The Architecture and Programming
of a Fine-Grain Multicomputer

Thesis by

Jakov N. Seizovié

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1994

(Submitted August 20, 1993)

Copyright @ 1994
Jakov N. Seizovié

All Rights Reserved

ii

Acknowledgments

Many thanks to all the great teachers I've had, in particular: To Chuck Seitz, my
research advisor, for knowing when to be a friend and when a tough guy, for his
willingness to be both a student and a teacher, for pointing out the obvious and
insisting on simplicity. To Jan van de Snepscheut, Mani Chandy, and Eric van
de Velde, members of my thesis-defense committee, for teaching me, through their
example, that one must never stop learning. To Milenko Cvetinovié, for giving me
all the right books to get excited about. To Ilija Stojanovié, Dejan Zivkovié, and
Slobodan Cuk, for believing in me before I did.

Many more thanks to my fellow students: To Nan Boden, for her dedicated
support and critique, depending on what I needed on any particular day. To Wen-
King Su, for the long hours we spent working together, and for sharing his insights
into the wonderful world of programming. To the late Mike Pertel, for teaching me
about stamina in times good and bad. To Bill Athas, Don Speck and Craig Steele, for
helping me keep both feet on the ground. To Tony Lee, for being the best office-mate

there is.

Thanks also go to my research sponsors: To the Advanced Research Projects
Agency, whose program managers repeatedly demonstrated a remarkable ability to
balance researchers’ vanities against the need for inter-project cooperation. To IBM,
for their orientation towards the future, embodied, in part, in numerous student-

support programs.

To the entire Caltech Computer Science Department staff, and to Arlene

DesJardins in particular, for humming busily in the background of my cocoon.

And to my family and friends who made sure that it wasn’t “all work and no play

»
.

To Goga

v

Abstract

The research presented in this thesis was conducted in the context of the Mosaic C,
an experimental, fine-grain multicomputer. The objective of the Mosaic experiment
was to develop a concurrent-computing system with maximum performance per unit
cost, while still retaining a general-purpose application span. A stipulation of the
Mosaic project was that the complexity of a Mosaic node be limited by the silicon
complexity available on a single VLSI chip.

The two most important original results reported in the thesis are:

¢ The design and implementation of C+-, a concurrent, object-oriented program-

ming system.

Syntactically, C+- is an extension of C++. The concurrent semantics of C+-
are contained within the process concept. A C+- process is analogous to a C++
object, but it is also an autonomous computing agent, and a unit of potential
concurrency. Atomic single-process updates that can be individually enabled
and disabled are the execution units of the concurrent computation. The limited
set of primitives that C+- provides is shown to be sufficient to express a variety

of concurrent-programming problems concisely and efficiently.

An important design requirement for C+- was that efficient implementations
should exist on a variety of concurrent architectures, and, in particular, on
the simple and inexpensive hardware of the Mosaic node. The Mosaic runtime

system was written entirely in C+-.

e Pipeline synchronization, a novel, generally-applicable technique for hardware

synchronization.

This technique is a simple, low-cost, high-bandwidth, high-reliability solution

vi

to interfaces between synchronous and asynchronous systems, or between

synchronous systems operating from different clocks.

The technique can sustain the full communication bandwidth and achieve an
arbitrarily low, non-zero probability of synchronization failure, Py, with the

price in both latency and chip area being O(log Flf')

Pipeline synchronization has been successfully applied to the high-performance

inter-computer communication in Mosaic node ensembles.

CONTENTS

Contents

1 Introduction

1.1
1.2
1.3

1.4
1.5
1.6

2.1

2.2
2.3

Concurrency and VLSI
Concurrent Architectures
Concurrent Programming
1.3.1 Shared-Memory Programming
1.3.2 Explicit Message Passing
1.3.3 Architecture-Independent Programming
The Reactive-Process Programming Model
The Mosaic C Project

Overview of the Thesis i .

Introduction L
2.1.1 Object-Oriented Programming vs. Concurrency
2.1.2 Concurrent Object-Oriented Languages
The Process Concept
Managing Concurrency
2.3.1 Remote Procedure Call
232 CallForwarding
233 Fork-Join
2.34 Semaphores
2.3.5 Monitors. e e e e

236 Recursion

vii

O 0 U R A W N = e

—
N

CONTENTS
2.3.7 Message Passing
2.3.8 Single-Assignment Variables
2.3.9 Process Aggregates
2.3.10 Summary e e
2.4 Managing Program Complexity
2.4.1 Class Inheritance
2.4.2 Virtual Functions L L.
2.43 Process Layering
2.4.4 Process Libraries
245 DataExchange
2.5 Putting It All Together

3 Implementation Issues

3.1 The Runtime-System Framework
3.1.1 Process Creation
3.1.2 Runtime Services,
3.1.3 ProcessDispatch
3.1.4 The pointer_t and the entry_t Types
3.1.5 ProcessState,
3.1.6 Process Migration
3.1.7 Invoking Atomic Actions
3.1.8 Active/Passive
3.1.9 Remote Procedure Call

3.2 From C+- to C++

.............................

3.21 Parsing
3.22 Code Generation
3.23 Code Splitting

4 The Mosaic C

4.1 Multicomputer Architecture

4.2 The Mosaic Node

.............................

viii

30
32
32
36
36
36
38
38
40
40
45

58
58
99
60
61
64
64
66
66
69
69
71
71
73
73

CONTENTS

4.2.1 The MosaicRouter
422 The DynamicRAM
4.2.3 The Processor and the Network Interface
4.3 Software Overhead of Communications

5 Pipeline Synchronization

5.1 Imtroduction
5.2 Problem Specification.
5.3 Existing Solutions
5.4 Pipeline Synchronization
5.4.1 The Mutual-Exclusion Element
5.4.2 Two-Phase-Protocol FIFO
5.4.3 Pipeline Synchronizer
5.4.4 Correctness Proof
5.4.5 Variations On the Theme
5.5 A CMOS Implementation
5.6 Conclusions

6 Conclusions
6.1 Comparison With Related Work
6.1.1 Medium-Grain Multicomputers
6.1.2 Fine-Grain Multicomputers
6.1.3 Multiprocessors
6.2 Summary e e

A Example Products of C+- Compilation

Bibliography

79
81
81
83

89
89
90
90
96
98
101
104
105
116
118
119

121
121
121
123
125
127

130

143

CHAPTER 1. INTRODUCTION , 1

Chapter 1

Introduction

1.1 Concurrency and VLSI

Progress in microelectronics technology during the past four decades has been
remarkable by any measure. Three major factors contributed to this progress: (1)
a rapid and steady pace of improvements in processing technology to produce ever
smaller, faster, and lower-power devices; (2) the development of design methodologies
[62] and tools to manage design complexity; and (3) the exploitation of concurrency
[75]. The first two factors are readily understood. The importance of concurrency
to the performance/cost ratio of VLSI systems can be understood from results of
VLSI-complexity theory [97], and has been demonstrated repeatedly in practice.
Special-purpose computing engines were the first to employ concurrent solutions,
and continue to do so, highly successfully, to this day [50, 11]. Although various
forms of concurrency (bit-level parallelism, pipelining, vectorization) are exploited
regularly in general-purpose computing engines [37], applying concurrent solutions to
general-purpose computing at the application level has been slower in gaining ground.
A considerable effort has been made to exploit the concurrency that is implicit
in sequential programs. This effort has been successful in discovering and utilizing
modest degrees of concurrency, but is now regarded almost universally as having

approached its limits [49]. Applications with explicitly concurrent formulations are

CHAPTER 1. INTRODUCTION 2

the driving force for a range of concurrent architectures, some of which are discussed

in the following section.

1.2 Concurrent Architectures

Most of today’s concurrent computers are representatives of one of the following three

architectures [33]:
e Computers with a single instruction stream and multiple data streams (SIMD).

e Two variants of computers with multiple instruction streams and multiple data

streams (MIMD):

— multiprocessors, which have one global address space, and

— multicomputers, which have multiple local address spaces.

Early concurrent-computer implementations closely followed this classification:
SIMD computers employed multiple computing units to which instructions were
broadcast [40]; multiprocessors utilized buses and/or switches to connect multiple
processors to the global memory [69, 24]; multicomputers featured independent
processor-memory pairs interacting through a message-passing network [76].

The differences between the more recent representatives of these three architec-
tures [96, 12, 53, 1, 64, 79] are blurred: When observed from a point that is sufficiently
close to the hardware, or from a point that is sufficiently far away from the hardware,
these three architectures are remarkably similar. Each consists of a communication
network connecting a collection of computing nodes. Each node consists of one to
several instruction-interpreting processors, a local memory, and a network interface.
All three architectures support some concept of processes — computing agents that
execute concurrently, and that can communicate data and synchronize activities with
each other. What were once architectural distinctions became differences in program-
ming style: data-parallel [70], shared-memory [18], and message-passing (Chapter 2)

programming abstractions. Depending on the emphasis on support for one of these

CHAPTER 1. INTRODUCTION 3

abstractions, additional architectural support is provided for global synchronization
[96], for efficient non-local memory access [53, 1], or for low-latency, low-context-
switch-overhead message handling [64, 79).

In this thesis, we shall focus principally on the multicomputer variety of
MIMD computers, but shall indicate also how our results apply to multiprocessors.
Multiprocessors provide hardware support for a global address space, and implement
inter-process communication through shared-memory access, whereas multicomputers
provide a generic message-exchange mechanism, and implement shared-memory
access through inter-process communication.

Given the similarity between these two architectures, one might expect that,
given a typical problem-set load of the computer, it would be easy to test and
decide which architecture and which machine should be employed. Yet, the reality of
concurrent computers and concurrent-programming systems is somber: programs are
most often written in notations tailor-made for a particular computer architecture,
sometimes even for a particular machine. The cost-effectiveness of program execution
on concurrent machines is their main advantage over their sequential counterparts
[75]. Striving to maximize this cost-effectiveness, however, emphasizes the concurrent

computer’s main disadvantage: the complexity of writing programs.

1.3 Concurrent Programming

There are two, typically conflicting, driving forces shaping the developments in
concurrent programming: increasing efficiency and increasing expressivity.

The efficiency-conscious programming systems are typically the products of design
teams also involved with the design of concurrent machines, and often reflect the
underlying architecture. Shared-memory programming and explicit-message-passing
programming are representatives of this class.

The expressivity-conscious programming systems are often produced by the
frustrated users of the products of the former groups, and are typically architecture-

independent (Section 1.3.3).

CHAPTER 1. INTRODUCTION 4

1.3.1 Shared-Memory Programming

The first developments in concurrent programming were motivated by the advent
of multiprogramming and multiuser operating systems. It should not, therefore,
be surprising that the first concurrent-programming systems supported concurrent
processes that communicated and synchronized through the memory of the machine
on which they were executing. The development of the Parallel RAM (PRAM) model,
a theoretical framework on which much of the work in concurrent algorithms is based,
also promoted the popularity of this programming style, which is still the predominant
form of concurrent programming.

From the early stages on, shared-memory programming has been plagued by
various incarnations of the mutual-exclusion problem. This problem is due primarily
to the discrepancy in access granularity between the data structures and the memory
units used to represent these data structures. A number of remedies were introduced:
atomic test-and-set and/or fetch-and-add instructions [35], and semaphores [28]. One
of the most significant efforts was the work of Per Brinch Hansen on Concurrent
Pascal, and the development of monitors [36, 41]. Monitors encapsulate data with the
(mutually-exclusive) operations defined on the data in programmer-defined, compiler-
and-runtime-system-managed units. This work forms a foundation on which many
of the recent developments in object-oriented concurrent programming are based,

including the programming system described in this thesis.

1.3.2 Explicit Message Passing

Communication and synchronization through explicit message passing is a program-
ming paradigm whose roots are as old as computers themselves, stemming from the
need for inter-computer information exchange. This programming paradigm was
adopted and adapted for programming multicomputers [42, 77]. Starting with the
Cosmic Cube [76] and its commercial descendents [78, 54, the mainstream represen-
tatives of the multicomputer architecture employ off-the-shelf processor, memory, and

compiler technology. Programming systems for these machines are based on a vari-

CHAPTER 1. INTRODUCTION 5

ety of sequential programming languages for specifying individual process behavior,
wherein communication and synchronization between processes is achieved through
a set of library routines.

There are two problems that are the curse of this programming style. First,
although modular organization of data structures can be achieved within a process,
this modularity does not extend readily to collections of processes. Second, the off-the-
shelf technology often brought the off-the-shelf notion of process granularity; heavy,
UNIX-style processes impose an unacceptably high software overhead to process

communication and synchronization.

1.3.3 Architecture-Independent Programming

A number of programming models and notations have been devised to provide a
uniform view to the programmer of concurrent computers, and to map computations
onto either of the architectures described above. The advantages that these
programming systems offer in reducing programming effort are remarkable; preserving
the cost-effectiveness of concurrent computers running such programs, however, has
yet to be demonstrated. The assembly programming of conventional, sequential
computers has been all but eliminated by higher-level notations through large
improvements in program-writing efficiency, with small degradations of program-
execution efficiency. The same has yet to happen to tailor-made concurrent-

programming notations.

Functional Programming and Dataflow

In its pure form [6], functional programming provides a method for defining functions
in terms of other, more-primitive functions. The value of a function is determined
only by the value of its arguments, and is not history-sensitive. Since there are no
side effects, functional-programming notations are implicitly concurrent, and sub-
expressions, including function arguments, can be evaluated independently of each

other.

CHAPTER 1. INTRODUCTION 6

The introduction of side-effects into functional-programming notations enables
them to model history-sensitive behavior, but it also opens them up to the full
set of problems associated with imperative-programming notations. Extending pure
functional programming with single-assignment variables and streams, as introduced
by dataflow researchers, represents an important intermediate point. This extension
relaxes the no-side-effects requirement into the monotonicity requirement: A variable
starts up uninitialized, and an assignment bounds it to a value (multiple assignments
are disallowed). A stream consists of a (possibly-infinite) sequence of variables that
can only be read and appended. Using single-assignment variables for communication
and synchronization is also used extensively in compositional programming [21, 19],

and in concurrent logic programming, described next.

Concurrent Logic Programming

The programming model typically associated with sequential logic programming is
that of proving an existentially quantified statement given a program that consists of
a set of axioms [90]. Implementations of this model involve backtracking that could,
in principle, be replaced by concurrent examination of all the alternatives. However,
for efficiency reasons, and because of the need to better model input/output behavior
[93, 83], concurrent logic programming makes a significant departure from this model:
There is no backtracking; once a (non-deterministic) choice is made, no alternatives
are examined.

A concurrent logic program consists of a set of guarded clauses, and each clause
represents a recursive specification of process structures. To program in a concurrent
logic programming notation is to specify tasks as unordered, concurrent sets of
subtasks. Tasks communicate and synchronize with each other by binding single-
assignment variables, and waiting for variables to become bound.

Restrictions on the expressivity of clause guards, to improve efficiency, lead to a
family of flat concurrent-logic notations [93]. A minimalist approach to concurrent

logic programming of Ian Foster and Stephen Taylor resulted in Strand, a streamlined

CHAPTER 1. INTRODUCTION 7

and efficient concurrent-programming system [34], without giving up much of the

expressive power.

UNITY

UNITY, developed by K. Mani Chandy and Jayadev Misra [20], is a computation
model and a programming notation, with an associated proof methodology. A UNITY
program consists of a set of guarded multiple assignments. These assignments are
executed in arbitrary order: The focus of programming in UNITY is on what, i.e.,
on data transformations, as opposed to when. A particular execution order can be
enforced only through data dependencies. A computation terminates when it reaches
a fixed point, ¢.e., when no assignment in the program modifies any variables.

An interesting related research has been reported by Craig S. Steele [89]. In this
work, a programming model and a corresponding notation are developed, in which
program actions are associated with data objects through a programmer-specified
triggering mechanism. An efficient multicomputer implementation of this UNITY-

like programming system is demonstrated.

Actors

The Actors model of computation was first proposed by Carl Hewitt and Henry Baker
[38, 39], and was later formalized by William D. Clinger [22] and Gul Agha [3]. In
this model, the unit of concurrent computation is an actor, an independent computing
agent that is activated in response to messages sent to it. Each actor has a unique
address, an associated message queue, and a specified behavior. In a response to a
message, an actor can: send messages, create new actors, and become a new actor by
specifying its replacement behavior.

Because of its simplicity, potential efficiency, and straight-forward implementation
on distributed architectures, the Actors model is the basis for numerous concurrent-
programming systems. The reactive-process programming model, described next, and
its associated notation, described in Chapter 2, are based in part on the Actors model

of computation.

CHAPTER 1. INTRODUCTION 8

1.4 The Reactive-Process Programming Model

The reactive-process programming model is a variant of the Actors programming
model. Computation in this model is performed by a set of processes, independent
computing agents. A process is normally at rest, and starts executing in response to
a message (including the initial, creation message). In the course of its execution, a
process can send messages, create new processes, and modify its state, including
self-termination. Message order is preserved for each pair of processes in direct
communication. Each message is marked with a tag that specifies which of the
process’s compile-time-fixed set of entry points should be invoked. Each entry point
runs to completion, and is therefore an atomic update of its process’s state. A process
can affect the order of execution of its entry points by enabling and disabling them
selectively, at run time; all entry points are initially enabled. A message tagged for a
disabled entry point is delivered when (and if) that entry point is active again.

This model is extended to include the remote procedure call (RPC). An entry
point of a process can be specified to return a value to the message sender. When a
message is sent and tagged for such an entry point, the sender is suspended until the

message with the returned value arrives.

Background

The reactive-process programming model is a result of the work in our research group
over the last decade. Interestingly, a comparison with the early work of C. R. Lang on
a concurrent version of Simula [51] reveals that our group’s ideas seem to have come
almost full circle. The ideas of C. R. Lang, and the preceeding work of Per Brinch
Hansen, were far-sighted and out-of-sync with the multicomputer technology of their
time. In retrospect, it is as if much of what our research group has been doing was
tracking and driving the necessary communication, processor, memory, and compiler
technology to approach this target.

Starting with the development of the Cosmic Cube, our group embraced the

explicit message-passing programming style. The design of an experimental fine-grain

CHAPTER 1. INTRODUCTION 9

multicomputer, Mosaic C, and the similarity of our approach to the Actor model of
computation, provided additional motivation; this effort culminated with the work
of W. J. Dally on Concurrent Smalltalk [26]; of W. C. Athas and N. J. Boden on
Cantor, a minimalist Actor-based notation [4, 9]; and of W.-K. Su on Reactive-C and
distributed event-driven simulation [91]. The work on the Cosmic Environment [91]
and the Reactive Kernel [82] shifted our focus from organizing computations around

processes to organizing computations around messages, and the reactivity became an

essential part of the programming model.

1.5 The Mosaic C Project

The work described in this thesis attempts to make a contribution to the un-stately

condition of concurrent programming today. Our work is based on the following

principles:

o Concurrency must come cheap: Concurrent machines must be extensible in

small and inexpensive chunks.

e Concurrency must come cheap: Only those high-level programming constructs
for concurrency that can be implemented efficiently by the (small and

inexpensive) hardware can be used.

e Concurrency must come cheap: Expressing concurrency in programs must be

simple.

Starting from these simple and restrictive requirements, our research group
has been conducting a computer-architecture experiment to design a concurrent-
computing system with as high a performance/cost ratio as possible, while still
retaining the (not so well-defined) “general-purpose” application span. In the course
of this experiment, we have built a testbed consisting of: a fine-grain multicomputer,
the Mosaic C; a concurrent-programming notation, C+-; and a distributed runtime

system, MADRE.

CHAPTER 1. INTRODUCTION 10

What computer architecture is all about is bridging the gap between a
programming model and a technology [37, 77]. Designers of all of today’s computers
divide this complex spanning task into a set of smaller, more manageable subtasks. A

particular choice of subtasks is illustrated in Figure 1.1. Well-defined anchor points

(applications)
C programming model) 1

< programming abstractions)

< programming notation)

< programs)
< compiler)
C code)

< runtime system >

(tasks)
< machine >

@omputation and communicatio@

< technology) £

(physical system)

Figure 1.1: Computer architecture

simplify the implementation of the subtasks; however, if those anchor points are too
numerous and/or too rigid, the design space may become severely restricted.

For the Mosaic experiment, the fairly rigid anchor points have been:

o the scalable CMOS VLSI technology, because that was the best technology that

we both had access to and understood well, and,

e the reactive-process programming model, because we believed we could

implement it efficiently.

CHAPTER 1. INTRODUCTION 11

For each of the remaining intermediate points, we have been able to identify
opportunities for what appeared to be significant improvements over existing

concurrent-computing systems. In particular:

e The programming notation was to be a derivative of a widely-accepted object-
oriented programming notation, trying to leverage off of the advances that

object-oriented programming brought to sequential-programming systems.

e The compiler technology was mature enough that we believed a compiler could

perform much of the checking traditionally done at run time, if at all.

e The runtime system was to be fully distributed, and utilize the distributed-

queue algorithm described in [10].

e The machine was to benefit from the results in router technology [81], dRAM
technology [87], synchronization methods (Chapter 5), packaging technology
[79], and self-testing possibilities [79].

Our computer-architecture experiment culminated in designing and building the
Mosaic concurrent-computing system. Parts of the Mosaic system are described in
[79, 81, 87, 10|, and in this thesis.

In as closely-coupled a research team as ours, it is difficult to properly grant every
bit of credit, but, to the first order, the following is the list of contributions to the
Mosaic project. Most of the work has been done by five people: Nanette J. Boden,
Charles L. Seitz, Don Speck, Wen-King Su, and the author of this thesis. Nan has
been involved principally with the runtime system, but was also invaluable to the
development of the programming model and of the notation, and was the most
understanding and thorough tester of the compiler and of the machine. Chuck
did most of the overall-machine architecture, the processor architecture, the system
integration and packaging, and the router design. Chuck also had important
contributions to every other aspect of the project, and the commitment to see it all
the way through. Don designed the dRAM and ROM, and taught all of us the value

of patience and thoroughness. Wen-King designed most of the processor and router,

CHAPTER 1. INTRODUCTION 12

the workstation interfaces, and worked on all aspects of verification and packaging.
Wen was also a principal contributor to the programming model, wrote a low-level-
but-works-reliably-the-very-first-time programming system, and re-targeted the Gnu
C and C++ compiler to the Mosaic. The author of the thesis feels he deserves credit
only for saying: “Why don’t we get this thing finished!”, and for then going off to
fill in the missing links: routing-network interface, chip-level system integration and
verification, the programming notation, and the compiler. Numerous other people
have been associated with the Mosaic project, most notably: William C. Athas,
who contributed to the programming model and to the processor architecture, and
Michael J. Pertel, who contributed to the choice of the routing network and to its

performance evaluation.

1.6 Overview of the Thesis

In Chapter 2 we introduce C+-, a concurrent object-oriented notation based on
C++. Chapter 3 defines the C+- runtime-system interface, illustrates how C+-
can be customized, and explains the C+--compilation process. In Chapter 4, a
brief description of the architecture of the Mosaic multicomputer is presented, with
emphasis on architectural support for C+-. Chapter 5 presents a novel, generally
applicable, synchronization technique, along with a proof of its correctness, and its
application to the Mosaic. In Chapter 6, we compare the results of our work with the

related research, and suggest possible future research directions.

CHAPTER 2. Ct+- 13

Chapter 2

C+

2.1 Introduction

2.1.1 Object-Oriented Programming vs. Concurrency

Programming notations that support object-oriented programming techniques are the
notations of choice for a rapidly growing number of complex applications. Indeed, not
since the introduction of structured programming [25] has there been such a degree of
unanimity in the programming community. This unanimity is even more remarkable
considering that, just as was the case with structured programming [29], the power
of object-oriented techniques is difficult to convey to readers through short, example
programs in books or articles. When observed in isolation, none of these techniques
is new or revolutionary. It is only when one approaches a large-scale programming
task armed with the full set of techniques that their power becomes evident.

Structured-programming techniques advocate structuring of program control flow
in a top-down, compositional fashion. Object-oriented programming techniques
promote data organization in a bottom-up, standard-parts fashion. Both paradigms
emphasize modularity, but, whereas the former is focusing principally on modularity
of control structures, the latter does a better job of encapsulating data structures
with the operations defined on these structures.

Object-oriented programming came about through attempts to make large,

CHAPTER 2. C+- 14

sequential programs more manageable. Techniques such as data encapsulation and
access protection, inheritance, and guaranteed initialization, all emerge from the goal
of helping programmers help themselves.

By our view, much of what the techniques of object-oriented programming are
really helping to manage is concurrency. Events are concurrent if they are unordered,
i.e., if they can occur in any order, or in parallel. Mutual exclusion is an example of
an issue most often associated with concurrent programming, but the problems that
result from a disregard for mutual exclusion also occur regularly in large sequential
programs. With uncontrolled access to global variables, it is impossible to keep track
of all of the places in the code where a certain variable is accessed, and of all the
invocations of such code. Non-deterministic execution is another issue most often
associated with concurrent programming. For a fixed set of inputs, the execution of
a sequential program will always result in the same ordering of state changes, yet,
with side effects on global variables, it is often far from obvious what all the inputs
to a program are.

Whereas sequential programming brings out the worst in us only in the large,
concurrent programming will do that already in the small. It should not be
surprising, then, that in the hope of reaping some of the benefits that object-oriented
techniques brought to sequential programming, we are witnessing a proliferation of

programming systems trying to amend a particular object-oriented notation with

concurrent semantics.

2.1.2 Concurrent Object-Oriented Languages

The three-way design tradeoffs illustrated in Figure 2.1 are typical of design of any
programming system, not only those attempting to harness concurrency. However, all
three requirements are more pronounced, and the balance more difficult to achieve,

for a concurrent-programming system:

CHAPTER 2. C+- 15

Expressivity

Figure 2.1: Design tradeoffs for concurrent programming systems

o FEfficiency — One of the major reasons to employ concurrent solutions in the
first place is to get more performance, and programming-system overheads are

less likely to be tolerated by users.

o FEzrpressivity — Moving from a single to many threads of control, and the
requirement that threads can communicate and synchronize their activities,

place additional demands on expressivity.

e Safety — In addition to mutual exclusion and possible non-determinism
mentioned in the previous section, issues such as deadlock and livelock have

to be dealt with. Simple semantics that aid correctness proofs are essential.

It is likely that some readers will find what we consider a balanced design to be
biased in favor of efficiency, then expressivity, and then safety. Our argument about
the increased importance of efficiency in a concurrent-programming environment
is sometimes disputed on grounds that, because concurrent systems offer better
performance/cost than their sequential counterparts, one can afford more inefficiencies
at the operating/runtime system level. The consequence of this view on concurrent
architectures is that machines with pathetic process-creation and communication
overheads are being designed and built. The major goals of the work described in this
thesis are to show that this pitfall can be avoided, and to demonstrate that fine-grain

concurrency can be efficiently exploited.

CHAPTER 2. C+- 16

Extensions of C++

C++ is an object-oriented notation that is in widespread use due to its efficiency,
availability, and upward compatibility with C. C++ is the starting point for numerous
programming systems that attempt to amend C++ with concurrent semantics,
including the system described in this thesis.

A comparison of our work to related concurrent-programming systems can be

found in Section 6.1.

C+-

C+- is the result of an experiment to express reactive-process, concurrent programs
(Section 1.4) in an object-oriented programming notation. Although C+- is an
extension! of C++, the objective of the C+- project has not been to be able to
execute arbitrary C++ programs efficiently on the Mosaic. The emphasis of C+- is on
providing efficient support for the simple abstractions fundamental to the reactive-
process computational model: process creation and communication. C+- strives
not to impose higher-level policies on synchronization, communication protocols, or
process placement.

Although the C+- programming system is portable across a wide range of
architectures, the Mosaic has been both the driving force and the reality test behind
this effort. Design decisions have consistently been made to avoid compromising the
performance of C+- programs on the Mosaic. Higher-level programming systems may
be layered on top of C+-, but C+- is intended to serve as the Mosaic’s lowest-level,
workhorse programming system, suitable both for operating-system and application
programming.

The remaining sections of this chapter are devoted to teaching the reader about
C+-. Familiarity with the basic concepts of object-oriented programming and of
C++ in particular is assumed: classes, inheritance, access rules, operator overloading.

Keywords are underlined in programming examples. Although an effort has been

1C+- is not a superset of C++ because it imposes restrictions on global variables, as discussed in
Section 2.3.

CHAPTER 2. C+- 17

made to steer clear of the idiosyncrasies of C++, some of them were essential, and
they are explained as they are encountered. The reader is cautioned, however, that
C+- is by no measure a minimalist, toy-example-writing notation; some of the more
advanced examples are likely to present difficulties to those not familiar with C++.
Our hope is that this difficulty is the result of C+-’s completeness, rather than of

poor design choices.

2.2 The Process Concept

The C++ object concept is carried over intact to C+-: class is a user-defined type;
an object created according to a class definition is a collection of data items, a set
of operations defined on them, and a set of access rules (Program 1). Class member

functions have the usual, sequential semantics.

class C
{
private:
int data;
public:
cO { data = 0; } // initialization
void write(int i) { data = i; } // update
int read() { return(data); } // retrieve
};

Program 1: A Class Definition

The process concept is the only extension that C+- introduces to C++. The
processdef keyword parallels the class keyword syntactically (Program 2). Access
rules are associated with data members and functions of a process definition, and
process definitions can be derived from other process definitions (Section 2.4.1).

However, a process created according to a process definition is more than a

collection of data items:

Specification 1 A process is an independent computing agent, and a unit of

potential concurrency. Its public interface consists of a set of atomic actions.

CHAPTER 2. C+- 18

processdef P
{
private
int data;
public:
atomic PQ) { data = 0; } // initialization
atomic void write(int i) { data = i; } // update
atomic int read() { return(data); } // retrieve
};

Program 2: A Process Definition

At creation time, the process constructor® is executed if it is defined. After the
constructor completes, the process is at rest. The invocation of an atomic action of a
C+- process is decoupled from its execution. Conceptually, there is an infinite queue
of incoming requests for each process; the invocation of an atomic action places a
request into this queue. Process execution consists of servicing these requests, with

each atomic action running to completion.

Creating a process is no different from creating an object (Program 3). In most
cases, processes are created dynamically (pp = new P;), and persist until they are
explicitly destroyed (delete pp;). One can also create a temporary process as a
local variable, just as with any other type (P p;). This temporary process is destroyed
implicitly when execution leaves its scope.

A C+- computation is initiated by a runtime system that, concurrently with
initialization of global processes, creates an instance of root (Program 4), the

constructor of which is defined by the user.

Specification 2 A process can affect the order of execution of its atomic actions by
enabling and disabling them selectively, at run time. All atomic actions are initially

enabled; execution of a disabled action is postponed until the action is enabled again.

For example, let us assume that the rules for accessing a process of type P in

Program 2 are such that it may be updated only once; every subsequent write request

2 A process constructor is an atomic action with the same name as that of the process definition.
The constructor may not return any value.

CHAPTER 2. C+- 19

{
int i; // declaring an integer
P+ pp; // declaring a process pointer
PP = new P; // creating a persistent process
i = pp->read(); // retrieving a value
pp->write(i+1); // updating
delete pp; // explicitly destroying the persistent process
{
P p; // declaring a temporary process
i = p.read(); // retrieving a value
p.write(i+l); // updating
} // implicitly destroying the temporary process
3
Program 3: Programming with Processes
processdef root
{
public:
atomic root(int argc, char*#* argv);
+;

Program 4: The root process

should be tagged as an error. Furthermore, all read requests occurring before the first
write should be serviced only after the first update occurs. The process definition
for this version of P is listed in Program 5.

Processes communicate and synchronize with each other through atomic actions.
Thus far, we have discussed only the behavior of processes as servers — how they deal
with incoming requests (invocations of their atomic actions). We shall now define the

behavior of processes as clients — how they request services from other processes:

Specification 3 When invoking an atomic action that does not return a value
(returns a void), or if the returned value is not used, the caller continues execution
independently of the callee. The order of invocations is preserved for each pair of
processes in direct communication. If the value returned by an atomic action is used,

the caller may be suspended until the returned value is available.

CHAPTER 2. C+- 20

processdef P
{
private
int initialized;
int data;
public
atomic PO);
atomic void write(int);
atomic int read();
};
atomic P::PO
{

initialized = 0;
passive read;

}
atomic void P::write(int i)
{
if (initialized)
{
report_error();
}
else
{
data = i;
initialized = 1;
active read;
}
}
atomic int P::read()
{
return(data);
}

Program 5: Enabling and Disabling Atomic Actions

Invoking an atomic action that returns a value does not, in itself, imply that the
requesting process will be suspended until the requested value is available. It is only
when this value is used that a thread of activity must be suspended. For example, the
Program 6 uses a divide-and-conquer approach to compute the n** Fibonacci number.
Both sub-computations are initiated, and the process will suspend only if it attempts
to add the two partial results before they are available.

It is sometimes desirable to enforce the sequential order of execution of

CHAPTER 2. C+- 21

processdef fib
{
public:
atomic int compute (int n)
{
switch (n)
{
case 0: return O;
case 1: return 1;
default: fib f£1, £2;
return (fl.compute(n-1) + f2.compute(n-2));
¥
}
};

Program 6: Divide And Conquer

subcomputations. In such cases, the C+- await construct should be used. For

example, return (await(fl.compute(n-1)) + £2.compute(n-2)); ensures that

the first subcomputation is complete before the second one is initiated.

Programming systems differ considerably in what constitutes use of unresolved
variables, also called futures. The most aggressive systems allow futures to be
exchanged between processes, and suspend a thread only when a value is needed
for a hardware-implemented expression evaluation. Support for futures is the central
issue for numerous concurrent-programming systems [44, 86, 99]. C+- is not one of
these systems, and is not very aggressive in trying to discover and utilize this type
of concurrency. In C+-, assigning an unresolved value to any programmer-defined
variable constitutes use of that future, and will cause the thread to be suspended.
C+- guarantees only that a thread will not be suspended unnecessarily within an
expression evaluation. C+- semantics allow any additional compiler/runtime system
optimization, but only within the body of a function or an atomic action. Unresolved
variables must be resolved before they can be passed as arguments.

The reason for C+-’s non-aggressive utilization of futures is that we want to
encourage a programming style in which the concurrent behavior is generated
explicitly, as opposed to trying to utilize the concurrency that is implicit in sequential

formulation. Synchronization on an unresolved future is inherently more expensive

CHAPTER 2. C+- 22

than, for example, synchronization using the active/passive semantics, because
the process state that must be saved when blocking on a future is much larger.
For notations that have stack-based implementations of the regular function-call

abstraction, such as C+-, this state includes the stack.

2.3 Managing Concurrency

All concurrency-related issues in the C+- programming system are encapsulated into

the process concept. The following syntactic restrictions enforce this requirement:

¢ Only atomic actions can be public members of a process definition.?

4

e Only values, process pointers, and process references* can be arguments to

atomic actions.
e Processes are the only global® variables allowed.
e Process definitions can have no friends.b

As specified in Section 2.2, a process is a unit of potential concurrency. Processes
communicate and synchronize with each other through atomic actions. The remainder
of this section will be devoted to examples illustrating how some of the well-known

concurrent-programming paradigms can be implemented in terms of C+- processes.

2.3.1 Remote Procedure Call

The remote procedure call (RPC) is a common form of interaction between threads
of activity. As illustrated in Program 7 and in Figure 2.2, a client requests a service

from a server and suspends its execution until the request has been attended to.

3The C++ static member functions can be public members of a process definition, since their
semantics do not allow them to access process members anyway.

4The difference between pointers and references is a subtle idiosyncrasy of C++, and, for the
purposes of this thesis, the two can be considered equivalent.

5This includes both global and static C++ variables, i.e., all variables with file scope.

6The friend construct in C++ allows non-member functions to have full access to private class
members.

CHAPTER 2. C+- 23

The semantics of the RPC are identical to those of an ordinary procedure call. The
implementations of the two types of procedure calls, however, are typically different,
because the client and the server may be operating in different address spaces. A

better name for the RPC might be “interprocess procedure call.”

processdef server

{

public:

atomic int request (int);

};

processdef client

{

public:

atomic client (server* s)
{

int i = s->request(123);

X

Program 7: Remote Procedure Call

f place client

time

server

B
|

Figure 2.2: Remote Procedure Call

During a remote procedure call, the calling process is nominally suspended until
the returned value is available, so no concurrency is introduced. However, as discussed
in Section 2.2, with the use of futures, the semantics of the RPC can be extended so
that several requests can be issued concurrently, and the calling process is suspended

until all the requests have been serviced (Program 6 and Figure 2.3).

CHAPTER 2. C+- 24

I—> place £ib(2)

time . l
£ib(0)l¢ip (1)

]
I

Figure 2.3: Divide And Conquer

2.3.2 Call Forwarding

Call forwarding is a paradigm associated with message-based object-oriented
programming systems, and is similar to tail recursion. As an example, consider the

sequential search of a singly-linked list of dictionary processes in Program 8.

processdef dict
{
private:
dictx* next;
int index;
int data;
public:
atomic int find (int i)
{
if (i == index)
return data;
else
return mnext->find(i); // can be replaced by:
// forward next->find(i);
}
3

Program 8: A Sequential Search

When the value returned from an atomic action is itself obtained by an atomic
action invocation, programmer may choose to use the forward statement instead.
With the return statement, a request is issued, the process is suspended until the
value is available, and then reply is sent to the calling process. The effect of call
forwarding is to defer servicing of the request to another process. Two sequential

search examples, one using the return, and another the forward statement, are

CHAPTER 2. C+- 25

illustrated in Figures 2.4 (a) and (b), respectively. In addition to reducing the number

place client client

time

. dict B
f}[“\dict \T:‘dict
1_dict -

] o

(a) (b)
Figure 2.4: A Sequential Search with RPC (a), and with Call Forwarding (b)

of replies, call forwarding enables the list of processes that form a dictionary to process
multiple requests in a pipeline fashion. At any point in time, each search request is

being worked on by at most one dictionary process.

2.3.3 Fork-Join

The remote-procedure-call mechanism with limited support for futures, as provided
by C+-, offers a convenient and easy-to-understand programming paradigm for an
important class of problems. A more flexible, fork-join mechanism for process
synchronization in C+- is offered through the combination of non-suspending, atomic-
action invocation and active/passive semantics.

There are two paradigms that C+- programmers can use to generate concurrent

activities:

o Creating new processes, whether persistent or temporary. The parent process

continues execution independently’ of the child.

"When a pointer to a newly created process is used in a subsequent computation, this may or
may not require suspending the parent, depending on the implementation. However, the parent
continues execution concurrently with child’s constructor.

CHAPTER 2. C+- 26

e Upon invoking an atomic action that does not return a value, or when the
returned value is not used, the caller continues executing without waiting for
the callee.

The synchronization barriers can be expressed using active/passive semantics.

Suppose that an FFT computation is implemented as illustrated in Figure 2.5 [65].
The expressions along the edges of the graph are coeflicients. Multiple inputs to a

0 _><

z(2) oo

z(6) p >< ><><><><:

2(1) oo L, X(4)
>< m

'
=
1
—_
)_\

node imply addition, and multiple outputs imply replication of the result.

A concurrent program for N-point FFT computation could employ N processes,
and compute the result in O(log V) steps. Each step would consist of: getting two
requests along the input edges; adding the two input values; multiplying by the
coeflicient; and producing two output values.

A version of this program could similarly employ N log N processes in a pipeline
regime, achieving the same O(log N) latency, but a new result would be computed
on every step.

In either approach, though, a process (circled in Figure 2.5) must get one data item
along each of its input edges to be able to compute and emit one data item along each
of its output edges. A process that might be used as part of the FFT-computation

pipeline is listed in Program 9.

CHAPTER 2. C+- 27

processdef fft
{
private:
- Complex W, first;
fft *out_up, *out_dn;
void output (Complex in)
{

Complex vresult = (first + in) * W;
out_up->up(result);
out_dn->dn(-result);

}
public:
atomic fft(fft* u, fft* d, Complex r)
{
W=r;
out_up = u;
out_dn = d;
}
atomic void up{Complex in)
{
if (passive(dn)) // upon receiving both requests
{ // produce the output
active dn;
output{in) ;
}
else // if you only have one request
{ // await the second one
passive up;
first = in;
}
}
atomic void dn(Complex in)
{
if (passive(up)) // upon receiving both requests
{ // produce the output
active up;
output(in);
}
else // if you only have omne request
{ // await the second one
passive dn;
first = in;
}
}
};

Program 9: An FFT-Computing Process

CHAPTER 2. C+- 28

2.3.4 Semaphores

First introduced by E. W. Dijkstra [28], semaphores are low-level primitives for
process synchronization. A semaphore is typically used to control access to a shared
data structure, with an N-ary semaphore allowing access to at most N —1 processes at
any point in time. Two operations are defined on semaphores: acquire and release. In
general, an implementation of an N-ary semaphore must guarantee that the number
of acquire operations minus the number of release operations is at most N — 1, and at

least 0. A C+- implementation of an N-ary semaphore is presented in Program 10.

processdef semaphore
{
private:
int count; // number or processes inside
// the critical section
int max; // the maximum number allowed
public:
atomic semaphore(int N) // initially, there are no
{ // processes inside the critical
max = N - 1; / section
count = 0;
passive release;
}
atomic int acquire()
{
count++; // one more inside
active release; // at least one can release
if (count == max) // if the maximum is reached,
passive acquire; //- no one can get in
return 1;
}
atomic int release()
{
count--; // one less inside
active acquire; // at least one can acquire
if (count == 0) // no one is in, so
passive release; // no one can exit
return 1;
}

Program 10: N-ary Semaphore

An often-used special case for N = 2, the binary semaphore, is illustrated in

Program 11.

CHAPTER 2. C+- 29

processdef semaphore
{
public:
atomic semaphore ()
{
passive release;
}
atomic int acquire()
{
active release;
passive acquire;
return 1;
}
atomic int release()
{
active acquire;
passive release;
return 1;
3

};

Program 11: Binary Semaphore

2.3.5 Monitors

Of all of the concurrent-programming paradigms, semantics of C+- processes are
closest to those of monitors [36]. Just as with monitors, C+- processes encapsulate a
set of data items and offer mutually exclusive access to a set of routines operating on
this data. C+- processes also share some of the problems associated with monitors, as
both are non-reentrant. The invocation of an atomic action of a C+- process is, unlike
an invocation of a monitor function, decoupled from its execution: conceptually, there
is an infinite buffer of incoming requests for each process. This decoupling enables
processes to be active computing agents, able to affect the order of execution of their

atomic actions.

2.3.6 Recursion

In the examples shown so far, the requirement that all the public member functions
of a process be atomic actions has been helpful in expressing interactions between

concurrent threads of activity. From the point of view of C+- programmers, the

CHAPTER 2. C+- 30

most significant repercussion of the atomicity of interprocess activities is that, since
at most one execution thread can be associated with a process, atomic actions that
return values are not reentrant. For example, in Program 12, the private member
function fac has ordinary, sequential, reentrant semantics. However, the public
member function FAC must be an atomic action. An invocation of FAC will, therefore,

result in deadlock.

processdef bad
{
private:
int fac(int n)
{
if (n==10)
return 1;
else
return n * fac(n-1); // OK: functions are reentrant
}
public:
atomic int FAC(int n)
{
if (n==0)
return 1;
else
return n * FAC(n-1); // ERROR: atomic actions are
} // not reentrant
atomic int Fac(int n)
{
return fac(n); // OK: atomic-action interface
¥ // to a function
};

Program 12: Recursive Functions and Non-Recursive Atomic Actions

In the world of non-reentrant atomic actions, processes are the medium used to

express recursive behavior (Program 13).

2.3.7 Message Passing

Invoking an atomic action of a process is equivalent to wrapping up the argument
list and sending it in a message. According to Specification 3, the atomic-action
invocation does not imply blocking (waiting for the reply does), so it is equivalent to

a non-blocking message send.

CHAPTER 2. C+-

processdef fac
{
private:
int output;
public:
atomic fac(int input)
{
if (input == 0)
output = 1;
else
{
fac child(input-1);
output = input * child.result();
}
3
atomic int result()
{
return output;
}
};
// or
processdef fac
{
private:
int input;
fac* parent;
public:
atomic fac(int i, fac* p)
{
if (i==0)
{
p—>result(l);
delete this;
}
else
{
input = i;
parent = p;
new fac(i-i,this);
¥
}
atomic void result(int r)
{
parent->result (input*r) ;
delete this;
3
};

Program 13: Recursive Processes

CHA PTER 2. C+- 32

Message receiving has two forms:

o explicit, associated with the behavior of processes as clients, which receive a

value that is returned from a call to an atomic action; and

e implicit, associated with the behavior of processes as servers, which receive an

argument list as part of a request to execute an atomic action.

The two forms of receive, explicit and implicit, cover the two extremes of the
spect Tum of possible mechanisms for message discretion: explicit receive accepts only
a particular message from a particular process; implicit receive accepts any message
from any process. The active/passive semantics provide a more general selective-
receive mechanism: atomic actions of a process represent incoming communication
channels, and the process can, at run time, select the communication channels over

which it is ready to accept a message.

2.3.8 Single-Assignment Variables

Single-assignment variables are a safe form of futures (Section 2.2). Requesting a read
access on an uninitialized, single-assignment variable causes the requesting process
to be suspended until the variable is assigned to. Since there can be at most one
assignment to a single-assignment variable, these variables can be effectively cached.
Processes of type P in Program 5 are an example of a possible C+- implementation

of single-assignment variables.

2.3.9 Process Aggregates

Thus far, we have described processes as independent entities, and have emphasized
the code-execution aspects of processes. In this section, we shall show how processes
can be treated as instances of a restricted data form, one that can be accessed only
through a set of mutually exclusive, atomic actions.

As illustrated in Program 14, C+- programmers can treat processes as variables

of any other type. Whether a process is a local variable, member of an object or of

CHAPTER 2. C+- 33

processdef P
{
/...
};
class C // an object of class C contains:
{
public:
P P; // a process
P* PP; // and a process pointer
};
{
P pil, p2; // declare two processes
pl = p2; // process assignment
P pl10]; // declare a process array
}

Program 14: Treating Processes As Data

another process, element of an array, or used in any other way in which a variable
can be used in C++, the process semantics are the same. According to the syntactic
restrictions described in Section 2.3, the only operations allowed on a process are to
take its address and to access its public members (all of which are atomic actions).®
The various process usages determine only when a process is created and when it is
destroyed. For non-process data types, variable usage also implies what the memory
layout is. When accessing processes, one cannot assume, for example, that a process
declared as a local variable resides on the stack; nor can one assume that a process
that is a member of a class is placed in memory next to the other data members. In
Section 3.1.1, we shall discuss how programmers can affect process-placement strategy.

The semantics of C+- are defined such that efficient implementations exist for both
mainstream variants of MIMD computers: multiprocessors, which have one global

address space, and multicomputers, which have multiple local address spaces. In C+-,

8Process assignment is an atomic action invocation, equivalent to issuing a request to the source
process to send a copy of itself to the destination process (Section 3.1.5). Passing processes as
arguments is a form of assignment.

CHAPTER 2. C+- 34

regardless of the underlying architecture, a pointer to a process can be dereferenced
globally, since it contains sufficient information to uniquely identify the process it
points to.

An important advantage that multiprocessors have over multicomputers is
that they can employ most of the data-layout strategies developed for sequential
computers. There are additional performance considerations guiding the design
decisions on the data layout, as discussed in [46]. If, for the time being, we neglect
such performance considerations, a vector of C+- processes could, on a multiprocessor,
be laid out in memory in the same way as a vector of elements of any simple data type.
Elements with successive indices would reside at memory addresses that differ by a
stride equal to the size of the process. This approach would allow the programmer
to compute the address of any process in the vector given the address of any other
process in the same vector, and the two corresponding indices.

On a multicomputer, using the above layout strategy for vectors of processes is
unacceptable for two reasons: first, the address space of a multicomputer is contiguous
only within each multicomputer node, so the maximum size of a process vector would
be limited by the size of node memory; and second, although the computation model
allows elements of a process vector to operate concurrently, that concurrency could
not be used to a performance advantage, because the elements would all reside on
the same node.

This example is but an instance of a more general problem of naming constituent
elements of distributed objects [26, 17]. There are two issues that are central to the
solution of this problem. The first issue is that there should exist a single name
(address) of a distributed object, and a way of addressing constituents given this
name. The second issue is that the programmer should be able to compute on
references, not just store them at process-creation time and fetch them when they
need to be used.

A simple solution that takes only the first issue into the account could employ an
address-manager process. The manager’s address would represent the address of the

distributed process as a whole. All the requests would be directed to this process,

CHAPTER 2. C+- 35

and then forwarded to appropriate constituent processes. This solution obviously
introduces an access bottleneck, but may be acceptable for element processes that
exhibit a large ratio of computation/communication.

We consider this problem to be too important to be left to ad hoc approaches,
particularly for such often-used paradigms as arrays of processes. Accordingly, C+-
offers a runtime-system-supported mechanism for address management that preserves
the C++ address-computation semantics.

The example in Program 15 shows that the creation of a process array consist of

{
processdef P {5}
P¥ p = new P[123]; // is equivalent to:
{
P+ p = unique__CPM(123,sizeof(P));
for (int i=0; i<123; i++)
new Q@(p+i) P;
}
}

Program 15: Creating A Vector of Processes

two stages. First, a set of unique references is allocated by invoking the unique__CPM
function, with arguments specifying how many references are required, and what the
stride between the adjacent references should be. This function returns a pointer
of the generic process-pointer type, pointer_t, analogous to void# in C++. Next,
the actual process creation is requested, specifying that each new element process
be placed in such a manner that it can be located through the given pointer. A
description of various flavors of process creation is presented in Section 3.1.1. A
set of algorithms that provide efficient support for process placement and lookup is

described in [10].

CHAPTER 2. C+- 36

2.3.10 Summary

The programming examples in Section 2.3 illustrate that a small set of mechanisms
supported by C+- is sufficient to express a variety of concurrent-programming
paradigms. This set consists of: process creation, asynchronous request, synchronous
request (remote procedure call), and selective servicing of requests (active/passive
mechanism). In Chapter 3, we shall present an implementation framework for this

set of mechanisms.

2.4 Managing Program Complexity

In the introductory section of this chapter, we discussed how object-oriented
programming techniques came about through efforts to aid programmers in managing
program complexity. All of the object-oriented techniques supported by C++ are
extended to managing processes in C+-. The interested reader may consult the wealth
of available literature on C++, including, but not limited to [32).

In the remainder of this section, for completeness, we shall mention briefly two
of those techniques: inheritance and virtual functions. We shall then discuss the
techniques that are specific to C+- and concurrent programming: process layering,

process libraries, and customizing of the data exchange.

2.4.1 Class Inheritance

Class inheritance is the C++ mechanism that enables user-defined types to be derived
from more basic types, inheriting data members and functions from the base type,
possibly adding new ones and/or overriding old ones. Access rights are associated
with each class member. For example, in Program 16, private members of the
base class shape can be accessed only by member functions of shape; protected
members of shape can, in addition, be accessed by member functions of any class
derived from shape (for example, circle); and public members of shape can be

accessed by any piece of code anywhere in the program. The class circle is

CHAPTER 2. C+- 37

class shape

{
private:

int origin;

void modify_origin();
protected:

int color;

void modify_color();
public:

void draw();
3

class circle : shape

{

private:
int radius;

public:
void modify_radius();
void draw();

};

Program 16: Class Inheritance

derived from class shape by adding a data member (radius) and a member function
(modify_radius()), and by overriding the member function draw().

A typical memory layout for the two classes is shown in Figure 2.6. The point to

int origin; int origin;
shape shape
int color; int color; circle:shape

int radius;

Figure 2.6: Class Inheritance vs. Memory Layout

be remembered is that C++ class inheritance is a compile-time rather than a runtime
mechanism.® Every instance of class circle contains a part corresponding to an
instance of class shape; it is the definition of class shape that is shared, not any
particular instance of it.

The C++ class-inheritance mechanism is mimicked by process definitions in

®Neglecting, for the time being, such C++ features as multiple inheritance and virtual functions.

CHAPTER 2. C+- 38

C+-; they too can be specified through their similarities with and differences from

previously-defined process definitions.

2.4.2 Virtual Functions

The virtual-function mechanism supported by C++ is a mechanism that enables
programmers to separate the design of member-function interfaces from the design of
member functions themselves.

For example, in Program 16, given a shape* sp, and a circlex cp, the
invocation of sp->draw() and cp->draw() will result in calling shape: :draw() and
circle::draw(), respectively. The compiler decides which call to generate based on
the type of pointer through which the function has been called.

Had the two draw() functions been virtual, the invocation of sp->draw() could
have invoked either of the two functions, depending on what the pointer sp pointed

to. In this case, the compiler generates an indirect call through the class-specific

table.

2.4.3 Process Layering

The standard C++ .inheritance mechanism allows one to describe process definitions
hierarchically. However, once a process is created, it is an independent entity. The
hierarchy is reflected in its structure, not in its relationship with other processes.
There are important applications where, in addition to hierarchy in structure, it
is useful to have runtime-exercised hierarchy in control. For example, in operating or
runtime systems [10], user processes are created and managed by system processes. In
simulators [91], processes that model the behavior of physical elements are managed
by time- or event-driven schedulers.
The mechanism that C+- uses to support such applications is process layering,
also called dynamic process inheritance. As illustrated in Program 17 and Figure 2.7,
every instance of processdef gate is managed by an instance of processdef

scheduler. The details of process layering will be discussed in Section 3.1, which

CHAPTER 2. C+- 39
processdef scheduler
{
private:
int time;
};
processdef gate : dynamic scheduler
{
protected:
gatex* output;
};
processdef two_input_gate : gate
{
private:
int state;
atomic void inputi(int);
atomic wvoid input2(int);
};

Program 17: Process Layering

gate : dynamic scheduler

gate* output;

int state;

two_input_gate :

Figure 2.7: Process Layering vs. Memory Layout

gate

describes the C+- runtime-system interface. The relationship between the manager

process and the managed process is established at the creation time of the managed

process. The manager provides a set of services to all processes that it manages, with

the same access protection that is offered through the class-inheritance mechanism.

The manager decides when an atomic action of any of the processes managed by it

is executed (as opposed to invoked), while conforming to the definitions of process

behavior as specified in Section 2.2.

CHAPTER 2. C+- 40

2.4.4 Process Libraries

Libraries of C+- processes can be organized in the same way as libraries of data
structures in C++. In most cases, the remote procedure calls to atomic actions of
processes form a suitable interface, and these calls replace the class member-function
interfaces. In these cases, it is sufficient that programs include header files that
contain interface-process definitions.

There are cases, however, in which imposing the RPC interface would overly
serialize computations that are otherwise concurrent. For example, a process library
might initialize a set of processes for FF'T computation, as illustrated in Section 2.3.3,
employing several input and several output data streams. A stream of input values
can be represented by a sequence of non-blocking atomic-action invocations. If a
stream of output values were represented as a sequence of replies obtained through
the RPC mechanism, just as in the sequential-search example of Section 2.3.2, the
computation could not be pipelined. However, unlike in this search example, this
problem could not be resolved with call forwarding.

The mechanism typically used for C+- libraries with multiple input and output
streams is as follows: an input stream is represented by a sequence of non-
blocking atomic-actions invocations of an input-interface process; an output stream is,
similarly, a sequence of non-blocking atomic-actions invocations of a process provided
by the library user. In this arrangement, the library-user process must be derived
from the output-interface process of the library it uses (Section 2.5). When a process
uses multiple libraries, multiple inheritance is employed to derive such a process from

all of the output-interface processes from which it requires results.

2.4.5 Data Exchange

The designers of C++ made a commendable effort to provide an overloading mechanism
that enables programmers to pass arguments by value, even when these arguments
are arbitrarily-complicated, linked, data structures. This mechanism is not sufficient

for concurrent-programming systems, which must take into account some additional

CHAPTER 2. C+ 41

considerations. On multicomputers, object pointers have local meaning. Also,
concurrent computers may be heterogeneous ensembles comprised of machines with
different data layout, alignment, size, or representation.

C+- addresses all of these potential problems at the inter-process-communication
level (invocations of atomic actions) with mechanisms that are described in the
remainder of this section. The communication specifications are declarative, as
opposed to imperative: the programmer specifies what special actions should be
taken when a data item of certain type is communicated; the compiler guarantees

that actions thus specified will be invoked on every occurrence of communication.

Communicating Arbitrarily-Complex Data Structures by Value

One of the premises of fine-grain concurrent programming is that large data structures
are implemented in terms of many small, cooperating processes, so it is tempting to
claim that process pointers that can be globally dereferenced are all that programmers
might possibly want. However, an important use for pointers in C++ is for data
structures that are only partially specified at compile time: linked data structures
and arrays of variable size. If proper support and clean semantics for this feature
were not offered, users would have resorted to ad hoc solutions.

The mechanism supported by C+- enables the programmer to specify what eztra
actions should be taken when communicating an object of some class by value. In its
most common form, it amounts to flattening the linked data structure before sending,
and relinking it upon receiving. As will be illustrated in Section 3.1, variants of this
mechanism can also be used to express more intricate (but sometimes much more
efficient) communication protocols.

Suppose that the data type of choice is a singly-linked list of elements of type
list, each of which contains a pointer to the next element in the list, a pointer to
a vector of integers, and a field specifying the size of the integer vector. Figure 2.8
illustrates what is required to pass a data item of type list by value. Part (a)
shows a data item scattered around in memory. Part (b) shows the flattened data

structure, with the dashed parts corresponding to other arguments that may be sent

CHAPTER 2. C+- 42

in the same communication. If the concurrent computer at hand is a shared-memory
multiprocessor, and if the flattened argument list is in the shared address space, the
task is completed. Now suppose that passing arguments moves them from one address
space to another, as typically happens on a multicomputer. When the message that
encapsulates the argument list is received, all the pointers are off by a constant (c),

and have to be re-linked, as in (d).

I
!

= =

—1

(a) (b) (c) (d)

Figure 2.8: Flattening Linked Data Structures

Program 18 is the specification of the flattening and re-linking tasks: The
operator space computes how much extra space is needed in the argument list when
an instance of list is passed as an argument to an atomic action. The operator
send specifies that, in addition to this instance of 1ist, a vector of integers and the
remaining part of the list should be passed along. The operator recv requests that
the vector of integers (data) and the rest of the list next be re-linked in place on the
receive side.

This special handling will be invoked not only for instances of 1ist, but also for

CHAPTER 2. C+- 43

class list

{
private:
int size; // number of integers "data" points to
int* data;
list* next; // a pointer to the next of kin
public:
size_t operator space ()
{
size_t s = space(data,size); // space for size integers
if (next) s += space(next); // space for the rest
return s; // of the list
}
void* operator send (void* v)
{
v = send(v,data,size); // send size integers
if (next) v = send(v,next); // send the rest
return v; // of the list
}
void operator recv ()
T
recv(data); // re-link int*
if (next) recv(next); // re-link the rest
3 // of the list
};

Program 18: Passing Linked Data Structures By Value

all objects derived from 1ist, and for all objects that contain instances of 1list as
members. C+- data-structure libraries can, accordingly, be built in a way that allows
library users to be indifferent about the details of the implementation.

This example illustrates how arbitrarily complex, linked, data structures can be
passed by value. However, to avoid copying, and when sharing of data structures
between processes is needed, structures must consist of linked processes, not of linked

objects.

Communicating Across Heterogeneous Machine Boundaries

The C+- compiler assembles all messages (argument lists to atomic actions), and

initiates all instances of communication (invocations of atomic actions). This

CHAPTER 2. C+- 44

information enables the compiler to handle the size and alignment of the basic
data types (integers, floating-point numbers, etc.) for a programmer-specified set
of machines that may be involved in direct communication.

The example in Program 19 specifies that, in addition to the local-machine type,

machine I286

{
char, 1, 1;
short, 2, i;
int, 2, 1;
long, 4, 1;

¥

machine Sparc

{
char, 1, 1;
short, 2, 2, send_lib, recv_lib;
int, 4, 4;
long, 4 4

};

Program 19: Machine Descriptions

communication may be established with machines of types 1286 and Sparc (arbitrary,
user-specified names). The entries within each machine description correspond to the
data size and alignment (measured in units of size equal to the minimum-addressable
memory unit on the machine running this program), and any special treatment that
may be required for a particular basic data type.'® For example, for a machine of type
Sparc, short integers are of size 2 and have to be positioned on addresses divisible by
2. When sending a short integer to a process residing on a machine of type Sparc,
the data item has to be converted using the user-supplied and user-named function
send_lib; when receiving a short integer from such a process, the data item has to
be converted using the function recv_1ib.

The compiler implicitly generates type machine_t, defined as:

enum machine_t { local__CPM, I286, Sparc };

10The following is the complete list of C+- basic data types: char, short, int, long, float,
double, long double, signed char, unsigned char, unsigned short, unsigned int,
unsigned long, void#*, entry.t, and pointer_t.

CHAPTER 2. C+- 45

and the user is obliged to define the function
machine_t machine__CPM (pointer_t);

that maps process pointers into machine types.

2.5 Putting It All Together

The examples of C+- programs shown so far were chosen to illustrate programming
techniques. We have deliberately chosen clarity over completeness, and, indeed, some
of these examples require the addition of forward declarations to be accepted by the
compiler.

In this section, we shall show an example of a complete program that computes the
N-point FFT, as illustrated in Figure 2.5. Our concurrent program will closely match
this data-dependency graph, with one addition: We shall introduce a column of nodes
whose purpose is to rearrange the input values from the standard, linear ordering
of indices to the bit-reversed ordering required at the input of the FFT-computing
graph. Figure 2.9 shows the modified graph, with circled parts corresponding to

sub-computations performed by individual processes.

2(0) 4oL o oo Lot X(0)
— Pt : 22 - \2\‘) x(1)

| X(2)

§ X(3)

- X(4)

\k - X(5)
0 -,1:3‘ S7/am j) X(6)
WA WN"J \C

\“ > “41/ \’“ SRS A “r X(7)

Figure 2.9: An 8-Point FFT Computation, with the Processes Circled.

CHAPTER 2. C+-

Typically, writing C+- programs consists of four stages:

e Choosing a concurrent algorithm;

o Designing an input/output interface;

e Designing the process hierarchy; and,

e Describing process behavior.

46

We shall organize the program as a library package. Figure 2.10 illustrates the user-

level view of this library. Input values are to be sent to processes of type fft, and

output values will be delivered to processes of the same type. For an N-point FFT

computation, there are N input and N output processes, all of which have to be

derived from fft. The set of pointers to N input processes could be represented in a

variety of ways, but it is often most intuitive to represent these processes as members

of a process vector, as described in Section 2.3.9. The same is true for the set of

pointers to N output processes.

inputs
fft:
0 im0
l
1 ff:za:
I
N-1 5§

Figure 2.10: User View of the FFT-Library

FFT
graph

fft*

fEE*

fLt*

f££t:

in()

££ft:

inQ)

fft: ;

inQ)

Program 20 is the header file that the user must include to access the library. A

user program might look like Program 21: Since the library sends the output values

to the vector of £ft processes, the consumer processes are derived from £ft, and have

to be created using the distributed-process mechanism. The producer processes, on

CHAPTER 2. C+- 47

the other hand, don’t have to be elements of any vector unless some other part of the

user code needs to treat them so.

// fft.h
#include <c+-.h> // The runtime-system header file
#include <Complex.h> // The complex-arithmetic package
processdef fft : public CPM // The runtime system requires that
{ // every process be derived from CPM
public
atomic virtual void connect (fft*) = 0; // The ’= 0’ syntax in C++ denotes
atomic virtual void in(Complex) = 0; // that this is the specification
}; // of an interface, leaving it to
// the derived processes to specify
// how the requests are serviced
processdef fft_graph : public CPM // This process represents the
{ // whole graph
private:
fEt* inputs; // The pointer to the first input
int order; // Size of the FFT graph
public
atomic fft_graph(int, fft*); // Creating the fft process graph
atomic “fft_graph(); // Deleting the fft process graph
atomic fft* input (int); // Finding out the address of a
// particular input
};
Complex W(int N, int i); // A function that computes
// complex roots of 1
int bit_reverse(int N, int i); // A bit-reversing function

Program 20: The FFT-Library Header File

CHAPTER 2. C+-

48

#include <fft.h>

processdef consumer
{

public:
atomic

};

: public fft

virtual void in(Complex);

processdef

{
public:
atomic

};

producer : public CPM

producer (fft*) ;

const int N = 32;

root::root (int argc, char** argv)

{

new consumer [N];

fft* outputs

fft_graphx g

fl
=]
(0]
=

fft* dinputs = g->input(0);

for (int i=0; i<N; i++)
new producer(inputs+i);

// Do something with the result

// Produce input values

// Create the vector of consumers

new fft_graph(N,outputs);

// Create the computation graph
// Get the reference to the inputs

// Create N producers

Program 21: An Example of FFT-Library Usage

CHAPTER 2. C+- 49

Figure 2.11 shows the process-specification hierarchy that we chose to implement,

and Programs 22 and 23 specify this hierarchy.

fft
——0

reiay
———>—

! N
/ .
’ . .

join

s

fork join_fork
mult_:i:‘ ork joinmult_fork

WN’_% - WNL%

Figure 2.11: Process-Specification Hierarchy

The ££t process definition is just an interface specification, and does not describe
any computation. The remaining process definitions specify that the process activity

consists of four distinct stages:
o Establishing a connection, ie, obtaining output references;
o Getting one or two input values;
¢ Computing the result, which may involve an addition and a multiplication; and,
e Outputting one or two output values.

The common parts of the code are shared between different process definitions through
the process-inheritance mechanism. Using multiple inheritance (whereby process
definitions can be derived from more than one process definition) would have resulted
in better code reuse. Nevertheless, we felt that, in the examples in this thesis, multiple

inheritance would not have contributed to reader’s understanding of C+-.

CHAPTER 2. C+- 50
// ffti.h
#include "fft.h"
processdef relay : public fft
{
protected:
fit* out; // Output reference
Complex result; // The result
virtual void compute(Complex); // How to compute the result
virtual void output(); // How to generate the output
public
atomic virtual void in(Complex) ;
atomic virtual void connect (fftx*) ;
atomic relay()
{ passive(in); }
};
processdef join;
processdef fork : public relay
{
protected:
join* outi; // Fork adds an output reference,
virtual void output(); // and produces two output values
public
atomic virtual void connect(fft*, join*);
};
processdef mult_fork : public fork // Mult_fork also needs to multiply
{
protected:
Complex W; // so here is the multiplicand
virtual void compute (Complex) ; // and how to compute
virtual void output) ; // It must generate the +- output
public:

atomic virtual

void

connect(fft*, join¥, Complex);

Program 22: Process Hierarchy for FF'T Computation, Part 1

CHAPTER 2. C+-

// £ft2.h
#include "fft1.h"
processdef join : public relay // Join has two distinct inputs
{
protected:

virtual void compute (Complex); // How to compute the result
public:
atomic wvirtual void in (Complex);
atomic virtual void ini(Complex) ;
atomic join()

{ passive(in); passive(inil); }

3
processdef join_fork : public join // The same modifications
{ // as from relay to fork
protected:

join* outil;

virtual void output();
public
atomic virtual void connect(fft*, join*);
};
processdef join_mult_fork : public join_fork // The same modifications
{ // as from fork to mult_fork
protected:

Complex W;

virtual void compute (Complex) ;

virtual void output) ;
public:
atomic virtual void connect (fft*, join*, Complex);
};

Program 23: Process Hierarchy for FFT Computation, Part 2

The behavior of various process types is specified in Programs 24, 25 and 26.

CHAPTER 2. C+-

// ££ft0.cpm
#include "f££2.h"

atomic
void
relay: :connect (fft* f)
{
out = £f;
active; // make all atomic function active

}

atomic
void
fork::connect (fft* £, join* j)
{
out = f;
outl = j;
active;

}

atomic
void
mult_fork::connect (fft* f, join* j, Complex c)

{

out = f;
outl = j;
W = c;
active;

}

atomic

void

join_fork::connect (fft* f, joinx j)

{
out = f;
outl = j;
active;

}

atomic

void

join_mult_fork::connect (fft* f, join* j, Complex c)

{

out = f;
outl = j;
W = ¢;
active;

Program 24: The FFT Computation, Part 1

CHAPTER 2. C+-

// f£ftl.cpm
#include "£££2.h"
atomic
void
relay::in (Complex c)
{
compute(c) ;
output();
}
void
relay: :compute (Complex c)
{
result = c;
}
void
mult_fork::compute (Complex c)
{
result = W * ¢c;
}
void
relay: :output ()
{
out->in(result);
}
void
fork::output ()
{
out->in(result); outl->ini(result);
}
void
mult_fork::output ()
{
out->in(-result); outi->ini(result);
}

Program 25: The FFT Computation, Part 2

CHAPTER 2. C+-

54

// ££t2.cpm
#include "fft2.h"

atomic
void
join::in (Complex c)
{
if (passive(inl))
{ compute(c); output(); active(ini);

else
{ result = c; passive(in);
}
atomic
void
join::inl (Complex c)
{
if (passive(in))
{ compute(c); output(); active(in);
else
{ result = c; passive(inl);
}
void
join::compute (Complex c)
{
result += c;
¥
void
join_mult_fork::compute (Complex c)
{
result = (result + c) * W;
}
void
join_fork::output ()
{
out->in(result); outl->ini(result);
}
void
join_mult_fork::output ()
{
out->in(-result); outil->ini(result);
¥

Program 26: The FFT Computation, Part 3

¥
¥

}
3

CHAPTER 2. C+- 35

Finally, Programs 27, 28 and 29 contain the code used to build the N-point FFT
process graph. Depending on how time-critical this creation task is, solutions range
from entirely sequential, taking O(Nlog N) steps, to maximally concurrent, taking
just O(log N) steps. Our solution follows an intermediate approach, in which the
process creation is concurrent and takes O(log N) steps, whereas passing references

around is sequential for each process column, and takes O(NV) steps.

// ££t3.h

#include "fft2.h"

processdef build_top_£fft : public CPM

{

public:

atomic build_top_fft(int, join*, int, int, fft*);

};

processdef build_btm_fft : public CPM

T shatadtkabed

public:

atomic build_btm_fft(int, join*, int, int, fft*);

};

Program 27: Building the FFT Graph, Part 1

CHAPTER 2. C+-

56

// ££t3.cpm

#include "f££3.h"

fft_graph::fft_graph (int N, fft* outs)

{
order = N;
inputs = new relay[N];
if (N>1)
{
join* j = new join[N];
new build_top_fft(N, j, 0, N/2-1, inputs);
new build_btm_fft(N, j, N/2, N-1i, inputs);
for (int i=0; i<N; i++)
(j+i)->connect (outs+i);
}
else
{
inputs~>connect (outs);
¥
}

Program 28: Building the FFT Graph, Part 2

CHAPTER 2. C+-

// fft4.cpm
#include "fft3.h"

build_top_fft::build_top_fft (int N, join* outs, int from, int to, fft* inputs)
{

int n = to - from + 1;

if (n>1)
{
join_fork* f = new join_fork[n];
new build_top_fft(N, £, 0, n/2-1, inputs);
new build_btm_fft(N, f, n/2, n-1, inputs);
for (int i=0; i<n; i++)
f[i].connect(outs+i,outs+n+i);

}

else

{
fork*x f = new fork;
f->connect(outs,outs+1);
(inputs+bit_reverse (N,from))->connect(f);

¥

build_btm_fft::build_btm_fft (int N, join* outs, int from, int to, fft* inputs)
{

int n = to - from + 1;

if (n>1)
{
join_mult_fork* f = new join_mult_fork[n];
new build _top_fft(N, £, 0, n/2-1, inputs);
nev build_btm_fft(N, £, n/2, n-1, inputs);
for (int i=0; i<n; i++)
f[i].connect(outs+n+i,outs+i,W(N,from+i));

¥

else

{
mult_fork* f = new mult_fork;
f->connect(outs+1,outs,W(N,from));
(inputs+bit_reverse(N,from))->connect (f);

}

Program 29: Building the FFT Graph, Part 3

CHAPTER 3. IMPLEMENTATION ISSUES 58

Chapter 3

Implementation Issues

There are two major components to the C+- programming system: the translator
from C+- to C++, and the C+- runtime system. This programming system is
currently supported on the Mosaic, and on all systems that support the Cosmic
Environment/Reactive Kernel (CE/RK) [80] message-passing primitives, which
includes sequential computers, networks of workstations, and a variety of commercial
multicomputers and multiprocessors.

The translator is written in C++, and is both compile-machine- and target-
machine-independent. Most of the runtime-system code is portable as well, with the

exception of a small set of C+- library functions that are illustrated in Section 3.1.

3.1 The Runtime-System Framework

The relationship between the C+- programming notation and the C+- runtime systems
is symbiotic: Programs written in C+- require runtime-system support; C+- runtime
systems are typically written in C+-.

Although most of the runtime-system code is portable, the resource-allocation
requirements on various machines are quite different. Given a sufficiently large
node memory, the amount of runtime-system support that C+- programs require
is minimal. The runtime systems for C+- implementations on computers with

workstation-size nodes typically consist of less than a thousand lines of C+- code. The

CHAPTER 3. IMPLEMENTATION ISSUES 59

Mosaic fine-grain multicomputer consists of nodes with severely restricted memory
resources; hence, the runtime system for the Mosaic employs much more sophisticated
runtime mechanisms. Various configurations of MADRE, the MosAic Distributed
Runtime systEm, range from two to ten thousand lines of C+- code. MADRE was
written by Nanette J. Boden, and its design and the distributed algorithms it employs
are described in detail in her Ph.D. thesis [10]. This work demonstrates that the
complexity of runtime systems for fine-grain multicomputers need not result in large
penalties in speed, nor does it imply large chunks of node-resident code that reduce
the available node memory even further. MADRE is itself a concurrent program that
employs distributed solutions to manage distributed resources [10].

The mutual dependence of the C+- programming notation and the C+- runtime
systems is only apparent. In fact, the runtime system is just a pre-written part of
any user program — a part that includes an interface to the resource-allocation and
communication capabilities of the machine it is running on. The C+- programming
model and programming notation supply only the framework for implementing
process management and data communication, striving not to restrict the spectrum
of possible runtime-system implementations. The remainder of this section describes
this framework. Since the primary target for executing C+- programs is the
Mosaic, the names and default semantics of functions that we use correspond to
message-passing communication primitives. This does not, however, imply that
these primitives are the only ones that can be used; shared-memory communication
primitives, for example, are equally suitable for implementing the necessary low-level

routines.

3.1.1 Process Creation

An example of how process creation may be implemented in C+- is given in

Program 30. In general, process creation consists of the following three stages:

CHAPTER 3. IMPLEMENTATION ISSUES 60

o Choosing a manager, by invoking the manager__CPM function! corresponding to
the type of the process being created. This function must return a pointer to
the process that will be asked to instantiate the new process. It is possible to
define multiple versions of this function, some of which may take arguments.
For example, different versions may correspond to different process-placement

strategies.

o Requesting the creation from the chosen manager by invoking the manager’s
create__CPM atomic action. The two arguments? correspond to the size of the
process and the address of the constructor to be invoked. If the constructor
takes arguments, those are passed as well. Various flavors of process creation

can coexist in the system, with one of them selected at creation time.

o Instantiating the process is done by a manager process, not necessarily the one
originally chosen: The creation can be delegated to other potential manager
processes, and is eventually done in the consenting manager’s address space

[10].

3.1.2 Runtime Services

All of the protected and public members of a manager can be accessed by the
processes it manages. This access is handled transparently by the compiler. The
programmer need not be concerned whether some service is provided through regular
inheritance or through dynamic inheritance, with the latter requiring one or more

levels of indirection (Program 31).

1This function must be declared static, which is a C++ feature that makes a member function
generic, associated with a certain class definition, not with any particular instance of that class.

?The size_t is a C++-defined integer type that can represent the size of the largest possible
object (or process). The entry_t type is introduced by C+-, and will be described in Section 3.1.4.

CHAPTER 3. IMPLEMENTATION ISSUES 61

processdef Manager
{
public
atomic P* create__CPM (size_t, entry_t, ...);
};
processdef P : dynamic Manager
{
public:
static Manager* manager__CPM();
atomic PQO;
atomic P(int);
};
{
ney P; // is equivalent to:

P::manager__CPM()->create__CPM(sizeof (P),&P::P());

new P(123); // is equivalent to:
P::manager__CPM()->create__CPM(sizeof (P),&P::P(int),123);

(o)

Program 30: Process Creation

3.1.3 Process Dispatch

A problem that emerges in the design of all operating and runtime systems is that of
specifying an interface for invoking user programs. This task is typically done in an ad
hoc way. For example, user programs written in C and run under UNIX must have a
function called main, which is the user-code entry point. However, this approach does
not enable the operating system code to merely call this function, since the address
of main is not known at the operating-system linking time. The typical solution is
to require that main always be at the same address, or to find its address at loading
time.

Every C+- process has a fixed number of entry points, corresponding to its atomic
actions, each of which could take different numbers and types of arguments, and
return values of different types. If the runtime system itself is to be expressed in C+-,
there must be a way of dispatching to any atomic action of any process, or of any
process in some predefined set. In the remainder of this section, we describe the C+-

atomic-action dispatch mechanism.

CHAPTER 3. IMPLEMENTATION ISSUES 62

processdef Manager // runtime-system code
{
protected:
int i;
void £0O;
};
processdef P : dynamic Manager // user code
{
private:
int WY
void gQ);
public:
atomic PO
{
j=0; // accessing local data
i=0; // accessing manager’s data
g(); // calling local function
£Q0; // calling manager’s function
} ‘
};

Program 31: Accessing Runtime Services

As illustrated in Figure 3.1, every process P is a node of a process tree, with its
path toward the root of a tree leading through its manager M, its manager’s manager
MM, etc. Several such trees may coexist on each physical node. Every processdef M
that could be used as a dynamic base for some process definition, which means that an
instance of M could be a manager of some process, must have a special atomic action
defined, atomic @M(entry_t), called the dispatcher. A generic dispatcher, atomic
@(entry_t), also has to be defined; its job is to dispatch to root processes of process
trees.

The entry_t is a type introduced by the compiler, corresponding to any and all
types of entry points of processes that could be defined with M as their dynamic base.
A variable of this type can be used like a regular C++ member-function pointer, with
one important distinction: one need not know the interfacing details of all atomic
actions that a variable of type entry_t may be used to invoke. How arguments are
passed to anonymous atomic actions is discussed at the end of this section. How

values are returned from atomic action is presented in Section 3.1.9.

CHAPTER 3. IMPLEMENTATION ISSUES 63

atomic @(entry_t);

processdef MM
{ atomic @MM(entry_t); }

/

processdef M : dynamic MM
{ atomic @M(entry_t); }

/

processdef P : dynamic M
{ atomic int f(int,char); }

Figure 3.1: Process Dispatch

Specification 4 An execution of an atomic action of a process can be requested only

from the body of its manager’s dispatcher atomic action.

For the process hierarchy in Figure 3.1, this specification means that the execution
of an atomic action of processdef P, say P::f, consists of executing the generic
dispatcher @, which calls MM: :@MM, which calls M::@M, which calls P::f. It is this
layered execution that enables “managers” to manage other processes: The semantics
of atomic-action executions can be changed by modifying the runtime-system code. As
stated in The Annotated C++ Reference Manual: “...this opens vast opportunities
for generalization and language extension in the general area of: What is a function
and how can I call it?” [32]. This feature could strike the reader as intolerably under-
specified and inviting of hacking and abuse. However, the safety properties of this
mechanism are not as weak as they may appear to be. The runtime-system-specified
mechanisms cannot be changed by users — the manager always gets to run before
dispatching to the managed process. We have come to believe that the support for
some mechanism of this kind is essential for a notation that is intended for expressing
operating and/or runtime systems.

Another way of thinking about this layered dispatch mechanism is that every
process provides a set of services (its atomic actions), and an escape mechanism to

which it can defer the execution if it cannot handle the requested service itself.

CHAPTER 3. IMPLEMENTATION ISSUES 64

Arguments to Atomic Actions

The memory layout of the arguments to atomic actions is the same as that for regular
functions in C++, with additional arguments being passed to the dispatcher actions

of the manager processes (Figure 3.2).

&MM: : QMM } arguments to @
&M: : @M } arguments to MM: : @MM
&P: . £ } arguments to M: : @M
int
arguments to P: : f
char

Figure 3.2: Atomic-Actions Arguments Layout

These additional arguments are, by default, generated by the compiler, but, as
discussed in Section 3.1.7, this default behavior can be replaced by one defined by
the programmer.

An additional feature is that the arguments are assumed to be members of the
compiler-introduced structure args_t, and can be accessed as a unit through a pointer

variable args_t* args; (similar to the this variable in C++).

3.1.4 The pointer_t and the entry t Types

In the programming examples we made use of pointer_t and entry_t types, always
referring to them as “introduced by the compiler.” These two types are actually
defined by the runtime-system in a file that has to be included by every C+- program
(<c+=.h>). The C+- translator makes the structure of every process pointer the same
as that of pointer_t, and the structure of every pointer to a member of a process

the same as that of entry_t.

3.1.5 Process State

As discussed in the previous sections, the state of a C+- process consists of its:

CHAPTER 3. IMPLEMENTATION ISSUES 65

e data members,
e active/passive set, and
e a pointer to the manager process.

What are the semantics of process assignment in the context of processes with the
state defined above? The default C+- semantics for process assignment are bit-wise
copying of data members and of the representation of the active-passive set; the
pointer to the manager process is left untouched. The example in Program 32 shows
process assignment as equivalent to sending a request to the source process to send a

copy of itself to the specified destination process.

processdef P
{
private:
int i;
public:
atomic int copy__CPM (P* pp)
{
forward pp->copy__CPM(*this);
}
atomic int copy__CPM (P p)
{
*this = p;
return 1;
}
+;
{
P p1, p2;

rl = p2; // is equivalent to:

await (p2.copy__CPM(&p1));

Program 32: Process Assignment

CHAPTER 3. IMPLEMENTATION ISSUES 66

3.1.6 Process Migration

No notion of process migration is supported directly in C+-. A process pointer
typically contains an absolute address of a piece of memory representing the state
of a process. However, the example in Program 32 shows how simple it is to copy the
state of a process. Furthermore, with the ability of the runtime system to define the
structure of process pointers (Section 3.1.4), the runtime-system framework described
in this chapter was sufficient to implement distributed processes (Section 2.3.9). The
support for distributed processes requires the same indirection mechanism that might
be used for process migration. The work reported in [10] is a first step towards
a thorough examination of the issues involved in process migration. The results
presented in this work establish conditions under which, for example, process state
can be shipped to where the atomic-action code is located just as readily as code can

be cached where the process state is located.

3.1.7 Invoking Atomic Actions

As illustrated in Program 34, an atomic-action invocation consists of three stages:

o Introductory Stage — Upon calling operator space to determine the size of the
argument list, the operator head is invoked to build the dispatcher list. Given
a data type TYPE and a process type PROCESS, the default operator semantics

are as follows:

size_t operator space(TYPE t)
{

return sizeof(t);

static
void* PROCESS::operator head(void* v, pointer_t p, entry_t e, size_t s)
{

return operator send(v,e);

CHAPTER 3. IMPLEMENTATION ISSUES 67

e Main Stage — For each element in the argument list, the operator send is

invoked. The default operator semantics are bit-wise copy:

void* operator send(void* v, TYPE t)

{
TYPE* tp = v;
*tp = t;
return tp+i;
b

e Final Stage — The operator tail is invoked, with no-op default semantics:

static
void PROCESS: :operator tail(void*, void#)

{1}

At the time of atomic-action execution, operator recv isinvoked for each element

in the argument list. The default semantics for this operator are a no-op (Program 33).

void operator recv(TYPE t)

{1}

Program 33: Default operator recv

The set of operators described above provides runtime-system programmers with
a powerful tool that they can use to define how process communication is actually
implemented in terms of lower-level routines. The same set of operators is available to
users. An example of an application that might benefit significantly from the ability to
exercise total control is a program that implements communication-network protocols.
The general usability of the above mechanism, however, is highly questionable; Once
the compiler relinquishes control over data layout to a naive user, obscure problems
abound. For a great majority of applications, the efficiency of the data-exchange

mechanisms described in Section 2.4.5 is sufficient.

CHAPTER 3. IMPLEMENTATION ISSUES 68
processdef MM
{
public:
atomic QMM(entry_t);
};
processdef M : dynamic MM
T bt Attt}
public:
atomic QM(entry_t);
s
processdef P : dynamic M
{
public:
atomic void f (int, char);
};
{
Px p;
int i;
char c;
p—>f(i,c); // atomic action invocation is equivalent to
{
size_t size = operator space(&MM::QMM) // assuming there are
+ operator space(&M::@M) // no alignment problems
+ operator space(&P::f)
+ operator space(i)
+ operator space(c);

void *b, *v;
pointer_t pp = p;

b =

<
1}

<
L}

v = operator head (pp, &MM::QMM, size);
v = MM::operator head (v, pp, &M::@M, size);
v = M::operator head (v, pp, &P::f, size);
= operator send(v,i);
operator send(v,c);
M::operator tail (v, pp, &P::f, size);
MM: :operator tail (v, pp, &M::QM, size);
operator tail (b, v, pp, &MM::@MM, size);

Program 34: Atomic-Action Invocation

CHAPTER 3. IMPLEMENTATION ISSUES 69

3.1.8 Active/Passive

The active/passive mechanism, because of its simplicity and efficiency (Section 4.3),
is the C+- synchronization mechanism of choice. The runtime-system interface for
this mechanism is presented in Program 35. If a different synchronization mechanism

is required, it can be implemented following the same approach.

processdef P

{

public:

atomic void £O;
atomic int g();

active f; // is equivalent to:
P::active__CPM(&P::f);

passive g; // is equivalent to:
P::passive__CPM(&P::g);

S

Program 35: Active/Passive Implementation

3.1.9 Remote Procedure Call

When invoking an atomic action that returns a value, the sequence of events is
identical to that described in Section 3.1.7, except that an extra argument is passed.
This extra argument is the pointer to the currently-running process — the process
that expects the reply. This pointer is obtained by calling the runtime-system-defined
function current_CPM().® The NULL extra argument implies that the returned

value is not required.

3Note that it was not possible to use the this variable, because a process might be suspended
while executing a non-member function.

CHAPTER 3. IMPLEMENTATION ISSUES 70

Values Returned From Atomic Actions

Inside an atomic action, the extra argument is called reply__CPM. As illustrated in
Program 36, returning a value from an atomic action is equivalent to invoking the

return__CPM(...) atomic action of the process pointed to by the reply__CPM pointer.

processdef P

{

public:

atomic int £0O;

};

atomic
int
P::f O
{

return ' 123; // is equivalent to

{

if (reply__CPM)
reply__CPM->return__CPM(123);
return; -

Program 36: Atomic Actions Returning Values

Suspending A Process

Whenever a returned value is expected from an atomic action, the compiler introduces
a placeholder for that value, and the runtime system is passed a pointer to this
placeholder through the wait__CPM(void*) function. Multiple placeholders can be
active at any time, as discussed in Section 2.2. When the process attempts to
access the placeholder and finds it uninitialized, it suspends itself by invoking the

suspend__CPM() function.

CHAPTER 3. IMPLEMENTATION ISSUES 71

3.2 From C+ to C++

There are a number of reasons for translating from C+- to C++ instead of compiling
from C+- directly to Mosaic code. First, this was a faster way to build a
running system. Second, the wide availability of C++ compilers guaranteed machine-
independence. Third, we had good experience in re-targeting the Gnu C++ compiler to
produce excellent code for the Mosaic processor. And fourth, since C+- is syntactically
so similar to C++, C++ debugging tools and other programming-support tools can be
used with few or no modifications. One disadvantage of the translation approach
is that the compile time increases, because programs must be parsed twice. A
possible disadvantage is that some optimization opportunities may be lost when using
C++ as an intermediate target notation. However, we have identified no such lost

opportunities so far.

3.2.1 Parsing

The translator is a C++ program built within the framework of a Bison-produced
parser [30]. Practically every person who has ever worked on a project that involved
parsing of C++ has already expressed their distaste that C++ syntax cannot be
described by an LALR(1) grammar. Nevertheless, we feel that our own distaste
should be on record, too. We acknowledge that it is not the compiler writer,
but the language user, who should be the ultimate judge of the value and style
of a programming notation. However, if syntactic issues are subtle enough to be
difficult for a compiler, what hope does a user have of not making obscure mistakes
writing programs using that syntax? Fortunately, beginners tend to use a small set
of basic language constructs, whereas experienced users tend to develop their own
programming style from a subset of the rich C++ offering. In our experience, the
complexity of handling the few special cases in parsing C++ is comparable to the
complexity of all of the remaining issues of translating C+- into C++. Suffice it to say
that we are looking forward to the ANSI standard for C++ syntax.

In our implementation of the translator, each grammar rule corresponds to a class

CHAPTER 3. IMPLEMENTATION ISSUES 72

definition. For example, given the grammar rule in Program 37, three class definitions

expression : assignment_expression
expression , assignment_expression

Program 37: An Example of a Grammar Rule

have to be written, as shown in Program 38. Parsing a C+- program generates a

class expression

{
void output() = 0;
};
class expression0 : public expression
{
assignment_expression* member0;
public:
void output ()
{
member0->output() ;
}
};
class expressionl : public expression
{
expression* member0;
assignment_expression* memberl;
public:
void output ()
{
member0->output() ;
member1->output();
}
s

Program 38: A Part of the Definition of the Parse Tree

parse tree that consists of nodes that are instances of classes such as these illustrated
in Program 38. We developed a program that, given an input grammar such as
the one illustrated in Program 37, generates the default class definitions (similar
to those described in Program 38), the code that builds the parse tree, and the

default definitions of output () functions. The resulting program code is a parsing

CHAPTER 3. IMPLEMENTATION ISSUES 73

specification for Bison, which can be used to produce a default parser. When a source
program is fed to this default parser, the parser builds the parse tree. It then invokes
the output() function at the topmost level of the tree, thereby causing the entire
source program to be produced as the output. This default behavior can be modified
by defining additional elements of class definitions, by specifying extra actions to
be taken while building the parse tree, and by providing customized versions of the
output () routine for any class definition. This simple tool for developing programs
for source-to-source transformation, a program of less than two thousand lines of C++
code, has been crucial to our ability to experiment with numerous versions of C+-
syntax. This tool generates about two-thirds of the approximately 60,000 lines of C++

code of a complete C+- translator.

3.2.2 Code Generation

Once the hurdle of parsing C+- is overcome, the translation from C+- to C++ is a
fairly simple task. The description of the runtime-system framework in Section 3.1
also specifies this translation task. Since the process concept is the only extension
that C+- introduces to C++, the focus of the translator is on keeping track of processes
and various other process-related types. The translator considers each segment of a
source program to be a type transformation. For example, a process-pointer type,
when dereferenced, is transformed into a process type, and a function call transforms
a list of argument types into the type of the returned value. Since the translator keeps
track of all of the type transformations in a program text, operations on processes

are detected, and the replacement code, as illustrated in Section 3.1, is generated.

3.2.3 Code Splitting

In addition to the transformations described in Section 3.1, there is one more
requirement on the translator. Since the Mosaic, a machine with limited node-
memory resources, is the most important target machine for executing C+- programs,

the C+- translator must provide support for code splitting. Pieces of code are cached

CHAPTER 3. IMPLEMENTATION ISSUES 74

in each node by the runtime system, and invoked through the indirect-function-call
mechanism. A design decision had to be made on what the code-splitting target
should be.

The default object-code unit provided by the regular C++ compilers is a piece
of code produced by the compilation of one source file. We considered this default
setup to be unacceptable. Programmers would have to organize their code according
to the code-splitting policy rather than according to the programming-abstraction
requirements of the application. This setup would unavoidably lead to loss of
portability, whereby the source code would have to be rearranged and split into
smaller pieces when moving to a machine with less node memory.

Given that the default code-splitting policy was deemed unusable, we identified
three well-defined code-splitting targets. These three targets, with increasing

granularity, are to split the code so that each piece corresponds to:
e an atomic action of a process,
e a function and/or an atomic action of a process, or

e a block of code within a function, with strictly sequential execution (no

conditional execution).

The next-higher-granularity target would be equivalent to turning the runtime system
into a pseudo-code interpreter.

If the block of code with strictly sequential execution is the code-splitting target,
only code that is certain to be executed is ever brought to the code cache. However,
this implies more frequent code-cache updates.

If the code corresponding to a function or an atomic action is the code-splitting
target, there is no unnecessary code duplication, as every named piece of code is
a stand-alone unit. In this case, an indirect-call overhead has to be paid for each
function call.

Even though each of these options could be supported by the C+- translator, we

decided to split the code into pieces that correspond to atomic actions of processes.

CHAPTER 3. IMPLEMENTATION ISSUES 75

This was the least-complicated and the best-understood approach, and it still allowed
us to provide an experimental testbed that can be used to determine the effect of code-
splitting granularity on the machine performance. Code of a function is linked with
every atomic action that invokes it. Some of the runtime-system services, such as
sending messages and creating new processes, are accessed by virtually every user
process, and replicating that code would be equivalent to including a large fraction
of the runtime system in the code of each user-process atomic action. Access to these
services is through the indirect-function-call mechanism, but its specification is left
entirely to the runtime-system implementation [10]. We consider this an acceptable
compromise, particularly because any efficient code-caching policy must distinguish

such often-used code anyway.

CHAPTER 4. THE MOSAIC C 76

Chapter 4

The Mosaic C

4.1 Multicomputer Architecture

In its evolution away from the sequential computer organization, the multicomputer
variety of MIMD concurrent computers has, from the very beginning, acknowledged
the importance of locality in VLSI systems [75]. A multicomputer consists of a
collection of computing nodes connected with a communication network (Figure 4.1).

Each node is, typically, a sequential computer, with its own processor and memory.

< Communication Network)

/

Computing Nodes
Figure 4.1: Multicomputer Architecture

These computers communicate data and synchronize their activities by exchanging
messages through the communication network. Distinct mechanisms are used
for processor-memory and inter-processor communication, the first optimized for
minimum latency, the second for maximum bandwidth. Unlike inter-process

communication latency, which can be covered up by excess concurrency (with multiple

CHAPTER 4. THE MOSAIC C 7

processes per node), there is no way to compensate for a lack of communication
bandwidth [2, 48]. In multicomputers, the components involved in the latency-
sensitive communication — processor and memory, are placed physically close —
within the node. The use of these distinct communication mechanisms is why the
multicomputer architecture has proven to be so cost-effective and scalable [5, 77].
Even though the question of the preferred programming model is the subject of
much dispute, the majority of contemporary concurrent computers, regardless of
their primary programming model, are built either as pure multicomputers, or as
multicomputers with some additional hardware support [96, 12, 53, 1, 64, 79].

The communication bandwidth and latency are important figures of merit of a
multicomputer. The bandwidth is limited by the communication network itself, or by
the node’s network interface. The latency consists of two components: the network
latency — the time required for a message to traverse the network, and the software
overhead — the time that the processor takes to launch a message into the network,
and to accept a message arriving from the network. Since the communication network,
typically, operates concurrently with the computing nodes, the network component of
the message latency can be covered up with excess concurrency; the software overhead
cannot. What is more, the software overhead consumes processor cycles that might

have been devoted to the user’s computation.

Background

The most common representatives of multicomputers, and arguably the most powerful
multicomputers in existence, are computer networks. However, even when the
logistics associated with using such collections of computers are taken care of, these
systems are cost-effective today only for loosely-coupled concurrent computations [8].
This ineffectiveness is due to the inadequate communication bandwidth of existing
networks, and to the software overheads of concurrent-programming systems that
access these communication capabilities.

The history of multicomputer-design efforts is the history of attempts to increase

the available communication bandwidth, and to reduce the communication latency,

CHAPTER 4. THE MOSAIC C 78

thereby enlarging the application span to include more tightly-coupled concurrent
computations. While some of these attempts have been successful, we believe that
most of them have been half-hearted, which has contributed to the widespread belief
that “multicomputers are harder to program than multiprocessors”. One aim of this
thesis is to make the case that the programming-model issue can be separated from
the machine-architecture issue.

In Chapter 2, we described a programming model with support for both shared-
variable and message-passing programming paradigms. In the remainder of this
chapter, we shall present the architecture of a multicomputer, the Mosaic. This
architecture, although very simple, is a platform on which an efficient implementation

of this programming model can be built.

4.2 The Mosaic Node

Most contemporary multicomputers adopt a node complexity that requires a circuit
board per node (medium-grain nodes) [78, 54]. A stipulation of the Mosaic project
was that the complexity of a Mosaic node be determined by the silicon complexity
available on a single chip with reasonable (= 50%) yield. This requirement was
motivated primarily by the large disparity in performance and density between on-
chip and inter-chip interconnection technology [7]. Nodes of even finer granularity
are feasible, but, at the present state of fabrication technology, smaller nodes quickly
reach a point where they are too small to hold even their own program code. An
additional consideration was that we perceived single-chip-node multicomputers to
represent a not-sufficiently-explored point in the design space of multicomputers
[79]. The ultimate motivation for single-chip nodes came from realization that fine-
grain multicomputers could have a much larger application span than their medium-
grain counterparts [79]: they can deliver cost-effective computing in small, embedded
configurations, as well as in large ensembles.

The organization of the Mosaic node, as shown in Figure 4.2, is centered around

the memory bus. This bus connects the dynamic RAM (dRAM) and bootstrap

CHAPTER 4. THE MOSAIC C 79

il

> —=
router |&—
PIoOCessor | network
interface
$ memory bus $
dRAM ROM
ki

Figure 4.2: The Mosaic Node

ROM on one side with the instruction-interpreting processor and the communication-
network interface on the other side. The node router, although logically this node’s
part of the communication network, is part of the Mosaic chip. A plot of the layout
of the Mosaic chip is shown in Figure 4.3.

A more complete description of the Mosaic node and of other Mosaic assemblies
can be found in [79]. In this thesis, we shall focus on those architectural issues that
are fundamental to our programming model, and, in particular, on achieving low

hardware and software communication overhead.

4.2.1 The Mosaic Router

The communication network of the Mosaic multicomputer is a two-dimensional,
bidirectional mesh. The analysis of the network performance and arguments for
employing this particular network can be found in [67, 68].

Each communication channel is an asynchronous, byte-wide link with a through-
put of 60@. The router provides packet communication and deadlock-free,
dimension-order, cut-through routing. The detailed description of the Mosaic router

is provided in [81].

CHAPTER 4. THE MOSAIC C 80

Figure 4.3: The Mosaic-C Chip: 9.25mm x 10.00mm, 1.2um SCMOS technology,
0.5W at 5V and 30MHz

The largest configuration supported with the current version of the router is
128 x 128 = 2% nodes. Larger ensembles can be supported, but messages would have
to be relayed in software when the distance traveled along any dimension exceeds
127. From the point of view of the rest of the computing node, the network is a
bidirectional communication link with all other nodes. In a non-congested network,
this communication link provides 60—1{—3 bandwidth in and out of the node, with the

communication-establishing latency of 30ns per hop.

CHAPTER 4. THE MOSAIC C | 81

4.2.2 The Dynamic RAM

The Mosaic dRAM is by far the largest part of the Mosaic chip (63%), and the
most precious resource of a Mosaic node. The dRAM has been described in detail in
[87]. From the standpoint of the rest of the node, this memory is a single-clock-cycle
dynamic RAM, operating in a pipeline mode (Figure 4.4). The memory access is
allocated on a per-clock-cycle basis to one of the four independent address sources
competing for the memory access: the processor, the send and the receive parts of
the network interface, and the memory-refresh mechanism.

——= {ime

post) drive post . drive
arbitrate arbitrate
request address | request address
memory access memory access

Figure 4.4: Memory-Access Pipeline

4.2.3 The Processor and the Network Interface

The Mosaic processor is a 16-bit, microprogrammed engine, with one-, two-, and
three-word instructions, and with an average of approximately three clock cycles per
instruction. The network-interface is a direct-memory-access device that transfers
data and performs reliable synchronization between the asynchronous router and the
synchronous memory (Chapter 5).

The prominent features of the Mosaic node architecture, those that make it
particularly appropriate for a multicomputer node, are the interaction between the
processor and the network interface. Although low-latency handling of messages
was imperative for the Mosaic, message-handling capabilities had to be sufficiently
general to allow experiments with different message-handling strategies. These two,

often contradicting goals were achieved in part through the two-context-processor

CHAPTER 4. THE MOSAIC C 82

architecture, and in part by providing a set of highly-efficient low-level message

primitives.

Two-Context Architecture

The most unusual feature of the processor is its two-context architecture: Each
context has its own program counter, status register, and eight general registers.
There are eight additional general registers that are shared between the two contexts.

Typically, one context is used for running programs, and the other for message
handling under interrupts. In this regime of operation, the interrupt context can be
thought of as an extension of the network interface.

A context switch is performed only between instructions, so it may be postponed
for several cycles. However, once initiated, a context switch takes zero time, since no

processor state needs to be saved.

Messages and Interrupts

The message-handling and interrupt-handling operations are centered around a small
set of dedicated registers. All of these registers can be accessed both by the processor

and by the network interface. For example:

e To send a message, processor must specify where the message is located in
memory, and which node to send it to. This send operation is performed by

writing into the following three registers:

— Message Send Pointer (MSP) — that points to the location of the first

word of the message;

~ Message Send Limit (MSL) — that points to the location of the last word

of the message; and

— Destination Register (DXDY) — that contains the address of the
destination node encoded as the relative distance in X and Y dimensions

of the mesh network.

CHAPTER 4. THE MOSAIC C 83

Writing into DXDY triggers the network interface. The network interface then
starts transferring the data from the memory, increments MSP, and continues

until the MSP exceeds MSL.

e The message receive operation is initiated by the network interface. The

processor must specify where the message is to be written by setting:

— Message Receive Pointer (MRP) — that points to the first available

memory location; and

— Message Receive Limit (MRL) — that points to the last available memory

location.

e The network interface generates three distinct interrupts, corresponding to the
following conditions: when a complete message has been sent, when a complete
message has been received, and when the receive buffer has been exhausted.

The interrupts are handled by accessing two additional registers:

— Interrupt Status Register (ISR) — that contains three bits that correspond
to the three sources of interrupts. These bits are set by the network

interface and cleared by the processor.

— Interrupt Mask Register (IMR) — that contains three bits that correspond
to the three interrupt sources. Modifying these bits enables or disables

their corresponding interrupts.

Program 39 shows an excerpt that the runtime system might use as an interrupt-
dispatch routine. All the registers can be accessed directly from C+- through a feature

provided by the Gnu C++ compiler [94].

4.3 Software Overhead of Communications

As discussed in Section 4.1, the software overhead associated with message send and

receive operations is the communication bottleneck of most programming systems for

CHAPTER 4. THE MOSAIC C 84

void (*interrupt_table[8])() = // a jump table filled with the
{ // names of routines that correspond
software_int, // to various interrupt conditions
__________ recv_int,
_____ send______int,
_____ send_recv_int,
buff_ _________. int,
buff______ recv_int,
buff_send______ int,
buff_send_recv_int
};
while (1)
{
int pending = ISR; // get the pending interrupts
(*interrupt_table[pendingl) Q; // dispatch to an interrupt handler
ISR = pending; // writing back acknowledges all the
// interrupts that have just been
// serviced
asm ("PUNT"); // assembly instruction to return to
// the other context
// when the next interrupt arrives,
} // we shall start here

Program 39: An Interrupt-Dispatch Routine

multicomputers. The software overhead for C+- programs running on the Mosaic,
under the MADRE runtime system [10], is analyzed in this section. The overhead
shown represents a typical case, measured in Mosaic assembly instructions. The
complexity of Mosaic assembly instructions is comparable to that of a typical, load-
store, RISC processor, but the number of clock cycles per instruction is approximately
three. The communication support of the Mosaic processor is minimal (Section 4.2.3),
and the incorporation of such support into a typical RISC processor core is arguably
relatively simple. Experiments with compiling the same code for contemporary RISC
processors exhibit comparable instruction counts.

We want to emphasize that é,ll the numbers were obtained from the compiled

code (our C+- to C++ translator with the Gnu C++ compiler targeted for the Mosaic).

CHAPTER 4. THE MOSAIC C 85

Both user programs and runtime-system code were written in C+-, and the only
programmer-specified optimization was using inline functions for critical runtime-
system code. Excerpts from the source code and the produced assembly code are
presented in Appendix A. In our experience, the compiled code was typically only
ten percent less efficient than the best hand-coded assembly we could produce, not

nearly sufficient to justify such an effort.

Message Sending

Figure 4.5 illustrates the activity of two processes, placed on two different nodes,
in direct communication. The producer process sends an infinite stream of empty
messages to the consumer process.

The send overhead, in the typical case, consists of 43 Mosaic instructions. A major
portion of the send overhead are the 17 instructions that allocate the space and update
the send queue. Since the send queue is guaranteed to be used in the FIFO regime,
it is implemented as a simple circular buffer. One way of reducing the overhead
associated with the send queue is to have the processor write the message contents
directly into the network instead of into the memory [64]. However, this approach
would introduce too strong a coupling between the processor and the communication
network. For example, an interrupt during the message-send operation would block
the network; similarly, the blocked network would prevent the processor from doing
other useful work, or would result in more-frequent context-switching.

Another big contributor to the software overhead on the sending side is the
DXDY conversion. The routing hardware requires the first word of any message to
consist of two bytes of sign-and-magnitude-encoded distance in the z and y routing
dimensions. Extending the Mosaic instruction set with an instruction that would
compute this relative distance would reduce the sender overhead with a negligible
price in chip area. In general, the approach adopted by the Mosaic design team
has been minimalist, avoiding such special instructions. However, the discrepancy

between the byte-size sign-and-magnitude encoding required by the router and the

CHAPTER 4. THE MOSAIC C

PRODUCER
user interrupt
context contex

register updates (2)
send-queue allocation (5)

header formation (4)
register updates (2)

DXDY computation (7)

send-queue check (2) |

message-send request (5)

send-queue append (5)
interrupt dispatch (4)

send-queue update (5)
interrupt return (2)
TOTAL (43)

Figure 4.5: Components of the Software Overhead of a Communication

network latency

(46) TOTAL
(4) interrupt dispatch

(7) receive-queue append
2
3

(10) code lookup

interrupt return

receive-queue check

(9) active/passive check

(10) function dispatch

(> 5) user atomic action

(1) receive-queue update

interrupt user
context context
CONSUMER

86

word-size two’s-complement arithmetic capabilities of the Mosaic processor must be

regarded as a design oversight.

The message header in this example consists of the size of the message, the node

CHAPTER 4. THE MOSAIC C 87

number and the address of the destination process, and the identifier of the atomic
action to be invoked.

The four instructions designated as miscellaneous register updates could not
be associated with any particular message-handling operation. These instructions
are the necessary glue associated with register allocation between message-sending
components.

The code could be optimized for case of short messages and lightly-loaded network
by checking whether the message has been launched into the network to avoid the

interrupt dispatch and return.

Message Receiving

The typical receive overhead totals 46 Mosaic instructions, about a quarter of which
is spent in receive-queue management. Unlike with the send queue, consumption of
the receive queue depends on user programs. Messages can be consumed out of order
either when using the active/passive mechanism or when suspending while waiting
for the RPC reply. In our experience, programming models and notations that do not
allow such message discretion [4, 9] merely dump the burden of buffer management
on the programmer. In the case of programs with regular communication patterns,
this requirement is not too demanding [31]. However, in the case of highly-dynamic
communication patterns, the buffer management becomes a significant part of the
programming effort. This problem is exacerbated on fine-grain multicomputers, where
local node resources may not be sufficient to absorb the receive-queue fluctuations.
One may be tempted to deal with receive-queue overflow by blocking the incoming
message traffic, which will eventually block the message source. Such an approach
introduces negative feedback to equalize the communication rates of the producer and
the consumer. Unfortunately, this approach violates the consumption assumption
that routing networks typically require to guarantee freedom from deadlock {27]. The
approach that the MADRE runtime system takes in dealing with the receive queue
overflow is to export messages to other nodes, and retrieve them later. For a detailed

description, see [10].

CHAPTER 4. THE MOSAIC C 88

Once the decision is made that the messages can be consumed out of order, the
runtime system must provide a general implementation of memory allocation. The
performance of receive-queue management depends on the communication pattern of
the application at hand. We have experimented with two approaches to receive-queue

memory allocation:

e Optimistic, designed for minimum latency, and optimized for the case when the
majority of messages are consumed in order. A circular buffer can be used, and
the general memory allocator need only be invoked to allocate space in which to
copy the messages not consumed in order. The software overheads of Figure 4.5

are obtained with this approach.

o Pessimistic, designed for maximum throughput, and optimized for the case
when there is enough irregularity in the message consumption that the copying
costs of the optimistic approach outweigh the advantages of simple memory
allocation. According to this approach, implemented in MADRE, the header
of a message is received into a small, dedicated buffer, and, upon buffer-full
interrupt, the buffer of correct size is allocated for the rest of the message. This
approach adds approximately twenty instructions to the receive overhead in the

typical case, but the messages are never copied between memory buffers.

The code-lookup overhead depends on the algorithm used, and the ten instructions
shown represent the overhead typical of a successful lookup operation. If the code is

not present, it is located and brought from another node.

CHAPTER 5. PIPELINE SYNCHRONIZATION 89

Chapter 5

Pipeline Synchronization

5.1 Introduction

The design method and tools for VLSI are oriented almost exclusively towards the
design of clocked, synchronous systems. Except for a few notable examples [59)],
contemporary processor and memory technology is designed and used exclusively
within the synchronous framework. The one area in which the asynchronous design
style has been successful in upsetting the dominance of the synchronous circuitry
is in high-performance data communication and routing [81]. Even though there
are mechanisms for minimizing clock skew [7, 63], the performance penalty for
maintaining clock coherency in physically large systems is prohibitive.

One of the premises of the Mosaic project was that the machine be (at least in
principle) arbitrarily extensible, so the communication network of the Mosaic node is
asynchronous. The rest of the Mosaic node, however, is a synchronous design. The
Mosaic network interface performs data transfer between the GO—Msﬁ asynchronous
communication link and the 60@ synchronous memory bus. A large Mosaic
ensemble with 2'* nodes has a worst case of 10! synchronization events per second,
or almost 10?° synchronization events per year. Just to be able to reduce the rate
of synchronization failure [74] to once per year, the best synchronizers we know how

to build in 1.2um CMOS technology require about half of the available clock period.

We were clearly very close to a point where small, unexpected process variations

CHAPTER 5. PIPELINE SYNCHRONIZATION 90

could result in nasty surprises. To deal with this difficult synchronization problem, in
which synchronization and data rates are similar, we developed a technique that can
sustain the full bandwidth and achieve arbitrarily-low, non-zero probability of failure

Py, with the price in both latency and chip area of O(log 7&—;)

5.2 Problem Specification

Given the required rate of data transfer of F events per second between an
asynchronous and a synchronous system, with each event delivering W bits
of information, design an interface that will guarantee that the probability of
synchronization failure be less than a given P; > 0.

The assumption is that the flow control is implemented as either a two-phase or

four-phase signaling protocol with bundled data [74].

5.3 Existing Solutions

The standard approach to interfacing asynchronous and synchronous systems is to
use a synchronizer at each synchronous-system input. A synchronizer is a circuit that
attempts to solve one of the following two, equivalent, decision problems characteristic
of digital systems: given an input signal and a time reference, decide whether the
input signal makes a transition before or after the reference; or, given an input signal
and a voltage reference, decide whether the input voltage is higher or lower than the
reference. As shown by the theoretical work [56, 98], and by a wealth of experimental
evidence [16, 66, 71], any system attempting to solve one of these two problems is
of limited reliability: In addition to two stable states, corresponding to two decision
points, the system has a metastable state. One cannot put a bound on how long
the system may require to exit this metastable state. However, a number of simple
synchronizer implementations have been demonstrated [74, 72] that can guarantee

that the probability that the metastable state will last longer than ¢, decreases

CHAPTER 5. PIPELINE SYNCHRONIZATION 91

exponentially with ¢,,:
Pr=e", (5.1)

where 7y is a characteristic of the implementation. Therefore, to achieve a sufficiently
small probability of synchronization failure of a single asynchronous input, all that is
required is to allow a sufficiently long time for the synchronizer to exit the metastable

state.

Let us apply this single-synchronizer approach to problem of Section 5.2

(Figure 5.1). We shall use a synchronizer that compares the arrival time of
' ©
v
R S R
synch Synch!
A A
@ T\
Tw
T

Figure 5.1: Interfacing synchronous and asynchronous systems

its asynchronous input with the time reference defined by the down-going edge of
its clock input. When the asynchronous input changes state within Ty around the
down-going edge of the clock input, the synchronizer will enter the metastable state,
with the exit probability determined by Equation 5.1. Regardless of the signaling

protocol used, for the synchronous system with clock period T,

1

E< =
- T

(5.2)

to be able to sustain the required throughput of E events per second. From now

on, we shall assume that F is equal to %, the maximum attainable throughput. We

CHAPTER 5. PIPELINE SYNCHRONIZATION 92

shall assume that the implementation of the signaling protocol on the synchronous
and asynchronous side imposes a total overhead of T,;, per transferred data item.
This assumption implies that we can allow at most 7" — T,; for the synchronizer
to exit the metastable state, and that there is a lower bound on the probability of

.. . . . ~I=Top
synchronization failure that this simple approach can achieve, Pf > e

CHAPTER 5. PIPELINE SYNCHRONIZATION 93

Widening the Data Path

One possible approach to improve on this simple solution is to change the data
representation: instead of transferring W bits every % seconds, we can transfer kW
bits every % seconds in order to allow k times as much time for synchronization
(Figure 5.2). A simple variant of this solution requires that all communications consist
of multiples of k£ data units. A less-restrictive solution is equivalent to the solution

presented next.

¥ ¥ ¥ Y
Lo ey
/ >l § = § t=eee—= § |=
J— k —
) Asynch Synch :>
pms T pmmn L peay
Wwires] kW [wires [weres]

Figure 5.2: Widening the data path

Deriving Signals With Less Than B[]

Sec

An alternative approach is to change the control representation: instead of using a
request signal that changes state for every data item transferred, we can derive a
request signal that denotes that there are at least k£ data items to be transferred

(Figure 5.3).

CHAPTER 5. PIPELINE SYNCHRONIZATION 94

14 » P ¢

>k - | | !

Elll S = §S =2+ —= § =

cells 7]
= R A h RO == S —= S == "o — S]

sync
. FIFO T — Synch
_ D'l. Do
- Az Ao
Figure 5.3: Deriving signals with less then E [———“L‘Z“]

Stretchable Clocks

The solution illustrated in this section does not, strictly speaking, conform to the
problem specification, but is presented here for completeness. This solution achieves
a Py of exactly 0, but it does not maintain the required bandwidth. The synchronizer
must be able to detect that it is in the metastable condition, and it stretches the clock
cycle of the synchronous system until the metastability has been resolved. Instead
of synchronizing asynchronous input to the clock, the clock is synchronized to the
asynchronous input {74, 66, 72]. When there is more than one asynchronous input,
the clock must be stretched until all the synchronizers have exited the metastable

state.

CHAPTER 5. PIPELINE SYNCHRONIZATION

clock
generator

@

Synch

Figure 5.4: Stretchable clock

95

bs

CHAPTER 5. PIPELINE SYNCHRONIZATION 96

5.4 Pipeline Synchronization

A common denominator for all the solutions presented in Section 5.3 is that they
treat synchronization as a “one-shot” process: signal events (transitions) are either
asynchronous or synchronous. In this section, we shall characterize signal S with
the probability distribution of signal-event arrival time, ps(t), with respect to time
as measured at the synchronous system to which S is an input. In some cases, we
shall be interested only in the arrival time of positive or negative edges, and shall
use symbols pg1(t) and pg(t), respectively. The two graphs in Figure 5.5 represent
two typical cases for pg(t), one for a synchronous and one for an asynchronous signal.
The parameter T is equal to the clock period of the synchronous system, and pg(t)
is a periodic function with period 7"

to+T
Vo :/ ps(t)dt = 1. (5.3)

10

a synchronous signal an asynchronous signal

bs

M=

I
T

T t T t

Figure 5.5: Probability distribution of signal-event arrival time

What makes a signal synchronous with respect to some clock is that events on that
signal satisfy some setup and/or hold time [74] with respect to the clock. Relating to

Figure 5.5, we use the following definition:

Definition 1 Signal S is synchronous with respect to some clock if there exists a

non-empty time segment [ts,ty] in which pg(t) = 0.

The usual assumption for asynchronous signals is that each arrival time is equally
probable (Figure 5.5), or that we have no knowledge of the probability distribution.

We define the asynchronous signals as all non-synchronous ones:

CHAPTER 5. PIPELINE SYNCHRONIZATION 97

Definition 2 Signal S is asynchronous with respect to some clock if there is no non-
empty time segment in which pg(t) = 0.

The probability distribution for a signal contains more information than is often
necessary, so we shall also introduce a simpler metric to characterize “how

asynchronous a signal is.”

Definition 3 For a signal S, and a given time window, Ty, 0 < Tw < T, the
asynchronicity is defined as:

As(Tw) = min /t”TW ps(t)dt. (5.4)

0<to<T to

The intuitive meaning of asynchronicity is that given a signal S and a synchronous
sampling device D with setup time Tyetnp and hold time Thoa, As(Tsetup + Thota) is
the lowest probability of metastable behavior that can be achieved when sampling S

with the device D. For example:

e For synchronous signals, according to Definition 1, we can find T},,, > 0 such
that VI € (0, Thuae], As(Tw) = 0. Therefore, if we can build a sampling device
with Tyerup + Thotd < Tmaz, it can sample S without ever exhibiting metastable

behavior.

e For asynchronous signals with uniform probability distribution (Figure 5.5),
As(Tw) = T£. From Equation 5.3, it is easy to show that this is the worst case

for asynchronicity.

e An asynchronicity of 1 corresponds to a hypothetical, “malicious,” asynchronous
signal: no matter how we position the sampling window, and no matter how
small we make it, the probability distribution will be a unit-size delta function
positioned within our chosen time window. This case has to be assumed when

interfacing to a signal of unknown probability distribution.

In the remainder of this chapter we shall show how we can build circuits that
transform the arrival-time probability distribution of signals in a way that reduces

their asynchronicity, and how to use these circuits to build pipeline synchronizers.

CHAPTER 5. PIPELINE SYNCHRONIZATION 98

5.4.1 The Mutual-Exclusion Element

The mutual-exclusion (ME) element is a variant of synchronizer. The ME
element compares the signal-arrival time at the two asynchronous requests, and
generates mutually exclusive acknowledge signals. If the ME element enters the
metastable state, no acknowledge is granted until the ME element exits this state.
Figure 5.6 shows the symbol we use for the mutual-exclusion element, and a CMOS

implementation that was first introduced by Seitz [74, 73].

Ay
o R, A - Ry —)
ME 5
_..>RO AO% RO—-* =
A

S o B A
1 AO
HoH

w3 i

Figure 5.6: Mutual-exclusion element

Let tg?T) and t(sfl) denote the time of the j** up-going edge, and the time of the
j** down-going edge, respectively, of signal S. Let 7z, 5, denote a causal delay from
one event (signal edge), Fy, to another, E;. Then Equations 5.5 and 5.6 are the
requirements that any implementation of the ME element must satisfy:

oo > tah > tgh+Trian, 20, i=0,1 (55)

tgi)l = tgz‘)l + TR | A;l 720, :=0,1
AgANA;=0. (5.6)

Tr;14;1 and 7g; 4, depend on the implementation, and are typically approximately

equal. Without loss of generality, we shall assume that 7z,14,1 = Tr,j4;] = Tra.

CHAPTER 5. PIPELINE SYNCHRONIZATION 99

The environment of the ME element is obliged to behave according to the following

specification:
) 0 7=0
() ’ L
thir > (-1) . t=0,1
tA,-l ’ J > 0) (57)
o > t3 > 1§, j>0, i=0,1.

Let us now present an example illustrating how an ME element can be used to
reduce the asynchronicity of signals. We shall examine what happens when one of the
request inputs of the ME element is connected to a periodic signal, ¢, and the other
input to an asynchronous signal with a uniform probability distribution of up-going

edges (Figure 5.7).

Pry
T
(p‘l
—
L Tiow . Thigh T
QY — %Aﬂa P ; i '
AT :
ME . ideal synchronizer
—}
R — — 4 TRA 7:'R}:1 T
pat} | |
! real synchronizer
[S ;
T
pA<Pf L
T

Figure 5.7: ME element as a synchronizer

If an asynchronous event arrives while ¢ = 0, there is no contest in the ME
element, and, after 74, the acknowledge will be granted. If the arrival time is during
the period in which ¢ = 1, the acknowledge will be postponed until ¢ = 0 again.

The behavior in this idealized case, which does not take metastability into account,

CHAPTER 5. PIPELINE SYNCHRONIZATION 100

is what we would like synchronizers to achieve. The delta function corresponds to all
the requests that occur during the ¢ = 1 period, and are acknowledged after ¢ = 0
again. The area of the delta function is such that Equation 5.3 holds.

As discussed in Section 5.3, any implementation of ME element will exhibit
metastable behavior if an input event occurs within some narrow time window, Ty,
around the time when ¢ makes the transition from low to high. The probability
that the ME element will remain in a metastable state longer than ¢,, decays
exponentially with ¢,, (Equation 5.1). Upon exiting the metastable state, the ME
element generates an acknowledge either on the A or A, output. Therefore, the ME
element transforms an input signal of asynchronicity Ag(Tw) = T—q","- into the output

signal of asynchronicity

T, _Thign—Tw _Thign Ty Thigh
AAT(TW) = %(e To — € To) = E—;V?e 70

(% —1). (58)

For a typical implementation, Ty < 79, and

T Tor _ Thigh
Aa(Tw) ~ %TVOV@ o, (5.9)

so the ME element reduces the asynchronicity of the input signal by a factor that is
exponential in the time allowed for synchronization.

Since the other request input is connected to a clock, the metastable state cannot
last longer than Tj;gs, but the A signal is still asynchronous, according to Definition 2.
The ME element attempts to do the synchronization in the allotted time, T};,5, and if
it doesn’t succeed, it is forced out of the metastable state. We trade one uncertainty
(whether the input made a transition), for another (whether the ME element is in a
metastable state). Connecting a request input to a clock violates the requirements
that the ME element imposes on its environment (Equation 5.7). If the ME element
is leaving the metastable state and generating A, just as the clock makes the down-
going transition, this violation can result in a glitch on the A, output. Therefore,

A, must not be used as an input to any circuit, and need not even be generated. As

CHAPTER 5. PIPELINE SYNCHRONIZATION 101

long as R does not violate the ME element requirements, there will be no spurious

signals on the A output.

Synchronizers

We shall postulate existence of three types of synchronizers, as shown in Figure 5.8,
depending on whether they synchronize only the up-going, only the down-going, or
both edges of the input signal. CMOS implementations of these synchronizers are

presented in Section 5.5.

¢ ¥
! |

R—= ST =A R—= S| =4 R— S]l—= A

<<— 8

Figure 5.8: Synchronizers

These synchronizers will be characterized with the time window, Ty, centered
around the down-going edge of the clock. Unless otherwise specified, the phrase
“coincident with the down-going edge” of some clock, will mean “within Ty around
the down-going edge” of that clock.

If the input-event arrival time is of uniform distribution (where the input event
is an up-going edge, a down-going edge, or a signal transition), the output-event
distribution is as shown in Figure 5.9, with 7¢ = 74.

The input-output behavior of each synchronizer clocked with a periodic signal of
period T' = Tjoy + Thign can be modeled as a (non-deterministic) variable delay 7y,

where

Ts S v S T}ow + Tg. (510)

5.4.2 Two-Phase-Protocol FIFO

Figure 5.10 shows the symbol we use to represent a two-phase-protocol FIFO element.
A number of different implementations of this FIFO cell can be found in

[92, 81, 14]. For the purposes of this thesis, we shall not concern ourselves with

CHAPTER 5. PIPELINE SYNCHRONIZATION 102

Pr
T
\4
! Thiah . ,I’lmu T
Pa
1

:'l'si gl T

e
I |

Figure 5.9: Synchronizer input-output specification

— R R, — R _/ N/

/

<~ Ai Ay A/

“)DiD,[) D X X X

Figure 5.10: Two-phase-protocol FIFO element

details of any particular implementation. To be a valid implementation, the circuit

has to behave according to the following behavioral specification [57]:
* [[Ri]; Ai, Ro; [Ao]]- (5.11)

The operational description of the above specification is to repeat forever (#[]) the
following sequence (;) of actions: wait ([]) for an event (signal transition) on R;;
generate concurrent events (,) on A; and R,; and wait for an event on A,.

Each signal’s events are numbered from zero. A formal definition corresponding

to the specification in Equation 5.11 is as follows [14]:

0) ;
, tr, + TR ;> =0
t(g)_{ By T TRiA; / (5.12)

i - . s . 9
max(tf) + roa,, td,)+ a,a), 4> 0

1

CHAPTER 5. PIPELINE SYNCHRONIZATION 103

(0) :
: ts, + Tr.R,, =0
) =g T . = (5.13)
max(t§) +ar,, 1S,V +7am), §>0
The environment is obliged to behave according to the following specification:
: 0, =0
tg > 7= (5.14)
79, >0
9 >19, j>0. (5.15)

The specification does not mention the data-handling requirements, because they
do not affect the synchronization issues. Since there is a well-defined time relationship
between the data and the control signals, the only source of uncertainty is the time
when the input signals (R; and A,) make transitions.

Figure 5.11 shows the dependency graph for a two-phase-protocol FIFO element.
Nodes of the graph represent signal events, and edges represent the dependencies
between the events. The 7 values associated with solid edges are delays characteristic
of a particular FIFO implementation. The dashed edges correspond to event
dependencies that are maintained by the environment; the only property that can

be assumed about the delays associated with these dependencies is that they are

TR;R,
(B)——~R,)
1

positive.

TR; A;

TAR, V
()4
TAo Az

Figure 5.11: The dependency graph of a two-phase-protocol FIFO element

Let pg,(t) and pg4,(t) represent the probability distributions of the signal-
event arrival times for the two inputs of a two-phase-protocol FIFO element,
and, for the moment, disregard that these two distributions are not independent

(Equations 5.12 through 5.15). The upper bound for the output-event probability

CHAPTER 5. PIPELINE SYNCHRONIZATION 104

distributions is:

pRo(t) S pRz(t - TRiRo) +pA0(t - TAORO)’
P, (t) < pRi(t - TR:‘A:') +pAo(t - TAoAi)'

(5.16)

5.4.3 Pipeline Synchronizer

The block diagram of a pipeline synchronizer that can be used to interface an

asynchronous input data stream to a synchronous system is shown in Figure 5.12.

p®

RiRo 5 =
2¢ | |
DD, ““>

Figure 5.12: Asynchronous-input, synchronous-output pipeline synchronizer

wo and ¢; (Figure 5.13) are two-phase, non-overlapping, clock signals often used

for internal clocking of CMOS chips. For simplicity, we shall assume that:

T() - T1 > 0

. (5.17)
Top = Ty > O

One can show that this simplification does not qualitatively affect the results that we
shall present in this section. The FIFO elements are two-phase-protocol asynchronous
FIFO elements described in Section 5.4.2. The synchronizers are the symmetrical
elements described in Section 5.4.1 and Section 5.5. The wires connecting the two
have zero delay (the wire delay is absorbed into the FIFO elements).

The principal claim is that the data-stream synchronization can be done in stages,
along with the data flow. In the following section we shall prove that the probability

of synchronization failure at the synchronous end of the structure in Figure 5.12

CHAPTER 5. PIPELINE SYNCHRONIZATION 105

%o

©1
1 Ty T T

Figure 5.13: Two-phase non-overlapping clocks

decreases exponentially with the number of stages:

p® — pO ML)
. =Pile T (5.18)

where T, is the implementation-dependent overhead. Therefore, to achieve the

desired Py at the synchronous end, one needs at least

T PO
(I _0 log]fD] (5.19)
2 oh f

stages. The area complexity of this solution is O(log Plf) Both theoretical work
[66, 98] and experimental evidence [16, 66, 71] show that it is not possible to
synchronize asynchronous signals with a latency less then O(log 7,1}-), so this solution
is latency-optimal, Q(log Pif)

It is often the case that the output sections of asynchronous data sources
themselves consist of a series of FIFO elements. In these cases, it is possible to
insert the synchronizer elements into the output section, and perform a part of or the

entire synchronization there. The latency and area will still be O(log Plf), but it may

be achieved with a smaller T,;,.

5.4.4 Correctness Proof

We shall first show that the structure in Figure 5.12 behaves as an asynchronous
FIFO. Then, we shall find implementation requirements for the FIFO elements and
synchronizers that are sufficient to guarantee that Equation 5.18 holds, and that the
maximum throughput can be sustained. Finally, we shall find the upper bound for

latency.

CHAPTER 5. PIPELINE SYNCHRONIZATION 106

Proper Functional Behavior

As discussed in Section 5.4.1, the input/output behavior of a synchronizer whose
clock input is connected to a periodic signal is equivalent to that of a variable delay
(Equation 5.10). The introduction of a bounded (albeit variable) delay to any signal
of a speed-independent implementation of the FIFO element does not affect the

correctness of the circuit operation.

Probability of Metastability Failure

Figure 5.14 shows a two-stage segment of the pipeline synchronizer from Section 5.4.3.

P](Cz—l) P(z) P}i+1)
\:%&é ‘‘‘‘‘‘‘‘‘ @(i}\[';'l')'xh};&‘z"""‘T"P(iiﬁ'z’)}ﬁodz
s TH B.R, S - BB, X S -
E 2¢ 2¢ | |
m— 22 22—
T AA, A A,
() G+1)—— (i+2)

Figure 5.14: A segment of a pipeline synchronizer chain

The j** event on RY can occur only at time:

tﬁ;gn = tgg)i) + TRR,» (5.20)
or at time

19, =tV 47 (5.21)

R T A T AR | :

This event can cause metastable behavior of the (¢ + 1)** synchronizer (Section 5.4.1)

only if it occurs coincidently with the down-going transition of (i1 1)moaz. Therefore,
PP < PO(R) + PO (4,). (5.22)

The first element of the sum in Equation 5.22 corresponds to the probability that
an event on R; occurs 7g, g, before the end of the ¢(;11)mod2, and the second element

to the probability that an event on A, occurs 74,5, before the end of the P(i4+1)mod2-

CHAPTER 5. PIPELINE SYNCHRONIZATION 107

We shall first examine the case corresponding to P}i)(Ri). If the implementation

of the FIFO element satisfies the requirement
Ts + Tr, < T2, (5.23)

the 7** synchronizer will guarantee that this can occur only if it was in a metastable

state for at least

tsz/2_TS—TR,~Ro- (524)

Therefore,
T/2—TS""R»R0

PO(R) < PE Ve = . (5.25)

If we could show that Pfi)(Ao) = 0, then:

P(k) < P(O) _HE T
fosbpe (5.26)
TohzTS+TRiRo- (527)

However, we shall show that the Pfi)(Ao) = 0 requirement is overly restrictive. In
the remaining part of this section, we shall devise a set of criteria that are sufficient
to guarantee that, even if the synchronizer enters the metastable regime caused by
an event on the A, input of a FIFO element, the properties of the FIFO chain
will guarantee that this particular metastability results in a benign behavior at the

synchronous end.

To prove this part, we shall first define the first-event metastability (FEM), and
the second-event metastability (SEM), corresponding to two particular propagation
modes of the FIFO in Figure 5.12. Next, we shall show that an A, event can only
cause SEM, and that the SEM can itself only cause SEM. Finally, we shall show that
the SEM is benign at the synchronous end.

Let us observe one synchronizer element S from Figure 5.12, with its clock input
connected to clock phase ¢. S will exhibit metastable behavior only if its input event

is coincident with the down-going edge of ¢.

CHAPTER 5. PIPELINE SYNCHRONIZATION 108

Definition 4 When the input of a synchronizer element S, clocked with ¢, changes
state coincident with an arbitrary, 7™, down-going edge of @, and there were no prior
input events between the (j — 1)** and the j™ down-going edge of o, we shall say that

S has entered first-event metastability.

Definition 5 When the input of a synchronizer element S, clocked with ¢, changes
state coincident with an arbitrary, j** down-going edge of ¢, and there was at least
one prior input event between the (j —1)* and the 7™ down-going edge of ¢, we shall

say that S has entered second-event metastability.!

Let us now pick up the thread of the proof again by going back to Equation 5.22
and analyzing what happens when the j* event on R® is caused by the (j — 1)*

event on AY:

tfi(zjz) = tf‘i(l 1) - t(;()z) - TAoRo‘ (5.28)
According to Equations 5.12 and 5.13:
(J) < (j_l) — —
t t (,'+1) + ma'X(TRi Ro TRz Ai) TAoRo TAoAz)
(1) (i-1) (529)
tR(z) jaiy t (1+1) ma'X(TRzAz - TRiR07 TAa-Ai - TAoRo)

For a typical FIFO implementation, 7g,g, & Tr,4, and T4, g, X 74,4, S0 We shall
assume that Vi, 5 : tg)(5 R g)(z This simplification does not qualitatively change the
results we shall obtain; it only improves the readability of our arguments.

If the metastability at the (14 1)* synchronizer is a result of the (j—1)* transition

on A®| this can, in turn, cause metastability in the (i -+ 2)"® synchronizer. However,

we can assure that the latter is always SEM, if:
t(’ ~T/2< t(’(,jl)) <l +T/2. (5.30)

From Equations 5.28 and 5.30, we can derive the following implementation

!The distinction between the first- and second-event metastability has no physical basis; it is
defined only for purposes of the proof.

CHAPTER 5. PIPELINE SYNCHRONIZATION 109

requirement:

TAR, < T/2 (531)

We shall focus next on showing that SEM can only cause SEM. Suppose that the
j* event on R is SEM. Then, according to Definition 5:

tﬁiﬁ» - tg(zmmodzv (5.32)
t‘(tf(:l))modzl < tgf;)l) < t‘(»f(z‘ﬂ)modzl’ (5-33)
and therefore:
tot = To+7s < tciy <t +7s, (5.34)
tg‘(;jl)) 2 tggo —To + 7s + TR;R, (5.35)
which implies that
tgg;}}) > tgg,-) —T/2. (5.36)
Since
o ~ therd S 1ol = TAR,, (5.37)
and according to Equation 5.36:
(9 —T/2 <3l < ¢2, +7/2. (5.38)

Therefore, SEM at the i** synchronizer can only cause SEM at the (i + 1)*
synchronizer.

Finally, with reference to Figure 5.15, it should be obvious to the reader that
one can design a synchronous circuit whose correct operation will not be affected
by the SEM. The required throughput is equal to one event per clock cycle, so the
synchronous circuit must, after the first event within a clock cycle is observed (and this
event is guaranteed by Definition 5 not to cause synchronization failure), acknowledge

the first event, and disregard any input change until the following clock cycle.

CHAPTER 5. PIPELINE SYNCHRONIZATION 110

(’0 E A
R) -

Figure 5.15: Second-event metastability

Sustaining the Throughput

The maximum data throughput of the pipeline synchronizer in Figure 5.12 is throttled
by the synchronous side, and is equal to one data item per clock cycle. In the
remainder of this section, we shall find implementation requirements that are sufficient
to guarantee that the pipeline synchronizer can sustain that throughput.

Let us first consider an infinitely-long pipeline-synchronizer chain, and assume that
it is in the steady state. Figure 5.16 illustrates this condition, with the arcs between

events describing causal dependencies. For all even-numbered FIFO cells, the events

®o
©1
10 To To1 Ty 10 Ty To1 T
T I 1
t2 | t2 | t2 i t2 wl

Figure 5.16: Steady-state operation of the pipeline synchronizer

on R; occur simultaneously, 75 after ¢y becomes high. For all odd-numbered FIFO

cells, the events on R; occur simultaneously, g after ¢; becomes high. In this regime

CHAPTER 5. PIPELINE SYNCHRONIZATION 111

of operation, no synchronizer enters the metastable state, and:

i1 = max(Tg + Trian 0+ Ta,a, — %) (5 39)
to = max(7s + Tr,r,, 01+ TA,R, — '12‘1)
For 74,4, < %,
t = Te+Trn.a
1 s T TR (5.40)
ta = max(Tg + TR,R,» TS + TR, A; + TA,R, — %)

For the steady state in Figure 5.16 to be possible, ¢t must be less than the half-
period. The following conditions on the implementation of the synchronizer and of
the FIFO element are, therefore, sufficient to guarantee that the infinite chain of
pipeline synchronizers can sustain the maximum throughput while operating in this

particular regime:
TAA; < T/ 2

Ts + TR;R, < T/2. (5.41)
Ts + Troa, + Ta,p, < T
To examine the case of a finite-length pipeline synchronizer, we shall use an
analogy with transmission lines. A piece of transmission line that is terminated
with its characteristic impedance behaves as if it were of infinite length. The pipeline
synchronizer, similarly, has to be terminated with the circuitry that satisfies the above
conditions if the full throughput is to be maintained.

The requirement at the synchronous end is:
TrA + Ta,r, <7, (5.42)

where Tg4 is the delay from the time when one data transfer is requested until it is
acknowledged. In absence of metastability at the synchronous end, this condition is
trivially achieved.

On the asynchronous end, to terminate our pipeline synchronizer properly to

CHAPTER 5. PIPELINE SYNCHRONIZATION 112

maintain the bandwidth, the outside circuitry has to satisfy the condition:
Ts + Tra; + Tar < T, (5.43)

where 74r is the delay from the time when one data transfer is acknowledged until
the time when the next data transfer is requested. Of course, the definition of
asynchronous signals prevents us from imposing such requirements. What we shall
prove in the following section is that, with a properly terminated sink, if a particular
asynchronous data transfer at the source is initiated at any point in time, and if,
from then on, Equation 5.43 is satisfied, the pipeline synchronizer will with bounded

latency enter the steady state illustrated in Figure 5.16.

Latency

Let us observe the behavior of a pipeline synchronizer of length & (Figure 5.12), with
the properly-terminated sink (Equation 5.42). We shall assume that the synchronizer
is in the state equivalent to the state at ¢ = 0, that is, all FIFO cells are empty.
Starting in this initial state, we shall number each signal’s transitions starting from

ZETO0.

1) If the first asynchronous request occurs while ¢y = 0, between the (n — 1)**
down-going edge and the n** up-going edge of ¢y, the first event at RZ(O) will occur

after ¢y = 1 again, at time

t(O) — t(n)

2© = ot T 75 (5.44)

Given that the conditions of Equation 5.41 are satisfied, the first input transitions

of the FIFO stages occur at times:

1 = tomid) 475, 0<i<k. (5.45)

Using double induction, it is simple to show that, if the throughput-sustaining

conditions are satisfied, every transition will occur, at the latest, at the time

CHAPTER 5. PIPELINE SYNCHRONIZATION 113

corresponding to the steady state illustrated in Figure 5.16:
j n+j+[i/2 .
tgg)") < tfﬂimZdzLT/ b +7s, 0<i<k

tggﬂ < ot | max(rs + TR,y Ts + TRoa, + Tagr, — TY2), 0< i<k
’ (5.46)

The initial step of the double induction is satisfied by Equation 5.45. The recursive

step establishes that, with
Tak, < T/2, (5.47)

t(j_l

9 and for G +1)), then it is also

if the condition in Equation 5.46 is satisfied for 2 e

Rgi) 9

satisfied for t%). and for t(j(),-+1).
Ri
Therefore, the latency of the pipeline synchronizer is, in this case, Tj < QE%IE

2) Let us assume that the first asynchronous request occurs while ¢y = 1, between
the n'* up-going edge and the n** down-going edge of g, at some time tfp?T + AP,
For the 7** pipeline-synchronizer element, the notation Agj) will denote how far from
the steady state is the j** transition of its R; input. A;cj) will denote how far from
the steady state is the j%* transition of the synchronous-system input, R(F-1),

With the throughput-sustaining conditions of Equation 5.41 satisfied, the first
transitions on the inputs of the FIFO elements and on the input of the synchronous

system occur at times:

£ = Gt s+ AP, 0<i<k

(Oi) © , (5.48)
G- tok—1) T TRR

R R ifo

where

A = max(0,A® + 15+ 1rm, —~T/2), 1<i<k (5.49)

0 0))
Agc) = Agc—)l

Since 75 + 7p,r, < = (Equation 5.23), the first output transition of each subsequent

stage is closer to the steady-state condition (V4,j : Az(j) = 0).

Using double induction, one can show that the subsequent transitions occur at

CHAPTER 5. PIPELINE SYNCHRONIZATION 114

times:
G) (n+5+3/2])) :
t}%i) < tolid U+ Ts+ A 0<i<k (5.50)
. ik b . . b *
t(lggk_l) S t;k:ijzt% DIz + Ts + Tr;r, + Agzj)a 0<i<k
where:
ma.x(A(lj_l) + 7ar — T/2) : i=0
AP = max(ADy +75 + Tom, ~T/2, 897" +7am, = T/2), 1<i<k . (551)
maX(Agle, Agcj_l) +Tra + Ta,r, — 1), 1=k
Therefore, if the following conditions are satisfied:
TAR < T/2
Ts + Tg, < T/2
o R, /2 (5.52)
TA,R, < T/2

TRA +Ta,r, < T

successive transitions on R*~1) (the input of the synchronous circuit) always occur

less than Ago) < Ty after the successive clock edges. Latency in this case is T} < k—zT-

3) In this subsection, we shall find the bound on latency in case of metastability
caused by the input asynchronous event. Since the synchronous side throttles the
throughput, and since we cannot assume correct operation of the synchronous system
under synchronization failure, this part of the proof will consider only the case when
the metastability does not reach the synchronous end.

If the first asynchronous request occurs coincident with the n** down-going edge
of o, the first synchronizer will enter metastable state, and, depending on when it

exits this state, we shall distinguish between the three cases described next.

3a) If the metastable state lasts less for ¢,,, and t,, < T/2 — 75 — Tg.,, then

AP = T

, (5.53)
A(lo) = tym+ 75+ TR;R, — To1

CHAPTER 5. PIPELINE SYNCHRONIZATION 115

and all the subsequent transitions will follow Equation 5.50, as analyzed in 2).

3b) If the metastable state lasts for ¢,,, and ¢, > T/2 — 15 — TR,R,, then:

tgi)l < t§§<)o> ((;4{1) + Ts + Tr;Rr,, (5.54)
10 =t t TP 4 g b rpn, 1<i<k, (5.55)

and the modified version of Equation 5.46, with n replaced by n + 1, will hold for all
pipeline-synchronizer signals. The latency will be 7} < gk—fﬁ

3c) Finally, if the metastable state lasts for exactly T'/2 — 7 — 7p. 5., it will
cause metastability in the subsequent synchronizer. Let us assume that the first m
synchronizers enter metastable state as a result of their first input transition, and
that remaining (k — m) synchronizers do not. Then the first output transitions of the
first m synchronizers occur at times:

t(o) 0D g < i em o1, (5.56)

Sazmodzl }

and, after the first transition, they follow Equation 5.50. The remaining (k — m)
synchronizers behave as analyzed in 3a) or 3b). The latency is T; < gk_+22£

Conclusion

In this section we have found a set of requirements that are sufficient to guarantee
that a particular implementation of a synchronizer and of a FIFO element
can be used for pipeline synchronization. These requirements are listed in

Equations 5.23, 5.31, 5.41, 5.42, 5.43, and 5.52. The union of all these requirements

CHAPTER 5. PIPELINE SYNCHRONIZATION 116

is:

Ts + Tr;R, < T/2

TAR, < T/2

TAR < T/2

T, A; < T/2. (5.57)
Ts + Troa, +Tag, < T

Ts+TrRia; +Tar < T

TRA + Ta,R, < T

5.4.5 Variations On the Theme

In Section 5.4.3 we showed how pipeline synchronization can be used to interface
input data streams that follow the two-phase asynchronous protocol to synchronous
systems, along with the proof of its correct operation. In this section, we shall show
that the same technique is applicable for interfacing to output streams that follow the
two-phase asynchronous protocol, as well as for synchronization of input and output
streams that operate under the four-phase asynchronous protocol. The same proof

techniques can be applied, so only the implementations will be presented.

Reversing the Direction of Data Flow

A block diagram of a pipeline synchronizer that can be used to interface an

asynchronous output data stream to a synchronous system is shown in Figure 5.17.

—~{ R R, [~~~ IR R, Ri R, |~
| 29 | 29 |26 i
)| Di D,)T DD, [\ DiD,)
i Ay Ay S T — - - A A, S T 4 A, B[S e

90(1:—1)120(12 Jl 0

Figure 5.17: Synchronous-input, asynchronous-output pipeline synchronizer

The implementation of synchronizer and of FIFO elements must satisfy the

CHAPTER 5. PIPELINE SYNCHRONIZATION 117

following requirements:

Ts + Ta, A, < T/2

TR, A; < T/2

TRA < T/2

TR;R, < T/2. (5.58)
Ts + Ta,r, + TRia; < T

Ts +Ta,r, +7Ra < T

TAR + TR;4; < T

Using Four-Phase-Protocol FIFO Elements

When using the four-phase signaling protocol, the spectrum of valid implementations
of FIFO elements is much larger. For an exhaustive study, see [14]. Onme possible

implementation is:
* [[Rz]; Az T; [E], Az l: Ro T; [Ao]; Ro l; [—A_o];]a (559)

with the dependency graph as shown in Figure 5.18.

TR;1Ail TR;|R,1
ALk .

;T ﬁ\T/ __________
@TRiTAi T/@ TA, AT

Figure 5.18: The dependency graph of one form of four-phase-protocol FIFO element

When using the four-phase protocol, there are two transitions for every data item
transferred, and we shall pick only one of the edges to represent an event (either an
up- or down-going edge). Let us assume that we have made the choice such that
the R; 1, A; |, R, T, and A, | represent events, i.e., their arrival time is uncertain.?

Then, the pipeline synchronization chain that we have used for synchronization of the

2In case of this particular, arbitrary choice, when the FIFO elements with the behavior as
specified in Equation 5.59 form a FIFO chain, there is no uncertainty about the arrival time of

CHAPTER 5. PIPELINE SYNCHRONIZATION 118

two-phase protocol in Figures 5.12 and 5.17 can be used with the four-phase protocol
when modified in the following way: FIFO elements are replaced with the four-
phase-protocol version, and symmetric synchronizers are replaced with an asymmetric
version that synchronizes only the edges that have been chosen to represent signal
events.

The requirements in Equations 5.57 and 5.58 still apply, with:

TRA: = TRAN T TA R + TR 44|

TR:R, = TRI-TA,-T+TAOTR01+TR,-1R.,T. (5.61)
Taodi = TAL41 T T4, 1R, + TR 14

TAoRe = TA,|R,1

5.5 A CMOS Implementation

All four versions of pipeline synchronizers described in this chapter (with two- and
four-phase protocol, with synchronous and asynchronous input stream) have been
implemented and used in the Mosaic over the past three years. In a set of experiments
reported by Cohen et al. [23], a local-area network was implemented using Mosaic
components, and used to transmit and receive more than 10'® bits without a single
error.

In Section 5.4.1, we showed the ME element that we use to build asymmetric
synchronizers, which synchronize only the up-going or only the down-going transi-
tions. To build a symmetric synchronizer, we utilize two ME elements in the circuit

illustrated in Figure 5.19. The circuit around the two ME elements implements the

the complementary edges:

Vji>0; t%.g}T - t%i TRl T TR (5.60)
oy = tay—Thiyau
tfér = tf«fol—TR,-iAii—TAoTRoi

CHAPTER 5. PIPELINE SYNCHRONIZATION 119

following specification:

* [[Ri]; Ba T3 [Aa]; Ro 1, Ry U5 [Adl; [Ral; R 15 [A2); Ro |, Ra |3 [A2);]. (5.62)

Figure 5.19: A symmetric synchronizer

The symmetric synchronizer, and the four-phase-protocol FIFO elements were

designed using a pre-release version of the asynchronous-design tools described in

[58).

5.6 Conclusions

Even though the motivation for pipeline synchronization came from a specific
problem — interfacing Mosaic’s asynchronous router and synchronous memory —, the
applications of this technique are much broader. Pipeline synchronization is a. simple,
low-cost, high-bandwidth, high-reliability solution to interfaces between synchronous
and asynchronous systems, or between synchronous systems operating from different
clocks, where the data rate is too high for the single-synchronizer approach.

The power and simplicity of this technique allow the designer to break away
from the traditional divisions in the design of asynchronous and synchronous
circuits: clocked systems deal with synchronous events; self-timed systems deal with

asynchronous events; and interfacing between the two is done with synchronizers of

CHAPTER 5. PIPELINE SYNCHRONIZATION 120

limited reliability. With pipeline synchronization, the designer can achieve arbitrarily
low failure rates in exchange for latency rather than a reduction in bandwidth.

In developing pipeline synchronization, instead of reasoning about signal events,
we reasoned about probability distributions of signal-event arrival times, and
introduced a metric to characterize “how asynchronous a signal is.” Along the way,
we used some simple yet unconventional techniques: we can “partially synchronize”
a signal event, use it to perform some work using self-timed circuits, and then repeat
the process until the desired reliability is achieved.

The probability model that we used was crucial to our understanding of
synchronization techniques, and to our ability to devise a novel approach to data-
stream synchronization. However, we were not successful in using this model to prove
all the circuit properties that interested us; hence, we had to resort to rather elaborate

proof techniques. This is a topic that we believe deserves additional investigation.

CHAPTER 6. CONCLUSIONS 121

Chapter 6

Conclusions

6.1 Comparison With Related Work

A variety of concurrent machines have been built in effort to apply concurrent
approaches to “general-purpose” computing at the application level. In this section,
we shall compare the Mosaic architecture and the C+- programming system with
other contemporary architectures and programming systems. At the architecture
level, we shall focus on communication bandwidth and latency, and on complexity of
implementation. At the programming level, we shall discuss the relative importance

of efficiency, expressivity, and safety compared to C+-.

6.1.1 Medium-Grain Multicomputers

The antecedent of all modern-day multicomputers is the Cosmic Cube [76]. A
number of commercial developments followed this effort, with similar multicomputers
manufactured by Intel, nCUBE and Ametek. With the exception of nCUBE’s custom
designs of integrated processor and network interface, these machines employed off-
the-shelf processor, memory, and compiler technology.

The raw hardware performance of these machines is quite impressive in terms
of peak instruction rates, and, in some cases, in terms of available communication

bandwidth. The nodes are of complexity comparable to that of workstations,

CHAPTER 6. CONCLUSIONS 122

with hardware floating-point capabilities, top-of-the-line single-chip processors, and
megabytes of node memory.

Standard programming systems for these machines are based on sequential
programming notations for specifying individual process behavior, with library
routines for inter-process communication and synchronization. The expressive power
of these programming systems is comparable to that of C+-, but because programs
that specify individual process behavior are, unlike in C+-, lexically separate,
compilers cannot perform many safety-improving checks typical of object-oriented
programming that C+- performs including, for example, type matching of messages
between the sender and the receiver. Since the message scope in these systems is not
well-defined, it is difficult, if not impossible, for the compiler to assist the programmer
in message passing of runtime-specified data structures and /or message exchange in
heterogeneous environments. An important difference in programming emphasis is
due to C+-’s blurring the distinction between processes as computing agents and
processes as data, deliberately implying that process creation is inexpensive.

Standard programming systems for commercial multicomputers regularly fall
short of utilizing the hardware capabilities to their fullest, mainly because of the
large software overhead of communications, typically on the order of a thousand of
processor instructions. Recent work on Active Messages [31] clearly demonstrates
how the incompatibility of the hardware mechanisms with the programming model
results in large software overheads. The Mosaic design team’s approach to reducing
the software overhead anticipated that advocated by research on Active Messages.
A relatively small amount of hardware support is devoted to message handling,
allowing for software optimizations of special cases. The message-handling layer of
the MADRE runtime system [10] is triggered by message reception, and message
handlers run to completion. Two contexts, one for message handling, the other
for regular computation, are used to eliminate the context-switch overhead. Where
Active Messages diverges from our approach is that it expects the user to handle
the message-buffer management, something we consider too large a burden except

for applications with highly regular communication patterns. For the Mosaic, a

CHAPTER 6. CONCLUSIONS 123

machine with scarce node-memory resources and so much potential concurrency to
necessitate runtime-system-managed process placement, message-buffer management

is particularly demanding.

6.1.2 Fine-Grain Multicomputers

In this section, we shall compare the Mosaic architecture to two representatives of fine-
grain multicomputers: the Transputer, a well-established commercial family of chips
manufactured by INMOS [45], and the J-Machine, developed by the research team led
by William J. Dally, at MIT [64, 63]. Just as with the Mosaic, both the Transputer
and the J-Machine have been developed in conjunction with, and influenced by, their

respective programming systems.

Transputer and Occam

Occam [61] and its subsequent variants [13] are based on work of C. A. R. Hoare
on Communicating Sequential Processes (CSP) [42]. Occam is an explicit-message-
passing notation, with processes interacting through synchronous communication
channels. In Occam programs, all processes and all channels must be known at
compile time, and Occam compilers use this information to completely eliminate
the need for run-time resource management. This requirement, together with typed
channels, makes Occam a very safe notation, to the point that there are rules for
semantics-preserving program transformations. However, Occam does not support
dynamic process creation, and it supports only a limited form of iteration and a
non-recursive procedure call.

The Transputer approach is to offer pre-packaged computing solutions in
hardware, including the Occam process model and scheduling. The presence of
floating-point hardware on chip, unlike in Mosaic or J-Machine, is the consequence of
INMOS being driven by its markets, whereas the other two projects are testbeds for
concurrent-programming experiments. The Transputer communication mechanism is

limited, with nearest-neighbor communication. It requires either software-assisted,

CHAPTER 6. CONCLUSIONS 124

store-and-forward routing, or additional, external communication components to
provide a general communication capability. The newest-generation Transputer
improves the routing generality and performance through use of virtual channels.
When used as intended, for running Occam programs, the Transputer provides
an excellent computing platform. However, its limited communication capabilities
and the hard-wired process notion typically present difficulties for implementation of

non-Occam-like concurrent-programming systems.

J-Machine and CST

Concurrent Smalltalk (CST) [26, 44, 43] is a concurrent, object-oriented, program-
ming notation, and, in spite of vastly different syntax, is in many important aspects
similar to C+-. The main semantic difference between C+- and CST is that, whereas
the state of a C+- process can be accessed only through a set of mutually-exclusive,
atomic actions, methods of a CST object can access the object concurrently. The
atomicity of CST methods must be managed explicitly, using locks. The primary
mechanism for generating concurrency in CST is issuing concurrent remote procedure
calls and synchronizing through futures. Although this mechanism is supported in
C+-, the primary mechanisms for generating concurrency in C+- are process creation
and non-blocking message sends. Some recently-reported results [64] on the perfor-
mance evaluation of the J-Machine have been obtained with programs written in the
J language, an extension of C with a small number of constructs for communication
and synchronization, not unlike the C+- approach.

Unlike the Transputer, the Message~briven Processor of the J-Machine does not
impose its preferred process model on the user. The emphasis of J-Machine is on
implementing in hardware the instruction sequences that CST programs use often:
a simple hashing policy with the two-way set-associative cache for name translation,
detecting access to uninitialized variables for synchronization, scheduling off of the
message-Teceive queue, injecting data into the routing network, and computing the
relative distance of the message destination.

Because there are fewer pre-conceived notions built into the hardware than with

CHAPTER 6. CONCLUSIONS 125

the Transputer, the J-Machine more readily accommodates programming systems for
which it had not originally been designed [60, 88].

The emphasis of Mosaic is on providing high-performance routing and memory,
with a seamless interface between the two. One can argue that a C+- implementation
on the Mosaic would benefit from most, if not all, of the hardware-supported
communication and synchronization mechanisms of the J-Machine. However, the
reduction in the number of cycles and in the size of the code has to be compared
against the additional price in chip area and the loss of flexibility. Given the large
discrepancy in access time between on-chip and off-chip memory [64], the advantages
of nominally time-saving, but area-expensive, mechanisms is less than obvious. The
importance of preserving the flexibility to as late a design stage as possible cannot
be overstated. For example, the xlate instruction on the J-Machine implements a
simple hashing policy and a 512-entry two-way set-associative cache, and executes in
three cycles. An equivalent of this instruction takes 11 Mosaic instructions, but it
can be modified trivially to work with different hash functions, and different cache
structure and/or size.

The J-Machine and the Mosaic projects share many of the same underlying prin-
ciples and motivations, many of which trace back to the time when William J. Dally
was a Ph.D. student in our research group [26], and the rest is due to our relatively
frequent mutual progress updates. The necessity to limit the scopes of the respective
projects made the Mosaic team focus on efforts that were more aggressive techno-
logically (single-chip nodes with internal dRAM, pipeline synchronization, advanced
packaging), whereas the focus of the J-Machine team’s efforts was primarily on mech-

anisms (synchronization, name translation, scheduling).

6.1.3 Multiprocessors

As discussed in Sections 1.2 and 1.3, the shared memory programming model is a
predominant concurrent-programming paradigm, mostly because many programmers
find it to be a natural extension of the sequential programming model. Traditional

shared-memory programming systems [85] extend sequential notations with process

CHAPTER 6. CONCLUSIONS 126

creation and synchronization primitives. Data communication is done through shared-
memory access. Some recently-developed shared-memory programming systems, such
as COOL [18], move towards concurrent, object-oriented programming, similar to
C+-, although for a different set of reasons. While the goal of C+- is to increase
expressivity of explicit message-passing notations by providing a global name space,
COOL offers monitor-like data-encapsulation as a safe alternative to the all-powerful
access of a shared-memory word.

C+- programs often look remarkably similar to programs written in notations
designed with multiprocessors as their primary targets. Let us compare the run-time
behavior of concurrent object-oriented programs on a cache-coherent multiprocessor
and on the Mosaic.

Assume that a concurrent computation consists of a partially-ordered set of
actions; each action modifies the state of an object (o), by executing a function

(f), with an argument list (a). One can write:
o.f(a)

Assume also that the state of the object, the function code, and the argument list
are each stored in their respective pieces of memory somewhere in the concurrent
machine.

A typical multiprocessor is processor centered. A processor is assigned to perform
this action, possibly by directly accessing the task queue of the assigned processor,
or by appending the global task queue responsible for scheduling the entire machine.
Once the action is scheduled, using that processor’s cache-update mechanism the
(pieces of) object state, function code, and argument list are requested and brought
to the processor. After the required computations are performed, the object’s state
is eventually updated in the memory through the cache-coherence protocol. Most
communications are demand driven, initiated by the cache-update requests, with the
exception of appending the task queue(s).

The Mosaic is memory centered. There is only one processor that can access the

object’s state — the one controlling the memory where the object’s state is stored.

CHAPTER 6. CONCLUSIONS 127

The argument list will be put into the same local memory by a message. The function
code can, in principle, be sent along with the argument list, but because the code
is read-only, it can be effectively software-cached in the same memory as the object
it operates on. The communication is, therefore, mostly supply driven, with the
exception of updating the software code cache.

Due to the inherent complexity of coherent data caching [15, 95], a typical
multiprocessor employs as much as two orders of magnitude fewer nodes than a
Mosaic multicomputer of the same price [79]. On the other hand, the higher
up-front node cost enables one to incorporate a more powerful processor. The
emphasis of programming effort is, therefore, radically different. Whereas the effort
in programming a multiprocessor will typically be in keeping the expensive nodes
busy with better load-balancing strategies [18], the effort in programming the Mosaic
is in generating as much concurrency as possible.

For problems with limited concurrency, a multiprocessor clearly holds the
performance edge; for problems with abundant concurrency, the Mosaic is the machine
of choice. For applications which belong to neither of these two extremes, the
performance will depend on how effective the coherent data caching is. If the shared
data is mostly of the single-writer, multiple-readers variety — including when who the
writer is changes relatively infrequently —, coherent data caching is effective [47]. For
highly contested, multiple-writers, multiple-readers, shared data, numerous updating

and invalidating requests render caching useless.

6.2 Summary

A computer-architecture experiment is a complex task, indeed. To make such an
experiment a successful one is to achieve perfection in a balancing act. Many an
experiment has failed to fulfill its promise due to less-than-perfect solutions for
such “mundane” details as: a few-bits worth of addressing space, I/O capabilities,
mechanical assemblies, etc.

One of the great pitfalls, so forcefully exposed by the developers of the RISC

CHAPTER 6. CONCLUSIONS 128

processor architecture [37], is to restrict oneself into a well-defined box, no matter
how nice the box looked from the inside: It was after processor architects had poked
into the compiler-designer’s turf that the possibility for dramatic improvement in
processor performance was revealed.

Accordingly, the single most important design requirement, the requirement that
turned into the cornerstone of our testbed, is that we must not assume that we
understand all the possible ways in which the system will be used. As best as we could,
we tried to provide mechanisms, not policies [84]. This effort should be obvious from
the simplicity of our hardware communication primitives, and should be even more
obvious to readers who had the stamina to follow through the examples describing the
runtime-system interfaces. We made sure that the default operations of our software
and hardware systems were as simple and intuitive as possible, and strived not to hide
anything from an inquisitive user. The resulting, non-assuming architecture of the
Mosaic is suitable for implementation of number of concurrent-programming systems
[10, 55, 52], as well as for special-purpose, embedded, applications [23].

We have started with the one-chip-computer stipulation, and tried to push the
application-span envelope as far as we could. The performance potential of fine-grain
concurrent computers has long been recognized [75]. What is lacking is a powerful
programming system to exploit that performance potential, not for a handful of
carefully-crafted applications, but for a much larger application span. C+- approaches
this problem from the bottom up. Programming paradigms that can be implemented
efficiently on a simple and inexpensive hardware — atomic updates that can be
enabled or disabled — are mapped into a simple extension of a popular, object-
oriented notation. |

What if we had an arbitrary amount of processing power dispersed around the
memory? What if copying of a memory segment from the local memory into the
remote memory was actually faster than the local copy operation? What if we sent
the code and the argument list to where the data is, instead of having all three of
those join at the all-important processor? Or perhaps we could send code and data

to where the argument list is? How much caching can we efficiently do in software?

CHAPTER 6. CONCLUSIONS 129

What if concurrency was so abundant that we did not have to worry about utilization
of individual processors at all, but rather how to extract more concurrency from an
application?

We do not know answers to any of these questions today. What we have provided
is a testbed that could help in answering some of these questions in a quantitative

way, and some results have already been established ([10]).

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION 130

Appendix A

Example Products of C+

Compilation

In the interest of making it possible for other researchers to understand the structure
of the software overhead of communications reported in Section 4.3, we shall present
a few simple examples of the Mosaic assembly code produced by translation from C+-
to C++ followed by compilation using the Gnu C++ targeted for the Mosaic processor.

The Mosaic register set is described in Section 4.2.3. The assembly instructions

of interest are:

® op src, dst — where op is one of the standard arithmetic instructions (add,
subtract ...), src and dst are general-purpose registers, and the semantics are

dst := dst op src.

® mov src, dst — with the semantics of dst := src, where src and dst can be
general-purpose registers, special registers, or memory operands with addresses
determined by:
— (r) — a register,
— (r++) — a register, post-incremented,
— (--r) — a pre-decremented register,

— (r+const) — a register plus a constant, or

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION 131

— (const) — a constant.

¢ jmp dst — jump to destination dst, determined by one of the addressing modes

described above.

e call dst — actually two instructions, one to save the return address on the

stack, and another to jump as above.

® jcc label — where ccis a condition under which to jump to the address specified

by the label.

Program 40 defines the basic data structures used by the runtime system.

typedef unsigned node_t; // multicomputer node
// identifier

struct pointer_t // a process pointer

{ // consists of:
node_t node; // a node number
void* ptr; // and an address

};

typedef unsigned entry_t; // a unique identifier

// of an atomic action

struct RTS_msg // a message

{
RTS_msg* next; // queuing information
int size; // >>
pointer_t ptr; // >> message header
entry_t e; /7! >>

3

Program 40: Runtime-System Data Structures

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION 132

The code in Program 41 allows one to access the machine registers from the source

code. Note that the pointers used in managing the send and the receive queue are

kept in the general registers that are shared between the two contexts.

register
register

register

register
register
register
register
register
register
register
register

register

register

void*
void*
void#*
void*
int

int

int
RTS_msg*
RTS_msg*
void*
RTS_msg*
RTS_msg*
void*

MSP asm
MSL asm
MRP asm
MRL asm
DXDY asm
IMR asm
ISR asm

SQ_HEAD asm
SQ_TAIL asm
SQ_END asm
RQ_HEAD asm
RQ_TAIL asm
RQ_END asm

("msp") ;
("msl");
("mrp");
("mrl");
("dxdy™);
("imr");
("isr");
("ris8");
(ur14n);
(nr13n>;
("r12");
("ri1");
("r10");

// message receive pointer
// message receive limit

// message send pointer

// message send limit

// destination register

// interrupt mask register
// interrupt status register
// send queue head

// send queue tail

// end of the send buffer

// receive queue head

// receive queue tail

// end of the receive buffer

Program 41: Accessing Machine Registers from the Source Code

As shown in Program 42, the routing word Az, Ay computation uses two tables. If

the storage cost is prohibitive, it can be done with no extra storage in approximately

twice the time.

int dxtable[256] ;

int dytable[256] ;

inline

int

dxdy_conversion (node_t dest)

{
unsigned dx = dest >> 8;
unsigned dy = dest & 0xO0FF;
return dxtableldx] | dytablel[dy];

}

Program 42: The Az, Ay Computation

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION 133

As described in Section 3.1.7, a message-sending operation consists of calling
the operator head, building the arguments list, and calling the operator tail.

Program 43 presents an example definition of these two operators.

inline
void*
send_queue_alloc (int size)
{
if ((void=*)SQ_TAIL + size >= SQ_END)
return send_queue_wraparound(size);
else
return (¥SQ_TAIL->size);

}
inline
void *
operator head(pointer_t p, entry_t e, int size)
{
void* v = send_queue_alloc(size);
v = operator send(v,size); // build message header
v = operator send(v,p);
v = operator send(v,e);
return v;
}
inline
void#

operator tail(void* begin, void* end, pointer_t p, entry_t e, int size)

{
if (SQ_HEAD == SQ_TAIL)

{
int dxdy = dxdy_conversion(p.node);
IMR = 0; // disable interrupts
MSP = &SQ_TAIL->size; // send the message
MSL = end-1; //
DXDY = dxdy; //
SQ_TAIL = SQ_TAIL->next = end; // update the send queue
SQ_TAIL->next = 0; //
IMR = 7; // enable interrupts
}
else

send_queue_append(begin,end,p,e,size);

Program 43: Building the Message

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION 134

By now we have all the code we need to compile a message-sending example. Let

Program 44 be the user code.

class Cc // a user-defined class

{
public:
void foo();

};

void // and its member function
C::foo ()

-

oid
(C* ¢)

)

~ Hh

while (1) // an endless sequence of
c->foo(); // member-function invocations

[}

processdef P // a user-defined process
{

public:

atomic void foo();

+;

atomic

void // and its atomic action
P::foo ()

{

}

void
£ (P* p)
{
while (1) // an endless sequence of
p->foo(); // message send operations

Program 44: A Message-Send Example

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

135

Programs 45 and 46 are the result of translation of the user code to C++ followed

by the compilation to Mosaic assembly code.

.globl

_f__FPiC

_f__FPicC:

L68:

.globl

mov bp, (--sp)
mov sp,bp

mov r3,(--sp)
mov (bp+2),r3

mov r3, (--sp)
call _foo__1C
inc sp,sp

jmp L68

mov (sp++),r3
mov bp,sp
mov (sp++),bp
rtn

~f__FGOP_cpm_ptr

f__FGOP_cpm_ptr:

L72:

mov bp, (--sp)
mov sp,bp

mov r3,(--sp)
mov r4,(--sp)
mov r5, (--sp)
mov r6,(--sp)

mov #4,rb5

mov (bp+2),r3
mov (bp+3),r4
mov ril4,r0
add #4,r0

cmp ri13,r0
jltu L76

mov r5,(--sp)

Program 45: A Message-Send Example, Compiled Code, Part 1

f(char*)

FUNC PROLOGUE BGN
save frame ptr
new frame ptr
Save regs used

FUNC PROLOGUE END

FUNC EPILOGUE BGN
Restore regs used

restore stack ptr
restore frame ptr

FUNC EPILOGUE END

£ (Px)

FUNC PROLOGUE BGN
save frame ptr
nev frame ptr
Save regs used

FUNC PROLOGUE END

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

136

L76:

L75:

L81:

call _send_queue_wraparound__Fi

inc sp,sp
jmp L75

inc ri14,r0

nov #4, (x0++)
mov r3, (x0++)
mov r4, (x0++)
mov #1,(x0++)
mov r0,r4
mov (bp+2),r3
cmp ri4,r15
jne L81

rnr r3,r0
ror r0,r0
and #255,r0
and #255,r3

| 1sr by #8

mov (r0+_dxtable),r0
nov (r3+_dytable),r3

mov #0,imr
inc ri14,r6
mov r6,msp
dec r4,r6
mov ré6,msl
or r3,r0
mov r0,dxdy
mov r4,(ri4)
mov r4,ri4
mov #0,(r14)
mov #7,imr
jmp L72

mov r4,(--sp)

call _send_queue_append__FPv

inc sp,sp
jmp L72

mov (sp++),r6
mov (sp++),r5
mov (sp++),r4
mov (sp++),r3
mov bp,sp
mov (sp++),bp
rtn

Program 46

| FUNC EPILOGUE BGN
| Restore regs used

| restore stack ptr
} restore frame ptr

| FUNC EPILOGUE END

: A Message-Send Example, Compiled Code, Part 2

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

137

Program 47 is a program that can be used for user-level dispatch, and

Programs 48 and 49 its compiled version.

struct RTS_code
{
int offset;
int mask;
int code[0];
};
typedef void (*FP) (void#*,void*);
inline
atomic
void

@ (int size, pointer_t p, entry_t e)
{

RTS_code* ¢ = lookup_code(e);
yoid* p
FP f
void* a

= p.ptr;
(FP) (c->code) ;
= args+1;

int offset c->offset;

int mask c->mask;

if (*(((int*)p)+offset) & mask)
(x£) (p,a);

else
message_refused(args);

o

oid
user_dispatch ()
{

<

while (1)

{
while (RQ_HEAD->next == 0);
@(&RQ_HEAD->size);
RQ_HEAD = RQ_HEAD->next;

// a code piece

// info on how to find the
// active/passive bit

// within process state
// the code itself

// a generic atomic action pointer

// generic dispatcher
// find the code piece

// the process pointer
// the code pointer
// the arguments pointer

// check the active/passive bit
// dispatch to user code

// this code runs continuously
// in the user context

// polling the receive queue
// call the generic dispatcher
// updating the receive queue

Program 47: User-Level Dispatch

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

138

.globl _user_dispatch__Fv

~user_dispatch__Fv:

mov
mov

mov
mov
mov
mov
mov

bp, (--sp)
sp,bp

r3, (--sp)
r4,(--sp)
r5, (--sp)
r6,(--sp)
r7,(--sp)

Program 48: User-Level Dispatch, Compiled Code, Part 1

|** FUNC PROLOGUE BGN
| save frame ptr

| new frame ptr

| Save regs used

|** FUNC PROLOGUE END

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

139

L33:

L35:
mov
cmp
jeq

mov (ri2+4),(~-sp)
call _lookup_code__FUi

mov
mov
add
mov
add
mov
mov
mov
add
mov
mov
and
inc
cmp
jeq
mov
mov

(ri2),r0
#0,r0
L35

(r12+3),r4
r0,r6
#2,16
ri2,r5
#5,r5
(x0),r3
(r0+1),x0
rd,x7
r3,xr7
r7,r3
(r3),r3
r3,r0
sp,sp
#0,1r0

L38

r5, (--sp)
r4, (--sp)

call r6

add

jmp
L38:

mov

#2,sp
L37

r12,(--sp)

call _message_refused__FP7RTS_msg

inc
L37:
mov

jmp

mov
mov
mov
mnov
mov
mov
mov
rtn

sp,sp

(r12),r12
L33

(sp++) ,r7
(sp++),r6
(sp++),r5
(sp++),rd
(sp++),r3
bp,sp

(sp++) ,bp

| ** FUNC EPILOGUE BGN
| Restore regs used

| restore stack ptr
| restore frame ptr

[** FUNC EPILOGUE END

Program 49: User-Level Dispatch, Compiled Code, Part 2

Program 50 is the interrupt-dispatch loop, and Programs 51 and 52 are the

compiled code.

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

140

void (*interrupt_table[8])() =

software_int,
recv_int,

/7
//
//

/7

a jump table filled with the
names of routines that correspond
to various interrupt conditions

get the pending interrupts

(*interrupt_table[pending]) (); // dispatch to an interrupt handler

send__ int,
_____ send_recv_int,
buff___________ int,
buff______ recv_int,
buff_send______ int,
buff_send_recv_int
};
void
interrupt_dispatch ()
{
while (1)
{
int pending = ISR;
ISR = pending;
asm ("PUNT");
}
}
void
__________ recv_int ()
{
RTS_msg* m = MRP;
m->next = 0;
RQ_TAIL = RQ_TAIL->next = m;
MRP = &m->size;
}
void
_____ send______int
{
SQ_HEAD = SQ_HEAD->next;
if (SQ_HEAD->next)
send_next_message();
}

//
//
//

//
//

//
//

//
//
//

//
//
//

writing back acknowledges all the
interrupts that have just been
serviced

assembly instruction to return to
the other context

when the next interrupt arrives,
we shall start here

on receive interrupt,
the newly-arrived message is
linked into the receive queue

on send interrupt,
the send queue is updated and
checked for additional messages

Program 50: Programming the Interrupt-Driven Context

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION 141

.data
.globl _interrupt_table
-interrupt_table:

.word _software_int__Fv
recv_int__Fv
int__Fv

.word

.word _buff______ recv_int__Fv
.word _buff_send______ int__Fv
.word _buff_send_recv_int__Fv

Program 51: Programming the Interrupt-Driven Context, Compiled Code, Part 1

APPENDIX A. EXAMPLE PRODUCTS OF C+- COMPILATION

142

.text

.globl _interrupt_dispatch__Fv
_interrupt_dispatch__Fv:

mov
mov

mov

L2:
mov

}*% FUNC PROLOGUE BGN
bp, (--sp) | save frame ptr
sp,bp | new frame ptr

| Save regs used
r3, (--sp)

| **x FUNC PROLOGUE END

isr,r3

call (r3+_interrupt_table)

mov
#APP

r3,isr

PUNT

#NO_APP
jmp

mov
mov
mov
rtn

L2

| Restore regs used
(sp++),r3
bp,sp | restore stack ptr
(sp++),bp | restore frame ptr

| ** FUNC EPILOGUE END

recv_int__Fv

recv_int__Fv:

mrp,ro0
#0, (x0)
r0,(ri1)
r0,ri1
r0,r0
r0,mrp

int__Fv

int__Fv:

jeq

(r15),r15
(xr15),r0
#0,r0

L9

call _send_next_message__Fv

rtn

Program 52: Programming the Interrupt-Driven Context, Compiled Code, Part 2

BIBLIOGRAPHY 143

Bibliography

[1]

[3]

[4]

[7]

Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz,
John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nuss-
baum, Mike Parkin, Donald Yeung. The MIT Alewife Machine: A Large-
Scale Distributed-Memory Multiprocessor. MIT/LCS/TM-454.b, MIT, Novem-
ber 1991.

Alok Aggarwal, Ashok K.Chandra, Marc Snir. On Communication Latency in
PRAM Computations. in Proceedings of the 1989 ACM Symposium on Parallel
Algorithms and Architectures, 1989.

Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

William C. Athas. Fine-Grain Concurrent Computation. Caltech Computer
Science Technical Report 5242:TR:87 (Ph.D. thesis), 1987.

William C. Athas and Charles L. Seitz. Multicomputers: Message-Passing
Concurrent Computers. IEEE Computer 21(8): 9-24, August 1988.

J. Backus. Can programming be liberated from the Von Neumann style?,
A functional style and its algebra of processes. CACM, 21(8): 613-641,
August 1978.

H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-
Wesley, 1990.

BIBLIOGRAPHY 144

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gordon Bell. Ultracomputers: A Teraflop Before Its Time. CACM, 35(8): 26-47,
August 1992.

Nanette J. Boden. A Study of Fine-Grain Programming Using Cantor. Caltech-
CS-TR-88-11, 1988.

Nanette J. Boden. Runtime Systems for Fine-Grain Multicomputers. Caltech-

CS-TR-92-10, 1993.

Robert W. Brodersen. Evolution of VLSI Signal-Processing Circuits. in Advanced
Research in VLSI: Proceedings of the 1989 Decennial Caltech Conference, edited
by Charles L. Seitz, MIT Press, 1989.

Henry Burkhardt III, Steven Frank, Bruce Knobe, and James Rothnie. Overview

of the KSR1 Computer System. Technical Report KSR-TR-9202001, Kendall
Square Research, Boston, February 1992.

Alan Burns. Programming in occam 2. Addison-Wesley, 1988.

Steve M. Burns. Performance Analysis and Optimization of Asynchronous

Circuits. Caltech-CS-TR-91-01, 1991.

David Chaiken, John Kubiatowicz, Anant Agarwal. Limitless Directories: A

Scalable Cache Coherence Scheme. MIT/LCS/TM-448, MIT, June 1991.

Thomas J. Chaney and Charles E. Molnar. Anomalous Behavior of Synchronizer

and Arbiter Circuits. IEEE Transactions on Computers, pp. 421-422, April 1973.
Andrew A. Chien. Concurrent Aggregates. MIT Press, 1993.

Rohit Chandra, Anoop Gupta, John L. Hennessy. Integrating Concurrency and
Data Abstraction in a Parallel Programming Language. Stanford University

Technical Report No. CSL-TR-92-511, February 1992.

K. Mani Chandy, Carl Kesselman. Compositional C++: Compositional Parallel

Programming. Caltech-CS-TR-92-13, 1992.

BIBLIOGRAPHY 145

[20] K. Mani Chandy, Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[21] K. Mani Chandy, Stephen Taylor. A Primer for Program Composition Notation.
Caltech-CS-TR-90-10, 1990.

[22] William Douglas Clinger. Foundations of Actor Semantics. MIT AI Lab
Technical Report AI-TR-633, May 1981.

[23] Cohen, D., Finn, G., Felderman, R., DeSchon, A. ATOMIC: A High-Speed, Low-
Cost, Local Area Network. USC/ISI Technical Report ISI/RR-92-291, Sept 1992.

[24] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. Blackadar.
Performance Measurements on a 128-Node Butterfly Parallel Processor. in
Proceedings of the 1985 International Conference on Parallel Processing, pp. 531—
540, 1985.

[25] Ole-Johan Dahl, Edsger W. Dijkstra and Charles A. R. Hoare. Structured

Programming. Academic Press, 1972.

[26] William J. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer
Academic Publishers, Norwell MA, 1987.

[27] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in
Multiprocessor Interconnections Networks. IEEE Transactions on Computers,

. C-36, 5: 547-553, May 1987.

[28] Edsger W. Dijkstra. Cooperating Sequential Processes. in Programming
Languages, edited by F. Genuys, Academic Press, 1968.

[29] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[30] Charles Donnelly and Richard Stallman. BISON: The YACC-compatible Parser

Generator. The Free Software Foundation, June 1992.

BIBLIOGRAPHY 146

[31] Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, Klaus Erik Schauser. Active Messages: a Mechanism for
Integrated Communication and Computation. University of California, Berkeley

Report No. UCB/CSD 92/675, March 1992.

[32] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[33] M. J. Flynn. Very High-Speed Computing Systems. Proceedings of the IEEE,
54:12 1901-1909, December 1966.

[34] Tan Foster and Stephen Taylor. STRAND: New Concepts in Parallel Program-
ming. Prentice Hall, 1990.

[35] A. Gotlieb et al. The NYU Ultracomputer — Designing and MIMD Shared
Memory Parallel Computer. IFEE Transactions on Computers, 175-189,
February 1983.

[36] Per Brinch Hansen. Structured Multiprogramming. CACM, 15(7): 574-578,
July 1972.

ohn L. Hennessy an avi . Patterson. omputer Architecture:
37] John L. H d David A. P Comp Archi A
Quantitative Approach. Morgan Kaufmann Publishers, 1990.

[38] Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages. in
Artificial Intelligence: An MIT Perspective, edited by Winston and Brown, MIT
Press, 1979.

[39] Carl Hewitt and Henry Baker. Laws for Communicating Parallel Processes.

IFIP-77, Toronto, August 1977, pp. 987-992.
[40] W. Daniel Hillis. The Connection Machine. MIT Press, 1985.

[41] C. A. R. Hoare. Monitors: an Operating System Structuring Concept. CACM,
17(10): 549-557, October 1974.

BIBLIOGRAPHY 147

[42] C. A. R. Hoare. Communicating Sequential Processes. CACM, 21(8): 666-677,
August 1978.

[43] Waldemar Horwat. Concurrent Smalltalk on the Message-Driven Processor.
MS Thesis, MIT, Department of Electrical Engineering and Computer Science,
May 1989.

[44] Waldemar Horwat, Andrew A. Chien, William J. Dally. Experience with CST:
Programming and Implementation. in Proceedings of the ACM SIGPLAN °89

Conference on Programming Language Design and Implementation, 1989.
[45] INMOS Limited. Transputer Reference Manual Prentice Hall, 1988.

[46] Kirk Johnson, Anant Agarwal. The Impact of Communication Locality on Large-
Scale Multiprocessor Performance. MIT/LCS/TM-463, MIT, February 1992.

[47] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-
Hong Lim. Integrating Message-Passing and Shared-Memory: Early Experience.
MIT/LCS/TM-473, MIT, October 1992.

[48] Clyde P. Kruskal, Marc Snir. Cost-Bandwidth Tradeoffs for Communication
Networks. in Proceedings of the 1989 ACM Symposium on Parallel Algorithms
and Architectures, 1989.

[49] David J. Kuck et al. Measurements of Parallelism in Ordinary FORTRAN
Programs. IEEE Computer 7(1): 37-46, January 1974.

[50] H. T. Kung and Charles E. Leiserson. Algorithms for VLSI Processor Arrays.
Chapter 8.3 in Introduction to VLSI Systems, by Carver Mead and Lynn Conway,
Addison-Wesley, 1980.

[61] Charles R. Lang, Jr. The Extension of Object-Oriented Languages to a
Homogeneous, Concurrent Architecture. Caltech Computer Science Technical

Report 5014:TR:82, 1982.

BIBLIOGRAPHY 148

[62] K. Rustan M. Leino. Multicomputer Programming with Modula-3D. Caltech-
CS-TR-93-15, 1993.

[563] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, John Hen-
nessy, Mark Horowitz and Monica Lam. Design of the Stanford DASH Multi-
processor. Stanford University Technical Report No. CSL-TR-89-403, Decem-
ber 1989.

[64] Sigurd L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. IEEE 0-
8186-2290-3/91/0000/0671/$01.00 671-677, March 1991.

[65] Johan J. Lukkien and Jan L. A. van de Snepscheut. A Tutorial Introduction to
Mosaic Pascal. Caltech-CS-TR-92-26, 1992.

[56] L. R. Marino. The Effect of Asynchronous Inputs on Sequential Network
Reliability. IEEFE Transactions on Computers, C-26: 1082-1090, November 1977.

[67] Alain J. Martin. Programming in VLSI: From Communicating Processes to
Delay-Insensitive Circuits. Chapter one in Developments in Concurrency and

Communication, edited by C. A. R. Hoare, Addison-Wesley, 1990.

[58] Alain J. Martin, Drazen Borkovic, Marcel van der Goot, Tony Lee, José Tierno.
CAST, Caltech Asynchronous Synthesis Tools: The First Release. in Caltech-
CS-TR-93-11, 1993.

[59] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic,Pieter J. Hazewin-
dus. The Design of an Asynchronous Microprocessor in Adwvanced Research
in VLSI: Proceedings of the 1989 Decennial Caltech Conference, edited by
Charles L. Seitz, MIT Press, 1989.

[60] Daniel Maskit, Stephen Taylor. Experiences in Programming the J-Machine.
Caltech-CS-TR-93-11, 1993.

[61] David May. Occam and the Transputer. Chapter two in Developments in
Concurrency and Communication, edited by C. A. R. Hoare, Addison-Wesley,

1990.

BIBLIOGRAPHY 149

[62] Carver Mead, Lynn Conway. Introduction to VLSI Systems. Addison-Wesley,
1980.

[63] Michael Noakes, William J. Dally. System Design of the J-Machine. Proceedings
of the Sixth MIT Conference on Advanced Research in VLSI, MIT Press, 1990.

[64] Michael D. Noakes, Deborah A. Wallach and William J. Dally. The J-Machine
Multicomputer: An Architectural Evaluation. pp. 224-234 in Proceedings of the
20th Annual International Symposium on Computer Architecture, San Diego,

California, May 16-19, 1993.

[65] Alan V. Oppenheim and Ronald W. Schafer. Digital Signal Processing, pp. 294—
299, Prentice-Hall, 1975.

[66] Miroslav Péchoucek. Anomalous Response Times of Input Synchronizers. IEEE
Transactions on Computers, C-25: 133-139, February 1976.

[67] Michael J. Pertel. A Simple Network Simulator. Caltech-CS-TR-92-04, 1992.
[68] Michael J. Pertel. A Critique of Adaptive Routing. Caltech-CS-TR-92-06, 1992.

[69] G. F. Pfister et al. The IBM Research Parallel Processor (RP3): Introduction
and Architecture. in Proceedings of the 1985 International Conference on Parallel

Processing, pp. 764-771, 1985.

[70] John R. Rose, Guy L. Steele Jr. C*: An Extended Language for Data Parallel
Programming. Thinking Machines Technical Report PL-87.5, March 1987.

[71] Fred Rosenberger and Thomas J. Chaney. Flip-Flop Resolving Time Test Circuit.
IEEE Journal of Solid-State Circuits, SC-17: 731-738, August 1982.

[72] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney and Ting-Pien Fang.
Q-Modules: Internally Clocked Delay-Insensitive Modules. IEEE Transactions
on Computers, 37(9): 1005-1018, September 1988.

[73] Charles L. Seitz. Ideas About Arbiters. LAMBDA, 10-14, First Quarter 1980.

BIBLIOGRAPHY 150

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]
[84]

85]

Charles L. Seitz. System Timing. Chapter seven in Introduction to VLSI Systems,
by Carver Mead and Lynn Conway, Addison-Wesley, 1980.

Charles L. Seitz. Concurrent VLSI Architectures. IEEFE Transactions on
Computers, C-33: 1247-1265, December 1984.

Charles L. Seitz. The Cosmic Cube. CACM, 28(1): 22-33, January 1985.

Charles L. Seitz. Multicomputers. Chapter five in Developments in Concurrency

and Communication, edited by C. A. R. Hoare, Addison-Wesley, 1990.

Charles L. Seitz, W. C. Athas, C. M. Flaig, A. J. Martin, J. Seizovic, C. S. Steele
and W-K. Su. The Architecture and Programming of the Ametek Series 2010
Multicomputer. in The Third Conference on Hypercube Concurrent Computers

and Applications, Pasadena, California, 1988.

Charles L. Seitz, Nanette J. Boden, Jakov Seizovic and Wen-King Su. The
Design of the Caltech Mosaic C Multicomputer. in Research on Integrated
Systems: Proceedings of the 1993 Symposium, edited by Gaetano Borriello and
Carl Ebeling, MIT Press, 1993.

Charles L. Seitz, Jakov Seizovic, Wen-King Su. The C Programmer’s
Abbreviated Guide to Multicomputer Programming. Caltech-CS-TR-88-1, 1988.

Charles L. Seitz and Wen-King Su. A family of routing and communication chips
based on the Mosaic. in Research on Integrated Systems: Proceedings of the 1993
Symposium, edited by Gaetano Borriello and Carl Ebeling, MIT Press, 1993.

Jakov Seizovic. The Reactive Kernel. Caltech-CS-TR-88-12, 1988.
Ehud Shapiro, editor. Concurrent Prolog: Collected Papers. MIT Press, 1987.
Ray Simar. Personal Communication. 1992.

Jaswinder Pal Singh, Wolf-Dietrich Weber, Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Stanford University Technical Report
No. CSL-TR-92-526, June 1992.

BIBLIOGRAPHY 151

[86] K. Stuart Smith, Arunodaya Chatterjee. A C++ Environment for Distributed
Application Execution. MCC Technical Report ACT-ESP-275-90, 1990.

[87] Don Speck. Fast 512K Scalable CMOS dRAM. Advanced Research in VLSI
1991: UC Santa Cruz, MIT Press, 1991.

[88] E. Spertus. Execution of Dataflow Programs on General-Purpose Hardware.
MS Thesis, MIT, Department of Electrical Engineering and Computer Science,
August 1992.

[89] Craig S. Steele. Affinity: A Concurrent Programming System for Multicomput-
ers. Caltech-CS-TR-92-08, 1992.

[90] Leon Sterling, Ehud Shapiro. The Art of Prolog: Advanced Programming
Techniques. MIT Press, 1986.

[91] Wen-King Su. Reactive-Process Programming and Distributed Discrete-Event
Simulation. Caltech-CS-TR-89-11, 1989.

[92] Ivan E. Sutherland. Micropipelines, Turing Award Lecture. CACM, 32(6): 720-
738, June 1989.

[93] Stephen Taylor. Parallel Logic Programming Techniques. Prentice Hall, 1989.

[94] Michael D. Teimann. User’s Guide to GNU C++. The Free Software Foundation,
1990.

[95] Manu Thapar. Cache Coherence for Scalable Shared Memory Multiprocessors.
Stanford University Technical Report No. CSL-TR-92-522, May 1992.

[96] Thinking Machines Corporation. The Connection Machine CM-5 Technical
Summary. Thinking Machines Corporation, January 1992.

[97] Clark D. Thompson. Area-Time Complexity for VLSI. in Caltech Conference on
Very Large Scale Integration, edited by Charles L. Seitz, pp. 495-508, 1979.

BIBLIOGRAPHY 152

[98] Harry J. M. Veendrick. The Behavior of Flip-Flops Used as Synchronizers and
Prediction of Their Failure Rate. IEEE Journal of Solid-State Circuits, SC-15:
169-176, April 1980.

[99] Akinori Yonezawa and Mario Tokoro, editors. Object-Oriented Concurrent

Programming. MIT Press, 1987.

