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Abstract

My goal in engaging in this project was to design a hardware system to solve the stereo

correspondence problem in real-time.

Consequently, this work describes and analyzes an algorithm for stereo correspondence,
its extension to an analog VLSI architecture, and the results obtained from its hardware

implementation as a chip.

The first chapter, titled Introduction, describes the stereo correspondence problem. Therein,
I discuss biological and psychophysical mechanisms of stereo vision, and include a brief
history of ideas to date on the subject. I wrote this chapter to introduce the problem to
the reader without assuming any previous knowledge about vision. I believe that reading
it with the aid of definitions in the glossary can equip most any reader with information

regarding the basics of stereo vision.

The second chapter, titled In Search of the Correct Similarity Measure, expands, first by

a simple example, later in mathematical terms, the issues involved in the selection of a
similarity measure. The similarity measure is a key component in the solution of the
stereo correspondence problem. My main approach is a statistical one, using probability
distributions and Bayesian analysis. The chapter motivates the two-sided approach of the

algorithm, by using a disparity and a confidence metric for each image region.

The third chapter, titled Simulating the Hardware Algorithm, describes my stereo cor-

respondance algorithm in detail. Simulation results that include both disparity and confi-

dence values obtained with a variety of images are presented. Experiments are conducted
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to demonstrate the effect of parameter adjustments. In addition, the algorithm is com-

pared with other correspondence schemes which use various different similarity measures.

The fourth chapter, titled Analog VLSI Implementation, is devoted fully to the hard-

ware implementation. First, the details of the hardware architecture are described. Then,
results are presented with two unique implementations. As in the previous chapter, exper-
iments are conducted, this time using the chips themselves. Their results are compared

with simulation. Again a variety of images are used.

The fifth chapter, titled Conclusions and Future Work, summarizes the work and eiplores

future expansions.
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Chapter 1
Introduction

1.1 Early vision problems

Confusion arises in discussing early visual processing, particularly if one tries to refer to bi-
ological and computational visual systems simultaneously. The biological visual systems
are not always organized to process as computational systems do: They often perform
computations in parallel or seemingly “out of order.” In my description of early visual
processing, I will refer to function and purpose only, and not to the organization of bio-

logical or computational process.

Early visual processing could be divided into four categories as listed below:

1. Filtering and edge location are processes which transform input image values by a

local and/or global computation. This has a three-fold function:

(a) reduce the amount of information to later stages of processing;
(b) enhance features that are relevant to later stages of processing;

(c) reduce the undesirable effects of noise.

Biological systems start this process at the image formation and sampling stage.
The retinal receptors are coupled together by underlying (horizontal) cells to filter
the image as it is formed. Other systems that make use of light receptors to capture
light have filtering effects of their own due to a variety of physical phenomena. More

often, though, these effects are undesirable and need to be minimized.

2. Range transforms infer three dimensional scene geometry from a pair of two dimen-

sional images captured on projection planes of known relative position. A classical
biological example of range transforms is stereopsis, the process of determining rela-
tive distance of objects in the scene by relating their corresponding positions in the

two image planes, or retinae.
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3. Surface orientation can be inferred about a surface if its reflectance properties and

the light source illuminating the scene are known.

4. Relative motion of the objects in a scene can be inferred from temporal and spatial

derivatives between image sequences taken at known intervals.

Early visual processing often utilizes a pyramid for representing copies of visual infor-
mation at multiple resolutions. A pyramid is a utility structure which can dramatically
improve the performance, speed, and robustness of visual processing [BB82]. In biological
systems, the functional equivalent is the channels of neural information that communicate

and process visual data at different resolutions.

I will explore the second category above at length. I will particularly be concerned with
the solutions to stereo correspondence which is the process of identifying corresponding

image points.

1.2 Stereopsis and stereo correspondence

1.2.1 Problem description

The classical discussion of stereopsis begins with the description of two cameras (or
eyes) separated by a baseline obtaining slightly different views of the scene. Below are the

sequence of steps that constitute the solution to the stereopsis problem:
1. Obtain two images of the scene separated by an appropriate baseline.

2. Select areas containing appropriate image features (targets) to be matched between

the two images.

3. Find corresponding target pairs between the images, i.e., match each one in one

image with its representation in the other image.

4. Using the appropriate constraints, interpolate between the sparse values of spatial

relationships between corresponding target pairs to obtain a dense disparity field.

9. Using the position of the two cameras and the disparity field, determine the relative

three dimensional coordinates of each point (depth).
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These concepts are illustrated pictorially in Figure 1.1. The top plane with horizontal
stripes constitutes the scene, which is captured on the bottom two pairs of image planes.
The planes on the left illustrate convergent geometry; whereas, those on the right illus-
trate non-convergent geometry. The stripes themselves are the epipolar lines. Geometrical
complexity is significantly reduced by viewing a surface parallel to the baseline (fronto-
parallel plane), while the projections are co-planar (non-convergent camera geometry).
The biological analogy using two eyes illustrated in Figure 1.2 shows disparity as an an-
gle, providing a more accurate method of definition and measurement. Disparity is equal
to the difference between the two angles, or (§ — «). Although the image matching
search space is two dimensional in the general case, the search itself is one dimensional

along epipolar lines.

The main focus of this study is the third step above, termed the stereo correspon-

dence problem.

For more information on the stereopsis problem, the reader is advised to consult Horn

[Horn86] and/or Grimson [Grimson81].

1.2.2 Constraints of image matching

Properties of physical surfaces constrain the behavior of surface position, and consequently
define the properties that a correct match must possess. These can be written as the

constraints of the image matching problem:

‘1. Compatibility: Image intensities or targets must be compatible in order to match.
For binary targets, this constraint implies that a black pixel can only match another
black pixel and a white pixel can only match another white pixel. For images with
d multitude of intensities and added noise, compatibility is much harder to define or
establish. The next chapter will explore various methods of assessing compatibility

between two image regions by using similarity functions.

2. Uniqueness: Almost always, one pixel from one image can match no more than one

pixel from the other image. Monocular and occlusion regions are the exceptions

(Section 1.2.3).



Figure 1.1: Epipolar lines and convergence

The scene is composed of a fronto-parallel surface with horizontal stripes, which
coincide with the epipolar lines. Their projections are shown on the two pairs of
image planes at the bottom of the figure. Both convergent (left image planes)
and non-convergent (right image planes) geometries are illustrated.
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Figure 1.2: Demonstration with spherical image planes, or eyes
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3. Continuity: The disparity of the matches varies smoothly almost everywhere over
the image. Depth discontinuities, for which occlusion can be an important cue, are

the exceptions (Section 1.2.3).

1.2.3 Psychophysics
Classical theories of stereoscopic vision: a brief review

During the Renaissance period painters were aware of the difficulty of articulating a three
dimensional world on the two dimensional medium of a canvas. To succeed they employed
monocular cues to create a sense of distance. They used light and shadow as well as

perspective to give a sensation of depth in their works.

Most cues for monocular and binocular distance perception were identified by the begin-
ning of the eighteenth century. What remained most puzzling, however, was the singleness
of vision: How images from two eyes resulted in one image. The investigation of this issue

ultimately led to the discovery of the cue of retinal disparity [GL76].

Any history of stereoscopic vision must mention the stereoscope and its inventor C.
Wheatstone. The significance of this mid-nineteenth century development is that it rep-
resents the first clear demonstration of the fact that one can perceive depth as a result of

dissimilar retinal images.

Later contributions by P.L. Panum elaborated on the notion of stereo fusion. He deter-
mined that fusion occurred when images fell within a certain distance on the two retinae.
He experimentally found the limit to be 0.052mm, or the width of 15 to 20 cones. He
called these areas “corresponding circles of sensation” [GL76]. This was in close agreement
with the earlier postulate of J. Miiller which geometrically illustrated the loci of points
stimulating identical retinal points between the two eyes (Miller’s horopter). Before
the end of the nineteenth century two other German psychologists, Hering and Helmholtz

added to the existing theories by noting the role of experience, as well as that of attention.

With the twentieth century came the predominance of Gestalt psychology. There was

a more global approach to stereo vision, which in effect claimed that monocular form of
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Figure 1.3: Crossed and uncrossed disparities

recogniﬁon was essential for depth perception. This idea was later shown to be incorrect
by Julesz whose random dot stereograms (RDS) demonstrated that depth perception

can occur in the absence of monocular cues or contours [Julesz71].

Two main cues for stereopsis: disparity and occlusion

The significance of disparity was realized quite early in the history of ideas related to
stereopsis. One may notice even as a child that blinking one’s eyes alternatively makes
an object held close to the face “jump” from right to left and vice versa. This is a simple
fllustration of the disparity cue. Points closer than the horopter have crossed (negative)

disparity; whereas, points further than the horopter have uncrossed (positive) disparity
(Figure 1.3).



When viewing non-fronto-parallel planes, disparity takes on a more interesting form. A
one dimensional picture shows a “frequency modulation” type effect. This leads to the
concept of disparity gradient, the rate of change in disparity as one moves across the

scene.

The second major cue for stereo vision is occlusion, first noted, though rather indi-
rectly, by Leonardo da Vinci in his description of “Leonardo’s parallax.” Later Helmholtz
elaborated on the role of occlusion in defining stereoscopic contours by integrating it
to his concept of “unconscious inference.” Although this concept offers little by way of
explanation today, it was his method for describing the role of occlusion in unconsciously
grouping stereoscopic contours. Figure 1.4 shows an experiment which illustrates that
occlusion is essential for such a grouping [GL76]. The pair of rectangles on the top of
the figure lead to the sensation of two surfaces, a white closer surface occluding a farther
surface of black dots. The bottom pair, on the other hand, creates the sensation of two

frames - not surfaces - one closer and the other farther from the viewer.

Further experiments show that stereoscopic contour surface edges are perceived not only

at occlusion points but at edges of sets of points suggested by occlusion to belong to the

same stereoscopic contour (Figure 1.5){GL76].

As one could guess, the notion of occlusion remains more elusive and difficult to un-

derstand and incorporate to a stereapsis algorithm than that of disparity.

1.2.4 Neurophysiology

It is the plight of neural science that its quest for understanding neural function has
traditionally begun at the cellular level. This is similar to trying to determine the operating
principles of a supercomputer by examining individual transistors! Stereo correspondence
which was an early subject of research has not escaped this fate. Initial probing to search
for “stereopsis cells” were carried out in the primary visual cortex, which is the first
point along the visual pathways where the nerve signals from the two eyes come together.

These studies hinted the presence of cells narrowly tuned to specific disparities in the cat
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The pair of rectangles on top lead to the sensation of two surfaces, a closer white
surface occluding a farther surface of black dots. The bottom pair; on the other
hand, creates the sensation of two frames - not surfaces - one closer and the other
farther from the viewer.



10

Figure 1.5: Occlusion as a cue for creating surface contours

The top pair of images leads to the perception of a rectangular white surface

closer to the viewer. The bottom pair creates another rectangular surface with
arcs forming the width boundaries.
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[BBP67]. So scientists were led to believe they were “disparity detectors.” Subsequently,
repeated experiments determined that the visual cortex does contain disparity tuned cells
and most of them prefer disparities of half a degree or less [PF77] [CWT77]. Today the
term “detector” is considered rather misleading because it creates the false presumption
of a binary system that defies continuity and robustness, the two main attributes of neural
computation. Besides, depth perception relies on cues in addition disparity (Section 1.2.3).
Perhaps it is preferable to call these cells “stereo analyzers.” Their two main categories

are listed below:

1. Near-zero disparity tuned cells respond to stimulus in the immediate region-of the

fixation plane. Most of these are “tuned excitatory,” meaning that they respond to

near-zero disparities by increasing their firing rate. The rest are “tuned inhibitory,”

i.e., they are silent in response to the same.

2. Near and far cells respond in an excitatory manner over a wide range of disparities

of one sign and are inhibited by disparities of the opposite sign.

Figure 1.6 illustrates the response of these cells pictorially. It is believed that depth per-

ception arises from the relative responses of these pools of cells [RFPST90].

The mechanisms and the selection of targets for the stereo matching process are most
likely embedded in the inputs to these cells, as well as in the architecture of their con-
nectivity. Anatomical and psychophysical evidence suggests that at least several channels
participate in the matching process [JM75]. Also, we know that both of the two main
visual pathways (magnocellular and parvocellular) participate in stereo vision [KSJ92].
As for the mechanism, many believe that given the nature and constraints of the com-
putation (Section 1.2.2), a locally connected, globally interacting architecture, utilizing
local correspondence primitives is implicated. Local correspondence primitives are the
similarity measures between neighborhood regions of the two retinae. The search inside
these neighborhoods determines the corresponding points. The size of the search regions
has been determined to vary with the frequency of the signals that make up the images.

Maximum fusible disparity scales with the spatial frequency of the stimulus [Marr82].

The image matching system is robust: It is immune to head and eye movements. Its
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ability for matching extremely fine features is impressive: Hyperacuity is reported to
be 2”7 of an arc (3m5th of a degree of visual field), corresponding to about zth the
diameter of a foveal cone [Berry48]. The ideas about the mechanisms for accomplishing

such formidable tasks remain speculative.

1.2.5 Computational approaches

I already mentioned the steps that constitute the stereopsis problem in Section 1.2.1. If
one wanted to design an algorithm to accomplish each step on that list, how would one
go about it? One approach is to study neurophysiological and psychophysical data from
biological visual systems and model their approach [Marr82]. Another is to analyze the
properties of image signals and devise a scheme to maximize the probability of a success-
ful match [Weng90] [OK89] [JM92]. A third more implementation-minded approach is
to tailor a method specifically for a physical, technologically achievable medium of real-
time computation and integrate the above two approaches as much as possible [MD89]
[Mahowald92]. My objective is similar: Solve the stereo correspondence problem in the

medium of integrated circuits, or VLS.

Whatever their approach, most stereopsis algorithms have certain defining attributes.
Since the focus of this study is stereo correspondence, I will outline the major categories

in which image matching algorithms differ:

1. Target selection: Identifying the correct points while minimizing the number of false

matches is the objective of this selection process. The taigets can be sparse, such as
edges or the zero crossings of the Laplacian of a Gaussian [MP79] or areas identified
by an interest operator. Alternately, they can be dense, such as the intensity values
themselves [Barnard86)], windowed Fourier phase [Weng90] or an appropriate filtered

version of the two images.

2. Similarity measure: The objective is to select the best criterion that signals cor-

respondence between two targets. Similarity measure must also accommodate the
constraints of stereo matching. For binary edge targets, orientation or sign of the
edge can be used to enhance the probability of a correct match [Grimson81]. Correla-

tion [Hannah74] [WTKS87] and intensity difference [OK85] are two popular similarity
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measures with dense targets.

3. Single versus multiple resolution: Image matching can be more likely to produce the

correct solution if the search is conducted at more than one scale of resolution. To
clarify, consider two versions of the same image, one blurred and the other sharp. The
ambiguities in matching the targets in the sharper image can be resolved by matching
the blurred image. This is roughly what the coarse-to-fine matching algorithm is
about [Grimson81). Some algorithms use multiple resolution in tandem with multiple

target selection schemes by employing multiple filters for each resolution [JM92].

4. Local versus global: This refers to the nature of the computation. Global éompu—
tation evaluates the validity of all target matches in the image, at least those lying
along one epipolar line, simultaneously. Local computation, on the other hand,
matches one area of the image at a time, paying little if any attention to other ar-
eas. Serial algorithms which utilize windows [Hannah74] are local; whereas, parallel
algorithms which allow for cooperative schemes between regions of the entire image
[MP79] are global. One might conclude, considering the constraints (Section 1.2.2),
that necessity of global computation is implicated. However, multiresolution algo-
rithms such as coarse-to-fine matching strategy, locally acting constraints such as
disparity gradient limit {[PMF85] and iterative dynamic methods such as Kalman
filtering [MKS89] greatly enhance the ability of local computation to produce the

correct match.

1.2.6 Solving the stereo correspondence problem'in hardware

Many robotics and navigation tasks using stereopsis require real-time computation, ne-
cessitating direct physical implementation of the image matching algorithm. In addition
for autonomous behavior they require small-size, low-power computing systems to handle

the enormous information associated with image processing. The challenges lie in the

following areas:

1. Managing communication between image sensor and image processor arrays: One

way to bypass this bottleneck is to integrate the two. But to find a physical medium
with the right photoelectric properties, capable of fast, reliable computation and

producing realistic image size and resolution is no simple task. Biological vision
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systems, which separate the image formation task from most visual processing tasks,

face the same data-reduction challenge.

2. Parallelizing the computation: In real-time processing there is little chance to refine

raw output. The matching algorithm must produce the best result at first pass.
This is especially difficult if hardware does not provide enough area to handle the

whole image pair concurrently.

3. Simplifying the computation: We know that the computation of most functions

in hardware are implemented by iterative methods. Real-time processing restricts
this capability so a hardware matching algorithm must utilize simple arithmetic or

arithmetic that is easily computable within the physical medium.

Conventional approach to image processing in VLSI has been micro-programmable systolic
array implementations [Parker85] [WK86]. There have also been attempts towards par-
allelizing the computation by pipelining [ITMMSHS6]. Yet, these still remain inadequate
for real-time computation of most early vision problems. Predictably, stereo correspon-

dence is among them with its enormous demand for data space and computational density.

A newer hardware approach to visual processing has been to use analog VLSI processing
arrays [SMM87]. This approach has matured over time to tackle early vision problems
such as retinal adaptation [Mead89a], motion [HKLMS88], color constancy [MAG91] and
most recently stereo correspondence problems [MD89] [Mahowald92].

My study expands on the same tradition by implementing a hardware stereo correspon-

dence algorithm to handle two dimensional images serially.
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Chapter 2

In Search of the Correct Similarity
Measure

2.1 Motivation for a statistical analysis

Images that surround us (fortunately) do not look like an untuned television screen, but

contain distinguishable regions of smoothly varying intensity values [Horn86] [VKQQ].

One major current trend in the analysis of the regularities in images has been to note
their nondeterministic nature by modeling correlations and likelihoods. Lattice-based
random field models and spatial statistics have been promising tools in capturing and

quantifying the regularities that enhance the robustness and success of many image pro-

cessing algorithms [GG91] [Chen88].

This chapter contains analysis of the image matching problem. 1 think it will be interesting
to start with a simple example to illuminate the concepts encapsulated in the equations

in the following sections. To this end, I designed the following matching example.

2.2 A simple matching example

Consider two images of a scene made up of square areas or pixels. These pixels can take
on only three values, white, gray and black. Black and white pixels are equally probable,
but gray ones are twice as likely as black or white pixels. Probability of having a particular
pixel is equal for both images. Image matching is carried out between the two images by

the following procedure, also illustrated in Figure 2.1:

1. Pick one pixel from the first image.

2. Pick the pixel in the same location as that in step 1 and four neighboring pixels from

the second image, thus forming five candidate pixel pairs.

3. Select the pair that contains the correct match.
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Figure 2.1; Example matching procedure

There are five candidate pairs of pixels for each match, and exactly one of these is the
correct match. A complete list of all possible pixel pair candidates are shown in Figure 2.2.
These choices are consistent with the assumptions made to this point. The choices are

assumed to be limited to this set for simplicity.

One immediate observation is that elements of the pixel pairs are not independent:
P(XY) # P(X)P(Y) (2.1)

The exact values of P(XY') are listed in Table 2.1.

Now examine the probability of a match given a particular pixel pair (XY),i.e., P(M|XY).

The exact values are shown in Table 2.1.

Although without prior knowledge of image statistics we have no means of refining our

decision given identical pairs such as (GG) and (BB), the example shows that
P(M|GG) # P(M|BB) (2.2)

Intuitively, one would expect identical pixels to match with equal probability. The dis-

tinction is embedded in the concept of a match:
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P(W)=0.25 P(G)=0.5 P(B)=0.25
WHITE GRAY BLACK

Image 1: Image 2:

Figure 2.2: Example matching statistics



19

Pair Probability
GG 7 Event Conditional
? probability
WW 53 3
BB 3 P(MactuallGG) ?
20 P(Myctyat| WW) =
GWWG| g P(Moctuet] BB) 1
GB,BG ;;35 3
BW,WB 0
Event Conditional .
probability Event Probability
P(MpossiblelGG) 1 P(Mactual) 0.2
P(MpossiblelWW) . P(M ossible) =2
P(MpossiblelBB) 1 L 20

Table 2.1: Table of example matching statistics

To this point, we only considered the set of actual matches or {M,.um}. It is helpful
to define a second set of {Mpossisie} Where {Maciuar} C {Mpossibie } and

P(Mactual) < P(Mpossz'ble) . (23)

Such a relationship arises from the ambiguous nature of the image matching problem. In

regions where the {Myc1uq0i} = 0 (i.e., monocular or occluded regions)

P(Mactual) =0< P(Mpossz'ble) (24)

Most decision rules that assign pixels (or a region of pixels) in one image to corresponding
pixels (or a region of pixels) in the other image utilize metrics that do not consider image
statistics. Such metrics usually base P(M|XY) solely on the output of a similarity
function f,(X,Y) yielding the same value for identical matching pairs:

fm(XvX): fm(YaY) (2.5)
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The above assumption implies that
P(M|XX)= P(M|YY) (2.6)

It is clear that the event M in Equation 2.6 could replace Myossibie, but can not replace
Moctuai- Consequently, a simple similarity function, such as the one in Equation 2.5, can
not contain a complete statistical solution. Three of the similarity functions that will be
considered in Section 2.3.2, namely, the difference metric, the difference squared metric
and the hardware metric share the property shown in Equation 2.5. The other two, the
correlation and the normalized correlation metrics do not. However, the dependence of
these two on the exact values of X and Y does not reflect a compensation for image

statistics. Therefore, assessment 4 below holds for all five metrics I will discuss.

This simple example illustrates some of the important aspects inherent to image matching;:

1. Intensity values in images are not uniformly distributed: The trend in the literature

is to use normal distributions, if not for the whole image, for regions in the image
[Wesseley76]. To exemplify the choice of f(z) in this analysis, image intensity value
distributions from a natural image (photograph of an outdoor scene, see Figure 3.16)
are shown in Figure 2.3. The top plot was obtained without any processing. The
bottom plot was obtained after the image was filtered using a Gaussian kernel. Note

that = is a single pixel intensity value (i.e., a scalar).

2. Local spatial correlation leads to significant cross-correlation between image pairs:

The trend in the literature is to use joint normal distribution with correlation coef-

ficient p; (image correlation coefficient) [Wesseley76].

3. A mechanism for resolving ambiguities is needed: The perfect match need not be the

correct match. One needs to utilize the constraints of the matching problem to reduce

this inherent ambiguity.

4. A similarity function alone can not provide a complete statistical solution to the im-

age matching problem.
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Histogram of intensity values in the ROCKS image

Without any processing

number of pixels
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After filtering with Gaussian Kernel
aurmber of pixcls
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T
o
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0.20 LJ v\
0.00 N\ ntennity
0.00 50.00 100.00 150.00 200.00 250.00 value

Figure 2.3: Histograms of gray level distributions in a natural image

The initial image distribution contains many singularities. There are many gray
levels that are not present in the image (i.e., number of pixels equals zero) even
though immediately adjacent intensity values are highly likely. The singularities can
mostly be attributed to the digitization process. After processing with a Gaussian
kernel of high o, the intensity value distribution contains far less singularities and
many more piecewise continuous regions. This process also increases the coefficient

of correlation in the processed image. Note that the vertical axes is scaled by 1000.
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X Y(i)

Figure 2.4: Image matching procedure for vectors

2.3 Statistical approach to image matching

2.3.1 Probability distributions and similarity measures

Assume that correspondence between two images is going to be determined by taking a
region in one image and searching an appropriate neighborhood in the other image for the
corresponding region (Figure 2.4). Disregard for the moment the issues involved in the
choice of the size of the region and the size of the search space. (An excellent discussion
on these is given in [0K89].) Define a region X in the first image, a vector of length N,
composed of the sampled pixel values z;, and search region {Y;} in the second image, which
is a set of vectors exactly one of which is a true match for X. (We are ignoring occlusion
and monocular regions by this assumption.) Which vector in the set {Y:} maximizes the
probability of a match P(M|X)? This is a problem to which one can apply Bayes Rule
that relates a priori probabilities P(X) and P(M) with a posieriori probability P(M|X)
and conditional probability P(X|M):

P(X|M)P(M)

P(M|X) = PX) (2.7)
We can replace M above with M and obtain the analogy for a no-match. Since
P(X)=P(X|M)P(M) + P(X[H)P(H) (2.8)
one can obtain the following interesting ratio for the a posteriori probability:
1
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For simplicity the above equations were derived assuming discrete values for the elements
of region X, so that P(X) represents a finite probability. Also, the event match (M) is
binary: It either occurs or not. If image values are continuous, P(X') will be replaced by
the respective probability density fx(X). In that case, P(M|X) would no longer be a
discrete quantity but a probability distribution itself, far(M|X). Consequently, we face a
much more complicated situation where we must rank not discrete numbers but probabil-

ity distributions.

Although in the discrete simplified case the problem is formally “solved” by Equation 2.9,
practically we are nowhere near a solution. The joint probabilities P(X, M) and P(X, M)
are unknown. In addition, if we were talking about probability density functions, mazi-

mizing far(M|X) has little meaning. Nonetheless, previous researchers have explored the

discrete case using maximum likelihood analysis. Since M) i 5 constant, the ratio to

P(M)
be maximized can also be expressed as %%%—l). The relationships between various image

statistics and this ratio (termed the likelihood ratio) are explored in depth by Wesseley in

[Wesseley76]. He reasons that given noise-free images,

P(XIM)=§X-Y) (2.10)
where
1 ifz=0
b(z) = { 0 otherwise
and

5(X) = 5(.’[1)5(.732)...5(:EN)

Assuming no noise and perfectly matching regions is, of course, not realistic. Both images
will be subject to noise, various geometric distortions and intensity offsets. Wesseley
further assumes that all of these effects are additive, that they can be lumped under
a single normal probability distribution N(gn,0,) with zero mean (p, = 0), and that
N(n) and fx(X) are independent. Then, X, (21,..,2;,..,zx) will be replaced by X,,
(Zr4+n1,., 23+ 04, ., v+ nn). If X and Y are two element vectors, (21,22) and (y1,12),

then one can proceed to model the probability with noise as [Papoulis65]:

P(X|M) = §(z1 — y1)8(22 — y2) * N(n1)N(ny) (2.11)
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Figure 2.5: Joint probability distributions in a natural image obtained by pairwise pixel
comparison.

The above plots are the results of an experiment carried out to demonstrate the
coefficient of local spatial corelation in an image. Each pixel in the image is
pairwise compared to pixels in its immediate neighborhood. Instance of a pair
appears on the plot as a gray level (the higher the number of instances, the
lighter the dot). We observe that pixel pair comparisons lead to ellipsoids around
the z = gy axis, showing that there is significant correlation between pixels in
a neighborhood. As the neighborhood expands, the ellipsoids become circular
indicating that correlation decreases.

where * denotes a convolution. The perfect match thus degenerates into the following:

€ 2on (212)

1 =E1mu)’iEa-wp)®)
2

P(X|M) = 5225

The next task is to determine P(X|M). For this analysis, I will assume that the compo-

nents of vector X have pairwise jointly normal distributions:

Figure 2.5 was obtained from the same natural image (the histogram of which is shown in
Figure 2.3), by pairwise comparison of pixel intensity values, (z1,z2), inside a one dimen-
sional region. The highlighted regions show the incidence of pixel pairs (z1,z3). These
form ellipsoids around the z1 = z, axis, suggesting strong correlation between z; and z5.

From left to right, the regions are £5,+10, and +20 pixels. The smaller the region, the

higher the correlation coefficient.
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If, for simplicity, we assume that distributions f;, (@) and f;,(8) have zero mean and

equal variance (i.e., gy, = fz, = 0 and o5 = 0y = 0;), then

Elzqz4]
o?

Pzizy =

(2.13)

(The above equation suggests the inverse relationship between o? and py,,.) where

Eleias] = [ - /_ " 0B formy(asB) dadB (2.14)

and

1 I e )

_ 202(1—p2
fxlxz(z‘l,xz) = 2 2\/1_—2— e’ i T1 %2
TO; —-p
i r1T

Assuming joint normal distributions for z1, 23 which remain undisturbed given a no match,

(2.15)

setting pg, 0, = pi, and taking noise into consideration we have

—_ 1 e (22— 2pinzy Ta+a2)
P(X|M) = ———mee 0 ) TS (2.16)
271-0'371. 1- pzzn

where:

o =adl+a? (2.17)
and

o? e
Pin = U—gpz (21 )

n
The event M in Equations 2.10, 2.11, 2.12, 2.16 refers to M,suqi. Note that assuming
P(X) ~ P(X|M) loses its validity as the matches get less and less ambiguous.

The above analysis yields that the logarithm of the likelihood ratio, L(X,Y), is pro-
portional to a quadratic equation [Wesseley76):

L(X,Y) o< — ol (1= pi) (21— 91)* + (22 — y2)*) + 02(2} — 2pin2120 + 22)  (2.19)

This equation defines a conic section on the (x4, z3) plane, rotated 45° with respect to the

axes (21, %9). Furthermore, assuming that in practice p;, is always between 0 and 1:

an ellipse if 6 > {20
L(X,Y)={ ahyperbola if o} < {22-¢2

a parabola  otherwise
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The first part of the equation is essentially a similarity function, determining how close Y’

is to X. When the signal to noise ratio is high, or (ff’; — 0), this part dominates.

If the correlation coefficient is zero, i.e., p;, = 0, we have the equation for a circle where

2
the center is dispaced from (y1,y2) by a multiplicative factor, 9;2“»

t

o2 o?
L(X,)Y) o< =(z1 - ;%)ylf — (22— (;%)yzf (2.20)

% 2

This is close to the sum of squared differences similarity metric for image matching.

On the other hand, as the variance of the image and the coefficient of correlation tend to

zero, the logarithm of the likelihood ratio becomes:

L(.X,Y) X 1t + Ta2Ya (221)
In N dimensions:
L(X,Y) < Y &y (2.22)
This is precisely the classical correlator, or the unnormalized product metric.

Thus, if the correlation coefficient is small, we have two appropriate similarity measures,

depending on image statistics.

If we assume that the correlation coeficient is high, i.e., p;, >~ 1, we face:

L(X,Y) o« (21— z2)° (2.23)

which is a crude measure of the variance of the image. This tells us that if the correlation
coefficient is high, our best bet is to maximize image variance. Algorithms which only
process regions where g;, >> 0, by combing the image first with an interest operator to

select the best regions to match exploit a related principle [BB82].

While the above analysis is very helpful for crystalizing some of the issues related to

image matching, it fails to address three important points:

1. Although noise analysis was restricted to X, Y is also subject to noise.
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2. We know in general that the coefficient of correlation p; is not negligable. There-
fore, a similarity metric alone can not maximize P(Mgeuq1|X ) and thus can not be

sufficient to provide a complete statistical solution to the image matching problem.
3. Because only P(Mgeiyqa1]X ) is considered, ambiguity remains unaddressed.

I will look at this problem a little differently. I will consider P(Mpossinie] X, Y") (as opposed
t0 P(Myctuat] X)) and assess the ambiguity of similarity metrics with noisy X and noisy Y

As before, I will start by assuming that the two images we are trying to match are free of
noise and only contain perfectly matching regions. Then all pixel by pixel actual matches
must satisfy the condition z = y. To be considered a possible match, it is sufficient to

satisfy the same condition, which makes the a posteriori probability a delta function:
P(M|X,Y)=46Y - X) (2.24)

Correspondingly, we might consider a probability distribution function to replace P(M|X,Y)

which equals the same delta function:

M(M|X,Y)=6Y - X) (2.25)

By similar reasoning used to obtain Equation 2.12, with noisy X,Y we have

1 ~(X-Y)?
M(M|X,Y) = P(M|X,Y) = oo ¢ 4o, (2.26)

Figure 2.6 shows this as a function of z and y. Note that this is still a number, not a

probability distribution, and thus the evaluation

max M(M|X,Y)) (2.27)

does yield a meaningful solution. Recall the initial objective of finding the ¥; that max-
imizes P(M|X,Y). We can see that maximizing the logarithm of P(M|X,Y) (or min-
imizing minus the logarithm) accomplishes the same purpose. So we can simplify the
computation by replacing the function P(M|X,Y) by another M(X, Y') which is propor-

tional to minus its logarithm and minimizing it.

2

M(X,Y) = (X — Y)2 = 2 (:I:i — y.;)2 = Zm(mi, yi) (2.28)
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Figure 2.6: Gaussian function for (z —y)
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Hence we end up with the sum of squared differences metric. Previously, this metric was
shown to be most appropriate when the signal to noise ratio is high, or (ai"j: — 0), and

the correlation coefficient is small (i.e., pin =~ 0). Figure 2.11 shows values of m(z, y).

The list of possible m(z,y) are not exhausted by any means. I will examine several

other such functions, or similarity measures, in Section 2.3.2.

To gauge the level of ambiguity in choosing among the possible matches, one can look
at the probability distribution of m, fm(m). This is a function of the joint probability dis-
tribution fr,(x,y). The less the variance in f,,(m), the greater the ambiguity of the match.

If we are conducting the matching process in real-time, we will know little or nothing
about the global image statistics. In addition, the regions of the image will have their own
distribution which may or may not be in tune with the global statistics. Consequently, in
this analysis I will be interested only in the local values of f,,(z,y) and f,(m|z,y), which

we can determine in real-time.

Again I will proceed given that the distribution of choice in the literature for fy(z) and
fy(y) is the normal distribution.

For real images, we know that z and y are not independent, just like the elements of
vector X. Due to significant spatial correlations within a region, pixels in the other image
(3:) will closely resemble z. Again assuming identical normal distributions f.(z) and

fy(y), with pg = py = 0 and o, = 0y = g, we obtain the following:
Flz
Pry = "“[Tyl (229)

g7

This suggests an inverse relationship between o7 and pqy, just as Equation 2.13 did between

2
of and pz, 4,

Elzy] = / / Ty fry(2,y) de dy (2.30)
where
1 o (07~ 2pay Ty ty?
fa:y(mv y) = 626"(1‘%3’) " ) (231)
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0.85

Figure 2.7: f(y|z) when p

Figure 2.8: f(y|z) when p=0.5
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Figure 2.9: f(y|z) when p =0

We can also determine the conditional probability distribution fy(ylx = z).

1 ”—'i“—(y—l’xy -"’)2
€

fyylx =2) = 27 (-e3y) (2.32)
a; \/ 27‘-(1 - pg:y)

We observe that
Elylz] = poye (2.33)

The difficulty of the matching problem which we saw in the example is beginning to mate-
rialize once again in mathematical terms: For significant values of p,, (near 1), fy(y|x = z)
assumes its highest values around the axis (z = y), namely at points where z and y are
most similar. The inputs to the similarity function m(z,y) are clustered around (z = y),
making the determination of a clear maximum or minimum difficult. If images were pre-
filtered by a Gaussian kernel to reduce the effects of noise, this will increase p,, and
certainly worsen the ambiguity problem. Figures 2.7, 2.8, and 2.9 show f,(y|x = z) for
various values of pg,. If no correlation exists between the two images, then we have the

least ambiguous situation fy(y|x = z) = f,(y). Low values of ¢? are also associated with

high ambiguity.
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10 =10

Figure 2.10: Absolute difference function

2.3.2 Several possible similarity measures

Here I will explore several popular similarity measures in terms of the probability dis-
tributions of their values. The probability distribution for (z,y) is taken to be that in
Equation 2.31.

Absolute difference

m(z,y) = |z - y| (2.34)

The analytical solution for f,,(m) is easily obtainable:

m2
() = —A)__ )

AT (2.35)

Squared differences

m(z,y) = (z - y)? (2.36)
The probability distribution f,,(m) is

fm(m) = (2.37)
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Figure 2.11: Squared difference function

Analytical solutions of the probability distribution f(m) for the difference and difference
squared metrics are shown in Figure 2.12. For both metrics, fm(m) is high for low values
of m. Both metrics need to be minimized to obtain the correct disparity. Consequently,
comparisons are likely to contain significant ambiguity when using these metrics, espe-
cially the difference squared metric. Experimental values obtained from the rock image
(Figure 3.16) are shown in Figure 2.13. The analytical and experimental distributions

compare rather favorably. Experimentally, though, we observe:

1. An offset between the two images, most likely due to an average difference in illu-

mination between the two images.

2. A higher variance in the Gaussian distribution, which most likely means that a pa-

rameter adjustment is needed in plotting the analytically obtained function(s).

3. Singularities in the distribution, a byproduct of the digitatization process for the

photograph. We can observe similar singularities in the top plot of image intensity

distributions in Figure 2.3.
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Analytical results
fm)  gifference squgred
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Figure 2.12: fn(m) obtained analytically for the difference and the difference squared
metrics
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Correlation probability distribution (experimental)
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Figure 2.13: Experimental probability distributions for the difference and the difference
squared metrics
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Figure 2.14: Inner product (correlation) function

Inner product, or correlation

m(z,y) = zy (2.38)

Normalized inner product

Ty
mz,y) = ————= 2.39
( »Y) \/m ( )
Analytical solutions for the inner product and normalized inner product metrics are not
as easily obtainable. Experimental values obtained from the rock image (Figure 3.16) are

shown in Figure 2.16.

A hardware metric alternative

1
1+ Lcosh?(z — y) (2.40)

m(z,y) =

The parameter w is adjustable and can be utilized to contain a parameter similar the 0721

in Equation 2.26. The Figure 2.17 shows a Gaussian-like distribution around the central



37

Figure 2.15: Normalized inner product function

line of z = y. The graph is very similar to the plot in Figure 2.6.

This is a well-behaved function:

1. Its integral is finite unlike the integrals of the other metrics.
o0 o0
/ / m(z,y)dzdy (2.41)
- 00 —00

2. Within arbitrary range of (2,y), it can be bound above and below by a scaled

Gaussian function, the peak of which coincides with that of the metric at 2 = y.

Probability distribution f,,(m) for the hardware metric was obtained experimentally, again

using the rock image (Figure 2.18).
2.3.3 Discussion

Computation which uses the properties of a physical medium is bound to have limited

precision.
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Experimental results
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Figure 2.16: Probability distributions for the correlation and the normalized correlation
metrics



39

Figure 2.17: Hardware metric function

In computer simulations, computation can be carried out with high precision numbers.
Consequently, the similarity metric values can be evaluated much more accurately than
they would be using an analog VLSI chip. Thus, there will be many instances where
a computer program will determine the correct maximum of the metric outputs and an
analog chip will not. The probability of such instances rises if the variance of the metric
distribution is low. In other words, if the metric values are clustered around a single
value (as in the case with the difference squared metric), determination of a maximum is
more difficult and requires higher accuracy. On the other hand, if the metric values are
distributed uniformly across a range (as in the case with the hardware metric), ambiguity

introduced by the metric is less and determining the maxima of metric values is less likely

to be challenging.

This is precisely the reason why the probability distribution of a metric that has lim-

ited accuracy due to the physical implementation is an important issue.

Please note that in the experimental plots the actual metric values have been scaled to
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Hardware metric probability distribution (experimental)
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Figure 2.18: Probability distribution fm,(m) for the hardware metric

The distribution is almost uniform in a range of values, leading us to conclude
that it has a higher variance than the other metrics when scaled to cover the
same range. The singularities arise from the singularities in the image itself (see
Figure 2.3) and possibly from the nature and limits of the numerical computation.



41

cover roughly the same range. Only then we can compare them to evaluate their precision

requirement in a physical computation medium.

Experimental probability distributions computed in this manner show that the hardware
metric is indeed the metric with the most favorable (i.e., the highest) variance. Therefore,
we expect the comparisons made using this metric to lead to the least amount of ambiguity.

The metric has a clear upper bound for all (z,y), which is another favorable feature.

The following chapters will explore the simulation and implementation of a stereo cor-

respondence algorithm using this metric.
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Chapter 3
Simulating the Hardware Matching
Algorithm

3.1 Describing the algorithm

The algorithm I propose is essentially an area-based correlation scheme. There are two

parts to the algorithm:

1. Solving the correspondence problem;
2. Assigning a confidence to that solution.
3.1.1 Solving the correspondence problem

Image matching is carried out between the stereo pairs, exactly as described in Sec-
tion 2.3.1 in the previous chapter: The region selected in one image is compared with

candidate regions in the other image and exactly one region is selected as its match.

Prior to processing, the images are filtered by an ezponential filter to reduce the undesir-
able effects of noise. As previously mentioned, Gaussian filters increase the coefficient of
correlation between the pixels of the stereo pair and increase ambiguity. The expounential
filter is generally less prone to such an effect because its kernel puts less weight on imme-

diate neighbors than the Gaussian kernel.

Filtered pixel values are used to compare neighborhoods in each image. A comparison
of the two filtered neighborhoods is made at each possible disparity value. The corre-
sponding region is identified from among the candidate regions utilizing the hardware
metric mentioned in the previous chapter (Section 2.3.2). Assuming that the neighbor-
hood is two dimensional, with width 2« + 1 and height 2X + 1, the value of the matching

function at image coordinates (z,y), for a given horizontal disparity 6, (M(z,v,6,)), is:

J=y+ ) i=z+k

M(a:7y75x): 2 2 L (3.1)

i=y—Ai=r—K 1+ %COShz(E%T(IR(ivj) - IL(" - 6:1;7.7)))
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Where w and & are hardware circuit parameters, kT is a constant, ¢, is the disparity, and

Ir(z,y) and Ip(z,y) are filtered pixel values of the right and the left image respectively.

The region that generates the highest comparison sum is identified as the corresponding

region. Assuming that the allowed disparity range is between —A and A, this can be

written as:

w(26+1)(2A + 1)
w+4

The above inequality stems from the bounded nature of the hardware metric. Unlike many

Disparity(z,y) = 6, : M(z,y,6s) =_ﬁ%§AM(z,y,£) <

(3.2)

other metrics mentioned in the previous chapter, for any value of Ig and Iy, the metric

always stays below a known maximum.

3.1.2 Setting the confidence value in the solution

As discussed in the previous chapter, ambiguity prohibits the hardware metric (or any
other single similarity metric) from solving the image matching problem. To remedy this

situation, a confidence measure is introduced.

In the previous chapter I explained about the concept of an interest operator that combs
the images to determine high variance regions to reduce the ambiguity problem. We know
that we can think of the metric as a function of the image. Variance of a function g(z)

can be approximated by [Papoulis65]

T3y = (¢'(2))%02 (3.3)

Thus, instead of identifying the regions of an image where the image standard deviation
o; is high, one can use the confidence measure to identify regions where the deviation in
the value of the metric () is high. These two regions will coincide if the function g is
well behaved. By definition,

o = El(z — )] (3.4)

where 7 is the mean value of z. We can write this also as
2 .
O = E[(m)?] -, (3.5)
Figure 3.1 shows an identical stereo pair composed by step edges subjected to the variance

computation. The locations of the step edges are circled. The graph shows that the vari-

ance values do exhibit an “M” pattern around the step edge, where the maximum metric
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Steps and Confidence values
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Figure 3.1: Steps: Confidence calculated by the variance method

The confidence metric here is equal to the variance of the metric values for each
pixel. (The allowed range of disparities is + 5 pixels, and consequently there are
11 metric values for each pixel.) Because of the smoothing,

the metric variance
at the exact location of the edge exhibits a local minima.
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test yields the correct disparity and should be assigned high confidence. The local minima
of the variance at the location of the edge is due to smoothing of the step edge. We observe
that Equation 3.3 does not quite hold for this metric. In addition, the detection of the

”M” pattern poses additional problems.

For these reasons, basing the confidence metric on the image variance is not a reliable
approach, and a different method for assessing the ambiguity problem is called for. Fig-
ure 3.2 shows the values that the hardware metric acquires as a function of disparity, for
various step edges and noise deviation, ¢,. The values of both are shown in the plots.
(There are 256 gray levels.) Step size refers to the intensity difference between the sides of
the step edge. We can extract confidence information from the shape of this curve. Thus,
I diverge from the statistical analysis and instead evaluate the sharpness of the peak of

the metric. Two possible methods for assessing the peak that are easy to compute are

1. Derivative method: The sharpness of the peak can be assessed from the first deriva-

tive. Figure 3.3 shows the confidence evaluated using this method for the step edges.

We observe that the peaks coincide with the locations of the edges.

Confidence(z,y) = M(z,y,6) ~_§%:%‘%A M(z,y,£) (3.6)
where
M(z,y,6) = _max M(z,y,¢) (3.7)
2. Ratio method: :
M(z,y,6)

Confidence(z,y) =

TI5, M(z,9.6) (38)

where M (z,y,8) is as described in Equation 3.7. Figure 3.4 shows the confidence
evaluated using this method for the step edges. We again observe that the peaks

coincide with the locations of the edges.

A comparison between the confidence values calculated using the two methods and the
image variance is illustrated in IFigure 3.5. Variance was calculated inside a five-pixel
window. We observe that although the three plots have different scales, their shapes
are very compatible. I will show how these two metrics perform in application in the

Section 3.2.2.
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Figure 3.2: Steps: Hardware metric evaluated for various o, and step sizes

There are eleven possible disparities and value 6 on the z-axis corresponds to zero
disparity. Metric value distributions are shown at the exact location of the edge.
Peaks get more pronounced as the step size, or the difference in intensity value
on two sides of the edge, increases. Peak location becomes less reliable as noise
variance is increased.
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Figure 3.6: Random dot stereogram pair

3.2 Simulation results

3.2.1 Random dot stereograms (RDS)

Random dot stereograms are image pairs composed of various gray level pixels arranged in
a random pattern (Figure 3.6). One of the images is usually a replica of the other, except
for regions strategically displaced against those in the other image to create a semse of
depth. When each image is presented to each eye, the observer gets the sensation of

viewing surfaces at different depths because of these displacements, or disparities.

Target density

The typical binary RDS contains 50% white and 50% black dots or pixels. As one increases
the percentage of white or black dots, target density decreases, leading to an increase in
essentially featureless regions in the image. An RDS made up of all white or all black
pixels contains no information for image matching. Decreased target density causes the
image matching problem to become more ambiguous. 1 have carried out simulation and
hardware experiments to study the effects of adjusting the percentage of black dots in an
RDS. We could look at this as the effect of adjusting target density on image matching.
Figure 3.7 shows RDS’s with decreasing target denmsity, from left to right, (50%, 30%,
20%, 10% and 5%). Figure 3.8 shows the simulation results in the same order from left
to right. It is readily observable that decreasing the target density leads to degradation
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Figure 3.7: Adjusting target density in RDS’s

From left to right target density values are 50%, 30%, 20%, 10% and 5%. Target
density is adjusted by decreasing the probability of white pixels in the RDS image
generation program.

Figure 3.8: Simulating decreasing target density

of performance. Hardware test results are reported in the next chapter.

3.2.2 A synthesized image

This image pair (Figure 3.9) is courtesy of Prof. D.G. Jones of McGill University. Image
was used to evaluate the performance of the stereo matching algorithm in the reference
[JM92]. This is a synthesized image with interesting features. The background is similar to
a gray-level random dot stereogram. The geometry is convergent with significant vertical

disparity at the corners. Image pair contains many occlusion points, some of which extend

over many pixels.



Figure 3.9: The synthesized image pair

Figure 3.10: Confidence metrics using the ratio and derivative methods

Results with two different confidence metrics

I bave described two confidence metrics, one obtained by the derivative method and the
other by the ratio method. Simulation results in Figure 3.10 show their values with the
synthesized image pair. The confidence values were based on the hardware metric and

have been appropriately scaled to form the confidence maps.

Adjusting the confidence threshold

Figure 3.11 contains disparity maps interpolated between high confidence points only.
The threshold that defines a “good” disparity point was lowered gradually from left to
right. Lowering the confidence threshold leads to an improved, higher resolution disparity

map which indicates that image is full of features and image matching is generally not as
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Figure 3.11: Adjusting the confidence threshold with the synthesized image

ambiguous as it is for many natural images.

Smoothing

The amount of smoothing in simulations can be increased by raising the variance of the
exponential filter, O’?z—“ - Smoothing causes each matching window to contain information
from pixels outside the window, leading to a more global matching framework. Beyond an
ideal value of 0 ¢;izer, however, smoothing begins to introduce increasing ambiguity. I have
carried out simulation and hardware experiments to demonstrate this. Figure 3.12 shows

the simulation results. Hardware test results with an RDS are reported in the next chapter.

The five disparity maps in Figure 3.12 have been obtained with a¢;jsc, values of 0.5,1.0,1.8,
2.8 and 5.8 pixels from left to right. No thresholding or interpolation was carried out. Er-
ror analysis on these images, comparing them to the two dimensional simulation results
in Figure 3.15, confirmed that initially smoothing the stereo pair improves the disparity
results: Results with ogjzer = 1.0 are better than those with o, = 0.5. But beyond

Ositter = 1.0, smoothing seems to degrade the performance of the hardware metric.

Performance with respect to this error analysis is based on the variance of the error,

o?. Higher o? signals degraded performance. Table 3.1 shows the ideal Ojiiter tO be

around 1.0 pixels.
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smoothing factor : oyjier

0.5 1.0 1.8 2.8 5.8
error average, 7. 0.14 0.15 0.14 0.13 0.09
error variance, o~ 0.42 0.40 0.42 0.44 0.48

Table 3.1: Error in disparity from images smoothed by exponential filter of o f;ser

Figure 3.12: Smoothing degrades matching

The five disparity maps have been obtained with 0., values of 0.5,1.0,1.8, 2.8
and 5.8 pixels from left to right. No thresholding or interpolation was carried out.

Figure 3.13 and Figure 3.14 show the confidence values calculated using the derivative
and ratio methods respectively, with the same diffusion lengths. As o4, increases, the
areas with low confidence also increase. Over-smoothing degrades confidence performance

as well as disparity performance of the algorithm.

Including the second dimension

Two dimensional image matching simulations were carried out with the hardware metric.

Including the second dimension brings along three important improvements:

1. Disparity results are accurate in the corners of the image since vertical disparity is

corrected for.

2. Image matching region expands from being a string of pixels to a two dimensional

region of pixels. The correct match is identified based on a wider range of support
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Figure 3.13: Smoothing degrades confidence values obtained by the derivative method

Figure 3.14: Smoothing degrades confidence values obtained by the ratio method
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Figure 3.15: One dimensional and two dimensional simulations compared

and the results are generally more accurate.

3. Again with the aid of the second dimension, jagged disparity discontinuities are

reduced.

As expected, two dimensional application of the algorithm takes significantly longer to

simulate. Hardware implementation to be described in the next chapter is limited to one

dimension.
3.2.3 Natural images
Rocks image

This image pair is courtesy of L. Matthies of Jet Propulsion Laboratories. This is a pho-

tograph of a scene outside JPL in Pasadena, California.

Figure 3.16 shows the image and the disparity map obtained with the hardware algo-

rithm.

Train image

This image pair is also courtesy of L. Matthies. It is a photograph of the maquette of a

small town scene. The image has been used for evaluating other algorithms [Szeliski89].

Figure 3.17 shows the image and the disparity map obtained with the hardware algo-

rithm.



Figure 3.16: The rocks image and disparity map

Figure 3.17: The train image and disparity map
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Figure 3.18: Disparity maps obtained using five different similarity metrics

Form left to right, the metrics utilized are hardware,difference, difference squared,
cross correlation and normalized cross correlation metrics. The cross correlation
metric has the worst performance. The rest are fairly compatible for this image.

3.3 Comparison with other similarity measures

In the previous chapter I have explored several similarity measures. Here, I will compare
my hardware metric with them. The disparity maps in the Figure 3.18 were obtained
using, from left to right, the hardware, difference, difference squared, cross correlation

and normalized cross correlation metrics.

As one can see, the (unnormalized) cross correlation metric yields inaccurate results. The
remaining metrics are quite compatible. Table 3.2 shows the average error and variance
of the error. The reference disparity is the result of the two dimensional simulation (Fig-

ure 3.15). The hardware metric performance is compatible with that of popular metrics.



Similarity metric e o?
(in the order of performance)

Difference squared -0.14 0.37
Difference -0.14 0.38
Hardware metric -0.15 0.39
Normalized correlation -0.15 0.41
Correlation -0.02 0.75

Table 3.2: Disparity error in images obtained by different similarity metrics
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Chapter 4
Analog VLSI Implementation

4.1 Comparison to previous work

T mentioned in Section 1.2.6 that systolic array type chips have been used to solve various

problems in vision.

There are various hardware applications specifically designed for stereopsis. Several recent

ones are listed below:
1. Simulations of a CCD/CMOS implementation for a stereo vision system [HLLW91].

2. A resistive network analogy to a variational solution to the problem of depth from

stereo [CG89].

3. Another depth finding method by locating light stripes projected on a scene: Pro-

totype system which acquires and processes range data by light-stripe range finding
[GCK91].

In Section 1.2.6, I also mentioned the recent analog VLSI approach to vision problems,
especially that of Mahowald in solving stereo correspondence '[Mahowald9‘2]. This work
follows the same tradition, but introduces a feedforward, serial approach to overcome the
computational density and communication challenge of handling two dimensional images
in real-time. I believe it is important to outline the similarities and differences between

my approach and Mahowald’s in detail. Differences lie in the following areas:

1. Elimination of the target selection process: As was outlined in Section 1.2.1, solving
the stereo correspondence problem begins with the selection of targets to match in
the two images. Mahowald begins with the assumption that the two images have

been processed already and targets have been marked to produce a binary image (at

each pixel a target is present or not).



61

Determining the locations of targets (or edges) in an image is a well-explored prob-
lem and many superb algorithms exist. Yet, it would be difficult to find a real-time
hardware implementation that produces edges of good enough quality to match be-
tween two images. Extra or missing edges between images could easily throw the

matching process off course..

By using intensity values from the two images without any preprocessing, this hard-

ware implementation essentially eliminates the problematic stage of target selection

from the solution.

. Increased dynamic range of images: As mentioned, Mahowald uses a binary image

for the matching stage. Binary images make the matching process more robust
against false matches caused by unintended circuit behavior. Hardware test results
show that this implementation performs well with images of 256 gray levels (voltage

range 1.5 — 3.5 V) as well as with binary images (1.5 V is a black pixel, and 3.5 V
is a white pixel) (Section 4.3).

. Serial computation and windowing for 2-D images: Mahowald computes the solu-

tion to the matching problem with all the targets present simultaneously along an
epipolar line. Although this allows for the use of a global algorithm to resolve
ambiguities, it also limits the size of the image that can be processed. My imple-
mentation uses windowing to serialize the computation.. It sacrifices the ability of

global computation for the ability to process any size two dimensional image.

. Feedforward computation and confidence measure: Global computation in the form

of feedback from neighboring computing units or from other spatial scales are parts
of the Mahowald stereo chip. These are powerful mechanisms for resolving the am-

biguities that are part of the matching process.

My implementation takes a different approach to resolving ambiguities: It leaves
them unresolved. In processing real images this poses only a limited problem as

hardware test reveals (Section 4.3). Ambiguities arise in several ways:
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Lack of features: Regions of the image where intensity values have a narrow

distribution also lack targets. So matching such points without peripheral in-
formation is not possible. In the Mahowald chip, because all targets along the
epipolar line are considered, one can safely assume that at least some targets
will be visible and regions without targets will be assigned disparity values
from the interpolation between matched targets. In my implementation, win-
dows that lack features will output a disparity with low-confidence, signaling
the next stage to disregard the disparity value. Disparities corresponding to
high-confidence values could be passed onto a two dimensional resistive grid,

as will be discussed in the following section.

Monocular and occlusion points: As described in Section 1.2.3, these are points

in the image visible to only one eye. Not all monocular points are due to occlu-
sion. Occlusion is a complicated cue especially for signaling depth discontinu-
ities and grouping surfaces. The Mahowald approach goes far by introducing
monocular cells, whose behavior mimics that of tuned inhibitory cells, which
break the interpolating resistive fuse between matching elements, causing the
surfaces that intersect at the occlusion point to break away from each other. My
implementation allocates this problem to the confidence measure and includes

no specific processing for occlusion. Hardware test shows occlusion points co-

incide with low-confidence points.

The aperture problem related to windowing: No image processing algorithm

can process data it can not access or “see.” Figure 4.1 illustrates an example. If
the visual field were restricted to pixels 7-67, all visual algorithms, local as well
as global, would fail. That is because within that range, the left image contains
two more targets than the right image. Pixels 1 and 73 provide the necessary
information for resolving this ambiguity. With local algorithms using windows
there are additional restrictions. Suppose that a window five pixels wide was
centered around pixel 37 in the left image and the search algorithm was combing
the right image between pixels 29 and 45. There are three perfect matches
within this region. In the absence of a clear maximum, my implementation

would signal low-confidence.
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NON-FRONTOPARALLEL PLANE TARGETS

PIXEL NUMBER:

B target

Figure 4.1: The aperture ambiguity

4.2 Description of current implementation

The architectural overview of the overall proposed system is shown in Figure 4.2. All el-
ements shown have been implemented in VLSI except the area enclosed inside the ellipse
where the disparity is smoothed using a resistive grid. Disparity is computed only along
each horizontal scan line. An extension of the architecture described here, requiring more
VLSI area and I/O pins, could be used to solve a restricte(i two dimensional problem

where the epipolar line can be corrected for as well. Simulations with such an architecture

were discussed in Chapter 3, Section 3.2.2.

The sections below contain the details of the implementation in VLSI:

4.2.1 Initial filtering

Prior to processing, the images are filtered by a one dimensional resistive grid. This
smoothes the image to the appropriate spatial scale and, to some extent, reduces the un-

desirable effects of noise. In simulations of the previous chapter, the resistive grid was
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Figure 4.2: Analog VLSI Architecture for Stereopsis
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approximated by an exponential filter. Thus, the length of the resistive grid in hardware

is analogous to the o value of the exponential filter in software simulation.

The one dimensional resistive grid (Figure 4.3) has been implemented in two ways in
hardware. Implementation (I) uses the horizontal resistor (HRes) circuit [Mead89b] to
form the horizontal component of the resistive grid. This is a circuit that for a certain
range of AV across its terminals acts like a linear resistor, and once the range is exceeded,
turns into a current source. The range of linear operation is quite narrow: AV < 0.5 V.
The resistance and the range are controllable within certain limits. Typical values of the
range in subthreshold operation are £100 mV. The resistance in the linear range is around
10° to 10%Q2. The vertical resistors are formed by connecting the transconductance ampli-
fier [Mead89b] in the follower configuration. The conductance (G) can be controlled by
setting the current of the bias transistor. Again within a certain range of AV, this device

acts like a linear resistor. Outside that, it is essentially a current source.

Implementation (II), on the other hand, uses gate polysilicon, snaked over the substrate
to form the horizontal resistor. The value selected was 10%Q). The value is below the
minimum value obtainable with the HRes circuit. Thus, experimentation over a wider
range of horizontal resistance values is possible. Besides, given the resistivity of polysili-

con (around 20 Q/square), any larger value would take too much area.

Difficulties with this circuit are caused mainly by mismatches. In implementation (I),
the controls for range and resistivity of the HRes circuits are global. Since one HRes cir-
cuit is not identical to another in transistor size, parasitic capacitance, etc., there will be
variations among the resistances, saturating currents, and to a lesser extent, linear ranges
of HRes circuits. In implementation (II), the manufacturing process will not always yield
a uniform width of polysilicon, causing variations in the values of the resistances. In both

implementations, the values for G are not expected to be uniform across the chip, either.

There are 19 input pins onto the one dimensional resistive grid dedicated to the right
image (to terminals labeled E; in Figure 4.3). The actual grid is long enough to accom-

modate 23 inputs. The three end terminals are tied together to terminate the edges of
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> ONE DIMENSIONAL RESISTIVE GRID CIRCUIT DESCRIPTION

V(’a.-—i) V(’L) V(1,+1)

>ANALOG VLSI IMPLEMENTATION

. . . _ <R
L —> V(i—1 )L —> V(%) L —> V(i+171 )L
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E(i+1)

Figure 4.3: One dimensional resistive grid on chip
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Figure 4.4: Input pin layout for the two one dimensional grids

the grid gracefully. The same strategy has been applied to the resistive grid for the left
image. There are 9 inputs onto a grid capable of handling 13 (Figure 4.4).

4.2.2 Implementation of the hardware similarity metric

As in simulation, the chip uses “filtered” pixel values from the resistive grid to compare a
window of the left image with the same size window from the right image. This comparison
is made at each possible disparity value. The similarity value for a given disparity is
the summed current of the ‘bump’ circuits [Delbriick91] corresponding to that disparity.

Assuming that the window is (2y + 1) pixels wide, this current can be written as the

following sum:

1=z+y

Loui(s,6) = Z Tyias

imany LF %coshz(ﬁ * (Imageg(i) — Imager,(i — )

(4.1)

Where I;,s is the current in the bias transistor of the bump circuit, w and & are circuit
parameters, k7' is a constant, § is the disparity, and I mager(z) and Imager(z) are fil-

tered pixel values of the right and the left image respectively.
In the VLSI implementation, the window width is five pixels (i.e.,y = 2).

There are 11 current sums of the kind shown in Equation 4.1. These correspond to

disparities in the range [—5, 5]. Figure 4.5 shows the circuit implementation.
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Predictably, the practical implementation of this circuit will be plagued by mismatches.
Slight variations in the circuit parameter w and in the sizing of other transistors, particu-
larly the bias transistor, will reflect in I,,;. This will be especially important in trying to
determine the maximum current correctly between competing windows, as we shall see in

the next section.

4.2.3 Determining the disparity

Eleven currents, one from each window, are input to a winner-take-all (W-T-A) circuit
[LRMMS89]. The current corresponding to the window that generates the highest éurrent
sum is the winner and determines the disparity value at the current pixel. Assuming that
the allowed disparity range is between —A and A, this can be written as:

%+ 1
Disparity(e) =8 : Lu(e,6)= _max Lu(s,) <cw2r+1)

> w+4 Ibias (42)

The last inequality is included to show that the current (and consequently the value of
the metric) is limited to a fraction of Ij;,,. This property could be exploited in computing

the confidence metric, as well as in determining monocular regions.

In the VLSI implementation A = 5. In simulations, this proved to be sufficient for 64 x

64 images. Hardware test results will follow.

The maximum current typically generates a voltage between 2.0 — 2.8 V. The rest of
the currents generate voltages close to 0 V. Thus, these voltages can be used to set the
conductances of a series of followers that are connected to a tilted voltage line, as shown
in Figure 4.6. The follower connected to the winning current will set the voltage on the
common output node. This voltage will carry the disparity information. In the chip, the
ends of the tilted voltage line were connected to the power rails. In this voltage divider
configuration, each disparity has its own assigned voltage. The range is 1.25 V for the

maximum negative disparity (-5) to 3.75 V for the maximum positive disparity (+5).

There is an added benefit that emerges from this configuration. Generally, there is only

one winner because of the characteristics of the winner-take-all circuit. In rare instances
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that currents are too close in value, the disparity will be the weighted average of the inputs

from all winning followers. The exact value of Vout 18t
2iGiVi
2. Gi

Since multiple winners are expected to be clustered around one disparity value, the output

Vout = (4.3)

will be their average and most often the correct disparity.

The winner-take-all circuit is quite robust. The main difficulty with this circuit comes
from the previous stage of bump circuits (Section 4.2.2). Due to circuit mismatches, the
window that generates the maximum current need not be the window that is the correct
match. Circuit simulations show that this is a likely outcome, the probability of which
decreases with larger window size: Because more currents are summed, the impact of
variations get averaged out. In hardware testing, this particular problem was observed
when the image area to be matched did not have much variation or when the image was
over-smoothed (Section 4.3.3), making the determination of a single maximum current
difficult. The circuit then seemed to prefer one disparity value, most likely set by the

window with the maximum hardware default current.
4.2.4 Confidence values

In areas of the image with flat intensity values (i-e., no features), the comparison of bump
circuit currents will not produce a clear maximum. To make matters worse, the physical

implementation introduces further ambiguity (Section 4.2.3).

Under such ambiguous conditions, the maximum current (and consequently the disparity)

will be arbitrary.

Most computational approaches, in the absence of sufficient feature information (or tar-
gets), introduce window size adjustment to include enough targets for a meaningful match.
To avoid this adjustment, which is difficult in hardware, my algorithm introduced 2, “con-

fidence” measure. When this is below an adjustable threshold, low-confidence is reported.

Low confidence is also reported at occlusion points or when the window size is inade-

quate for resolving ambiguities.
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The confidence measure is determined by a very simple arithmetic computation, namely
the ratio between the maximum current and the sum of all currents (Chapter 3, Sec-
tion 3.1.2).

Loy
Confidence(z) = %X‘iI—g—t (4.4)
§ toul

This computation contains a division, which is not easy to implement in analog VLSI.
Instead, a current fractioning method was designed. Since the value of the ratio we
are trying to compute is always less than 1, thresholding a fraction of ) ;I 4 with the
maximum current maxs I,y serves a similar function: Instead of trying to divide a current
by another, we take an adjustable fraction of the larger current and compare it to the
smaller one. I will start from the basics in describing the details. In the subthreshold

region the current through a transistor is given by:
I = ILe™Ve(e™Ve — e7V4) (4.5)

where all voltages are scaled by £7'/¢ and are with reference to the bulk.

For sufficiently large Vy;, e”V¢ << eV and the current I can be scaled by changing
Vys. This can be done by implementing a current mirror, where we scale the mirrored
current (i.e., V is the same between transistors), by increasing V; with reference to the
bulk (Figure 4.7). We then compare the fractioned current sum to the maximum current
and adjust V; until the desired operating point is reached. Thus, not only is the confidence
circuit an extension of the winner-take-all architecture, but also the confidence value is

computed in parallel with the disparity estimate. The resulting circuit is a compact inte-

grated structure (Figure 4.8).

The pin for confidence value is near 0 V when the disparity output carries a high confi-
dence and near 2.0 V when it carries a low confidence. In smooth areas of the image as

well as at distinct occlusion points, low confidence is reported.

Thus, disparity output can be regarded as a sparse map with gaps corresponding to the
low confidence points. A dense map can be obtained from the sparse values by interpo-

lating between the high confidence values. This operation is very suitable for a surface
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Figure 4.8: Confidence circuit as part of the winner-take-all structure



74

interpolating resistive grid, where the confidence determines the conductance (G') through

which the disparity is input onto the grid.

This hardware implementation stops at outputing the disparity estimate and the confi-
dence value for the window under evaluation. It does not contain the surface interpolating

grid.

4.3 Test results

4.3.1 Setup

The chip does not contain any scanners. Therefore, all inputs from images (19 from the
right image and 9 from the left) are input in parallel. Each input in time corresponds to
a single window centered around a single pixel. Let’s suppose that we want to match two
64 x 64 images. We can input the entire right image, but we have to trim the two sides of
the left image to be able to search across all possible disparities. It turns out that a 64 x
64 image corresponds to 2944 input instances, corresponding to 64 rows and 46 columns
due to this trimming effect. The pixel around which the sliding window is centered moves

left to right across a row. Once a row is processed, this pixel moves to the leftmost column

of the next row.

The chip contains five adjustable parameters:

1. R vaJue: This sets the value of the horizontal resistors in the one dimensional re-
sistive grid. In implementation (II) this is fixed at 10*Q. In implementation (I) it

is controllable by adjusting the gate voltage of bias transistor of the HRes circuits

(Figure 4.3).

2. G value: This sets the value of the vertical resistors in the one dimensional resistive

grid. Its adjustment varies the gate voltage of the bias transistor of the followers

(Figure 4.3).

3. W-T-A bias: This value determines the gate voltage on the transistor that biases

the W-T-A circuit, and consequently its current capacity (Figure 4.6).
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4. Bump circuit bias: This value determines the gate voltage on the bump circuit bias,

and consequently its current capacity, Ipiqs, in Equation 4.1 (Figure 4.5).

5. Confidence bias: This value determines what fraction of the summed current will
be compared to the maximum bump circuit window current (signal sum ratio bias |

in Figure 4.8).

In addition, input data limits can also be adjusted. Reasonable values range between
0.75 V and 4.25 V. Most tests, however, were carried out using a smaller range 1.5 V to

3.5 V with the thought of accommodating the silicon photoreceptor [Mead89b].

For testing the chip was connected to a custom board with a PC interface. The board
converts digital input from the PC to analog input to the chip. Similarly, it also converts

the analog chip output to digital representation for PC storage.

Input files were stored in the hard disk of the computer. A C program was used to
input each line of the file to the chip and store the disparity and confidence values from
the chip in a file. These values were converted to image files to form the disparity and

confidence maps in the following sections.
4.3.2 One dimensional signals

Two tests with one dimensional images were prepared to demonstrate the chip’s ability
to resolve ambiguities. All images in this category are binary. Voltages corresponding to

black and white pixels for the test are 3.5 V and 1.5 V respectively.

Occlusion image

Image contains two regions, one with zero and the other with constant negative disparity
separated by an occlusion point. There is an additional occlusion point to the left of the
leftmost target. Figure 4.9 shows the targets and the results from implementation (D).

The chip determines the correct disparity; in addition, it signals low confidence at the

following locations:
1. Where no targets are present, at right and left edges of the image.

2. At the two occlusion points (circled in Figure 4.9).
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3. At seemingly regular points, where the input has a particular pattern. This is most
likely due to undesirable circuit behavior. Due to transistor mismatches a certain
combination of inputs fails to produce a clear winning current. Adjustments of

circuit parameters, especially the confidence bias, could alleviate such a problem.

The plotted disparity response was obtained by first discarding all low confidence disparity

values and then interpolating between the high confidence disparity values.

Tilted surface

Image contains targets from a non-fronto-parallel surface. Disparities span the whole range
of the chip, from -5 to 5. The surface is marked with targets at quasi-regular intervals.
Figure 4.10 shows the targets and the chip response to this input. Low confidence is
reported again when no targets are present. As with the previous image, possibly due to
circuit mismatches, the chip indicates no confidence points at regular intervals when given

a particular pattern.

As before, the resulting plot was obtained by interpolating between the high confidence

disparity values.

4.3.3 Random dot stereograms (RDS’s)

Various experiments were conducted to evaluate the performance of the hardware with

random dot stereograms. The test results confirm expectations and compare favorably

with simulation results of the previous chapter.

Results with implementation (I)

G and R values determine the diffusion length of the one dimensional resistive grid, as
shown by the following formula for the spread of voltage V; in a one dimensional resistive

grid (similar to that in Figure 4.3) [Mead89b]:

V=Vyezhl (4.6)

where

L= m (4.7)
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Figure 4.9: Occlusion image results with occlusion points circled
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Response to Tilted Surface
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In the discrete case where current is injected through each G onto the grid (exactly as in

Figure 4.3), the equation for voltage at the node k becomes [Mead89b}:

1
Vi = — in—-kiIn 4.
TR (48)
where A
1 1 1
7~1+2—L—2_Z 1+4—L—2 (4.9)
and
G
Go = 7 (4.10)
and again referring to Figure 4.3
I = M (4 11)
n - G .

In implementation (I), both the G and R values are adjustable. Tests were carried out
holding G value constant (1.2 V) and varying the R value. Results are shown in Fig-
ure 4.11. R values from left to right are 0.5 V, 0.75 V, 1.0 V. No significant change is

noted because the RG value is quite high in all settings.

I compared the chip output to the correct disparities. Figure 4.12 shows the error image
with the perfect disparity image on the left. (If the chip output did not contain any error,

the error image would be entirely gray.) Average error is around 0.25 V for all three chip

outputs. The variance of the error o2 is also around 0.25 V.

Varying the G value in implementation (IT)

In implementation (II), the R value is fixed around 10*Q2. Thus decreasing the G voltage
is equivalent to increasing the smoothing in simulation. Results are shown in Figure 4.13.
From left to right G =4.0 V,3.5 V,3.0V, 2.5V, 2.0V and 1.5V. It is clear that as dif-
fusion length increases (i.e., smoothing increases), performance declines, especially below
G = 2.5 V. At the rightmost setting the disparity map contains only noise. Error analysis

results are show in Table 4.1.

Similar results were observed with simulation. As smoothing makes the stereo correspon-
dence problem more ambiguous, more and more incorrect disparities and low confidence

points are reported (Chapter 3, Section 3.2.2).
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Figure 4.11: RDS results with implementation (I)

Figure 4.12: Error in RDS results of implementation (I)
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G (inV) Ne "
R = 10%Q

40 0.12 0.43
35 012 0.45
3.0 0.13 0.47
25 0.14 0.53
2.0 0.15 0.64
1.5 0.14 0.80

Figure

Same results can not be demonstrated with implementation (I) because the R value there

is too high. To increase the diffusion length to a high enough value while keeping the G

within reasonable limits

Table 4.1: Error analysis with RG values

4.13: The disparity map fades as RG decreases

is not possible.

Subthreshold settings

To demonstrate that chips from implementation (IT) are still fully functional in spite of
difficulties due to their low R value, I include the results in Figure 4.14. All parameters

(except for G') were set at subthreshold values. Results on the left and right are from

simulation and hardware test respectively.
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Figure 4.14: RDS results with implementation (II) subthreshold

Target Density Ne o?
(%)

50 -0.25 0.25
30 -0.32 0.36
20 -0.34 0.38
10 -0.38 0.35
5 -0.45 0.38

Table 4.2: Error analysis with various target densities

Adjusting the target density with RDS’s

In Chapter 3, Section 3.2.1, I demonstrated that decreasing the target density in an RDS
causes the matching problem to become more ambiguous. I also did hardware experiments
to show the performance of the chip with target densities from 50% to 5% (Figure 4.15).
From left to right the target density values are 50%, 30%, 20%, 10% and 5%. It is clear that
as was the case with the simulation results, as target density decreases, chip performance

declines. Table 4.2 shows the results of error analysis.
4.3.4 The synthesized image pair

Information regarding this image pair was given in the previous chapter (Section 3.2.2).

Image dimensions were reduced to 64 x 64 pixels to make it suitable for the hardware test.
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Figure 4.15: Adjusting the target density of an RDS

This reduction is necessary because disparity values with the original ‘128 x 128 image
are outside the range of hardware. Resulting disparity maps are of dimensions 64 x 46

because of the trimming effect.
Tests were carried out with both implementation (I) and (II).

In tests with implementation (I), the results from which are better, the settings were
above threshold. The 256 different gray levels of this image create a far more ambiguous
matching problem than the binary values of an RDS. If, in addition, the current levels
are set low (by setting the parameters subthreshold), performance degrades. Figure 4.16
shows the resulting disparity maps. The leftmost map is included for reference. It is the
simulation result for the scaled image. Both the reduced resolution and the reduction
process itself add to produce worse than usual results. The two disparity maps on the

right were obtained from two different chips of implementation (I). Parameters were left

unchanged between chips.

Error analysis was carried out for the hardware results. The correct disparity was approx-
imated by the results from the two dimensional simulation in Chapter 3, Section 3.2.2.
Figure 4.17 shows the correct disparity and the two error images obtained by taking the
difference between the correct disparity image shown on the left and the two chip outputs

in Figure 4.16. The statistical analysis of the error indicates that average error is between
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Figure 4.16: Synthesized image pair results with implementation (I)

0.10 - 0.25 V. The variance of the error, o2 is between 0.2 - 0.4 V.

In tests with implementation (II), the settings (other than that for G) correspond to
subthreshold voltages. Performance degradation caused by using subthreshold settings is
not significant compared to performance degradation caused by the small R value that
over-smooths the input to make matching more ambiguous. Figure 4.18 shows results with
two chips of implementation (II) with all hardware parameters left unchanged between

chips. The leftmost map is identical to the simulation reference in Figure 4.16.

Figure 4.19 shows the correct disparity and the two error images obtained by taking
the difference between the correct disparity image shown on-the left and the two chip
outputs in Figure 4.18. The statistical analysis of the error indicates that average error
is less than that in implementation (I), around —0.1 V. The variance of the error (o2),

however, is greater than that in implementation (1), around 0.5 V.

4.3.5 The rocks image pair

The information about this image was given in the previous chapter (Section 3.2.3). Im-

age dimensions were reduced to 60 x 64 pixels to accommodate hardware test. Resulting

disparity map dimensions are 60 x 46 pixels.

Figures 4.20, 4.21 and 4.22 show chip outputs.
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Figure 4.17: Synthesized image pair error images with implementation (I)

Figure 4.18: Synthesized image pair results with implementation (II)

Figure 4.19: Synthesized image pair error images with implementation (II)
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Figure 4.20: The rock image pair disparity output with implementation (I)

The two rightmost images in Figure 4.20 show the raw disparity outputs from two chips
of implementation (I). The two leftmost images are the actual image and the disparity

from simulation of the scaled rock image used during hardware test.

Figure 4.21 shows confidence values from the chips. Pixels shown in white are the high-
confidence pixels. Note that areas with flat intensity are marked in black (i.e., low confi-

dence). The original image is included for comparison.

Figure 4.22 shows processed disparity values in comparison with simulation results (left-

most image). Disparity is “interpolated” using only high confidence disparity values al-

ready computed.
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Figure 4.21: The rock image pair confidence output with implementation (I)

Figure 4.22: The rock image pair processed disparities
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Chapter 5
Conclusions and Future Work

5.1 Summary

Work presented describes a hardware stereo correspondence algorithm, its hardware imple-
mentation and results obtained from simulation and hardware test. All of these collectively
show that the system is functional, expandable to solve real-world problems in real-time,

and implementable with existing technology.

5.2 Assessment of the Hardware Algorithm

5.2.1 Features

The algorithm possesses the following favorable features:

1. Simplicity: Considering the complexity of the stereo correspondence problem, the
algorithm and its implementation are very simple. There is only one resolution scale
involved. No post processing is needed and the disparity estimate and confidence
at each pixel are computed in parallel. The serial nature of the algorithm makes it
versatile: Large two dimensional images can be processed provided that the image

disparity range is accomodated by the hardware disparity range.

2. Accuracy: Considering the simplicity of the algorithm, the disparity results are
quite accurate. The confidence metric goes a long way towards compensating for

the inherent ambiguities of the stereo correspondence problem.

3. Compact and low cost system: 'Many systems that perform similar tasks for solv-

ing equivalent vision problems require far more hardware at much higher cost. My

stereo correspondence architecture could be implemented using two or three dedi-

cated chips.

4. Low power consumption: This feature accompanies the previous one. The analog

VLS5I chips operating below or slightly above threshold consume far less power than

large digital systems that emulate many vision algorithms.
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5.2.2 Simulation

As I mentioned above, considering the simplicity of the algorithm, the disparity results
are surprisingly good. The confidence metric improves the performance significantly at a

rather small computational cost.

One criticism is that the confidence metric can not handle monocular and occluded points

reliably even though it is quite effective for identifying flat intensity regions in images.

A second thresholding scheme involving only the maximum value of the hardware metric in
the disparity window would be the most straightforward method for handling monocular

and occlusion data.

5.2.3 Hardware

Hardware results were presented from two unique implementations of the algorithm.
Among those, the first implementation proved to be more successful because RG val-
ues remained within the range necessary to keep the image from being over-smoothed

prior to matching.
Hardware experiment results compared favorably with their simulation counterparts.

One shortfall with hardware experiments was that the synthesized and the natural images
had to be scaled to accommodate the limitation in the disparity range. This scaling was
shown to adversely affect resolution and the accuracy of simulation results. It is therefore
highly likely that hardware performance could be improved if images that do not require
scaling could be used. Random dot stereograms are such images. The results with random
dot stereograms were indeed superior to the results with the synthesized image and the

natural rock image.
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5.3 Future Work

5.3.1 System applications

For practical applications of the stereo correspondence architecture presented, two distinct

situations come to mind:

The one dimensional version of the chip (which has been implemented) is appropriate
for non-convergent camera geometry. It can be used as part of the naviation system of an

autonomous vehicle which utilizes two parallel video cameras (Figure 5.1).

The two dimensional extension of the chip is appropriate for use as part of the vision
system of a robot manipulating objects within a close (several feet of the cameras) range.
Such applications will generally require that the cameras be positioned to produce con-

vergent geometry.

For applications that require higher accuracy, the chip can be made part of a larger net-
work of circuits that use the disparity estimate provided by the chip as a rough estimate
or starting point. Iterative schemes that draw from a series of disparity maps obtained
from slightly perturbed the camera positions can be utilized to obtain a far more accurate

disparity map of the scene.

Many applications will require the image-chip interface to be serial since parallel input of
large, especially two dimensional neighborhoods will use too mémy 1/0O pins. This as along
with the nature of camera output will necessitate the use of scanning circuits. Figure 5.2
shows schematically how this can be accomplished. Similar schemes have previously been

designed and shown to be functional [MAG91].

5.3.2 Improvements to the algorithm and architecture

Multiple scales

The method of utilizing multiple resolutions was not explored with the hardware metric.
As mentioned in Chapter 1, ambiguities in matching the two images can be readily resolved

by using a coarse-to-fine matching strategy. This is very difficult to do in hardware:
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Figure 5.1: Application with parallel cameras

In an application using parallel cameras, assuming that vertical disparity is zero,
the one dimensional version of the architecture can be used. Two camera outputs
can be input to the chip using serial scanners (Figure 5.2). If convergent camera
geometry is to be used, the two dimensional expansion of the architecture will be

necessary.
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Figure 5.2: Scanners for serial 1/0 ports

Two camera outputs can be input to the chip using serial scanners. In the one
dimensional case this is relatively simple. In the two dimensional case, however,

further storage inside the chip or modification of the output protocol of the camera
may be necessary.
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Even the most straightforward hardware implementation would have to use a multiplexing
scheme simultaneously with changing resolution and shrinking window of the image region

and disparity range.

More reliable monocular and occlusion handling

In retrospect, improvement to handle monocular and occlusion points does not appear
to require a lot of area on top of the existing hardware architecture. The most straight-
forward approach would be to compare the maximum current with an adjustable current
to determine if the maximum current value is high enough to rule out the presence of

occlusion and monocular points.

Including the second dimension

Simulation results obtained using a two dimensional matching region and a two dimen-
sional match search area were presented in Chapter 3, Section 3.2.2. These showed a
significant improvement over the one dimensional results. Improvement was most pro-
nounced in the corners where images are likely to contain vertical disparity and along
disparity discontinuities where jagged edges were a problem. Including the second dimen-
sion in hardware does not require any extensive design change to the existing architecture,

merely an increased number of already described computation units, more VLSI area and

I/O pins.

5.3.3 From stereo correspondence to motion correspondence

Once the second dimension is included, a major step is taken towards extending this stereo

correspondence algorithm to a motion correspondence algorithm. There are, however,

several restrictions that apply:
1. Only two frames can be processed at one time.
2. The image intensity gradient information (%) is not utilized.

3. Motion can be determined within a range. Movement outside these limits can cause

the rest of the data to be unreliable, as well.
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4. Two dimensional translational motion without any component perpendicular to the
image plane will be relatively straightforward; translational motion involving the
third dimension and rotational motion will require some post processing to assess

correctly.
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Glossary

binocular involving both eyes.

cone cells high acuity, chromatic cells lining the eye’s receptor sheet.
Cones mediate color vision and provide greater spatial and temporal resolution. They are

concentrated in the fovea and saturate in their response only in intense light.

contour the monocular or binocular perception of a well-defined and continuous target

boundary.

convolving an image I with a kernel &, having support or domain K, produces a con-

volved image, (I * k), that is defined by

I*xk)z, )= Y I(z—iy—5)k(,j)

(i.j)eK

Convolution is a linear operator.

correlating an image I with a kernel k, having support or domain K, produces a corre-

lated image J, defined by

J,y)= Y. I(z+i,y+5)k(i,5)
(i,9)eK

degree of visual field area in the visual field corresponding to a single degree of an arc.

One degree of visual field is roughly the width of your thumb at arm’s length.

depth map an image in which the value in each pixel’s position is the distance between

the image plane and the surface patch being imaged corresponding to that pixel.
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disparity the difference in the positions of the images of the same three dimensional

point in two perspective projection images taken from different positions.

epipolar line on one stereo image corresponding to a given point in another stereo image
is the perspective projection on the first stereo image of the three dimensional ray
that is the inverse perspective projection of the given point from the other stereo

image.

fovea area of the retina normally corresponding to the center of the visual field, lined

almost exclusively with high acuity cone cells and thus affording acute vision.

Gestalt psychology movement in psychology which started in the early twentieth cen-
tury.
The central theme is that the act of perception creates a Gestalt, i.e., figure, form or image,

beyond what is being perceived, which represents the organization of sensations in the brain.

gray level a number or value assigned to a position in an image.
This value 1s proportional to the integrated output response in a small area of the optic or

photographic sensor that captures the image.

hyperacuity ability to carry out a variety of tasks to accuracies more precise than the
dimensions of the retinal cones from which the information originates.
Foveal cones have a diameter of about 27”, yet many tasks yield accuracies of around 5”.
Stereoscopic acuity may be as good as 2”. Such tasks are said to fall within the range of

hyperacuity.

image a spatial representation of an object, of a two dimensional or a three dimensional

scene, or of another image.
image intensity gray level.

image matching the process of determining pixel by pixel, arc-by-arc, or region-by-
region correspondence between two images taken of the same scene but with different

sensors, different lighting, or a different viewing angle.

image smoothing any spatial filtering that spatially simplifies and approximates the in-

put image, suppressing small details and enhancing large or coarse image structures.
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kernel function defined on the domain of the linear spatial filter it represents, whose value
at each pixel (of the domain) is the weight or coefficient of the linear combination

that defines the spatial linear filter.

light striping a technique of projecting a light pattern on a scene, which is composed of
successive planes of light that are all parallel.
The scene is then viewed from different directions. The pixels that image a surface patch
lit by a known light pattern contain enough information to determine the three dimensional

coordinates of the image patch.

linear spatial filter an image operator for which the image intensity at coordinates
(z,y) is a weighted average or linear combination of the image intensities located at

a particular spatial pattern around coordinates (z,y) of the input image.
monocular involving only one eye.

Miiller’s horopter zero disparity surface.

Horopter changes when the eyes or camera positions change.

occluding edge (boundary) an image edge (boundary) arising from a range or depth

discontinuity in the scene.

occlusion situation that arises from a surface being visible to only one eye, because of

another surface occluding the light reflected from it from reaching the other eye.

parallax the observed positional difference of a projected three dimensional point on a

pair of two dimensional perspective images.

pixel smallest area with unique spatial coordinates (z,y), having a single intensity value

or gray level associated with it.

primary visual cortex area of the brain receiving and processing information from the

eyes.

resolution a generic term that describes how well a system, process component or image

can reproduce an isolated object consisting of separate closely spaced lines or objects.



103

stereo correspondence problem of determining all pairs of corresponding points from
two images of the same scene.
A point p on one image and a point ¢ on a second image are said to form a corresponding
pair (p,q) if p and ¢ are each a different sensor projection of the same three dimensional

point in the scene.

stereo matching the matching process by which corresponding points on a stereo image

pair are identified.

stereopsis the capability of determining the depth of a three dimensional point by ob-

serving the point on two perspective projection images taken from different positions.

stereoscope an optical instrument with two eyeglasses for helping the observer to com-
bine the images of two pictures taken from appropriately different points of view to

get the effect of solidity or depth.

stereoscopic contour the binocular perception of a well-defined and continuous target
boundary which occurs in the absence of an abrupt luminance gradient and for which

stereopsis is necessary.



