COMPUTER MEDIATED COMMUNICATION

Thesis by
Rémy D. Sanouillet
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1994
(Submitted August 19, 1992)

i

Acknowledgments

I would like to express my gratitude towards NCR Corporation for its generous
personal support during the final stages of this research. I am particularly indebted to
Mike Graf and Tom Kunz for their constant help and unfaltering friendship.

I would equally like to thank David Robinson for always being on the receiving side
of a question with a good answer, and Andrei Sherstyuk for allowing me to borrow his
graphic talent.

This work was very much influenced by Dr. Bozena Thompson’s extensive
linguistic knowledge which I have tapped repeatedly.

My greatest appreciation goes to my advisor, Professor Frederick B. Thompson, for
instilling in me through his perseverance, insight and dedication to this project a flame
that has altered the course of my life and that I shall keep carrying forward.

Finally, I acknowledge the loving and technical support of my family and of Arlette

without whom this endeavor might not have reached its culmination.

i

Abstract

What will the age of the telephone-computer be like? In this thesis we present an
answer to this question. We will base this answer on a conceptual framework being
developed by the research group in which this work has been done, namely the
Caltech/NCR Project; the work of this Project is embodied in the New World of
Computing System. This framework will be stated as a paradigm for human information
activities.

The main contributions of this thesis are, first, an examination of the implications of
this framework for the communication aspects of information processing. The second is
the design of the communication aspects of the New World of Computing System,
reflecting the results of this examination. The System, in its totality, provides a computer

environment for the telephone-computer age.

v

Table of Contents
L. Introduction: The Accelerating Information Revolution.............cccooveeviiniianinniiieene. 2
II. The Background Environment of this Thesis.........c.ccoiiiiiiniiiiiee 6
A. A Paradigm for Information Processingcccccccoviiiiiniiiiiiiincniinnncennn, 6
B. The New World of Computing SYStem....c...ceeuieiiiirienrieniiceieeeeeeeeee e 16
III. Implications of the Paradigm for Communications and Computers.......................... 30
A. The Problem of Addressibility.......cccccociruieiiiiiiiiiiiiiniin e 30
B. What Needs to be Addressedcooeeviiiiiniiiiiiiircecccceeeeecceeee 34
C. The Requirements for Global Addressibilitycccocoiviiiniiiiiiiiiiine 39
D. Page Address and the Size of Virtual MemMOIycccoovieiimniinniiiiiiiiiiiiiis 42
E. Networks in the Telephone-Computer Era...........ccccoocooiiiiiiiiiiiniinnnicee, 55
IV. Some Details on Implementation.........c...ccccovoeriiniiiiiiiiiiniiieteceree s 61
A. Pages and Headerscocoiiriiiiiiiiitr e 61
B. DCIMONS.....ccuiiiiiiieiiciiitiet ettt bttt be e 65
C. Functionalities Implemented by these Methods..........ccccoceveeiinienniinsinninnen. 67
D. Implementation Solutions to High Level Applications Functionalities.......... 87
E. A Detailed In-Depth Look at an Example............c.ccoccevvennieiinicninniniceneennn, 95
V. I CONCIUSION ...ttt ettt rae e e e s st e s e aeennas 129

VL BIbIOZIAPRY ..ottt e 130

I. Introduction: The Accelerating Information
Revolution

We are all very much aware that major technological and social changes are
under way as a result of the rapid advances in the technologies involved in the
processing of information. Now — in the last few years and stretching through the
next several decades — an acceleration of this change is taking place as two main
streams of these advancing technologies combine — namely, computer technology,
represented by personal computers, professional workstations and digital switches, on
the one hand, and telecommunications technology, represented by the digital
telephone, packet switching and fiber optics, on the other. Within this relatively short
period of time, we will see the emergence of the telephone-computer, a device that
combines the capabilities of the workstation and the telephone into a single
instrument which will rapidly become a ubiquitous part of our environment, with
profound implications on almost all aspects of our lives.

We think of the telephone as the archetype of an instrument for communication.
Indeed, the international telephone system makes it possible for almost any two
persons, at least in the developed part of the world, to be almost instantaneously in
direct voice contact. However, it is totally lacking in important communication

capabilities. Books and journals and maintenance manuals communicate between

authors and recipients over time. They also communicate from one person, the author,
to many persons. Pictures, drawings and video are indeed on occasion worth a
thousand words. There is another important dimension to communication, namely the
transformation of the form of information between the sources and recipients. With
the old technologies, there has been no capability of automating this aspect of
communication. Accounting sections of businesses, considered as instruments of
communication among the many offices of the firm, collect data from diverse sources,
transform it into entirely different forms, and communicate these to many recipients.
It is these aspects of communication that will now -greatly enrich communication
across this vast telephone network.

Only recently have we begun to think of the computer as an instrument of
communication. We find an excellent example of this new thinking in the words of

Terry Winograd:

“The prevalent view is that in Al we design ‘expert systems’ that can
stand as surrogates for a person doing some job. From a viewpoint of
human interaction we see the computer’s role differently. It is not a
surrogate expert, but an intermediary — a sophisticated medium of
communication. A group of people (typically including both computer
specialists and experts in the subject domain) build a program
incorporating a formal representation of their beliefs. The computer
communicates their statements to the users of the system, typically doing
some combinations and rearrangements along the way. The fact that
these combinations may involve complex deductive logic, heuristic rule
application or statistical analysis does not alter the basic structure of

communicative acts.” [WINOGRADS2]

The computer has memory, can accept inputs from many sources over time,
combine and transform its inputs into new forms, and provide its clients with those
particular forms each of them finds most useful. Now we are putting this powerful
mediating device at each station in the vast telephone net, augmenting our capability
for direct and instantaneous communication with the vast informational resources,
some stored over time, that this new instrument can bring to bear for 6ur immediate,
relevant needs.

What will the age of the telephone-computer be like? Daily newspapers as well
as specialized journals in the fields of computing and telecommunications are filled
with conjectural articles. John Sculley, president of Apple, has made a videotape,
“The Knowledge Navigator,” publicizing his personal speculations. One of the
laboratories of Pacific Bell has its own tape, “Protonet: A Direct Line to the Future,”
made for the purpose of carrying their projection to higher Pacific Bell management.
The answer to the question posed in the first sentence of this paragraph, however, was
given by Robert W. Lucky, Director of Communications Sciences Research, Bell
Laboratories, in his address as Annenberg Distinguished Lecturer, University of

Southern California on January 22, 1990:

“What are we going to do with this gigabit [of in-place telephone

bandwidth]? The honest answer is we don’t know.”

This lack of clear, coherent perspective is reflected in a floundering of the
information technology industries, in a lack of policy leadership in both industry and
government, and — in the United States — in an almost disastrous legal muddle in
the regulation of telecommunications. This lack of coherent vision stems from a
deeper source. These are the technologies that support the information processes of

ourselves as individuals and of our society as a whole. “Information processing” has

come to have too narrow a connotation to serve as a basis for understanding the
revolution that is taking place. We do not share a clear paradigm that can provide us
with perspective and understanding of intellectual activities. The rapidity of change in
these areas has decayed the meaningfulness of the vocabulary, the words which until
recently we all seemed to understand very well, indeed which we still use as if they
still carry their usual force. Words such as “information”, “reasoning”, and
“intelligence” have lost a substantial measure of their content. For example, the
amount of single copy, printed “information” coming off computer printers each day
exceeds by orders of magnitude the total of what all the human race together could
read if that were our only activity. In what sense is it “information”? Whom does it
inform?

What will the age of the telephone-computer be like? In this thesis we present
an answer to this question. We will base this answer on a conceptual framework being
developed by the research group in which this work has been done, namely the
Caltech/NCR Project; the work of this Project is embodied in the New World of
Computing System. This framework will be stated as a paradigm for human
information activities.

The main contributions of this thesis are, first, an examination of the
implications of this framework for the communication aspects of information
processing. The second is the design of the communication aspects of the New World
of Computing System, reflecting the results of this examination. The System, in its
totality, provides a computer environment for the telephone-computer age.These
communication aspects have been implemented by the author, as an adjunct to this

thesis, as a part of this System.

II. The Background Environment of this Thesis
A. A Paradigm for Information Processing

1. THE NOTION OF SUBLANGUAGE

We human beings engage in informational activities. Informational activities
include talking among ourselves, writing and reading, creating engineering drawings,
taking pictures of many different aspects of the world around us, choosing a course of
action, checking with others whether our plan of action has been understood. Aspects
of these activities have variously been called information processing, decision
making, planning, communicating. These activities include using computers and
using the telephone. We are in need of a simple, understandable paradigm for the
notion “intellectual activity”; one that can provide perspective to the relationship
between the telephone and the computer, on the one hand, and human informational
activities on the other.

If we examine the intellectual activities of a human being at a given moment in
time, it is clear that one’s thoughts are confined to a small conceptual domain. One
deals at such a moment with only a very small part of the wide-ranging material that

is generally available in one’s memory. One’s immediate conceptual domain contains

all sorts of entities: some that relate directly to objects out of one’s sensory
experience, and some that may be totally abstract. Among these objects one envisions
many interrelationships relating entities over time: some accounting for special
distributions, and some not related to sensory data at all. However these world models
are by no means haphazardly disparate; they are comparable and related, but in ways
idiosyncratic to one’s limited, immediate conceptual domain. This conceptual
domain, with all of its complex structure, has been referred to in the literature as the
individual’s conceptual model; but this is a misleading term, for one sees in one’s
mind’s eye many possible models of the world which one evaluates and compares. In
order to find a clear and concise way of characterizing these small conceptual world
views, we turn to the rapidly merging fields of mathematical linguistics and
theoretical computer science. To give a point of focus to our discussion, we introduce
the notion of a “sublanguage”.

An illustration here may be useful. After performing a surgical operation, the
surgeon writes a report on what was accomplished. Such reports often end with the
phrase: “The patient left the operating room in good condition.” When it is pointed
out that this sentence is ambiguous, the surgeon is at first puzzled, then amused to
think of the patient getting up, cleaning the instruments, mopping the floor and
leaving the room in good condition. In the context of the operating room, there is no
ambiguity; the sublanguage brooks but one interpretation of this phrase. As a second
illustration, consider two situations. In the first, a person is at the tobacconist and
orders: “Filter!” In the second, the same person is staring at the oil puddle below his
car’s engine and knowingly mutters: “Filter.” The word “filter” is not ambiguous in

either situation. It is clearly not a matter of recognizing which of the several meanings

of “filter” apply, any more than a car driver chooses between the brake pedal and the
accelerator when approaching a red light.

We do not think and speak in a “natural language.” The notion of natural
language has played a useful rble in the linguist’s development of a general
understanding of human communication, in the codification and maintenance of
purity of national languages and the training of language teachers. Language, in the
sense used by the linguists, might more properly be thought of as an integrated family
of linguistic mechanisms, often expressible as grammar rules. The phenomenon of
information processing and communications, although exhibiting in a given cultural
community the adherence to such syntactic forms, also has features which are better

characterized, we believe, by the notion of “sublanguage,” here being introduced.

“The individual is changed through the use of language, and the language

changes through its use by individuals.” [WINOGRADS87-1]

When a research team, representing several disciplines, is first brought together,
the sentences used by its members are long and most are for the purpose of clarifying
word meanings rather than exchanging ideas. Later, their sentences become terse and
depend on a great deal of tacit understanding. It is this maturing sublanguage that
brings efficiency to the team’s communication. When someone whose interests are
the linguistics of “natural” language studies the sentences used by such an
experienced team, they may appear ambiguous, ill-formed, fragmentary. However,
careful attention to the semantic relationships between these utterances and the
narrow subject matter to which they refer reveals that this discourse is indeed lawful
and fully understandable, but in a sublanguage which in many ways is entirely their

own.

In dealing with their immediate environments, people narrow their
considerations by making judgments of relevance, value and effectiveness, judgments
that are characteristically human. The results of these judgments take concrete form in
the sublanguages they use both in communicating within their group and in their
internal thought processes. A moment’s introspection makes it clear that as we move
about from one place to another during a busy day we change from one sublanguage
to another.

The stability of a given sublanguage is found in the stability of the task we
undertake. When we return again and again to a task, and to that group in which we
interact in conducting that task, it is the sublanguage that codifies and externalizes our
on-going considerations. As our immediate environment changes, and our attention is
directed elsewhere, our sublanguage, i.e., the formal language that characterizes the
conceptual environment in which our thought processes take place, shifts as well.

As an illustration, consider a particular work environment, say that of a person
working as secretary for an industrial manager. One aspect of that person’s
environment is the typewriter. The technology of the typewriter keyboard has not
changed in many years, even though a more efficient layout of the keys is known. The
reasons for this stability are not hard to envision. Namely the keyboard does not
change because of the strong social inertias resulting from so many people having
been trained on the existing one. There are many other aspects of the typing, filing
and sending of letters, reports, etc., where there are both physical and social inertias
that mitigate against change in many aspects of the secretary’s concern. The moment-
to-moment sublanguage of such a person is constantly shifting as a needed address
must be found, a letter retrieved from a file, a phone call answered. However a part of

all of these sublanguages remains essentially constant — that part related to the

10

mechanics of typing, phoning, filing, where the physical and social inertias are high.
This part is itself characterizable as a formal language. It is precisely these highly
stable sublanguages that can economically be built into computer systems. Word
processors are an ideal example of how the inertias of a significant part of the

secretarial world can be exploited.

2. THEORETICAL FOUNDATIONS

We impose structure on the jumble of our moment-to-moment experiences so as
to create order and provide perspective. Although “structure”, in this usage, has been
characterized in a number of equivalent ways: recursive functions, Turing machines,
etc., another way, equivalent to these others, is as language, the formal definition of
language now common to mathematical linguistics, philosophy of language and
computer science. It is the infinitely variable expressions of language that give
tangible form to our immediate view of the world and by which we share that view
with others. It should be no surprise to find human language playing the central r6le in
leading to an understanding of information processing. The mechanisms of language
are precisely the tools we need and use to express the recursive structures we impose
on our experience. It is these mechanisms of language which we share that form the
basis of communication. Mechanisms, such as word order, case endings, connectives,
self embedding such as the use of the relative clause, number systems, expressions of
time, etc., are learned at an early age, and provide the formal ways to sew together
concepts into expressions that can be widely understood.

Once the judgments of relevance and depth of focus have been made, and these
judgments become tacit, subsumed into underlying semantic structure, sublanguages

take on the characteristics of formal languages. This is what Church’s thesis says. The

11

deliberations we carry out in our minds about a fixed subject matter — fixed in level
of relevant detail and breadth of concerns — are “calculations”. This is what Gdodel,
Turing, Markov, Post and Church, in quite disparate ways, were trying to characterize.
Each of them characterized/defined bounds on human intelligent activity. The abstract
equivalence of these separate attacks gives compelling evidence that they indeed
captured the essence of human calculations within the confines of a tacitly accepted
sublanguage. The class of all such formal languages constitutes the domain in which
is found, for a given instant in time, the sublanguage that precisely
characterizes/encapsulates our view of our world at that instant. From moment to
moment, our view — our sublanguage -— may change as our circumstances change.
However as long as environmental restraints stay the same and our attention is
sustained on a given area of concern, this same formal language continues to embody
our “calculations”. Indeed, our ongoing activities as human beings, even in highly
stable tasks, are such as to change in evolutionary ways the sublanguage that
characterizes our view. How do we change sublanguages? Although formal proof has
yet to be given, it is most likely that this shift in sublanguage is not a computable
function.

The concept of “sublanguage” is abstractly equivalent to the concepts of
“recursive function” and “Turing machine”. Thus our *“sublanguage” paradigm is
equivalent to Church’s thesis; that is, as was stated above, that human information
processing can be characterized by these formalisms. To give utmost precision to this
statement, we restate this paradigm in terms of one of the above formalisms. In the
usual proof that a Turing machine can mimic the calculations of any formal language,
a Godel mapping is developed from the alphabet, finite strings of these, and finite

sequences of such strings into the integers. Then it is shown that each constructive

12

process needed in language processing can be mimicked by a Turing machine
operating on the Godel numberings of the arguments of the process. This line of

reasoning can be insightfully extended by bringing in the notion of a Universal Turing

machine. Suppose we have a universal Turing machine: J,;(m,n) such that J;(k,n) =
Jk(n) where Ji is the k' Turing machine in some effective enumeration. One can
legitimately think of m as the Godel number of the sequence of grammar rules and
lambda expressions of the formal language corresponding to Jk. If n is the Godel
number of a well-formed question of this language, J,;(m,n) = h can then, as a Godel
number, be decoded as the answer to that question. In this formalism, the sublanguage
paradigm is equivalent to saying that at any instant our thought processes can be
characterized as a Turing machine, precisely Church’s thesis. Moreover Church’s
thesis is its own converse; thus each of us encompasses the capabilities of a Universal

Turing Machine. Yet if this is true, then we must be essentially more, a Universal

Turing machine with a Demon §; having observed n, our Demon selects that Turing
machine that 1S most informing, and Jy;(8(n),n) becomes our immediate cognitive
model.

The paradigm for human information processing that underlies this thesis can
now be stated:

It is the constant re-evaluation and adjustment of the relevant view that
characterizes human information processing. A succinct expression of such a view is
as a formal language. When there are strong social and physical inertias in an area
of broad concern, that part of our sublanguage concerned with that area stabilizes.
For these stable areas, it is economically expedient to develop computer systems that

can understand these sublanguages.

13

3. IMPLICATIONS OF THE PARADIGM

The Universal Turing machine analogy suggests that one could write a
computer program that would operate in two modes. In mode one, the program would
ingest grammar rules of a formal language (including their semantics), one at a time,
building them into an appropriate grammar table. In the second mode, the program
would accept any string in the terminal vocabulary of the language, process it, and
output the appropriate response. These two programs together would constitute a
Universal Language Processor that could handle any sublanguage. This germ of an
idea constitutes one of the core theoretical concepts of the New World of Computing
System.

Continuing along these lines, look again at the “one-at-a-time” way of adding
grammar rules. Grammar rules, including both their syntactic part and their semantic
part (which can be conceived equivalently as a Lambda expression or as a subroutine
embodying the same abstract algorithm) are indeed separable, isolated modules. A
language processor, whether implicit in a compiler or explicit as a separately
identified process (the Universal Language Processor) has two parts: (1) a parser,
which uses the syntactic parts of the grammar rules to build the parsing graph, and (2)
the evaluator, (such as the “eval” procedure of LISP) that uses the parsing graph to
compose the semantic procedures, completing the processing of the input string.

There is one area where this computerization of sublanguages is already highly
developed and sophisticated, namely programming languages. The stability of the
Von Neumann architecture has resulted in an evolutionary development of
sublanguages that exploit this stability. In the last sentence of the previous paragraph,
we spoke of the computer “understanding” a sublanguage. The meaning of

“understanding” is epitomized by the way the computer understands a programming

14

language: it is able to carry out instructions stated in the programming language in a

way that was intended by the programmer who wrote them.

Consider a middle level manager in a large engineering concern. He writes
instructions to his computer, typing:

“Task G will be delayed 10 days.”

The computer:

1. changes appropriately the database entry for the duration of task G;

2. recomputes a Pert chart for the entire project;

3. for those tasks that will experience a significant delay, generates e-mail to the
affected managers, identifying the cause and potential consequences of the
delay.

The sublanguage of engineering management is thus “understood” by the computer,

Jjust as the manager would expect a staff assistant to have responded in a pre-computer

era.

One could conceive of language segments — each made up of a family of
grammar rules — establishing relationships among a restricted set of related concepts.
The material needed to discern the inner content and workings of these relationships
can be visualized as being held in appropriate structures and processes on these
structures. These language segments could then be fed into the language building
mode of our program, a rule at a time. Picturesquely, a new language segment could
be purchased at our nearby computer store and “plugged into” our computer. The
result would be an extension of our sublanguage. All of our previous data and prior
“programs” — as language segments — would be unchanged. In this way we add a
new capability to our existing sublanguage, with virtually no disruption of our

ongoing processing. For example, one could delete the grammar rules constituting a

15

two-dimensional graphics package and replace it by a package that could handle
three-dimensional graphics. One could still say just as before: “Histogram the height
and length of”; but now one could also say: “Histogram the height, length and
depth of” and the three-dimensional package would take its inputs from a three-
dimensional array and produce the three-dimensional graphics output.

Look at this last example a little more carefully. Multidimensional arrays, ever
since FORTRAN, are a common data structure. Their implementation in a limited
memory is not solved with finality, as the recent evolution to OS/2 and extended
DOS 5 have made apparent. The grammar of array processing, that is, the way one
phrases in “ordinary English” how one wants arrays processed, is quite standard
(cryptic commands and icons may have been added to standard phrasing in a
particular user’s sublanguage). These would carry over naturally from the two-
dimensional to three-dimensional graphics. It is the semantic processing procedures
underlying this syntax that take rethinking. So it is precisely a new “array” language
segment that retains and appropriately extends existing syntax that is needed. There
are certain basic functions one needs to process arrays, as long as one abstracts out
details of representation. One needs to create an array, delete it, insert and access a
value of known position, and search for the position of a given value. Add a few
binary operations and one has accounted for all the utilities needed. The rest can be
left to the Universal Language Processor. This notion, illustrated in the above
paragraph, i.e., that an abstract data structure may be implemented in a variety of
ways and the details of such an implementation may usefully be hidden, encapsulated
in “utility procedures”, is well known, being a central notion of object oriented

programming.

16

B. The New World of Computing System

The New World of Computing System is a multimedia distributed information
management system developed at Caltech under the guidance of Drs. Frederick and
Bozena Thompson. It is difficult to give a more descriptive one-line definition due to
its extensive far-reaching nature. One’s first impression is that it is a multilingual
natural language interface to a semantic net database — or equivalently, an entity
attribute database — where the entities may be from arbitrarily many object classes
(in the sense of object oriented programming). However, it contains its own modules
for list processing, paging and networking, as well as providing a new and powerful
applications development environment. We now describe in somewhat more detail
those aspects of this System that are particularly germane to research reported in this

thesis.

1. THE LANGUAGE PROCESSOR

How are sublanguages implemented in the computer? One class of
sublanguages is already implemented in computers, namely programming languages.
How are they currently implemented? A compiler is written which embodies both the
syntax of the language and the semantics. The compiler accepts a sentence of the
language and returns a single, machine language program. When used in interactive
mode, this program is then executed. That is, the abstract computer that understands
the programming language consists of a hardware computer with its own machine
language and the compiler that translates the programming language into machine
language. To change the programming language, one rewrites the compiler. There are
compelling reasons why this is a bad technology for implementing sublanguages,

including programming languages. We present here a radically different technology.

17

Let the computer be a Universal Language Processor. (A hardware computer
with a universal language processor replacing the compiler of a particular language, if
you like.) It operates in two modes:

1. It accepts, one at a time, the ruleS of grammar and their associated semantic
procedures that define the sublanguage, building them into its internal
grammar table.

2. It accepts an input sentence, parses it according to the grammar, uses the
resuylting parsing graph to compose the associated semantic procedures,
evaluates them, outputs the result, and cycles.

Thus it is a simple, straightforward implementation of compositional semantics. It
differs from current practice in a radical way; namely, there is a single language
processor that is completely separate from the declaration of any particular
sublanguage. A sublanguage — any computer language — is declared as a collection
of independent grammar rules, each with its own syntax rule and associated semantic
procedure. Sublanguages are defined to the computer in terms of grammar rules,

consisting of a syntactic aspect and an associated semantic procedure. (See Figure 1.)

A Typical Rule of Grammar
(as understood by the computer):
RULE
>Syntax: <noun_phrase> => <adjective> " "<noun_phrase>
>Semantics: POST adjective_modification_procedure

Figure 1

Given the constituents of a meaningful phrase, for example: “government” and
“contracts,” the semantic procedure goes to the two associated data files and produces

the “meaning” of the entire phrase: “government contracts”. The rdle of syntax is to

18

show how words and phrases can be combined into meaningful statements. Once the
syntactic structure of a sentence is seen, the associated semantic procedures can be
composed appropriately. The rules of grammar, along with the corresponding
semantic procedures, constitute the building blocks. Each of these rules is
implemented as a separate unit. The syntax of a sentence provides the plan for
combining these building blocks into the complex meaning of the entire sentence.
Thus the individual semantic procedures can be efficiently composed in innumerable
ways to produce the needed answers to immediate user concerns.

The notion of “phrase”, as needed below, is simply that of a meaningful
segment of the sentence. Thus in the sentence: “What is 3 + 477, among the phrases
are: “3”, “3 + 47, “is 3 + 47, as well as the whole sentence. On the other hand, “3 +”,
and “47” are not. “is 3” is indeed a phrase, but one that does not appear in the final
analysis of the sentence. The formal representation of this notion as an abstract data
structure, which includes a specification of its part of speech, constituent phrases, and
the grammar rule involved, is central to the New World of Computing language
processing. Instances of this data structure are ubiquitous aspects of language
processing. We will refer to “phrases” below in this sense (it will be unnecessary to
know further detail).

It is important to notice the implications of the independence of the grammar
rules — syntax and associated semantic procedures. As said above, in building a
sublanguage, rules are added one at a time. These same rule-adding utilities can
obviously be used at any time to add an additional rule or, for example, a whole
family of rules implementing a new object class. It is these same utilities that

implement the user’s ability to extend his own sublanguage by definitions.

19

A common consideration that arises when faced with an architecture of this
vastness is the effect it has on efficiency. Let us deal with this immediately. In the
current implementation of this architecture, against a moderate sized database
concerning ships and shipping (the DARPA “blue” file of computational linguistics
fame), and using a sizable grammar, the parsing time for the following sentence:

“What is the cargo type and destination of each ship
whose port of departure was some Soviet port?”
is in the tenth of a second, the overall response time including database access is a
few seconds. The key to this speed lies in the fact that in such very high level
sublanguages, the object class data structures and processes are highly optimized, so

that in processing a sentence one is composing a few highly optimized procedures.

2. THE PAGING MODULE

An “insider’s” problem is to determine how the great number of highly complex
procedures that may all be needed at some time or another can be retained in a form
that makes them available for rapid response to a query. This problem is equally
relevant concerning the many forms data resources may take — various database
systems, text files, postscript and pixel files, etc. One way that has proved particularly
effective is to use “pages” in peripheral memory, but pages that are organized on the
basis of semantic content. In response to a particular query, only those pages that are
required are brought into main memory — whether they hold data, procedure or other
information resources. Pages holding all manner of material are brought into the same
paging area. Obviously, procedure pages require a modicum of run time binding, but
since the number of paging slots is large, there is very little trashing of pages between

main and peripheral memories.

20

A page is a fixed-size block of mass storage. In the current implementation of
the New World of Computing, these pages can contain indiscriminately database
records, executable code, data about internal management, lexical and dictionary
items, lists, digitized sound and pictures, strings, etc., in other words any type of
manipulable data. This does not necessarily require that all the data that the System
manipulates be loaded on pages. As we will see in Section III. A below, there exists an
efficient “grain size” for any media, simplifying description, manipulation and
transport of relevant database items; the choice of storing raw media data on pages or
not will also be discussed in that section. The area of mass storage where these pages
are kept is called a paging file. Copies of some of these pages will be in memory
when they are in use. The area of memory where the pages are swapped in and out is
called the paging area. When there are no unused page slots left in the paging area, a
swapping algorithm selects which page has had the least use, and returns it to mass
storage if it has been modified. For accessing data or object code stored on one of
these pages, each page has a page address consisting of the page identifier and a byte

offset on the page. The precise form of this address will be discussed below.

3. THE DATABASE AND OBJECT ORIENTED NATURE OF THE
SYSTEM

The information available to the computer is organized into a network of
“nodes” and “links”. The “nouns” of a sublanguage point to certain of the nodes in
this semantic net. The syntax rules also have a geometric interpretation in terms of the
semantic net; they indicate how to move from one set of nodes to another. Thus the

parser composes the path from the words in the initial expression of a question to the

21

nodes constituting the desired answer. The information about a node is kept on a
database record on one or more pages of peripheral memory.

Organizing information in this way provides a highly efficient and flexible
method for maintaining a rather shallow level of information organization (essentially
equivalent to an entity-attribute database or relational database, plus inheritance). By
linking such “database” records — equivalently the semantic net nodes — to more
complex forms of representation (e.g., texts, pixel files, postscript files, engineering
drawings) and by providing sophisticated semantic procedures that can exploit the
additional complexities of these structures, the computer can give wide-ranging
responses to highly complex technical questions. In the terminology of object oriented
programming, these database records constitute the object representations for the
single all-encompassing object class: “noun”. Any hierarchy of subclasses of objects
may be created, such as “image noun”, “matrix noun”, “covariance matrix noun”, etc.,
with their associated processing procedures.

A new object class can be easily implemented (this is supported by the System)
as a new subclass of the “noun” object class. When an instance of the new object
class is created, first its record as an instance of “noun” is created, and then a link
from this record to an instance of the data structure of the new class is added. As an
example, suppose one were building a new sublanguage to be used by the structural
engineers in an aerospace company. Suppose the company already had a major
investment in files of stress data and, say, FORTRAN procedures that processed these
files. The new object class, a sub-object class of “noun,” would be created whose
associated data structure was that of the stress data files. Syntax rules for noun

phrases that engineers commonly use in referring to the stress data would be added,

22

together with their corresponding semantic procedures consisting largely of calls to
the relevant FORTRAN routines. Such queries as:
“Plot the stress agalinst wing tip loading for both
Model Al2 and Model Al4d wing aileron designs”

would be immediately available.

4. THE COMMON TERMINAL VOCABULARY OF ALL
SUBLANGUAGES

In today’s highly visual world, sublanguages are seldom limited to written text.
However how can this complete integration of media be implemented? Certainly the
identification of the object class with its encapsulation of structure and process is a
major step. Another step concerns the extended “alphabet” available to all
sublanguages. All letters and characters of the usual alphabet as well as the entire
extended ASCII character set; all graphic “events”, such as clicks of the mouse and
movements of the cursor; and all “interrupts” from internal and external sources
(properly screened and identified) can be used in the input string that is fed to the
language processor. All sublanguages have the same terminal vocabulary, namely this
extended alphabet. Grammar rules can supply the recursive, flexible link between the
input string and the internal object classes. For example, one can at any time
introduce a new icon, placing under it any sentence or phrase of the sublanguage that
then is evaluated in line whenever the icon is clicked during input of a query.
Consider two illustrations of how this can work.

An airline mechanic, working on the radar nose cone of a Boeing 747 aircraft,
turns to his computer for detailed technical support. He has already entered

information identifying the particular aircraft he is working on, and has called for a

23

display of the nose cone area. The computer-generated photo image of the relevant
area (plus an invisible back-plane drawing outlining all significant parts) provides a
highly efficient medium for communication. For example, he may type “no hydraulic
pressure” and click his mouse on the image of the valve where he just took a
measurement. The computer may respond with the spoken word: “replace” and blink
the sensor it identified in its diagnosis as the probable cause of the problem. In
response to a sparsely stated but technically involved question, the mechanic receives
an immediately useful response that reflects a high degree of built-in understanding.

Again a maintenance professional is using a professional, completely mobile
telephone-computer which eliminates any need for the usual truck full of manuals. He
types in:

“TI am at 477 Oak Street.
Show me the electric panel wiring diagram.”

The professional’s efficiency is greatly increased, since the computer tailors its
responses to the specific installation. Astute use of hypermedia links from one data
display to another quickly provides pathways to the details the professional really
needs. References that establish context (e.g., “I am at ...””), as well as pronouns and
elliptic constructions (e.g., “What about the other connector?”) play important roles in
effective dialogue. Note that pointing to and blinking significant areas in pictures and
drawings constitute visual “pronouns” (e.g., “voltage ‘there’?” or “tighten ‘that’”,

“[show schematic icon] of ‘that’”).

5. THE CREATION AND BASING OF SUBLANGUAGES

The typical industrial manager will have many sublanguages, for example:

o Schedules and deliverables

24

¢ Budgets and fiscal control

o Personnel assignments and administration

+ Correspondence

Underlying each of these, and a part of every sublanguage, are the general
dialect of the manager’s natural language, a complete graphics package, text editor,
electronic mail, voice messaging, etc. Once he has chosen to use any one of his
sublanguages, all of these services will be immediately available; the manager will
not be aware of which service a phrase of his query may have invoked as he proceeds
in his normal way:

“Send this draft budget to my section managers with
the following message:”

‘... (voice) ...’
“Schedule a meeting with them sometime on Wednesday
afternoon.”

How are sublanguages created? Initially, there is one sublanguage: BASE. It
contains a limited dialect of English which is adequate to handle expressions
concerning typical relational or entity-attribute databases with inheritance. It also
contains a graphics package, text editor, electronic mail, etc., as mentioned above. To
create a new sublanguage, say “Finances,” one “bases” it on BASE:

“base Finances on BASE”
Then, choosing this new sublanguage:
“enter Finances”
one has all the capabilities of the based upon sublanguage immediately available. One

can then extend this new sublanguage in many ways (these will be discussed below).

25

Engineering manager E. D. Moore wishes to create a sublanguage to share with
his three subordinate managers:
“base EngSec on BASE”
add data, graphics, addresses, icons,
“aquthorize C. E. Jones, P. E. Smith and A. E.
Johnson to enter EngSec”

Now any of the four of them can use, modify, and extend this common
sublanguage “EngSec”. Thus they jointly maintain a common, up to date view of their
joint activities (e.g., preliminary designs, personal schedules). This is the significance
of being able to enter.

There is a strong asymmetric relationship between a sublanguage and all of the
sublanguages on which it is based, either directly or indirectly. Suppose one
sublanguage “Accounting,” is based on another “Personnel Accounting”:

“base Accounting on Personnel Accounting”
Any changes in Personnel Accounting are immediately reflected in Accounting.
However, Accounting can be changed in any way without affecting Personnel

Accounting at all. This asymmetric relationship is characteristic of basing.

26

Department Manager's Department Staffer's
Administration Staff Study
Sublanguage Sublanguage
Production Accounting
Sublanguage Sublanguage
Personnel Contracts General
Accounting Accounting Accounting
Sublanguage Sublanguage Sublanguage
Figure 2

In Figure 2, showing the accounting sublanguages, the people in the Personnel
Accounting Section are the only ones who are authorized to enter the Personnel
Accounting sublanguage. Therefore they are the only ones who can change it. The
procedure is similar for the Contracts Accounting and General Accounting
sublanguages. Accounting is based on each of these three. No one is authorized to
enter Accounting; therefore no one can make any changes to it. Of course, it is
automatically always up to date with the latest data from Personnel Accounting,
Contracts Accounting and General Accounting.

Appropriate managers are authorized to base on Accounting. One of the
Department Manager’s sublanguages is based on both Accounting and Production,
and therefore always has available the latest accounting information. (See Figure 2.)
The manager may well have had the application programmers add a number of
grammar rules, graphic output formats, and icons so that overviews of the complete
operation are always readily available. These added facilities would be available only

in this particular sublanguage, but would always utilize the latest accounting and

27

production data. A member of the manager’s staff, looking into the possible change in
the pricing structure for company products, could also base a staff study sublanguage
on Accounting, change many of the entries to values reflecting the new pricing
structure, then examine the inferred results, and finally arrange appropriate graphics
for a presentation, without, of course, affecting the Accounting sublanguage at all.

A detail of basing will be included here, since it will be referred to below.
Suppose sublanguage A is based on sublanguage B and sublanguage B is based on
sublanguage C; further suppose that in C we can talk about the class of cities, i.e.,
“city” is in the lexicon of C. In this lexical entry will be the page address of the
database record for the class city. The lexicons of both B and A will, of course, also
include the word “city.” A’s lexical entry for “city” will include the same page
address that is in C’s lexical entry; circumventing an indirection through B. (See

Figure 3.) We will see that this has consequences beyond the obvious efficiency.

28

(
Sublanguage

C

lexicon
.
based
on
4 A
Sublanguage
lexicon
\ J
based
on
Sublanguage
lexicon
_ J
Figure 3

6. MANAGEMENT OF SUBLANGUAGES AND THE COMMAND
SUBLANGUAGE

People are expected to have a number of sublanguages available on their
telephone-computer. How do they manage and use them? In the long run, the
telephone-computer, like the telephone today, will always be on. They will either be
in one of their sublanguages or in the COMMAND sublanguage. In the short run,

what happens when they invoke the New World of Computing application from say a

29

window environment? After the system logo appears, they will enter the following
dialogue:
>Please identify yourself: John Jones
>Password:
You are in COMMAND. Proceed.
>
The COMMAND sublanguage is a limited, not very English-like sublanguage
in which they can do a variety of sublanguage management things. They can ask for a
directory of their sublanguages; and can enter any one of them:
>enter Correspondence
You are in Correspondence. Proceed.
>
They can also base a new sublanguage on an existing one. For any existing
sublanguage of which they are the creator, they can authorize anyone else (who is
recognized by the System) to enter and/or base on it. They can set the parameters of

their profile, etc., and of course they can “exit” the System.

30

IIL. Implications of the Paradigm for
Communications and Computers

(The remainder of this thesis reports on the author’s research contributions.)

What we are talking about in this thesis, and in general in the New World of
Computing project, is defining standards and procedures that will make access to
information clean, fast and inexpensive. Even when the hardware technology of the
telephone-computer is in place, the main deterrent to loading it will remain as it is
today — the excessive cost of software development. However the cost of software
development is a symptom; the problems that underlie the delay in the arrival of the
telephone-computer are to be found elsewhere. A central problem is that of

addressibility.

A. The Problem of Addressibility

With increasing frequency, the public press is discussing the telephone-
computer — how it will provide access to “all the world’s information” and bring into
being the “electronic market-place”. It is commonly conceived that one will be able to
summon on one’s monitor articles, encyclopedia entries, news material on any topic
that might be of interest, and advertisements for innumerable products from endless

sources. More disturbing, it is assumed, without further thought, that all of this

31

undigested — and in this form, indigestible — plethora of so-called information
constitutes a solution to the information explosion problem. There is more and more
evidence that such access, when available, is seldom used and has a very low cost
effectiveness ratio. We are seeking capabilities in a far different direction.

In considering the question of access to all the world’s information, the crux of
the problem is the two-level address structure that is almost universally the standard
today. Each computer has its own virtual memory (this is not strictly true in the case
of distributed databases; but then the small group of interrelated computers has its
own virtual memory). Beyond this virtual address space, the computer can address
files in an essentially unlimited file space. In order to execute a program residing in a
file, the file must first be brought into virtual memory, and then given control. Since
the cross-references within the program have only been linked together within the
boundaries of the program, interaction between programs becomes extremely
expensive, consisting of passing information between programs through auxiliary file
transfers.

The same problem is involved in the use of data. In order that data processing
be sufficiently efficient, optimal data representations are developed, and the programs
that access this data must know about the intrinsics of these data structures. So one
may have a general purpose database system and special application databases. Both a
specific database and the database processing system must be brought into virtual
memory before they can be used, and then efficient processing is confined to only
those parts of virtual memory. In commercial products, the communication between
processes must be confined to data structures of such generality — most often ASCII

files — that computations involving more than one process result in unacceptable

32

response times; while in one of a kind, enterprise-wide systems, the cross-linkages
become so extensive that program maintenance costs soar.

When the computer fully understands the sublanguage of a highly trained
professional, it is the computer itself that will need to be able to digest the articles,
encyclopedia entries and tabular data that are relevant to the professional’s cryptic
instructions. Since the computer must access all the sources of information that it will
use in responding to the user’s input, it must have both an intrinsic understanding of
the infrastructures of these sources and the capability to address into these structures.
The two-level address structure that is used today enforces such high inefficiency-
partitions between information sources as to make practically impossible any
reasonable notion of access to all the world’s information. This, then, is the problem
of addressibility.

This point is of sufficient importance to this thesis that we pause to clarify it
with several examples. There exists a specialized magazine, Bankers News, that
serves the banking industry. Like many trade publications, it possesses a direct on-line
electronic access from several commercial data services. Three successive issues of
this journal contain separate tabular listings of data about Savings & Loan companies.
Through simple queries one can display these issues on one’s monitor; thus these
issues can also be available in ASCII file form. Suppose the user wished to ask a
question whose answer required the computer to access, among other sources, these
various tables and to carry out calculations on these entries. There are several methods
within the current state of the art that could be used. For example, the user visually
scans the data file, finding what he wants to extract, dumps the screen to a file, and
edits it or cuts and pastes from the screen to the relevant application. This is slow and

distracting, and the reliability will probably significantly decrease when it has to be

33

done repeatedly. Alternatively, a program could download the whole file into the
user’s virtual space where it could be appropriately massaged, and relevant
information extracted. Here the response time would suffer badly, not to mention the
amount of virtual space that would be eaten up by a query of any complexity.

Two other alternatives impose the chore of extracting the appropriate
information on the information server’s computer. Then the user’s computer picks it
off the section of the screen where it is known to appear, or it uses a list of indices
that the information service must keep up to date . These two solutions are efficient
enough to have had some success in highly specialized, narrow areas serving a broad
clientele (e.g., New York Stock Exchange ticker), or in applications where high costs
can be afforded (e.g., military or space). As stand-alone applications, they have
enjoyed a growing popularity, but whenever the data had to be used in an integrated
environment, they have put an undue burden on either the customer or the provider.
Their software costs quickly become prohibitive, because the ever changing aspect of
information requires more and more specialized access subroutines in the first case,
and index upkeep time in the second.

In all of these methods, someone must attend to the interface between each
specific source material and the application. All suffer from at least one of the
following deficiencies: necessity of user intervention, considerable waste of storage or
transmission resources, need for individually tailored access subroutines, and software
upkeep cost. An equivalent to the functionality of addressing, to be proposed in this
chapter, can be implemented without our described infrastructure (and already is in
some specific cases). In the case of textual material, it includes indexing into ASCII
databases using keyword and header information. However, this in itself is not

sufficient. The cost of implementing, updating and maintaining these databases, the

34

cost to the user of a specialist to stay in touch with these constant changes, and their
access inefficiencies are common experiences that illustrate the need for a new
addressing scheme of the nature we propose — a scheme that would allow very
specific and specialized databases to be easily integrated into the world’s virtual

memory and thus made available to a wide audience at an affordable cost.

B. What Needs to be Addressed

What kind of things need to be addressed? There is no fundamental need to
access the smallest atom of data the computer can handle from the sublanguage’s
perspective. Neither is there a fundamental requirement that each cell be identical in
size. What does a sublanguage need to address? Clearly one group is made up of the
atomic elements constituting the objects in its discourse. There also exist links
between these objects, as well as links tying these objects to data types, such as
images, texts and messages; these links are addresses. However, in a sublanguage
concerned with fine art, talking about individual pixels forming the portrait of the
Mona Lisa has no relevance. In another perspective, when the subject of discourse is
the dashboard of a car, as in a driver’s education application, a large portion of the
picture is also irrelevant. What is relevant are the objects of discourse you can point
to, manipulate, and ask questions about, such as the steering wheel, pedals, turn
signals, indicators, for example. The manhole cover you can spot through the
windshield will not be part of the sublanguage. Neither will the sky, or the plush
rosewood trimming. The need to address a whole picture is an operating system
requirement (what file is it stored in?); the need to address the individual pixel is a
hardware graphical subsystem requirement. The sublanguage requirements are to

subsets of pictures, groups of relevant pixels. The way this is implemented in the New

35

World of Computing System is by associating each picture with an invisible set of
polygons that delineate the various relevant areas. Each polygon is linked to its
associated object in the database, thus can be linked to —*“addressed from”— any
other object in the database, and the use of a whole new set of vocabulary becomes
instantaneously obvious (blink, show, display, highlight, plot), as well as a whole new
set of input primitives because clicking on any of those polygons refers to the
underlying object in a manner that is equivalent to giving its name. For example,
saying:

“Which is the cheapest of these?”
and clicking on a handful of items on a page of a catalog, has the same result as
typing:

“Which of the following VCRs 1is the cheapest: Model

1241, Model 1243, Model 1841 or Model 1843?”

Similar scoping of relevant data objects exists with other data types, as in a text,
where addressing down to the character is unnecessary in the great majority of cases.
However by providing a mechanism for instances of words or groups of words in the
text to be linked to the database, a hypertext style application becomes trivial to
implement. Imagine a puzzled mechanic working on an unknown car engine. He turns
to his peripatetic computer and asks for a display of the engine for that particular
model. He then types:

“How do you replace that?”
and clicks on a particular area of the diagram. The computer retrieves a specific
paragraph from the manual that is kept in the documentation repository of the car’s

manufacturer. The paragraph is displayed on the screen. It starts like this:

36

Disconnect the nozzle of the turbo’s loopback oxygen

sensor.

A little befuddled, our mechanic just needs to click his “help” icon, and point to the
words he didn’t understand and the corresponding item on the diagram will flash.

In the case of drawings, it is “subdrawings” that are the addressable elements. If
we limit our attention solely to the graphic aspect, “subdrawings” are like
subdrawings in other common graphics packages. A subdrawing is composed of a
drawing and a transformation matrix that defines the position of the associated
drawing in the higher drawing. However, the concept of subdrawing here stems
directly from the idea of items having conceptual relevance in the sublanguage’s area
of discourse. Thus in addition to its graphic aspects, it has an associated object in the
semantic net database. As such, it also can (and usually will) have relational tie-ins to
the rest of the sublanguage’s elements since it is, in and of itself, a sublanguage
object. As you would expect, this is fully recursive: the drawing associated with a
subdrawing can itself have subdrawings. An example of a drawing would be a
diagram of an amplifier. The subdrawings are the components and the connecting
wires. Queries about the subdrawings are in the nature of:

“What is the amplification factor of this transistor?”

“What is the frequency of this crystal?”

“What is the impedance between here (clicking on the

subdrawing of a pin) and here (clicking on an input

of an op-amp) ?”

This transistor, this crystal, the output-stage op-amp, its pin 4 and ground are all

subdrawings. The transistor subdrawing has an associated transformation matrix that

37

reduces it to the diagram’s scale, rotates it 90 degrees counterclockwise, and
translates it to the appropriate spot. Its associated drawing is an instance of the
N2661J transistor drawing located in the Texas Instrument transistor database in
Dallas, Texas. That drawing is composed of four subdrawings: a vertical thick line, an
emitter subdrawing, a collector subdrawing and a base subdrawing. By basing on this
Dallas database, the diagram designer has inherited all of the characteristic vocabulary
pertaining to the transistor sublanguage, so that the amplification factor of this
transistor is automatically part of the designer’s sublanguage.

So far we have looked at the granularity of identifiable objects in the few media
that one commonly encounters in the computer world. Similarly, the question of the
appropriate granularity comes up upon the addition of every new object class. The
design decisions then determine to a large extent what will be conceptually “visible”
to the end user of the sublanguage under development. So for every medium and for a
given sublanguage in which that medium is an object class, one can usually identify a
relevant granularity that conveys the optimal amount of information from the
viewpoint of that sublanguage. Since the result is a sublanguage of practical
significance to people, the total number of objects available in a sublanguage as well
as the amount of data storage associated with a given object will be under reasonable
control, i.e., without choking the communication channel. In fact, it will often be the
case that computer load and response time will play a major role in determining the
object granularity, and thus what the user is able to “see”. (That is an aspect that needs
to be addressed.) Establishing the granularity for a medium isn’t always an easy affair,
as is the case in an animated or video sequence. Now, current tools only allow the
description of a set of successive frames. This is not optimal because it is usually the

case that a number of relevant items persist from frame to frame while many other

38

items on the same frames are totally irrelevant. Being able to keep track of relevant
items through successive frames is a difficult task to automate, and an extremely
tedious one to do by hand.

It is noteworthy that many, if not the majority, of objects referred to by
sublanguages do not have “names” in the lexicon. Consider the marriage of Edward
D. Moore and Patricia Jones Moore. Friends of the Moores often refer to their
marriage; for example, “her daughter by her second marriage,” but it does not have a
name. This technique is especially applicable to objects associated with graphic
media. For example, “Texas Instrument’s N2661J transistor” may be the name of a
class of all subdrawing objects as they exist in a great variety of circuit drawings.
None of these subdrawing objects need have a name. They can be individually
identified either by a definite description or by clicking on them in the display of the
circuit drawing. In the later case, one can identify the particular transistor either by:

“the N2661J transistor used in the output-stage of
the amplifier”
or by pointing at the transistor and clicking the mouse while viewing the circuit
diagram. In either case they will inherit the properties, such as amplification factor, of
the N2661J transistor class. Although this does not reduce the number of objects in
the sublanguage, it does keep the lexicon uncluttered with useless names that would
never be referenced. This in turn speeds up lexical lookup and thus the response time.

As for auditory media, even if the technology to generate them is becoming
more and more available, their storage costs are still too high to generalize on a large
scale, and the technology to use them as input is available only for limited situations.
So even if the granularity is fairly obvious, creating the linkages can sometimes

stumble on technological barriers. In educational applications for example, (an area

39

not known for the depth of its budget,) a typical application could be a spelling bee
program. The application would take a word at random from a dictionary and
enunciate it to a candidate, expecting a typed answer. Most grade schools cannot
currently afford the hardware necessary to store such a vast amount of digitized
speech. Text-to-speech can alleviate this problem, but there are other more interactive

applications where this remedy will not apply.

C. The Requirements for Global Addressibility

Let us go back to the example of the car mechanic. Notice when he made a
request for information, the most up to date data came directly from the
manufacturer’s database. The program he was using knew how to access that data,
where it was located and how to retrieve it. Obviously that type of program should be
available to any mechanic anywhere in the world, without having to provide explicitly
at every location the specifics of the network path to each item that may be desired.
We will now look into the requirements necessary to make an application oblivious of
the specifics of the network. The principal requirement is an addressing scheme that
uniquely identifies each data repository site, independently of the network’s size,
configuration, evolution or location. If two networks are merged, each station in the
network, or at best one server in each network, has to become knowledgeable about
the addresses the other network contains. Sometimes this process even requires the
station or the network to come down. If the two networks had common addresses, the
merging would become an even more complex process requiring modification of the
network databases. The scope of the addressing scheme must thus be worldwide. This

implies that each station has at least one address, and that each address is unique.

40

It turns out that such a network already exists. We refer to it as the telephone
network. It spans the whole world and each station has a unique number. By mapping
the telephone number into our address, we are able to point to a data item located on
any connected computer effortlessly. The costs of tying into the network are minimal.
A station can be mobile, or can be relocated easily using the current mechanisms of
cellular phone and call forwarding. The only requirement is the ability to transfer
packets of digital information. This is already available, but higher bandwidths and
faster call setup times are required for a smooth operation. The bandwidth already
exists in the phone companies’ fiber optié trunks. The current bottleneck is in the
twisted-wire pair between the station and the local exchange. Until the fiber optic
pipeline reaches the individual home or office, we will have to rely on high speed
modems to the local exchange.

The call-setup latency poses more of a problem. In its current state, the phone
network has a setup time of three to four seconds, and can only multiplex two calls at
a time. This situation encourages few connections, and large amounts of data transfer
per connection (i.e., long connection times). It virtually enforces monolithic
applications where most of the information gathering is done on large servers that
have the connection capabilities to do so in an efficient way and where the station-to-
server link is used essentially for display purposes. Since the connection price is so
high, even the servers have a tendency to limit their sourcés to an “optimal” set that is
not always in accordance with the customer’s preferred choice. The mechanism is the
same as the one that prevents us from calling all the stores when we are bargain
shopping: it takes too long to gather all the information, so we sample a few well-

chosen sites.

41

The ideal solution is to bring packet-switching technology to the station, since
this would give the computer a zero call-setup time and infinite multiplex capability,
physically allowing the answer to a question to be derived from several data sources.
An example would be to ask for the fastest way to go from one city to another at a
specific date and time. It could turn out that the train gets there sooner because it
leaves more often than the plane. This could be discovered in a single query that
would go out and interrogate both schedules. We should keep in mind that all these
issues (using the phone as a data network, high bandwidth and quick call-setup time
by packet-switched network) are already technologically addressed in the Integrated
Services Digital Network (ISDN). The main problem left is massive acceptance of the
standard worldwide. Another important requirement is for a uniform information
packet at the application layer over the whole network. Now this conflicts with the
widespread belief that at such a high level the programmers should be insulated from
such mundane considerations. Reality shows us that even with our exponential growth
in computational speed, size of memory and communication bandwidth, the size and
complexity of information grows in parallel. So that our real-time latency on a per-
dollar basis is no better, if not worse than it was ten years ago, even if the quantity and
quality of the information we are handling now are much higher.

With this in mind, a standard sized packet is herein specified to optimize data
transfer and simplify networking sub-routines. The actual number was derived from
packing considerations on the grain sizes of the various data structures used by the
system. However at least one level of the application must be knowledgeable of the
packet size, in order to pack and unpack data efficiently. Another advantage of the
uniformity is that it enforces standardization over heterogeneous hardware platforms.

Moreover, if a standard storage format is used on the packet, an automatic cross-

42

platform compatibility ensues at minimal cost. This would allow computers not only
to share data independently of their architecture, but also to understand similar
structures and have similar displays over similar media. What we have done is
reinvent the paging concept on a world-network-wide scale.

In current database technologies, the database consists largely of links from one
node of the database to another. The “links” in our semantic net database consist of
page addresses. Thus for a network of more than one telephone-computer, the links
within a database may refer to pages that reside anywhere in the net, anywhere in the
world. A database in such a network is “distributed” in an intrinsic way; the basing

procedure implements this.

D. Page Address and the Size of Virtual Memory

If there is to be a single virtual address space for all of the world’s telephone-
computers, how large must it be? In this single virtual memory, addressing should be
down to the individual byte, but certainly not down to the individual bit. This
consideration implies that the length of an address pointer be an integral number of
bytes, since such addresses must be on a byte boundary. The page will be the principal
unit to be sent across the telephone network. Each page will have its own “home” —
the telephone-computer that owns the page and in whose page file it normally resides.

Thus a page address has three parts:

« the byte offset on a page;

« the page number identifying the page among all the pages residing at a given

station;

« the telephone number uniquely identifying the station.

43

The first two constitute the intra-station part of the pointer, the latter the inter-
station part. (See Figure 7.)

How large should each of these numbers be?

The page offset needs to be able to address any part of the page down to the
byte level; thus the number of bits it requires is equal to log2(page_size). Because of
the various uses of pages, each use having an optimal page size governed by storage
versus performance issues and with strong indications of being sublanguage
dependent, determining the optimal page size overall is a multivariate problem. It
would be desirable to have statistics from a field test on a real life application.

However that has yet to be done.

“Neither extrapolation techniques for current trends nor normative
approaches work well in this time frame. As a result, only large-scale
field trials can provide data with which to gain insight into such areas as
work at home; family applications; applications to the disadvantaged;
democratic processes; social services; transportation-communication
tradeoff; mass media impacts; new employment options; social

engineering.” [HIL'TZ88]

The size should be an integer multiple of the packet size of the
telecommunication standard that is now 512 K. Our experience with data indicates
that the size should be between 512 and 4 K; currently the New World of Computing
uses a 2 K page size. We will assume this page size here; thus the byte offset is 21!
bits.

What is the total number of pages necessary on any given station? Here are

several considerations that bear on the determination of this number.

44

e The average human brain uses less than 20,000 vocabulary items; a highly
educated brain 35,000 to 40,000. These serve him for the transitive closure
of all his sublanguages. Rough analysis of our current experience with the
System indicates that each vocabulary item requires on average about five
pages of supporting structures (i.e., lexical entry, dictionary entry, semantic
procedures, database records, associated graphic structures, and so on). This
suggests that a New World of Computing station with over 100,000 pages
would possess more than enough storage even for the most well-versed of
scholars.

« Even when large user applications like spreadsheets and word processors
become integrated with the paging aspects of the System, it is doubtful that
they would require orders of magnitude more space than they do nowadays,
especially since paged code provides easy elimination of code duplication
that is pervasive in software originating from multi-disciplinary companies.
An upper bound of a million pages would seem adequate.

« Unfortunately, there appears to be a tendency on the part of people using
bodies of data not to rely on information that doesn’t possess a quality of
completeness. Given a choice of phone books, we will usually choose the
thickest one, even though we will never have need for all the names that are
entered into it. In the same sense, we tend to populate our databases in ways
that would give human users a severe case of information overload, forcing
dependence on the search capabilities of today’s information technology.
There are many reasons why these very large databases are bad, one of them
being the Herculean effort required to maintain a reasonable level of data

integrity. A much more cost effective design is to preserve the sublanguage

45

structure that this type of data inherently possesses — or else it would not be
manageable by humans — and choose as the person responsible for each of
these sublanguages the one with the greatest involvement. This type of
database modeling is ideally supported by the basing concept. Since these
large databases do exist, the need to support them and to be able to assimilate
them into the New World of Computing System needs to be addressed.
Examples of very large databases include credit card databases that can hold
several million items. Textual reference databases like those available
through DIALOG, by successive mergers, have coalesced to even greater
sizes. To assimilate similar databases into a New World of Computing
sublanguage would require millions of pages.

e An upper bound will certainly be the amount of physical mass storage
accessible by a single computer in the near future. With banks of gigabyte
drives and optical disks the concept of a terabyte storage system is
conceivable. With new mass storage technologies appearing every year, it

becomes a definite possibility.

These considerations suggest the bound on the number of pages per telephone-
computer be somewhere in the range 220 to 240, Thus adding page offset, the number
of bytes per telephone-computer is in the range 23! to 251,

What bound can be assumed for the number of telephone-computers world-
wide? How many will the present format of the international telephone number
accommodate? An international phone number is decoded by an algorithm roughly
equivalent to a prefix grammar. It is not defined precisely as a prefix grammar

because there are some ambiguities that are resolved with string length or time delay

46

resolvers — i.e., input is finalized upon reception of a special key, or a lengthy
enough pause — but these exceptions are rare. For the purpose of this analysis, we
will assume that an international number is constituted of a maximum of twelve digits
that are usually partitioned into country code prefix, area code prefix, service area
code prefix and actual phone. For example, a long distance call originating from the
United States requires a one digit long distance code, three digits for the area code,
three for the service area code and four for the actual phone. This number is
designated in the telephone lingo as a 1-NPX-NXX-XXXX number or a 1-3-3-4
pattern. If the destination of the call is Germany, then the number has a 2-3-3-4
pattern. For Japan, the pattern is is 2-2-4-4. Twelve digits amounts to a theoretical
upper bound of one trillion for the number of phones in the world. The practical limit
is substantially lower because of the idiosyncrasies of mapping the real world into a
compact model. The possibility of expanding on the right by adding a new digit
always exists but is limited by the enormous investment into the current structures,
the inertia faced when trying to modify human attitudes and perceptions, and the
difficulties of orchestrating a simultaneous changeover with a minimum of
disruptions. For these reasons, such a change is addressed uniquely as a last resort and
has been attempted only at the level of a country, never yet on an international scale.
To map all the potential phone numbers into a single number would take a little under
forty bits.

We mentioned earlier that all American phone numbers follow the NPX-NXX-
XXXX rule. The letter N stands for a non-zero digit, the letter P stands for a zero or a
one, while the letter X can be any digit. This rule encompasses a theoretical maximum
of 2 x 9° x 10’ = 1620 million phone numbers. At present there are approximately 558

million phones in the world, i.e., about 2. This indicates how sparse the current

47

phone number tree is. There are several reasons for this. One is that the syntax for
decoding a phone number being equivalent to a prefix grammar, whole limbs of the
parsing tree are ripped out by special purpose prefixes. For example, all the prefixes
that don’t abide by the NPX rule, and even for some that do like the ten thousand
potential numbers with a service area code of 911 that will never exist. Another
reason is tied to the blocking factor. Each code hierarchically subdivides the world
population into blocks but these blocks often conflict with geographical or political
areas that cannot be conveniently split. One area code that can cover 10 million
numbers could very well account for the population of North and South Dakota. In the
same vein, countries like Liechtenstein with a population of 28,000 will never have
the use of the 10 billion numbers their country code (41) represents. Yet another
reason can be frequently encountered in the United States where alternate long
distance companies need some distinguishing technique to service the same phone
number for accounting purposes. The most general method is to use a special dialling
pattern, followed by the customer’s identification number and finally ending with the
requested phone number. For these reasons, 240 is somewhat too large.

Ten years ago, there were 400 million phones in the world, now there are
approximately 558 million. This represents a 40% increase, mainly occurring in the
industrial countries that average four phones for every five persons. This explains
why 87% of the phones in the world are used by only 15% of the world’s population.
(See Figures 5 & 6.)

48

Telephones In

Figure 4

“Statistics indicate that while the number of letters and of book and
newspaper publications has not changed appreciably during recent years,
domestic and international telephone traffic is increasing at an annual

rate of 15% and 25%, respectively.” [INOSE]

49

Telephones Per 1000 Persons

24510 1,328

1850 241
128t0 175
B2to 121
1to80

NoData

Figure 5§

“According to the statistics, an American makes some 800 telephone
calls and sends some 400 pieces of mail per year. A Japanese makes
some 400 telephone calls and sends some 100 pieces of mail per year.”

[INOSE]

How these numbers will evolve in the future is anybody’s guess, but a
reasonable estimate would forecast a curbing of the demand as it approaches the two
phone-per-person mark. That would be close to market saturation, especially if one
takes into account the fact that the New World of Computing System will eliminate
the need for duplicate requirements per household (like facsimile devices). This

estimation makes allowance for the fact that 33% of the world’s population is under

50

fifteen years of age. The lower needs in telephony of that segment of the population
(with the well-known exception of American teenagers) will offset the requirements
for duplicate phones at the workplace, in public areas and for providing service. It
also assumes an enhancement of the cellular phone trend, which reduces the need for
duplicate phones, since a portable phone can always be present at one’s side, within a
cellular service area. With the advent of projects in the spirit of the Motorola Iridium
project that is in the process of establishing a belt of 77 geo-stationary communication
satellites, worldwide cellular service should be commonly available.

Taking the above elements into consideration, we have developed three near
term models of possible growth patterns of the phone infrastructure to estimate what
kind of reprieve various numbers of bits allocated for telephone numbers could buy us
(see Figure 7.) The overload criterion that was selected was the 1:4 compaction ratio
for the packing algorithm used to store phone numbers into the address of a New
World of Computing System page. Historically, this seems to be a point where phone
number allocation becomes cumbersome. For example, in France it was close to a 1:3
ratio when it finally extended its old 8-digit system. The three models tend to
represent the three possible trends of the world economy: average, pessimistic and
optimistic. We will look at one billion telephone-computers — 232 — as a point of

comparison (with a packing factor of 1:4).

51

3000

N
(o]
(o]
o

8
3

million phones
2

1000
500 -
0 } } } } t + |
1970 1980 1990 2000 2010 2020 2030 2040
& Constant Growth B Constant Density A Growth and Saturation
Figure 6

The first model (Constant Growth) is a mere projection of the past ten years’
growth into the future. It assumes that market trends of the past decade are still
dominant and will continue to dominate for the next few decades. It forecasts a
crossover of the one billion mark in the year 2010, or fifteen years from now.

The second model (Constant Density) assumes a stagnant economy that will
keep the demand for new phones low, and will thus leave the number of phones per
capita stable. The only growth comes from population expansion. This unlikely
situation is a good lower bound on the total number of phones. It predicts problems
with the one billion level by 2021.

The third and more elaborate model (Growth and Saturation) estimates that
demand for phones will grow in the near future but will peak out when the phone
density reaches a certain level. It distinguishes between the industrial countries that

have a rapidly growing market, and the developing countries whose initial growth is

52

slower but that are much farther away from saturation. This rapidly expanding model
predicts trouble on the horizon of this millennium, i.e., 2002.

The considerations we have recorded in the last two paragraphs give us a feel
for the situation. However from a practical viewpoint, taking into account the
requirement that a page address must always fall on a byte boundary, there is very
little latitude; the address should be either 8 bytes or 9 bytes long. (Now recall that we
have estimated that bounds on the size of each telephone’s virtual memory should be
between 23! to 24!, and that the current telephone number format will need to be
changed when the number of telephones reaches approximately 240.) The choices are

given in the following table:

8 byte address 512 million (231/ 4) 2% now

(current number)

9 byte address 512 million (231 / 4) 241 (maximum) now

(current number)

240(current format) 232 many centuries

We will select rows A and B as the two best alternatives to be considered.

Row A: These bounds are very tight both for the number of
telephone-computers and the number of bytes of virtual

memory at each telephone-computer. Although it is hard to

53

imagine that there will be a four-fold increase in the number
of telephones and at the same time a complete transition
from telephones to telephone-computers in just thirty years,
it is equally hard to imagine the societal impact that this new
technology will bring. The bound will most likely be reached
in only a few years beyond 2024, and a conversion of all
addresses in all files on all telephone-computers, world
wide, would be a momentous undertaking. As for the size of
virtual memory at each telephone-computer, few, out of the
billions of telephone-computers, would use anywhere close
to two billion bytes of memory, but it is not difficult to
imagine that a sizable number would. It should be kept in

mind that we are considering an inelastic bound.

Row B: The bounds here are reasonable. Certainly there will be
many applications of computer technology where computers
will indeed require much larger memories than 64 billion
bytes, but most of the contents of these memories will not be
on New World of Computing pages. As far as the number of
telephone-computers is concerned, we are beyond any
imaginable circumstances of future change, both societal and

technological.

The one question remaining to be addressed in consideration of rows A and B

are the various costs in response time and storage for adding that extra byte. An

54

increase in field size from 8 bytes to 9 bytes is an increase of 12V2%. Therefore,
various aspects of the system like the indexing of data records or the list processing
area, will be directly affected in a proportional way. In other respects, due to the
highly blocked structure of data storage in the New World of Computing, the overall
impact will be less, the increase in size being absorbed by empty space at the bottom
of the blocks. The greatest hindrance, however, will be generated by alignment
problems on platforms that are aligned on sixteen or thirty-two bits. Thirty-two bit
optimizing compilers can generate extremely efficient machine-code for handling
(moving, comparing, testing) 8 byte structures. On the other hand, a 9 byte structure
will require at least one extra machine instruction per handling instruction, hence a
minimum of a 50% increase in handling time. Profiling the New World of Computing
code has shown that it spends between 9% and 15% of its time doing this type of
structure handling. We can expect an average loss of around 6% in response time.
Storing these 9 byte structures will also generate a performance versus capacity
trade-off. Packing these structures on pages in a compact manner will prohibit the
machine from directly using them, since this will guarantee that half of them are non-
aligned on a sixteen bit aligned platform, and three-quarters on a thirty-two bit
aligned platform. This will force these structures to be copied every time they are
used, introducing a significant amount of extraneous code, again degrading
performance. On the other hand, storing the structures so that they are aligned on the
page would require an increase in storage capacity of 11% to 33% depending on
alignment of the platform. This would be a prohibitive cost. The degradation of
performance of the former case will be compensated by improvements in both MIPS

ratings of PC and workstation computers, and changes in transmission times. Going

55

to ISDN, then to BISDN will simply dominate out the effect of going from 8 byte to 9
byte fields.

On the other hand, a changeover from 8 byte fields to 9 byte fields any time in
the future, especially after a great deal of the world’s information resources are put on
New World of Computing pages would be enormously expensive. Even if the product
development time is slightly greater because of these alignment considerations, the

choice is overwhelmingly on the side of a 9 byte field.

intra-station : inter-station
addressing : addressing
1 |
offset page number telephone number
< 36 bits > 36 bits >

New World of Computing Pointer

Figure 7

E. Networks in the Telephone-Computer Era

Basing one sublanguage on another establishes addressibility among the data
and process pages that constitute the physical manifestation of these sublanguages;
basing results in the sharing of a common address space (down to the byte level)
across the entire hierarchy of associated sublanguages and whose key element is the
addressable page. In processing a query or command, pages whose “home” is on one
station are commingled with pages from another. Each individual item of information

in a network of sublanguages is to be found at some offset on one of these pages. The

56

stations whose peripheral memories are the depositories for these pages are uniquely
addressable by their telephone numbers. Therefore, each item has a unique address by
which it can be identified: its byte offset on the page, its page number and its station
telephone number. It is these hierarchies of sublanguages with their associated
common address space that constitute networks, and not computers. In a single
computer, a person may have many sublanguages, each in its own network.

When one installs a new telephone and is assigned a new telephone number,
one is thereby automatically assigned one’s own slice of *“virtual memory,” one’s own
corner of the world’s address space. This gigantic virtual address space, spanning the
whole world, eliminates the need for the wasteful redundancies of today’s
configurations. Compare the total memory configuration of any two computers of the
same type. An amazing percentage of their mass storage space is identical: same
operating system, same firmware, many identical general software packages. If
generalized over all computers, the amount of unique memory becomes relatively
small, and can fit without strain into the two gigabyte virtual address space of each/all

computer(s).

57

major information resources library and other information
both public and commercial resources of the parent
i organization

specialized information
resources

sister working ‘\
group g
_ working group _ , >
;) sublanguage shared by
T both working groups

[EEEE oY R—— shared .
sublanguage

outside related
working group
le.g., contractor

Figure 8

Figure 8 shows a schematic of a typical sublanguage network. The inclusion in
these networks of large volume servers of archival information will be typical. We
have seen this need in maintenance situations. Companies like Mead Data Central in
Dayton, IMSL, a Houston-based supplier of scientific subroutines, Springer-Verlag’s
Bielsteinshandbuch der Organischen Chemie, cookbooks and garden catalogs, the
New York Stock Exchange stock closings and the show records of the American
Kennel Club will all be available, page by page as needed by thousands of users. A
department store, serving several hundred thousand charge customers, will do so
through a high transaction server that makes available all manner of sales material,
processes incoming queries and orders, and connects customers to knowledgeable
sales personnel.

Here is another maintenance professional working for a local service company.
The professional’s mobile station is in at least two networks: the first, previously
illustrated, is with the home maintenance station whose server has all the records for

the field locations served and all the maintenance information. The second is the

58

dispatcher network. The central dispatcher can see on the map displayed before him
the location of all maintenance trucks as they move about the city. When the
dispatcher receives a call requesting maintenance service, he can type in the caller’s
address and immediately see its location on the map, spot the nearest maintenance
unit, click it with his mouse, and talk with the maintenance person directly to
coordinate the new service call.

We have identified what needs to be addressed. We have specified a universal
address space and seen how a 72 bit address structure is more than adequate to
provide a single worldwide virtual memory. The question remains: how is the
addressibility problem for all of the world’s information to be solved? We identify the
notion of the Archival Station. You call up a station that supplies information you
wish to be accessible to one of your sublanguages. A form appears on your monitor
and you are asked to fill it out. After doing so, knowing your charge number from
your personal data page, it sends you an identification request that you can satisfy by
either giving a password or sticking a microchip card in the slot if your telephone-
computer is provided with one. You are then free to base your sublanguage on any
material of interest to you and available from this source. Your initiating call to the
Archival Station provides it with all it needs for billing, notification, etc. The act of
basing automatically identifies authorization information necessary for security. The
Archival Station only infrequently initiates a call to you. Your computer calls it,
requesting a page. Since the request is sent as one of your own pages, it carries not
only the requested page address but the return address as well. Thus it carries all the
information the Archival Station needs to identify you and your account and provide
you with the information you need. In this manner, the Archival Station information

resource sublanguage can be “in” as many “networks” as there are clients who wish to

59

have its resources available. Since clients’ sublanguages are based upon this resource,
it itself is protected from change.

Billing services for the use of these pages are handled by the telephone
company in the manner of “900” numbers today. Suppose a software house in
Chicago is marketing a CAD/CAM package and that this package calls a differential
equation solving program marketed by a Houston firm. Someone in Los Angeles
contracts for the CAD/CAM package. Los Angeles bases on Chicago which in turn is
based on Houston. It is only when an engineer in Los Angeles uses the design
package, and pages carrying the relevant code go across the telephone lines, that any
charges accrue. Page requests for CAD/CAM procedures will be filled from Chicago;
when the Chicago procedure requests a Houston page, that request materializes as a
direct page request from Los Angeles to Houston; thus the billing, handled completely
by the telephone companies involved, correctly compensates each of the two software
firms involved.

All telephone-computer users in each of their sublanguages have complete
freedom to choose and base on whatever information resources they desire, paying for
access to only those pages required in the course of their processing. Furthermore, this
information does not come as isolated independent services (as for example, in the
French Minitel System where each of the 20,112 services has its own impregnable
virtual space). Any number of such resources may be integrated in response to a
single user query in a single sublanguage. This may be a sublanguage a telephone-
computer user has developed in conjunction with one of his particular interests,
having personally selected the several information resources it has been based upon.

The process of adding such resources and of extending and modifying the

60

sublanguage and its data in many ways then becomes just part of normal day-to-day

activities.

61

IV. Some Details on Implementation

A. Pages and Headers

The paging structure of the New World of Computing is a fundamental element
of the way distributed information is handled, thus is central to the design of the
communicational aspects of the system. A page is a fixed size block of mass storage.
Pages can contain indiscriminately database records, executable code, data about
internal management, lexical and dictionary items, lists, digitized sound and pictures,
strings, etc. — in other words any type of manipulable data. This does not necessarily
require that all the data manipulated by the New World of Computing always be on
pages. As we have seen, there exists an efficient “grain size” for any media that
simplifies description, manipulation and transport of relevant data. The choice of
storing raw media data on pages is a response time versus cost trade-off. Some media
(e.g., pictures) require a large amount of space; it would be foolish to strain the New
World of Computing’s paging resources with all the digitized photographs, etc., a
single user might address at one point in time. ASCII text, pixel files, pre-existing
files such as special word processor files, etc., are stored directly in their original form
on disk. Some may be stored on specialized hardware, e.g., videotape, optical disks.

Access using specialized hardware is not constrained to storage limitations; some

62

data’s usefulness only stems from the fact that they came from an instrument, e.g.,
“the gas meter reading from the house at 110 Park Street,” or “the voltmeter reading
of the control experiment” All of these, however, are packed as bit files on pages
when networking requests are made and a subset of these pages may be kept in
memory when they are in use.

As we mentioned earlier, the area of mass storage where these pages are kept is
called the paging file; the area of main memory where the page images are swapped in
and out is called the paging area. To access data or a procedure stored on a given
page, a paging utility is called, with the given page’s page address, to load an image
of the page into the paging area. This utility returns a pointer to the page image, and
to the byte offset on the page. When the telephone number in the page address
coincides with the computer’s own telephone number, and the page image is not
already in the paging area, it is fetched from the computer’s own paging area.
Otherwise, the page must come over the network from another station’s addressing
space; the “telephone number” of this station — a part of the page address —
uniquely identifies any given computer in the world. In an Ethernet configuration this
would map to the Internet number, but in the telephone-computer era, it will map to
what is nowadays the actual telephone number.

When a station requests a page whose “home” is on a distant telephone-
computer, a request is sent to the appropriate network layer along with a header
specifying the reason for the request. Any lookup or translation of the network
address into the network protocol’s standard is done at this time. If the New World of
Computing System daemon at the requested address is not already open, the network
layer opens up a connection. It forwards the header and the page to the daemon that

will then reply with a status header indicating the success of the operation. If the

63

header indicates success, the requested page will accompany it. This process is the
complete communication handshake protocol. The page serves as the atomic packet
of communication between two New World of Computing stations.

The communication header as introduced above is a small strip of sideband
information that determines the specific handling requested of the accompanying
page. It can be shipped along a different channel if desired; this is the case with ISDN
where the header is threaded through the D channel, and the pages are exchanged on
one of the B channels. The requested handling is specified by a number called a
message code. The header can also contain additional information of use to the
communication layer, and thus should not be stored on the page itself.

Some message codes are always accompanied by a page, others are not. This
latter group is mainly used to return a diagnostic, in general to inform of a problem.
Here are the several groups of network System paging message codes:

¢ Basic paging requests identical to the mass media paging interface (asking for a
page, marking it, requesting a new unused page, writing it back).

e Configuration requests like requests for a Sublanguage Control Page (SCP).

e Communication message codes: The protocol for establishing a shared session*:
these are mainly sideband protocols and most of them are handled by the network
software: putting the call through, checking on the availability of the caller,
transferring caller identification information, urgency level, call acceptance,
hangups..

e The protocol for maintaining a common interface during a shared session*:

exchanging voice packets, maintaining the shared displays, windows and cursors.

* Shared sessions are described in detail later in the paragraph entitled PHONING.

64

Data integrity and security message codes.

Requesting system pages relating to user profiles such as mailbox pages and
message-box pages, hardware device configuration requests (like the sound
digitizer settings).

Media transfer message codes: transferring large objects like files, pictures,
digitized voice...

Error message codes: illegal page requests, security violations, network errors,
corrupt headers. Communication status: busy signal, station not up, no answer,
requested party not available. System errors on the called side: nonexistent file
requests, protection violations.

Phrase evaluation — this will be discussed below.

65

B. Daemons

Every station has a daemon (or non-stop background process) running whose
sole task is to serve page requests. In a UNIX environment the daemon is a detached
background process, similar to processes like nfsd, inetd or pagedaemon. In the
Microsoft Windows environment, the daemon is an independent application that
interfaces with the New World of Computing process using the Dynamic Data
Exchange (DDE) protocol. In a purely DOS environment, the daemon would be a
Terminate-and-Stay-Resident (TSR) program and would thus be essentially interrupt
driven. The following descriptions assume a UNIX environment because of its

generality. Extensions to other environments are straightforward.

NETWORKING: LOGICAL CONNECTIONS

Station Daemon Station Daemon

Figure 9

66

Every time the New World of Computing is called by the underlying operating
system, a connection with the daemon is established. If establishing the connection
fails, the New World of Computing will assume there is no daemon present, and will
spawn a new one. Then the connection is attempted again. The daemon of any
particular station is always listening on a well-known port address. Any New World
of Computing process that wishes to get in contact with another station initiates a
connection with its daemon, at that station’s network address, on the well-known port.
As soon as the daemon answers, the New World of Computing process hands over its
own identification number, and they re-contact each other immediately on a port
number that is derived from the identification number. They do so in order to leave
the well-known port number available for further calls. This derived connection
(labeled AB in Figure 9) stays open as long as that New World of Computing
application is running. The mechanism for establishing a connection with the daemon
is the same for a distant station as it is for the station the daemon is bound to. The
only difference is that the daemon does not add this connection to its list of ports to
listen to. The New World of Computing regards this connection solely as an input.
This is where external page requests come from. The daemon then keeps cycling
among its list of active connections, waiting for a header and page. When the daemon
receives a page request, it executes the actions specified by the header. These can vary
from delivering the requested page, to identification, to establishing a phone
conversation. It usually forwards the request to the New World of Computing process
if it is up, leaving the control of the paging area to one organism. For all intents and
purposes, the paging services could be a totally independent process and both the New
World of Computing daemon and the New World of Computing process itself would

make requests to it. If the New World of Computing is down, the daemon knows how

67

to retrieve the pages directly from the paging file (through the connection labeled BE
in Figure 9). It then sends back along a reverse path (ABD in Figure 9) a small header
establishing the success of the request along with the desired page. When irrelevant,
the accompanying page is omitted to prevent unnecessary network usage. Typical
cases are error replies (e.g., the desired page is invalid) and side-band information
(e.g., the phone line is busy). The daemon then sends the page back along an identical

path along with a header that determines how successful the operation was.

C. Functionalities Implemented by these Methods

In this section, we will discuss how the System uses the basic page/header
passing to implement rather low level functionalities. In the following section we
summarize the way higher level — application oriented — functionalities are
handled.

In order not to leave any mysteries, it will be useful to know about the bridge
procedure. Here is a typical example of how it works. The user wishes to create a new
class of entities, say the class of males. He types:

>class:male
>male: John Jones
The corresponding rules of grammar are:

RULE
<sentence> => “class:”
SYN new_word_proc

RULE
<sentence> => <noun> “:”
SYN new_word_proc

68

These rules are general rewrite-rule grammar rules where any symbol encased in
angle brackets is a part of speech, and literal strings are quoted with double quotes.
The constituents on the right of the “=>" symbol are rewritten as the left hand part.
The rule is triggered at the time specified by the all uppercase identifier that is at the
beginning of every third line (e.g., SYN for syntax time in this particular case).

Following that identifier is the name of the semantic procedure to be invoked
when the rule is triggered. In our current case, new_word_proc calls the procedure
“bridge”. This is a New World of Computing System procedure that makes use of
knowledge of deep internal structures of the language processor. (This is not the place
to go into further details.) It goes to the point in the input string that has been parsed
by the current rule — in each of the above examples, to the “:” character — and
returns the rest of the input string. Its side effect is to fool the parser into thinking that
the entire input string, not just the part that fits the rule, has parsed. Thus in the first
instance, it returns “male”; in the second instance it returns “John Jones”.
New_word_proc then proceeds to add the appropriate entry to the lexicon and carries
out the rest of the implied instructions.

In the great majority of cases when a page is requested from another station, the
page address of the desired page is known to the requesting procedure. This is the
case, for example, when a database record is being used and a link on that record is
being followed; for example, the members of a class are being evaluated and one of

the members is from a based upon sublanguage. We will refer to such requests as

“direct requests.”

69

1. SUBLANGUAGE AND USER MANAGEMENT

When do page requests that are not “direct requests” arise? A common
occurrence of such a request is when the name of a sublanguage or of a user is known
as a string but not as a page address. This occurs, for example, when a person first
begins a New World of Computing session and responds to the prompt: “Please
identify yourself:”, or when a person in the COMMAND sublanguage wishes to enter
a particular one of their sublanguages. Two utility procedures are available to handle
such situations.

The procedure id_is_ver(char *subl) checks to see whether “subl” is the name
of a sublanguage. If so, it returns the page address of the Sublanguage Control Page
(SCP), otherwise NULL. If subl contains a single instance of the character “@”
followed by a whole number, e.g., Correspondence @ 3566230, the system interprets
it as the name of a sublanguage on a distant station with the number being its
telephone number. It requests of this distant station its COMMAND sublanguage’s
SCP. From this it obtains the page address of that station’s Sublanguage Table. This
table contains a list of pairs, a string and a page address, where the string is a
sublanguage name and the page address is that of this sublanguage’s SCP. If there are
a great many sublanguages at this station, it may be necessary to request continuation
pages of the Sublanguage Table. Other than the first request for the distant station’s
COMMAND sublanguage SCP, these are all direct requests.

Similarly, the user_id(char *auth_user) procedure finds the page address of an
authorized user — actually the user’s profile page. The profile page address is found

on the AuthUser Table on the COMMAND sublanguage’s SCP.

70

It should be obvious how, using bridge, id_is_ver and user_id procedures, the
following functions of the command language involving two telephone-computers are
implemented:

« authorizing new users to use a given telephone-computer;

>new user: Tom Jackson @ 2025556789
o authorize persons at distant stations to enter and/or base on a local
sublanguage;
>guthorize Tom Jackson @ 2025556789 to base on
Accounting
 to be recognized at a station when one is only authorized at a distant station;
>Please identify yourself:Tom Jackson @ 2025556789
« to enter a local sublanguage or a sublanguage on a distant station, once you
have been recognized at the local station;
>enter Accounting
>enter Sales Statistics @ 2135556811
Both telephone numbers, sublanguage names and authorized user names can be
assigned aliases. For example:
>definition: Western Region Sales : 2135556811
>definition: Bob : Robert Smith @ Western Region
Sales
>definition: Western Statistics : Sales Statistics @
Western Region Sales
>Please identify yourself: Bob

You are in COMMAND. Proceed

71

>enter Western Statistics
You are in Sales Statistics @ Western Region Sales.

Proceed

2. BASING

Suppose the user, while in the COMMAND sublanguage, types:
>bhase Accounting on Contracts Accounting
Then id_is_ver(*Accounting”) and id_is_ver(“Contracts Accounting”) are called. If
the first returns a NULL, then the system procedure: create_ver is called. If the
second returns a NULL, an appropriate diagnostic message is output to the user.
When basing, the “based” sublanguage, e.g., “Accounting” in the example, must be
local. Thus as far as station to station communication is concerned, we are interested
only in the “based upon” sublanguage. Id_is_ver returns the page address of the
“based upon” sublanguage’s SCP. This sublanguage’s Sublanguage Record page
address is on this SCP, and from that record can be obtained the list of authorized
users (their profile page addresses) who have been authorized to base on this
sublanguage. Once authorization has been ascertained, basing can proceed using only
direct requests. All of the material about this sublanguage is directly requestable from

this SCP — its lexicon, grammar table, part of speech table, etc.

3. E-MAIL, VOICE MESSAGES AND FAX

In the New World of Computing, sending e-mail or a voice message consists of
putting the page address of an existing text entity or message entity into the mail box
or message box of the recipient. The actual text or message is not transferred at that
time. If, upon “receipt” of such a text or message, the recipient wishes to view or hear

it, they type:

72

>display my mail
or

>play my messages
or for a more complex example:

>display any mail from John
At that time, the text or digitized voice is copied onto pages and transmitted from
station to station. Thus the only page requests involved with e-mail or messaging that
are not direct requests are to obtain the page address of the mail box or message box
of the recipient.

First, note that since it is the page address of an already existing entity that is
sent, and entities exist only in sublanguages that are based, directly or indirectly on
BASE, the sender cannot be in the COMMAND language. If the recipient is at a
distant station, then the method of addressing that we have seen above can be used:

>send the draft of the budget to John Jones @
2135556789
In this case, the procedure user_id is used to obtain the page address of the recipient’s
mail box or message box.

However, another method is more widely useful. Anyone authorized at some
station can be made an individual entity of the current sublanguage. The local user
just types:

>local name: John: John Jones @ 2135556789
This puts “John” in the current sublanguage lexicon, just like any other entity —
individuals, text, messages, etc. The only difference is that the database record for
“John” has the page address of John Jones’ profile page in its header. So now e-mail

can be sent to him directly:

73

>send the draft of the budget to John
His profile page address will be obtained from his resident record, and the page
address of his mail box is on his profile page. A person does not have to be at a
distant station to be an individual in the current sublanguage. Thus if Pete Jackson is
also authorized on this current station, one can type:
>local name: Pete: Pete Jackson
then, for example:
>class:section manager
>Pete and John are section managers
>send the draft of the budget to section managers
>message:Birthday Greetings
....voice ...
>send Birthday Greetings to all individuals whose
birthday is today
(Since we are in a sublanguage, “all” means “all individuals that have been declared
as such to this sublanguage.”)
One can expect that this along with site-to-site digital telecommunication like
ISDN will render facsimile devices obsolete, since the structured data can be
transmitted and printed if necessary without having to scan and basically

destructuralize the information.

4. GRAPHICS AND LARGE FILE TRANSFER

As we discussed earlier, some data objects are so large that it is not worthwhile
to try to store them on pages. For greater efficiency, these cumbersome objects are

stored in files, and are referenced by their file name. When a foreign station needs to

74

access one of these files which it doesn’t hold in its local virtual space, it must initiate
a network file transfer, sending a header with the appropriate message code to the
possessing station. The accompanying page frame holds the requested filename. After
checking the validity of the requested file, the station then initiates a handshake with
the requesting station. The possessing station breaks the file down into page size
chunks; these chunks are sent back in a continuous stream along with the appropriate
message code, and the amount of relevant data that is on the page. As far as the
system processes that implement this functionality go, the data is simply bits. The last
page is sent with an end of file message code signalling the end of transmission. The
requesting station reconstitutes the file on its side, either on disk for texts or in video
display memory for pixel sets. This protocol is general enough to be used to transfer

any type of file.

5. PHONING

“Computer conferencing, or computer-mediated discourse, as academics
like to call it, is only 15 years old. The first was a single conferencing
system, used by the Office of Emergency Preparedness during Nixon’s
price freeze economic program; there are now several such systems in

existence.” [MEEKS]

The shared session concept provides means for two or more users to look into
the same sublanguage without leaving their station. The complete phoning protocol
has been implemented as a finite state machine. The protocol is handled by the phone
dispatcher (pd) function. In person to person mode, there are four possible states:
IDLE, RING, WAIT, TALK with the initial state being IDLE. There are ten

transitional events. The events are queued in six separate queues: Incoming Calls,

75

Outgoing Calls, Incoming Responses, Outgoing Responses, Incoming Info and
Outgoing Info that pd scans periodically. The transition table is displayed in Figure 11
where italics indicate the state the machine transitions to after completing all the

actions specified in the list above it.

D
WAITING

Figure 10

ASK PHONE PROTOCOL CHART

76

Queues

Events
set party none none none
ACK/IGN icon
audio bell
RINGING
P _FIN |none close icon none close window
IDLE report time
IDLE
none send P_IGN none none
close icon
IDLE
none send P_ACK none none
open window
init recorder
HANGUP icon
TALKING
none none close icon none
IDLE
none none open window | none
init recorder
HANGUP icon
start timer
TALKING
set party send P_IGN send P_ABR send P_FIN
send P_INI call | reset party reset party reset party
HANGUP icon | send P_INI call | send P_INI call | send P_INI call
WAITING HANGUP icon | WAITING WAITING
WAITING

77

P_FIN |none send P_ABR send P_ABR send P_FIN
kill party kill party close window
close icon close icon report time
IDLE IDLE IDLE

none none none display line
none none none send line
Figure 11

A typical person-to-person session is displayed in Figure 12. It is broken down
into the three typical phases of a conversation: setting the call up, exchanging
information and hanging up. When Mary, sitting at her station, decides to initiate a
shared session with John, she types in: “call John @ 5551234.” She could have typed
as well “urgent call to John @ 555-1234” or “emergency call to John @ 5551234,
and she would have upped her priority in doing so. She could also have used a “local
name” for “John@5551234”, i.e., “phone John”. All these phrases parse to a syntax
time procedure named phone_pr, which calls bridge to gather the callee’s name and
number. If she calls John frequently, she could place the phrase “phone John” under
an icon so that pressing the icon would initiate the call. All of these result in calling a
semantic time procedure named phone_se. When this procedure is invoked, and if a
number is present, a request is sent to that number to see if the station is active, if
John is a legitimate user at that station and to gather information about him that is
stored on his profile page (e.g., his priority level). If he is a legitimate user and the
call’s priority level is higher than John’s setting, a U_STAT request is sent that
checks if he is currently logged in, if his line is busy, and if he is accepting calls. If

any of these checks fail, Mary is offered an electronic mail alternative. Otherwise, the

78

actual call request is put on the phone dispatcher’s outgoing call queue. When pd gets
around to picking up that event, a network request is sent to John’s station through the
phone network, a HANGUP icon is displayed on Mary’s screen allowing her to cancel
the call at any time and the state changes from IDLE to WAITING. At John’s station
which is also in the IDLE state, the network interrupt handler receives the network
request and pushes it on the phone dispatcher’s incoming call queue. That event
causes pd to signal John in a user customizable way (e.g., bell, blinking phone icon
with caller name) that a call is pending. The state goes from IDLE to RINGING. To
get out of that state requires active intervention from John. He can either indicate he
wishes to ignore the call altogether or answer it either from the prompt or by clicking
the phone icon. The former case puts a “busy” event in the dispatcher’s queue, erases
the phone icon and goes back to IDLE state. The latter puts a “phone” event in the
queue, sets the station up for a shared session (displays the shared session window,
synchronizes parameters of the two stations’ voice digitizers, displays the HANGUP
icon) and goes to TALKING state. The “busy” or “phone” event is sent by John’s
phone dispatcher through the network to the incoming response queue of Mary’s
station. Mary’s phone dispatcher picks it up and either erases the HANGUP icon and
goes to IDLE mode in the “busy” case or sets her station up for the shared session,
starts a timer that records the length of the conversation and goes to the TALKING

state. At this point the two stations are set up for a shared session.

79

(NETWORKING:Placing a Phone Call)

Network
ASK-1 Interrupt ASK-2
call John @ ASK-2 |\ Request for remote user and station st Handler ()
Possible variants: e
- Station ASK-2 is off.
& - John is absent now ,{o
<X - Distant user turned his phone off PAs
<2 - John is unavailable (priority) &
\0\’ - John is busy with another phone ¢ ¥

- John is being called, please walit... .|

In the latter case

the call request is ASK-1 patch ASK-2
passed to the GUTGOING CALLS INCOMING CALLS
Phone Dispatcher EE———— _q;m 1
John is being called Phone Dispatcher John can answer
Please wait sends the request the call or ignore it.
> < [OICTSTIOTO] | over the network . [o]ofoTTlo] If he answers,..
K e A
\s <X
& Network &
& &
N Network &

\‘\Y Interrupt X
Handler Phone Dispatcher > answer
ds John's The phone
The phone ASK-1 sen ASK-2 Dispatchey
connection has been INCOMING RESP. answer back OUTGOING FESP. connectlo-: has been
" (o=]
> é& AGCUMULATOR ACCUMULATOR /\Y‘.\Q’
0%’\ [o]oTCToTo] [CIoToToTo] 2
3 — S
N N3
<¥ <&

(NETWORKING:Information Exchange)

ASK-2 Disp
yan ‘ OUTGOING INFO >Hi John!
INCOMING INFO
ACCUMULATOR
> Ht John! . s
ACCUMULATOR e EE]L’IL‘JE
[o[oToIoT0] INCOMING INFO
OUTGOING INFO h - S > ~> % > Hello.
> Hello. > =5 T -0 ACCUMULATOR
ACCUMULATOR BESieIE]
[o]oToTo[0]
(NETWORKING:Finishing Up)
Phone Dispatcher
sends the request
ASK-1 over the network, ASK-2 D
> hang up OUTGOING CALLS INCOMING CALLS
‘::u current ACCUMULATOR ACCUMULATOR > Distant party
> [CTofolcTo] [CTSTGIOIO] | | terminated the can
&
fo’\‘;\ &
A
N7 &
3

&
____ —

Figure 12

This is the information exchange phase. Voice is flowing back and forth and all

input and output events are echoed on either station. As they occur, these events are

80

duplicated and one instantiation is put in the Outgoing Info queue. The dispatcher in
the usual way sends them across the network and they land in the other station’s
Incoming Info queue. There the other dispatcher displays them appropriately. Because
of its high bandwidth requirement, and the fact that transmission reliability is not a
major issue, voice is handled in a different way. A timer driven interrupt routine
continuously sends digitized speech pages over to the other station while stations are
in the TALKING state. In any other state the routine acts as a no-op. This decreases
the overhead of sending these pages as events. When the conversation has been
carried to its end, anyone can end it by clicking the HANGUP icon or inputting “hang
up”. This generates a “hangup” event that is put in the outgoing call queue, the shared
session window is closed and the length of the conversation is displayed. The state
goes back to IDLE. When the other dispatcher receives that event it behaves in an
identical manner.

What happens when several people want to establish a conference session? The
intrinsic situation is identical except that a call can come in at any time from another
party. This introduces four new possible states (see Figures 13 & 14):

1. TALK-RING when a request comes in while a conference is already

occurring;

2. TALK-WAIT when a request for another party has been sent in the midst of

an occurring conference;

3. TALK-RING-WAIT when both of the above events occur;

4. RING-WAIT when somebody calls while a request is being made for another

person.

81

Figure 13

ASK PHONE PROTOCOL CHART

(conferences)

82

RING WAIT TALK TALK- TALK- TALK- RING-
RING WAIT RING- WAIT
WAIT
set set ring set ring set ring set ring set ring set ring set ring
ring party party party party party party party
party RING- TALK- TALK-
RING WAIT RING RING-
WAIT

P_FIN |none |‘“ignored |none “pbyefrom | “bye from | “bye from | “bye from | “ignored
by dist” dist” dist” dist” dist” by dist”
kill ring kill party | kill party | kill party | kill party | kill ring
party IDLE*** | RING*** | WAIT*** | RING_W | party
IDLE* e QL ATT*** WAIT*

— - Oor—

“ignored —

by dist” “ignored

kill ring by dist”

party kill ring

TALK* party
TALK-
WAIT*

P_IGN | none send none none send none send send
P_IGN P_IGN P_IGN P_IGN
kill ring kill ring kill ring kill ring
party party party party
“ok, “ignore” “ignore” “ignore”
ignore” TALK* TALK- WAIT*
IDLE* WAIT*

P_ACK | none activate none none activate none activate activate
ring party ring party ring party | ring party
TALK* TALK* TALK- TALK-
(TALK- WAIT* WAIT*
RING) (TALK-

RING-
WAIT)
P_IGN | none none kill wait none none kill wait kill wait kill wait
party party party party
“ignored “ignored | “ignored | “ignored
by dist” by dist” by dist” by dist”
IDLE** TALK** | TALK- RING**
RD\IG**
P_ACK | none none activate none none activate activate activate
wait party wait party | wait party | wait party
TALK** TALK** | TALK- TALK-
(TALK- RING** RING**
WAIT) (TALK-
RING-
WAIT)

83

set set wait set wait set wait set wait set wait set wait set wait
wait | party party party party party party party
party | WAIT RING- TALK- TALK-
WAIT WAIT RING-
WAIT
P_FIN |none none send send send send send send
P_FIN P_FIN P_FIN P_FIN P_FIN P_FIN
“ignore” | “byeto “bye to “bye to “bye to “ignore”
kill wait | dist” dist” dist” dist” kill wait
party kill party | kill party | kill party | kill party | party
IDLE** IDLE*** . | RING*** | WAIT*** | RING- RING**
——or— | WAIT***
— —or—
send —
P_FIN send
kill P_FIN
waiting kill
party waiting
“ignore” | party
TALK** | “ignore”
TALK-
RING**
none | none none display display display display none
none none none send send send send none
* - transition only if there is no more RINGing virtual party
*ok - transition only if there is no more WAITing virtual party
**% - transition only if there is no more TALKing party
Figure 14

Each session is represented by a window that symbolizes the opening to the

current conversation’s sublanguage. Iconizing that window is the equivalent of

putting the session on hold. Other participants can keep on sharing information, but

the user will not see it and they will not see his current activity. This allows several

sessions to be opened at a time, but only one can be active. Opening up a session

window, or answering a new call automatically closes other session windows. As new

84

call requests arise, the user has at his disposition a varied set of possibilities that allow
him to deal with them. Each call request is symbolized as an icon with the caller’s
name. The icon can be a digitized picture of the caller or of his company’s logo. The
user can grab that icon and put it in his window thus adding the caller to his current
session. He can also put it in his exclusion list. This will cause any subsequent calls to
be ignored. There also exists an inclusion list of people whose calls are accepted even
if their priority level is too low. This list is used when all calls are ignored, thus
enabling a selective filter. These are all, of course, graphic representations of
activities that can be requested as a normal sentence input. (e.g., “Ignore all calls

except those from my broker and my family.”)

6. PHRASE EVALUATION AND DISTRIBUTED PROCESSING

In Chapter II, Section B. The New World of Computing System, THE
LANGUAGE PROCESSOR, the notion of a New World of Computing “phrase” was
introduced. Recall that a “phrase” is a data structure corresponding to some
meaningful substring of the input sentence. Here, we go a little more into detail as to
what a phrase looks like. A phrase has two structural forms: the “before evaluation”
form and the “after evaluation” form. These can be most easily understood by an
example. We will consider the example:

>Show the three month tabular display of each of
John Jones’ high tech stocks.
We will primarily be interested in the phrase associated with the string:

“three month tabular display of each of John Jones’ high tech stocks”

However first consider the subphrase:

“each of John Jones’ high tech stocks”

85

Assume that this has already been evaluated, and that the list of these stocks is
now on the scratch page™ “[STOCKS]”. Then the “after evaluation” structure of this
phrase is:

PHRASE-1: part of speech: <noun_phrase>

string: “each of John Jones’ high tech stocks”
data: [STOCK]
Assume that the subphrase:

“three months”
has the *“after evaluation” form:

PHRASE-2: part of speech: <time>

string: “three months”
data: three months (in terms of the internal unit of time)
The “before evaluation” form of the phrase corresponding to the substring:
“three month tabular display of each of John Jones’ high tech stocks”
Is:
PHRASE-0: part of speech: <noun_phrase>
string: “three month tabular display of each of John Jones’
high tech stocks”
procedure: tab_disp_proc
constituents:
PHRASE-1
PHRASE-2

* A scratch page is a page whose lifetime is that of the sentence being processed.

86

At this point in sentence processing, the “semantic evaluation” is called to
evaluate PHRASE-0. It calls tab_disp_proc with the two constituents as arguments.
Tab_disp_proc has been supplied to this user by a software house that specializes in
sublanguage packages for financial institutions, including access to their database of
financial statistics. That is to say, the current sublanguage being used was based upon
the sublanguage supplied by this software house. Thus the page address of
tab_disp_proc was put into the grammar table of the current sublanguage at the time
of basing, therefore is directly requested from the software house page files at this
moment. We consider two cases:

1. tab_disp_proc does all of the calculations necessary to produce the desired
graphic at the user’s station; in doing so it will most likely use direct requests to
the software house’s station to get individual items of data from the database.

2. the rdle of tab_disp_proc is to send the inputs to the calculation back to the
software house where the calculations will actually be made, returning to the
local station the desired graphics. In this case, tab_disp_proc asks whether it is
at its home station — the software house. If not, it puts the above PHRASE-0
on pages (there is a utility for this) and sends this page back to the software

house with the message code: phrase evaluation. Upon receipt of this page and

header, the software house evaluates the phrase, again calling tab_disp_proc.
This time it is at its home station, so it completes the calculations, creating a
graphic file for the graphic, say [PS FILE], and returns a page containing the
“after evaluation” phrase:
PHRASE: part of speech: <graphic>

string: “three month tabular display of each of John Jones’ high tech stocks”

data: a page containing “[PS FILE]”, i.e., the name of the file

87

This phrase will then be further processed by the semantic procedure of the RULE:
<sentence> => “gshow” <graphic>
which initiates a file transfer, as discussed above, and displays the graphic.
The second case is an example of the use of the “phrase evaluation” message
code. This message code provides a powerful mechanism for handling all manners of

“distributed computation.”

D. Implementation Solutions to High Level Applications

Functionalities

1. “INTELLIGENT” COMPUTER RESPONSE

In a networked set of sublanguages, each one can be seen as containing links
(page references) to the others. These links are implicitly created either at the time the
sublanguage is based on another one, or when the based upon sublanguage is
modified. As we have seen, these page references can select any byte from the world’s
virtual pool of data. Because of the different topological configurations of these based
sublanguages, various link patterns can be observed.

a) Intelligent computer intervention:

In a manufacturing environment, one can imagine a task database sublanguage
containing all the information pertaining to the many manufacturing tasks of a large
project. In this “task” sublanguage, there would be an entry for the manager in charge
of each task. All task managers would have their own sublanguages based upon the
task sublanguage. Let us suppose a supply of raw material is delayed. The notification
from the supplier will cause a modification of the expected arrival date of that
shipment in the database sublanguage. Now it is the case that any data record contains

a special field of its header for the address of an action to be taken whenever that

88

record is modified. (An “action” can be thought of as any phrase or linked sequence
of phrases.) In this example, a typical action would be to re-PERT the chart of the
associated project. This will in turn trigger a chain reaction of data updates. Any one
of these can be set up to send a relevant notification to the manager in charge of the
associated task and to the project manager, at their own stations. So here we have an
“intelligent” sublanguage that “knows” how to react to specific situations and help the
users in their everyday tasks. Moreover, the paging and networking mechanisms have
given this sublanguage the ability to conglomerate and reach its various end users
without any evident effort on their part.

b) Marketing of the access to data and procedures:

What are the commercial implications of such paging and networking
mechanisms? The least that can be said is that after revolutionizing the software
development environment, they will bring along radical changes in the software
distribution market. Since the New World of Computing networking can provide
access to any page containing a procedure, no matter how distant, storing, upgrading,
updating or obtaining software now become simple operations executed from the
keyboard. “Extending” a sublanguage with new programmatic features, or with an
appropriate database, is just a matter of providing the phone-network number of the
provider. All the financial aspects can be treated right there and then, by choosing
among various possibilities:

» single payment either to the software house itself or to a distribution outlet for a
disk from which “extend” will add a new sublanguage;
o direct electronic payment from the buyer’s bank account in a lump payment for

the right to base on a specific sublanguage;

89

« charging on a per-page access, the billing being done by the telephone company;

(Recall that if sublanguage AA is based on BB, and BB on CC, then any links in

AA to CC pages is direct, not through intervening BB pages; therefore each

software supplier, throughout the basing hierarchy under a sublanguage, is

reimbursed for the use of its paged material on a per-page basis.)
« requiring a monthly payment for the right to be based on a specific sublanguage.
e The various modes of payment would be attuned to the different marketing
aspects of the type of information being sold. If a sublanguage needed to access

Dow Jones data on a regular basis, a per-page charge would probably be the

most appropriate. On the other hand, if it wanted a financial analysis of a certain

portfolio of stocks to be performed by a reputable financial company that did not
want its analytical techniques to be widely distributed, even in object code
format, a per-process payment would be the way to go. Regular information
providers like trade journals or magazines could charge a periodical fee as is the
practice today (though competition may drive them into a per-page tarification).
¢) Offloading computational loads:

In view of the large variety of tasks that can be required of a computer, some of
them are bound to require sophisticated computing platforms to achieve a reasonable
throughput. The commercial aspect of this premise is that most of these tasks do not
require the whole attention of the CPU for any extended period of time. Exceptions to
this are applications that require lengthy periods of super-computer time, like
chemical reaction modeling or weather simulation. Networked paging will allow
people to buy a computer designed for their average use, instead of being forced to
buy a machine that will be able to handle the upper bound of their computational

needs when exceptional needs occur only occasionally. The way this concept

90

functions is by offering the opportunity to unload occasional arduous tasks to higher
end machines or specialized hardware-like transaction processors by means of a
“phrase evaluation” event described above. In fact, a single application could very
well send “phrase evaluation” requests to a range of different computers, either to
parallelize the process or just because the task is diversified. A car loan application
could very well be required to access the customer’s credit history record, and query
the “blue book” database to retrieve an estimate of the car’s worth. Note that the “blue
book” database need not be an integral part of the bank’s software environment. One
could very well imagine its maintenance by an external company like Kelly’s or J. D.

Powers & Associates, who would then charge a small standard fee per query.

2. METHODS FOR DISTRIBUTED PROCESSING

What is the current state of the art in distributed processing? Since most
processes are self-contained, the only interface available is done by file exchange.
This means that an application that wishes to have some data processed by another
application needs to save the data into a file. Then it needs to invoke the second
application with the file name as a parameter along with a list of commands
specifying the action to be taken (including the command to save the data into a file
again). With the advent of applications that adhere to the Graphic User Interface
(GUI) as opposed to the Command Line Interface (CLI) type that is more predisposed
to batch style action, came a mechanism to transfer data easily from one application to
another, namely cutting and pasting to a clipboard area. This has simplified the user’s
work, and generalized data transfer. Singularly, it has also made automation much
more difficult. While the commands used to consist of a stream of characters that

could be rerouted at will, in a GUI environment they consist mainly of mouse events

91

(moves, clicks and drags). A good design rule is always to have a keyboard equivalent
for any such event, but that rule has been violated by almost every application on the
market. Another attempt to avoid this hindrance was made by providing the user with
an event recording mechanism. All events are stored in a file in their order of
occurrence. They then can be played back at will. This initially created very brittle
scripts, since all events were replayed no matter what the state of the desktop was. If
icons had been moved, if windows did not appear in the same position, the script
would wander off with random consequences.

A more recent approach has been to reference the target of the events by name
in an object-oriented manner rather than by absolute screen position. While being a
significant improvement, this technique is still inadequate in several aspects. If
applications do not buy into the object-oriented paradigm by not publishing their
object names, a little brittleness can still be expected, since event positions then
become window relative. If the application has a “creative” interface, or has various
options that it could disable, it will disrupt the script. Regardless of the brittleness
issue, event recording lacks two fundamental aspects that would give it the flexibility
and the generality of a programming language: state modification and test capability.
Since there are no variables, there is no method for creating, for example, a different
temporary file name every time an application is invoked. Since there is no branching
technique, there is no method for taking special action if a file already exists. This
makes recovery from simple errors impossible. The standard way of signalling errors
in a GUI is popping an alert window which in general requires some sort of
acknowledgment from the user. However a script cannot discern such a window, and
even if it achieved that, it would not be able to take any conditional action. A

common need that no event recorder has been able to achieve, is a terminate macro

92

that would correctly close all the current applications or windows that are lying on the
desktop, save the open files if necessary, and then shut the system down. To palliate
these shortcomings, very often an “authoring” language has been provided. These
languages, though, are cryptic and cumbersome, hence discouraging people away
from the simplicity and straightforwardness that attracted them to a GUI in the first
place.

In the New World of Computing System, the “phrase evaluation” apparatus,
introduced in paragraph IV.C.6. above, provides distributed computing capabilities
that overcome the disadvantages of current methods and are straightforward to use.
Notice how this concept radically differs from the current monolithic applications.
The “phrase evaluation” apparatus allows another computer to be given temporary
control of the semantic engine. It does so by sending a page of events that are fed to
the various input queues of the system. There are two main “phrase evaluation”
activities. The first one is used when some type of action needs to take place on a
distant station. Typical instances are the update of cursor movements and the creation
of new windows in a shared session. The transmitted page contains a list of cursor
moves and clicks that are shadowed by the mimicking display. Outside of the success
of the transmission, no acknowledgment is required. The use of this type of action is
restricted to a “fire-and-forget” variety of activity. The second is more of an
interrogation or evaluation that needs to be accomplished on a station that contains
information. The information

e s too restricted or too specific to justify basing a whole context on it;
 can be retrieved by special hardware that exists only at that particular location;
 requires real time input from a source accessible only to another computer;

* requires cooperative computing involving interactive inputs from multiple users.

93

The query is copied onto a page and forwarded to the appropriate computer,
which extracts it and puts it in the linguistic engine’s input queue. It is then processed
as any normal query; the result is put back on a page and shipped back to the
requester. An example would be the case of the gas company reading meters at all
their subscribers’ homes from their central accounting computer.

A multi-user, interacting computer application can be implemented using this
technique. An example is a multi-player game such as the game of bridge. One
program would be written that recognizes itself as either “North”, “South”, “East”, or
“West”, that knows how to handle the display of the playing surface, and that queries
its player to ascertain his/her bid or the card to be played. A start-up program would
initiate this program on each of the four participants’ computers; then the common
programs would use message passing to carry out the game. Many other forms of
cooperative work could be implemented.

An important characteristic of the “phrase evaluation” process is that it does not
require any reprogramming on the distant station. Any input activity that a user could
attempt on that station can be reproduced programmatically from the originating
station without even having to access the distant station beforehand to settle on a
communication or handshake protocol, or having to write a special driver for the new
input. “Phrase evaluation” is thus an ideal Application Programming Interface (API)
for the New World of Computing, which allows any outside application that is
connected to the network or knows how to dial a phone number, to access, modify or
query the New World of Computing or any application managed by the New World of
Computing, in a very exhaustive manner. This application could have control of every

aspect of the New World of Computing interface including the capability of clicking

94

icons, selecting menu entries or opening windows. It can send digitized voice to a

voice recognition based interface, or scan images into a pattern recognition interface.

3. HIGH LEVEL PHONING FUNCTIONALITIES

A shared session, whose implementation was discussed above, goes far beyond
both “televised face” conferencing and file sharing. The number of participants in -
such an exchange is not limited to two. Teleconferencing a large number of people is
possible by making available a sublanguage where the speakers can share their views.
Their common sublanguage contains all the elements that are relevant to the topic of
the conversation, and these are automatically displayed to each participant using the
associated media. All input events are distributed, so that any participant can
influence the shared display. When invoking a shared session, a new window is
created for each participant. Any input — displaying of pictures, invoking an
application package — is echoed on all the other participants’ screens. Pointing is
also shared, with each mouse cursor being echoed with an identifying feature.
Participants can bring up a drawing of a project, point at various items, ask questions
and all along their conversation is being digitized, packed on pages and sent across to
the other participants as in a real life phone conversation.

Consider, for example, our maintenance professional working on the nose cone
radar of a Boeing 747 aircraft, his computer by his side. What are the networking
aspects of this maintenance situation? The computer is networked with the Boeing
maintenance shops in Seattle, Washington. That is, a sublanguage in this computer is
based on the Boeing Maintenance Sublanguage in the Seattle shops. None of the
maintenance material is in the computer being used by the maintenance person. First,

the identification of the aircraft being serviced is established. In response to a call for

95

a full color annotated image of the radar nose cone area, the pixel data sets come, via
ISDN, from a single source — the multimedia server in Seattle. Although some
processing is being done locally, all maintenance data and diagnostic analysis is being
done in Seattle. The bane of having out-of-date maintenance manuals will be a thing
of the past. If the maintenance professional is still puzzled, clicking the mouse on a
special icon will establish an immediate conversation with a maintenance specialist at
Boeing, Seattle. Both monitors will display the same material, both people can use
their mouse to point, and both can have a voice discussion of the problem at hand.
Moreover if a third party needs to be brought in, no special preparation or interruption

is required.

E. A Detailed In-Depth Look at an Example

The purpose of this chapter is to give a detailed run-through of a simple but
complete session with the New World of Computing that exercises the
communicative aspects of the tool. The setup is as follows. There are two computers.
The first one models a small library’s database (so small it contains only one
reference, the Ph.D. thesis of Kwang-I Yu, Communicative Databases). The second
computer contains my personal sublanguage dealing with reference work. I have
based it on the Library sublanguage to inherit its contents, and then added this thesis,
Computer Mediated Communication, as a personal reference, thus creating an
environment customized to my needs. For each computer station in turn, I will
describe the preamble statements that tailor the sublanguage to its specific use. I will
then submit an identical query to both computers, “Who is the author of each thesis?,”
and describe the whole process, illustrating the differences between the first case

where the sublanguage is self-contained, and the second one where it spans the data

96

space of both stations. However, before doing that, I will need to go into the details of

the various data structures that comprise a sublanguage.

1. THE LOCAL CASE

a) Library station: setting up the data

In the following transcripts, the user’s input is in italics. Preceding this input is
the prompt consisting of the name of the sublanguage followed by an angle bracket.
The rest is output from the computer.

The initial activity is to request a directory from the COMMAND, or
administrative, sublanguage to ensure that the system is virgin, and we see that it is,
since the only sublanguage available is the BASE, or initial, sublanguage which we
cannot enter.

COMMAND> directory
Context Creator enter base

BASE MASTER no ves
We create our Library sublanguage by basing it on BASE.

COMMAND> base Library on BASE
transfering dictionary for Library
transfering lexicon entries for Library
transfering dictionary for Meta-Library
transfering lexicon entries for Meta-Library
Context Library has been created based on BASE.

If we do a directory now, we see that the Library sublanguage exists and that we
can enter it.

COMMAND> directory
Context Creator enter base

Library John yves ves
BASE MASTER no ves

97

We must provide basing privileges to the person on the other computer if we
want him to be able to use this sublanguage. Note how the other machine is uniquely
identified by its phone number.

COMMAND> authorize Remy@(818)395-6232 to base on Library
Remy has been authorized to base on Library.

We are still the only person enabled to modify this sublanguage. We will do so
by accessing it.

COMMAND> enter Library
You are in Library. Proceed.

We can now start populating the COAR semantic net database with the
elements necessary for our application.

Library> individual/individual attribute:author

The new attribute author has been added.

Library> class:thesis

The new class thesis has been added.

Library> individuals:Kwang-I Yu, Communicative Databases

The following new individuals have been added:
Communicative Databases
Kwang-I Yu

We now create the links in the semantic net database with the following
assertions.

Library> Communicative Databases is a thesis.

The individual entity Communicative Databases has been added

to the class thesis.

Library> Author of Communicative Databases is Kwang-I Yu.

Kwang-I Yu was added as author of Communicative Databases.
We are now ready to ask our question.

Library> Who is the author of each thesis?

thesis author

Communicative Databases Kwang-I Yu

We are done.

Library> exit
You have returned to COMMAND.

98

b) Examining the internal data structures
Let’s take a probing look into the internals of what we have created.
COMMAND> enter Library
You are in Library. Proceed.

Library> metalanguage
You are now in META-Library. Proceed.

META-Library> dump record for Kwang-I Yu

Page number: <1,4406,0, (818)395-6231>
Parent page : <1,4406,0, (818)395-6231>
Record type : 1
Header size : 9
Fields/entry: 1
Num entries : 11

Not Timed Record

Not Indexed

Permanent

Individuals only

Header_bool : [0 5]
Data_page: <0,0,0,0>

Name in English : "Kwang-I Yu"
Name in French : ""

Name in Russian : ""

Record list:

Offset: 9 flag:20101 <1,4402,0, (818)395-6231>
Record for Kwang-I Yu dumped.

Let’s explain briefly what all these different fields mean.

e The page number is our universal pointer that uniquely identifies this

record throughout our world address space. This particular one shows us

that the record starts at the top of the page (offset is 1), the page is the

4406th one in the paging file number O on the station identified by the

(818)395-6231 phone number.

e The parent page would be relevant only if we had enough data for this

record to be indexed. This clearly is not the case.

e The record type is that of an individual object.

99

The header size is a bit of a misnomer since it indicates the offset in fields
where the actual data starts.

Fields per entry tells us that each entry contains one page pointer of data.
Each entry is in fact two fields long, the first field being used as a tag.
Number of entries is also a misnomer since it holds the offset to the first
available data field where additional information can be added.

Not Timed Record indicates that there is no date information associated
with the data in this record. For example, if we had specified when Kwang-I
wrote his thesis, then that entry would hold an additional field containing
that date, and the whole record would be flagged as timed.

Not Indexed tells us what we already knew from the fact that we have so
minimal an amount of information.

Permanent tells us that this record is persistent, even if we turn off the
computer.

Individuals only is another flag indicating that all the data fields contained
in this record are simple objects. This tells us that there are no classes that
need to be expanded which is a useful shortcut as compared to checking all
the data fields, especially if the record is indexed.

The header bool is a collection of sixty-four flags, the preceding four cases
being four examples. A large set of these are accessible to the application
programmer.

The data page field is a free-for-all that has a wide variety of uses
depending on the record type. In the case of an individual record, it can hold

the page pointer of an action page or a paged procedure that will be invoked

100

whenever the record is accessed or modified. It would be a convenient way
of gathering database usage statistics as a typical case.

¢ The three name fields contain a permanent string pointer that points to the

name for this record in the three languages that can be used with this
sublanguage. The fact that the two other names are blank indicates that they
have not been translated yet.

Finally we get to the record list where the actual data begins. In this case we
have only one entry. It is located at offset 9 on this page. The flag describes what this
entry is. It is in centennial base. The initial two specifies that this record (Kwang-I
Yu) is a value for the attribute pointed to by <1,4402,0,(818)395-6231> which is the
record for author. The two following ones describe this attribute as an
individual/individual attribute.

META-Library> dump record for Communicative Databases

Page number: <1,4405,0, (818)395-6231>
Parent page : <1,4405,0, (818)395-6231>
Record type : 1
Header size : 9
Fields/entry: 1
Num entries : 13

Not Timed Record

Not Indexed

Permanent

Individuals only

Header_bool : [0 5 1

Data_page: <0,0,0,0>

Name in English : "Communicative Databases"
Name in French : ""

Name in Russian : "'

Record list:
Offset: 9 flag: 20 <1,4403,0, (818)395-6231>

Offset: 11 flag: 101 <1,4402,0,(818)395-6231>
Record for Communicative Databases dumped.

101

This record is very similar to the preceding one since it is an individual object
record also. We have an additional entry with a flag of twenty indicating that
Communicative Databases is a member of the class thesis pointed to by
<1,4403,0,(818)395-6231>. The zero-one-one flag indicates that this record is the
argument for the same attribute as above.

META-Library> dump record for thesis

Page number: <1,4403,0, (818)395-6231>
Parent page : <1,4403,0,(818)395-6231>
Record type : 21
Header size : 9
Fields/entry: 1
Num entries : 11

Not Timed Record

Not Indexed

Permanent

Individuals only
Header_bool : [0 5]
Act_page: <0,0,0,0>

Name in English : "thesis®
Name in French : "*

Name in Russian : "*

Record list:

Offset: 9 flag: 1 <1,4405,0,(818)395-6231>
Record for thesis dumped.

The record for thesis has a type of “class of individuals”, and contains one
entry. Its flag of one characterizes whatever is pointed to by <1,4405,0,(818)395-

6231> (Communicative Databases) as a member of this class.

102

META-Library> dump record for author

Page number: <1,4402,0, (818)395-6231>
Parent page : <1,4402,0, (818)395-6231>
Record type : 101
Header size : 9
Fields/entry: 2
Num entries : 12

Not Timed Record
Not Indexed

Permanent

Individuals only
Header_bool : [0 5]
Act_page: <0,0,0,0>

Name in English : "author"
Name in French "o

Name in Russian : ""
Recoxrd list:

Offset: 9 flag: 100 <1,4405,0, (818)395-6231>

<1,4406,0, (818)395-6231>
Record for author dumped.

Finally, we get to the record for the individual/individual attribute author as
indicated by its type. Attribute and relations have two data fields per entry, the
argument and the value. Think of these as the links in the semantic net. The flag in
this case indicates that the argument is an object as opposed to a class or a sub-
attribute.

¢) Processing the query

Now that this picture is in place, let’s look at what happens when we input our
query. The string “Who is the author of each thesis?” is first handed over to the
preprocessor who will among many other things build the skeleton of the parsing
chart and break the string up into identifiers, looking up each one in the lexicon using

the ultra-fast double hashing table algorithm. Here is an excerpt of the relevant items

contained in the lexicon:

103

Lexicon entries for Context Library
lex_master_page: <1,4076,0, (818)395-6231>

Bucket #10 page: <2,4258,0, (818)395-6231>

thesis
pos: noun type: standard feat: [7 26]
id for psem: 1025 flag: 0
payload: <1,4403,0,(818)395-6231>
amb link: <0,0,0,0> def msg: thesis

Bucket #12 page: <2,4260,0, (818)395-6231>

(818)395-6232
pos: station_name type: initial feat: []
id for psem: 1025 flag: 2 payload: <0,0,0,0>
amb link: <0,0,0,0> no def msg

Bucket #15 page: <2,4263,0,(818)395-6231>

the
pos: definite_article type: initial feat: []
id for psem: 1025 flag: 0 payload: <0,0,0,0>
amb link: <0,0,0,0> def msg: RULE "the"

Bucket #24 page: <2,4272,0, (818)395-6231>

author
pos: noun type: standard feat: [7 28]
id for psem: 1025 flag: 0
payload: <1,4402,0, (818)395-6231>
amb link: <0,0,0,0> def msg: author

Bucket #25 page: <2,4273,0, (818)395-6231>

who

pos: relative_pronoun type: initial feat: [3]

id for psem: 1025 flag: 0 payload: <0,0,0,0>

amb link: <0,0,0,0> def msg: RULE the relative pronoun
" WhO n

Bucket #28 page: <2,4276,0, (818)395-6231>

Communicative Databases
pos: noun type: standard feat: [7 25]
id for psem: 1025 flag: 0
payload: <1,4405,0, (818)395-6231>
amb link: <0,0,0,0> def msg: Communicative Databases

104

Bucket #29 page: <2,4277,0, (818)395-6231>

of
pos: preposition type: initial feat: [0]
id for psem: 1025 flag: 1 payload: <0,0,0,0>
amb link: <0,0,0,0> def msg: RULE "of"

Bucket #35 page: <2,4283,0, (818)395-6231>

(818)395-6231
pos: station_name type: initial feat: []
id for psem: 1025 flag: 1 payload: <0,0,0,0>
amb link: <0,0,0,0> no def msg

Bucket #45 page: <2,4293,0,(818)395-6231>
Kwang-1 Yu
pos: noun type: standard feat: [7 25]
id for psem: 1025 flag: 0O
payload: <1,4406,0, (818)395-6231>
amb link: <0,0,0,0> def msg: Kwang-I Yu
Bucket #50 page: <2,4298,0, (818)395-6231>
each
pos: quantifier type: initial feat: [1 2 5]
id for psem: 1025 flag: 31 payload: <0,0,0,0>
amb link: <0,0,0,0> def msg: RULE the gquantifier "each"
Bucket #56 page: <2,4304,0, (818)395-6231>
is
pos: copula type: initial feat: [0 1 2]
id for psem: 1025 flag: 1 payload: <0,0,0,0>
amb link: <0,0,0,0> def msg: RULE "is"
Each lexicon entry contains:

e A part of speech (pos) which is what that identifier will parse to.
e A type which can be:
¢ initial: It is part of the bootstrap language.

¢ standard: It has been added by the user, like our Kwang-I Yu case.

<

referent: An example of which we will encounter in the second case.

*

agent: It serves as an access point to a based-on lexical entry.

105

o The features: a set of flags that provide considerable flexibility to the parsing
process but are not of much relevance to this topic.

e The psem id, flag and payload which constitute the semantic part of the item
being built (more on this later, but notice how for the standard entries, the
payload actually points to the record for that item).

e An ambiguous link which points to another lexical entry in the case where
two items with the same name but different semantic meanings exist. In our
case, they are all null pointers, but we will see an additional usage for this
later.

e A definition message which is used as disambiguating feedback to the user
if an ambiguity does exist.

Once the preprocessor is done, the skeleton chart is passed to the parser who
attempts to apply the grammar rules contained in this sublanguage’s dictionary. By
doing so, it populates the parse chart until it finds an arc with part of speech sentence
which covers the whole input. In our case, the input being a well-formed sentence, it
succeeds and the resulting parsing graph is illustrated in Figure 15. Each gray box in
Figure 15 symbolizes a grammar rule. It is labeled with the resulting part of speech,
and contains in bold the type of rule and in italics the semantic procedure associated

with that rule.

106

i sentence
i SYN answer_p
; L
. f
i verb phrase
{ SYN ag_proc
B I 1
i verb phrase
i SYN ag_proc
H y .
" 1
i noun phrase
i SYN article
; |
1
noun phrase
SYN att_of p
i
f ’ 1
noun phrase prep phrase
SYN att_nton | SYN prep_pro
verb phrase ¢ noun phrase
SYN : POST quant_pr
copula_d ; 5 ’
noun phrase
POST <ol nn_sm
I
relative copula definite noun prepo- quantifier noun punctuation
pronoun article +individual sition + individuat class SYN
LEX i LEX LEX attribute feature LEX LEX feature nil_noun

- ;II [| | | [e
Who

ié Ehe éuthof'of'éacﬂ Ehesié ?

Figure 15
Here are the relevant grammar rules excerpted from the dictionary in their
native format described earlier in Figure 1.
Dictionary for Context: Library

RULE the relative pronoun "who"
<relative_pronoun:+who> => "who"
LEX 0

RULE "is"
<copula:+prim+fsi+is> => "isg"
LEX 1

RULE "the®
<definite_article> => "the"
LEX O

RULE "of"
<preposition:+of> => "of"
LEX 1

107

RULE the quantifier "each"
<quantifier:+sif+otf+each> => "each"
LEX 31

RULE "?"
<pct:+gquestion_mark> => "?"
SYN nil_noun

RULE quantification of a singular noun

<noun_phrase:2+gqnf-cjf> =>
<quantifier:+sif-num>
<noun_phrase:-plf-attribute-psf-gqnf-dtf-pnf-cjf>

* e.g., "some ship"

POST quant_pr

" 1t

RULE prepositional phrase
<prep_phrase> => <preposition> " " <noun_phrase:-typefeat5>
SYN prep_pro

RULE class noun to noun phrase
<noun_phrase:1> => <noun:+class-meta>
POST c¢l_nn_sm

RULE attribute noun to noun phrase
<noun_phrase:1> => <noun:+attribute>
SYN att_nton

RULE putting a definite article on a noun phrase
<noun_phrase:2+dtf+the> => <definite_article> " "
<noun_phrase: -psf>

* e.g., "the ship", "the (sister of John)"
* *" (the sister) of John",
* *"the (boy and [the] girl)"

SYN article

RULE genitive mod. ("of" phrase)

<noun_phrase:l+pmf-attribute+class-typefeat5-cjf-and-or>
=> <noun_phrase:+attribute-pof-dtf-gqnf-psf-rcf-cjf>
" " <prep_phrase:+of-pmf>

SYN att_of_p

RULE copula to verb_phrase
<verb_phrase:+copula> => <copula>
SYN copula_d

RULE agent noun in the gquestion inversion position

<verb_phrase:l+fsj+fgt+fph+fag+fce> =>
<verb_phrase:+copula+is-fin-fsj-foj-fag-fda-fce>
" " <noun_phrase:-pof>

* e.g., "is John [an employee?]"

SYN ag_proc

108

RULE adding a RP as agent of a verb

<verb_phrase:2+fph+fsj+fin+fag+fce+fgt> =>
<relative_pronoun:-that-whose-which-whom> " "
<verb_phrase:-copula-fin-fpa-fsj-fag-fti>

* e.g., "(Who/What) (tells the commander)",
* "{Who) (is the commander)",
* "{(Who) (has the commander’s report)"

SYN ag_proc
RULE sentence = transitive verb "?"
<left_delimiter> <sentence:+question> =>
<left_delimiter> <verb phrase:+fsj+foj-fpp-fvi>
<pct:+question_mark>
SYN answer_p
Once the parse chart is built comes the time for syntax analysis. This is the first
pass of the semantic processor on the chart. During this pass the chart will be
traversed with all the procedures attached to a rule of type SYN being invoked. These
procedures have purely transformational goals. We will quickly gloss over the lengthy

process. Since we are mainly preoccupied with the semantics we will cheat by looking

directly at the result which appears in Figure 16.

sentence
POST answer_s
1
f 1
verb phrase punctuation
POST is_proc
1
............. m— !
agent object
: PRE att_of ¢
I
I 1
noun phrase noun phrase
POST image_pr POST quant_pr
noun noun phrase quantifier noun phrase
record #4402 FVAR LEX POST clnn_sm

T 1 I [1

| A—| 1 { T
Who is the author of each thesis ?

Figure 16

109

At this point, we have a chart expunged from its syntactic frivolities, and
representing a road map to the true semantic meaning of the sentence. We are now
going to follow that road map step by step. To do so, we have to familiarize ourselves
with phrases in the bread and butter representation format of the semantic processor: 1
am talking about New World of Computing lists.

The New World of Computing list processor is a tagged ternary list engine. In
fact the parse chart itself is a list since this list architecture is particularly well suited
to sublanguage processing.

A list is constituted of a suite of linked list elements. A list element “Ln” is
composed of five items, the id, the flag and three fields. It is displayed as:

L n (id, flag, Fieldl, Field2, Field3)

Each field can contain a wide variety of types, among others are: page pointers,
string pointers, pairs of integers, reals, a set of flags called bools, dictionary pointers,
generic pointers and of course list pointers to link to another list element.. The id
serves as the tag, defining the types of fields and categorizing the element as a whole.
The flag is a useful storage area for a 32 bit integer and serves numerous context-
dependent purposes. List pointers are of a type much more common to traditional
programmers. They only point inside the machine’s virtual address space. This means
that to reference a list across the New World of Computing’s world-wide space, the
list has to be flattened out and copied to a page. Utilities are provided to take care of
this case.

With this architecture in mind, let’s see what a phrase looks like in list format.

phrase {(pos, 0, psyn, psem, link)

psyn (SYN, 0, [feat], name, arc)
psem (id, flag, 11, cons, payload)

Phrase glossary:

® pos
e psyn

e psem

e link

e SYN

o feat

e name

e arc

e id

o flag

o 1l

* cons

e payload

110

part of speech

list pointer to the syntactic part of the phrase

list pointer to the semantic part of the phrase

list pointer to the following phrase in the chart
characterizes the list element as a psyn

a bool containing the features for the part of speech (e.g.
noun:+class)

a string pointer to the literal part of the phrase

a list pointer to the initial arc for this phrase in the parse
chart, (usually not displayed)

holds the rule type (e.g., LEX, SYN, PRE, POST)
integer; in the case of a LEX, it holds the flag from the
lexicon entry.

list pointer to the label list which will describe the output
format.

list pointer to the constituents of the phrase.

page pointer to the semantic routine associated with this

rule.

It is the goal of each semantic routine to replace the psem with actual data

(meaning.) In this case, the id is changed to a type descriptor (e.g., llp for a record; llp

meaning the first and second fields are list pointers and the third is a page pointer.)

The following is the parse chart from Figure 16 represented as a list. The

phrases are automatically separated with dashed lines.

n HEwntH e Hnc

[l 5 Bl

o ne e

L€ T wu N v € B s

£

| w5 T e Huntt e

O I sl

U W N O

W 00 3

10

11

12
13

14
16

17
18

19
21
22
23

20

15
24

25

26
27

28
30

29
31
10
32

111

(sentence, 0, L 1, L 2, nil

(SYnN, 0, [121, s 1, nil)
who is author of each thesis?

)

(POST, 0, nil, L 3, <1,3239,0,(818)395-6231>

(verb_phrase, 0, L 4, L 5,

L

6)

(SYN, O, [11 12 15 17 24 25 26 28 32],

who is author of each thesis

S

2,

(pOST, 0, nil, L 7, <1,3812,0,(818)395-6231>

(agent, 0, L 8, nil, L 9)
31, 8 3, nil)

(object, 0, L 10, L 11, nil)

(SYN, 0, [7 26 42 47 55 1, S

author of each thesis

(PRE, 0, nil, L 12, <1,2921,0,(818)395-6231>

(noun_phrase, 0, L 13, L 14,
(syn, 0, { 7281, 8 5, L---
author

(pOST, O, L 16, L 17, <1,2817,0,(818)395-6231>

(FVAR, noun_phrase, nil, nil,
(noun, 0, L 18, L 19, L 20)
(syn, 0, { 728 1, 8 6, nil
author

4, nil)

L 15)

)

)

<0,0,0,0>

)

)

(11p, 0, L 21, nil, <1,4402,0,(818)395-6231>)

(141, 1, L 22, 1:0, L 23)
(111, 1, nil, 1:0, nil)

(11s, 0, nil, nil, s 7)
author

{ noun_phrase, 0, nil, L 16, nil)

(noun_phrase, 0, L 24, L 25,

n

il)

(SYN, O, [7 26 40 1, S 8, L---)

each thesis

(POST, 0, nil, L 26, <1,2854,0,(818)395-6231>

(quantifier, 0, L 27, L 28, L 29)
(syn, 0, [1251, 8 9, nil)

each
(11p, 31, nil, L 30, <0,0,0,0

(LLEX, 50, nil, nil, <23,4298,0, (818)395-6231>

(noun_phrase, 0, L 31, L 32,
(syn, 0, [7 26 1, 8 10, L---
thesis

>

)

nil)

)

(POST, 0, nil, L 33, <1,2904,0,(818)395-6231>

)

)

)

)

nil

)

)

)

112

L 33 (noun, 0, L 34, L 35, nil)

L 34 (SYN, 0, [7 26], S 11, nil)

S 11 thesis

L 35 (11p, 0, nil, L 36, <1,4403,0,(818)395-6231>)

L 36 (LLEX, 10, nil, nil, <44,4258,0,(818)395-6231>)
L 6 (pct, 0, L 37, nil, nil)

L 37 (SYN, 0, [O 1, s 12, nil)

s 12 ?

The semantic processor starts by walking down this chart, recursing on each
constituent until it hits the object part of speech. Because its associated rule is of type
PRE, it stops and invokes the attached semantic procedure. “atf_of _c¢” is invoked
whenever an attribute like author is applied to a class like thesis. As input it is fed the
object phrase “author of each thesis”.

The rule is a PRE because it needs to coerce the flow of the recursion of the
semantic processor on its second constituent, the noun phrase “each thesis” before it
lets the attribute procedures loose on it. If left to the regular operation, the semantic
processor would have walked down the left branch first.

Hence, “att_of ¢”’s first step is to evaluate the noun phrase “each thesis”. This
restarts the semantic processor on that particular branch of the chart, which keeps
recursing until it hits the leaf phrase which is the noun “thesis”.

We saw that the lexicon entry for thesis contains as payload the associated
record pointer <1,4403,0,(818)356-6231>. This in turn happens to point to a page in
the local paging file. Having hit data paydirt, the semantic processor then starts
“rolling back up the rug” on the recursion.

The last procedure recursed upon was "cl_nn_sm". It is now invoked and since
the noun_phrase it handles is simple, its sole task is to instantiate the psem of the
phrase it is going to return with the record for “thesis”. It also adorns it with a trivial

label list that is of no concern to us for the purpose of this demonstration.

113

The result is:

—

5) SEM output:

(noun_phrase, 0, L. 1, L 2, nil)

(SYN, O, [7 26], S 1, L---~)

thesis

(11p, 0, L 3, nil, <1,4403,0,(818)395-6231>)
(1il, 1, nil, 1:0, L 4)

(11s, 0, nil, nil, S 2)

thesis

19230 vl w5 B e
N WM RO

The number in parentheses indicates the depth level of the recursion, and if you
check figure 16 you will see that “cI_nn_sm” is in fact five rules down from the top

sentence rule.

The next procedure in our recursion stack is “quant_pr”. It takes the psem of the
noun phrase that was just returned by “c/_nn_sm” and promotes it up as the psem of
the phrase it will return. It then quantifies it with the quantifier “each” contained in its
first constituent, by tacking it into the resulting noun phrase’s label list as its decimal

value: 31.

4) SEM POST call procedure: <1,2854,0, (818)395-6231>
4} SEM output:

(noun_phrase, 0, L. 1, L 2, nil)

(SYN, O, [7 26 401, § 1, L---)

each thesis

(11p, 0, L 3, nil, <1,4403,0,(818)395-6231>)
(1i1, 1, nil, 31:0, L 4)

(11s, 0, nil, nil, s 2)

thesis

ettt ne
N WND PO

114

This ends the evaluation of that particular branch. The resulting phrase looks as
follows:

ARG return from: evaluate, output:

L O (111, 0, nil, nil, L 1)

L 1 (noun_phrase, 0, L 2, L 3, nil)

L 2 (SYN, O, [7 26 40 1, s 1, L 4)

s 1 each thesis

L 3 (11p, 0, L 5, nil, <1,4403,0,(818)395-6231>)
L 5 (1il, 1, nil, 31:0, L 6)

L 6 (11s, 0, nil, nil, s 2)

s 2 thesis

L 4 (quantifier, 0, L 7, L 8, L 9)

L 7 (SYyny, 0, [1251, s 3, nil)

S 3 each

L 8 (11p, 31, nil, » 10, <0,0,0,0>)

L 10 (LLEX, 50, nil, nil, <23,4298,0,(818)395-6231>)
L 9 (" ", 0, nil, nil, L 11)

L 11 { noun_phrase, 0, L 12, L 13, nil)

L 12 (SYN, 0, [7 26], S 4, L 14)

S 4 thesis

L 13 { pPOST, 0, nil, L 15, <1,2904,0, (818)395-6231>)
L 15 (noun, 0, L 16, L 17, nil)

L 16 ({ SYN, 0, [7 26 1, & 5, nil)

S 5 thesis

L 17 (11lp, 0, nil, L 18, <1,4403,0,(818)395-6231>)
L 18 (LLEX, 10, nil, nil, <44,4258,0, (818)395-6231>)
L 14 (noun, 0, L 16, L 17, nil)

“att_of_c’s next task is to take the free variable (tagged with FVAR) that is
“hidden” in its first constituent, the attribute “author”, bind it, and instantiate it with
the “thesis” noun phrase we just finished evaluating. It will now be tagged as a
BVAR, or bound variable.

With this free variable out of the way, “att_of_¢” can now combine its two
constituents and attempt to evaluate the combination as a noun phrase. All these
iterative evaluations may seem quite tedious, but one must remember that the
semantic processor works directly on the parse chart, and thus any segment that is
evaluated will be replaced by its semantic value. The semantic processor then only

glosses over these, avoiding any duplicate or extraneous work.

115

The free variable being instantiated with the “thesis” noun phrase, “image_pr”
now has all the arguments necessary to start doing the actual real data processing
work required by this query. After doing some initial testing to see that the data is
consistent, (e.g., the attribute and the class have compatible types and neither are
empty,) the image of the “thesis” class under the “author” attribute is taken. In this
simplistic case, this means that each member of the class is taken in turn and the
attribute record is searched to see if it is an argument. For every argument found, the
corresponding value is copied into an output record. Since the class is quantified with
“each”, the member argument is also copied into the output record as an output label.

The resulting scratch output record <1,4411,0,(818)395-6231> becomes the
psem of the phrase.

This is what “att_of _c” returns:

—

3) SEM output:

(object, 0, L 1, L 2, nil)

(SYN, 0, [7 26 42 47 55 1, s 1, nil)

author of each thesis

(11p, 0, L. 3, nil, <1,4411,0,(818)395-6231>)

Nt ngo e
WUINOR WN R RO

(1i1, 1, L 4, 1:0, L 5)
(1il1, 1, nil, 31:0, L 6)
(11s, 0, nil, nil, s 2)
thesis
(11s, 0, nil, nil, 8§ 3)
author

At this point all the actual semantic processing is done. The semantic routine
“is_proc” that handles the “Who is the author of each thesis” verb phrase has very
little to do. It must first realize that this is a simple case, which is not as obvious as it
first may seem. There are so many occurrences of verb phrases of the form “<subject>
is <object>” that the discrimination process is quite exhaustive. It must check for
things like adverbs and also verify that the query is not negated, i.e., “<subject> is not

<object>". Since both positive and negative verb phrases have very similar semantics,

116

it would be silly not to use the same procedure. Once it finds out that the agent is a

mere “who”, it

phrase psem.

pops it off, and the underlying noun phrase psem becomes the verb

(2) SEM POST return from recursion on constituents:
2) SEM POST call procedure: <1,3812,0, (818)395-6231>
2) SEM output: (for is_proc)

L 0 (verb_phrase, 0, L 1, L 2, nil)

L 1 { SYN, O, [11 12 15 17 24 25 26 28 32 1, § 1, nil

)

s 1 who is author of each thesis

L 2 (11lp, 0, L. 3, nil, <1,4411,0,(818)395-6231>)

L 3 (1i1, 1, L 4, 1:0, L. 5)

L 4 (1i1, 1, nil, 31:0, L 6)

L 6 (11s, 0, nil, nil, S 2)

s 2 thesis

L 5 (11s, 0, nil, nil, 8 3)

s 3 author

At this point, we have come all the way back to the surface, i.e. the sentence.

“answer_s” 1S

now in charge of turning the resulting semantic data into a more

humanly palatable form. Since our output record is a simple labeled class, it quickly

ends up in the hands of the “out_rec” subroutine. No fields need to be crunched out,

and all the data

has been successfully processed, so “out_rec™s job consists mainly in

formatting the record for output. It takes each entry in the output record in turn, and in

our case, since all our fields are records (as opposed to number values for example), it

fetches the permanent string (also a page pointer) which holds the name of the record

in the current

columns. Since

language. It tabulates these strings so as to have them all align in

this data is not time dependent, “out_rec” is done.

117

POST return from recursion on constituents:
POST call procedure: <1,3239,0, (818)395-6231>
output: (for answer_s)

(sentence, 0, L 1, L 2, nil)
(SYnN, 0, [11, 8 1, nil)

who is author of each thesis?
(our, 0, L 3, nil, nil)

(11s, 0, nil, L 4, S 2)

thesis author

(11s, 0, nil, nil, S§ 3)
Communicative Databases Kwang-I Yu

nwpuntono
WEBENDWNRP RO

The list of formatted output is handed over to the outputer which produces the

following:

et o o o ot ot o s S s s P Pt o o s

author
Kwang-I Yu

et ot st o s s s

thesis
Communicative Databases

OUTPUTER ANALYSIS

2. THE NETWORKED CASE

Let us now switch our focus on the other computer. This one should be
imagined as my home workstation where personal information is kept.

a)

We start by creating a new working sublanguage by basing it on the one we just

Personal station: setting up the data

left on the other computer. The only identification required to specify it, is its phone
number.

COMMAND> base Reading on Library@(818)395-6231

transfering

transfering

transfering

transfering
Context Reading
6231.

dictionary for Reading

lexicon entries for Reading

dictionary for Meta-Reading

lexicon entries for Meta-Reading

has been created based on Library@(818)395-

We then enter that environment and start adding our own data on top. Note that

we do not need to redefine thesis or author since we inherited them from our Library

sublanguage.

118

COMMAND> enter Reading

You are in Reading. Proceed.

Reading> individual:Remy Sanouillet

The new individual Remy Sanouillet has been added.
Reading> individual:Computer Mediated Communication

The new individual Computer Mediated Communication has been
added.

Reading> Computer Mediated Communication is a thesis.

The individual entity Computer Mediated Communication has
been added to the class thesis.

Reading> Author of Computer Mediated Communication is Remy
Sanocuillet.

Remy Sanouillet was added as author of Computer Mediated
Communication.

We now submit the identical query and notice that our data has been seamlessly
integrated into the existing web of information.

Reading> Who is the author of each thesis?

thesis author
Computer Mediated Communication Remy Sanouillet
Communicative Databases Kwang-I Yu

We will now look in detail at how this worked, and how the data was
transported across.
b) Examining the internal data structures

First let’s examine the data records and see how they differ from the self-

contained case.

119

META-Reading> dump record for Kwang-I Yu

Page number: <1,4406,0, (818)395-6231>
Parent page : <1,4406,0, (818)395-6231>
Record type : 1
Header size : 9
Fields/entry: 1
Num entries : 11

Not Timed Record

Not Indexed

Permanent

Individuals only

Header_bool : [0 5]
Data_page: <0,0,0,0>

Name in English : "Kwang-I Yu"
Name in French : "*

Name in Russian : ""

Record list:

Offset: 9 flag:20101 <1,4402,0,(818)395-6231>
Record for Kwang-I Yu dumped.

The record for Kwang-I Yu is identical. Not only is it identical, it is the actual
record from the Library as can be seen from the phone number field of its pointer. The
same would be true of the record for Communicative Databases. All the records in the
Library sublanguage are unaffected by our activity here.

META-Reading> dump record for Remy Sanouillet

Page number: <1,4403,0, (818)395-6232>
Parent page : <1,4403,0, (818)395-6232>
Record type : 1
Header size : 9
Fields/entry: 1
Num entries : 11

Not Timed Record

Not Indexed

Permanent

Individuals only

Header_bool : [0 5]

Data_page: <0,0,0,0>

Name in English : "Remy Sanouillet"
Name in French : "'

Name in Russian : ""

120

Record list:

Offset: 9 flag:20101 <1,4406,0,(818)395-6232>
Record for Remy Sanouillet dumped.

Now, let’s look at a local record. Outside the fact that it is pointing to this
computer, its structure is similar to that of Kwang-I Yu’s record. It is a value of the
individual/individual attribute held in <1,4406,0,(818)395-6232>. Note that this is a
local record, not the record for the attribute author held in Library.

META-Reading> dump record for Computer Mediated
Communication

Page number: <1,4404,0, (818)395-6232>
Parent page : <1,4404,0, (818)395-6232>
Record type : 1
Header size : 9
Fields/entry: 1
Num entries : 13

Not Timed Record

Not Indexed

Permanent

Individuals only

Header_bool : [0 5]

Data_page: <0,0,0,0>

Name in English : "Computer Mediated Communication"
Name in French : ""

Name in Russian v

Record list:
Offset: 9 flag: 20 <1,4405,0, (818)395-6232>
Offset: 11 flag: 101 <1,4406,0,(818)395-6232>
Record for Computer Mediated Communication dumped.
The same holds true for the Computer Mediated Communication’s record which
is a member of a local class, <1,4405,0,(818)395-6232>, and an argument of the
attribute <1,4406,0,(818)395-6232>. How can this be since we did not create any

local classes or attributes?

121

META-Reading> dump record for thesis

Page number: <1,4405,0, (818)395-6232>
Parent page : <1,4405,0, (818)395-6232>
Record type : 21
Header size : 9
Fields/entry: 1
Num entries : 13

Not Timed Record
Not Indexed
Permanent
Referent
Header_bool : [5 6]
Act_page: <0,0,0,0>
Name in English : "thesis"
Name in French : ""
Name in Russian : ""
Record list:
Offset: 9 flag: 0 <51,4259,0, (818)395-6232>

Offset: 11 flag: 1 <1,4404,0, (818)395-6232>
Record for thesis dumped.

The answer lies in the basing process. Our assertion “Computer Mediated
Communication is a thesis.” would have required the addition of an entry in the
Library’s record for thesis. The librarian would probably not eye such an activity with
great enthusiasm. To avoid this, the system created an ambiguous “thesis” entry in the
lexicon, changed the old entry type from agent to referent, and created the above
record as payload for the new entry. We can see that its bool flags have changed from
individuals_only to referent, and that it contains a member entry for our Computer
Mediated Communication record. But more importantly, it contains a referent entry
(flag of zero) that points to the ambiguous lexical entry. We will see the mechanisms

of dereferencing this a little further on.

122

META-Reading> dump record for author

Page number: <1,4406,0, (818)395-6232>
Parent page : <1,4406,0, (818)395-6232>
Record type : 101
Header size : 9
Fields/entry: 2
Num entries : 15

Not Timed Record
Not Indexed
Permanent
Referent
Header_bool : [5 6]
Act_page: <0,0,0,0>
Name in English : "author"
Name in French : ""
Name in Russian : ""
Record list:
Offset: 9 flag: 0 <86,4273,0, (818)395-6232>
<86,4273,0, (818)395-6232>
Offset: 12 flag: 100 <1,4404,0,(818)395-6232>
<1,4403,0, (818)395-6232>
Record for author dumped.

Similarly, the record for author was added as a referent when we said: “Author
of Computer Mediated Communication is Remy Sanouillet.”” Besides the object entry
(flag of one hundred) that the assertion added, we have a similar referent entry
pointing to an ambiguous lexical entry.

Because the Reading sublanguage is based upon Library, and because the only
modifications we’ve made are semantic in nature (i.e., we haven’t added new
grammar rules, or modified the procedures), the resulting parse chart for the query
will be structurally identical. All the data will be virtually identical since copied
through the basing process. All page references are local except for “standard” data

(i.e., data from the Library sublanguage that has been added by the user). Except for

the following exceptions, the lexicon is a clone of the Library lexicon.

123

Reading> metalanguage
You are now in META-Reading. Proceed.
META-Reading> dump lexicon
Lexicon entries for Context Reading
lex_master_page: <1,4076,0, (818)395-6232>

Bucket #10 page: <2,4259,0, (818)395-6232>

thesis

pos: noun type: standard feat: [7 26]

id for psem: 1025 flag: 0

payload: <1,4405,0, (818)395-6232>

amb link: <51,4259,0, (818)395-6232> def msg: thesis
initially created in Context Library.

(amb)

pos: noun type: referent feat: [7 26]

based on lexical pointer: <44,4258,0, (818)395-6231>

amb link: <0,0,0,0> agent: <1,4054,0, (818)395-6231>

Bucket #12 page: <2,4261,0, (818)395-6232>

(818)395-6232
pos: station_name type: initial feat: []
id for psem: 1025 flag: 2 paylocad: <0,0,0,0>
amb link: <0,0,0,0> no def msg

Bucket #19 page: <2,4268,0, (818)395-6232>

Computer Mediated Communication

pos: noun type: standard feat: [7 25]

id for psem: 1025 flag: 0

payload: <1,4404,0,(818)395-6232>

amb link: <0,0,0,0> def meg: Computer Mediated
Communication

Bucket #24 page: <2,4273,0, (818)395-6232>

author

pos: noun type: standard feat: [7 28]

id for psem: 1025 flag: 0

payload: <1,4406,0,(818)395-6232>

amb link: <86,4273,0,(818)395-6232> def msg: author
initially created in Context Library.

(amb)

pos: noun type: referent feat: [7 28]

based on lexical pointer: <79,4272,0,(818)395-6231>

amb link: <0,0,0,0> agent: <1,4054,0, (818)395-6231>

124

Bucket #28 page: <2,4277,0, (818)395-6232>
Communicative Databases
pos: noun type: agent feat: [7 25 1]
based on lexical pointer: <72,4276,0, (818)395-6231>
amb link: <0,0,0,0> agent: <1,4054,0, (818)395-6231>
Bucket #29 page: <2,4278,0, (818)395-6232>
Remy Sanouillet
pos: noun type: standard feat: [7 25]
id for psem: 1025 flag: O
payload: <1,4403,0, (818)395-6232>
amb link: <0,0,0,0> def msg: Remy Sanouillet
Bucket #35 page: <2,4284,0, (818)395-6232>
(818)395-6231
pos: station_name type: initial feat: []
id for psem: 1025 flag: 1 payload: <0,0,0,0>
amb link: <0,0,0,0> no def msg
Bucket #45 page: <2,4294,0, (818)395-6232>
Kwang-I Yu
pos: noun type: agent feat: [7 25]
based on lexical pointer:<135,4293,0, (818)395-6231>
amb link: <0,0,0,0> agent: <1,4054,0, (818)395-6231>
¢) Processing the query
The semantic process follows the same venue as in the previous case. The
crucial differences occur in “cl_nn_sm” and in “att_nton”, the two routines that
transform the underlying nouns into noun phrases. Upon carrying over the psem
record for the noun “thesis”, “cl_nn_sm” detects that it is a referent record. It contains
a record from the other sublanguage as a subclass and therefore must expand it into a
scratch record which will serve in lieu of the actual permanent record, but will be
discarded when the query finishes.
To perform the expansion, it takes each entry in the record in turn, copies it into

the temporary record if it is not flagged as referent. If it is flagged as a referent as is

the case for the first entry in the record for “thesis”, then that entry points to the

125

ambiguous referent entry we noticed earlier in the lexicon. “cl_nn_sm” loads that
lexicon bucket, checks the entry, and finds, in that entry, the lexicon pointer that
“thesis” is based upon.

It then attempts to load that foreign bucket: <44,4258,0,(818)395-6231> by
calling the “page” routine it has been using all along for local pages. “page” is just an
alias for a “generic_page” request for an unlocked, unmarked page.

The first step consists in checking the local paging area via “locate_page” to see
if we happen to have that page already in cache. Supposing the page hasn’t been
recently requested, “locate_page” will fail, and “generic_page” will grab an available
page slot in the cache and invoke “bring_in_page” specifying that this is a standard
request, as opposed to pages which require special handling (e.g. the Version Control
Page). The rdle of “bring_in_page” is to load the desired page into the designed slot
and perform typical administrative tasks.

To load the page it in turn invokes “pg_read’ passing along the standard request
message code. “pg_read’ is the one that actually distinguishes between a request for a
local page and one for a distant page. In our case (818)395-6231 being different from
our phone number, this is a distant page so it tags the empty page slot with the page
pointer it desires and calls “foreign_page” which does a “send_page” and then waits
for a reply using a “get_page” — the basic data exchange.

In the mean time, “send_page” checks to see if the appropriate connection is
already established, otherwise it will dial up the foreign computer and initiate the link
using “contact_station”. If the connection is established, it will pass the request over
to the distant computer using “send_foreign_page” which is the device handler at the

bottom of the protocol stack that writes to the communication device.

126

On the other side of the communication channel sits the New World of
Computing daemon. It is awakened from its sleep by the arrival of this request. It
identifies the station from which this request is coming (i.e., its return address) and
does a “get_foreign_page’ to retrieve the request.

It recognizes the message code as a standard page request, and if the New
World of Computing process were not running, it would know how to retrieve the
page directly from the paging file. Assuming that in our case the Library station is
always up, it interrupts the program and forwards the request by using a
“send_foreign_page” on the internal communication channel. It then waits for a reply
using a “get_foreign_page’.

The interrupt handler for the internal communication channel of the New World
of Computing process is called “err_urg”. Its first step is to retrieve the request from
the channel using a “get_foreign_page”. Then decoding this as a standard request, it
does exactly the same “page” as the one that started this whole process, but since now
the request is local, the page is copied from disk (or cache) into a buffer and sent back
the way the request came using a “send_foreign_page”.

Provided no communication problems occurred on the way, the page buffer
returns along the reverse path into the desired page slot, and barring the delay, the
whole process is indistinguishable from a local page request.

We now have the foreign lexicon entry for “thesis”, and we recurse on its
payload. Since this record is not a referent (it wasn’t based on anything else), its
single entry for Communicative Databases is added to the temporary record. So our

temporary “thesis” record should now look like this:

127

Page number: <1,4475,0, (818)395-6232>
Parent page : <1,4475,0, (818)395-6232>
Record type : 21
Header size : 9
Fields/entry: 1
Num entries : 13

Not Timed Record

Not Indexed
Temporary
Individuals only
Header_bool : [0 4]
Act_page: <0,0,0,0>
Name in English : "*
Name in French : "*
Name in Russian n

Record list:

Offset: 9 flag: 1 <1,4404,0, (818)395-6232>
Offset: 11 flag: 1 <1,4405,0, (818)395-6231>

“att_nton” follows a parallel process resulting in the following temporary record

for “author’:

Page number: <1,4476,0, (818)395-6232>
Parent page : <1,4476,0, (818)395-6232>
Record type : 101
Header size : 9
Fields/entry: 2
Num entries : 15

Not Timed Record

Not Indexed
Temporary
Individuals only
Header_bool : [0 4]
Act_page: <0,0,0,0>
Name in English : ""
Name in French : "*
Name in Russian : ""

Record list:

Offset: 9 flag: 100 <1,4404,0,(818)395-6232>
<1,4403,0, (818)395-6232>

Offset: 12 flag: 100 <1,4405,0,(818)395-6231>
<1,4406,0, (818)395-6231>

128

When “image_pr” takes the image of the first record through the second
attribute record, it ends up getting the record for Kwang-I Yu in a totally transparent
manner. Similarly when the outputer requests the permanent strings that are the labels
for these records, it will have no knowledge that these strings are located on a page
that had to travel across a network. As far as it is concerned, the record name pointer
just pointed to an area of relevant data, and in every detail that is how this whole

metaphor works.

3. CONSEQUENCE

Without my work, the New World of Computing would be limited to cases like
the first one. The pervasive introduction of the universal pointer has enabled these
systems to preserve information closest to the person best qualified to maintain it
(e.g., the librarian in our case), while still allowing individuals the flexibility to
customize their information space without fear of either the base data becoming

obsolete, or of corrupting the shared information.

129

V. In Conclusion

The author has implemented the capabilities discussed above. They are
functioning within the encompassing New World of Computing System on Sun
SPARC Stations, using Ethernet communications and OpenWindows. The NCR
Corporation is currently participating with me in porting this System to the
MSDOS/Windows environment on NCR Personal Computers, as well as in its
product development. The forecast is highly optimistic for the era of the telephone-

computer.

130

VI. Bibliography

[ANDERSON75] Anderson, B. F. 1975. Cognitive Psychology: the Study of

Knowing, Learning and Thinking. New York: Academic Press.

[ANDERSON76] Anderson, J. R. 1976. Language, Memory and Thought. Hillsdale,

N.J.: Lawrence Erlbaum Associates.

[ARBIB] Arbib, M. A. 1972. The Metaphorical Brain: An Introduction to Cybernetics

as Artifical Intelligence and Brain Theory. New York: Wiley Intersciences.

[BARBIZET] Barbizet, J. 1969. Pathologie de la mémoire. Paris: Presses

Universitaires de France.

[BARTEER6] Bartee, T. C.

1986. Digital Communications. New York: Sams.

[BARTEER7] Bartee, T. C.

1987. Data Communications, Networks and Systems. New York: Sams.

[BARTLETT] Bartlett, F. C. 1958. Thinking: An Experimental and Social Study.

New York: Basic Books.

131

[BENNET84] Bennet, J. L. 1984. Managing to Meet Usability Requirements. Visual
Display Terminals: Usability Issues and Health Concerns, editors J. L. Bennet, D.
Case, J. Sandelin, and M. Smith. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

[BENNETS86] Bennet, J. L. 1986. Tools For Building Advanced User Interfaces. IBM
Systems Journal, 25, (3/4): 354-368.

[BERNE] Berne, H. 1975. Des jeux et des hommes: psychologie des relations

humaines. Paris: Stock.

[BEVER] Bever, T. G. 1970. The Cognitive Basis for Linguistic Structures.
Cognition and the Development of Language, editor, J. R. Hayes. New York: John

Wiley & Sons.

[BLOCK] Block, E. G. 1989. ISDN: The Telcos Are Ready, But Are the Users?

Telecommunications, May 1989, 31.

[BOBROW?75] Bobrow, D. G., and D. A. Norman. 1975. Some Principles of Memory
Schemata. Representation and Understanding Studies in Cognitive Science, editors D.

G. Bobrow, and A. M. Collins. New York: Academic Press.

[BOBROW?77] Bobrow, D. G., and T. Winograd. 1977. An Overview of KRL, a

Knowledge Representation Language. Journal of Cognitive Science.

[BROOKS] Brooks, F. P. Jr. 1975. The Mythical Man-Month. Reading, Mass.:
Addison-Wesley Publishing Co.

[BRUCE] Bruce, B. 1975. Case Systems for Natural Language. Artificial Intelligence.

132

[BUSINESS] Artificial Intelligence, The Second Computer Age Begins. 1982.
Business Week. March 8, 1982: 66-72.

[CHOMSKY67] Chomsky, N. 1967. The Formal Nature of Language. Biological
Foundations of Language, editor, E. H. Lenneberg. New York: John Wiley & Sons.

[CHOMSKY73] Chomsky, N., and M. Halle. 1973. Principes de phonologie

générative. Paris: Seuil.

[CHOMSKY75] Chomsky, N. 1975. Reflections on Language. New York: Pantheon

Books.

[CICOUREL] Cicourel, A. V. 1974. Cognitive Sociology: Language and Meaning in

Social Interaction. New York: The Free Press.

[COFER] Cofer, C. N., editor. 1976. The Structure of Human Memory. San

Francisco: W. H. Freeman.

[DREYFUS79] Dreyfus, H. L. 1972, 1979. What Computers Can’t Do: A Critique of

Artificial Intelligence Reason. New York: Harper & Row.

[DREYFUSS85] Dreyfus, H. L., and S. E. Dreyfus. 1985. Mind Over Machine. New
York: Macmillan/The Free Press

[ENDERTON] Enderton, H. B. 1972. A Mathematical Introduction to Logic. New

York: Academic Press.

[EVANS] Evans, C. 1979. The Micro Millenium. New York: Viking.

133

[FEIGENBAUMG63] Feigenbaum, E., and J. Feldman. 1963. Computers and Thought.
New York: McGraw-Hill.

[FEIGENBAUMS3] Feigenbaum, E., and P. McCorduch. 1983. The Fifth Generation:
Artificial Intelligence and Japan’s Computer Challenge to the World. Reading, Mass.:

Addison-Wesley.

[FILLMORES®68] Fillmore, C. J. 1968. The Case for Case. Universals in Linguistic
Theory, editors E. Bach and R. G. Harms. New York: Holt.

[FILLMORE®69] Fillmore, C. J. 1969. Toward a Modern Theory of Case. Modern
Studies in English, editors D. A. Reibel and S. A. Schane. New York: Prentice-Hall.

[FILLMOREY75] Fillmore, C. J. 1975. An Alternative to Checklist Theories of
Meaning. Proceedings of the First Annual Meeting of the Berkeley Linguistics

Society. University of California, Berkeley.

[FLORES] Flores, F. C. 1982. Management and Communication in the Office of the

Future. Report. San Francisco: Hermenet Inc.

[FODOR74] Fodor, J., T. Bever, and M. Garret. 1974. The Psychology of Language.
New York: McGraw-Hill.

[FODORS&1] Fodor, J. 1981. Methodological Solipism Considered as a Research

Strategy in Cognitive Psychology. The Behavioral and Brain Sciences. Haugeland.

[FROMKIN] Fromkin, V. A., and R. Rodman. 1974. An Introduction to Language.

New York: Holt, Rinehart, and Winston.

134

[GREEN] Green, P E, R. J. Chapuis, J. D. Fisher, P.S. Frosch, and C. E. Wood. 1987.
A Perspective on Advanced Peer-to-Peer Networking. IBM Systems Journal 26 (4):
414-428.

[GROSZ] Grosz, B. 1980. Utterance and Objective: Issues in Natural Language

Communication. Al Magazine (Spring).

[GULLO] Gullo, K. 1989. Untangling ISDN. Information Week 247 (November 27).

[HARRAH] Harrah, D. 1963. Communication: A Logical Model. Cambridge, Mass.:

M.IT. Press.

[HEIDEGGERG68] Heidegger, M. 1968. Was heisst Denken? (What is Called
Thinking?). New York: Harper & Row.

[HEIDEGGER?77] Heidegger, M. 1977. The Question Concerning Technology. New
York: Harper & Row

[HILTZ85] Hiltz, S. R. and M. Turroff. 1985. Structuring Computer Mediated
Communication Systems to Avoid System Overload, Commun. ACM 28 (July 7):

680-689.

[HILTZS88] Hiltz, S. R. and M. Turoff. 1988. The Network Nation - Human

Communication via Computer. Reading, Mass.: Addison-Wesley Publishing Co.

[HOSTATER] Hostater, D. 1979. Godel, Escher, Bach: An Eternal Golden Braid.

New York: Basic Books.

135

[INFORMATION] Information Computer Communications Policy, New
Telecommunications Services - Videotex Development Strategies. 1988. Organisation

for Economic Co-operation and Development.

[INOSE] Inose, H. 1979. Digital Integrated Communications Systems. Tokyo:

University of Tokyo Press.

[JOHNSON] Johnson-Laird, P. N. 1974. Experimental Psycholinguistics, Annual

Review of Psychology.

[KASSON] Kasson, J. M. 1986. An Advanced Voice/Data Telephone Switching
System. IBM Systems Journal 25 (3/4): 380-398.

[KATZ] Katz, J. J., and J. A. Fodor. 1964. The Structure of Semantic Theory. The

Structure of Language. New York: Prentice-Hall.

[KINTSCH] Kintsch, W. 1974. The Representation of Meaning in Memory.

Hillsdale, N.J.: Lawrence Erlbaum Associates.

[KORZENIOWSKI] Korzeniowski. 1988. Users Chart Ups, Downs of ISDN

Technology, Communications Week (October 24): 9.

[KUHN] Kuhn, T. 1962. The Structure of Scientific Revolutions. Chicago: University

of Chicago Press.

[LAKOFF] Lakoff G., and M. Johnson. 1980. Metaphors We Live By. Chicago:

University of Chicago Press.

[LAURIERE] Lauriere, J.-L. 1990. Problem Solving and Artificial Intelligence. New

York: Prentice-Hall.

136

[LEWIS] Lewis, H. R., and C. H. Papadimitriou. 1981. Elements of the Theory of

Computation. New York: Prentice-Hall.

[LINDSAY] Lindsay, P. H., and D. A. Norman. 1977. Human Information

Processing, an Introduction to Psychology. New York: Academic Press.

[MARTIN] Martin, J. 1981. Telematic Society - A Challenge for Tomorrow. New
York: Prentice-Hall.

[MASSARO75-1] Massaro, D. W. 1975. Experimental Psychology and Information
Processing. New York: Rand McNally.

[MASSARO75-2] Massaro, D. W., editor. 1975. Understanding Language: an
Information-Processing Analysis of Speech Perception, Reading and

Psycholinguistics. New York: Academic Press.

[MEEKS] Meeks, B. N. 1986. High-Tech Conferencing for Humans. Microtimes
(February): 46-48.

[MINSKY] Minsky, M. 1979. The Society Theory of Thinking. Artificial Intelligence:

An MLIT. Perspective, editors, Winston and Brown. Cambridge, Mass.: M.L.T. Press.

[NEWELL] Newell, A., and H. A. Simon, 1972. Human Problem Solving. New York:

Prentice-Hall.

[NORMAN70] Norman, D.A., editor. 1970. Models of Human Memory. New York:

Academic Press.

[NORMANT76-1] Norman, D. A. 1976. Memory and Attention: an Introduction to

Human Information Processing. New York: John Wiley & Sons.

137

[NORMANY76-2] Norman, D.A., D. R. Gentner, and A. L. Stevens. 1976. Comments
on Learning: Schemata and Memory Representation. Cognition and Instruction, editor

D. Klahr. Hillsdale, N.J.: Lawrence Erlbaum Associates.

[NORMANS81] Norman, D. A., editor. 1981. Perspectives on Cognitive Science. New
York: Ablex Publishing Corp.

[PENROSE] Penrose, R. 1989. The Emperor’s New Mind. London: Oxford
University Press.

[PIAGET64] Piaget, J. 1964. Six études de psychologie. Paris: Gonthier.
[PIAGET68] Piaget, J. 1968. La Naissance de ’intelligence chez I’enfant. Neuchatel:
Delachaux-Niestlé.

[ROSCH73] Rosch, E. H. 1973. On the Internal Structure of Perceptual and Semantic
Categories. Cognitive Development and the Acquisition of Language, editor, T.
Moore. New York: Academic Press.

[ROSCH75] Rosch, E. H. 1975. Cognitive Representations of Semantic Categories.
Journal of Experimental Psychology: General.

[RUSSEL] Russel, B. 1920. Introduction to Mathematical Philosophy. Boston: Allen
and Unwin.

[RUTKOWSKI] Rutkowski, A. M. 1986. Broadband Integrated Services Digital
Networks. Telecommunications (December): 68.

[SARIN] Sarin, S., and I. Greif. 1985. Computer-Based Real-Time Conferences.
M.LT. Laboratory for Computer Science, M.L.T./LCS/TM 282 (July).

[SCHANK?72] Schank, R. C. 1972. Conceptual Dependency: a Theory of Natural

Language Understanding. Cognitive Psychology.

138

[SCHANK73] Schank, R. C. ¢1973. Computer Models of Thought and Language,
editors Schank, R. C., and K. M. Colby. San Francisco: W. H. Freeman.
[SCHANKY75] Schank, R. C. 1975 Conceptual Information Processing. New York:
American Elsevier.

[SCHANK77] Schank, R. C. and R. P. Alberson. 1977. Scripts, Plans, Goals, and
Understanding : an Inquiry into Human Knowledge Structures. Hillsdale, N.J.
Lawrence Erlbaum Associates. Distributor, Halsted Press Division, John Wiley &
Sons.

[SCHANKS1] Schank, R. C. and C. Riesbeck. 1981. Inside Computer Understanding,
Hillsdale, N.J.: Lawrence Erlbaum Associates.

[SCHANKS2] Schank, R. C. 1982. Dynamic Memory : a Theory of Reminding and
Learning in Computers and People. London: Cambridge University Press.
[SCHWARTZ] Schwartz, M. 1987. Telecommunications Networks. Reading, Mass.:
Addison-Wesley Publishing Co.

[SEARLEG69] Searle, J. R. 1969. Speech Acts: an Essay in the Philosophy of
Language. London: Cambridge University Press.

[SEARLE71] Searle, J. R., editor. c1971. The Philosophy of Language. London:
Oxford University Press.

[SEARLE79] Searle, J. R. 1979. Expression and Meaning: Studies in the Theory of
Speech Acts. London: Cambridge University Press.

[SEARLERS3] Searle, J. R. 1983. Intentionality: an Essay in the Philosophy of Mind.
London: Cambridge University Press.

[SEARLES4] Searle, J. R. 1984. Minds, Brains, and Science. Cambridge, Mass.:

Harvard University Press.

139

[SHIFFRIN] Shiffrin, R. M. 1976. Capacity Limitations in Information Processing,
Attention and Memory. Handbook of Learning and Cognitive Processes, Vol. 4:
Memory Processes, editor, W. K. Estes. Hillsdale, N.J.: Lawrence Erlbaum
Associates.

[SIMONG60] Simon, H. A. 1960. The New Science of Management Decision. New
York: Harper.

[SIMONG65] Simon, H. A. 1965. The Shape of Automation for Men and Management.
New York: Harper & Row.

[SIMON72] Simon, H. A., and L. Siklossy. 1972. Representation and Meaning;
Experiments with Information Processing Systems. New York: Prentice-Hall.
[SIMON76] Simon, H. A. 1976. Administrative Behavior. New York: The Free Press.
[SIMON77] Simon, H. A. 1977. Models of Discovery: and Other Topics in the
Methods of Science. Boston: D. Reidel Publishing Co.

[SIMONT79] Simon, H. A. 1979. Models of Thought. New Haven: Yale University
Press.

[SIMONZS81] Simon, H. A. 1981. The Sciences of the Artificial. Cambridge, Mass.:
M.LT. Press.

[SIMONS&2] Simon, H. A. 1982. Models of Bounded Rationality. Cambridge, Mass.:
M.IT. Press.

[STALLINGS89-1] Stallings, W. 1989. Handbook of Computer Communications
Standards. Vol. 1. New York: Stallings/Macmillan.

[STALLINGS89-2] Stallings, W. 1989. ISDN An Introduction. New York:
Macmillan.

[STALLINGSS85] Stallings, W. 1988-1985. Data and Computer Communications.

New York: Macmillan,

140

[STAMPER] Stamper, D. A. 1989-1986. Business and Data Communications.
Benjamin Cummings.

[STOCKTON] Stockton, W. 1980. Creating Computers to Think like Humans. Time
Magazine, December 7.

[TARSKI46] Tarski, A. c1946. Introduction to Logic and to the Methodology of
Deductive Sciences, translator, O. Helmer. London: Oxford University Press.
[TARSKIS6] Tarski, A. 1956. Logic, Semantics, Metamathematics: Papers from 1923
to 1938, translator, J. H. Woodger. Oxford: Clarendon Press.

[THOMPSONG61] Thompson, F. B. 1961. Design Fundamentals of Military
Information Systems.

[THOMPSONT75] Thompson B. H., and F. B. Thompson. 1975. Practical Natural

Language Processing. Advances in Computers. New York: Academic Press.

[THOMPSONS87] Thompson B. H., and F. B. Thompson. 1987. Operating System
Considerations in The New World of Computing. Pasadena: California Institute of
Technology.

[THOMPSONGO91] Thompson B. H., and F. B. Thompson. 1991. The New World of
Computing: A Solution to the Problems of the Telephone-Computer Era. Pasadena:
California Institute of Technology.

[TURKLE] Turkle, S. c1984. The Second Self: Computers and the Human Spirit.
New York: Simon and Schuster.

[WEIZENBAUMOG66] Weizenbaum, J. 1966. ELIZA. Communications of the ACM 9
(1).

[WEIZENBAUMY76] Weizenbaum, J. 1976. Computer Power and Human Reason:

from Judgment to Calculation. San Francisco: W. H. Freeman.

141

[WINKLER] Winkler, S. 1972. Proceedings of the First International Conference on
Computer Communication - Computer Communication - Impacts and Implications.
ICCC.

[WINOGRAD72] Winograd, T. 1972. Understanding Natural Language. New York:
Academic Press.

[WINOGRAD74] Winograd, T. 1974. When Will Computers Understand People?
Psychology Today 7 (12) May 1974.

[WINOGRAD76] Winograd, T. 1976. Towards a Procedural Understanding of
Semantics. Revue Internationale de Philosophie (3):117-118.

[WINOGRAD79] Winograd, T. 1979. Beyond Programming Languages.
Communications of the ACM 22 (7).

[WINOGRADS82] Winograd, T. 1982. What Does It Mean to Understand Language.
Perspectives on Cognitive Science, editor, D. A. Norman. Norwood, N.J.: Ablex
Publishing Corp.

[WINOGRADS83] Winograd, T. 1983-. Language as a Cognitive Process. Reading,
Mass.: Addison-Wesley Publishing Co.

[WINOGRADS8S5] Winograd, T. 1985. Moving the Semantic Fulcrum. Linguistics and
Philosophy 8 (1).

[WINOGRADS86] Winograd, T. c1986. Understanding Computers and Cognition: a
New Foundation for Design. Norwood, N.J.: Ablex Publishing Corp.
[WINOGRADA&7-1] Winograd, T., and F. Flores. 1987-1986. Understanding
Computers and Cognition. Norwood, N.J.: Ablex Publishing Corp.
[WINOGRADS7-2] Winograd, T. 1987. A Language/Action Perspective on the

Design of Cooperative Work. Human-Computer Interaction 3.

142

[WINSTON73] Winston, P. H. 1973. Learning to Identify Toy Block Structures.
Contemporary Issues in Cognitive Psychology: the Loyola Symposium, editor, R. L.
Solo. Winston. Distributor, Halsted Press Division, John Wiley and Sons.
[WINSTON75] Winston, P. H., editor, B. Horn et al. c1975. The Psychology of
Computer Vision. New York: McGraw-Hill.

[WINSTON77] Winston, P. H. 1977. Artificial Intelligence. Reading, Mass.:
Addison-Wesley Publishing Co.

[WINSTON79] Winston, P. H., and R. H. Brown, editors. 1982, c1979. Artificial
Intelligence, an M.LT.perspective. Cambridge, Mass.: M.L.T.Press.

[WINSTONS84] Winston, P. H., and K. A. Prendergast, editors. c1984. The Al
Business: the Commercial Uses of Artificial Intelligence. Cambridge, Mass.: M.I.T.
Press.

[WORLDPOP] 1990. World Population Data Sheet. Washington, D.C.: Population
Reference Bureau, Inc.

[WORLDFACT] 1990. The World Factbook. Washington, D.C.: Central Intelligence
Agency.

[YU] Yu, K.-I. 1981. Communicative Databases. Pasadena: California Institute of

Technology.

