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Abstract

Part I

A unified model is established for a current-programmed converter. which unifies and
extends previous models.

A low-frequency modification leads to a unified duty-ratio control law for the buck,
the boost, andl the buck/boost converters, which results in improved predictions for
several essential quantities of the current-loop gain.

Inclusion of the sampling effect allows the presence of an additional pole w, in the
current-loop gain to be derived. The resulting final double-slope asymptote is fixed in
position, and the crossover frequency cannot exceed half the switching frequency.

Two parameters arc found to be central quantities of interest. A parameter D! ..
represents the minimum value of D', the complementary duty ratio, to maintain stability
of the current loop, and shows explicitly the stabilizing effect of a compensating ramp.
A “stability parameter” @, determines the additional pole w, and describes the degree
of peaking in the closed-loop tré,nsfer functions.

Experimental verification employs an analog signal injection technique, which is easier
to use, and contains more information about high-frequency dynamics than a conven-

tional digital signal injection technique.

Part 11

A generic averaged model for switches in de-to-dc converters is established for the first
time by using, in addition to averaging, volt-second and amp-second balance equations.
The generic model inherits advantages of previous models and extend them to a
new height: switches in dc-to-de converters can now be handled as lincar-time-invariant

two-terminal circuit elements for their low-frequency characterizations.



vi

It is shown that the generic model is equivalent to the canonical circuit model from
state-space averaging when it is substituted into a particular converter. It is also shown
that the model for PWM switches is a special case of the generic model.

A theoretical discussion about the equivalent duty ratio 4 reveals that averaging can
retain low-frequency information contained in the original quantity regardless of its ripple
content. The conditions are that the dc value of the original quantity is not vanishingly
small, and the perturbation frequency is limited to half the switching frequency for ampli-
tude perturbation or to a quarter of the switching frequency for frequency perturbation.

Extensions of the generic model to converters with isolations, in discontinuous con-
duction mode, in current programming, and in other modes of operation are obtained.
The concept of équivalent duty ratio is found useful.

One salient feature of the extended generic model, which distinguishes it from similar
previous models, is that different versions of the model have exactly the same form. The
invariance of the form of the model is extremely useful for computer simulations of the
averaged large- and small-signal dynamics in dc-to-dc converters under various modes of
operation.

One important feature of the approach, which separates it from all previous modeling
approaches, is that its application is not limited by the number of switches in a converter.
A three-switch converter is analyzed to show key steps in the derivation of a generic model
for converters with multiple switches. Experimental results support the predictions from

the generic model for the three-switch converter.
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Unified Modeling and Measurement of

Current-Programmed Converters






Chapter 1

Introduction

Current programming has become the regulating scheme of choice in dc-to-dc con-
verters owing to its advantages over duty-ratio programming such as better line-noise
rejection, automatic overload protection, easy paralleling of multiple converters, and
especially design flexibility in improving small-signal dynamics.

Since its initial conception [1, 2], a large number of small-signal models have been
proposed, for example, [3]-[13]. A brief non-exhaustive review of some of the previous
efforts is presented in the following to show the evolution of models.

A low-frequency circuit-oriented approach was proposed in [5]. A modulator model
(also referred to as “duty-ratio control law” by other authors) is derived by perturbation
of an expression for the average inductor current in steady state. Then, the modulator
model is interfaced with the state-space averaged model for the power stage to obtain a
complete model for the entire converter. The interface is consistent since both the power
stage and the modulator models are derived by perturbation of steady-state quantities.
Current-loop gains are identified and then absorbed. This approach has gained wide
acceptance owing to its simplicity and the insight gained into the properties of current
programming.

One of the major insights gained in [5] is that the crossover frequency of the current
loop can in general be considered wideband, implying possible degradation of perfor-
mance of a low-frequency model. To cope with potential deficiencies. a separate earlier
work [4] needed to be used. A sampled-data approach was presented in [4], where efforts
were focused on high-frequency dynamics. This model is capable of predicting the well-
known subharmonic oscillation which occurs, for example, when the duty ratio is greater
than 0.5 and no compensating ramp is used. A general expression for the sampled-

data version of the current-loop gain is derived, from which it is seen that the crossover



frequency of the current loop is limited to approximately one third of the switching fre-
quency. It will be shown later analytically as well as experimentally that this estimate
is too conservative. Another significant contribution of [1] is its detailed discussion on
measurement of current-loop gain, some of which is further developed in the present
work.

Another earlier work [13] suggested that the modulator gain factor I}, can approach
infinity at the limit of stability. Since it is proportional to the modulator gain factor,
the crossover frequency can approach infinity, too. A few authors have contested this
result on the ground that Shannon’s sampling theorem limits the crossover frequency to
half the switching frequency. A resolution of this apparent contradiction is provided by
the unified model developed in the present work. The unified model inherits the value
of the gain factor and reveals that the the crossover frequency of the current-loop gain is
limited to half the switching frequency, not by limiting the value of the modulator gain
factor, but by the presence of an additional pole due to sampling.

The modulator model in [5] was derived by perturbation of an expression for inductor
average current in steady state. This procedure was disputed in [7], where it is argued
that the small-signal modulator model needs to be derived by perturbing an expression
for inductor average current in perturbed state. A modulator model so-derived is then
interfaced with the state-space averaged model for the power stage to yield the complete
model. Experimental measurements, however, did not support its prediction for the case
where no compensating ramp is used.

A continuous-time model was proposed in [8], where a modified Padé approxima-
tion of the complex exponential, accurate up to half the switching frequency, is used to
approximate the sampled-data version of the current-loop gain derived in [4], allowing
interpretation of sampled-data results in the continuous-time domain. Consequently,
the mechanism behind the peaking, occurring at half the switching frequency in various
closed-loop transfer functions when the duty-ratio is close to 0.5 and no compensating
ramp is used, is scen to be due to the presence of a double right-half-plane zero at
half the switching frequency. However, the expression for the current-loop gain crossover

frequency is found to be the same as in [4], which lacks experimental support and is incon-



sistent with the corresponding closed-loop control-to-inductor-current transfer function.

A low-frequency model for switches in a current-programmed converter was proposed
in [9], which enjoys easy implementation in computer simulation applications. A capaci-
tance is used to emulate the sample-and-hold function. The current-loop gain is entirely
suppressed. A Q-factor is found to determine the degree of peaking in closed-loop transfer
functions.

In the following chapters, a unified model for current-programmed converters is de-
veloped. Discussions focus on the buck, the boost, and the buck/boost converters in
continuous inductor current mode at constant frequency. However, general results, with
suitable modifications, are equally applicable to other converters.

The unified model represents a low-frequency modification and a high-frequency ex-
tension over previous models. A low-frequency modification leads to a unified modulator
model, which results in improved predictions for several essential quantitics of current-
loop gain. An extension to include sampling effect allows the presence of an additional

pole in the current loop to be derived. Two parameters are found to be central quanti-

!
min’®

ties of interest. Parameter D the minimum value of D’ to maintain stability of the
current loop, shows explicitly the stabilizing effect of the compensating ramp. A “sta-
bility parameter” Q,, related to the converter duty ratio and the compensating ramp,
emerges as a central quantity of interest. Experimental verification employs an analog
signal injection technique.

Chapter 2 derives a unified low-frequency modulator model, which improves low-
frequency predictions. Subtle points in the derivation are identified. Chapter 3 analyzes
the low-frequency current-loop gain and identifies its salient features. The crossover
frequency of the current-loop gain can approach infinity at the stability limit. Differ-
ent mechanisms exist for three basic converters to go unstable. Chapter 4 reveals two
equivalent approaches to include the sampling effect in the current loop and exposes new
features of current-loop gain. The high-frequency asymptote has a fixed slope -40dB/dec
and crosses 0 dB at a fixed frequency (half the switching frequency). Chapter 5 discusses
the measurement of current-loop gain and the related issues. It is concluded that analog

signal injection outperforms digital signal injection in all aspects for cases where both of



them are applicable. Chapter 6 presents various closed-loop transfer functions. Abun-
dant physical insights are obtained. Chapter 7 collects measured data on two prototype
converters to support analytical results. Consistently good agreements between the mea-
sured and the predicted data are seen, validating the proposed unificd model and the
preferred measurement technique. Chapter 8 concludes the discussion of this part with
a summary of major results.

Notation conventions adopted here are as follows. Capital letters are used to in-
dicate quantities associated with steady-state, hatted letters are quantities associated
with small-signal perturbations, and small letters represent quantities associated with

perturbed state, i.e., quantities which are the sum of capital and hatted letters.



Chapter 2

A Unified Modulator Model

A brief introduction to the basics of current programming is first presented, where
differences between current programming and duty-ratio programming are emphasized.
Key steps of modeling a current-programmed converter are outlined. Then, a unified
modulator model is derived. Subtle points in the derivation are pointed out. Some

mathematical formalism used during its derivation is provided in the last section.

2.1 Basic Concept of Current Programming

Figure 2.1 (a) shows an illustrative diagram for a conventional duty-ratio-programmed
buck converter. Because of the nature of the comparator (duty-ratio modulator), the duty
ratio is determined when a ramp reaches a certain peak value set by a control voltage
vc. In common implementations, the ramp starts and ends with zero values and with
a constant rising slope. Since the ramp is independent of any power stage variables,
the duty ratio can be considered to be uniquely determined by the value of the control
voltage v..

Figure 2.1 (b) is an illustrative diagram for a current-programmed buck converter,
where inductor current is sensed and compared to a control current i.. A clock signal
initiates each switching cycle at a constant frequency. Duty ratio d is determined when
inductor current ¢; reaches a certain peak value set by i.. Thus, the duty ratio depends
not only on the value of control current (which sets the peak value), but also on how
long it takes the inductor current to reach the peak value. Also, this time duration is
determined by the starting value and the up-slope of inductor current.

Use of inductor current to determine duty ratio introduces feedback into the con-

verter. Thus, small-signal dynamics is expected to change. A current-programmed
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converter has much better dynamic performances than a dutly-ratio programmed con-
verter. Major advantages are: better line-noise rejection, automatic overload protection,
easy paralleling of multiple converters, and most importantly, flexibility in improving
small-signal dynamics.

The fact that duty ratio is directly related to the up-slope of inductor current is
a major difference between current-programming and duty-ratio programming. This
difference implies that duty ratio is not only related to control current and inductor
current, but also to the effective voltage which determines the slopes of inductor current.

Another difference is the fact that inductor current ramp starts and ends with nonzero
values if a converter is in continuous inductor current mode. These nonzero values are
equal if a converter is in steady state, and they are not necessarily equal in perturbed
state. As will be shown later, the nonzeroness of the starting and ending values makes
the down-slope of inductor current play a role in the determination of duty ratio. This
indirect dependence is a subtle point which has been overlocked by most previous authors
writing on current programming.

To understand thoroughly current programming, a sound model is needed for current-
programmed converters. A model for a current-programmed converter consists of two
parts: 1) the model for the power stage, and 2) the model for the modulator, or in-
terchangeably, the duty-ratio control law. Since the state-space averaged model [12] is
frequently adopted as the model of choice for the power stage, the actual task is reduced
to the establishment of a modulator model in a form consistent with the power stage
model.

Since the duty ratio is related to the control current i., and the inductor current i,
a modulator model is expected to be expressed in terms of the average inductor current
i, the average control current i., and an effective voltage v,rs, which determines the
slopes of the inductor current (to be derived later). Therefore. a desired form of small-
signal low-frequency model of a current-programmed converter can be drawn as shown
in Fig. 2.2. This is essentially the same as in Figs. 11 - 13 of [5], except that a general
canonical model for the power stage has been incorporated. Values of the parameters of

the canonical model are well known and can be found in [12]. The modulator gain F,, and
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Figure 2.2: The small-signal low-frequency model of a current-programmed converter
consists of two parts: a model for the power converier, and a model for
the duty-ratio modulator. It is shown later that the frequency response of the
modulator gain Fy,(s) is a simple pole at w, = (ws/2)/Q5.

coefficients ak (replacing G¢) and 3k (replacing H3) reflect, respectively, the influence
that the error current 7, — 7. line voltage 7,, and output voltage o may have on the duty
ratio d. The indicated frequency dependence for F, is not due to the modulator; it will
be shown later that its physical origin is the sampling effect.

What remains to be done is to determine values of various gain factors in Fig. 2.2.

Before the derivation is pursued, some machineries are developed in the next section.

2.2 Definition of v,;; and ¢,,, and Derivation of ¢,;; = (ad, + A7)

Recent progress in understanding general behaviors of switching converters is the
PWM tree structure, which is inherent to any switching converters. Analytical formula-
tion of the structure provides a tool for unification of expressions for different converters.

Figure 2.3 shows the definition of v,7; and #,, as originally proposed in [15]. Voltage
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(a) The PWM structure (b) A buck example

Figure 2.3: Definition of vorp and i, in the PWAI tree structure. Voltage v,py is the
sum of voltages across, and current i,, is the sum of currents through, the
two swilching devices.

Voss is the sum of the voltage across the transistor v, and the voltage across the diode vy,
and current 4., is the sum of the current through transistor 7; and the current through

the diode iy, i.e.,

Voff = Ui+ vy, (2.1)

ton = 1g+id (2.2)

A physical interpretation of v,y is that, under small-ripple constraint. the value of Vosf
is the maximum voltage that either the transistor or the diode has to sustain when
the other is in the off state. Similarly, the current 2,, is the maximum current either
the transistor or the diode has to sustain. The subcircuit in Fig. 2.3 is actually the
underlying topological structure called the PWM tree in all PWM converters, which
guarantees the desired PWM switching in a dc-to-dc converter [15. 16]. Voltage v,y
is normally provided by a set of capacitances, and current i,, is supplied by a set of
inductances [14, 16]. In other words, use of v,7; and i,, has the potential of unifying
expressions for variables in different PWM converters, which is evident in the derivation

for the modulator model.
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M(D) E(s) J
Buck D V;;'f I,
Buck [ Boost -]-)]27 Vas s (1 _ 1)"/1;9/];./1071) I](;rll

Table 2.1: Simplified expressions for quantilies in the canonical circuit model for three
basic converlers.

One of the useful results associated with v,y and 1,, is the following identity estab-

lished in [14, 15],

= (2.3)

This identity reveals that the dc operating parameter R, defined as the ratio of output
dc voltage over the dc output current, can also be interpreted as a transfer resistance
which has the value of Vs ¢/ I,, scaled by M (D). Table 2.1 presents modified expressions
for the quantities in the canonical model. The unifying power of v,;; and i,y is evident.

On the other hand, characterization of a converter is frequently pursued in terms of
terminal quantities such as, for example, input voltage and output voltage. Under this
circumstance, use of v, is not always convenient since v,y is defined in terms of v, and
v4, Which are not necessarily terminal quantities. To remedy this, a relation is derived
which connects ,5; directly to input voltage #,, and output voltage .

For a dc-to-dc converter, it can be seen that input and output voltages v, and v can
be generally expressed as lincar combinations of transistor voltage v, and diode voltage

vy, 1.€.,

Vg = a1V + Aty (2.4)

v = byvy 4 by,

where a1, ag, by, and b; € {0,1}.
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Perturbation leads to the small-signal relationship

By = a1y + aty (2.5)
D = by0; + ba0y.

Solving leads to

1

(arbs — azby) [(a1 = b1)dg + (b — az)d] (2.6)

Yoy = 0y + g =

Since the two equations in Eq. (2.5) are linearly independent for any converters, one
has a;1 /by # az/ba, i.c., arby — azby # 0. This indicates that the above matrix inverse
exists. Therefore, it can be concluded that perturbation of ¢, is a lincar combination

of perturbations 9, and ¥, or in equation form,
i)off = avy + bo, (2.7)

where a,b € {0,1}.

2.3 A Unified Modulator Model

Having developed the machineries in the previous section, the derivation for a unified
modulator model can proceed.

Figure 2.4 shows inductor current waveforms in steady state (in solid lines) as well as
in perturbed state (in dashed lines), where —m, is the slope of the compensating ramp,
my is the up-slope and —my is the down-slope of the inductor current.

The geometries of the waveforms provide fundamental information for derivation of a
modulator model. From the geometry of the inductor current waveform in steady state

(in solid lines) and with slopes m, ms, and m. constant, one can write two equations:

1y = t. —mqdTly — %mlde (2.8)
=1 — m.dTs — %Tl'lgd’Ts.
Note that these equations are written for steady state in order to be consistent with
the canonical model for the power stage, which is derived by perturbation of a periodic
steady-state solution to a linear time-varying system [12, 4].

Equation (2.8) is a set of simultaneous equations. They have to be met simultane-

ously. Many previous authors overlooked this point. which led to incomplete models.
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Figure 2.4: Geomelries of inductor currents in steady (in thick lines) and perlurbed (in
thin lines) states. FEssential information about the modulator model can be
oblained from the geomelries.

Another subtle point has to do with the way of meeting two equations simultaneously.
Conventional approaches can not be simply applied. Elimination of variables is not use-
ful, since all the variables nced to be kept in order to obtain a complete characterization.
Linear combination of two equations cannot be used either, since there are infinite pos-
sible combinations which yield the same average value of inductor current. Note that
this uncertainty is actually a manifestation of the fact that the average value of inductor
current is determined by the instantancous value of inductor current at the time instant
when #; reaches the peak value set by i, (t = DTs), not the other way around. In fact,
Eq. (2.8) can also be considered as the instantancous value of the averaged current at
the time instant DT.

The right way is to unify the two equations in Eq. (2.8) into a single expression,

which can be accomplished by using the following general expressions, originated in [14],
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for my and my:

my = d'v,ps/L
my = dv,gs/ L,
where v, is the sum of the two switch voltages [15] as discussed previously.
Substitution of Eq. (2.9) into either expression in Eq. (2.8) leads to the same expres-
sion:

dd'T;

= 'c - 'cTsd -
ij=1.~m 5T

Voff- (2.10)

That is to say, to satisfy Iiq. (2.10) is equivalent to satisfying both equations in Eq. (2.8)
simultaneously.

Equation (2.10) is a unified large-signal expression which describes how a duty ratio d
is determined. Small-signal information can be derived by its perturbation, which yields

D' = DW,if1.. » DD'T,.
(—%}73(1- T (2.11)

;l = ;c_ [A’[c+

Then, the unified modulator model is obtained as

!

1

d“: ’:C_‘: _
[M, + (D' = D)V, 20T, [(’ Y}

Ts(ai»g + /3{»)] , (2.12)

where the expression ¥,7; = ad, + #0 has been used, with a = 1, 0, and 1, and 3 = 0,
1, and 1, respectively, for the buck, the boost, and the buck-boost converters.
Hence, the following identifications can be made in Fig. 2.2:

1

Fn = . ; 2.13

[Mc+ (D' = D)V,ps[2L]T ( )
DD'T,

oI e 14

k 5T (2.14)

The unified modulator model of Eq. (2.12) is a modification of that proposed in [5], and
the modulator gain factor F, is equivalent to that of [13]. In terms of F},, and k, Eq. 2.12

becomes
d=Fp [(SC- %,)—k(a@ﬁ/%)] (2.15)

A useful parameter can be identified by rewriting Eq. (2.13) as

) 1
- TaVors [(BRe 4 2) 0 -1

Frn (2.16)
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It reveals that F}, approaches infinity for D' = 1/ [-,%—,’—\Afj- + 2], which is the minimum
value for D’ to maintain a finite positive value for Fj,,. Thus, it is useful to identify this

particular value as

.9
fim = — 2 (2.17)

(1+ ptler)

It is obvious that M., normalized with respect to a certain value, extends stability for

min =

min < 0.5,0r Doy = 1= D} . > 0.5, i.e., D . exhibits the stabilizing effect of M,
explicitly (more on this issue later).

In terms of D] ;. , a low-entropy expression for F,, is obtained as

21 1
= : 2.18
b = v 7. =) (2.18)

Several physical interpretations are immediately available from low-entropy expres-
sions for I3, and k in Eq. (2.15). The first factor in the right of Eq. (2.18) is a measure
for the value of slopes since Eq. (2.9) shows that both M, and M, are proportional to the
ratio V,5s/L. The second factor represents the effect that the compensating ramp M,
has on the gain factor, to be elaborated in the next chapter. The value of k in Eq. (2.14)
reflects the effect that perturbations of slopes M; and M, have on duty ratio. The larger
the inductance L is, the smaller the effect is, since both slopes are in reciprocal propor-
tion to inductance. The product DD’ reveals that at both extremes of the duty ratio,

the effect due to slope perturbations is vanishingly small.
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Chapter 3

Current-Loop Gain

This chapter derives expressions for current-loop gain for three basic converters and
discusses their salient features. An interpretation for D/ . is introduced, which rep-
resents the minimum value of D’ to maintain stability of the current loop. Key steps
of current-loop gain evaluation are shown on a buck converter by use of an analog sig-
nal injection technique. Essential quantities of interest are lumped together by drawing
magnitude asymptotes of current-loop gains for three basic converters. Low-entropy
expressions are also presented for the essential quantities. In addition. two general prop-
erties of current-loop gain are established, which provides added insight into the problem
of modeling a current-programmed converter.

3.1 Interpretation of D’

min

In the light of Eq. (2.9), the definition for D/, can be rewritten as

n

, 0.5

min = (1""""+ AIC/“AII‘) s (31)

which exhibits explicitly the stabilizing effect that M., normalized with respect to M,
has on the value of the complementary duty ratio D'. It is scen that D! . = 0.5 if
M. = 0, and decreases with increasing M., corresponding to the well-known result that
increasing compensating ramp extends stability upwards from D = (.5.

Moreover, the unified modulator model indicates that a neccessary condition for the
current loop to be stable is that F,,, remains positively finite, which in turn ensures that
the current feedback remains negative and finite. The condition for F}, to be positively

finite is simply

D' > D! (3.2)

min?
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Figure 3.1: Measured data for D)., show good agreement with predicted dala, validating

the identification of D!

min*

which is exactly the conventional condition for stability of the current loop detailed in

[5]-

Hence, the physical meaning associated with D’

min 15 that it represents the minimum

value for the complementary duty ratio D’ to have in order to maintain stability for the
current loop. Indeed, investigation of the current loop. with sampling effect accounted
for, shows that the current loop becomes unstable when D’ approaches D!, . D! . can
be reduced from 0.5, the value when M. is zero, to a value approaching zero when M,

approaches infinity, a theoretical limit.

! .
min

Figure 3.1 shows a plot of DJ,,. as a function of M./M; in solid line together with a

set of measured data on a buck converter in dots. Mecasured data show good agreement

’
min*

with prediction, justifying the identification of D
3.2 Evaluation of Current-Loop Gain

Current-loop gains can be evaluated by application of an analog current injection

technique used as an analysis tool in the unified model. Steps in [5] can be followed.
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Figure 3.2: Evaluation of a current-loop gain for a buck converter by an analog current
injection under the condition v, = 0 and 1. = 0. A nested loop exists due to
the presence of v,7; (= ©), which gives the current-loop gain an additional
factor.

To illustrate key steps, a buck converter is analyzed. Figure 3.2 shows the equivalent
circuit for evaluating a current-loop gain for a buck converter. A test current 7, is injected
and a current-loop gain is obtained by evaluating the ratio T, = ;'y/;'r under the condition
that 7. = 0 and by = 0.

A nested voltage loop. which does not exist physically in the converter, is introduced
into the unified model because of the presence of ,7;, which gives 7. an extra factor.
Voltage V,;; in a buck is related to input as well as output voltages by V,;y = V, = V/D,

where D is the voltage conversion ratio of a buck converter. The corresponding nested
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voltage loop gain can be obtained by inspection of Figure 3.2 as

Voss z[,
s) = I, ]
Tu(3) Bk D DSLC . (3.3)

BkImVoys

(@) ()

where

= — 3.4
wo \/E ( )
_ R
% = (35)
L
= — 3.6
Ro & (3.6)

The feedback factor for the nested voltage loop is given by

1+Ty(s) = 1+ lﬂki’"v"” — (3.7)
g (5) (%)
1+ T,(0)] |1+ ! ( : )+< s )2
’ Qo1+ T4(0) \wo /T + T,(0) wo /1 + T,(0)
- 1 8 s \?2 ’
”az(a‘a) +(3)
where

Tl,(()) = ﬁkaVoff. (3.8)

Current-loop gain is then obtained as

1 Vo_”' 1
T(s) = i 9
(s) 7 ™D Pl (3.9)

s
FuVas s/ Re (1 + J,)

T Bk FuVrs : . s v
+ +
QoI+ T5(0) \ao/ T+ 7500 )~ \aoy/TF Tu(0)

where

w o= —— (3.10)
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Figure 3.3: Current-loop gains for three basic converters. The extrapolaied crossover fre-
quency w. approaches infinity if D' — D! . | the stability limil. Ezrpressions
for T.(0) reveal that the mechanism for instability for the buck is different
from those for the boost and the buck/boost converters.

Similar procedures are applied to boost and buck/boost converters. Results are
graphically summarized in Figure 3.3. Expressions for all converters are for the case
where R. = 0 for clarity and simplicity, and D/ ;. has been used.

Characteristics of current-loop gain can be extracted from the low-entropy expressions
and are discussed as follows.

The results, shown in Fig 3.3, are qualitatively the same as those in [5]. The most
salient feature is that the final asymptote is the same for all three converters, crossing zero
dB at w.. This property reflects the fact that at high-frequencies, converter dynamics is
determined by switches and inductances only. The expression for w, is of the form

Ws

~ x(DD. . —1)

min

(3.11)

We

which is in terms of the operating point parameter D’ relative to its minimum value D! ;.

for stability, and w. approaches infinity when D’ approaches DI ; . i.c., in the stability

limit. Note also that the value of w, is directly proportional to the value of the modulator
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gain.

Extension of T.(s) to include the sampling effect shows that w. is not necessarily the
current loop crossover frequency because of the presence of an additional pole in T.(s).
For this reason, w, will from now on be called the extrapolated crossover frequency of
current-loop gain.

The dc value of the current-loop gain 7,(0) is expressed in terms of K/K. = K/ K 4y
which, as described in [5], represents the ratio of the inductance L to its minimum value
L. to maintain continuous conduction. The minimum inductance can be derived by
equating I\’ to I, and then solving for L.. For all three converters, the minimum value

of inductance is given by a unified expression

_ DD'TyVoyy.

'3.12
c 5 I. (3.12)
Having introduced L., respective values for T,(0) can be written as
L (Voff/]on)/RL
T. = M(D , buck 3.13
(0) ( )(LC) (1/1):71171—1/])/) e ( )

boost (3.14)

T.(0) = DM(D) ( L) [+ (Vors/Ton)/ D' Ri)

L. (1/D

;nin—' 1)

T.(0) = M(D)(f:) [”g}’g,/{""_)_/l’?"m. buck/boost  (3.15)

It is interesting to note that expressions for T.(0) can be shown to be identical to
those presented in [5], where a different value for the modulator gain F;, was used. This
surprising result seems to suggest that the dc value of a current-loop gain is independent
of the value of the modulator gain. Indeced, it can be shown that this is generally true.
A discussion of it is presented in the following section.

Expressions for current-loop gains reveal that there are two different mechanisms
for a current loop to become unstable. For a buck converter, the double pole is fixed
in position. The extrapolated crossover frequency w. approaches infinity when T,(0)
becomes unlimited. Note that in reality, 7.(0) will be limited by parasitic resistance that
inevitably exists in a converter. For a boost or a buck/boost, the double pole changes

in position with different values of the compensating ramp and the duty ratio. T,(0) is
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always finite. In these two cases, w. goes to infinity together with the double pole in the
stability limit. |

The values w. and 7,(0) can be effectively controlled by introducing different values
for the compensating ramp, if duty ratio and inductance are kept the same. The larger
the ramp slope is, the lower the values of w. and dc gain are. A rule of thumb is that
for M. = M,, w. = w,/3. In an actual design, it is suggested that a value of M, larger
than M, be selected to accommodate possible degradation caused by possible parasitic

reactances associated with current sensing circuitry.

3.3 Other Properties of Current-Loop Gain

In this section, additional properties of current-loop gain are derived, which provide
deep insight into the way how different values of the modulator gain factor influence two
essential quantities of current-loop gain, T,(0) and w.. T.(0) is important since it decides
the degree of regulation that a converter has against low-frequency disturbances. The
extrapolated crossover frequency w, is important because it determines pole locations of
transfer functions when the current loop is closed. Together, these two properties give
added insight into the problem of modeling a current-programmed converter.

A note about notation is due here. Parameter n = (1 + 2M. /M) used in [5] is kept
only in this section for casy reference to and comparisons with previous results.

It can be shown that the following two statements are true:

o the dc value of current-loop gain T,(0) is independent of the valuc of the modulator

gain factor F,,

o the extrapolated crossover frequency of the current-loop gain w, is directly propor-

tional to the valuc of the modulator gain factor F,,.

The first property can be established by working with three basic converters, re-
spectively. If the modulator gain factor is not specified. the modulator model for a

current-programmed converter can be written as (recall Eq. (2.15)),

d = Fp [(ic - iL) — o'k, — 8'kd] , (3.16)
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where o', 3’ € {—~1,1}. Note that feedback coecflicients o’ and /3’ arc allowed to have
negative values here to accommodate potential positive feedback in the minor loop.

The task is to obtain expressions for o’k as well as 3'k. The approach proposed in [8]
is used, which derives values of the feedback coeflicients by perturbation of expression for
average value of inductor current. Then, this expression is equated to another expression
obtained from an equivalent circuit model, which can then be solved for the desired
coefficient. This approach is applied here with the help of Figure 2.2 and Eq. (2.10)
(Note that Eq. (2.10) is different from that used in [R]).

Results are collected as follows.

1 (nD'-1)

o'k = D Vo R , buck.buck/boost (3.17)
ok = i"’mi/off B (nDIi';D)- ’ boost  (3.18)
Ak = -(n.DI:';z D) Fm:/off: ’ buck (3.19)
'k = D [%% - Fmi,on] . boost.buck/boost (3.20)

It needs to be emphasized that the above expressions for a’k and 3’k are general
formulas. They can be used to reproduce the same coefficients as in Eq. (2.12) as well
as those in [5, 7, 8] if respective values for Fy, are substituted in.

Having derived expressions for feedback coefficients, one can proceed to evaluate dc
values of current-loop gain for three basic converters in the same way as shown in the
previous section.

For the buck converter,

Fn VOII/RL
L+ BNk FnVoyy
FoVors[R1L
1+ [(nD' — D)/ K R FyV,pp — 1
KR/Ry,
(nD' — D)’

T.(0) (3.21)
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For the boost converter,

| FnVors(1+ R/RL)/ DR
T(0) = l-f{fl;’|k1"m/\/'aff//])' (3:22)
FuVos /(14 R/R L)/ DR
1+ (nD'/KR)FuVyyy — 1
K(1+ R/R;)
nD"3

For the buck/boost converter,

FuVorsD(1+ R/DR.)/D"?R
1+ |3k Fn Vo /D!
FoVo D1+ R/DRL)/ DR
1+ (DR R)FpVyy s — 1
DK(1+ R/DRy,)

nD? '

7.(0) (3.23)

F,, is cancelled out in all three expressions. Hence, it can be concluded that the dc value
for the current-loop gain is independent of the value of F,,,.

In short, T,(0) is given by

KR/Ry _
T.(0) = I‘“—:D]ZEQ, boost (3.25)
T.(0) = PRO+R/DRL) buck /boost (3.26)

nD"3 !
which are identical to those values for T.(0) presented in [5], and those in the previous
section if D] ;. is used instead of n.

The second statement is established in a straightforward manner. Figure. 3.4 shows a
high-frequency equivalent circuit which a current-programmed converter can be reduced
to. This is obtained by using the fact that at high-frequencies, all capacitances can be
replaced by short circuits.

From the equivalent circuit, it is straightforward to sce that high-frequency asymptote

of current-loop gain is given by

,
T = B, lelipl _ % (3.27)

D sl s,
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. sensed
ly _ current

Figure 3.4: An equivalent circuil for a current-programmed converter al high frequen-
cies. The load resistance is shorted out of the circuit by the low impedance
presented by the oulput capacitance which is constrained to be large for small
ripples.

where

we = Fm—‘{?]—-f—’i. (3.28)

Since V.5, and L are real-valued constants, it can be concluded that the extrapolated
crossover frequency w, is directly proportional to the modulator gain factor F,,.
Finally, a useful comparison can readily be made among different models for current
programming with regard to predictions for values of w.. The duty-ratio modulator gain
factor F}, has the value "011(171(5'—1))’ Voji\'(l"?D')’ Vo,,{:;fl)u" and (;TL\TI;W for the unified
model, the Middlebrook model [5], the Verghese model [7], and the Ridley model [8],
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T+ D 7(nD) wmD'=D) w(n-1)D7

Figure 3.5: Comparison of predictions of different models for magnitude asymptotes of
the current-loop gain. All previous models approach the unified model only in
the limit when D), — 0, i.e., when M. — oc. Nole that the Verghese model
(V.) approaches the unified model (U.) from the above, and the Middlebrook
(M.) and the Ridley (R.) models approach the unificd model from the below.

respectively. Then, according to Eq. (3.28), the extrapolated crossover frequency w, has

the value w(n5;~D)’ w(:b’)’ n(nf])[),, and '1471};)7’ respectively. The resulting current-
loop gain predictions are shown in Figure 3.5 for the case of the buck converter. Similar
scenarios exist for the cases of the boost and the buck/boost converters.

It can be seen that models in [5, 8] give underestimates for the value of w., while
model in [7] presents an overestimate. Models in [5, 7, 8] all predict a variable double
pole for a buck, while the unified model predicts a fixed value, which is supported by
measured data to be presented later. Also, models in [5, 7, 8] approach the prediction
by the unified model only when M, goes to infinity. The difference among them is that
the Verghese model [7] approaches it from above, while the Middlebrook and the Ridley

models [5, 8] approach it from below.
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Chapter 4

Sampling Effect

As indicated in the previous chapter, the current-loop gain can be considered wide-
band. Consequently, predictions from a low-frequency model may not be sufficient.
Therefore, the high-frequency behavior of the current-loop gain needs to be thoroughly
understood if the reliability of design is to be guaranteed.

High-frequency dynamics is predominantly due to the sampling mechanism inherently
present in a switching converter. The term inherent sampling mechanism is used here to
refer to the fact that duty ratio is determined only once in a switching cycle and ideally
instantaneously. Influences due to parasitic inductances and capacitances can normally
be well controlled to be small. Even if these influences are not negligible, conventional
circuit theory can be used to handle them.

Hence, the influence of the sampling mechanism on current-loop gain, hereafter re-
ferred to as the sampling effect, is the focus of discussion.

The basic philosophy adopted here is to find a high-frequency correction factor to
augment current-loop gain derived from a low-frequency model. Accuracy of modeling
beyond half the switching frequency will be sacrificed willingly to trade for simplicity
of the correction factor. As will be shown later, a surprisingly simple expression can
be derived, thanks to the property that the crossover frequency of current-loop gain is
limited to half the switching frequency.

Two approaches are developed in the first two sections to derive the same result,
which can be stated as follows:. To predict high-frequency dynamics of current-loop gain
with good accuracy up to half the switching frequency, only one additional pole wp needs
to be added to a current-loop gain derived from the low-frequency model to represent
the sampling effect.

The last section presents complications of characteristics for current-loop gain intro-
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duced by the existence of the additional pole.

4.1 Additional Pole w,: First Approach

The first approach is to find a rational function approximation of the sampled rep-
resentation of the closed-loop transfer function #;/7, of the current-programmed power
stage, from which the presence of one additional pole in T,.(s) is inferred.

From the geometry of the currents in Fig. 2.4, one can write two discrete-time equa-

tions:

Aic,n‘f_] = Ail,n + Al] Atn-H + A{«:Aln-ﬂ
Ail,n-H = Aic,n-l—l - A’chtn+l + AI2A1n+1-

(4.1)

Two results can be obtained from this set of equations: one is the duty-ratio modulator
gain Fy,, and the other is a discrete-time transfer function Ai;/Ai..
Information about the duty ratio can be obtained by solving for A, in Eq. (4.1).

Subtraction of the first expression from the second and then rearranging yields

i = Btnn _ Adengr = (Biiggr + Airn) /2
VSO, T Mo+ (M = My)/2]T,

(4.2)

With the restriction of low-frequency perturbation, one has Aij 41 = Aij,, which

in turn gives

te — 1 2L 1
(M. + (My = M3)[2)Ts ~ TyV,pp (D)D)

min

d=

(4.3)

which shows the same coefficient as in Eq. (2.12) and verifies the result for the modulator
gain Fy, derived above.
The discrete transfer function from control A, to inductor current Ai; is derived by

introduction of the z-transform into the two equations in Eq. (4.1), which leads to

Ailz) z

Ai(z) S 1+a (4.4)

where @ = (M; + My)/(M, + M.) = 2D", . /D",

min
To derive a continuous expression for the current transfer function, two more rela-

tionships are needed: 1) the connection between the z domain and the sampled-Laplace
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domain; and 2) the connection between the sampled- and the continuous-Laplace do-
mains.

The first is the identity z=¢*T*. The second is provided by the concept of “cquivalent
hold” proposed in [18], which states: In the small-signal limit, the continuous quantity
1 is related to its sampled counterpart by the transfer function of a zeroth-order-hold
circuit.

Applying this property, one obtains

- CST" 1- C-ST’ e
y(s) = S T2 . i2(s) (4.5)
where the asterisk represents a sampled quantity and
T 1 s - ]277,7'[' 1 -
1%(s) = Eﬂ;@ I (s+ T ) ~ 7—,516(3). (4.6)

The approximation is made possible by the fact that the control current can be taken to
be a pure sinusoid, and hence contributions of sidebands are negligible if a narrow-band
analyzer is used for measurement.

To simplify further the current transfer function, one can invoke the following modi-

fied Padé approximation for the complex exponential, originated implicitly in [8]:

e-—sT, - 1~ 2;]7" (Wss/z) + (Wss/2)2 (4 7)
5. .
1+ 2171r (w:h) + (w,s72)

This above approximation enjoys good accuracy up to half the switching frequency.

Substitution of Eq. (4.7) into Eq. (4.5) yields

i(s) 1. 2 (4.8)
)14 g (22p) + (5n)
where , = =) ?1—-1)* or
_ 2
Qs = DD =1) (4.9)

It is seen that the current transfer function is a standard low-pass quadratic with its

corner located at half the switching frequency, and whose Q-factor , can be effectively

t
min’

controlled by the compensating ramp M, through the parameter D
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Moreover, the expression for (), reveals explicitly that oscillation is possible if Q,

I .
min

goes to infinity, that is, if the inequality D' > D is violated, which is exactly the
conventional criterion for stability of the current loop [3. 5]. Since this potential oscilla-
tion will be at half the switching frequency, it is commonly referred to as subharmonic
oscillation.

The denominator of Eq. (4.8) is typical of the closed-loop response of a system having
a two-pole loop gain in the neighborhood of the crossover frequency. If in this neighbor-

hood the loop gain is T)(s), then T(s) can be inferred from

T 1 (4.10)
L+T! " L1 (s : ) '
1+ 3 (5%5) + (=27)
which leads to
1
o= — (4.11)
S ]
=(1+2)
where
nnr _
v - (w(}/2) _ (D /fm.n D (4.12)
Ws
We = (ws/2)Qs= 71,(DI/D' .= 1)' (4.13)

It is seen that w, is identical to that shown in Fig. 3.3 which identifies the high-
frequency asymptote of T,(s), and hence the sampling effect can be considered responsible
for introducing an additional pole w, in T,(s).

It can therefore be concluded that the current-loop gains 7. of Fig. 3.3 may be

augmented by the additional pole w, to account for the sampling effect.

4.2 Additional Pole w,: Second Approach

Another approach to derive the additional pole is presented in this section. The first
approach is elegant mathematically, but it is not straightforward physically.

The second approach gives straightforward physical insight into the problem of how
to include the sampling effect in current loop at the price of a longer derivation. It uses

analog injection as an analytical tool in the context of classical sampled-data theory to
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derive a correction factor for current-loop gain. This correction factor is exactly the
additional pole derived before. This approach represents a further development of and a
significant departure from its original form presented in Part IT of [1].

Figure 4.1 shows a sequence of events for deriving a high-frequency correction factor
for current-loop gain. Figure 4.1 (a) is a block-diagram representation of a current-
programmed converter for the evaluation of current-loop gain. Current-loop gain 7T, is
the one derived from a low-frequency model such as the unified low-frequency model.

To represent the sampling mechanism, a practical sampler can be introduced immedi-
ately in front of the duty-ratio modulator as shown in Fig. 4.1 (b). The term “practical”
is used here to imply two things: 1) the sampling is done by a series of pulses, not
impulses; 2) the sampling is quasi-periodic. The former will have profound impact on
the evaluation of sampled-data current-loop gain. The latter has, as shown before in the
previous section, negligible consequence.

Because of the presence of the sampler, current-loop gain is not uniquely defined.
Different injection points can produce different current-loop gains. For example, injection
at point “b,” shown in Fig. 4.1 (¢), will define a current-loop gain which corresponds to
digital signal injection [{19] (more details later).

Injection at point “a.” shown in Fig. 4.1 (d), defines a current-loop gain which cor-
responds to analog signal injection. This is so because the difference of two continuous
signals, (ic — #;), is still a continuous signal. An important feature of analog injection at
point “a” is that it is possible to absorb the sampler to yield an equivalent analog current-
loop gain with the sampling effect accounted for. Indeed, if the big box in Fig. 4.1 (d) is
treated as a black box, the block diagram can be reduced to the one shown in Fig. 4.1 (e)
with continuous input and output. The resultant gain is a new current-loop gain T¢4(s),
where subscript “s” indicates the fact that the sampling effect has been accounted for.

The next step is the evaluation of the new current-loop gain T(s), which is pursued
in the following. Figure 4.1 (d) shows an analog injection measurement, from which one

can write

1:T.(3) (4.14)

- - -

e = ir—iy (4.15)

-
L4
!
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A h

Ie - > T, -
Low- frequency model

(a)

A a b h

Ie g o—¥—o= T, o=
Introducing a sampler

(b)

Analog injection

(d)

Equivalent continuous form

(e)

Figure 4.1: Derivation of the additional pole: second approach. A low-frequency current-
loop gain is shown in (a); a practical smapler is introduced to account for
the sampling effect (b); a digital injection measures a sampled current-loop
gain T = 1;/1; (c); an analog injection measures a hybrid current-loop gain
T.s = ;'y/;', (d); and T, absorbs the sampler to give an equivalent continuous

form (e).
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Sampling both sides of the two equations leads to

o= TI(s) (4.16)
R (4.17)

where rules for sampling quantities have been applied. From the above four equations,

one can derive

R T(, N

Ly = 17 4.18
ly 1_*_71:12 ( 1 )
. . T,

iz is 1+T;;: (4.19)

Since the injected signal i, can be constrained to be a pure sinusoidal signal without
loss of generality, the spectrum of the sampled signal z: is discrete. Hence, the sidebands
generated by sampling will not be seen by a narrowband analyzer. As a consequence,

one can write the following equation

1 (jwiz) & 1(jwiz)- (4.20)

Using the above simplifying relationship, one can derive the desired expression in a

straightforward way. The expression is found to be

N 1 /
Tus) = Tu(s) 5 e TC(S)) . (4.21)

Therefore, it is seen that Tes(s) is simply T¢(s), the current-loop gain obtained from
the low-frequency model, multiplied by a correction factor m

It needs to be pointed out that one can find the original form of Eq. (4.21) in [4]. What
is different here is that the evaluation of T*(s) will depart from the original approach in
[4] as elaborated below.

In-depth discussion of sampled-data modeling in [4] collected three equivalent ways
to evaluate T (s) for a given T.(s). Here, only one approach will be discussed for brevity.
For a given Laplace spectrum, say T.(s), the corresponding sampled-data spectrum 77%(s)

is given by

. 1 & 2n
=7 ¥ T (s+ 50, (1.22)

n-—0oo
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which is one particular form of the well-known Shannon’s sampling theorem [21], showing
explicitly the well-known phenomenon of frequency folding and aliasing.

Unfortunately, this formula cannot be applied directly to the evaluation of the sam-
pled current-loop gain. The reason is that in Shannon’s theorem, the sampling process
is modeled by a serics of impulses. For a physical switching converter, this constraint
is too strong to be true. This point can be understood by careful examination of “the
sampling process” in an actual switching converter.

Two things need to be discussed. First, in a switching converter, duty-ratio- or
current-programmed, a value of duty ratio is determined when the ramp reaches the peak
value set by the control signal. The control is actually exercised in a brief, but finite
moment, once ina switching cycle, since a small, but finite time duration is required for
the modulator to respond. To accomplish it instantaneously, an ideal modulator, i.e., a
modulator with instantaneous response time, is needed.

Another aspect is that, in a measurement, duty ratio perturbation is still finite, even
if a duty ratio is assumed to be determined instantaneously. This is so because in a
measurement at least a perturbation of a few percent has to be provided in order to
maintain a certain signal-to-noise ratio at the input port of the analyzer.

In short, “the sampling process” in an actual switching converter is better modeled by
a practical sampler. That is, “the sampling” is better modeled by a series of pulses, not
impulses. Evaluation of the sampled current-loop gain needs to be pursued accordingly.

Specifically, evaluation of the sampled current-loop gain is pursued by working with
geometries of current waveforms to derive discrete expressions. The results from discrete
analysis are then followed by application of the modified Padé approximation to translate
them into corresponding results in the continuous Laplace domain.

From the geometries of current waveforms in Fig. 2.4, Eq. (4.2) is obtained. Intro-

ducing z-transform into it leads to
iy o L AN AT .
d(..,)_..—--2- (1+4 )]m11(4)- (1.23)

which, upon substitution of z = €T+ and use of the concept of equivalent hold, yields
p q y
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the following expression for the sampled current-loop gain,

I 1 —sT, s K

d*(s) = ~3 (1 +e? ) o <1—_—§7—) 1u(s). (4.24)
Substitution of the modified Padé approximation and simplification leads to

- S 2 n
d*(s) = — Fn [1 + (w—/?) } —7]717,(3). (4.25)

Refer to Fig. (4.1) (¢). The sampled current-loop gain can be written as

uy
*
—
»n
—
-~
—
—_
n
~—

_ d3(s) _ (s
da(s)  uls) di(s)

e ) e

Since T differs from T, only at the high frequencies, the high-frequency asymptote

T*(s) (4.26)

is sufficient for the expression for T, i.e,

T, = %<, (4.27)
S

Therefore, the current-loop gain with the sampling effect accounted for is found to

be given by
T(s) T.(s)
T.s(s - - = 4.28
(s) 14+ Tx(s) — Te(s) (o s V2 ( )
T4+ To(s) |1+ (m) 1
T.(s)

(t+2)
where w, = (wy/2)?/w, = Twy( D! ;,./D — 1)/4, which is identical to the value given in
Eq. (4.12).

Also, it is seen that accounting for the sampling effect introduces an additional pole

wp into the current-loop gain, confirming the conclusion in the previous section.

4.3 “Stability Parameter” (), and High-Frequency Dynamics

Having identified the additional pole, its influences on the high-frequency dynamics
of the current-loop gain can be characterized. It turns out that the parameter @, plays

an important role in determination of high-frequency dynamics.
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The most striking feature of the high-frequency dynamics is that the high-frequency
magnitude asymptote is fixed both in its slope and in its position. The asymptote
is a straight line with a -40 dB/dec slope and crosses over 0 dB at half the switching
frequency w;/2. Choice of different values of parameters will only move the low-frequency
asymptotes up or down all together. The shape of them remain unchanged. In other
words, the actual crossover frequency of the current-loop gain is limited to half the
switching frequency. Even though the extrapolated crossover frequency w. can approach
infinity, the additional pole w, will provide sufficient attenuation at high frequencies
which limits the actual crossover to half the switching frequency.

High-frequency dynamics are directly determined by the value of ,. Two cases
of interest, for two values of Q)s, are shown in Figs. 4.2 and 4.3. In cach, appropriate
expressions for T,(0) and adjacent corner frequencies can be taken from Fig. 3.3 for
the different converters. Increasing A'/h’. (larger inductance) increases only the low-
frequency range of T.(s).

In Fig. 4.2 for Qs > 0.5, T, crosses over at w,;/2 on a double slope and the resulting
closed-loop response, represented by 77/(1+4 T7), has a corresponding peak at ws/2.

In Fig. 4.3, for Q, < 0.5, T. crosses over at w. less than w;/2 on a single slope, and
the additional pole w, is beyond crossover. The resulting closed-loop response has two
real poles w. and w,.

A wealth of useful design-oriented information is available from these low-entropy
results. First, the final —40dB/dec asymptote for T, is fixed in position, crossing 0dB
at ws/2. Whether current-loop gain T, crossover occurs at or below w, /2 depends solely
on @, which is a function of the operating point D’ relative to D/ . given by Eq. (4.9).
In turn, D] .. is determined by the slope of the compensating ramp M., by Eq. (3.1).

Thus, if all quantitics are considered constant except M., increasing M, results in a

smaller D; . and a smaller Q,, lowering w, and changing the configuration of T, from
that of Fig. 4.2 towards that of Fig. 4.3. Alternatively, if all quantitics arc constant except
the operating point parameter D', increasing D’ (lower D) also results in a smaller Q,
with the same consequences.

Since Figs. 4.2 and 4.3 illustrate the familiar loop-gain/closed-loop relationships for a
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Figure 4.2: Curreni-loop gain for “stability parameter” Q, > 0.5. T, crosses over al
ws/2 on a double slope; closed-loop quadratic peaks up.

single-loop system, in which increasing loop-gain slope at crossover (lower phase margin)
leads to peaking in the closed-loop response, it emerges that @, is the central quantity
of interest in the current-loop gain and could be referred to as a “stability parameter,”
since ()5 approaches infinity in the stability limit of D’ declining to D!,;,. Further, a
smaller ), inexorably results in a lower 7.(0).

Finally, a unified model for current-programmed converters with the sampling effect
accounted for is obtained by expression of the modulator gain F,(s) in Fig. 2.2 as
Frn/(14s/wy). Note that the frequency dependence of Fy, is an “cffective” representation
of the sampling effect. A natural-sampled modulator alone does not have any frequency
dependence [20].

Various closed-loop transfer functions of interest can be derived from this model, and

the low-pass quadratic of Eq. (4.8), in terms of the stability parameter @, appears in
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Figure 4.3: Current-loop gain for Q, < 0.5. T. crosscs over al w. on a single slope;
closed-loop quadratic has real poles at w. and w,.
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Chapter 5

Basic Transfer Functions

The unified model having been established, the characteristics of current-programmed
converters with the current loop closed can be explored. These characteristics are ob-
tained by derivations of basic transfer functions such as the control-to-inductor-current
transfer function, the line-to-output transfer function, the output impedance, and the
input impedance. These four transfer functions are important in that they represent the
characteristics of a current-programmed converter with the current loop closed. Design
of the outer voltage loop can then be pursued in the same way as design of a duty-ratio-
programmed converter, treating the four basic transfer functions as those of a “new”

plant [5].

5.1 The Preferred Approach

Since three basic converters have only two reactive elements, an inductor and a ca-
pacitor, transfer functions are normally second order. Ilowever, as discussed previously,
the effect of the sampling process, existing inherently in a switching converter, introduces
an additional pole w, into the current-loop gain. Hence, transfer functions are expected
to be third order.

Factorization of a third-order characteristic equation symbolically is not always sim-
ple, especially if the factorization is performed to obtain closed-form expressions to gain
physical insight. Control of algebra must be exercised at the outset of the derivation in
order to lower entropies of expressions [17]. For a current-programmed converter, this
can be done in the following fashion.

Recall that the value of the stability parameter )5 determines the peaking in the

closed-loop transfer functions, i.e., it determines locations of the poles. If Q, is small,
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there is no peaking in the closed-loop transfer function. That is, the closed-loop transfer
function has two separated poles w, and wy, where w, is determined. among other param-
eters, by the inductance, and wy, is the additional pole due to sampling. The only pole
left to be found is the one due to the capacitance. Therefore, in the factorization of the
third-order characteristic equation, if @, is small, one can start with the low-frequency
model to find poles due to inductance and capacitance. Then, add wy, as the third pole.
Investigation of the third-order equation is reduced to that of a second-order equation,
simplifying greatly the algebra and, in the mean time, lowering entropies of expressions.

Note that this procedure is pursued under the condition that (), is small. Extensions
to the case where (J, is large can be achieved readily by invoking the continuity of the
transfer function. The unified model is a continuous-time model, and all transfer func-
tions are rational functions which are continuous. By the continuity, any factorization
which is valid for the case where @, is small should be valid for the case where (), is large.
Therefore, the results obtained for the case where Q5 is small are equally applicable for
the case where @ is large.

In addition, derivations of all transfer functions of interest are greatly facilitated by
invoking two general properties of linear feedback systems. They are: 1) State variables
have the same characteristic equation, provided there are no internal pole-zero cancel-
lations; 2) State-feedback changes the locations of poles, but has no effect on locations
of zeros. In other words, zeros are invariant under state-feedback. Establishments of
these two properties can be found in standard books on lincar systems using state-space
formulation, for example, [23].

The first property indicates that once the third-order characteristic equation is found,
it can be used for all transfer functions. The second property shows that in deriving
transfer functions, one can directly use expressions for zeros obtained for the case of
duty-ratio programming. Also, one should realize that once the poles are found, the only
thing left to be derived is the dc gains of respective transfer functions.

A buck converter is used throughout this chapter as a working example to illustrate

key steps of derivation.
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Figure 5.1: Circuit used for evaluation of the control transfer function G,. = 1‘)/;7c for
the buck converter under the condition v, = 0.

5.2 Control Transfer Functions

Fig. 5.1 is the equivalent circuit used for evaluating the control transfer function
for a buck converter, where controlled sources are represented by feedbacks to facilitate
evaluation.

From the equivalent circuit, one can write

Fo, H,(8)
1+ I dli(s)

Y- (5.1)
2
where [,(s) is the duty-ratio-to-output transfer function, and H;(s) is the duty-ratio-

to-current transfer function, which are derived in the following.

¥ Vors IR
Hy(s) =~ = D . —C 5.2
(=3 D sL+ IR, (5:2)
1

]
-
o
<
—
—
+
8l
=)
TN
N——r’
+
N
feo
~——
»



44

> !
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d D sL+ =Ry,

Vo (14 i)

where

w = o
Qo =
Ro = -

Substitutions and straightforward algebra leads to
G (0)

Rorv g (5)+(2)"

Gue(s) =

where

FnH,(0) Ry

Gue(0) 1+ FnHi(0) ~ 1+ 1/T(0)°

Qve = TGl (0O RiCan ~ Qo To0)

9
1 s 2
1+ O (wo\/1+7'c(0)> + (wo \/1+1‘c(0))

QuVIFT)  _ 1 YTFT0)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

The value of @, is small for a converter with a large value for ¢, which is normally

true since high efficiency is always desirable in practical designs. Hence the quadratic

can be factored into two separated real roots. Expressions for these two roots are derived

as

o = [wm/l +1.0)] Q.

wo 1+ T(0)
Qo T.(0)

1
= R[C'[l + 1/T(0))

1
E{é’
wom
Que
= woQoT:(0)
Ws 1
T DD -1

min

&

(5.10)

(5.11)
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Gvc(o) Wy Wy

Ry, 1

Buck (11 1/7.0)] - RLC

Boost D'(RL|[R) R !
' [1+1/T(0)] | L/D"? (RLI|R)C

D'IRLI(R/DY] | (R/D) i

Buck [boost

Buck[boost | T TUO | £7D7 | TRAICRIDIC

Table 5.1: Ezrpressions for dc gains and corners of the control transfer function for three
basic converters.

Note that w| = w,, the extrapolated crossover frequency of the current-loop gain, showing

that the factorization is appropriate.

Therefore, the control-to-output transfer function is of the form
1
(1+2) (1+2)

As discussed in the previous section, the additional pole w, appears in all transfer

Gue(s) = Gue(0) (5.12)

functions. Also, wy, together with w,, forms the familiar quadratic. Therefore, for a buck

converter, the final form of the control-to-output transfer function is given by
G (0)
3 1 s )
(1+2) [1+4: (z2) + (527)]

For the boost, or the buck/boost converter, derivation for G,.(0) is similar except

Gvc('q) = (513)

that added algebra is involved caused by the presence of the right-half-plane zero. The
right-half-plane zero appears in the transfer function, as revealed by the canonical circuit
model for duty-ratio programmed converters. Therefore, the general form of the control-

to-output transfer function is
Gue(0)(1 - )
(1+2) 1+ 2 (@) + (5n)]

where values for (,.{0), w,, and w; are summarized in Table 5.1 for three basic converters.

Gvc(s) = s (514)

Values for the boost and the buck/boost are derived by similar procedures.
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Several remarks are due here with regard to salient features of the control transfer
function. If no compensating ramp is used, @, is high, producing peaking at half the
switching frequency. This peaking can compromise a designed phase margin if its exis-
tence is not recognized. For the well-damped case, i.e., when @, € 0.5, wy, is well above
half the switching frequency. The sampling effect is barely visible. This is precisely the
reason why the model in [5] worked even though the sampling effect was not accounted
for.

With an even smaller value of @, w. will approach w;, inducing peaking at ,/wje.
It can be shown easily that \/ww: approaches wy when @, is vanishingly small, where
wg is the value of the double pole in duty-ratio programming. In other words, with an
increasingly large value for M., a current-programmed converter behaves more and more
like a duty-ratio programmed converter.

The above remarks about the role that @ plays in determination of peaking are also
applicable for other closed-current-loop transfer functions to be discussed below. Also,
Q-factors similar to (), appeared in two previous contributions [8, 9], which described
an identical role that @, plays.

For the buck converter, if 7,(0) goes to infinity, G,.(0) approaches R;. This is so
because an infinite T,(0) makes the inductor current an ideal current source. G,.(0) is
then simply given by the product of the value of the ideal current source and the load
resistance /1y,. A similar scenario exists for the boost or the buck/boost converter. The
difference is that the load resistance is an effective value as shown in Table 5.1, because

of the fact that the inductance is not directly connected to the load resistance.

5.3 Line Transfer Functions

As discussed previously, the line-transfer function is expected to have the same poles
as those in the control transfer function. Its zeros will be the same as the duty-ratio-
programmed case, which are unities.

All one has to do is to find G,4(0). Fig. 5.2 shows an equivalent circuit for evaluating
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sensed
+Y _ current

Figure 5.2: An equivalent circuit used for calculation of the line transfer function G, =
©/g for the buck converter under the condilion i. = 0.

the dc gain. Using straightforward circuit analysis techniques, one can find that

1— ! ;
un[ D ~1707) (5.15)

Fug(0) = M
Gog(0) = M 1+ 7.(0)

For the boost, or the buck/boost converter, the right-half-plane zero does not appear
in the line transfer function. Therefore, the line transfer function can be expressed in

the following general form

Gugls) = Cpl0) , (5.16)

(1+2) 1+ 3: () + (52m)]

where values of G,4(0) for the buck, boost, and buck-boost converters, are given in

Table 5.2.

A significant advantage associated with current programming is that it has better
line rejections than those in duty-ratio programming. For increasingly large K, i.e., for

increasingly large T,(0), G,4(0) approaches 0 for the buck, M(D)/(1 + R/Ry) for the
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Buck M(D) [+ 7.(0)] D
Boost M(D) ! 1
- (1+ R/RL) 1+ 1/T(0)] D
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Buck[boost | o g DV TR T 1/70)] [“’“ I/D;;n~1/D')J Vil

Table 5.2: Ezrpressions for dc gains of line transfer functions for three basic converters.

boost, and M(D)/(1+ R/DRy,) for the buck/boost, revealing that, in general, a current-
programmed converter has better line-noise rejection than a duty-ratio programmed one,
since M (D) is the dc gain of line transfer functions for duty-ratio programming.

Line noise can actually be rejected perfectly for a buck converter even if 7,(0) is not
infinite. For the buck converter, the line noise can be perfectly rejected if a compensating
ramp is introduced with its slope equal to that of half the down-slope of inductor current,
for which 1/D] ... —1/D’' = 1, and G,4(0) = 0. This is due to the gcometry of the average
inductor current. It can readily be shown that this null is extremely sensitive to the value
of M., hence it is not reccommended for any practical designs.

G4c(0) can also be nulled for the buck by allowing T.(0) to go to infinity, i.e., by
introducing an infinite value for the inductance. Its physical meaning is that an infinite
value of inductance makes the inductor current behave like an ideal current source, which
is insensitive to any perturbation (or noise) in the input. Note that this nulling effect
is not present for the boost or buck/boost converter, which reflects the fact that the
inductance is not directly connected to the output.

Finally, with an increasingly large value of M, i.e., increasingly small value for D, ; ,
G,g(0) approaches M (D) for all three converters, which is exactly the respective dc values

of line transfer functions for the case of duty-ratio programming.
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Figure 5.3: An equivalent circuil for evaluation of Z! for the buck converter under the
condition 9, = 0 and 1. = 0. Z,(s) = Z.(s)||Ry,.

5.4 Output Impedances

The output impedance Z,(s) is the parallel combination of R and Z!, where Z! is
defined as the impedance seen looking into the converter at the two terminals of the load
resistance (excluding the resistance).

Output impedances have the same poles as those in the control transfer function,
and its zeros will be the same as those for the case of duty-ratio programming. What
remains to be done is the evaluation of Z/(0). Fig. 5.3 presents an equivalent circuit used
for evaluating the dc value. Straightforward calculation yields the following expression

for the buck
Z!(0) = R.T.(0). (5.17)
Therefore, the output impedance takes on the general form

Zo(s) = Ru||Zls) (5.18)
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Zo(0)
Buck L T:(0)
R
Boost 1+ (1+ R/Ry)/T:(0)]
o (R/D)
Buck/boost |\ = R DY R/ To(0)

Table 5.3: Ezxpressions for de gains of output impedance 7Z'(0) for three basic converters.

RL)|Z[(0) ’
(1+2) 1+ (z2r) + (z39))

where respective values of Z,(0) are listed for the three basic converters in Table 5.3.

For a buck, with the increase of K, i.e., with the increase of T.(0). Z.(0) increases
monotonically, which reflects the fact that increasing &' makes the inductor current
behave more and more like an ideal current source, hence an increasingly large output
impedance.

Note that with A" being increasingly large, the inductor current will be less and less
sensitive to any perturbation. In the limit, Z/(0) is simply given by the negative value of
the ratio of the two control sources, which is R for a boost, and R/D for a buck-boost.
These are exactly the numerators of corresponding expressions for Z,(0) in Table 5.3.

Note also that with the increasingly large M., Z/(0) goes to zero for all converters,
another manifestation of the fact that a current-programmed converter behaves like a

duty-ratio-programmed one.

5.5 Input Impedances

Since the driving signal is 94 and the response is ;'g., the input admittance, given by
the ratio i5/9, = 1/Zin(s), will have the same zeros and poles as other transfer functions.
What is left to be done is to find Z;,(0). Fig. 5.4 is an equivalent circuit used for

evaluating the dc value for the buck. Straightforward circuit analysis yields the following
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Figure 5.4: An equivalent circuil used for calculation of the input impedance Z;, = i)g/;'g
for the buck converter under the condition i. = 0.

expression,

Zin(0) = M(D)21 = (RL/R)TA0)[1 + D'(1 + R/RL)/ K] (5.19)
Ry [1 + T(0)]

M(D)*1 - (RL/R)T(0)

where the approximation has been made on the ground that the omitted factor is typically
in the order of unity.

Thus, the input impedance is of the general form

o 7 (14 2) [+ (s27) + () -

(1+2) ’

where values of Z;,(0) for all three basic converters are collected in Table 5.4, and wy, is

the same as those for the case of duty-ratio programming, which is given by wy, = ﬁ

for all three converters.
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Table 5.4: Ezxpressions for dc gains of inpul impedances for three basic converters.

The fact that Z;,(s) has the same pole for all three converters can be understood by
examining the canonical circuit model for duty-ratio programmed case (recall that poles
of Zin(s) are zeros of 1/Z;n(s), which are invariant under state-feedback). Input current
i, is nulled when © is zero, which gives w;, = 1/R;C. Inductance has no effect on this
null since it appears effectively in series with ;'g in all three converters.

Note that for the buck, when T.(0) is large, w;, = w;. Thus, Z;, has a pole-zero
cancellation under this circumstance, reducing its dynamics to that of a double zero.
Physical interpretation can be obtained from the canonical model. With an increasingly
large value for 7,(0), inductor current behaves more and more like an ideal current source,
which decouples effectively the input from the output of the circuit. That is, the input
side will not see any dynamics caused by the load resistance and the capacitance. In
other words, the only dynamics that the input sees is that due to the inductance (w.),
and the sampling (w,), which is exactly the double zero located at w,/2 and characterized
by Q.

For the buck, with increase of ', i.e., increase of T,(0), Z;,(0) goes to “AT{?ET. This
is similar to duty-ratio programming when the output voltage is tightly regulated. When
output dc current is tightly regulated, an incremental increase of the input voltage will
excite an incremental decrease of the input current in order to maintain a constant output
power, hence resulting in a negative incremental input resistance, which is determined
by the values and polarities of two controlled sources. This is precisely why Z;,,(0) is,

among other parameters, in terms of R, the output operating point parameter [5], not
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in terms of Ry,.

For the boost or the buck/boost, expressions in Fig. 5.4 reveal that a similar scenario
exists with Z;,(0) given by a similar expression, but with additional scaling factors which
merely reflect the fact that for both converters the inductance is not directly connected
to the output.

For an increasingly large value of M., i.e., an increasingly small value of T.(0), Z;,(0)
approaches m%—)-y for all three converters, showing again that they are actually duty-ratio
programmed under this circumstance.

Finally, the issue of negative input impedance is discussed in the following. Table 5.4
shows that Z;,(s) can be a negative impedance at low frequencies for all three converters,
if the value of TC(O) or T,(0) is large enough. Hence, care must be taken if an input
filter is designed for a current-programmed converter to guard against possible onset of
oscillations caused by interactions between the output impedance of the input filter and
the negative input impedance of the converter.

The buck converter is the most vulnerable, since a relatively low value of T.(0) can
make Z;,(0) negative. For example, if R = Ry, a value of T,.(0) greater than unity will
make Z;,(0) negative.

For the boost, or a buck/boost converter, whether or not Z;, is negative depends
on the value of T,(0), the dc gain of the nested voltage loop. Note that T,(0) =
D/(D'|D;,;, — 1) is determined by the duty ratio and the slope of the compensating
ramp M., and it is independent of the value of inductance, which is different from the
buck case where T.(0), in addition to being related to D and M,, is proportional to
inductance value. In other words, for the boost, or the buck/boost converter, Z;,(0)
can be made positive by introducing sufficient value for the compensating ramp, which

is consistent with the desire to control the value of (), avoiding peaking in the transfer

function at half the switching frequency.
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Chapter 6

Measurement of Current-Loop Gain

As discussed in Chapter 4, if a sampler is introduced into a model, current-loop gain
is no longer uniquely defined. Different injection points define different loop gains. A
problem tightly coupled with this ambiguity is measurement of current-loop gain. The
uncertainty about proper ways of measuring current-loop gain and lack of thorough un-
derstanding of the issue have hindered progress in understanding of current programming,
which may have been one of reasons for an unusually large number of different models
competing with each other and, in some cases, with conflicting results.

In this chapter, two methods of measuring current-loop gain are discussed in detail.
They are: the digital signal injection technique [19], and the analog signal injection
technique [22].

It is shown that a digital measurement obtains a sampled version of the corresponding
current-loop gain. A practical sampler degrades accuracy of a digital injection measure-
ment, resulting in a measured value for the dc gain which is at least 10 dB below what
it should be.

Analog signal injection can be used if the inductor current is sensed. An analog
injection measurement is much easier to perform and provides more information. On top
of that, contrary to a digital injection measurement, the existence of a practical sampler
does not degrade the accuracy of an analog injection measurement. Hence, analog signal

injection is the preferred technique for measurement of current-loop gain.

6.1 Digital Signal Injection Measurement

In some cases, current programming is implemented by sensing the transistor current

which is pulsating in nature. If a perturbation is introduced, the sensed current is
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sensed
_ current

Figure 6.1: Measurement of current-loop gain using digilal injection (i; under the condi-
/ds is a sampled version

-

tion vy = 0 and ic = 0. The measured result T* = (iy

of the low-frequency current-loop gain T..

both pulse width modulated and amplitude modulated. It is straightforward to see
that both modulations contain components at the perturbation frequency. Hence, if a
narrowband analyzer is used to measure the perturbation, it will sce contributions from
both modulations. Data so measured are thus contaminated. To overcome this difficulty,
a digital signal injection technique was proposed in [19].

Figure 6.1 illustrates one particular way of representing a digital injection measure-
ment. A digital injection technique injects a perturbation of duty ratio (f: at the output
terminal of the duty ratio modulator. A perturbation is introduced into the digital mod-

ulator by reconstruction of a square wave according to the input waveform, but with its
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pulse-width determined proportional to an injected analog signal. Hence, one additional
PWM driver is necessary for a digital injection measurement.

The following analysis of the digital injection measurement is performed to gain a
better understanding of the technique.

To represent its discrete nature, a sampler, shown ahead of the modulator, is intro-

duced. From the simple model in Fig. 6.1, one can write:
dy = |dGu()] F = [Gal(s) ] ds, (6.1)

where Gy;(s) denotes the duty-ratio-to-inductor-current transfer function, and Fy, de-
notes the modulator gain which has been taken to be a real number, although the actual
values of these quantities are of no concern for this discussion.

The above equation gives
d*
d% = [Gai(s)Fm]™ = TZ(s). (6.2)

Therefore, the digital injection technique actually obtains a sampled version of current-
loop gain T.(s).

If the sampler is ideal, sampled current-loop gain can be easily evaluated. As shown
before, the high-frequency asymptote of current-loop gain can be expressed as T!(s) = L,

whose sampled version is given by, according to [4],

T.(s) = :Ti/fsl- (6.3)

Substitution of the modified Padé approximation and simplification leads to

To(s) = = [1 - “271;; (wj/?) + (51/5)2] (64

- o i () (5) )

Therefore, the overall sampled current-loop gain is obtained as

Tels) =Tels) [1 - 5.}—7; (wss/2) * (wss/2>2} ' (6.5)

which is exactly the form proposed in [8]. In other words, the sampled current-loop gain

can be approximated by adding a double right-half-plane (RHP) zcro located at w,/2



58

onto the current-loop gain derived from a low-frequency model, which is accurate up to
half the switching frequency. Note that the Q-factor of the RIP double zero has a fixed
value 2/r.

As pointed out in the discussion about sampling effect, in a switching converter, a
sampler needs to be modeled as a practical sampler, i.e., a sampler which is quasi-periodic
and has a finite sampling pulse width. This quasi-periodicity is characterized in [18],
where it is shown that in the small-signal limit, the quasi-periodicity is inconsequential.
In other words, the sampler can be treated as a periodic device.

The finite sampling pulse width does have a consequence.

Consider a continuous-time signal g(¢) with a corresponding spectrum G(jw). It can
be shown that if sampling is performed with a series of pulses, instead of a series of

impulses, the sampled spectrum is given by

: — 1 . tu L
G,(jw) = Z — sin (mr—T—) Gjw — jws), (6.6)

where t,, is the pulse width and T} is the sampling period. One can see clearly that the
finite pulse width introduces increasing attenuation for sidebands.
The attenuation can be better appreciated by considering the fundamental compo-

nent. If ¢, € Ty, the sampled spectrum is reduced to
. 1.,
Gs(jw) & ~G(jw). (6.7)

Therefore, the sampled spectrum will have a reduced amplitude. The attenuation is
about one third, approximately -10 dB. This provides an explanation of the puzzling
question: Why dc gains measured by digital injection are much lower than those obtained
by analog injection mecasurement. This is precisely because of the uniform attenuation
inflicted by the finite sampling pulse width, since uniform attenuation appears as dc gain
attenuation. More mathematical details are presented in Appendix A at the end of this
thesis.

In addition to the attenuation caused by the finite pulse width, the aliasing effect

will introduce additional attenuation, since it can be seen that, according to Eq. (6.5),

1
T DD -1

min

T*(0) = T.(0) . (6.8)
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Note that attenuation due to aliasing is proportional to the value of the extrapolated
crossover frequency w,, which is consistent with the prediction of Shannon’s sampling
theorem.

Hence, it is concluded that attenuation of at least -10 dB is inherently associated
with a digital injection measurement.

Another disadvantage associated with digital injection is that, according to Eq. (6.5),
the sampled current-loop gain will always be folded over along half the switching fre-
quency, regardless of the details of the loop gain around half the switching frequency. In
other words, information about loop gain there and above will be lost.

In short, a digital signal injection measurement obtains a sampled version of current-
loop gain. It is inconvenient to use. The measured value will be at least 10 dB below
the actual value. Information around and above half the switching frequency is lost by

the effect of frequency folding.

6.2 Analog Signal Injection Measurement

Since a digital injection measurement has several limitations with regard to its accu-
racy and implementation, an alternative is needed.

This alternative can be found if one property of switching converters is fully appreci-
ated. It can be easily seen that in a 2-switch converter, the transistor current is identical
to the up-going portion of the inductor current (in the case of multiple inductors, it will
be the sum of all the inductor current). Hence sensing an inductor current is equivalent
to sensing a transistor current. As a consequence, the sensed current is nonpulsating,
which in turn suggests that a conventional analog signal injection technique [22] can be
used. Indeed, an analog signal injection technique can be directly used since the inductor
current is normally converted into a voltage in proportion.

Advantages of analog injection are almost exactly the disadvantages associated with
digital injection technique. Analog signal injection is easy to use, with no need for special
hardware. Practical and analytical details for its applications are well-known throughout
the power electronics community, and they are not repeated here.

Since it injects and measures analog signals, no complications associated with sam-
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Figure 6.2: Measurement of a current-loop gain by using analog injection i, under the
condition v, = 0 and ic = 0. The measured result T.s = ;fy/fr is a hybrid
version of T. and T*. Whether a sampler is ideal or practical does not have
any impact on the accuracy of an analog injection measurement.

pling exist. In other words, whether a sampler is ideal or practical does not have any
impact on analog injection measurement. Thus, information around and beyond half
the switching frequency can be obtained accurately at no extra cost. No attenuation
associated with finite sampling pulse width exists.

The only requirement is that the inductor current needs to be sensed, which is hardly
a constraint at all for the following reason. For the purpose of measuring a current-
loop gain, inductor current needs to be sensed. In practical implementations of designs,

either transistor current or inductor current can be sensed (because of their equivalence),
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depending totally on practical considerations such as circuit reliability, cost, etc., as well
as individual preferences.

In summary, analog injection can be used to measure current-loop gain if inductor
current is sensed. Its application is just like any conventional analog injection measure-
ment without any further complications. For cases where both techniques are applicable,
analog injection is the preferred technique since it outperforms digital injection in all as-
pects. In the following chapter, measured data by using analog injection exhibit good
agreements with analytical prediction, verifying the usefulness of analog signal injection

for measurement of current-loop gain.
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Chapter 7

Experimental Verifications

To verify theoretical predictions from the unified model and to check the proposed
measurement technique, a prototype boost converter and a prototype buck converter
have been constructed. Extensive measurements are performed. Analog signal injection
is used to measure current-loop gain for the very first time. GGood agreements between
predictions and measurements are consistently scen for various different values of the
duty ratio and the compensating ramp.

Measured current-loop gains for the boost converter are compared with asymptotes
of prediction, emphasizing salient features of a current loop, especially the existence
of the additional pole ws;. Mecasured data for the buck converter are compared with
smooth curves of prediction to show accuracy of the proposed unified model. Both sets
of measured data support analytical predictions of the unified model, and hence verify

the validity of application of analog injection for measurement of current-loop gain.

7.1 Measurements on a Boost Converter

Figure 7.1 shows a test boost converter switching at 50k/z. The nonpulsating in-
ductor current is sensed, and the input voltage source is floated to permit the current
sense resistor to be connected to power ground. The LM234 is introduced to reduce noise
in the sensed current waveform and to allow convenient analog voltage injection at its
output for measurement of current-loop gain 7..

Various values of compensating ramp slope M, are used to establish corresponding

values of D! . and stability parameter Q,. All mcasurements are made at a converter
operating point D = 0.4, D’ = 0.6 which allows both a margin for modulation and a

large value of (), so that possible peaking at f;/2 is exposed.
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Figure 7.1: Test boost converler.

Figure 7.2 shows the predicted asymptotes and measured results of current-loop gain
for D; ;. = 0.5 (no compensating ramp, M. = 0). Since the operating point is D' = 0.6,
little larger than D ;., @, is high: from Eq. (4.9) Q, = 3.2 > 1, from Eq. (4.12) the
additional pole is at f, = 7.9k z, and the unified model predicts that 7. crosses over
at f,/2 = 25kH z on a double slope. Agreement between prediction and measurement is
good, and the presence of the additional pole w, can clearly be scen, especially from the
phase measurement.

Figure 7.3 shows the same comparison for D} ;. = 0.37 (M. = M3/2), together with
additional magnitude asymptotes as predicted from models in [5, 7, 8], respectively. Since
in the unified model @, = 1.1 > 1, f, =25/1.1 = 24kl{z and f. = 25 x 1.1 = 27TkH z are
very close to f; = 25kH z, in good agreement with measurement. On the other hand,
Jc is predicted respectively at 16k/ z, 40kH =z, and 10kH z by the models in [5, 7, 8].
Because of the fact that the corner w, is very close to the crossover frequency (254 H z),
the measured result crosses over at less than 20k H z. It can therefore be concluded that
predictions from [5, 8] tend to be lower, while the prediction from [7] tends to be higher

than the actual value. The existence of w, is also seen in the amplitude and phase
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Figure 7.2: Measured resulls (data points) and prediction (in asymplotes) of current-loop

gain for a boost converter with D), .. = 0.50. Eristence of wy is clearly seen.

measurements.

Figure 7.4 shows again good agreement between the unified model prediction and the
measured results of current-loop gain for D, . = 0.3 (M. = M;). Since Q; = 0.64 is now
less than unity, T, crosses over on a single slope near f, = 0.64 x 25 = 16k /] z, showing
that improved stability is obtained by increasing the compensating ramp to give a lower
Qs.

Figure 7.5 shows one more time good agreement between the unified model prediction
and the measured data for the case where D} ;, = 0.2 (M. = 2M;). Since Q, = 0.35,
much less than unity, 7). crosses over on a single slope near f. = 0.35 x 25 = 8.8k z.
It is seen that the eflect of the additional pole is negligible, since it is located at f, =

25/0.35 = T1kHz, well above half the switching frequency. The current-loop for this

case is fairly much like a single pole system at high frequencies.
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Figure 7.3: Measured results (data points) and predicled asymplotes of current-loop gain

[

for a boost converter with D] ;.

= 0.37. Solid asymplotes: unified model;

others: according to indicated Reference numbers.
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Figure 7.4: Measured results (data points) and predicted asympltoles of current-loop gain

for a boost converter with DI ;.
ws/f2.

= 0.30. The additional pole w, lies above
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Figure 7.5: Measured results (data points) and predicted asymploles of current-loop gain
Jor D, ... = 0.20. The additional pole w, lies well above w, /2.

min
7.2 Measurements on a Buck Converter

Figure 7.6 shows a test buck converter operating at 50k//z. The nonpulsating in-
ductor current is sensed resistively. Two LM234s arc used to reduce noise in the sensed
inductor current, and to allow convenient analog signal injection.

Various values of compensating ramp slope M, arc used to establish corresponding
values of D . and @Q,. All measurements are made at a converter operating point
D = 0.45,D’ = 0.55. A high value for duty ratio is intentionally chosen for the buck
converter to test the accuracy of prediction of the unified model, since predictions are
expected to degrade drastically as current-loop approaches its limit for stability. This is
so because of one unique feature of a buck converter, which is that the dc gain T,(0),
unlike the cases for a boost or a buck/boost, is expected to become unbounded in the
stability limit. Hence. test under this situation is more demanding than lower values of
duty ratio for the unified model.

Figure 7.7 shows the predicted smooth curves and measured results of current-loop

gain for D}, = 0.5 (M. = 0). Since the operating point is D' = 0.55, little larger than

min
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Figure 7.6: Test buck converter,

D}, i, Qs is very high: from Eq. (4.9) Q, = 6.4 > 1, from Eq. (4.12) the additional pole is
at f, = 3.9kH z, and the unified model predicts that T, crosses over at f,/2 = 25kHzon a
double slope. Agreement between prediction and measurement is good, and the presence
of the additional pole w, can clearly be seen, especially from the phase measurement.

Figure 7.8 shows the same comparison for D! ;. = 0.37 (M. = M;/2). Since Q, =
1.2>1, f, =25/1.1 = 21kHz and f, = 25 x 1.2 = 29k /1. Good agreement between
two smooth curves is again seen in the entire frequency range of interest. The existence
of w, is also seen in the amplitude and phase measurements.

Figure 7.9 shows again good agreement between the unified model prediction and the
measured results of current-loop gain for D] ;, = 0.3 (M. = M,). Since Q@ = 0.64 is now
less than unity, 7 crosses over on a single slope near f. = 0.64 x 25 = 16/l z, showing
that improved stability is obtained by increasing the compensating ramp to give a lower
Q-

Figure 7.10 shows one more time good agreement between the unified model predic-

tion and the measured data for the case where D] ;, = 0.2 (M, = 2M3). Since Q5 = 0.35,

much less than unity, 7. crosses over on a single slope near f. = 0.35 x 25 = 8.8k 2.
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Figure 7.7: Measured results (data points) and prediction (in asymploles) of current-loop
gain for a buck converter with D! . = 0.50. Good accuracy of the unified

model predictions are clearly seen.mm
It is seen that the effect of the additional pole is negligible, since it is located at
fp = 25/0.35 = T1kll z, well above half the switching frequency. The current-loop for
this case is much like a single pole system at high frequencies. Good agreement between
two smooth curves is seen one more time.

Reviewing all comparisons, it is concluded that the predictions for a buck converter
by the unified model are verified. Note also the double pole of the current-loop gain is
shown to be fixed by the measured data for a buck converter. In other words, different
mechanisms for current loop to go to instability are confirmed by measured data.

In summary, experimental measurements on boost and buck converters agree con-
sistently well with predictions by the unified model. It is therefore concluded that the

unified model is theoretically sound and experimentally verified.
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Figure 7.8: Measured resulls (data points) and predicted asymplotes of curreni-loop gain
Jor a buck converter with D ; = 0.40. Good accuracy of the unified model
predictions are clearly seen.

Current-Loop Gain for D/ ,,= 0.30, M, = 0.5M, = 0.34M,
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Figure 7.9: Measured results (data points) and predicted asymptotes of current-loop gain
for a buck converter with Dl ;. = 0.30. The additional pole w, lies above

min
ws /2. Good accuracy of the unified model predictions are clearly seen.
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amp/dB Current-Loop Gain for D), = 0.2, M. = M, = 0.68M, Phase/deg
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Figure 7.10: Measured results (data points) and predicted asymptotes of current-loop gain
for a buck converter with D)., = 0.20. The additional pole w, lies well
above w, /2. Good accuracy of the unified model predictions are clearly seen.
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Chapter 8

Conclusions

A unified model for a current-programmed converter is established as in Fig. 2.2.
Although the format is the same as in [5], a modified modulator model leads to corre-
spondingly modified expressions for F;, and k as given in Eqgs. (2.13) and (2.14), and
also for the loop gain T.(s) shown in Fig. 3.3.

It is well-known that use of a compensating ramp of slope M. extends upwards from
0.5 the limit of the duty ratio D for which stability is maintained. It is found convenient
to introduce a new parameter D) . , defined by M. as in Eq. 3.1, which represents the
minimum value of the complementary duty ratio D’ = 1 — D for which stability is
maintained.

It is also well-known that the instability is caused by the sampling effect, which is not
accounted for in the loop gain shown in Fig. 3.3. The sampling effect is here accounted
for by an extension of the previous model from which the presence of an additional pole
wp in Te(s), given by Eq. (4.12),is inferred and incorporated in the modulator gain F,(s)
in Fig. 2.2, since they appear in cascade.

The presence of the additional pole w, causes the final high-frequency asymptote of
Tc(s) to be —40dB/dec, as shown in Figs. 4.2 and 4.3. A salient feature is that this
final asymptote is fixed in position, crossing zero dB at w,/2, and that consequently
the loop-gain crossover frequency cannot exceed half the switching frequency regardless
of any component values or converter operating point. Whether crossover occurs at or
below w, /2 is determined by the value of the operating point D’ relative to D! . through
another parameter (), defined in Eq. (4.9). The “stability parameter” 0, emerges as the
central quantity of interest in the current-loop gain T¢(s), since its value determines not

only the crossover frequency but also the degree of peaking, which always occurs at w, /2,

in the low-pass quadratic of Eq. (4.8) that is contained in all of the closed-loop transfer
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functions.

To answer the question: why in actual measurements, for the same converter and
under the same test conditions, the measured value obtained by using digital injection is
much less than the value obtained by using analog injection, an analytical investigation
is conducted. It is revealed that inherent limitations exist for accuracy of a digital
signal injection measurement [19]. The dc value of current-loop gain measured by digital
injection is at least 10413 below what it should be because of the finite pulse width of
the practical sampler, a model for the sampling process in switching converters. Aliasing
effect is another source of the attenuation. To avoid complications caused by finite pulse
width of the practical sampler, analog injection [22] can be used. It is found that analog
injection outpefforms digital injection in all aspects for the cases where both of them are
applicable.

The unified model is verified by experimental measurements of current-loop gain on
a test boost converter and on a buck converter, respectively. Agreements between pre-
dictions and measured data are consistently good. An analog signal injection technique
is enabled by sensing the (nonpulsating) inductor current instead of the pulsating switch
current, which does not change the nature of the current loop. Figure 7.2 and Fig. 7.7

show T.(s) for Q, = 3.2, and 6.4, respectively, for a boost and for a buck. @, has a high

!
min

value since D’ = 0.6,0.55 are little larger than D = 0.5; the presence of the additional
pole w, at 7.9k H z, and 3.9k 11 z, respectively, well below crossover, is clearly visible.
The effect that the compensating ramp M, has on the current loop is clearly seen
to be the stabilizing effect in Figs. 7.2 through 7.5, as well as in Figs. 7.7 through 7.10.
Current loop loses its stability when the corresponding current-loop gain loses its phase
margin, an identical mechanism to that of a classical sccond-order low-pass system.
Subtle differences in the way that current-programmed converters go to instability are

also verified.
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Part 11

A Generic Averaged Model for Switches in

Dc-to-Dc Converters
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Chapter 9

Introduction

Modeling of large- and small-signal dynamics in dc-to-dc switching converters is a fun-
damental and challenging issue. It is fundamental since a converter needs to be modeled
properly to allow closed-loop design to form a regulator which meets the design speci-
fications in a robust manner. It is challenging since, as far as the terminal relationship
between voltage and current is concerned, switches are nonlinear elements [24].

One important step to take at the outset is the formulation of the modeling problem.
Different formulations may lead to vastly different levels of difliculty in obtaining a
model. If the modeling problem for a switching converter is approached in the context of
nonlinear analysis, the solution is very likely to be complicated. Consequently, physical
insight is obscured and hard to obtain. That is, one is likely to obtain results with
high-entropy expressions (expressions that are complex and provide no insight into the
physics going on behind the mathematics). In many cases, general closed-form solutions
are very hard, if not impossible, to obtain.

Fortunately, for a switching converter, one can write a state-space description to
formulate a linear time-varying system, or piecewise lincar system, if a time-varying
switching function is defined properly to describe the duty ratio [1]. Major advantages
of this formulation include: 1) A sufficient condition for the existence and uniqueness
of a solution can be established (see Appendix B for details); and 2) The solution can
easily be found by direct integration of the state-space description over each respective
subinterval, and then piecing together the results by using the continuity of the states
at the switching instants [12].

In other words, the unique solution to the lincar time-varying system can readily be
found, without having to resort to complicated mathematical formalism for time-varying

systems. Successful efforts in this direction have led to the establishment of the method
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of state-space averaging, initiated in [28], and culminated in [12].

The end result is an elegant canonical circuit model for three basic converters. In
essence, state-space averaging replaces a linear time-varying state-space description for
a switching converter by a linear time-invariant state-space description by averaging
(smoothing) out ripples at the switching frequency.

As discussed in [28, 12], averaging can be considered as low-pass filtering. Low
frequency information is retained and high-frequency information is sacrificed purposely
to trade for simplicity of the model, which in turn reveals a wealth of physical insight
into the small-signal dynamics of switching converters. Because of its simplicity, state-
space averaging has gained wide acceptance. The principle behind state-space averaging
has found even wider applications in modeling dc-to-dc switching converters other than
PWM (see, for example, [15] and [29]-[33]).

Another aspect of modeling a switching converter, which has received much attention
recently, is applications of models for computer simulations. While the canonical circuit
model is extremely useful in obtaining low-entropy analytical results, it is less powerful in
simulation applications, because of the fact that the locations of switches and reactances
in converters are not necessarily the same as those represented in the canonical model.
This inconvenience is the consequence of the facts that the canonical model is a model
for converters and that it is over-manipulated for clegance in form.

The model of PWM switches given in [34] remedies the situation by establishment
of a model for two switches in a PWM converter. The derivation of the model of PWM
switches taps into the fact that there exists an inherent PWM tree structure in any
PWM converter, which consists of two switches and one inductance. Frequently, but not
necessarily, this structure is connected as a three-terminal device [16, 15]. Interactions
between two switches and the rest of the converter, which is time-invariant, can be
characterized by its terminal voltages and currents, in much the same way as modeling a
transistor by an equivalent small-signal circuit. The model of PWM switches is extended
to cover converters in discontinuous conduction mode in the second part of [34], and in
current programming [9] by rendering the model into an equivalent y-parameter form.

While representing a step forward, the model of PWM switches is still inconvenient when
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applied to some converters in which two switches don’t share a common node. This is
due to the fact that two switches don’t necessarily have to share a common node in
order to realize PWM switching [16]. Moreover, versions of the model for discontinuous
conduction mode and for current programming have their forms different from the one
for PWM converters, which may be inconvenient for simulations.

An internal report [3R] proposed a brand-new way of modeling switches. This ap-
proach uses the volt-second and amp-second balance equations to derive large- and small-
signal models for switches. The end result was a four-terminal model for two switches in
PWM converters. Switches in converters in discontinuous mode, in current programming,
and in other modes of operation were not tackled. Relationships of the four-terminal
model to previéus models, converter-wise or switch-wise, were not investigated.

One unique aspect of modeling for simulation purpose is that a large-signal model is
sufficient to simulate large- and small-signal dynamics of a converter. This is so because
of the ability of simulation software packages to predict small-signal dynamics if a large-
signal model is available. Specifically, if a large-signal model is available, small-signal
dynamics can be obtained by doing analog injection into the loop of interest in the
simulated converter, in much the same way as doing analog injection to a real physical
converter. Discussions and applications of averaged large-signal models can be found,
for example, in [35, 36, 37].

Various efforts have focused on developing models which are “exact.” See, for exam-
ple, [4, 18]. A detailed discussion can be found in [4], where comparisons of discrete-time,
sampled-data, and state-space averaging approaches are made to enhance the under-
standing of similarities and differences among three typical approaches. The modeling
approach in [18] is exact in the small-signal limit. It starts from discrete-time analysis,
and then translates important results from discrete-time to that of continuous-time by
use of the concept of “cquivalent hold,” an important and useful technique. While all
models enjoy better performance at high frequencies than state space averaging, they all
suffer from complexity of the model which is typified by presence of complex exponen-
tials in expressions for quantities of key interest. Quantities with expressions in terms

of complex exponentials make physical interpretations very hard, if not impossible, to
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obtain, which is exactly opposite to what low-frequency model is capable of.

Since the ultimate goal of any modeling technique is to aid design, simplicity is a
virtue. Hence, in the following, efforts will be focused on predictions of large- and small-
signal low-frequency dynamics. There are two main reasons for adopting this approach:
1) averaging can faithfully retain low-frequency information, while simplifying greatly
the derivation; 2) even in cases where high-frequency information has to be retained, it
is preferable to augment a low-frequency model with additional elements than to derive
a new model from scratch.

Chapter 10 derives the balance equation for switches in dc-to-de converters by in-
troducing a time-varying model for individual switches. The approach here is a refined
version of the one in [38]. Chapter 11 establishes a low-frequency small-signal model for
two switches for constant-frequency, constant-on-time, and constant-off-time controls, re-
spectively. Since the model has an identical form for three different control strategies, it
is called the generic averaged model for two switches in de-to-dc converters. Chapter 12
is devoted to extension of the generic model to converters with isolation transformers.
Chapter 13 presents extension of the generic model to converters in discontinuous con-
duction mode by employing the concept of equivalent duty ratio. A discussion about the
theoretical aspects of the equivalent duty ratio is presented. A significant result is that
averaging can always retain low-frequency information contained in the original quantity
regardless of its ripple content as long as the average value of the original quantity is not
vanishingly small. Salient features of the model are discussed. Chapter 14 discusses the
extension to current-programmed converters. This extended model provides a convenient
alternative for simulations, with respect to the unified model presented in part 1 of the
thesis. A y-parameter version of the generic model reveals that yy; is always positive.
Hence, one can see explicitly that current programming introduces lossless damping to
give improved small-signal dynamics. Chapter 15 addresses the issue of extension to
converters with multiple switches. A three-switch converter is characterized for its large-
and small-signal dynamics to illustrate the uscfulness and generality of the proposed ap-
proach. Design guidelines are also discussed for the three-switch converter. Chapter 16

summarizes major results obtained.
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Notation conventions adopted here are as follows. Capital letters are used to in-
dicate quantities associated with steady-state, hatted letters are quantities associated
with small-signal perturbations, and small letters represent quantities associated with

perturbed state, i.c., quantities which are the sum of capital and hatted letters.
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Chapter 10

The Balance Equation for Two Switches

In a circuit, volt-seconds for an inductance and/or ampere-seconds for a capacitance
have to be balanced within one switching cycle in order to maintain a steady state.
Equations describing these required balances are frequently called balance equations.
Balance equations are used more frequently in power electronics than other fields of
electrical engineering. This is so because, in addition to meeting fundamental circuit
laws such as Kirchhoff voltage and current laws (KVL and KCL), a switching converter
has to satisfy all the balance equations for inductances and capacitances in order to have
a non-trivial steady state. In other words, balance equations for switching converters
are equally as fundamental as KVL and KCL. More important, it opens up a brand-new
avenue for characterizations of switching converters.

If balance equations for switches in the environment of a converter can be established,
one can expect that the balance equations will play a fundamental role in modeling
behaviors of switches. The difliculty lies in the fact that switches are not energy-storage
elements, and hence no balance equations can directly be written for them. A time-
varying model for a switch is established to provide the means for writing the balance
equation.

For convenience of discussion, the constraint of small-ripples for inductor current and
capacitor voltage is assumed in this and the next chapters. The constraint is later relaxed
by introduction of the concept of the equivalent duty ratio.

It needs to be pointed out that the idea of using balance equations to investigate
dynamic behaviors of switches was originated in [38], of which discussion here is a much

refined version.
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Figure 10.1: Typical waveforms of switch vollage and current in a dc-lo-dc converter
with small ripples. Removal of the dc component Vs from vy, shown in (a),
resulls in a pure ac waveform v, — Vy (b). Removal of the dc component I
Jrom iy, shoun in (c), results in a pure ac waveform i, — I, (d).

10.1 A Time-Varying Model for a Switch

Figure 10.1 (a) and (c) shows typical waveforms of the voltage across, and the current
through, a switch. The average values of the voltage and the current over one switching

cycle can be defined respectively as

1 (n+1)T,
V, = 7—,/ vedl, (10.1)
s JnT,
and
1 (n+1)T,
I, = F/ iydt. (10.2)
s vnT,

One can then decompose the waveforms into two parts: the first part is the dc value
of the waveform, and the second is the first (at the switching frequency) and the higher
harmonics. Removal of the dec component V, from v, shown in Fig. 10.1 (a), results in a
pure ac waveform v, — V; shown in Fig. 10.1 (b). Removal of the dc component I, from

it, shown in Fig. 10.1 (c), results in a pure ac waveform ¢, — I, shown in Fig. 10.1 (d).
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Figure 10.2: A two-switch converter has two switches and a linear-lime-invariant subcir-
cuit (a); the lime-varying model for a swilch is substituled in lo oblain an
equivalent circuit (b); then the circuil can be characterized at lwo equivalent
circuils (c) at de, and (d) at ac (the switching frequency).

The decomposition shows explicitly an important feature of the waveforms. First,

both the waveforms have flat bottoms regardless of what dc values they may have.

Second, the negative values are given exactly by the corresponding dc values. If one

defines a model by using the bottom part of the waveform, the model will be given in

terms of dc quantities. Therefore, one can see that the following dc and ac models can

be defined according to the waveforms.

The dc model can be defined as

The ac model can be defined as

—Vs, switch on
s(t) =
—1I,, switch off.

Several remarks are in order here.

(10.3)

(10.4)
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The dc model has been defined in terms of averaged switch voltage V; for convenience,
since switching converters are predominately used for voltage-to-voltage conversions. Of
course, if desired, the dc model can be defined in terms of dc current I, as well. This is
true because of the well-known property of substitution for a linear circuit [24].

The modeling approach is unique in that the model focuses on the value of switch
current (zero value) when the switch is off, and on the value of switch voltage (zero
value) when the switch is on. That is, zero values of switch current and voltage are
unfolded to allow analysis to proceed in places where it has been considered impossible
to do. This approach is different from all previous modeling efforts, which focused on
the voltage when the switch is off (since switch voltage is determined by outside circuitry
when switch is'oﬂ'), and on the current when the switch is on (since switch current is
determined by outside circuitry when switch is on).

The ac model for the switch is time-varying, which reflects the time-varying nature
of a switching converter. Although it is not useful per se for any analysis, it does provide
a powerful tool to investigate switch dynamics as to be shown later.

Another useful feature of the model is that it is fully determined if the dc values of
voltage and current are known. That is, the ac model is in terms of dc quantities.

Characteristics of a converter with small ripples can be obtained by obtaining its
behaviors at dc (zero frequency) and at ac (the switching frequency), respectively. That
is to say, analysis of a converter can be pursued at scparate frequency scales: one at
dc and the other at ac (the switching frequency). Figure 10.2 is a block-diagram rep-
resentation of the idea. A two-switch converter is represented by two switches and a
linear-time-invariant subcircuit in Fig. 10.2 (a). When the time-varying model for a
switch is substituted in, one obtains an equivalent circuit in Fig. 10.2 (b). Then the cir-
cuit can be characterized at two equivalent subcircuits: Fig. 10.2 (¢) at dc¢ and Fig. 10.2
(d) at ac (the switching frequency). The overall converter characteristics can then be
obtained by the principle of superposition, which is applicable here since the rest of the
converter is linear and time-invariant.

Finally, note that the time-varying model for the switch is applicable to analysis of

a converter in transients as well, since average values for switch voltage and current are
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defined locally (in one switching cycle).

10.2 Concepts of Dc and Ac Circuits

One important feature of the equivalent circuits for d¢ and for ac ( switching fre-
quency) is that the linear time-invariant part of the converter is reduced to simple wire
connections in both cases. llence, further investigation of the phenomenon may be useful,
which leads to the concepts dc and ac equivalent circuits.

Behaviors of switches in a converter are determined by two basic constraints. One is
that in any converter, there must exist a PWM tree structure [15, 16], which guarantees
the required turn-on and turn-off of the switches (commutations). The other is the
requirement that a converter has to have a connected graph at dc in order to ensure
proper voltage conversion.

The dc equivalent circuit for a converter is obtained by shorting all inductances and
opening all capacitances. Fig. 10.3 shows dc circuits for six basic converters, respectively,
where the plus and minus signs indicate the assumed positive direction for the voltage
drops across switches.

Salient features of the dc circuit can now be seen. The dc circuit consists of switches,
input, and output elements. No reactances are associated with it. The dc circuit is a
connected graph which ensures proper voltage conversion. The dc conversion ratio can
be found from the dc circuit when the dc model for switches are substituted in.

The ac circuit is the equivalent circuit at the switching frequency. It is determined
by the PWM structure alone. At switching frequency, under the constraint of small
ripples, inductances can be taken to be open circuits, and capacitances can be taken to
be short circuits. Thus, the PWM tree structure is reduced to a parallel combination of
two switches as illustrated in Fig. 10.4. Note that the input voltage source is considered
as a stifl capacitance as well.

It needs to be emphasized that the ac circuit consists of switches only. If the ac model
for a switch is substituted into the ac circuit for a converter, one can investigate behaviors

of switches in terms of dc quantities, which are the balance equations introduced next.
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Figure 10.3: The dc circuit identified for siz basic converters. The plus and minus signs
indicate the assumed posilive direclions for the vollage drop across swilches.

Figure 10.4: The ac circuil identified for siz basic converters.
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Figure 10.5: Writing the balance equalion for two switches. The plus and minus signs
indicate the assumed positive directions for vollage drops across swilches
and the arrows show the assumed positive directions for currents through
respective swilches (a); the equivalent circuit for time duration Ty when s
is on and & is off (b); the equivalent circuit for time duration Ty when s is
off and s is on (c).

10.3 The Balance Equation

Establishment of the ac circuit for converters provides a way of writing the balance
equation for switches.

Consider a converter with a switch s, and a switch &, switching in a complementary
manner. The ac equivalent circuit is shown in Fig. 10.5 (a), in which the plus and minus
signs indicate the assumed positive directions for voltage drops across switches and the
arrows show the assumed positive directions for currents through respective switches.
Substitutions of the time-varying model for switches s and &, respectively, into the ac
circuit yields the equivalent circuits shown in Fig. 10.5 (b) and (c). The equivalent circuit
shown in Fig. 10.5 (b) is for the time duration 7} when s is on and & is off. The equivalent
circuit shown in Fig. 10.5 (c) is for the time duration T3 when s is off and 5 is on.

Recall that the ac circuit has no dc component. Ilence, in a steady state, volt-
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seconds and ampere-seconds accumulated for the time duration T} should be equal to

those accumulated for the time duration 7, i.c.,

V,T1 - VT, = 0,
]éTl - ].9712 = 07

(10.5)

where again 7 is the on-time of the active switch, and 7, the off-time of the active
switch.

Equation (10.5) is the balance equation for two switches in a switching converter with
small ripples. The balance equation (ac phenomenon at switching frequency) is given in
terms of de quantities, Vi, V;, I, I;, T1, and T, and hence provides inherent connections
between ac and dc quantities.

A physical interpretation of the balance equation is presented here to help drive
home the idea. The balance equation is a modeling tool developed to model dynamics
of switches in a converter. In general, the volt-second balance is actually dictated by
the inductance which would appear in parallel with switches if it were retained during
modeling steps, and the ampere-second balance is actually decided by the capacitance
which would be in series with the switches if it were kept during the modeling process.
In other words, the balance equation for switches are in fact a set of respective balance
equations for inductance and capacitance, but in terms of dc quantities associated with
switches.

Establishment of the balance equation provides the means to derive large- and small-

signal models for switches in a systematic manner, which is explored in the next chapter.
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Chapter 11
A Generic Averaged Model for Switches in

Dc-to-Dc Converters

The balance equation for switches derived in the previous chapter is studied further.
Perturbation of the balance equation yields a generic averaged equivalent circuit model
for two switches in the environment of a switching converter with small ripples. This
equivalent circuit incorporates large- and small-signal dynamics for switches into a single
circuit model in a way similar to the canonical model derived for converters from the
method of state-space averaging.

One important feature of the approach, which separates it from previous modeling
approaches, is that it can readily be generalized to N (a positive integer) switches in
switching converters. Details about the generalization is presented in a later chapter.

The generic model is then applied to converters with three different control strategies:
constant frequency (frequently referred to as PWM), constant on-time, and constant off-
time. The reduced form of the generic model for the three control strategies suggests
that understanding of converters with constant-frequency control (PWM converters) is
fundamental.

It is also shown that the model of PWM switches [34] is a special case of the generic
model. Also, if the generic model is applied to a particular converter, the resultant
equivalent circuit is identical to the canonical circuit model proposed in [12].

In short, the results in [12, 34] are extended by perturbation of the balance equation
to yield a generic averaged model. Low-frequency dynamics of switches can now be
predicted truly at switch level, i.e., switches can be handled as lincar-time-invariant two-
terminal circuit elements if one is interested only in their low-frequency characteristics.

One may conclude that a long journey for the power clectronics community to find a
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simple way to model switches is now completed.

11.1 Perturbation of the Balance Equation

For a converter with a complementary pair of switches s and 3, the balance equation

for them is of the form
VsTy = V3T,
[§T] = 137‘27

(11.1)

which is a description of the energy balance in a converter under steady state.
According to the method of state-space averaging [12], the low-frequency dynamics
can be obtained by introducing perturbations into the quantities corresponding to steady

state (or dc operating point). Perturbation of the balance equation yields

(Vat 0s)(Th + 71) = (Vs + 5)(T2 + 72)
(Is + is)0(T1 + 71) = (I, + i,)(T2 + 72),

(11.2)

where perturbations for time are expressed as 7, instead of {, with proper subscripts to
distinguish them from time instants.

Expansions and rearrangement leads to the following two sets of equations,

Vs = V3T,

(11.3)
I;Ty = I,Ty,
and
v ——-V’% +T3iv—+—‘—/~§-7‘-
s — 711 1 Tl 5 ‘l 2
(11.4)
PR/ P) TR [
5§ — T1 1 Tl s T] 2.

where products of perturbations have been dropped because of the small-signal con-
straint.

Equation (11.3) can be rewritten as

pon (11.5)
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Figure 11.1: An equivalent circuit model for two switches generated by perturbation of the
balance equation. The conceptual transformer has a “turns ratio” T,/Tj,
which reflects the inherent switching action in switching converters. The
conceptual transformer is valid all the way down (o de.

which is identical to equations for an ideal transformer with “turns ratio” 7,/Ty, sug-
gesting that an transformer equivalent circuit may be obtained.
From Eq. (11.3) and Eq. (11.4), one can derive an equivalent circuit model as shown

in Fig. 11.1, where

i

é

%’;(Vsﬁ — V572)
R (11.6)
j= E(lsf‘l — I;73).

Since this model is valid for any converter topologies and for three typical control
strategies, it is called the generic averaged model for two switches in converters with
small ripples, or simply, the generic model.

Several remarks are in order here.

The generic model is similar to the well-known equivalent circuit model for an ideal
conventional two-winding transformer. The equivalent circuit for the active switch s,
implemented as a transistor, corresponds to “the primary,” and the passive switch 3,
implemented as a diode, corresponds to “the secondary.” Furthermore, the positive

directions of voltages and currents on both sides indicate that the active switch always
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acts as a load, while the passive switch always behaves as a source, which is consistent
with the fact that in a converter, the product of the voltage across and the current
through the active switch (transistor) is always positive, and the corresponding product
for the passive switch (diode) is always negative.

The “turns ratio” of the equivalent transformer is T2 /Ty = D’/ D, which is the ratio of
the off-time over the on-time of the active switch. Hence, switching action in a converter
makes two switch branches coupled together in a way similar to linear time-invariant
controlled sources. The control quantity is the on-time duration of the active switch Ty.
Note that the conceptual transformer is valid all the way down to dec.

The model has two major functions. The first one, described by Eq. (11.3), is to
predict large—siénal behaviors of switches in steady state. An additional function of
the large-signal model, which is useful but less obvious, is that it can also be used for
averaged large-signal transient analysis. This is true because there was not a single
limitation placed on the value of duty ratio during the derivation of Eq. (11.3). Note
that the only implicit condition for Eq. (10.5) to be true is that an average value can
be well defined, which guarantees the existence of decompositions of switch voltage and
current into respective dc and ac components, therefore validating Eq. (11.3).

The second function, described by Eq. (11.4), is to model averaged small-signal dy-
namics of switches around a steady state. In the model, the steady state is represented
in the form of dc quantities V,yy, Ion, and D, frequently called parameters for the dc op-
erating point. (The two terms, “the steady-state solution” and “the dc operating point”
are frequently used interchangeably in practice.) Since the generic model has four ter-
minals, its applications are casier than the model of PWM switches in [34], truly simple
point-by-point substitution. This advantage is particularly handy for applications of the
model for computer simulations.

Another salient feature of the generic model is that it can be casily extended for
converters in modes of operation other than PWM. Furthermore, all extended models
will be exactly the same in form, an attractive feature for simulations.

The equivalent circuit model in Fig. 11.1 is a much refined version of that in [38]. The

final form of the original model in [38] was not exactly a transformer equivalent circuit,
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which obscures the physical insight.

Results to be derived from now on are original.

11.2 A Reduced Form of the Generic Model

In this section, three most common control strategies for converters with small ripples
are discussed, which leads to a reduced form of the generic model.

The generic model for two switches is discussed specifically for three common control
strategies: constant {requency control, constant on-time, and constant off-time. It is

shown that a single reduced form of the generic model is representative of all three cases.

Constant-Frequency Control

Constant frequency control is also called pulse-width-modulation (PWM) control. In
the control strategy, the switching frequency is kept constant, and regulation is realized
by variations of the width of the control signal pulse. The pulse width is frequently char-
acterized by introduction of a quantity known as duty ratio. Hence, constant frequency
control is also known as duty-ratio programming.

Under this control strategy, any perturbation for the on-time will have to be balanced

by a perturbation of the off-time with the same magnitude but in opposite direction, i.e.,
Ty = —71. (11.7)

Upon substitution of Eq. (11.7) into expressions for the voltage source and the current

source, one has

1 . . Vet Vati  Vosr s
— Va — V§ - _— = d’ 11.
Tl( T 72) D T, D (11.8)
and
1 - 1,73) = L+l _ Ton (11.9)

Ts D 1, D
where V,;p = V, + Vi and I, = I, + T5. Voltage Vos s is the voltage stress a switching
device has to sustain when it is in ofl state, and current I,, is the current stress a

switching device has to sustain when it is in on state.
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E(Vof]vD) J([oneD)
v ‘/off lon
Constlant frequency D i
o7 )
Constant on-time Vors ](D/l
Vorg D'
Constant off-time ——-f—é—— Ion

Table 11.1: Ezpressions for sources in the reduced form of the generic model for two
switches.

Constant-On-Time Control

Under constant-on-time control, the on-time of the active switch s is kept constant,
and regulation is realized by changing the switching period (variable frequency). Hence,
there is no perturbation for the on time, and any perturbation in switching period is

equal to that of the the ofl-time of the active switch s, i.c.,

Ho= 0, (11.10)

T2 = Ts.

Then, one has

1 . . | L

TITI'(V.QTI - Vifa) = —5(—11') = V,sd, (11.11)
and

| . I, , - IonD .

E(Im - I;f) = ﬁ(-d') = - (11.12)

Constant-Off-Time Control
Under this control strategy, the off-time of the active switch s is kept constant, and
regulation is realized by variations of the switching period (variable frequency). The

control is described by

fo= A, (11.13)
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Figure 11.2: The large- and small-signal versions, (a) and (b), of a reduced form of the
generic averaged model for two swilches for three common control strale-
gies. They are representative of all three cases, and hcnce il can be used
interchangeably with the generic model.
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One then has

, Ve oo VoD
—‘T("’T’ ~ VsTy) = D(d) =) d, (11.14)
and
l(1—+ I,7) = I’*(ci)—l d (11.15)
T2 511 aT2) = D' — donl. .

Table 11.1 collects respective expressions for the voltage source and the current
sources for the three control strategies. Note that expressions for the sources for constant
on-time and constant ofl-time controls have been written in terms of the perturbation of
duty ratio d. Differences in control strategies are represented by different values for the
sources. The féct that two variable-frequency controls can be rendered into equivalent
constant-frequency control indicates that understanding of constant-frequency control
(PWM) is fundamental, and is representative of all threc control strategies. Hence,
without loss of generality, discussions and extensions on the generic model can be fo-
cused on the reduced form for converters with constant-frequency control (PWM con-
verters). Furthermore, since the three control strategies cover practically all potential
control strategies, the reduced form for constant-frequency control in Fig. 11.2 is used

interchangeably with the generic model in Fig. 11.1.

11.3 Relationships Among Different Models

In this section, relationships among the generic model, the model of PWM switches
[34], and the canonical circuit models [12] for converters are discussed.

It is shown that the model of PWM switches is a special case of the generic model.
Both the model of PWM switches and the generic model are equivalent to the canonical
circuit model (for converters) if they are applied to a specific converter.

The relationships are revealed with the aid of circuit transformation techniques. One
of them, which is particularly useful, is the shifting of sources [24, 25].

Another one is the reflection of impedances and sources from the primary to the
secondary, and vice versa. Actually, the fact that the generic model is in an equiv-

alent transformer form is onc advantage over previous models, which, in addition to
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Figure 11.3: Key steps of circuil transformation. Substitution of the generic model into
a boost converter (a) leads to an equivalent circuit (b); shifting Jd and
the combination of Ed and D' “turns ratio” gives (c); absorbing one of
the current source leads to (d); reflecting Ed 1o the “primary” and L to
the “secondary” yields (e), which is found lo be identical lo the canonical
model.
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other circuit manipulation techniques, allows application of the technique of impedance

reflection.

Relationship with the Canonical Model

Figure 11.3 (a) shows a boost converter and the generic small-signal model. Simple
point-to-point substitution of the model into the converter to replace switches one at a
time leads to the equivalent circuit in Fig. 11.3 (b).

Shifting the current source Jd, the combination of ]J(Z, and the part of transformer
with D' “turns,” one obtains the equivalent circuit shown in Fig. 11.3 (c).

Absorbing the current source in parallel with the inductance and the secondary
two turns ratids into one (D + D’ = 1), one arrives at the equivalent circuit shown
in Fig. 11.3 (d).

Reflecting the voltage source in the secondary to the primary and the inductance

from the primary to the secondary, one derives the equivalent circuit in Fig. 11.3 (e),

where
In I,V
J= m=te, (11.16)
- (,llc
Ey = Eg—D'E=FE—slLd—-DE=V(l- “R ), (11.17)
L
L = 2. (11.18)

Comparing Fig. 11.3 (e) with Fig. 11 and Table 1 in [12], onc can see that circuit
topologies and expressions on both circuits are identical. Hence, it is verified that the
generic model is identical to the canonical model when it is applied to a particular

converter.

Relationship with the Model of PWM Switches

The relationship between the generic model and the model for PWM switches is
revealed in Fig. 11.4.

Start with the generic model. Connect b’ to a’ to form a three terminal device as
shown in Fig. 11.4 (a), which is also called “the common passive connection.”

Shift the current source as shown in Fig. 11.4 (b).
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(d)

Figure 11.4: Key steps of circuit transformation: Connect b’ to @’ in the generic model
(a) to from a three-terminal circuit (b); shifting the secondary to the primary
and reflecting the current source to the overall winding with D + D’ turns
lead to (c); Combine the current sources lo obtain (d).

Shifting the secondary to the primary, and then reflecting the current source to the

overall winding with “turns” D4 D’ = 1, one obtains the equivalent circuit Fig. 11.4 (c).

Combining two current sources, one obtains the equivalent circuit as shown in Fig. 11.4

(d), where the voltage and current sources are given by

E

J

v,
-%i (11.19)
[on Ion])

= = Lo, (11.20)

Comparing Fig. 11.4 with Fig. 7 in [34], one can see that these two equivalent cir-

cuits are identical. Note that in [34] terminals a, a’b’, and b were named a, ¢, and p,
P
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respectively, and v,s/ is denoted as vy, and ¢,, as i.. Hence, one can see that the model
for PWM switches is a special case of the generic model.

Note that connecting @’ to b’ forms a so-called “common-passive™ case. It can be
shown that other connections are also special cases of the generic model.

In short, one may say that the generic model inherits advantages of previous models
and extends those efforts to a new height: modeling switches as two-terminal linear-
time-invariant circuit elements for their low-frequency characterizations. A long journey
for the power electronics community to find a simple way to model switches is now

successfully completed.
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Chapter 12

Extension to Switches in Isolated Converters

The generic model has been limited so far to converters without isolation transform-
ers. This constraint is relaxed in this chapter.

In most applications of switching power conversions, transformers are required to
isolate the secondary from the primary. In addition, the presence of a transformer pro-
vides an additional avenue for obtaining large values of voltage conversion ratio. Hence,
the generic model needs to be extended to cover converters with isolation transformers
(isolated converters).

Isolated converters discussed here can in general be classified into two groups: 1)
converters derived from basic converters such as, for example, the forward converter,
the flyback converter, the isolated Cuk converter, and the isolated Sepic converter; and
2) converters with parallel power paths developed primarily for high-power applications
such as, for example, the push-pull, the half-bridge, and the full-bridge converters. The

generic model will be extended to cover converters in both groups.

12.1 Basic Isolated Converters

One particular feature associated with isolated converters is the fact that they fre-
quently use more than two switches. Additional switching devices are needed either to
allow insertion of an isolation transformer, or to provide an additional parallel path to
handle more power with similar device ratings.

A general rule for inserting an isolation transformer into a converter is that any
alterations of the converter circuit do not change the dc and the ac circuits, except a
scaling factor (turns ratio) associated with voltages and currents.

Figure 12.1 shows four basic isolated converters in the first group which are frequently
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Figure 12.1: Isolated converters and their dc and ac circuits: the forward, the flyback,
the isolated Cuk, and the isolated Sepic converter cases.
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encountered in practical designs. The corresponding dc and ac equivalent circuits are
drawn next to them.

The forward converter in Fig 12.1 (a) is derived from the buck converter by inserting
an isolation transformer 7T,. The transformer is inserted by first splitting the switch into
two (with identical duty ratios) and then connecting a transformer in between.

When switch s (the transistor) is on, the positive value of the voltage over diode D
forces itself to turn on, hence the power is pumped through the transformer to the output.
In the meantime, a certain amount of energy is stored in the transformer magnetic field.
Diode D is necessary to provide a forward path for power to flow from the primary to
the secondary, and then the output.

When switch s is off, diode D is off, and switch s is on. Power is supplied to the
output through the freewheeling of the inductor current which is sustained by the energy
stored in the magnetic field of the inductor. In the meantime, the energy associated with
the transformer is fed back to the input voltage source through D, hence resetting the
magnetic field, which prevents the onset of saturation of the magnetic core.

The flyback converter shown in Fig. 12.1 (b) is obtained by introduction of an isolation
transformer into the buck/boost converter. Since the location of the inductor is at a place
where the converter can be disconnected electrically by insertion of a transformer, no
additional switching devices are needed.

When switch s (the transistor) is on, switch & (the diode) is off. Power is pumped
into the transformer, and the output capacitor discharges its voltage, supplying power
to the load. When switch s is off, switch 3 is on, providing power to the output and,
in the meantime, re-supplying power to the capacitor (by charging-up of the capacitor
voltage). It is scen that the isolation transformer acts similar to a two-winding inductor,
and hence no additional switching devices are needed.

The isolated Cuk converter shown in Fig. 12.1 (c) is realized by splitting the energy
transfer capacitor into two and then inserting a true ac transformer in between. An ac
transformer can be used since there is no dc current flowing through the capacitor. No
additional switches are needed to maintain the same dc and ac circuits.

The isolated Sepic converter is shown in Fig. 12.1 (d). An isolation transformer can
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be inserted in the way as in a flyback converter, since the location of the inductor provides
a natural place for insertion of a transformer. No additional switches are needed.

Figure 12.2 shows isolated converters in the second group which have parallel power
paths. Within one switching cycle, the parallel paths provides two pulses. The ripple
frequency seen by the low-pass filter, formed by L and (', is twice of the switching
frequency.

The complementary switch s is implicitly present. Its function for freewheeling of
inductor current is actually undertaken by diode D and Dj. This implicit freewheeling
can be brought out to the surface by insertion of a catch diode across the input terminals
of the low-pass filter.

Several features of these converters are transparent in the dc circuits. The output of
the dc circuits for the push-pull, the half-bridge, and the full-bridge are identical. For the
same device ratings for diodes, they can handle twice the power than a forward converter
can, since the two diodes are in parallel in dc circuits.

At the input side, the maximum value of reverse voltage for a transistor is twice as
high as the input source voltage for the push-pull, and it is the same value as the input
voltage source in the half- and full-bridge converters. For the same current rating for
transistors, the push-pull can sink twice the dc power from the input source as that of
a half-bridge. The full-bridge converter can sink the same dc current as the push-pull,
but with half the value of maximum reverse voltage as in a push-pull converter.

The striking feature of ac circuits is that they all have the same form, which says
that small-signal dynamics of these converters are identical. Indeed, the ac circuits are
equivalent to that for the forward converter. This can best be scen by inserting a catch
diode D, in the secondary, as shown in Fig. 12.3. Insertion of the catch diode brings out
the freewheeling function to the surface, but it does not change the qualitative operation
of these converters. The small-signal low-frequency dynamics will not be altered since
the current waveform presented to the low-pass filter remains the same.

Figure 12.3 (a) shows the insertion of the catch diode D., which is equivalent, in one
switching cycle, to the sum of Fig. 12.3 (b) and (c). Without loss of generality, take n = 1.

Then, Fig. 12.3 (d) is derived, which shows equivalent circuits for two pulses, respectively.
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Push- pull

Figure 12.2: Isolated converters and their dc and ac circuits: the push-pull, the half-
bridge, and the full-bridge cases.
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Figure 12.3: Insertion of a caich diode reveals that the push-pull, the half-bridge, and
the full-bridge converters have the same ac circuit as that for the forward
converler, ercept that there are two identical ac equivalent circuits within
one swilching cycle.

For each pulse-time duration, the combination of the transistor and the diode behave just
as a single switch (switch s), and the catch diode is the complementary switch (switch
3).

Therefore, the ac circuit for converters with parallel paths is equivalent to that for the
forward converter, except that there are effectively two identical ac equivalent circuits
within one switching cycle.

Finally, the above approach handles converters in the second group of isolated con-
verters (with multiple switches) in the framework of converters with two switches. The
advantage of doing so is that knowledge about two-switch converters is sufficient to
characterize isolated converters in the second group.

Another approach is to handle converters with multiple switches in the framework
of multiple switches. The potential advantage would be to obtain a model for four (or

six) switches, instead of for two switches. Characterization of a three-switch converter in
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Figure 12.4: The general ac equivalent circuit for isolated converters (a); and its gener-
alized ac equivalent circuit after the transformer T, is absorbed (b).

Chapter 15 shows key steps of modeling in the general framework of multiple switches.
The approach can be followed to handle converters with more than three switches, which

remains to be done in the near future.

12.2 The Balance Equation and the Extended Generic Model

Figure 12.4 (a) shows the equivalent ac circuit for converters with isolation trans-
formers, where n is the turns ratio defined as number of turns for the secondary of the
isolation transformer N over the number of turns for the primary Ny, i.c., n = No/N;.
Voltage V; and current I; can be reflected from the secondary to the primary by conven-
tional techniques for a two-winding transformer. Fig. 12.4 (b) shows the ac circuit with
the transformer absorbed.

According to the ac circuit, the balance equation can be written as

VsTy = ET2
n (12.1)
nl; Ty = I,T,.
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Figure 12.5: The ertended generic model for switches in isolaled converters, where the
physical transformer T, (turns ratio 1 : n) has been combined with the
conceplual transformer (turns ratio D' : D) lo form a hybrid transformer
with a turns ratio D' : nD.

Perturbation in turn leads to

Ty nly FET

(12.2)
Ig “ T2 4 Is N
Ty ﬁ * nT TZ'

Equation (12.2) can be rendered into a reduced form by introduction of the control

constraint for constant-frequency control (PWM),
Fp= —F = —d. (12.3)
Then, Eq. (12.2) is reduced to

N
do= - (Vor 2) d+ o2,

1 n 71T)
(12.4)

- 1 I, T -

= (L4 2) d 4 =2,

=g (i ) a4
Figure 12.5 shows the extended generic model derived from the above equations where
Vo”EV,+K§~, (12.5)

n

Ion = Iy + nl;. (12.6)
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The extended generic model for switches in isolated converter is the same as the
generic model except that quantities associated with the secondary are scaled by the turns
ratio. That is, voltages, V; and 9, are divided and currents, I; and i, are multiplied
by n. This reflects the effect of a transformer since insertion of transformer is to provide
isolation and voltage scaling.

Note that the extended generic model combines the physical transformer T, (turns
ratio 1 : n) with the conceptual transformer (turns ratio D’ : D) to form a hybrid trans-
former with a turns ratio D’ : nD. The physical transformer represents the magnetic
coupling between the primary and the secondary, whereas the conceptual transformer
represents “time coupling” between the “primary” and the “secondary.” The time cou-
pling between two switch branches in a converter is the result of the inherent switching
action in a switching converter.

Application of the extended generic model is straightforward. First, put a conceptual
transformer at the very front of the converter under discussion, which reduces the con-
verter into a one with 1:1 turns ratio, eliminating effectively the transformer. Second,
substitute the extended generic model into the scaled circuit in the same way as for
a non-isolated converter. And third, scale back the whole primary of the transformer,
which is automatically restored into the circuit by the substitution because of the way

the extended generic model is formulated.

12.3 The Effect of Leakage and Magnetizing Inductances

So far the discussion about switches in isolated converters has been limited to con-
verters with ideal transformers. In practice, transformers are not ideal. Among the
non-idealities, the leakage inductance and the magnetizing inductance are more impor-
tant since they can change the small-signal dynamics of a converter drastically if no
control is exercised on them.

Figure 12.6 (a) shows that ac circuit in converters with non-ideal transformers, where
L, is the leakage inductance and L., is the magnetizing inductance. The leakage induc-
tance in the secondary is assumed to be negligible for simplicity.

Figure 12.6 (b) is the general form of the ac circuit derived by scaling switch 3 to the
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Figure 12.6: The general ac equivalent circuil for converters with non-ideal isolation
transformers (a); and its generalized ac equivalent circuil after the trans-
former Ty, L;, and Ly, are absorbed (b).

primary. The leakage and the magnetizing inductances form an inductance divider with
aratiok = Z—I—Lﬁ—;, which is frequently called the coupling coefficient of the transformer.
It is straightforward to see that the scaled value of the voltage across switch g is given
by V5/kn. The scaled value of the current is obtained as knl;.
From the general form of the ac circuit in Fig. 12.6 (b), one can write the correspond-
ing balance equation as

Vs
ViTy = —T,
kn (12.7)

knlgT] = [‘,TQ.

Equation (12.7) suggests that it can also be obtained mathematically by replacement
of n in Eq. (12.1) with kn. Hence, one can see that the extended generic model will be
the same as that in Fig. 12.5, except the replacements of n with kn.

Therefore, one can obtain the model for switches in converters with non-ideal trans-

formers as shown in Fig. 12.7, where

r Y Vs
‘/ofj =V, + H’ (128)

I = I, + knl;. (12.9)
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Figure 12.7: The ectended generic model for switches in converters with non-ideal trans-
formers, where the physical transformer T, (lurns ratio 1 : kn) has been
combined with the conceptual transformer (turns ratio D' : D) to form a
hybrid transformer with a turns ratio D' : knD.

One can now sce that the impedance divider does introduce an additional scaling
effect in the extended generic model. As expected, the scaling effect represents additional
attenuation in the forward path of the power flow.

Consequently, one cannot simply add L; and L,, into the model in Fig. 12.5 to obtain
the model in Fig. 12.7, since both the “turns ratio” and small-signal sources in the model
are changed when L; and L,, are added.

The effect that L; and L,, have on the small-signal dynamics of a converter can be
best seen by derivation of the canonical model from the extended generic model.

In Fig. 12.8, key steps of deriving the canonical model for a forward converter are
illustrated.

Figure 12.8 (a) is the equivalent circuit after the transformer is scaled to be a 1: 1.

Figure 12.8 (b) is the equivalent circuit when the the 1 : 1 transformer is absorbed.
The forward diode D is replaced by a wire since it is in synchronization with switch s,
and it does not introduce additional dynamics into the circuit.

Figure 12.8 (c) is the circuit after point-by-point substitution of switches with the

generic model.
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Figure 12.8: Key steps in derivation of a canonical model for the forward converter with
a non-ideal isolation transformer: scaling the transformer (a); removing the
transformer and the forward diode D (b); substitution of the generic model
for switches (c); shifting the current source and introducing an equivalent
transformer with turns ratio D : knD (d);: combining two transformer turns
ratios in the primary and scaling the current source and the magnetizing
inductance inlo the side with turns ratio 1 (¢); and turning the parallel
connection of L; and j inlo a series conneclion leads to the final form (f).
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Shifting the current source j, and splitting the the secondary with knD turns into
an equivalent transformer, one obtains the equivalent circuit in Fig. 12.8 (d).

Putting the primary with D’ turns together with the one with D turns, and then
reflecting L., and the current source in parallel with it to the side with turns D+ D' = 1,
one derives the equivalent circuit shown in Fig. 12.8 (e).

Turning the parallel connection of L; and j into a series connection, one has the final
form in Fig. 12.8 (f), which is the desired canonical model for the forward converter with

non-ideal transformer. The voltage source and the current source are found to be

o= (1=D)j=1I,, = 5%‘1 (12.10)
: ¢ — (1 - D)sL 4 (1 $ ) (12.11)
€ = é-j(1- )SI—W *:}‘277 .
where the RHP zero w,; is given by
. 2
A= R/(knD)” (12.12)

L

Several remarks are in order here.

One RHP zero w, is introduced by the leakage inductance L;, which represents a
departure from the small-signal dynamics of a forward converter with an ideal transformer
(which is basically the same as the buck converter). The introduction of w,; is not a real
surprise since the physical position of L;, with respect to that of switch s, is the same as
that of the inductor in the boost converter which has a RHP zero.

The value of w,; is proportional to the dc operating point resistance R scaled by the
turns ratio 1 : knD of the hybrid transformer, and is inversely proportional to L;. For
the forward converter, kn D is less than unity, and L; is frequently very small. Hence, w,;
is frequently located at very high frequency. Its effect (phase lag) may not necessarily
be seen if the measurement is not performed into high frequencies.

However, for converters with coupled inductors, the leakage inductance may not be
small. Hence, the eflect of w,; is more visible.

Note that the presence of L; and L,, also introduce additional poles into the frequency
response of the converter. Derivation of the poles are straightforward, and hence is not

pursued here.
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Finally, it is reiterated that the presence of the leakage inductance and the magnetiz-
ing inductance alters the small-signal dynamics of a forward converter qualitatively. In
addition to the additional attenuation of the inductance divider, the leakage inductance
brings a right-half-plane zero into the canonical model, experimental verification of which

remains to be done.
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Chapter 13

Extension to Switches in Discontinuous

Conduction Modes

Switching converters operate sometimes in discontinuous modes. Discontinuous con-
duction modes normally include discontinuous inductor current mode and discontinuous
capacitor voltage mode. Major benefits of discontinuous operation are reduced sizes for
inductor or/and capacitor, improved small-signal dynamics, and the ability for input
current to follow, to a variable degree, the shape of input voltage automatically.

In discontinuous conduction modes, the dc value of inductor current is no longer
determined by the duty ratio alone. Additional work is needed to extend the generic
model to cover switches in converters in discontinuous modes. A key step in extending
the generic model to cover switches in discontinuous modes is the establishment of the
concept of equivalent duty ratio é, which was originally proposed in [15, 14] (the symbol
used there was m) for modeling converters. A discussion about the theoretical aspect of
the concept is presented for the first time, which reveals that the concept of equivalent
duty ratio is useful in determining low-frequency small-signal dynamics for switches as
long as the dc component of transistor current (or diode voltage) is not vanishingly small.

The end result of the extension is that the sources associated with duty ratio d in the
generic model are replaced by the equivalent duty ratio 6, which is a function of system
states. That is, feedbacks are identified by the introduction of the equivalent duty ratio
to account for the effect of discontinuous inductor current (or discontinuous capacitor
voltage).

The extended generic model also shows that the quadratic double pole in various
transfer functions for discontinuous conduction mode can normally be separated into

two real poles. An expression for the high-frequency pole is derived.
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Since the discontinuous capacitor voltage mode is the dual mode of operation, results
about discontinuous inductor current can be converted into corresponding forms easily
for discontinuous capacitor voltage mode by use of the principle of duality [14]. Conse-

quently, the following discussion focuses on the discontinuous inductor current mode.

13.1 Equivalent Duty Ratio ¢

For converters operating in discontinuous inductor current mode, the generic model
cannot be used directly since the small-ripple constraint is violated.

When the ripple is not small, v,s; and 7., arc no longer pure dc quantities. Instead,
they have large ripples. The waveforms of switch current and voltage are no longer
square waveforms. As shown previously, in the decomposition of the waveforms, a key
step in modeling switches, the dc components are expressed as lincar functions of Vorss
Ion, and the duty ratio D. Referring to Fig. 11.1, one can find that, with the small-ripple

constraint,

ii = Dlon’ (13'1)

5a = DV, (13.2)

For switches with large ripples, it is no longer possible to express the average induc-
tor current as a linear function of duty ratio, because the sharp edges associated with
square waves are no longer present. The disappearance of the sharp edge(s) obscures the
definition for the duty ratio (sec Fig. 13.1).

This difficulty can be overcome by extending the method of state-space averaging.
According to linear circuit theory (see, for example, [21]), two converters will have the
same dc conversion ratio if both converters have the same dc components for their tran-
sistor currents and diode voltages, regardless what waveforms the voltages and currents
may have.

Mathematically, the equivalent duty ratio can be defined as

;t Vg
b= o = — 13.
Ion Vofj’ ( 33)

where the bar indicates the average value for the corresponding quantity (The equivalence

of the two definitions can be established in a straightforward manner. See, for example,



119

Ait Ai‘- I

large ripple

Eee N N VAN 777/ 4 T IS

(a) (b)

Figure 13.1: Waveform of inductor current in discontinuous mode, showing that the dc
component of inductor current cannol be expressed as a linear function of
duty ratio D.

[14]). Note that the equivalent duty ratio was originally denoted as m. A different
symbol é is used in the present work to avoid possible confusion of m with the voltage
conversion ratio M for the cases where capitalizations are required.

The above definition suggests that as far as dc behavior is concerned, two converters
are equivalent if both have the same dc values for switch currents and voltages. Of
course, for a switch with large ripples associated with its current and/or voltage, the dc
component is no longer uniquely controlled by the duty ratio. It is also related to those
circuit parameters which determine modes of converter operation. Since the PWM tree
switching structure is still existent for any converters with large ripples, one can see that
in general, the transistor current 7, (or the diode voltage v,) is a function of voltage Voffs
current 7., and independent control 7, (note that 7. may represent multiple controls).

An immediate question that one may ask is: Whether or not does the equivalent duty
ratio é retain the same information about low-frequency small-signal dynamics?

This issue can be addressed by looking into the Fourier expansion of the transistor
current ¢; (or vy).

According to Fourier theory, for a periodic waveform such as i, the following expan-
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sion can be written as

oo
=1+ Zc,lcos(nw,t—gn)q (13.4)

n=1

where

en = yJa +0b2, (13.5)

6, = tan™! (b—n), (13.6)
Qan
_ 1 1+T,
—— -7—/ 1, dt, (13.7)
s Ji
2 t+7,
a, = 7—/ 11 cos nwyl dt, n=1,2,--- (13.8)
s Ji
9 t+Te
b, = -T—-/ 1y sin nw,t dt, n=1,2.-- (13.9)
s Ji

The Dirichlet conditions for Fourier expansion to exist (see, for example, [42]) accommo-
date virtually all cases arising in the the field of power electronics.
When a small-signal sinusoidal perturbation is introduced, the expansion can in gen-
eral be written as
A o0
(et t) = (ie+1)+ D (e + én)cos[n(ws + W)t — 6], (13.10)
n=1
where the phase angle 8,, has been taken to be constant. Assumption of a constant 8,
does not compromise the generality of the following discussion because of that phase
perturbation has the same effect on the spectra as that of frequency perturbation.
One can easily observe that the frequency spectra of the perturbed ¢, are discrete
line spectra, since they are products of sinusoids. Furthermore, straightforward algebra

shows that the line spectra are located respectively at
nwsi(wlpi“js)a n= 172w"' (]311)

where wy,, is the perturbation frequency, and W, denotes the low-frequency perturbation
of the switching frequency, which is constrained to be small.
The lowest frequency of the line spectrum occurs when n = 1, which leads to fre-

quency components at w;, w, + wip + Ws, and w, — wyp — W, Tespectively.
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If the perturbation is introduced with a fixed switching frequency, &y = 0. Then, the

lowest frequency component locates at
Ws — Wip. (13.12)

This indicates that the averaged value of current 7, will carry the same low-frequency
information as the current 7, itself as long as wj, is well below half the switching frequency,
ie., wp << w/2.

Consequently, one can conclude that the equivalent duty ratio é retains the low-
frequency information, since é is directly proportional to i,.

If the perturbation is introduced into the switching frequency, and if the frequency
perturbation :.JS- is constrained to be small, the lowest frequency component of the per-

turbed spectrum will be at
ws — (wlp + L‘;s) = Ws 2“55’ (1313)

where wy, = &, has been used, since when the switching frequency is perturbed, the
possible corresponding amplitude perturbation will be at the same frequency. This ex-
pression reveals that the average value of the current ¢, carries the same low-frequency
information as the current 7, itself as long as the frequency of the perturbation is well
below one quarter of the switching frequency, i.e., W, << w,/A.

Therefore, one concludes that the equivalent duty ratio é retains low-frequency in-
formation of the current i,.

A few additional useful observations can be made from the above discussion. For
converters with frequency perturbation, the requirement is more stringent than for con-
verters with amplitude perturbation. The highest perturbation frequency for amplitude
perturbation is half the switching frequency, while for frequency perturbation, it is a
quarter of the switching frequency.

Note that in practice, characterizations of small-signal dynamics are often focused
on low frequencies. If the perturbation frequency is constrained to be sufficiently low,
the conditions for the equivalent duty ratio é are reduced to one: the dc value is not

vanishingly small.



122

Another important feature of averaging revealed by the discussion is that the conclu-
sion is true regardless whether or not the quantity of interest has small or large ripple.
Hence, the small-ripple constraint can be relaxed for applications of the method of aver-
aging.

Prominent examples in this regard are converters in discontinuous conduction modes
and quasi-resonant converters, both of which have large ripples.

Averaging breaks down if the quantity of interest has a vanishingly small dc value.

Prominent examples are resonant converters where the inductor current (or capacitor
voltage) has zero dc value. In other words, averaging can not be applied to resonant
converters not because of their large ripples, but because of the zero value of the inductor

current (capacitor voltage).

13.2 The Extended Generic Model for Switches in Discontinuous In-

ductor Current Mode

It has been established that the equivalent duty ratio is a useful concept for modeling
small-signal low-frequency dynamics. To extend the generic model to cover discontinuous
conduction modes is a straightforward task now. The only thing which remains to be
done is to derive an expression for transistor current i, (or v4) in terms of Voffs ton, and
Tc, based on which an equivalent small-signal duty ratio control law can be derived by
perturbation.

Figure 13.2 shows a typical waveform for transistor current ¢,. The dc value of
the current is determined by the peak value I, and the time duration d.T,. From the

geometry, one can find the average value as
1

- gy = _ g2 Yofs = U4
i = Q—T—-dCT,-dCTS-E_dCIST. (13.14)

Recalling the definition for the equivalent duty ratio (Eq.(13.3)), one can write

6 = df’[‘,%‘%f—(l —6), (13.15)
which in turn, upon solving for 6, leads to
d2
d + on -
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Figure 13.2: Typical waveform of transistor current iy in discontinuous mode. Its average
value is determined by the peak value I, and the time duration d.T, and can
be easily found from the geometry.

where d, is the duty ratio of the transistor and is the independent control quantity.

Equation (13.16) shows that the dc value of ¢; is no longer uniquely determined by
duty ratio d.. It is now a function of Voffs ton, and d.. Also, note that Eq. (13.16) is the
same as the result presented in [14] which, however, was derived by working with current
ton, instead of 1,.

Replacement of d in the large-signal model in Fig. 11.2 (a) with the right-hand-side
of Eq. (13.16) yields the extended generic large-signal model for converters operating in
discontinuous conduction mode. Figure 13.3 (a) shows the model, which can be used to
predict averaged large-signal dynamics for a converter in discontinuous inductor current
mode.

The small-signal duty-ratio control law can be obtain by perturbation of Eq. (13.16).
Straightforward algebra yields

2A(1—A)d~ 2LA?% 2LA’M(A) .

5: on of [ A7
D, Vos D2 ¥ VT DR ol (13.17)

where M(A) is the equivalent voltage conversion ratio, and it has the value A, ]—_1—5, and

T’-A—A' for the buck, the boost, and the buck/boost converters, respectively.

Substituting the equivalent duty ratio law into the generic model, one obtains the
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Figure 13.3: The extended generic large-signal model (a) and small-signal model (b) for
converlers in discontinuous inductor current mode. The cffect of discontin-
uous inductor current is seen to be introduction of fcedbacks into the model.
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extended generic model for converters in discontinuous inductor current mode as shown

in Fig. 13.3 (b), where the equivalent duty ratio 8 is expressed as

b = kede — knion — ks (13.18)
with
2A(1 - A)

| - =/ 13.19

‘ D, (13.19)

2L A2 |

A o 13.20

" Voy fT5D?’ (13.20)
2LAXM(A)

kf = Sl 13.21

! Vor TsDZR (13.21)

Figure 13.3 (b) indicates discontinuous inductor current introduces feedbacks into
the model, which can change the poles of the converter frequency response, but has no
effect on the zeros. Note that the feedback due to 7,, is always negative. Hence, the
feedback is expected to introduce positive damping to the frequency response.

To expose the underlying damping explicitly, one can transfer the extended generic
model into an equivalent y-parameter form as shown in Fig. 13.4 (a). From the form
of the y-parameter model for switches, one can see that a resistance r93 = 1/yq0 is
introduced into the model which brings damping. If 795 is positive, then the damping is
positive. The positiveness of 75 indicates that the existence of feedbacks due to operation
in discontinuous mode tends to split the double pole of the low-pass filter into two real
poles, giving improved small-signal dynamics.

Fig. (13.4) (b) shows the equivalent circuit for the evaluation of y3;. Simple algebra

gives

2LA?

Tgp = -TST)E—, (13.22)

which is a positive quantity since Ty, D., A, and L are all positive real numbers for any
converter.

Therefore, one concludes that the feedback introduced by discontinuous inductor
current brings positive damping into the model for switches, which tends to split the

double pole of the equivalent low-pass filter into two real poles. That is, converters in
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Figure 13.4: A y-parameter model can be derived from the exlended model. The positive-
ness of yag reveals that the feedback introduced by the operation of discon-
tinuous conduction mode brings posilive damping inlo the model, and hence
tend to spilt the double pole into two real poles.

discontinuous conduction mode generally have better small-signal dynamics than con-
verters with small ripples because of the negative feedback introduced by discontinuous
inductor current.

It is important to realize that ro; does not consume any real power since its existence
is due to the feedback introduced.

In the time domain, lossless damping describes the physical phenomenon that any
perturbation of inductor current dies down to zero within one switching cycle as long as

the inductor current is discontinuous.
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Figure 13.5: A high-frequency equivalent circuit for converters in discontinuous inductor
current mode. The load resistance is shorted oul of the circuit by a very
low impedance presented by the capacitance which is constrained to be large
for small ripple.

In other words, the boundary between continuous and discontinuous conduction
modes of the inductor current represents a discontinuity of the frequency response of
the converter. Across the boundary, the frequency response changes abruptly from that
of a typical high-Q second-order low-pass filter to that of a typical low-Q second-order
low-pass filter, or a dominate pole system with the other pole located at a much higher
frequency.

The location of the high-frequency pole can be found conveniently from the generic
model. Fig. 13.5 shows an equivalent circuit for a converter in discontinuous inductor
current mode at high frequencies. At high frequencies, the perturbation o,y is virtually
shorted out of the circuit by the filter capacitance.

The current-loop gain can thus be found from the cquivalent circuit for high frequen-

cies in Fig. 13.5. Straightforward algebra yields

LAYV, 2A?
Vo ToD? sL — sD2T,’

T.(s) = (13.23)
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from which the crossover frequency can be found as

A 2 _ A,

= — = —_ 13.24
fe 2rD*T, D?nrx ( )

As established in [14], the relation D. < A is true as long as the converter is in

discontinuous inductor current mode. Hence, one can obtain the following lower bound

for the value of f,,

fe2 -f—“’-. (13.25)

Consider that the other closed-loop pole is primarily determined by the load resistance
and the filter capacitance and is normally in the order of one tenth of the switching
frequency. One can sce that the two closed-loop poles are normally well separated,
which is exactly the effect that operation in discontinuous conduction mode has on the
small-signal dynamics.

Note that the improved dynamics for converters in discontinuous modes is well known
and discussion here is meant to show the usefulness of the extended generic model for
analysis as well as for simulation.

It is worth mentioning that the extended generic model is the same as the generic
model in form. This is a convenient feature of the modeling approach, especially for
computer simulations. In a computer simulation application of the model, all one has
to do is to replace duty ratio d in the generic model by the equivalent duty ratio 6,
and then make 6 the function of v,ss, ion, and d. (1. = d. for this case) according to
Eq. (13.16). Then, the averaged large- and small-signal behaviors of the converter can
be handled in exactly the same way as for the case of converters with small ripples. In
other words, for converters with large ripples, the switches can be modeled as controlled
sources, which reflects the fact that with large ripples, the dc value of transistor current
(or diode voltage) is a function of converter states.

It is important to point out that although it introduces feedbacks into the model,
the large ripple in inductor current (capacitor voltage) does not necessarily change the
small-signal dynamics qualitatively. Conclusion in this regard needs to be drawn for each

particular mode of operation individually.
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13.2.1 Other Extensions

The extension to converters in discontinuous capacitor voltage mode can be pursued
in the same manner. It can also be obtained by invoking the principle of duality [14].
Since all steps are straightforward, details are not discussed here.

Extension can also be made easily to cover quasi-resonant converters. Results will
be similar to those established in [15, 29], except that the extended generic model is for
switches, instead of for converters.

It is emphasized that, in general, extensions can be made to cover any modes of
operation, as long as the conditions for the equivalent duty ratio to hold is satisfied.
That is, the dc value for switch voltage (or current) is not vanishingly small when the
converter operates in that particular mode.

Converters which meet the condition for use of equivalent duty ratio include quasi-
resonant converters, phase-shifted PWM converters, and any other soft-switching con-
verters derived from parent PWM converters.

Also, the extended models will be the same in form as the generic model. Besides be-
ing a model for switches. this property is another major advantage over existing models
for converters or for switches. The extended model is particularly convenient for appli-
cations in computer simulations, since the linear-controlled-sources feature, commonly
available for circuit simulation packages, can be used with ease to build the extended

generic model.
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Chapter 14

Extension to Switches in Current-Programmed

Converters

Current programming is intensively discussed in the first part of the thesis. The
purpose of this.chapter is simply to utilize those results to extend the generic model
for switches to facilitate potential applications, especially for applications in computer
simulation.

The extended generic model for switches in current-programmed converters is ob-
tained by expressing duty ratio in terms of v,f/, 7,n, and independent control current 7.
To this end, the modulator model derived in the first part of this thesis can be directly
employed.

It is shown that the extended generic model is equivalent to the model for current-
controlled PWM switches proposed in [9]. The extended generic model is more convenient

to use, since it is a four-terminal model for two switches.

14.1 The Extended Generic Model

Current programming is a control technique which produces, among other things, im-
proved small-signal dynamics for switching converters. A current-programmed converter
is frequently implemented with continuous conduction mode, and hence the small-ripple
constraint is still met. Therefore, the equivalent duty ratio é need not be used.

However, for a current-programmed converter, like converters in certain modes of
operation where the equivalent duty ratio needs to be used, the value of duty ratio is no
longer uniquely determined by independent control. Duty ratio is a function of voltage
Vof f+ ton, and independent control current 4.

Extension of the generic model to switches in current-programmed converters pro-
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ceeds in the same way as that to converters in discontinuous modes. A modulator model
needs to be established, and then the modulator model can be substituted into the generic
model to yield the extended generic model. Both the averaged large-signal model and
the averaged small-signal models can be extended.

In a current-programmed converter, the duty ratiois determined by slopes of inductor
current, slope of a possible compensating ramp. and the value of control current. Since
the up- and down-slopes of the ramp are functions of voltage v,;; and inductance L, the
duty ratio is indirectly related to voltage v,y;. As shown before, the average inductor
current can be expressed as

=1 —m.Tsd — d—;lilr{—‘ivo”. (14.1)

Straightforward algebra leads to an approximate expression for d as

_ (ic"il)
d= (mc+v0”/2L)T,‘ (14.2)

If DD in the generic large-signal model is replaced by the right-hand-side of Eq. (14.2),
one obtains the extended large-signal model for switches in a current-programmed con-
verter. Figure 14.1 (a) shows explicitly the extended large-signal model. This large-signal
model can be used to investigate averaged large-signal dynamics. It can also be used to
simulate small-signal dynamics if an analog-signal injection is performed on an appro-
priate place in the simulated converter.

A unified modulator model for the duty-ratio modulator in a current-programmed
converter is obtained by perturbation of Eq. (14.2) and was derived previously. The end
result is reprinted below,

. -
d= T.,le;u (D'/D'l 1) [(1 -i) - 051,78{'””] ' (14:3)

min

Replacement of the d in the generic model by Eq. (14.3) yields the extended generic small-
signal model for switches in current-programmed converters. Figure 14.1 (b) shows the
extended generic small-signal model, where

2L 1

ke=kn = .
T Vopg (D)D) — 1) (14.4)
DD
ky = ! (14.5)

Vors (D[ Dl = 1)°

min
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Figure 14.1: The ertended generic large- and small-signal models, (a) and (b), for
swilches in current-programmed converters.
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The effect of current programming is scen to introduce feedbacks into the model,
which are expected to change poles but not zeros of the various closed-loop transfer
functions of the converter.

As shown in detail in Chapter 4, when the sampling effect is considered, one additional
pole needs to be added onto the current loop gain. This effect can be represented by
a single-pole factor in series with the modulator gain factor F5,. lHence, the extended
high-frequency generic model for switches in a current-programmed converter is given by

5 1 s DD'T;
=2k 1 {(z — i) - = zv(,f,] : (14.6)
T Vo (DDL = 1) (1 + s/wy) 21,

Complications due to the presence of the additional pole w, are fully addressed in Chapter

4, and are therefore not repeated here.

14.2 Relationship to the Model of Current-Controlled PWM Switches

A model for switches in current-programmed converters was proposed in [9]. The
model for current-controlled PWM Switches is a three-terminal model for two individual
two-terminal switching devices. It is derived by utilization of the fact that the two
switching devices are frequently, but not necessarily, connected together to form a three-
terminal device (PWM switching structure) to realize PWM switching. Expressions for
averaged terminal voltages and currents are derived in terms of vofy, ion, and i, which
are then perturbed to obtain corresponding small-signal expressions. The y-parameter
model is then drawn according to these small-signal expressions for perturbations of
averaged terminal voltages and currents.

Since both the extended generic and the model for current-controlled PWM switches
are all based on the method of averaging, one may expect that they have the same
performances in predicting the dynamics. Indeed, it can be shown that both models are
equivalent as far as accuracy of modeling low-frequency dynamics is concerned.

To show the relationship, a y-parameter model is derived from the extended generic
model. Figure 14.2 shows equivalent circuits used for cvaluations of 6 y-parameters,
respectively. These equivalent circuits are obtained by using the extended generic model

and conditions for evaluation of the parameters. Straightforward circuit analysis leads to
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Figure 14.2: Equivalent circuils for the derivation of the y-parameter model for swilches
based on the extended generic model: the equivalent circuil for evaluation of
Y22 (a); the equivalent circuil for evaluation of ya. (b); the equivalent circuit
Jor evaluation of yy; (c); the equivalent circuil for evaluation of yyy (d); the
equivalent circuil for evaluation of yi. (e); and the equivalent circuit for
evaluation of y,2 (f).
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Table 14.1: Ezpressions for values of y-parameters derived from the ertended generic
model for swilches in current-programmed converters.

respective expressions for values of y-parameters, which are summarized in Table 14.1.
(The notation used here for y-parameters is the same as the one used in [5]. But note
that the extended model is for switches, while the model in [5] is for converters).

Useful insight can be extracted from the derived low-frequency expressions for y-
parameters. Comparison of these expressions with those shown in Fig. 5 of [9] (not
shown here) shows that the two sets of expressions are identical (note that notations and
positive directions are different in the two models). In other words, the two models are
equivalent as far as prediction for low-frequency dynamics is concerned.

The expression for y,; reveals that current-programming introduces a resistance rqp =
1/y22 into the switch model. This resistance can be rewritten as ryp = w,.L, where w, is
the extrapolated crossover frequency for the current loop as discussed previously and L
is the inductance. Since w, is a positive quantity as long as the current loop is stable, rg2
is a positive quantity, too. The positiveness of 735 indicates that current-programming
introduces positive damping into the switch model, tending to split the low-frequency
double pole of the equivalent low-pass filter into two real poles. In other words, current
programming tends to improve the frequency response of a switching converter from that

of a double pole to a single pole. Identification of the positiveness of r9 shows explicitly
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the mechanism for a current-programmed converter to improve dynamics.

One nice feature with current programming is that r9; does not dissipate any real
power. This is true since the presence of 795 is due to the feedbacks introduced by current
programming. This phenomenon was discussed in [5]. where it was rightfully termed as
“lossless damping.”

A complication, not observed in [5], is that w,, together with w,, will form a closed-
loop peaking if zero or a small value for the compensating ramp m. is used. For any
practical design, a certain value of m, is always needed.

Differences do exist between the two models. The first one lies in the way that
the sampling effect is handled. The model for current-controlled PWM Switches uses a
capacitance to éapture possible onset of subharmonic oscillation. Since this capacitance
is not present physically in a current-programmed converter, insertion of the capacitance
appears to be artificial.

In the extended generic model, the sampling effect is accounted for by introduction
of an additional pole w, into the current loop. The existence of the additional pole is
firmly established theoretically and experimentally in the first part of the thesis.

The second difference has to do with generality and easc of applications of the mod-
els. While it enjoys being a model for switches, the model for current-controlled PWM
Switches has a fixed three-terminal structure, which is sometimes inconvenient, if not
impossible, to use. Since the three-terminal PWM tree structure is only a sufficient con-
dition to realize PWM switching, the three-terminal structure may not even exist in a
valid PWM converter (see, [15, 16], for more detailed discussions). Under this circum-
stance, the model for current-controlled PWM Switches cannot be applied directly.

The extended generic model is a four-terminal model, and it represents each switch
by its own two-terminal model. The extended generic model can be used by a simple
point-to-point substitution of the model into any converter. It is applicable to converters
where a three-terminal PWM switching structure is not explicitly in existence.

Therefore, one may conclude that the extended generic model is more general and
more convenient to use than the model for current-controlled PWM Switches. In other

words, one may say that the extended generic model for switches in current-programmed
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converters extends the model for current-controlled PWM switches and covers it as a

special case..
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Chapter 15

Extension to Multiple Switches

Discussion has so far been limited to issues regarding modeling two switches in the
environment of switching converters. This is done simply for convenience of discussion
since two-switch converters are easy to understand, and are most frequently encountered
in practical applications by virtue of simplicity.

In this chapter, the modeling effort is extended to multiple switches in dc-to-dc con-
verters. For easy understanding of the theoretical aspect of the approach, and without
loss of generality, key steps of the extension are illustrated through the process of mod-
eling a novel three-switch converter. The principle of operation of the three-switch con-
verter is described. Balance equations are then established by identifications of dc¢ and
ac equivalent circuits. Perturbation is performed to yield the generic equivalent-circuit
model for three switches in their environment.

Experimental results for a prototype three-switch converter are presented to support
predictions from the generic model for salient features of small-signal dynamics.

It needs to be pointed out that some of the results from analysis of as well as exper-
imental measurement on the three-switch converter were first reported in (38, 39, 40], of

which this chapter is a refined presentation with additional results.

15.1 Description of Circuit Operation of a Three-Switch Converter

Figure 15.1 (a) shows the circuit schematic for a three-switch converter disclosed in
[43]. The converter is derived by a systematic approach. Its appearance is much like the
Cuk converter. The only difference is that the output inductance of the Cuk converter is
replaced by a switch (a diode). This replacement may bring large savings in terms of size

and weight. The penalty for doing so is the loss of continuous output current. One ideal
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application for the converter is when the output voltage is high and the output current
is small, where the savings in size and weight may be substantial.

This converter has one active switch sy, and two passive switches s; and §3. Switches
s1 and s are turned on and off synchronously, and s3 is switched in a fashion comple-
mentary to that of s; and s;. Values for capacitances, Cy and Cy, and inductance L are
chosen to be large to maintain small ripples in their respective waveforms.

At the beginning of one switching cycle, s; is turned on. The converter circuit is
equivalent to that of Fig. 15.1 (b). Capacitance Cy provides energy to the parallel
connection of the output capacitance C3 and the load resistance R;,. The voltage across
33 is negative, and forces it to turn off. Since the voltage on Cy is always larger than
that of Cy, the net voltage across s is always positive. Hence s, is turned on. This state
is maintained until s; is turned off by the control (driving signal of the switch) at the
desired value of duty ratio.

When s; is turned off, the circuit is equivalent to that of Fig. 15.1 (¢). Input voltage
forces 53 to turn ofl. Then, s, is turned off by a negative voltage presented by C,. In
the meantime, capacitance Cy is being charged up by input voltage source V. Output
current is maintained by energy stored in the output capacitance 'y until the start of
next cycle.

Note that the energy transfer mechanism is the same as that of the Cuk converter,
using a capacitance as the energy transfer component.

Two useful extensions of the basic topology can readily be made. An isolation trans-
former can be inserted into the converter by splitting capacitance ("} into two and then
introducing a transformer in between, as shown in Fig. 15.2 (a).

Another extension is to introduce additional capacitances and diodes to multiply
output at the secondary, forming hence a high voltage converter as shown in Fig. 15.2 (b).

For this reason, this converter is also called a three-switch high-voltage converter.

15.2 The Balance Equation and the Generic Small-Signal Model

To show clearly the key steps in derivation of a generic model for the three-switch

converter, the basic version will be used as a working example in the following discussion.
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Figure 15.1: A three-switch converter: the basic version (a); the equivalent circuit when
sy and sp are on and 33 is off (b); and the equivalent circuil when s, and
sp are off and 83 is on (c).
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Figure 15.2: Variations of the three-switch converter: an isolated version (a); and a
voltage-multiplier version (b).

Based on the circuit schematic of Fig. 15.1 (a), one can obtain its ac and dc equivalent
circuits. Under the small-ripple constraint, capacitances can be opened at dc and shorted
at ac (switching frequency), and inductances can be shorted at dec and opened at ac
(switching frequency).

Figure 15.3 (a) shows the dc and ac equivalent circuits for the three-switch converter,
obtained according to the rules of handling capacitances and inductances.

Equipped with the ac circuit, one can now proceed to derive the balance equation.
Figure 15.3 (b) shows cquivalent ac circuits at two different converter switching states,
“on-off” and “off-on.” The equivalent ac circuit for each interval is obtained by modeling

a switch as a time-varying source and described by duty ratio and the dc values of switch
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AC:

Figure 15.3: The dc and ac equivalent circuils, (a) and (b), for the three-swilch con-
verler.
voltage and current (see Chapter 10). It needs to be reiterated that time-varying models
for switches in the ac circuit is totally determined if dc values of switch voltage and
current are known.
From the ac circuits for two intervals and the time-varying models for switches, one
can write the following balance equations by inspection,
VaiTy = VT
Vs Th = V3T
IssTh = (I = I52)T>,
which are equations governing the large-signal averaged behaviors of the converter.
Indeed, with the balance equation, the voltage conversion ratio can be easily estab-

lished for the converter. The dc equivalent circuit and the balance equation show that

Va =V,

(15.1)
VaiTy = Vi3 Th.
In the meantime, the ac circuit shows that
Vo = Vo (15.2)

Equipped with these relationships, one can derive the voltage conversion ratio M as

V. —(Va+Vs T 1
- WetVe) Tth 1 (15.3)

M= = = -
v, Va T, D’
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Figure 15.4: The generic small-signal model for the three swilches in the three-switch
converler.

It is emphasized that if the voltage conversion ratio were to be derived by conventional
technique such as volt-sccond balance for the inductor, the derivation would have been
much more involved.

Another less apparent benefit gained by use of the balance equation is that the
converter which satisfies the balance equation will automatically have a steady state. In
other words, the above voltage conversion ratio is physically obtainable by the steady
state operation of the converter.

Having established the balance equation, one can now proceed to derive the small-
signal model in a way similar to the case of two switches. Small-signal perturbation of the
balance equation leads to the following set of equations governing small-signal dynamics

of the three switches in the converter,
U511y = ve3Ty 4+ (VisTa — Va71)
vy T = 053715 + (VszTo — Vo)

1531 = i1 T2 — 152T2 — Isafy + (Is1 — Is2)7.
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Without loss of generality, assume the converter is controlled by pulse width modu-

lation (PWM). Then, one additional constraint placed on small-signal dynamics is that
‘f'z = —'f'l = "d, (154)

which reduces the above set of equations to

P11 = 53Tz — (Vs + Var)d
02Ty = 135372 — (Vaa + Var)d
13371 = i1 T2 — i2T2 — (Iis + Iy — I2)d.

Based on this set of equations, one can draw an equivalent circuit model. Three
independent equations determine a three-port equivalent circuit. Fig. 15.4 (a) is the
averaged large-signal model for the switches, which can be used to predict averaged
large-signal behaviors of switches in the three-switch converter.

Figure 15.4 (b) is the averaged small-signal model for the switches, which can be uti-
lized to analyze averaged small-signal dynamics of switches in the three-switch converter.

Since the form of the model is invariant under different methods of control, this model
is called the generic small-signal model for three switches in the three-switch converter.

Note that in the equivalent circuit, the current source representing independent con-
trol is shifted equivalently from the 33 branch to the s; branch to facilitate comparisons
with the generic model for two switches.

The generic model for three switches indicates that the dynamic relationship between
s; and 83 is the same as that of the generic model for two switches, which is consistent
with the ac circuit for three switches. The relationship between sy and s, is different, as
expected. The equivalent transformer has a unity turns ratio (D’ : D’), and an additional
voltage source exists.

Extensions of the generic small-signal model to other modes of operations such as,
for example, discontinuous conduction, current programming. and soft-switching can be
reached in the same manner as for the case of two switches in two-switch converters

discussed previously. Hence, they are not pursued here.

15.3 Experimental Verifications
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100 Mi=1/(1-d)

Figure 15.5: The measured and the predicted values for dc voltage conversion ratio. Good
agreement between two sels of dala arc seen. Values of the output voltage
V is normalized with respect to the input voltage 1.

Large-signal Behavior

To verify analytical results, a prototype three-switch converter was built. The values
for circuit components are: Cy = 5uF, Cy = 47uF, R = 40Q, L = 480uH, D = 0.52,
re1 = 0.3Q, 7o = 0.49Q, and V, = 10V. The switching frequency is 100k z.

Figure 15.5 shows the measured and the predicted de voltage conversion ratio. Good
agreement between two sets of data are seen, confirming that the derived expression
for dc voltage conversion ratio M = —1/D’ is correct. Deviations at the low end and
high end of duty-ratio values can be attributed to parasitic resistances associated with
capacitors, inductors, and switching devices, which have been ignored in the expression
for the voltage conversion ratio,

Table 15.1 presents measured data for the conversion ratio when one additional stage
of voltage multiplier is added to the converter. A factor of two between values for V; and
V, is consistently observed, validating potential applications of the three-switch converter

as a high-voltage converter.
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D 01 0.2 0.3 0.4 0.5 0.6

Vil =77 | =101 | =121 | =143 | =17.1 | -22.0

Vo| =159 -21.2| -24.8| -28.7| —-34.1 | —40.8

Table 15.1: Measured data for dc vollage conversion ratios at different values of duty
ratio. The efJect of a vollage doubler is clearly seen.

Small-Signal Dynamics

Figure 15.6 shows the application of the generic model to the three-switch converter,
obtained by point-by-point substitution of the model into the converter. The small-
signal equivalent circuit is linear and time-invariant. Any analytical method can now be
used to investigate the dynamics. In particular, the design-oriented analysis can produce
low-entropy expressions for various transfer functions of interests.

For example. the line transfer function is found to be

1 S
b _ 1 <+wrc)

= 15.
"D ] . T (15.5)
(i) e (@) (&)
where
w, = S N (15.6)
’ L(Ci +C2)’ '
R 1
o - 0 s 15.7
Q L,? (C'] + (,"2) [l + R ( + =L Tl + Tcl(/l)] ( )
LG \"* T DD T DiC,
L
Le = —])-,—2, (158)
1
Wpe = et (15.9)
1
wp = — . 15.10
& (()lHC'Z)(Tc] + TCZ) ( )
Also, the control (duty-ratio-to-output-voltage) transfer function is given by
2
v a () ()]
Wre wZ wz
é_f_ _V ; i (15.11)

T e @)
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where additional parameters are defined as

1 DR
d = e ) 15.12
Wad LeC‘l DI(Tcl + TC2) ( )
!

@ = Vme\ T oE

A double right-half-plane (RHP) zero w,,4 exists in the control transfer function, which
needs to be controlled in order to have good phase margin.

The expression for () reveals that the typical value of @ is not large. Furthermore,

a small value for () can be secured by seclecting a small value for C'y,. With Q < 1, the

double zero is split into two separate real zeros given respectively by

wp; = —Ii, (1514)
L.
2

wy = D ! (15.15)

D' Ci(ra + 1)’
Note that the value for w; is exactly the same as that for a boost converter, and w;
is typically at much higher frequency.
Another benefit of using a small value for C| is that the entropy for the double pole

w, can be lowered. Indeed, if C; <« C,, one has

w, = \/11—02, (15.16)
Q0 ~ —2 ! (15.17)
o ™~ R 2 ’ .
\/LE/C2 [1+ (Tc2+ rl,)]

L./C> DD

which reveals that the double pole behaves in a way similar to an equivalent low-pass
filter formed by L. and Cs.

In short, low-entropy cxpressions reveal that the dynamics of the three-switch con-
verter can be effectively controlled by appropriate choice of values for C; and C;. The
effects that C; and C; may have on the dynamics can be separated by meeting the
constraint that C; << (73. Then, the value of ("; determines the behavior of the RIP
double zero, and the value of C'; determines the behavior for the double pole w,,.

Figure 15.7 shows. respectively, the measured and the predicted control and the line
transfer functions. Good agreements are scen between measurements and predictions.

Therefore, one can conclude that the generic model is experimentally verified.
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Figure 15.6: A small-signal linear circuit model (b) for the three-swilch converter is ob-

tained by simple point-by-point substitution of the generic model into the
converler (a).
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Figure 15.7: The measured and the predicted data for the control transfer function for
the three-switch converter. Good agreement between two sets of data are
seen.

15.3.1 Further Extensions

Further extensions of the approach to cover more than three switches can be pursued
in a straightforward manner. As a matter of fact, this approach is not limited in principle
by the number of switches.

The key step is to derive the balance equation for switches according to dc and ac
equivalent circuits for switches in a given converter. One can follow the steps in the
previous discussion, with minor modifications, to derive low-frequency large- and small-
signal models for switches in a given converter with multiple switches.

Since each step was sufficiently illustrated in previous sections, details of those ex-

tensions are not presented here.
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Chapter 16

Conclusions

A generic averaged model for two switches in the environment of de-to-dc switch-
ing converters is established. It is applicable for switches in converters under constant-
frequency (PWM), constant-on-time, or constant-off-time control. For constant-frequency
control, it can be reduced to the PWM switch model in [34]. Also. when it is substi-
tuted into a PWM converter, it can be manipulated into a form which is identical to the
canonical model [12] derived from state-space averaging.

A new powerful approach is used to derive the generic switch model. A time-varying
model for switches is first introduced, which models switches as voltage or current sources
in respective switching subintervals. The values of the time-varying sources are given in
terms of dc values of corresponding switch voltage or current. In other words, it is an
ac model in terms of dc quantities. Based on this model, dc and ac equivalent circuits
for switches are derived, which in turn enables the establishment of volt-second and
amp-second balance equations for the switches. Small-signal perturbation of the balance
equations then leads to a set of equations governing the dynamics of the switches, from
which the generic averaged model for switches is derived.

Extension of the generic model for switches to converters with isolation transformers
is performed. The overall structure of the extended model is similar to its basic form,
with some of the parameters of the model scaled by the transformer turns ratio n.

The generic model is also extended to switches in converters in discontinuous conduc-
tion mode. A key step in the process of extension is the introduction of the equivalent
duty ratio 8, which is determined by the average value of the active switch current, or
equivalently, the average value of the passive switch voltage. It is established that the
averaged value of a switch voltage or current waveform can preserve the low-frequency

information contained in the original waveform, as long as the original waveform has a
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nonvanishing dc value. This is true regardless of the ripple contents of the waveform.
Furthermore, it is observed that to preserve low-frequency information after averaging,
the perturbation frequency cannot exceed half the switching frequency if the perturba-
tion introduces amplitude perturbation only. If the perturbation introduces amplitude as
well as frequency perturbations, the corresponding limit on the maximum perturbation
frequency is a quarter of the switching frequency.

The extended generic model for switches in discontinuous inductor current mode
predicts the same high frequency pole as that predicted in [11, 34], providing one expla-
nation for improved small-signal dynamics. Note that the model in [14] is a model for
converter. The model in the second part of [34] is a y-parameter model which is totally
different from its form in constant-frequency (PWM) control. On the other hand, the
extended generic switch model has the same form as its basic form, which is very useful
for computer simulations.

The extended switch model for current programming also retains its form. The
real difference between it and its basic form lies in that the duty ratio is no longer
an independent control. It is a function of the control current 7., voltage v,;; and
current ton. A low-frequency y-parameter version of the extended generic switch model
is also derived. This low-frequency version is identical to the model for current-controlled
PWM switches in [9]. The value of y,2 is seen to be positive, which in turn confirms
explicitly that current programming introduces lossless damping to improve dynamics as
first discussed in [5].

For easy reference, all the results can be summarized into a general form for the
generic averaged model for switches, basic and extended. Figure 16.1 shows the large-
and small-signal versions of the general form for the generic model. Corresponding ex-
pressions for 6(-) and the feedback coefficients can be found in Table 16.1 and Table 16.2,
respectively, for PWM, discontinuous conduction mode, and current programming.

It is emphasized that the table can casily be extended to cover other modes of op-
eration such as quasi-resonant, soft-PWM switching, and any other modes of operation
yet to be invented by use of the concept of equivalent duty ratio.

It is pointed out again that applications of the gencric model, basic and extended,
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are much more convenient than any existing models, switchwise or converterwise. It is
convenient because of the facts that: 1) the generic switch model is a true switch model
with two terminals for a single switch; 2) the generic averaged model for switches retains
its form when extended to cover a much broader range of modes of operations where
small ripples may not necessarily exist.

One important feature associated with the generic model is the unique approach used
to derive large- and small-signal models. Application of the approach used in derivation of
the generic switch model is not limited by the number of switches. The same principle can
be applied to derive models for N switches (N denotes an positive integer) in switching
converters. The key step is the establishment of the balance cquation. An analysis
of a novel three-switch converter is performed to demonstrate the application of the
approach for multiple switches. Low-entropy expressions for the small-signal dynamics
reveal design guidelines for the converter.

Finally, it is concluded that the establishment of the generic average model for
switches in switching converters inherits and extends all previous modeling efforts to
bring modeling of switches down to the switch level. Switches can now be handled as
linear-time-invariant two-terminal circuit elements for their low-frequency characteriza-

tions.
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generic averaged model for swilches in swilching converters under PWM,

Table 16.1: Ezpressions for 6(-) in the large-signal version of the general form of the

discontinuous conduction mode, and current programming.

Constant Discontinuous Current
Frequency Conduction Programming
(PWM) Mode
P - 2A(1-A) 2L 1
kc 6 = d. A -
' b D, T Vopp (DD — 1)
' 0 2LA? 21 1
" Vo”Tng TsVops (DD — 1)
i 0 2LATM(A) DD’ 1
! VorsTsDZR | Voss (D' D} — 1)

Table 16.2: Ezxpressions for feedback coefficients k., ky, and k; in the small-signal version
of the general form of the generic averaged model for swilches in switching
converters under PWM, discontinuous conduction mode, and current pro-
gramming.
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Figure 16.1: The large- and small-signal versions, (a) and (b). of the general form for
the generic averaged model for swilches in swilching converters. The ez-
pressions for 6(-) and the feedback cocfficients can be found in Table 16.1
and Table 6.2, respectively, for PWM, discontinuous conduction mode, and
currenl programming. Other modes of opcrations can readily be obtained by

use of the equivalent duty ratio 6.
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Appendix A

A Practical Sampler

In this appendix, mathematical details about a practical sampler are presented.

A mathematical model for sampling is the product of the signal to be sampled and
the sampling series which is normally taken to a series of impulses.

A practical sampler performs sampling by a series of pulses instead of impulses. A
small but finite pulse width introduces significant attenuation of the amplitudes for all
sidebands.

Consider a series of rectangular pulses p(t). Denote the small but finite pulse width by
tw. For simplicity and without loss of generality, take the magnitude of the rectangular
pulses to be unity.

Then, straightforward algebra yiclds the Fourier expansion in the complex-variable

form
> .
p(1) = ) Pac?™ L, (A1)
—o0
where w, = 27 /T, is the sampling frequency, and the Fourier coefficient P, is given by

P, = 71—/2 1-emimwsldy (A.2)
s -t
1

. (mrtw)
= — SIn .
nw T,

If a continuous-time signal g(t) is sampled by the series of pulses p(t), the sampled

signal g,(t) can be expressed as

gs(t) = g()p(t) (A.3)
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According to the property of frequency shifting for the Fourier transform, one obtains
the spectrum of the sampled signal as
~o
Gy(w) = Z PG(jw — jnws), (A.4)
ped
where G(+) is the spectrum of g(1).

Equation A.4 indicates that the spectrum of the sampled signal is replicas of G(jw)
centered at integral multiples of the sampling frequency. However, the amplitude of those
replicas are scaled by the factor P,. Since P, is less than 1 in amplitude and decreases
with n, it represents significant attenuation for sidebands.

For a better understanding, consider the bascband component of the sampled spec-
trum. If ¢, € T, the baseband of the sampled spectrum, according to Eq. (A.4), is

given by

G, ~ —G(jw). (A.5)

N |-

Therefore, one can see that the small but finite pulse width {,, introduces attenuation.
The value is about one third, approximately —10dB.

In the context of measurement of loop gain, the attenuation inherently associated
with the finite pulse width (practical sampling) will be observed in dc gain measurement.
Equation A.4 provides an explanation for the puzzling question: Why is the dc gain
measured by digital injection much lower than that measured by analog injection? The
“unexpected” attenuation associated with digital injection is precisely due to the finite
pulse width of the sampler, which in a switching converter is the duty ratio modulator.
The sampling done by a modulator is practical since the perturbation of its output (duty
ratio) is always finite, and hence the duty ratio perturbation should not be modeled as

a series of impulses.
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Appendix B
A Sufficient Condition

In this appendix, an attempt is made to establish a sufficient condition for the exis-
tence of a unique solution to an averaged lincar time-varying system.

Two theorems are given without proofs. Mathematics-oriented people can refer to
standard texts and the listed references on differential equation theory (see, for example,
[44]) for a formal treatment of the topic.

Consider a time-varying system described by

L e = Al + BlU (B.1)

where z and u are vector-valued variables, and A and B are matrices with proper di-
mensions. The time-varying nature of the system is indicated by the letter ¢ in the
parentheses.

The vector-valued function z is said to be a solution to Eq. (B.1) in the ordinary
sense when Eq. (B.1) is satisfied for all finite ¢ > {3 with dx/dt being interpreted as a
derivative from the right. The following theorem gives the existence of a unique solution

in the ordinary sense.

Theorem B.1: Given any z(lp), Eq. B.1 has a unique solution, in the ordinary sense,

equal to x(tp) at 1y, if A(l) and B(t) are continuous functions of t for to < t < oo.

The requirement of continuity of A(¢) and B(t) is frequently violated in power elec-
tronics owing to inherent switching actions in switching converters. Hence, Theorem B.1
needs to be extended in order to be useful in modeling switching converters.

Before the next theorem is presented, a few terms are introduced.

Integration of both sides of Eq. (B.1) from (g to t yiclds

x(t) = x(ty) + t[A(T).r + B(7)u]dr. (B.2)

to
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A vector-valued function z is said to be locally integrable if cach of its elements (1)
is a continuous function except at a finite number of points on any finite interval, and
(2) has a proper absolutely convergent improper Riemann integral [15] on every finite
interval over the interior of which the function is continuous.

The vector-valued function z is said to be a solution to Eq. (B.1) in the extended
sense, if it satisfies the integral equation (B.2) for all time { > {o.

The following theorem gives a sufficient condition for the case where A(t) and/or

B(t) have discontinuities.

Theorem B.2: Given z(lg), Eq.( B.1) has a unique continuous solution, in the ertended

sense, equal to x(lg) al ty, if A(1) and B(1) are locally integrable functions fort > {g.

Several comments are due here.

Note that Theorem B.2 is a sufficient condition only. A solution may well exist, even
if the conditions of the theorem are not satisfied.

However, the theorem is useful because, in power electronics, A(f) and B(t) are fre-
quently locally integrable, since the only discontinuities are step discontinuities associated
with inherent switching actions of the converter.

More important. if more simplifying assumptions are made, Eq. (13.2) can be manip-
ulated into averaged form.

If the operation of the integration and differentiation of z is interchangeable, which
is frequently true for practical switching converters with finite turnon and turnoff times,
Eq. (B.2) can be rewritten as

(%/t: zdr = /t: [A(T)z + B(T)u]dr. (B.3)

If A(t) and B(t) are constrained to have small ripples, then both A(?) and B(1) can be
approximated by their respective averaged values A and 3. Since they are now constant
matrices, they can be moved out of the integral sign. Then, one has

d

t ot ot
3?,/ rdr = A [ zdr+ B[ udr. (B.4)

to to to

If the integration is performed over one switching period. one obtains that

%:z = Az + Bu. (B.5)
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Equation (B.5) is one form of the well-known state-space averaged description of
switching converters, which says that the low-frequency small-signal dynamics of Eq (B.1)
can be characterized by the characterization of its averaged system LEq. (B.5).

In short, a suflicient condition for the existence of a unique solution to a time-varying
system is established. If the system matrices A(¢) and B(t) arc continuous, a unique
solution exists in the ordinary sense. It the system matrices have discontinuities, a
unique solution exists in the extended sense. One version of the extended solution can
be manipulated into a form equivalent to the result from the well-known state-space

averaging.
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