans-
formation, the variation with M of the perturbation field surrounding
a specific cone, the surface of which is

r = Jxé(@}

Considering the cone at /"Z=JZ , assume it is found that
@ =UL (w16, d40@)
u'= U4 ;'3,—'} 6, d 4 (o))

v f (5 10 The)
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Then the same body at Mach number M is characterized by

24 A{'z—"- 1 9, BCIA(G')

=5
« = %{A(t_g, o, B Aceor)

o = _%_Z' 7[?{%_"., 6, Bcf"{(e)) .

It will be found in this study that in practical cslculations involving
noncirecular cones snd nonconical bodies it is seldom feasible to calcu-
late the explicit dependence of the functions /,, /1 ; eeo on the config-
uration parameters o | 4.(9) soee o and usually more effiecient either to
use the approximation deseribed below, or to calculate numerically the
function of interest at several Mach numbers, and in‘éérpolate for the
Mach number variation.

For solid bodies of nearly cirecular cross-gsection having, say, a
maxinum radius variation of 10% on either side of the mean at any station
along the axis, numerical caleulations verify, as would be expected, that
the dependence of the longitudinal perturbation on M is sensibly the same
as that for a eirculer body of the same eross section area and meridian
contoure The lateral perturbations are practically independent of M.

At portions of the body whiech are nearly conical or nearly circular, the

G8thert rule provides the following formulae for comparing the same body

at different Mach numbers:

—

Z_
¢2 B' ( I— /6 Bch ’
Yz _ —_— (conical portion) (6.1)

= 3 5
l___ ——
# 3 2 47 5, o
Uz _ B,d
"—’Z: = /—67-—"—" z (eonical portion) (6.2)
: Bl

49 B, X, (5;2 z)
LI Y. (5.2/ (eylindrical portion) (6.3)




ke, ~.§Li X(Uz?)
U, g* ¥, (8,77

(eylindrical portion) (6ek)

(eylindrical or conical)

the free stream veloeity being the same at both Mach numbers.

(645)

In these

formulae, & is the tangent of the mean half cone angle, and 7" is the

fineness ratio (< 1).



Y11. FLOW OVER SOLID CONES

Attentioﬁ is now given to the systematic analysis of the flow
over coniecal solid bodies. The veloelity distribution is considered
first, then the calculation of the forees and moments is deseribed.
S0lid bodies in supersonic flow naturally fall into one of two
categories, nemely simple or nonsimple. A simple (nonsimple) solid
body is defined to be one which does (does not) contain the Mach cone
axis throughout the length of the body. If the Mach cone axis lies
in the surface of the body, the body is by definition nonsimple. The
distinction between simple and nonsimple solid bodies is quite im-
portant and has not been adequately appreciated. A4As mentioned in Seection
Ve, it is impossible to represent a nonsimple body by singularities dis-
tributed along the axis of the Mach cone unless further simplifications
are made. All methods applicable to nonsimple bodies apply as well to
simple bodies, but not viee versae.
l. Simple Cones

Consider a simple cone on whose surface
r= é(e} g?*’l)

where the coordinates are as sketched:s

|2

N
E§§
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The potential of the perturbation velocity associated with the body
satisfies the differential equation
Og=o (11, 302)
and the boundary conditions
(Z? + W?’)'é’“"’ s) =0 (1.2)

where S=o

Sy e (702)

4te)

The boundery condition is hereafter used in the approximate form
in which the longitudinal perturbation, u, is ignored in comperison with
the free stream speed, Us As mentioned in Section I, the error so intro-
duced tends to counterbalance the errors inherent in the linearized

theory. Thus (1l.2) becomes

3S . 3¢ o5 ;asv-l_é_S/zo
5x t Sty * (¥ 56 (+35s oo

which equation, upon elimination of § by (7.2) becomes

U +§;'£A.(e) +(%~3—9§)4’f9)/=i=°’ (73)
£co)

With reference to equations (4.18), (%3) is explicitly

_./7‘/{(6)80%%//”:1}/(1‘) (Aﬂnmwe-f-?’w/ﬂ—f;r} /rrlé)
‘ (7ebt)
4-1(9)/% /(G}(ff—- W/):){f/ [—/yn/}”zd/w 97 @ -'-quo”-/mme) =0,

It is now to be shown that it is in general impossible to fulfill
the boundary condition (7.4) at every point on the surfaece of a non-
éircular 801id conse The word impossible is used in the sense that the
- fulfillment of (7.4) at every point on the cone surface leads to an

algebraic problem for whose resolution no methods are availableo
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For simplicity, assume that the cone is symmetrical with re-
spect to the z,x plane, so that h(@) is even. Then the velocity

potential

p = Z[xz_'?;/”} /(/4 coe 2mg +8 ainr 70 ) (4+18a)

is also even, and B =o0.
7
To fulfill (7.4) at every point on the cone surface, the equation
must be an identity in 6. Taking the cone to be sufficiently slender to
€r)
permit the use of expressions (4.21), the 79; (f) functions in (7e4)
may be written explicitly in terms of &= 2%97 » and after some rearrange-

ment, there appears

2 I's
/ 7‘/4 4(6)4/4 [ Me{l(e, %Bl(g)/"‘"d“‘”g(jﬁ"(e}— 4{(6)34 fé)/]
~7Z (-1 /)?1/4 M/(é%lfg]/mmqe (?@5)

M2

,,.,, Pyl
+ 3 074 ! »f’B fé’[,gfe,mwe;{(e,mwe]—

Assume now that A@) is the simplest admissible nontrivial function, -

4(9) = /y’(l-ﬁaczmmé)
where lel<t , and write all the terms in (7.5) as cosine trigonometrie

seriese It can be shown that

/{m(@)z/fm'(/,ﬁiio”f.z e o &)

where Y, s
Tz « 24 4/! ,4 + /Z
o= 1 (T () e

with the square brackets denoting the largest integer and

@

( ) s/ (j"-)/



The sipe functions in (7.5) may be eliminated by the elementery addi=
tion formulase of the trigonometrie functions. Finally, collecting

all terms, (7.5) has the form

)
Z: (4, /mf/ﬂ@ o (0% 9,5277‘)
hence 7"
C, =o (]‘: o 7 .,
J

The calculations show that each C » 1s an infinite series of ‘@he form
C;. = < (7, —~,=r/)z4 * (,,-,x/) rea T<, ) ,,.,«/) e o

where the <. (7‘1 -, o / ) do not necessarily decrease absolutely with

inecressing i, and are not apparently systemstice Thus one has an in«s

finite set of linear algebraic equations in as many unknowns, A(.@

There appears to be no practical method of solution; consequently re=-

sort must be taken to the fulfillment of the boundery condition on only

a finite number of rays in the cone surface.

' The procedure for this rapprexima'te fulfiliment of the boundary
condition is purely algebresic. A ray in the come surface is completely
specified by its ezimuth, ©; thus, meking the fullest use of whatever
symmetries the problem has, several values, O, » of @ are selected and,
having computed the numbers

Kceoq, £ tep1, A= ,{(9 y A C A
equation (7.)) is written amew for each o, end the resu.lting lineer
simultenecus algebraic equations are solved for the coefficients ,44_'@
Examples are to be presented.
The veloeity potential obteined by this procedure is, of course,
only an approximation to the solutione There is no way of determining

whieh valuss of 6, lead %o the best approximation for a given number
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of terms in the assumed solution (L.18a).

It happens that the Nm:’-)(.f) functions are numerically very large
for small te To facilitate numeriecal computations, such as the fore-
going schedule, tables of Nﬂ:"//) funcbions (0 £ m(1)£10;

0.0l = £(0.02) < 0,202 $(0.05) = 1.00) have been ccmputed and, for -2,
suitably normalized so that the tabuleted numbers esre not lerge. The
normalization is permissible because the differentiazl esquation of the

H funetions is linesr and homogeneouse. The normelized funetions sre

e

'}/ﬂ'l
H ()= 2" _ (746)

7/”’ (o.2.0) (== .‘L)

)f/f) [/yn:a,l)

The derivatives of the 74/”’(1) have, of @@@seg been normalized by
Le 4

the seme factor, namely

M, (n = 2,1)

7%

/
H_ < | 7% (77)
. (=72 2)

;2/”;') (o- 20}

The tables are presented as Appendix B The functions tabulated

H/», (#) (0% 7% r0)

HL#)
H (#) = A ()

Thus, referring to equaticns (4.18b) all the perturbation components
for a given conical flow may be inferred directly from the tables,

once the coefficients Aﬂ_' R Bﬂn are knowhe For each #22, the number
)

70/4" (0.20) is also given, so that the tables mey be used in

. . . 4
conjunction with formula (4.15) to obtain the velues of Wm,ff) for j 21,
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For reference, equation (7.4) is here rewritten in terms of the

new H functions

s AOIBE A H) (A, con rmo + B, —ie mra)
m

'J-/(a)«{(;); H AN ~om A 76 + 20 Z”Mma)]

Several examples of simple cone flows are now presented.

A, Bight eircular cone.

According o (4.182) the perturbation velocity potential is simply

@ = WA, x V‘Ne/
If the cone helf vertex angle is arcten & , then
/{('6) = —éi."
and condition (7.8) is
1+ A LA By =2

hence

_ €
/40 BHOI(BE)

and

EWx Holh)

B (7@9 )
BH, (B&) ®

¢=

According %o (4.,18b) the perturbation components are

e WL Ho cA)~AH"14)]
B K (Be)

U= (7,9b)

P ALED
Ha’( BE) (799@)

i

(7.94)



The surface pertubations ((#= Be) are simply

_ e § Mo (Be)-Be H,'(Be)
w=5{

A/o/( Bs) (?@Q@>
= (7,9%)
2w = O . (?ogg}

These are the familiar fundsmentel functions used by Kirmén and Moore (2),
compactly expressed without approximation in terms of the new tabulated
H(%) functions, Observe thet the dependence of the perturbations on the
Mech number is explieit, bub that if the solution had been worked oub
at /7=/7 and the GBthert transformation {Section VI) epplied, precisely
the above results would have been found.

B. Slightly yewed circular cone,

Assume that the perturbation velocity potential is adequately approx-
imabted by

@ = WA, x Hy(#) + WA, = Hi(#) o= e

and fulfill the boundary condition at two points, say 0= 0 and 6 =7,
The resultsto be obtained are of accuracy comparable to those of Tsien
(8), which will appear subsequémly in the eritieism of the cross flow
method,

The boundary condition (7.8) is

BAcor(As A (41 + A M (A)eona) =1 (6 =, 7) . (7.108)
When 6=&,=o0 F=4 = L.
\ ! ’ " _Aey)

/¥ & T
E -~ Tz &«

f ¢
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When 9=0,=m , A =4, z—;?zg)
2,

and, %{62) = .-/—‘s\_._..ua/f_i = ,41 .
£ + AZr o
The fulfillment of (7.10a) at € and € requives
VAL, |
A, = == A (7,10b)
4
/4' _ 4 Aﬁ,(//)v‘/[z A4 (7.10¢)

P

with

= Aé’(' 4 ,4/,,/ ,/?‘,, /4/,/(// /.
a s BL A (A (el + A, () % (7.104)

For each Mach number of interest, A, and Ay can be calculated from the
tables in Appendix B and the perturbation veloeities then inferred from
the tables and formalae (4.181),

If more than two coefficients Ay are %o be celculated, it is incon-
venient to write the explicit forms for them as in (7.10b,e) because
the expressions become lengthy, It is more efficient to consider the
b@un@ary condition as a set of pumerical egquations from the outset. The
present solution is compared graphicelly with the exaet, slender body,
and eross flow solutions of the same problem on subsequent pages (Fig.5).

C. Unyawed sguare cone.

The following last example demonstrates the maximum exploitation
of the symmetryv@f e problem., Consider an unyewed cone of square cross

section in the orientation sketched (looking upstream).
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The veloeity potentisl of the perbturbations must obviously be per-
jodic of period /17—'; » hence only harmonics of order 0, 4, 8, 12,... can
appear in the solution. Furthermore the velocity potential must be
even in @ with respect to all of the four lines of symmeiry of the square,
therefore if the boundery condition is fulfilled at, say, the three points
1, 2, 3 (sketched) then it will be fulfilled at a1l the images of these
points, and their images, with respect to the four lines of symmetry.
There are clearly 24 such points, Thus if one writes

9= 5 (A H ) 4 A, H,(F) zoa o + EIACZESS J’e)
end fulfills (7.8) at the points 1, 2, 3, which entails the solutiom
of only threes simultaneous linéar eguations, then the boundary condition
is actuelly being satisfied on 24 rays in the cone surface., A numerical
example invelving & square cone is presented in detail as & portion of
Appendix Do

It i% worth mentioning that in general there exists no né@eﬁﬁary
relationship between thevFeurier coefficients of the radius of a simple

cone

e
r= K(;" + &, 0RO 4 &, m194...)
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and the coefficients, Z/qu,/%; (#), in the perturbation veloecity
potential
P=x (WAL (8) + A, Hlfwd+ LA, H, (1) 2ot )
agsociated with the cons., If the numbers A; are so selected that atb
‘the median come (7, = z;g
VA H (%)= 2=
UAM ()= 2, (= 42-)

then the potential obtained represents a body boith slenderer and more
eccentric than the original cone.

A method of superposition of a number of yawed source lines, having
& COmmon ﬁerﬁexg to study the flow over noncircular cones at zero e
has been worked out separately by the writer and by S. H. Maslen (25).
Maslen obtained the veloeity potential associated with a yawed source
line by actually integrating a linearly incressing source intensily along
the line. Preclsely the same functions are obtained by epplying the
Lorentz transformation to the potential for an unyswed conical source
line, as aeserib@d in Section V. For the study of such noneireuler cones,
the writer has found it more efficient 0 proceed by the methods of the
present Section then to consider yewed source lines., If the cone has a
well-defined axis (in%ersecﬁien of two planes of symmetry) which is
yawed, it is recommended that the unyawed selution be calculated by
the present simple<body method, and the yaw contribution accounted for

by the modified Tsien procedure described in the following paregraphs.

2. Nonsimple Cones

Methods sppliceble o nonsimple bodies are now to be discussed,
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namely, the cross-flow methods of Tsien (3) and Jones (6, 7), and the
method of inclined source lines using the Lorentz transformation. The
assumptions of Tsien and Jones are critieized, and the accuracy of the
two methode is eveluated. In thisg and the following sections, some
extension of the methods is offered. The creoss flow procedures are
applicable as well to simple bodies as te nonsimple bodieg, and are in
fact usvally to be recommended, becanse of their simplicity, for the
serodynanic study of any admissible body heving a well-defined axis
gt yaw.

It has been found experimentally (31) that a slender cone may be
vawed until the eone gemeratrix closest to the Mach cone axis is inclined

to the axie at an angle as large as archan é%%;: before flow separation

oceurs, For exemple, at M = 2, a circular cone of 5° half angle may
be yawed approximately 17° and maintain & continuwous flow field, Thus
the methods presently discussed may be expected t0 yield guantitatively
interesting resulde forbsu@h ceses,

The fundementel assumption of the cross flow methods is that,
within the scope of the linearized theory, the small component of the
free stream velocity normal to the axis of a slightly yawed body may be
considered as a secondary Wcrdss flow" separate from the supersonic free
stresm in which the body is unyawed. The conseguence is that insofar
as the flow in the vieinity of the body surface is concerned, the

slight yawing of the Mach cone with respect to the body is ignored. The

eross flow technigue in subsonic flow is not of present concern,
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M. J. Lighthill (8), wi%h@ﬁ% stating his assumptions in full,
made implicit use of the cross flow spproximation in his consideration
of the higher order solution of the problem of a circuler bedy abt yaw.
He reached the conclusion that ignoring the yaw of the bow weve with
respect to the body is inconseguentiel until terms of the order
N ([(3o)+ji30) =¢)  are considered. Here « is the yaw angle,
and T is the fineness ratio (¥<<1l), This conclusion sppears to con-
trast with the theoretical and numerical calculations of A, Ho, Stone
(32, 33) who showed that the cross flow approximation spplied to a cone
amounts o a neglect of the vorticity in the flow between the bow wave
and the bedy surface, that this vortielty is pr@p@rﬁi@nal to the yaw,
for smell yaw, and that 1% significantly effects the pressure distrib-
u%i@nksn the cone surface, In strictness, therefore, the cross flow
Vappraximaticm must only be regarded as a highly plauvsible simplifying
assumpbtion. |

The accompanying sketeh shows the relationship between a yaw problem

and its cross flow equivalent:

2 Mach Cone Invariant
& \
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Actual Problem "Equivalent® Problem

Differential eguation:

Op =0 Ug=0 (1.1, 3.2)
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Boundary condition
us, +@ + _?Le gﬁ =0 u S\J.X""(U"‘"%;)S;G +
X ® r r < ¢ (79113’9 ?’ollb)
[ o ) -
e s 5o
Here the expressions §=¢, 52 o represent the same body in the twe

different orientations. In the cross flow boundary condition, the com-

ponents & "and W °of the free stream sre
L d

U = aorall e
(7.12)
Wl ==ai alleine,

The differsnce between the Tsien and Jones eross flow theories
is that Tsien assumes tlﬁe cross flow @ompr@ssible and three dimensional,
and calculates the pressure from the velocities, whereas Jones considers
the cross flow incompressible snd two dimensionel, and deduces the
pressures by means of the nonstationary Bernoulli equation. The elements
of the two theories are found in the references (3, 6, ;’Z} and are here-
aft;er presumed known, The applicetion to nonconical bodies is discussed
presenily. Bguation (7,11b) is the boundary condition to be used for
the ‘f‘sien cross flow method,
For exemple, 1f one writes
S=r- 7%
. A A (s)
the Tsien-type boundary condition mey be written
—) #hcog[ina wao. + BZA H (1) oz ome,]
",{((e‘-)[m « air e‘.+/{(e‘.)4}; fmA/m Hﬁhrz“.)wme‘.] B =0,
Z. = i 0o,
For a eircular cone of half angle arctan € at angle of attack « one thus
héss with 4 (e)= ;_!’ ’ »{/(e):.-o,

/
-/ g{‘(m;nccme[ +B,,§0A,m/’/on,(8£}’m”"’9;‘) = o0
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S
Ao B ,L,{) (5e)
(7.13)
_ —_ a2t &
’4/ T BAHBE)
These eoefficients may be compared with those obtained by the simple
body method, eguations (7.10). Apparently only a two term solution of
a circular eone at yaw is possible on the basis of the present method,
Simple body theory can yield a closer spproximetion with higher harmonics

at the expense of additional labor,

4 cone which is asymptoticelly elliptic mey be studied at zero or

finite angle of attack by setting A (e =& (/-8 co= 20) o The
eccentricity is
oo 2T
T+ d

0f course it is not necessary to determine the analytical expres-
sion of h(0) for a given problem; it msy frequently be more efficient
to measure the numbers /(o) , 4 (e;) from a drawing of the contour,

On the simple premise that the Tsien procedure considers the cross
flow compressible and three dimensional, it must be presumed closer to
the truth $han the Jones procedure, In particular, the resulte of the
» Tsien theoary are that for an admissible bedy at small yew, the dreg is
independent of yaw but & fmcti@n of M and body shampe, the normsl force
and moment are proportionsl to the yaw end a function of M asnd body
shape and, for nonconieal beodies, that there is g normal force on c¢ylin-
drical portions of the bédy, By numerical comparison of solutions of
the Tsien type with more exect solutions such as the Kopel tables (10,33),

it is found that the Tsien theory is qualitatively correct on all but
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two countss the dependence of the 1ift and moment coefficients of
coneg on the Mach number is inverted in that the Tsien theory pre-
dicts @ decrease of these coefficients as M increases, whereas the
coefficients actually inerease with M, though slowly:; and the dreg
is not independent of the yaw. The Tsien theory slightly overestimates
the 1ift and moment at low supersonic speeds, The drag may be over =
or underestimated depending on the body shape and the Mach number
(see Fig. 1), |

I% is @mrioiz,s tﬁat Tsien and those who have since enlarged his
theory dismissed the drag due to yaw as being second order in the yaw
angle, The drag is known to be of second order in the apex half angle,
but there is nothing in the Tsien approximation forbidding the yaw to
be as large or 1arger than the apex half angle, provided the body is
sufficiently slender, Experimental evidence in support of this state-
ment has been mentioned, The following simple and approximate ealecule~
tion: demonstrates the trend of the drag due %o yaw for a cons’

Obviously the dreg coefficient, based on projected frontal ares,
of a slightly yewed circular cone is given by the formila

, ar
C, = m,f G (8) Gw o (plds

where f is the azimuth angle around the Mach cone exis, 6;, is the apex
half angle of the cone, and &, ;ﬂ} is the inclinztion to the Mach cone
axis of the cone generstrix st azimuth /e o Now it is found that, very

nearly
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where ‘5& corresponds bto the come at zero yaw, and A<§ is a number pro-
portional to the yaw. Farthermore, for small yaw, « ,
L ©,47) = TBr  — Gam = <on g

Inserting these expressions in (7.13), it is found thab

;C + A = C G
¢ C" * Z‘:a,qenACp

hence

AC =
7} s 6 r

Apparently ac, is important if « is not negligible in comparison with

G%b o For the typical case of a 10° econe yawed 5° at M= 2,075, one finds

the dreg due to yew amounts to about 15% of the total dreg. This figure

increases rapidly as X— 6, , for then A ™ e

In Tsien's original peper (14), the linear pressure formula

- R
C =" (2.2)

is used, hence the pressure contributions of the axial flow and the cross
flow are linearly superimposed., However in Section II it is shown that
formula (2.2) is inapplicable to the flow over slender bodies. This form-
uls is the source of much of the error which has led to the criticism

of the predictions of the linear theory., The foregoing evaluation of

the Tsien theory is based upon a series of numerical calculations using

the recommended pressure formula

C = /=& +/ T (2.5)

which leads %o véry much improved 1ift drsg and moment predictions,

The principal results of the Jones method are: the 1ift end moment
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are propostional to the yew and a function of body shape, and are in-
dependent of M:; for nonconical bodies, there is no 1ifs force on a
cylindrical portion of the body. The independence of M of the Jones
results permits the theory to be used at sub-, trans- and supersonie
speeds, but at supersonic speeds the predictions of the theory bscome
less and less reliable as M increases. It is obvious.that the aero-
dynamic coefficients must, actually, show some Mach number dependénce,
for as M (> 1) increases the body occupies relatively more of the vol=-
ume within the bow wave, The Jones method overestimates the 1ift and
moment, the ervor increasing as M (D 1) increases. The theory does
not yield & direct drag estimate. The drag is presumed to be that
found by the Karmén-Moore method (2) for the unyawed body, The approx-
imate boundary condition and the guadratic pressure formuls (2.5)
should be used.

The evaluations presented in this section are based on 2 set of
ecalenlations of which the accompanying Figure 6 is an example. The
figure compares the pressure distributions on the surface of a cone of
10° half angle, yawed 5° at M = 2,075, The various curves are: the
expct first order value according to Stone and Kopal (32, 33), the
?r@ssure baged on Tsien's assumption, but using the reacmmen@éd Dres-
sure fommula (2.5), the pressure according to Jones slender body theory,
and the pressure according to simple body theory (Section VII*1l). The
erratic behavior of the last mentioned curve for 0<6 < 45 is due
to the fact that the solutions of the linearized egquation are not asymp-
téti@ to the golutions of the exect equation for points vexy near the

line of zingularities.
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On the basis of the Jones theory, a thumb rule for the eanlculation
of the 1ift and moment of slender bodies has appeared. The role ise
The 1ift and the moment of & slender body all @f whose cross—sechion
contours are similar are the same as those of a flat plate of the same
projected ares at the same yaw. The rule is true for all cones of ellip-
tical eross sschion, of which the eircular cone QZ) and flat plate are
limiting cases. For contours of other shape the rule is quantitatively
incorrect but gualisatively valuable for purposes of estimetion, beecause
the error is not large., For slender sgnare and triangular cones, de-
parture of the thumb rule prediction from the true Jones ?alue is less
than 1G§g.an& Spreiter (7) has found the error to be less then 8% for
g cirecular cone with thin wing-like exerescences. The 1ift and moment
are underestimated.

If the distribubion of veloeity due %o yew is desired in the vie-
inity of the body surface, the calculabtion is most simply carried oub
on the basis of Jones! assumption., For bodies of eircular cross sechbion
with or without$ thin radial emerescences, or bodies of oval or ellipbi-
cal conbour, the velocities can be calculated by suitable conformal
transf@rmati@n in the usual way. If the body has s polygonal eross sec-
tion contour, the mapping funcitions which arise in general define tran-
scendental functions which cannot be written down explieitliy, and
numerical methods ars required, Two cross section conbours of current
aerodynamic interest are the equilateral triangle and the sguare. The
solutions of these problems have been obtalned end are presented in Ap-

pendix C,
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There ig»an upper limit of body size beyond which the Jones cross
flow assumpbtion is untensble, The approximation amounts to the replace-
ment of the wave equation by the two dimensional Laplacian in planes
normel to the free stream. One may thus determine the meximum of the
variable % beyond which the harmonic solutions of the wave eguation,

/Z; (¢) » end their derivatives, cease %o be propeortional within spee=
ified error to the corresponding two dimensional harmonic solutions
of the Laplace equation, Establishing the bound of error as 5%, the
least maximum of ¢ is found to be about 0.23. Thus the Jones theory

should not be used for a body whose surface slope, ¢, is greater than

- . _0:.23
e VA7 2r
0f course, neither cross flow theory should be expected to yield

e

an acceptable quantitative description of the flow field bebtween the
body surface and bow wave beypnd t = 0,50 (say), owing to the nezlect
of the Mach cone yaw.

The theory of the repregsentation of a non-simple body by super-
position of the yawed solutions (Section V) is, with the few requisite
changes of notation, word for word the same as that for the representa-
tion of a simple body in terms of the unyawed solutions. Specifically,

the velocity potential of the perturbations is written
@=ZfZ)(*// (X"’}(A coa 0" + B W””Q*/
m i« s -

where

» xglf-a.f«coqe)
x = v/i-a*

‘““! //__ (~eNi-29
(/4 g4 <ove)?

0" = ared, L¥mevi-—a*
av ¥ cov®




and a = B tan «, € being the angle of attack,

Thus, for example

)((H-a.f/caa.é) (/—q_zj{l' ‘/}/4 L“ f»«néd(ﬂa . = 14
The boundary condition to be fulfilled is

(7 4 pract p) pradl S| =
S=o
which equation cen be fulfilled only along a finite number of rays in
the cone surface, Observe that the function & must represent the yawed
body with respect to the originel x,7,9 coordinates, TFor example, a
circalar cone of half angle ©; at angle of attack « ;may be represented
by

— 2 2 ) . ’
S=r [m 6, avr @ +m(«-6,)m(«+e’)cwze] F X2 A zov @

o+ xFain (K4 05) asn (x~65) =0

In forming the derivatives of the velocity potential, equations (4.17)
migst be kept in mind,

Owing %o the obvious algebraic complication associated with the
yeawed solutions and ther boundary condition, their use as 2 practical
computation tool camnot be recommended., The solution of the flow about
a yawed cone in terms of the yawed solution does, however, represent
the clogest approximation to the truth attainable by the linear theoxy.
For this reason the Pressure has been caleulabted at several points on
the surface of the cone on which Fig. 5 is based, The results wers not
~significantly different from the modified Tsien-type results, which

suggests the adeguacy of the Tsien procedure for moderabe-yaw problems,
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In summary, the procedures recommended for the study of circular
or nonecircular cones ares

(1) If the entire cone surface lies in the band of admissibility
on Fig., 1, use simple body theory,

(2) If the mean cone surface of the unyawed cone lies in the
band, bub parts of the surface do not so qualify whem the cone is
yawed, use the m@éifiéd Psien method,

(8) If the meen cone surface lies below the band, use Jones'
slender-body method provided the requisite conformsl transformations
can be found; if they cammoi, resert to the thumb rule., Except for
e single special case (gg} the Jones method is the only recourse if

the cone has thin excreseences (7).

3, Lift, Drag, Moment of Cones

Formulee giving the a@r@dynamic properties of yawed znd unyawed
eircular cones, based on the linear pressure formula (2,2) are well
known Q@s g}e Quite elegent formulae for the characteristicsof non-
eircular cones cen &lso be obtained using the linear pressure formla,
but these are not presented or recommended, even for use in gualite-
tive comparisons, because in consequence of the discussion in Section
1T the linsar formula is»known t0 be vnreliable, Execept for thoss
problems which ere satisfactorily studied by the Jomes theory (),
there appears to be no substitute for the numerical integration over
the cone surface of the pressure according to the gquedratic formuls

(2.5).
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VIII NONCONICAL BODIES

To study by linearized theory the aerodynamics of slender
nonconical bodies, one may proceed by any one of four methods, each
having its advanteges and disadventeges and a eircumscribed domain
of applicability as regards body shape and Mach number within which
the results obtained are quantitatively scceptable, The methods are:

1. Superposition of conical flows so as to setisfy the surface
boundary condition at an optional number of points, This is a gener-
alization of the Karmén-Moore method (2, gg) applicable %o noncircular
bodies.

2. Jones slender body theory (7), a zero-order approximate method
of determining the effects of yaw and which does not lead directly %o
an estimatbion of pressure digtribution for drag.

3. Analysis of nonconical velocity distributions by study of the
fundamental nonconical solutions of the wave equabion.

4, Needle theory (17, 4, 35), & generalization of methods 1 and
3 in which the zmalysis is very much simplified by assuming that the
redins of the body is vanishingly small throughout the body length.

For circular bodies, methods 1, 2 and 4 have been adequately
developed in the literature, particularly in the cited references., IFor
particular noncircular bodies, methods 2 (7) end 4 (385) have been used.
The concern of this section is the development of method 1 for rather
general noncircular solid bodies, and of method 3 for both circular
and noncircular solid bodies,

In contrast with the state of affairs in the consideration of

cone flow, the evalustion of the several methods must be only
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gualitative for no exact solutions of nonconical flow over solid bodies
for use in comparisen are known. The criticism of methods 1 and 2 pre-
sented in Section VII geems to hold when these methods ave applied to
nonconical flows, with the exception that the inverted dependence of
the 1ift and moment coefficients on Mach number does not persist (36).
The features of needle theory are that the predicted serodynamic co-
efficients are independent of Mach number and canusually be expressed
in closed form in terms of the body shape parameters, The Kirmén-

Lighthill drag formula (17, 4),

V.?. ¢ ” ”
D :%/[’%MI—)" 5 (X)S(’Y)C/Z(/] )

where § ({) is the body cross section at station &, is a typicsl needle

theory result., Lighthill obtained this formula teking great care to
estimate the ordsr of magnitude of all approximations made, The writer
feels, however, that order-of-magnitude arguments mey be misleading
(viz. Section II) and does not regard the results of needle theory as
quantitatively reliable except for the study of the flow over needles,
As to method 3, it is subject to the same limitations as the simple
body method for coniecal flows,

It ig of course more difficuls to analyze the flow over a non-
eirecular body than %hat‘over a circular body, Before going to the extra
effort, it is wise Yo inguire as to the utility of the resulés to be
obtained. Oertainly if a deseription of the local flow bebtween the
body surface and the bow wave is required, the complete noncirecular
solution mast be obtained, Consider now the drag on the body, Xarmén

(17) has shown how the drag of a cirecular body may be calculated
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approximately by integration of the flux of longitudinal momentum through
a circular cylinder surrounding the body and extending tc infinity downe

streams.

Dz"f;x/;z'u‘ r 6, Q&@l)

In thie formule the density ie considered constant and it is easily seen
that this approximstion asmounts to the integratiocn over the body surface
of the pressure acecording to the linesr formula (2.2). Thus the formula
is guantitatively unrelimble; however i+% is ugeful for the derivaticn of
a few important generslizations.

Consider a body all of whose cross section @ontoﬁrs are similar and,
for simplicity, symmetrical about the vertical (z.x) plame. It will ap~
pear subsequently that the perturbations u and v in the flow over such a
body may be written in therfotm

‘V:Z(O(B,r,x) +Z[”"Zz’AM/fm(5’,r,x) coz =7 O

(802)
v‘:%'(ﬁ,r‘,)f)'f'lfm'z;; /4/”1 j/’h(ﬁl Y‘,X) oL 277 &

Thus
@ _”RT
D= "fi[—“k4( % v rde
oo R L4
2 T8 By = S AL [ g B 1,

The integral of %,.% 1is improper, but the integral of f;;Lﬂ is absolutely
convergente This formmla shows that the noneirculerity, whieh gives rise
to the small terms in the summation, usually has very little influence on

the drag. For the typical case of a square contour, the numbers

2
Al :,42:/43:0 s and A‘f /‘?21 = J
%y Vo

00
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end hence the conitribution of the nomeircularity %o the drag in this exe
emple is ineonsequentiale

The functions U, and vV, are cylindrically symmetrical and may be
thought of as arising from a circular body Yequivalent? to the noneireular
body. In reference (35), Eo Wo Grahem has considered the drag of non-
cireular bodies from the viewpoint of needle theory and found that the
equivalent body has the seme disﬁribution of eross section area as the
original bodys When the needle theory assumptidns are not madeg it is
found that the two areas are not éxactly the seame. But it eppears that
the error @@mmi%ted in assuming the two areas to be the seme is no more
importent than ignoring the small drag contribution of the noneireulerity.

Let the perturbation velceity potentisl associasted with the flow

over & given noncirculsr cone be

@ = Z(A:[)qo A, () + A, Hxt) coz & 4 Ay My (F) con 20 + -
If one imegines a nonconical body to be represented by a superposition
of these functions at points along the body exis in the manper of Kérmén-

Moore, the w, and # functions associated with the equivalent body ere

the result of the superposition of thé functions
w = U A, (7 #)- 74, F)

vi= 6 BA Sy,
Now if the equivalent body has the seme area at any station as the original
body, the coefficient A, of the fundementel cone solution must be the same

as the coeffiecient Ao“ in the sclution for a circular cone of the same
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eross section areme However in general it is found that 44°-¢/4°/s
The error is minor. It is difficult %o formulate a theorem relating
A end Abg to the noncireculer contour shape, inasmuch as A_ depends
upon both the number of rays in the epne surface at which the boundary
condition is: satisfied and on the location chosen for these rays. How-
ever the following suggestion seems to be correet: the original and
equivalent contours have the same area when both are subjected to the

Tscheplygin transformation,
7—:: I"‘V’—-V/f'z
,z‘.

This suggestion is inferred from the observation that it is in terms of

the veriable T that the sclutions of the wave eguation sre maturally ex-

pressed. For small €, T and t are proporticnal:

= x
~T- 2

hence for very slender bodies, the eguivalent and aectual bodies have the
same area with negligible error.

In considering the 1ift of the body, if the compressible eross flow
assumption is made, the form of the periurbation v (8.2) is unchanged,

and by the momentun theorem
o 27T
L:-' f/ a/x/ vzme rd e
[ o
L]
:fﬂ-/o r[ZAl‘ul;(Bl r(X}?,(-Bl P’x}

+/)77232 A/”'Am_/ jo" (B, r./ K)y”h‘, (B, r/ x)}dx 0

By inspection of this formula, bearing in mind thet the functions

A g s A, Jpstt+ @re in general absolutely much smeller than v (5 r,x),

it is apparent thet most of the 1lift erises from the term A, g,(5, v x)cez e



in v, end that, as with the drag, the higher hearmonics make little 1ift
contribution. Although it is difficult to express unalytieally, it is
elsc implieit in the 1ift formula that the releative comiribution to 1ifs
of the higher harmonies is more important then their contribution to the
drago

The conclusions drawn from these rether gqualitative arguments ares
for estimating the net eserodynamic action on a sclid body, it is usually
adequate to consider the eircular equivalent body having the same distri-
bution of eross section area and having the same orientation in the
streem. For deteiled study of the aerodynamic charscteristics, for a more
reliable quentitative determination of the pressure distributieng and for
a deseription of the flow field in the vieinity of the body surface, the
complete noncireular flow field should be worked oute The method recom-
mended for the study of the eguivalent body is that of reference (3)
using, however, the approximate boundary condition, the quadrstic pressure
formula (2.5) and the tables of Appendix B. A rough estimate of the vel-
ccities due to yaw ié available by the Jones incompressible cross flow
methode The veloelty distribution over cireular, elliptie, and oval erose
sections, and over certain circular cross sections with thin exereseences
may be caleulated by two-dimensional potential flow theory as mentioned
in Section VIiI. The créss flow associated with slender bodies of square

and trisnguler cross sections is tabulated in Appendix Ce



1. Superposition Procedure for Nonconical Noncircular Solid Bodiese

Por simplicity, attention is first directed to bodies all of whose
eross sections contéurs are similar snd similarly oriented with respect
to the x-axis. If the body is‘yawedg the eross flow boundary condition
is to be used. The yaw, « , is taken to be small enocugh that ce=«=/,
Q4h4==«9 If the body of interest is not yawed, =9 in the following e-
quations. In virtue of the similerity of the eross section contours,

the funetion S may be written

S = r- f(x)
Ace)

where fro)=o and f'ot)=) o The equetion of the body surface is

f(x) ,
A o)

According to (7.11b) the boundery condition %o be fulfilled is

U//(X) 4/,{(9)[; U—xcozo "'Pr]“"/{ ,(6)[;( U <z, 6—%%] p =0, (803)
x t____. (X)
x4 (o)

As X0, (8e3) tends to exactly the boundary condition on the perturba-
tion velocity potential associated with the cone tangent to the body at
the apex, as would be expeeted.

The idea now is to solve this cone flow problem and then, at a number
of pointes along the axis downstream from the nose, to add correction sole
utions to the initial sclution in order to deform the flow streamlines to
the contours of the body surface. In view of the assumpbtion that all the
eross section contours of the body ere similar and similarly positioned
with respeet to the body axis, it is reasonable that the correction so-
lutions to be superimposed should be the same function, in coordinates

originating at the selected points slong the axis, as the solution



agssociated with the initial tangent cons. In general this assertion is
not strictly true, as will be indicated parentheticelly in the deseription
of the procedure; but the error entailed by its rise is clearly minor

for a rezsonably shaped bodye

The superposition is accomplished as follows:

br
fexr
/TACH LINES / = Jlo s
.// & < / ol % °
/ 4 / / vz /%
/ 4 / A PS)
/ 4 3 A
o il 5 /W / L/ n
fo 3 X fl X2 f, %52 }q %oy ¥ - Yos x

+ along the body

e
32

1, Select a set of points § =o ,§, , (near § ), &, 5
. ) 9
(x) axis, and a value 6, of & such that gé' is continuous in @ at € . The

dr
eontinuity of Je insures that the veloeity potential and its derivatives

£x)

are not singular on the plane ©=6, . Draw the body contour r = 4ce,)
(4

end construct Mech lines fram the points §. (i =1, 2,...) intersecting

this contour at the points Pis Now establish gn X. 7, ,6 coordinate

system at each fk- ; sueh that X; = X3, , 1“. = F; , and 8 =8. Lat
3 N X~5-
[4

the ccordinates of Pi in the j coordinate system be ( /\:}.‘. J ,?i.‘, , 9. o

whieh will be written (j,i) for brevity.

20 Solve the conical flow problem of the flow about the cone tangent to

the body at the nose using the methods of Section VII. Let the velocity

potential obtained be ¢ (x, X o)
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J. At { add the funetion. ¢ @ (x,,7%,8) end determine the coefficient Sy
by imposing the boundary conditiom (8.3) at Pyt
U x,) +Ap[all<oae, +8 (0,2) +c,g (1,2)]

(8e4s)

7"4('(90)[0(&-44'/»60“%@8 (O,l)-_f__l_aa (//1)] =o0 .

(Remark: The number ¢, obtained by solving this simple algebraic equa-
tion should not depend on the choice of 6, o Supp@seg for example, that

h(e) is even about 8=0 end & =7 and continuously differentiable at

these points. In this event 72 (<,77 =2 » Let ¢ =c, and c,/ =c¢'e
9020 6‘,2 w
Then according to (8ol)
~ 8e &
Cz—{uff(xoz}\‘/(O)[xu‘f ¢'}: (6’2)]} ' ( 2 >
{cor @ 4,2)
/=~ FU £ (%50 )+ ,Z(yr)[- U + ¥, (0,2’)]] (845b)

j(v)cfr (1,2

For the srgument, take h(7)< h(o )s This is the condition depicted

on the figure. For this eondition

x ,>X

o2’ 02

>
0,2°) “co,ay

(,27) 'é(',l)
Now ¢ (x, %,e) and its Pirst derivatives decrease absolutely as t in-

ereases, and for the solubion sssociated with a simple @onegdé?- <0 and
1 4

éji }.o ®

po With these observations, comperison of (8.5a) and (8.5b)
X

shows that the variations of the numerator and denominator of G’ have been

‘such as to preserve the value of C, o The variations tend to counterbslance,
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and the net change of C, is very smalle This argument is necessarily
intuitive; its only purpose is %o indicate that even though the con-
stants C and ¢,' are clearly not necessarily equal, that the difference
is unimportant. This is the justification for the superposition of the
noneircular conical flows. It is mentioned in passing that if the non-
conical body is circular, the C, are completely independent of €, Yo

L4e Then at fz add a second correction funetion c¢,¢ (., %, o)

and determine C, by imposing the boundary condition atb 333

u-fr(x03]+/{(eo)[;2,¢’/meo+¢l (0,3‘)4(:,@_’([,3)4.('2?7;’ (2/3)] (856}

+,{'(eo)[42(~4u'm 8, ~ ;.'— @6(0,.?)—51—?;(/,?)* CT‘@ (2/3)_7 =o,

.
5 One continues in this menner adding a c@rr@ctioé function at each §
and determining the constants (..

~ If the body hes a plene of symmetry at which h°(@) is continuous,
the foregoing @aleulatiogs mey be considerably simplified by setting
=68y to be this plene, which reduces the number of terms in the boundery
conditions by ome=third.

The practical execution of this method is quite simple and rapid

when use is maede of the tables in Appendix B I% is recommended that

the contour r=-A2t;’) be plotted on a small scale (i.ee large figure)
and the coordinates «.  , .Z . tabulated by direct measurement;

then the derivatives of the ¢ functions can be interpolated from the
tables and the successive equations for the Caﬂs written and inverted by
inspection. An exampie of the method is worked out in detail in Appendix
Do

It turns out to be difficult completely %o close a body downstream
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by this method because the boundary condition becomes an equation ine
volving the difference of large numbers which ere almost equal. The
golution of such‘equations is %roubled by considerable numeriecal unecer-
teinty in aetuel celculation. MAerodynemically, this shorteoming is un-
important beeause a supersonic siream cannot converge completely behind
a threeadimensionél body however well it bé faired, as was proven by
Do Ro Chapman (37).
3. Superposition of* Nonconical Potentials

It is assumed that the @rossrsection eontours of the body are not
necessarily similar but are, for simplicity, symmetrical about the (z,x)
plane which also conbtains the free stream velécity; For angle of atback,
the eross flow approximation is made. The surface, S=0, of the body is

given by
r = F(X,G)

and the approximate boundery condition to be fulfilled by the nonconical

veloeity potential

e=US > A (l'};(’./‘;/,:ﬁ(f//m”wé (3.12)

7‘=I 7 =0 <l

is, aecording to equation (1.2)

UFF, ~ («Uamo g JF + (=Uno+ig)F| =0, (8:8)
r=F
If the body does not have lateral symmetry, terms of the form
f,? . )
7 7 .
LYJET‘Z: lzn X1 AL ains o o

7”:1 mp =0
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must be annexed to the velocity potentiale Now

o =W X A;”xf“’ BH. ) s o o

r ‘s N
x 7=l smzo

and

G )
Lo « UL D AT Ll T ) sirom o
r e J31 om=e - z -

there being no question of convergence or the validity of termwise dif-
ferentiation, for both summations are ultimately to be extended over
only a finite number of terms. Ipserting these representations into

(868), the boundary condition becomes

/:qfi - xcoeo F - x 2o FF

— FaZZ /4 (I,X 7'-1-5"{»'(7?/(f/ Loa o257 & (8®9>
7=l omze
v Gl —
-f;ZZ’mAmxI/Z“’(f/M‘ 4779] = @
7-_-/ m=o BF(XI Z))
2’="T—"—

It is in general impossible to fulfill (8.9) identiecally in x end @
at every point on the body surface for reasons the same as those mentioned
in Seetion VII. It is possible, however, to satisfy the boundary condi-
tion at an arbitrary number of points on the body surface, relying on
the continuity of the functions involved to produce satisfactory values
of the wvelocitiss and the pressure at intermediate points.

Consider for a moment the inverse problem of determining the function
F(x,8) specifying the body defined by a set of coefficients /{;Z}am@
suppose the variation of ]g with x may be ignored. In order for the
boundary condition to be an identity in %, it is necessary that the pdwer

series representation of F(x,0)



Fxe) = xgte1 4225000+ -

be of order at least as great as the largest value of the index j for whiech
AZ’? does not vanish, and this is true a fortiori if the variation of t with
x on §=0 cannot be ignored. Comnseguently im the direct problem of deter-
mining (approximately) the coefficients AZ’ the largest value of the

index of summati@n‘ with respeet to j cannot be less than the order in ﬁ

of a satisfactory polynomial apprgximatian to P(%,9). This criterion

is very importante

Ilet it be assumed that a satisfactory approximation to F(x,©) is

Mo
F(x,e) =y x’y].m)

7‘: 7

and that a trigonometric series of N terms effords a satisfactory repre-
sentation of the veloeity potential as a function of @ for all x along

the body. Then one may write

@ = Z(’ZZ AT )T H T (#) <oeme

‘l An=Q

and the boundary condition is

2 )
FzF (x,e)‘xcoveF (X,O)"(MGFFG(X'Q)'"
X

9 G (8+10)
-F (xe)_Z:Z /4 7'5’1‘/’ #) coa e ’
~' mzo
M ) — O
_.F(xe)ZZ x4/ 7(/1‘),«2»4/»16] B Ecx, o)
7 = o=y ‘e fz"—__—_/—'q
X

1) :
The N constents /4/”1 (#m=0,(-- N-1) are very easily found, for
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they are simply the ceeffieients associated with the conical flow over
the hypothetical cone tangent to the body at the nose, and may be cal-
culated by the methods of Section VII. This assertion is easily proven,

for if the body has a tangent cone at the nose, then

F(Xle) = Kj,(é} -"F',(X/e)
vwhere

Thus, for x<1,

F(x,e) = xg, ces
and upon meking this substitution in (8,10) there appears

lel‘?(g) —- o cov @ xzf,‘fg)-' K g © Xzﬁ: (6’,?',(0)

N-1 « /s
—~x7‘,?,2(9)2; A BH (f) <ow =9

N~y <) cny )
-KZjl'(B)Z: /»414”" Hm’ () 2err 297 S = o0 ,

=0

When x” 48 cancelled from each term of this equation there is obtained
precisely the boundary condition on the flow over the tangent ceme,

To caleulate the remsining (M-L)N constambe A~ (§=2,3,...,M5 u
0y1ye0.,8-1), (M-1) stations x=x, (1=1,2,...,M-1) are selected along
the exis (say at equal intervals) and the N values, ¢_,of ¢ used in the
caleulation of the A:am retained, Then the boundary eondition is im=
posed at the (M-1)N points

(x‘.] /Z“,k 1 ©% ) = (Xt')
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and the resulting simulteneous linear algebraic equations are solved for
)

the unknowns /4M:@ 1t is apparent that the labor involved in this eal-

culation incresses sharply as either of the indices M, N increases. It

is thus particulaerly desirable that the function F(x, © ) be simple 2o

that the representation
F«,0) = 3. (6) + x*92¢6)+ -

has four or fewer terms.
There is no simple method of debermining the particular set of

. (;')
points which leads to the best approximating coefficients A s the ade-

o
quacy of the approximation attained through the aée of a given set of
points can and should be checked by calculating the flow at a few inter-
mediste points on the body surfacé and comparing the local flow direction
with the orientation of the local surface.

Two special cases may be iec@gnizea in which the boundary condition
assunmes a simplified forms

a) All cross section contours of the body are geometrieally similar

and similarly oriented with respect to the body axis., In this case

Fox,8) = fxgrer

b) The body surface is very nearly a cone. The two cases are now
discussed,

a) Oross sections cimilar and similarly oriented.

Unless £(x) is a polynomial of degree less than or equal to three,
this case probably should be handled by the superposition procedure for
nonconical flows previously deseribed. If, however, f(x) is suitably

simple, the present method is feasible. The boundary condition may be
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written

;(X){ra)j?(é) — Koz @ 7[0‘)22(9) - aer /(r)/m); ‘ce)

7 /V‘/ (%] . (7/
7 ~/ 7
‘ —-/(X)jz(e)ﬁg”;p Am x TV BH, (A) o2 o2&
LA ) - G) .
"?{(é)zz””"lmf X7é/,, (#) 2o & =o.
73 m=2y

The simplification achieved is that j/ﬂ and ?’fal are caleulated
)
once for all in the determination of the coefficients /tu and are used
unchanged when the boundary condition is written out at the points

Vs

(Ag, %,

, e, ) downstream from the nose.

b) Body surface nearly a cone,

Even if the cross section contours are all similar, this case is
usually not% handled successfully by the superposition of conieal flows
because the small longltudinel curveture of the surface reguires the sum-
mation of & large number of wesk conicel flows to satisfy the boundery
condition. Such & procedure usually entails considerable numerical un-
certainty., On the other hand the small meridian curvature justifies
ignoring the variation of ¢4 with x at S = O and pursuing one of two
alternatives: either aﬁpreximate the actual body by a medisn cone of
the game cross section contour, if all the contours are similar; or
study the flow as a limitedly nonconiczl problem by a method to be de-
scribed. |

The former option requires no further exposition at this point;
the latter permits the boundary condition to be written as an identity
in %, and separated inte a set of independent equations in O by equaiding

to zero the coefficient of each power of %z, leding ey be the equation



obtained by equating to zero the coefficient of K’W in the boundary
condition, it develops that the only unknowns in e, are the /4:,?,

and these are calculated by assigning N distinet values to © and solv-
ing the resulting simultaneous equations. (Again, there is no method
of determining the best ¥ values of & to use, but of eourse values of
© for which 'Fe- (x0) ie discontinuous should be avoided.) Kquetion e,
contains the A ,:’ which are now known, and in sddition A (= oy N
which are determined by assigning to © the same N values used before.
Each succeeding equation contains only N new unknowns, so that the
caleulation of all the /317 is guite s:‘i,mplé in comparison with the
general noncircular nonconical problem, involving M+N constants, of
which number (M~1)-N must be determined by the solution of as many si-

multaneons equations,

The formelism of the preceding discussion is as follows:

Let
Fue) (SY) = Xg.00) +x%9,(8) 4
e Fi,e) = x4, O +xigce) + x4 Ot
FIE(X,6)= x%c (8) + x 3’Cj‘(é) + x ch o)+
where
4, (8) = ;,z(e’) g£oe-
A, 8) =29,(0)3,(8) + -
«@4 (6l = f:(e) +29,©) 25 (&)~
and,

C, (&= 9 ) +--
C (8) = 1{7?,2( &) 07,_(9) Foen

2 ;
Cy(é) = 72,(9)72 o) +$‘;Iz(9);3(6)+,,, .



The boundery condition them ig
2 3
K10, 00) +5°CCO)t i — xwe© [ XKy (O)+x ,ﬁ,ra)+'~}

m R i Of K T x5 7t 25 )t (B TR A 2 )

' N'/ o (,-)/
-—-E 4 @)+ x° (€)+ ]% 5 /4 x77"F IL/,,” () con mmo
N~/ 9
’[Xj,(é)‘h(j,_(g){ JZZMA ,‘//(f//«on/»ré = o
-I w=( omn o

By comparison of the coefficients of like powers of x there appears

e, : €, () = < corn© Hh(0) —x 206 9,(0) 3. (&)

N~/ ) »
-jmz A YA o me g0 S AL H B i e = o

arz(
2 o G (o) - xcoqe/ro/—-ocwe (g'ce) 3, (9)~99,f6)f;((€/)
N~/ N~
-4, (9;2 A B H ({‘/M/ms-—j, (6{”;/»1/4 A/(/)(%/MWQ
i) Nt )
-4, (e)Z A '3 H (ﬂmmyo-‘y, ("”EMA N (#)in sme =0

and so on.
The value of t in these equations is o function of © and a median
velue with respect to x,

Yawed Nonconical Bodies, Lorentz Tresmnsformetion,

The theory of the representation of yawed nonconical g@_lid. bodies
by superposition of the yawed conical or nonconical solutions (Section V)
is, with the few obvious requisite changes of notation, word for word
the same as that for the representation of unyawed nonconical bodies in

terms of the unyswed sclutions as presented in this section, The writer
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hag tried a few calculations using the yawed solutions for nonconical
bodies and found the algebraic complication %o be formideble, owing %e
the invelwed strucﬁure of the yaswed functions, especislly the yawed
nonconicsl functions. For this reason the method is neither presented
nor recommended. For very slender bodies, the Jones method may be
nsed, and for less slender bodies, the superposition procedures de-

seribed above, empleoying the cross flow boundary conditions,
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APPENDIX A
Tabulation of Associated Legendre Functions,

brgument Grester than One.

The functions listed stem from the definition

@ P
=S
(%.m(u) = (u?-1) C;—u) Q}.(‘*)

and the recurrence relation

Qj':t’ («) = Q (b() '1’(7 ) /u -7 Qf”""‘l(z{,

It is found

v

a2
7
Q cy) = (=1 (””2"2)° [(mﬂu) +(mr—u)( '/ ]
Z(-f-l 7
Q. ) --—/fu' 1) %7 -f‘
QL ) = 324J w i zr+/ (72 ¥~ 2)
2' Ve 2~y
2z .
Q_,_ fu) %) /&7 ”“’ 2((;:1—7)
297 27
7 (w 3)’ ~Fo (w4 )= (e () | ~3U(rn-2%) +C 2 )
(w) = [ -
@, ) (i) ™ o
L s yuz 2
Q¥ =7 (s3> 3’()"47 t 7
. 7 2 U4y (rsu’—132)
=2 (suidfuz., “47-—— - ==
Q3(1(? ¥ ( w=t f 2 *~1
R /.s‘v ‘~f+/ tou ¥~ 15w ?
Q= 15F (i) By T - LM O 4

3 /5 2 /{ o T8 (5w’ vo 2’ 3
Qs(’u):'z"’(’ll-—l) /éi.u__l - 3"'3 ()
(uw?2-~1) 72

/



/)7)2‘/
5 -~ 2 2 2

(u+e) ™"

o 1 _oyl zz
Qa ) =(-1) _(f.z..'(_)'_(uzal)i[

+ "/5'?(34' (8 owu *~ (6 == 9 + 97 (=e¢ 2__‘(,]

227
, . . Cu-~1)
LRy P U+ 7) -
cw) = = (IsuTi0% .,,3)/&7 Ui . (35u7) | sy
Qq /6 o~ 7 7+ —v

Uti, (420 u Y- yosu? v ew)

QV' (u) = -;:’,: (P~ 3ulu 2 L7 oy P e s
WYt~

2 ‘5 2 2 wrL o u(/o.s‘z("~/7a742+3/)
Qq (%) = 77 (72 =) (u ’)’47 w1 2 1)
7, 6 ¢ Z
7 Jos 2 4 72 utf, _ (420 2 °~ 1209 Y+ 2292 %~ 192)
Q, ()= -3_—-"((""“’) u-( 4 (y2y)

% /08 z HEL Y -, G % 2
Q) )= 425 (uzy) ,&774_/ TR (ro5 w5852+ srv2 - 227)

25
% 7 a5, 5 % « 5 2 2
Q( cw)=(-1) —_{—:-(u—l [{,. (OS5 U ~ (12920 $45)2 "~ (57005 “ 4 ¥5msr— 63 ) 10 * 4

/
~.(?4M3-;‘ (8930 =370 ~27) 16 = (7oe (7"3/’41{?/»1 3114’1/}(1(*:)*

+{ 105 2% 4 = X £ 45127 £ (59 5 ~63) 20 2

+(—?4ﬂ3+ | 892 z+ 3’7/»:’1?)1.( +( 7 L300 Y oo a'_/. /1/»1)}(—1%/),»,] ,

The essentially polynomial character of the Legendre functions

appears if the binomials in any of the explicit general forms above

are expended and the terms préperly arrenged. For exewmple, for =723

o oy ~’~E’E] Rl =23
Q (u) = (=0) 2(a~2)! (u)) Z_ S( /“U
S=y¢ 23541

[ ] being the greatest integer symbol.
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APPENDIX B

Tables of Conicsl Harmonie Funchions for Wave Equation

1. Description.

The functions btabulated are

/i“(z)
A, (£ =% A,

AL (4

(0 ()40 ;0994 (002)0.30% (005)/ ; 5)
which appear in the series for the pertar‘baﬁi@n velocity potential
and. the perturbation components of flows described in conical coordin-
ates, or in a superposition of conical coordinates (Section VIII) ac-

cording to equations (4.18), The functions ave defined as follows:

)
?3//,;/ () (7= 0,7)
H ) = _2_’/@:_,92— (7.6)
3{»;” (0.26) (=2 2)
};/ c:’/ .
M = o (2 o1 52,0 (7.7)
»
Wm:” (o.20 (or 2 2)
, / ‘74/0:0(1‘).-,2‘ N/:) x (mr=0,1)
H -ZH, () =

ANC IR (e

Pl

(7 = 2)
& 7 co.20)
7

The definitions of the Nm(f/ functions is to be found in Section IV,
. 4

equations (4.,16) and (4.14).
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2. Accuracy

All caleculations in the construction of the tables were carried
out on a Marchent calculator to an accuracy of eight decimals, The
powers of T were bullt up on the machine, and the even powers checked
to six figures by logerithms, The tabular entires were rounded to
five figures as the last operation, All reasonable precsubtions have
been teken to find snd eliminate errors, bubt a very few may have es-
eaped detection.

3, Use

The use of the tables, based on equations (4.,18), in the anslysis
of conical and nonconical flows over solid bodies is described in
Sections VII and VIII,.

4. Normalization Factor

The divisor ;2;020@30) (see equations 7.6 and 7.7) is reguired in
order to infer the numericel values of ?Y:%t) (3721) from the tables
by use of relation (4;15)@ The divisors are listed on the first page
of the tables,

5, Interpolation.

The graphs of the abé@lmte valvue of all the functions presented
are very nearly straight lines on semi-log paper, Hence in general
logerithmic interpolation is preferable over algebraic interpolations
howeﬁér the latter is usually more rapid if 2 table of Lagrengisn inter-
polation c@efficients (at least 4-point) is available,

logerithmic interpolstion is now described. If log £(t) is very

- nearly a linear function of ¢, then
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j’_?[(a“;) = ,@//Q) +,Z;_{q [/&7/(—@) ——/&7/(«:;}]
= /éfl_— (ﬂ};%‘/(ca)]

£(al
Henece
7[(.«4) 7
//G.-/c)’) = 7[(0‘)(7;:7/
where
— d
7= 4 ~a

For example, if £(0,10) and £(0.12) are known, and £(0.11) is required,

0.6/(
g.o 2

one has p = = % and

Flon) = F Co-co) four2)
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)
Hormelizstion Divisors %iﬂ; (0.20)

Diviser

+47,0306

+28030,6
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APPENDIX C,

Two Dimensional Oross Flow; Triangle and Square

The velocity distribution at the surface, and in the vieinity of
the surface, of two cylinders of polygonal cross section are here tab-
ulated., These date are useful in the consideration of the upwash field
surrounding pointed slender solid bodies at small angle of attack in
a reéﬁilinear stream of either subsonic or supersonic speed, and are
mentioned in this respect in Section VII. The corresponding solutions
for bodies of cireuvlar, @#als elliptical and & few other families of
contours are well lmown (7, 38). |

The»l@ci of the net points at which the velocities are tabulated
are indicated on the accompenying figures, If one desires the contour
in an orientation with respect to the free stream different from that
presented, the solution can easily be obtained by a superposition of a
robation of the present soluticn upon itself in the obvious way. Thus

supposing known the function

Wi = 2//(5,“'7)‘
which is the complex velocity distribution about an equilateral trieng-
wlar eylinder when the free gtresm is normal to a side, let be required
the complex velocity distribution when the free stream is parallel to

a side. The solubticn is simply

- AT

;‘ 2 - . U . 3
w-icul = 22U f(5eiy) +\[_§:—/[<ru7)e ]

N



ml@%m

4, Trisnsuler Oy

linder

The trisngular contour has been mapped conformally onto a circle
by the appropriate Schwarz-Christeffel integral tremsformation, which
entailed numerical integration, The velocity field about the eircle
was then tremsformed back to the triengle, Detting ¢ =§+¢'7 be the
complex variable in the plane of the ejniletersl triangle in the orient-
ation sketched, and S=e *“®)  pe the complex variable in the plane

of the eirele, the coordinete and veloelty functions are found to be

38 ‘

r, = F2 AR (i g %) aiu Ve, P A

x, %
‘7-%:}13/4( (M}v[z-,:tc_fma/)imy(n/)a//

3 4y -
| ;u_t . 2 |ende wne <oavirs) + codp 2in© ainm it 7)]
Y ~
) z =
' 2% [enid p - .
:; = <2 Q a2 ¥ (L, ) ~oakpaing ce -r(f',ﬂ)]
o - g2 7.
(ol * 3¢ e o0 2 36} d
z =
where

Y, 40 = ji arclonm [w@é—iﬁ m:.,/f}
and k is a scale factor selected to make convenient the size of the tri-

angle transformed from a unit eircle.

A= VT = 077078

% % %
27 [ Vs
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130
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160
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180
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220
230
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260
265
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1,00000

0.99360
0.97861
0,93136
0.86565
0, 78504
0,69234
0.59008
©.48068
0,36653
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Curve 1I
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The square conbtour has been oriented with a diagonal parallel to the
free stream, ag shown on the aceompanying figure, In this figure, the
loci of the tabulated net points are also streamlines, The flow field
has been studied by maepping the part of the contour and its exterior on
one side of the diasgonal onto the boundary end points of-a half plane.
Inasmach as the flow over the square is symmebrical with respect %o
both diegonals, only the flow description in one guadrsnt is regquired.

Letting §= ¢+ iy be the complex variable in the plane of the
sguare, in the oriemtation skeﬁ@heé‘.g and S =0+ be the complex var-
iable in the mapped half plane where the mapped flow is simply recti-
linear, the coordinate and velocity functions are found to be
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and k is a scale factor chosen %o give the mapped sguare a diagonal
length of 2, I% is found
3
2vZ I (2) - 46900 ,
2 3
7 (7)

The appearance of the gamme functions in k is due %o the fact

that the Sehwarz-Christeffel mapping function for the present problem,

nanely
S %
g“;a = H ____—S A3 (H = coeast)
5/ (s21)7

G

is formelly similar %o the incomplete beta function when the transform-

ation

is ﬁa&e@ Indeed

Il
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where the incomplete beta function has the definition

A ~ . -1
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Curve III
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APPENDIX D

Detailed Solution of Typical Problem by Superp@%iti@n of Conieal Flows;
Unyawed solid body of sguere eross section with e parsbolic meridien
contour,

The methods of Sections VII and VIII are illustreted in this ip-
pendix,

Let M = vfé; 80 that B= 1, and consider the body whose surface
in the guafrant o< ef{f is given by

P ’i _ g_zﬂ';i’:__?ll

(0= x £5)
Acel %’-—(we-&m;é)

a’:

- A5 )
- x>S
T (covg 2t @) (

and whese surface in the remsining guedrands 5 the imege of this sur-
face in the coordinate plames. The body nose has a sguare eross section
and a parsbolic meridiasn contour, and is followed by a cylinder of the
same cross section, The solubion is desirved from the nose to the begin-
ning of the gylindrical portion.

In aceerdence with the schedule and notation presented in Section
VIII, the first step is the selection of the points at which the bound-
ary condition is to be fulfilled. The midpoint, 6= 25 =9, , of a
gide is taken as the reference contour; this contour is plotted on a

large figure, as sketched in Section VIII. The curve is

'""I = o 57035 [I- (1= Z)*] (0ofx=g)
e

= a. §3033 (x>s5) ,



The points §, at which the conical solutions are %o be added are baken

a8

{. = (¢c= o, 2,3¢9),

The Mach lines from the points S". to the contour are drawn, and points

F.  designated as in the sketch. The coordinates of P in the j comical

).
ccordinate system ( Xee s 1‘7“_ , 6. ) o written (j,L), are then found
to be

(0,1) = (2.235, 0,185, =

(G@B) z=2 (2@3955 091629 2

2lq

(0,3) = (3,480, 0,139,

(044) = (4,525, 0,115,

(3
N

S

(0,5) = (5,535, 0,090,

(1,2) = (1.875, 0,275,

R«l3 <

=

(1,3) = (2,480, 0,195,

N

(1,4) = (3,525, 0,145,
(1,5) = (4.535, 0.110,

(2,2) = (1.480, 0,330,

)

ARG IR IR
=

e

(2,4) = (2,525, 0,207,

(2,5) = (3.535, 0,148,

<\

(8,4) = (1.525, 0,344,

<\q
~

(8,5) = (2,535, 0,208, I)

w

(4,5) = (1.535, 0.345, ¢

Next the conical flow about the sguare cone tengent o the body at
the epex is calculated, As shown in Section VIII, the boundsry condition

can be fulfilled on 24 rays in the cone surface if the veloeity potentiel



ig written

0 = Wx[Ac o) + Ay H #) comdo + Ay Hy(H) oo 50]

and. the boundary condition

-1 +4C)B2 /7/;((1‘//4””/00:1,/”«16

. =0
: H (2 (~mA ) eromel _ B
YA (e)L:;. 7 ¢ A, o ]f~ %)

ig fulfilled at the pointes 1, 2, 3 indieated on the following sketech.

| Z

S

S

—.; < —

Select, for convenience € = 79,5, €, = 230059 ejg 37,5, Now
oy = £ (om0t ang)
4ite) = 5 (emo ~ 2ing)
- B
fS AcCo)

and thus the follewing table may be prepared

© o © oo @ CBO M@ 0O Bl AcCo) Lrs) 2,
6. 7.6 0,130583 0,99144 1,12197 0,86091 3,7399 2.8697 0,26739
€, 22%.5 0,38268 0.92388 1.30656 0,54120 4.3552 1.8040 0,22961

©; 37,5 0,60876 0.79335 1.40211 0,18459 4.6737 0.615830 0.21396

Prom the tables in Appendix B it is founds
at ‘@1
Hy = 1,0359 Hp' = =3,6283

Ha = 0,30649 Hy' =-4,9243

e
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Hg = 0,09800 E@“ = =3,1161
et %oy

ﬁ@ = 1,1782 Hb” = =4,2491

H‘é‘, = 0957596 H%ﬂ = ”103531

Hg = 0@5‘%@91 H&a = ®12e492
ab %g

Eb = 1,2007 Hbﬂ = =4,5967

Hy = 0,78288 H%“ = =15,464

Thus the boundary condifion inveked at point 1 leads %o the equa~

tion

L + 3,7899[5,6283 Ay + (4.9243)(0.86608) 4y + (3.1161)(0.50) Agf

+ (3.7399)(2.8697) [ 4(0,30649)(0.50)4, + 8(0,09800)(0.86603) sg] =0

or

13,5695 Ay 2205278 Ay + 13,1139 Ay = =l

Similarly at points 2 and 3, respectively,
18,5057 A, + 18,0879 A, - 54,4052 Ag = =1
21,4836 A - 58,0830 4, -+ 46,3881 A@ = =l

The solutions of these simultaneous equations are
Ay = = 0,05803
Ag = = 0,007249
A = = OGOQE»'?S@

With reference to equations (4,18) and (2.5) the complete linearized
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velocity and pressure distributions between the apex Mach cone and
the conical body surface are now known.

In proceeding to the nonconical body and the third step in the
solution, it is observeﬁ'tha% A'(G,,):o9 hence according o squation

(804), the condition to be fulfilled at P, is simply
N/’(XD'J.) ‘/'/{(sg}[@r (0/ 2) + C’?‘r (’12)]:‘ o,
X x

Apparently only the veloeity distribubion

J
d

A Y

Vo=

|

)

need be calculated from the foregoing conical solution. By (4.18b)

Yo

]l

v(oe,=E) = U[A M ~ 4,1, ) + Ap Hy'(#1]

Using this formalas, Table DI is prepared. From this table the numbers

| ,
e gfely;() may be determined by interpolation, using the logerithmie

interpolation formula described in Appendix B. The work is conveniently
arranged as shown on Table DII, using the notation of Appendix B.

Caleulation of ¢ § The equabion is
W f () + Ao [F (93) + ¢ F (v ] =0 (8.2)
F3 X

or

0. 52100 + 4. 7/‘/a.s“fa 91370 + 0. 181588 CJ =o
C, = — 6.06 8§27
Subseguent equations are written as described in Sectiom VIIL; each

containg only one new unknown, hence the solutions are immediate, One

finds
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cz—‘--/é".‘/?‘/?

C3: — /6. 356 ©
cy = + 158 770

The vaiu@s of G, C; , and C; are reliable, but that of C,, which is
determined by the boundary condition applied on the cylindrical porbion
of the body, is obviously not, The unacceptable value of C, is evi-
dence of the numerical uncerteinty encountered in the selution of equa~
tions inveolving the difference of large numbers which are almost equal,
In order to fulfill the boundery condition more accurately on the cyl-
indrical portion of the present body by this method the reference
points 5} wonld have %0 be mors @lasély positioned and greater care
exercised in the determination of the coordinates (§oi)e .

The aer@djnami@ characteristics of this body may now be determined

by the methods deseribeéd in Section VIII.
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0,14
0,16
0,18
0,20
0,22
0.24
0,26
0.28
0,30

0,38

A, Hict)

0, 723306
0, 87739
0.48009
041042
0,35802
0,31712
0,28429
0,25730
0,33473

0.21552

0.19896

0,18452

0.15531
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Table D I

A, Hlct)

15,0721
4,92396
1.97181
0.90815
0,46343
0,25568
0,15000
0.09169
0.05937
0,03944
0.02697
0.01890

0.00849

Ay Heltx)
629,123
83.8518
16,1124
2,98397
1,18354
0.40458
0.15440
0.06333
0.02889
0,01377
0.00692
0,00363
0,00085

Vs

—

74
614,774

79,5052

14,6209
3,48524
1.07813
0,46602
0,28869
0,22894
0,20425
0,18985
0,17891
0.16925

0,14767
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