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ABSTRACT

The thesis topic is the stochastic excitation of the solar p-modes by turbu-
lent convection, and the work consists of four parts: three theoretical sections
and one observational. In the first section of the thesis, an explicit calcula-
tion of the acoustic radiation of a buoyant oscillating bubble is presented as a
model for the excitation of the solar p-modes. The central scientific issue ad-
dressed in this work is the cancellation of monopole and dipole radiation fields
in an anisotropic medium, first pointed out by Goldreich and Kumar (1990).
When the bubble oscillation frequency is small compared to the acoustic cut-
off, the monopole and dipole disturbances cancel to the quadrupole order in
the far field. The second section deals with thé role of convective structures
in a wide number of problems, including the creation of acoustic disturbances,
the transport of heat and magnetic fields, and the penetration of flows into
stable layers of the atmosphere (overshoot). A model of plume convection is
developed to discuss these issues. It is argued that the scaleheight-sized flows
(the only energetically significant ones) are properly characterized as coherent,
entropy-preserving plumes, in contradistinction to the picture of amorphous
parcels of fluid suggested by the Mixing Length Theory, and in spite of the
large Reynolds numbers typical in astrophysical convection. The third sec-
tion of the thesis is an analysis of high-resolution surface velocity data taken
with a magneto-optical filter on the 10 inch telescope at Big Bear Solar Ob-
servatory. Estimates are obtained for the frequencies and amplitudes of the
solar oscillations of high spherical harmonic degree (I < 2000). The observed
mode energies follow a Boltzmann distribution (P(E) « exp{—E/E}), as is
predicted in the stochastic excitation model. In the final section of the thesis,
a derivation of the variational principle for an incompressible fluid is presented.
The Lagrange and Hamiltonian densities are calculated to third order in the
displacement field, and these results are suitable to study the non-linear inter-

actions among incompressible modes.
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CHAPTER 1

Introduction

A brief review of helioseismology is presented, followed by a broad overview
of the thesis results. Emphasis is placed on the background relevant to our

work.
1.1 Historical Context

Solar oscillations with a 5 minute period were discovered in the early 1960s
by Leighton et al. (Leighton, Noyes and Simon (1962); Evans and Michard
(1963)).1 These observed ‘wave packets’ were originally interpreted as local
disturbances, traveling along the surface, and possibly launched by strong tur-
bulent motions in the upper convection zone (below the photosphere). This
characterization remains plausible since the wave period matches the eddy

turnover time for subphotospheric convective cells.

1 The basic technique for observing these oscillations makes use of the
Doppler effect: absorption lines formed in a moving layer near the photosphere
are shifted in frequency, and an approximate linear relationship exists between
the frequency shift and line-of-sight velocity. A spatially resolved measurement
of this type is called a Dopplergram, or velocity image. Photospheric oscilla-
tions can also be seen in brightness fluctutations, since the emitting material
travels through regions of different opacity. The latter effect is more difficult
to quantify, however, because the correspondence between signal and velocity

depends sensitively on the radiative transfer model.
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Nearly a decade passed before Ulrich (1970) and Leibacher and Stein
(1971) argued that these oscillations are global sound waves resonating inside
the sun. Observed photospheric motions were explainéd as a surface manifes-
tation of disturbances trapped in the interior. Gradients in the sound speed
(temperature) cause traveling waves to refract away from the core by Snell’s
Law, and internal reflection occurs at the surface due to the rise in acoustic
cutoff frequency. On this basis, the normal modes of the sun can be calcu-
lated by expansion in spherical harmonics, just as one computes the energy
eigenstates of the hydrogen atom in quantum mechanics. This field is known
as helioseismology, and it bears considerable resemblance to its terrestrial rel-

ative.

Since the restoring force for sound waves is pressure, the eigenmodes have
become known as p-modes. The dispersion relation for the p-modes (computed
by Ulrich (1970) and Ando and Osaki (1975)) admits a family of acoustic
branches (known as ‘ridges’), each corresponding to a radial node number, n.t
These ridges were subsequently seen in the high-resolution spectra of Deubner
(1975). Full-disk observations then confirmed global character of the oscilla-
tions (Claverie, Isaak, McLeod, van der Raay, and Roca Cortés (1979); Grec,
Fossat, and Pomerantz (1980)). These low-order observations yielded individ-
ual mode velocity amplitudes of order 20 cm/sec at the solar surface. It has
been estimated that over 10° p-modes are excited to observable amplitudes
(Libbrecht and Woodard (1991)). The modes constructively interfere to give
surface motions on the order of 1 km/sec, comparable to the solar rotation and

relative motion of the Earth.

Over the last three decades, the field of helioseismology has contributed
much to our understanding of solar structure. Libbrecht (1988) has measured

low and intermediate degree p-mode frequencies (£ < 150) with an impressive

1 The so-called f-modes have a special place among the solar oscillations.

These are actually nodeless (n = 0) surface gravity waves.
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accuracy of order 10~°. Such data can be used to probe the interior of the sun
and refine solar models. In particular, the interior rotation and temperature
profiles have been determined by inspection of the splitting of frequencies in
azimuthal order m. The modes of high degree are particularly important to
investigate, since their eigenfunctions are localized near the surface where the
acoustic radiation is thought to interact with convective eddies. Further study
of this region of k-space may shed light on some long-standing problems in

convection and compressible turbulence.

Much of the work in this thesis adds to the stochastic theory of p-mode
_excitation (Goldreich and Keeley (1977); Goldreich and Kumar (1990); Goldre-
ich, Murray and Kumar (1994)). The theory holds that turbulent motions in
the upper convection zone create acoustic disturbances which travel through-
out the sun. In related work, the damping (Goldreich and Kumar (1991)),
scattering (Goldreich and Murray (1994)), non-linear interactions (Kumar and

Goldreich (1989)) of the p-modes with convection have also been investigated.

The stochastic excitation model orginated with a suggestion by Biermann
(1946, 1947) that subphotospheric turbulence might generate acoustic waves
which propagate into and heat the solar chromosphere. The formalism for
studying sound generation by turbulence was supplied by Lighthill (1952, 1954) |
and Proudman (1952), and has become known as the Lighthill-Proudman The-
ory. Assuming the Kolmogov spectrum, Proudman (1952) showed that the
acoustic emissivity has magnitude € ~ €9 M®, where €, is the turbulent eddy
dissipation and M is the Mach number. Stein (1967) and later Goldreich and
Kumar (1988) modified this work to include the effects of density stratifica-
tion. Musielak et al. (1994) have recently reconsidered this work in light of
new models for the turbulent energy spectrum, and the theory still commands

considerable attention in the literature.

Convection plays an important role in the excitation, damping and scat-

tering of the solar oscillations. Excitation models typically make use of the
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Mixing Length Theory (MLT) of Schmidt (1941), Taylor (1945) and Prandtl
(1952). MLT provides adequate estimates of the convective flux and eddy
velocities, but numerical simulations are causing a re-evaluation of its simpli-
fying assumptions. (See Spruit, Nordland, and Title (1990) for a review.) It
has become apparent that the structure and topology of convective flows may
have implications for the modeling of sound generation events, the next step in
the development of the stochastic excitation theory. Moreover, high-resolution
mapping of the upper convective envelope may eventually force developments

in the theory of stellar convection.

Scientific papers in helioseismology appear with frequency of order 10 pHz.
For that reason, no exposition can offer complete coverage of such a popular
and important field. For further information on helioseismology, the reader
may wish to consult any of the numerous reviews which have appeared in the
last three decades (Stein and Leibacher (1974); Deubner and Gough (1984);
Christensen-Dalsgaard, Duvall, Gough, Harvey, and Rhodes (1985); Brown,
Mihalas, and Rhodes (1986); Christensen-Dalsgaard (1988); Libbrecht (1988);
Shibahashi (1990); Libbrecht and Woodard (1991)). The theses of Kumar
(1988), Kaufman (1991) and Fernandes (1992) also give more detailed sum-
maries of the major developments. For an overview of our current understand-

ing of the sun at the introductory level, refer to Zirin (1988) or Stix (1989).
1.2 Overview of Thesis

The thesis contains results of both an applied and fundamental nature in
the fields of helioseismology, solar and stellar structure, and astrophysical fluid
dynamics. Although the various issues addressed in this work are related, any
section can be considered apart from the others. Certain results are presented

in Appendices intended for elaboration of points made in the main text.

In Chapter 2, the acoustic Green’s function for a plane-parallel polytrope
(a model for the solar convective envelope) is computed and used to calcu-

late the excited amplitudes of the p— and f-modes. The convective element
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is modeled as a bubble expanding and contracting as it bobs up and down in
the atmosphere. Changes in fluid volume generate monopole radiation, while
the resulting buoyancy oscillation creates a dipole field. The central result of
these calculations is the demonstration that the monopole and dipole radia-
tion cancels in the far field to quadrupole order, an effect which was noted
by Goldreich and Kumar (1990). This cancellation limits the p-mode ampli-
tudes, while it is found that the f-mode cannot be excited by the combined
monopole and dipole mechanisms due to its near incompressibility. The tech-
nical developments from this work may be useful for similar problems, since
the polytropic approximation appropriately describes many atmospheres. For
example, the Green’s function can be used to calculate the evolution of sound

waves launched by the expected cometary impact with Jupiter in July 1994.

The third Chapter addresses the role of structures in turbulent convection.
A simple model of axisymmetric convective plumes is presented to provide a
context for interpreting numerical simulations of deep compressible convec-
tion. The Morton, Taylor and Turner (1956) model of plumes is modified to
study flows with a horizontal scale of order the density scaleheight in a grav-
itationally stratified atmosphere. The entrainment of mass and lower entropy
material, which is important for plumes arising from a small source, may be
neglected to an adequate approximation for the larger plumes. The braking of
the flow is due to a pressure perturbation which is usually ignored ih models
of plumes. It is found that simultaneous conservation of mass, energy, momen-
tum and entropy leads to a mathematical singularity in the model equations.
This singularity forces the flow to diverge at some specific depth in the at-
mosphere which may be interpreted as a ‘mixing length,” and this penetration
scale is not very sensitive to the conditions at the source boundary. In addi-
tion, the model suggests a striking asymmetry between upward and downward
directed plumes, as is commonly noted in numerical simulations of turbulent
compressible convection (Stein and Nordlund (1989)). This work was done in

collaboration with Dr. Stirling Colgate of Los Alamos National Laboratory.
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Chapter 4 presents observations of high-degree solar oscillations made at
Big Bear Solar Observatory with a Potassium Cacciani Cell. This work was
originally motivated to reproduce the results presented in a thesis by Kaufman
(1991). The data set consists of a time series of high-resolution Doppler images
obtained at the center of the solar disk. The ‘ridge’ structure of the dispersion
relation is seen clearly in the data up to the highest observed wavenumbers, and
the mode amplitudes agree with the theory of Goldreich et al. (1994) (in order
of magnitude and qualitative behavior). Moreover, the probability distribution
of mode enérgies determined from this observation is shown to conform to a
Boltzmann form, as predicted by the stochastic excitation model (see Kumar,

Franklin and Goldreich (1988)).

Finally, Chapter 5 discusses variational principles for an inviscid, incom-
pressible fluid. As a preliminary to solving problems in non-linear mode cou-
pling, the Lagrangian and Hamiltonian densities are computed to third order
(in the wave displacement field). An application of these results to study the
interaction of gravity waves (g-modes) in white dwarfs stars will be the subject

of future work.
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CHAPTER 2

Acoustic Radiation of a Buoyant Sphere

The radiation field of a buoyant oscillating sphere is calculated as a model
for the excitation of the solar p-modes. Explicit solutions are given in both the
near and far fields in the dual limit of small radius (compared to scaleheight)
and low pulsation frequency (compare‘d to acoustic cutoff). For frequencies
w < wac, the energy flux into the p-modes is of order O((ﬁ)‘*) relative to

the flux from a pure monopole source.
2.1 Introduction

The generation of sound by turbulence is a well-studied problem in both
uniform (Lighthill (1952,1954); Proudman (1952)) and gravitationally strati-
fied media (Stein (1967); Goldreich and Kumar (1988); Bogdan et al. (1993);
Musielak et al. (1994)). The latter is important in the study of the excita-
tion of the solar p-modes (Goldreich and Keeley (1977); Goldreich and Kumar
(1990); Goldreich, Murray and Kumar (1994)). Calculation of emission spectra
is done by Lighthill’s method (Lighthill (1952)) which involves the solution of
an inhomogeneous wave equation, the source terms of which are modeled and
classified according to relative strength. In the case of a stratified atmosphere,
these include a monopole term from changes in fluid volume, a dipole term due
to changes in external momentum (the resulting buoyancy oscillation), and a
quadrupole term from the redistribution of internal momentum (fluctuations

in the Reynolds stress).

Other classification schemes referring to the far field radiation patterns or
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the order of differentiation in the terms (Musielak 1987) are inappropriate due
to the anisotropic propagation in the layered atmosphere and ambiguity con-
cerning the choice of variables. Moreover, in a stably stratified atmosphere, the
monopole and dipole contributions are difficult to separate as distinct effects.
If a fluid element expands and contracts (monopole excitation), the buoyancy
force causes it to rise and fall (dipole excitation). In addition, if the pulsa-
tion frequency is small compared to the acoustic cutoff, the element will move
so as to mainfain approximate hydrostatic equilibrium. In that case, the bob-
bing amplitude is miraculously tuned to cancel the original monopole radiation
in the far field, resulting in a combined amplitude on the same order as the
quadrupole term (Goldreich and Kumar (1990)). The implication is that tur-
bulent excitation of low frequency modes is strongly frequency dependent and
smaller in magnitude than the independent contributions of the pure monopole

and dipole terms. These features are clearly seen in the power spectra of the

solar p-modes (see Libbrecht and Woodard (1991)).

The cancellation of the two lowest order poles appears naturally if one
uses Lighthill’s method and performs a mode expansion as in Goldreich and
Kumar (1990), or if one integrates over a persistent, monochromatic source
(Appendix 2.1). In adaition, these calculations show that the f-mode is not
excited by the monopole or dipole processes, a result which depends on the
fact that the mode is incompressible. In this Chapter, further evidence for
the cancellation is provided by solving a boundary value problem in which the
displacement is specified at the surface of a sphere oscillating at fixed frequency
w. The radiation field produced by the oscillating bubble is found by explicit
solution of the homogeneous wave equation. We note that a related problem
has been considered by Longuet-Higgens (1989a, 1989b, 1990) who studied the

underwater emission of sound from raindrops.

The remaining sections of the chapter are organized as follows. In section

2.2, the statement of the problem is given, with a discussion of the solution
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by a Boundary Integral Method and matched asymptotic expansions. Section
2.3 includes a derivation and discussion of the acoustic Green’s Function for a
polytropic atmosphere. Lowest order solutions are offered in section 2.4 for the
case of the pure monopole, the pure dipole and the ‘buoyant monopole’ (mixed
monopole and dipole). Finally, in section 2.5, our conclusions are presented

and Appendices A2.1 — A2.5 give some related results and background.
2.2 Statement of the Problem

We seek an equation describing the behavior of infinitesimal adiabatic

disturbances (sound waves). Fluid motions are governed by the Navier-Stokes

equations
dv
— =-Vp+F .
P p+ (2.1a)
dp

where F, v, p and p are the external force, fluid velocity, density, and pressure,

respectively. To close the system, we adopt a constant I' equation of state for

the fluid
(S — So)

Cy

=logpp™™, (2.2)

where s is entropy, ¢, is the constant volume specific heat, and sy is a constant.

For isentropic motions, no energy equation is required for the system.

In our model, the unperturbed medium is a static, plane-parallel poly-
trope occupying the half space z > 0, with the depth coordinate z increasing
below the surface. The only external force is gravity F = pgz (g is a con-

m-+1

stant). Hydrostatic equilibrium gives p o< z™,p o z , and s = const.,

where m = 1/(T" — 1) is the polytropic index. Finally, we define a scaleheight
H = dz/d(log p) = z/m and the sound speed ¢ = \/gH.
Linearization and manipulation of equations (2.1) - (2.2) leads to an in-

homogeneous wave equation (Goldreich and Kumar (1990))

162Q 106Q <520 +23(p0)>

ViQ — (2.3)

22 T He: o \ae T, as
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in the adiabatic part of the Eulerian enthalpy perturbation

op
e=2, (2.4)

1l

@ is a convenient choice for a scalar wave variable, from which the displacement

field

1 9 .
&= w—z—VQ -+ ~5 0% (2.5)

may be computed.

The right-hand side of (2.3) consists of source terms which depend linearly

on the Eulerian entropy perturbation

ds
o = Z; (2.6)
One identifies them as the monopole
d%o
¥y = ~ oz (2.7a)
and dipole
g 9(pa)
Xp=-—-= )
D > 5z (2.70)

source terms. The quadrupole term is non-linear and does not appear in our
linearized equations. (See Goldreich and Kumar (1990) for a discussion of this

term.)

For a localized source, the disturbance is adiabatic (i.e., o = 0) outside
the excitation region. In this case, the wave equation (2.3) becomes homoge-
neous, and the excitation problem can be given a boundary value treatment.
Assuming the wave variables have a time dependence of the form exp(—iwt),

w > 0, the wave equation becomes

ViQ + —}J- (g—f + %262) = 0. (2.8)

Our goal is to solve (2.8) in the half space z > 0 external to the region By, a
sphere of radius R, located at depth z;, with some component of VQ (i.e., the
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displacement field) specified on 0By. At the top of the atmosphere, the La-
grangian pressure perturbation, Ap, must vanish, yielding a self-adjoint bound-

ary condition for Q at z = 0:

A ) -V ’
p p p w 2=0

In addition, we require ,/pQ to be square integrable in z (so the radiated energy

is finite), as well as a radiation condition for outgoing waves as |[R ;| — oo.

To find a solution for the given boundary data, we employ the Green’s

function G(r|r') which satisfies

2
VG + -;I- (%—f + -“ig—G) =§(r—r') (2.10)

together with the boundary condition at the top of the atmosphere

=0, (2.11)

z==0

(0+2%0)

and the appropriate radiation condition as |R ; | — co. The quantity p(r)G(r|r')
is the pressure field of a unit point source located at r = r', and it is symmetric

with respect to interchange of r and r’.

If Q(r) is a solution to (2.8), then one can show that

Ve (p(r)(Q(r)VeG(rlr') — G(r[r) V2 Q(r))) = p(r)Q(r)(r — '),  (2.12)

for any Green’s function G(r|r'). Integrating over all space, and omitting the

vanishing surface terms, one has a solution

p0)Q) = B [ anp(R, ) (2.13)

4

{g%(RT,Q’)G(RS, Q'r) — Q(Rs, Q’)%S—(R;, ﬂ'lr)}-

The + superscripts indicate the direction from which derivatives must be eval-

uated. Equation (2.13) can be used to give the solution anywhere in terms of
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the boundary data. Admissible boundary conditions on 8B include specifi-
cation of either @ or its normal derivative 8Q/8r, or some linear combination
of the two, but not both. Given any Green’s function, one can always con-
struct another which satisfies the Dirichlet or Neumann Boundary Conditions
on 8B, (Appendix 2.2), appropriate to the former two cases. Alternatively,
rather than construct the correct Green’s function, using any such function,
one may evaluate (2.13) on the surface and solve it as a Boundary Integral
Equation in Q(Q) (if 0Q/0r is known on 0Bp). Once both @ and 8Q/8r are
known on the boundary, (2.13) can be used to compute @ elsewhere. Both
methods require solving an integral equation, but since care must be taken

with the singularities of the Green’s function, the latter is easier.

The calculation of the Green’s function is crucial to the solution of this
problem. Although no exact solution is available in closed form, one needs only
the asymptotic behavior of G in the near field (for the static solution of the
Boundary Integral Equation), and in the far field (to evaluate the amplitudes of
the excited modes). Solutionsin the two regions are connected by matching the
asymptotic expansions. The next section is devoted to the task of calculating

the polytropic Green’s function in these limits.
2.3 The Polytropic Acoustic Green’s Function

To find the polytropic acoustic Green’s function, we perform a 2d Fourier

transform on equation (2.10):

. &R,
G(ky,z|R'L,2") = //——Q—fe’kL'RiG(RL,AR’l,z’), (2.14)

which yields an inhomogeneous equation for G

n 2 A 1 R wz . e‘ik_L-RI_L ,
Gzz—kLG"t’"f{‘ GZ+_9—G :T5(Z—Z). (215)

Solutions to the homogeneous version of (2.15) can be expressed in terms of

Kummer functions (confluent hypergeometric functions). One choice of linearly
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independent solutions is
QW = e~k+2 )M (a, m, 2k, 2) (2.16a)

and

Q® = e~*+2l/(a,m, 2k, 2), (2.165)

where we define a = Z(1 — w?/gky) for k; = |k | > 0. Other choices exist
(see Abramowitz and Stegun (1972)), but (2.16ab) is convenient for several
reasons. The Wronskian of these solutions is

dQ(z)
dz

dQ®W  T(m) 2k

1) 2y = oV = —
w@e™,e™) =@ dz I'(a) (2kpz)™’

(2.17)

so they are linearly independent except for wave numbers for which a =
—-n, n = 0,1,2,.... These coincide with the allowed wavelengths for the p-
modes (for fixed frequency)

w2

=—— _ n=0,12,.... 2.18
g(1+ %) (2.18)

ki_:kn

The case n = 0 is commonly called the f-mode. For k; = k,, both solutions
(2.16ab) behave like
Q(l,Z) - e—knzL:'z—l(zknz)’ (219)

where L2 is the associated Laguerre polynomial. In this plane-parallel model,
these are the eigenfunctions of the p-modes. In Appendix 2.3 we show that

they are orthogonal, and the proper normalization is

n!

2g m/f2 12 —knzym—
@n(z) = kn(2k,)™/ (I‘ ) e " E LM 2k, 2) (2.20)

mw? (m+n)
Although the functions @, satisfy the upper boundary and integrability condi-
tions, they do not form a complete set (see Appendix 2.3). Indeed, the closure

relation must include a sum over continuum states k; # k,. Finally, the

solution linearly independent to (2.19) is

(2kpz)"™e FLEM(1 —m — n,2 — m, 2k 2), (2.21)
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but it behaves badly as z — 0 and as z — oo.

Away from these singularities (k; # k,), there is no solution which can
satisfy both boundary conditions. Q(1) is appropriate for z — 0 as
2

oW - fg_z, z—0, (2.22a)

while Q(?) diverges there

1
€3 S S -
QP ~ G =0 (2.22b)

On the other hand, Q(®) is well-behaved as z — oo

1
(2) ~ —— “k.Lz
Q (2k_LZ)a' 3 ¥4 > OO, (2226)
while Q(1) is not integrable
Q(l) ~ ekJ_z(Qk_Lz)a—-m) 2 ) (222d)

However, in applications for which a boundary condition at some finite z occurs,

these continuum states will be featured in the solution.

The solution to (2.15) for arbitrary k is proportional to

QM (2)Q®(2>)
W(QW, Q@) (=)’

where z5 = max(z,2z') and z¢ = max(z,2z'). A particular solution to (2.10) is

Gy(kL,2l2") = (2.23)

given by the inverse Hankel Transform
17 L
G(rlr') = —2;/dkLlio(k_LR)GH(]kl],z|z’), (2.24)
0

where R = (R? + R — 2cos(¢ — ¢'))*/2. To perform the integral (2.24), we

make use of the identity relating the Bessel and Hankel functions -

Io(=) = 5B (=) + HP(2)) (2.25)
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and formally separate the integral (2.24) into two terms. The first integral
passes under the positive real k axis, closing above around the first quadrant,
while second must close below encompassing the fourth quadrant. This inter-
pretation insures that the radiation condition is satisfied. Both integrals give
a continuum contribution to G, but the first closes around an infinite number
of simple poles along the positive real axis, yielding a modal contribution. To

see this, notice that the integrand is proportional to

I'(a) =F(a,1)+i (L7 kaks 29

n=0

(2.26)

nl k, —k, mw?’
and the incomplete I' function is well-behaved over the range of the integration.

The reason both modes and continuum appear in the Green’s function has
to do with the fact that the eigenvalues vanish as n — co. The closure relation

for the Sturm-Liouville system (2.8) is of the form

o0

(e =)= 3 Qu(@)Qul () + [ dkLARLQD(EIQD (e (),

n=0

(2.27)
where w(z) = z™ is the weight function (proportional to the density). This
type of closure is typical of systems whose ‘potentials’ vanish at co (e.g., for

the hydrogen atom in quantum mechanics).

It follows that we can partition the Green’s function as the sum of two

terms

G(r|r'") = Gu(r)r') + Ge(r|r'), (2.28)

where G is the modal contribution

Gu(rlr') = -2’-;- S B (kn R)Qn(2)@n (2 w(2), 1 (2.29)

n==0

1 Here we interpret Hél)(knfi) = Z:‘;~m Jq(knR<)Hgl)(knR>)ei9(¢—¢')’
with R« = min(R, R') and R> = max(R, R'). This makes the calculation of

the azimuthally averaged Green’s function easy to compute and assures proper

behavior of the solution for all R.
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and G¢ is the continuum contribution. We have no expression for G ¢(r,r')
in closed form. Fortunately, we need only its stationary behavior (w? — 0) to

solve the Boundary Integral Equation.

When the source is of size R; < g/w?, and at depth z; < g/w?, only the
continuum contributes to the Green’s function. This defines the near field, or
the static zone. The shortest wavelength which the modes can accommodate

is g/w? (for the f-mode). In addition, in this limit, |G ps| is of order
| w?R, - w?R,
|Guml| = O((—g——)m+1 In(——=)IGel, (2.30)

so it can be neglected when solving the Boundary Integral Equation.

To get the behavior of G(r|r') in the near field, we perform an asymptotic

expansion around the static point (w? — 0)
G(r|r") ~ Go(r|r') + WGy (x|t + ..., (2.31)
with
Go(r|r') = 12im0 G(w?;r|r"). (2.32)

The expansion is only good to order (w?)™*!In(w?), after which the modal
part of the Green’s function must be included. It is well-known that all of the
singularities of a wave-like Green’s function are contained in the static part of

the solution (see Dawson and Fawcett (1990)).

The function Gy is a solution to

VG + = =§(r —r'), (2.33)

with the approximate boundary condition

8G,
0z

=0. (2.34)

The solution has transform

- 1 . / 2
Gy = ——2——7;ezk""R J‘zl<i> Im;l(k_]_Z<)K12_—_1_(k_]_Z>). (235)
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Inverting (2.35), an exact expression for G is found to be

22 zl2+é2

1 (z’)z‘—{_le"”'/2 Q{’:‘_/::?.( 2220 )

Go(rlr’) = -5 _ 1 4)
z Var ((zz_'_z,z_’_éz)z ~ 1) /

(2.36)

27wz
2z2/

where Q,l,/ ? is an associated Legendre Polynomial of the second kind. To ma-

nipulate (2.36) into a useful form, define

22 +z'2 +R2

ha=————2>1 .
cosha 527 2 (2.37)
and
' =r' - 273 (2.38)
r' is the image source point at z = —z'. Using the relation
1/2 _ mijz [T _eT¥%
cosha)=¢e — , 2.39
Qu—l/z( ) 2 \/g;m ( )
we obtain
m—1
1 [\ 7 e 2@
G N= —— | — . 2.4
o(r|r’) 4z < z > sinh o (2.40)

This can be manipulated to the form

A (e e
Go(rr") = ——(22")™ = , 2.41
or equivalently
1(c=r'|=]r=2)™ 1 1
Ny — — —_—
Gol(rlr’) = 4T (2z)™ |r — r!| + e —71| |~ (242)

For the case m = 0, (2.42) shows that Gy indeed approaches the half-space
uniform medium static Green’s function (see Appendix 2.5). (2.41) shows that
Go(r|r') o« w(z'), as we expect from the above discussion of Gas. Finally, we

see from (2.41) that Go will not contribute to the far field.

In performing the Boundary Integrals on axisymmetric data, the ¢ de-

pendence is trivial. Unfortunately, the azimuthal average of G¢ is difficult to



- 920 -

obtain without approximation or resorting to numerical integration. For use

in later calculations, we expand Ggo(r|r') in the limit of small R,/z,:

Golrlr!) = bt m ) (A=m) o Ry g

A r—r'| 87 |r—r'|z, 87z, 22

Hence, to first order in R;/z,, the azimuthal average is trivial, noting that

27

1 1 1
—Z‘;/‘M!r—-r’l - —EZ [+1 Pl( )JP(p'), (2.44)
0

=0

where 75 = max(r,7') and r< = max(r,r').

There are several ways to get the higher order terms in the static expansion

(2.31). First, we could write an exact relation
G(r|r") = Go(r|r') + Gg(w?;r|r"), (2.45)
with G given by

w 2m dz”

éE(w k_L,er -———-Gg k_L, ”[r )GAH(k_L,le”). (246)
Careful treatment of (2.46) shows that
. 5 ~ g 8(50 adE .
ll_{%(Gg +Gg) + "l ( 52 + 52 ) = 0. (2.47)

Alternatively, we could solve the sequence of problems for the terms in the

expansion with

1 8G, 1
= ——Gpo1, n=1,203,..., (2.48)

2
VG H 0z gH

and boundary conditions

- —EGn_l(O). (2.49)
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The recursive solution shows that this is a Born Expansion

1 dl
Gulelt') == / AV E2L G (e[r )G (5" ). (2.50)
z>0

Notice from (2.41) that pGy = O(1/z) as z — oo, and Go = O(1/R™t1) as
R — o0, so the surface integrals we cast away in deriving (2.50) do vanish, at

least for G;. In Fourier space, the solution is

Culks, o) = =2 d"" G (i, 2" [RY 1, 2')-2me®a R Gy (k1 2[Ry, 2).
(2.51)
Fortunately, we only need G, to get the solution to lowest order if w? <
w?% 5. (wac is the acoustic cutoff at the top of the atmosphere ~ ¢/H.) The
next section uses these approximate expressions for the Green’s function to
obtain solutions to the problems of the pure monopole, pure dipole, and mixed

monopole and dipole.
2.4 Lowest Order Solutions

Given the behavior of the Green’s function as |[R | ~ Rs; and |[R | —
oo, we may now solve the Boundary Integral Equation (2.13) to lowest order
for some component of the displacement specified on 8By, and estimate the

amplitudes of the excited modes. We consider three cases of physical interest.

2.4.1 The Pure Monopole

If the sphere pulsates radially, but is not allowed to float up and down, the
solution to the Boundary Integral Equation is trivial to lowest order. Keeping
only the first term in the static expansion (2.43), we find that Q takes on a

value

(1+0(72) + O((== ). (2.52)

‘ 0 wWAC

__po%

In the far field, we use the modal part of the Green’s function and obtain

Q(R,z) ~ —2n%R2 % ZH(l)(k R)Qn(2)Qn (25 )w(2s) (2.53)

0 n=0
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to lowest order. The asymptotic intensity of radiation moving through a cylin-

der of radius R is given by

R [ ,00Q
I= i /dsz ETR (2.54)
0

By the orthogonality of the modes, we find the intensity on the mode p,, is

2 2 m
_ 9 o [ W*R, w?z, 1 I'(m + n)
I, = Mviw-3n ( p > < p ) == (2.55)

where M = 4np(z;)R3/3 and v, = %%%lo' Notice that I, < 1/n3 as n — oo,
so the total intensity is finite.
2.4.2 The Pure Dipole

In this case, the sphere moves rigidly up and down without changing its
volume. The solution to this problem in a uniform mediumis givenin Appendix
2.5. To lowest order in (w?H,/g) and R,/ zs, the near field is the same as in the
uniform medium. The first term to contribute to the far field is the dipole one,
giving an amplitude smaller by a factor of (w?H,/g) than the pure monopole
case. To get the exact answer to this order, the correction to the near field
Green’s function w?G;(r|r') must be used in solving the Boundary Integral
Equation.

2.4.3 The Mixed Monopole and Dipole
In Appendix 2.4, we show that the boundary condition for a buoyant

oscillating sphere 1s

9Q _8Q
—a—;(RS)P') = Br

0 (1 + Lﬂ?’f’_—/;j}{-:p) . (2.56)

There are two limits of interest. For high frequencies w? > g/H, ~ w?, the
sphere is mostly pulsating, with a tiny bobbing motion in phase with the radial
motion. At low frequencies, the sphere also bobs, but with a vertical motion

out of phase with the expansion. The bubble moves to maintain instantaneous
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® << @y

Depth Coordinate (z)

O

Horizontal Coordinate (R)

Figure 2.1: A Low Frequency Bubble Oscillation (w < w4¢). The bubble
expands as it rises to maintain approximate hydrostatic equilibrium.

approximate hydrostatic equilibrium. The two types of oscillation are depicted

in Figures 2.1 and 2.2.

The boundary condition (2.56) is appropriate only in the limit of small
R,/zs. This was required to expand the local density contrast in the equation
of motion of the sphere. Hence, it is only consistent to seek a solution within
the same approximation. We keep the w? dependence of (2.56) throughout the

calculation until it is no longer needed to give the lowest order behavior.

It is convenient to rewrite the boundary condition in terms of Legendre

polynomials:

o22(R 1) = pl22)

0

wsz Rs SgHs g
v p P _9 .
{wZH, —;olw) + <H, T R H, —g)) 1) + 257, _gPZ(”)}
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0 >> o,

Depth Coordinate (z)

Horizontal Coordinate (R)

Figure 2.2: A High Frequency Bubble Oscillation (w > wa¢). The con-
traction is out of phase with the bubble motion is this case.

Using only the zeroth order in Go(r|r'), Q takes a value

PQ(R,Sa p) = _Rsp(zs)%

5 | X (2.58)

0

: w?H, 1 /R, 39H, 2 g
Y s p (i P c_9 .
{wZHs s o(k) +3 (Hs T R.(o2H, —g)> 1(k) + 3wiH, -gpz(”)}

To calculate behavior of @ in the far field, we expand the eigenfunctions ap-

pearing in the modal part of the Green’s function, and evaluate them at the

surface

w?z, w?R, w
b+ O((—=
g g wac

Qn(zs + Ropp) ~ Qn(0) - (1 - )*))- (2.59)

Although the P;(p) component of the near field may be large, one has to go
to order (w/wac)? in the eigenfunction to get a contribution to the far field.
It follows that the mixed monopole and dipole has an amplitude smaller by

a factor of (w/wac)? relative to the pure monopole case. As with the pure
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dipole, to get a numerical estimate to the implied order, one needs to include
the first correction to the static expansion when solving the Boundary Integral

Equation.
2.5 Discussion

The purpose of this work was to calculate the radiation field of a local-
ized acoustic source in a gravitationally stratified medium. In addition to
developing some new theoretical tools specific to this problem, our main re-
sult is a demonstration of the curious cancellation effect when an expanding
and contracting fluid element is allowed to float in the external atmosphere.
While this important effect was previously appreciated (Goldreich and Kumar
(1990)), our approach of treating the excitation as a.boundary value problem
provides an independent verification, as well as a framework for performing
future calculations in similar problems. To the extent that our model applies
to convective turbulence is the sun, our results are relevant to the theory of

the excitation of solar p-modes.

Certain restrictions must be kept in mind when interpreting these results,
and their applicability to practical problems. In order to pose a solvable prob-
lem, certain non-physical assumptions were made regarding the nature of the
source and the ambient medium. In particular, corrections due to the finite
size of the fluid elements, their finite lifetime (transience), non-sphericity and
non-adiabaticity may be significant, the latter two being the most problem-
atic, because the underlying assumptions are clearly contrived. Although no
resolution of these problems is at hand, we see no reason why they should con-
flict with our main result, whose interpretation is unambiguous and physically

meaningful.

In conclusion, we suggest some future applications for which this work
may be relevant. More careful solutions could be found, including corrections
of higher order in the static and finite size expansions of the Green’s function,

and numerical solutions of the Boundary Integral Equation. For example, this
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would be necessary to understand the excitation of modes with frequencies up
to the acoustic cutoff. In addition, the formalism is applicable to calculations

of absorption and scattering of sound waves by standing bubbles.
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Appendix 2.1

Cancellation for a Local Source of Entropy Fluctuation

As an alternative method of demonstrating the cancellation effect for a
buoyant monopole, consider the following model. The wave equation (2.3) can
be solved with a local source of entropy fluctuation confined to a sphere of
radius R, centered at depth z, > R,. The horizontal boundary of the sphere

is given by

R(2) = \/R2 — (2 — 2,)2, (A2.1.1)

and the vertical boundaries of the sphere occur at depths 24 = z,+ R,. Taking
the horizontal Fourier transform of (2.3), we obtain a second order inhomoge-

neous wave equation

Oz — k20 + = (Q %Q) =¥ = DA, (A2.1.2)
where D = w? — % — g0;, and
Ji(kLR(z
Ak, z) = ao(2)7R*(2) [Q—I;Q_-L—}—J%—(—z—()—)—z} . (A2.1.3)

The solution to (A2.1.2) can be found by using the Green’s function, yielding

i T oW L o2
Q(kL,z) = /dz'g-—v-(v—(%ﬁ-—)c)(ﬂ(zw/dz'Q__V%é%(_lQ@)(z), (A2.1.4)

z 0

where Q(1), Q(?) and W are described in section 2.3. An integration by parts
allows us to write (A2.1.4) in the form

z4

R 2 w? , (2) Py
Qbs,z) = [ HENE LRI E g,y
/dz'A(Z’)(w2 1;—/?jz)f)Q(”(Z')Q(z)(z). (A2.1.5)

Z
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The surface terms for each integral cancel one another exactly. Since Q1)
behaves like (w? + g8;)Q(") ~ 0 near the surface, the mixture of monopole
and dipole sources cancel to one higher order in (w?H,/g) than either term
taken independently. This is essentially the source of the cancellation noted
in Goldreich and Kumar (1991). Also notice that the integral vanishes for the
wave number of the f-mode, for which Q + gQ./w? = 0 for all z.

As a further illustration, consider the limit Ry — 0 for which the bubble

becomes a point source. In this case, the source term becomes
A(kL,z) = ope*+ RLN3§(z — 2,), (A2.1.6)

where A% is a measure of the source volume. Performing the integrals, one finds

I'(a)
'(m)

Q(ky,z) = —gog\® (2k,1_zs)me_k*z’}e“klzx (A2.1.7)

(M'(a,m, 2k z) — —(—I—M(a,m,2klz3)> Ula,m,2k) z), 2z >z,
m

(U'(a,m, 2k z,) — —%U(a,m,Zklzs)> M(a,m,2k 2), 2z <z,

where the prime denotes differentiation with respect to the third argument. A
similar result is obtained for the extended object in the limit &k, Ry < 1, with
A% = 47 R} /3. The point source has the peculiar property that the top and
bottom of the source move in different directions as it expands and contracts,
yielding a jump in the displacement. Aside from this, one may verify that
the Lagrangian pressure perturbation is continuous across the source. For the
continuum wavenumbers (k1 # kn, the wavenumber for the mode p,), the

solution approximates a white spectrum with
|§z| ~ UO)‘sy (A2.1.8)
for k) z; < 1, while for k) z, 2 1, one has an exponential spectrum

[€2] ~ aoAPeRezs, (A42.1.9)
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It is not surprising that a point source produces a broad white continuum down
to wavelengths of order the depth of the source. Moreover, a field of randomly
distributed sources would also produce such a spectrum. Each source would
merely be phase shifted by a factor e**+*1 where x9 is the horizontal location
of the source. In expectation, the amplitude of continuum depends only on the
correlation spectrum of the source distribution, which one expects to be flat
down to wavelengths of order the mean separation of the sources. The obser-
vations presented in Chapter 4 reveal that the spectrum has an exponential

shape over a wide range of k.
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Appendix 2.2

Construction of a Proper Green’s Function
Assume that a certain solution to (2.10), Gr(r|r'), is known. Then one can
always construct a Green’s function, G p(r|r'), for Dirichlet boundary data on
the surface of the sphere (0Gp/8r = 0), as well as a function G n(r|r'), appli-
cable to the Neumann Boundary Condition (Gx = 0). To calculate Gy (r|r')

for use in our problem, we note that G 5 and G satisfy
Ve (Gn (x|t )V Gr(rr') — Gr(r|r') V.G n(r|r')) =

p(r)é(r — r')(Gn(r|t') — Gr(r|r")). (A2.2.1)

Since the outer surface boundary conditions are self-adjoint, the surface terms
vanish when (A42.2.1) is integrated over all space. Using the symmetry property

of the Green’s functions
p(r)G(r|r") = p(x")G(x'|r), (42.2.2)

with the boundary condition on G on the sphere, the integration yields

n rle' 2 uf_(_x:ﬁ_)_ . Q_G_I‘_f_ !
G(rls') = Gr(ele)+ B [ a0 26" ) 0 ) )| 4229)

4

Differentiating (A2.2.3) with respect to r, we have a single Boundary Integral
Equation from which 8G n/0r may be computed at |r| = R;.
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Appendix 2.3

Orthonormality of the Basis Functions

In section (2.3) we encounter a homogeneous wave equation of the form

> az (p%Q> kQ + Q =0. (A2.3.1)

There are two interpretations of (A42.3.1) as a Sturm-Liouville system, depend-

2 are held constant. Since our excitation occurs at

ing on whether k2 or w
fixed frequency, we treat k? as a variable parameter, with the discrete eigen-
values k, corresponding to the eigenfunctions @,. To show orthogonality of
the eigenfunctions, we note that two distinct solutions Q,, Q. with k, # kp,

satisfy
0 ,0Qn

Oz 5.7, Oz
Since the boundary condition at z = 0 is self-adjoint, integrating (A2.3.2) from

0Qm

Qm - _(9;—@”) (ki - kfn)anQm- (A232)

z =0 to z = oo, we find

/ d2pQuQm =0 kp # k. (A2.3.3)
0

The constant frequency eigenfunctions can be expressed as
Qn x e k2L ™1(2k, 2), (A2.3.4)

where L™~ are associated Laguerre polynomials, and the eigenvalues are k,, =

w?/g(1 + 2n/m). To normalize, consider the integral

I(n,a)= /dme'”m‘”’l(Lf“)z (A2.3.5)
0
=(a+1+ gn)r(_"i_?‘_f_ll,
n!

from which we compute

1/2
Qn(z) = 29 —— ko (2 )™/ (ﬁj'——)'> e FnZLm=1(2k.z)  (A2.3.6)

mw? m+n
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as the normalized eigenfunctions satisfying
/dzzan(z)Qnr(z) = bpnt. (A2.3.7)
0

To see that this set of eigenfunctions is not complete, consider the sum

Az, 2') = 2™ Z Qn(2)Qn(2"). (A2.3.8)

n==0

The sum clearly converges since k, o 1/n, as n — co. Moreover, it is well-
behaved for all z, 2/, including the case z = z'. If the above set of eigenfunctions
were complete, then the sum (A2.3.8) would behave like a delta function (i.e.,

a closure relation).

On the other hand, if one takes k? to be constant in (A2.3.1), the or-

thonormal eigenfunctions are

9 — m/2 _____T_I’_________ ~kz rm—1
Qn(z) = (2k) (]."(m n n)> e "FLT T (2kz) (A2.3.9)
with eigenvalues
2
w2 = gh(1+ ;"’). (A2.3.10)

In this case, the closure relation is obtained from the well-known summation

identity for the Laguerre polynomials (Gradshteyn and Ryzhik (1994))

1 ~ . 2k —2k(z+2') 2V 2kz\/2kz'
Y @n(2)@n(#) = Jm e Im—l(T)
n=0

(A42.3.11)
1 k gvzm-vzkz'z? 1
= 11m €
=0 (vZhev/2k21)1/2
1
=2k = §(v/2kz — V2
2(\/27;@)1/2 o(V2kz = V2ks!)

= 6(2 - Z'),

so these eigenfunctions are indeed complete.
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Appendix 2.4

Boundary Condition for a Buoyant Monopole

Consider a sphere of radius R, centered at depth z;, > R,. Let the sphere
undergo an infinitesimal oscillation in its radius with amplitude AR and fre-
quency w. Finally, assume the radius is small compared to the local scaleheight,
H. The change in volume induces a buoyant force on the sphere of magnitude
Apg, where Ap = psphere — Pmedium = —(3AR/R, + Az/H,)p, and the center
of the sphere is displaced an amount Az in the vertical direction. Hence, the

equation of motion for the sphere is

A A
—w?Az = -3¢ le — gHj (A2.4.1)
which implies a relation
3g
Az = AR. 4.
z Rlw? — g/H.) (A2.4.2)

The factor of 3 in the right-hand side of (A2.4.2) is crucial in exhibiting the
cancellation of the monopole and dipole. From (A2.4.3) we notice that Az
can be of either sign, for positive AR, depending on the magnitude of the
dimensionless number w?H,/g. For low frequencies (w? < g/H, ~ w%), the
sphere moves to a vertical position of approximate hydrostatic equilibrium,
with Az out of phase with AR. For high frequencies, the bobbing motion is in
phase with the change in radius, with the amplitude of vertical displacement
drastically reduced. In between the extremes lies a resonance at the frequency

w? = g/H,. The two limits are summarized in Figures 2.1 and 2.2.

Although knowledge of Az and AR does not imply a unique boundary
condition for the displacement field at the surface of the sphere, the radial
component s well defined for any infinitesimal motion. Throughout the move-
ment of the bubble, we assume the surface remains spherical in this model.
Consider a point on the surface at the beginning of the cycle, located at coor-

dinates

z=12z5+ Rspu (A2.4.3q)
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R=R,v, (A2.4.3b)

where p = cosf and v = sinf. By symmetry the point slides through some
trajectory on the surface of constant ¢. At the extreme point of the oscillation,

it is mapped to a point with coordinates
Z=2z,+Az+ (Rs+ AR)ix (A2.4.4a)

R= (R, + AR)p. (A2.4.4b)

The problem is that the mapping fi(y) is not determined in this model, but
must be computed by solving the wave equation for the external fluid. In
general, the fluid will slip along the spherical surface, and the extent of the
slippage is not immediately obvious from the relation (A2.4.2). However, notice

that the radial displacement is given by
£ = pé, +vép = p(zZ — 2) + (R - R), (A2.4.5)
which implies that
&= AR+ pAz + (Rs + AR)(pg + v —1). (A2.4.6)

The first two terms on the right-hand side of (A2.4.6) are known, while the

latter is undetermined. Clearly the slippage is of order
Ap=jg—p=0(Az/Ry) (A2.4.7a)

Av =5 —v=0(AR/R,), (A2.4.7b)

so the quantity pf + v — 1 is of second order in the displacement. Hence, the

boundary condition on ¢, is uniquely given by
&~ AR+ pAz (A2.4.8)

to lowest order in the infinitesmal motions. The degree of slippage can be cal-

culated using (A2.4.8) as a boundary condition. One could then iterate on the
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calculated mapping fi(u), but this is not necessary for a linear wave calcula-
tion. Alternatively, one could form a non-linear Boundary Integral system and
compute the map fi(p) exactly. The existence and uniqueness of the solution

are not necessarily guaranteed in this case, however, as with the linear equation

(Carrier et al. (1983)).
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Appendix 2.5
Bubble Radiation in a Uniform Medium

The radiation of a sphere oscillating in a uniform medium is substantially
more simple than the polytropic case considered in this paper, because the
Green’s function may be calculated explicitly. The discussion in this Appendix
is mostly motivational, although several of the results presented here are unique

to this work or required for some application.

The wave equation for the uniform case is
W2
AQ + (-—c—) Q@ =0, (A2.5.1)

where ¢ is the uniform sound speed. The Green’s functions for the outgoing

waves are given by

1 eiw/c]r—r’l

, T e — ———————————————————
Gs(rlr') = ypi (A2.5.2)
and _
1 eiw/clr—-r'l eiw/c[r—-r’[
N = = +
G+(rlr') = gy ( For] T ) (A2.5.3)
where
r =1 -2z (A2.5.4)

is the image point. (A2.5.2) is appropriate for the region R®, while the (£)
versions of (A2.5.3) are to be used in the half space z > 0 for problems with
the boundary conditions 8G4+/0r = 0 and G- = 0 at the z = 0 line. The

functions yield outgoing waves for w > 0.

The function G may be expanded in modes

oo
Wr«

Z(Ql + 1)J1+1/2(—C—‘)Hl(41-)1/2(
=0

1 1
Gs(rlt') = = 2>

8 v/rr!

YPi(cosy) (A2.5.5)

[

where

cosy = cos B cos B' + sinBsin b’ cos(p — ¢') (A2.5.6)
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and

r< = min(r,r’) (A2.5.7a)
r> = max(r,r'). (A2.5.7b)

For axisymmetric problems, the angular average of G, is needed:

27
—_ 1
Tl ') = o= / 4G, (x]r') (42.5.8)
4]
1 wr
== TN, ()PP,

where p = cos 6. The static part of G, (for wR,/c — 0) may be expressed in

terms of elliptical integrals, or as a mode expansion

— ) 1 o 7t
lim Gy(wip, ') = -3 Z ,.1:1 Pi(p)Pi(p). (42.5.9)
=0 ' >

In problems for which wR,/c < 1 (the period is much longer than the sound
travel time across the source), (42.5.9) is useful for solving the analogous
Boundary Integral Equation. Finally, one can always express the solution to
the full space problem in the form
o Hl(l) (£2)
Q(r, Q1) = e~ Z Z ——ii@—i—mm(a). (A2.5.10)

To obtain solutions to lowest order in wR /¢, one uses only the static wave
expansion to match the boundary condition on the surface of the sphere. Once
the amplitudes of the modes are determined from the boundary data, the far
field may be calculated. Three examples of physical interest are now given, all

with axisymmetry.
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A2.5.1 The case %% = AP/(u)

r=R,

When the radial displacement is specified on the boundary, the solution

is trivial. In the static approximation, the near field is expanded as

o R U+1
= =2 . > R,.
Q(,LL,T) I'Z:OAI ( ” > Pl (/J’)) rZ Rs

Hence, the expansion coefficients Ay are given by

RA

Ar=-777

511’1.

These are the multipole solutions in the normal sense of the word.

The intensity of the far field radiation is
1
I= 3—2- p / dA - Qv

1

2
prT
=2 [auigr

-1

21+1 2
1 Bagn (R n(3/2) \'12A+1
2 c T(3/2+1)) #+1)

(A2.5.11)

(42.5.12)

(A2.5.13)

where v, = A/w and M = 4w R*/3p. This example shows the familiar ordering

of the multipoles with the dipole being smaller than the monopole by a factor of

(wR,/c)?, and the quadrupole by a factor of (wR;/c)*. In addition, the pattern

of the radiation in the far field is consistent with the usual meaning of the

multipole field. For the non-uniform medium addressed in this paper, neither

the order of amplitudes nor the far field radiation pattern are appropriate for

classifying the poles.
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A2.5.2 The case %% = const.
r=R,

If the expansion and contraction of the sphere is purely horizontal, one

can show that the motion is a superposition of all the even multipoles with

41+ 3 2 R?-Q
5 (LT DECE/2 - DF “BR|,_p

to lowest order in the static limit. In the far field, the dominant contribution

Ay~ —

(A2.5.14)

is from the monopole term, giving an intensity
3.3 R,
= 23Ty M <“’c ) , (42.5.15)

of the same order as the simple monopole, and differing only by a factor of

(37w/8)2.

= const.
r=R,
Finally, we consider the case in which a rigid sphere bobs up and down in

A2.5.3 The case %—g

the z direction. In this case, one expects the far field to appear as some form
of dipole, with the entire pattern consisting of purely odd multipoles. Since

the Boundary Integral Equation

Q:R‘j/dﬂ’(??G Q ) (A2.5.16)

4

requires that we know the normal component of V@ at the surface, it cannot
be solved in its present form. However, a formal differentiation of (A2.5.16)

with respect to R yields an additional equation with which we can close the

99 _ Rz/dQ (aQ oG Qiz—G—> . (42.5.17)

system

ar' R Or'OR

Since
oQ 0Q . oQ
o M8 T VeR |
the coupled system (42.5.16 — 17) can be solved for 6Q/0R and @ to obtain

(A2.5.18)

the expansion coefficients for evaluating the far field. Writing

T=vQr=)Y ¥P(p) (A2.5.19a)
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and

Q=Y QP(n), (A2.5.190)

=0
we find after some manipulation that @; and ¥; are determined by solving the

recursion relations

[+1 1 c
5 T 1Q1 T3 n 1‘1’1 = —551,1 (A2.5.20a)
2 11+ 1)1 +2) (+1)(1+2)
Ui =581 = ba) - (l+1)(2 + 3)Q‘ TRTDE 3)‘1'hL
—1)(I - (-1
(-1d-2) Q-2 — Gut) ¥i_s, (A2.5.200)

(2l —1)(2] - 3) (21— 1)(2l - 3)

39

where ¢ = Rs‘a‘; is the known value of the vertical derivative. Solving

r=R,
the system (A42.5.20), one obtains the (static) near field of Q as

2 L An+5 (2n+1)\ [ R\
Seran () () e

(A2.5.21)

00
Q(,U,,T) - _RSFZ‘

As expected, only odd multipoles are excited by this motion. To verify that
(A2.5.21) indeed satisfies the boundary condition, we evaluate

Q| _ 9| 5~_qym on+1)\ 1

B8z =R, 0z 0;(“1) (4n+5)< ntl ) mpzn+z(p) (A2.5.22)
_ 99
=z, [ —28(n)].

The boundary condition is satisfied everywhere except at 4 = 0, on the hor-
izontal edge of the sphere Where the displacement has infinite shear, also a
physically meaningful result. The singularity at x4 = 0 is further clarified by
manipulating (A42.5.21) to the form

9Q

Ak = —Ri|

1 2. 96m?2 + 112m?2 + 30m + 17
{1 Z Py (0) Pam (1)

o 4(4m + 3)(4m — 1)(m + 1)?

m=0

(A2.5.23)
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The summation in (A2.5.23) converges for all £, s0 Q o 1/p as p — 0. Evalu-
ating the far field, we obtain

51 s oQ
Q“*( : >R"é:

a dipole field, as anticipated. The asymptotic intensity is also of dipole order

1. ., [(wR,
I~ -é-Mvzw ( . ) (16) (A2.5.25)

One may object to a boundary condition of the form 8Q/8z = const.,

(%) /¢ Py (), (A2.5.24)
1]

since existence and uniqueness theorems require the normal component of the
derivative to be specified. In fact, the dipole boundary condition does not
yield a unique solution. For example, a whole family of near field solutions

with constant 8Q/0z exist, indexed by n = 0,1, ....
oQ
)

z

1 Rs 2n+1
{%HQZ"(“) <T> -

4dm + 5 R, 2m+2
mz_:_o 4(m + 1)(m +n+2)(2(m —n) + 1) <7> sz+1(u)} , (A2.5.26)

where Q5 is a Legendre polynomial of the second kind. Each solution is again

Q{nt = (2n +1)(n+1) x

odd, but now diverges at 4 — =+1. In the far field, these behave as

3zn—|—1wR s, 99 oQ

{n} o
Q 2n+2 ¢ 62

s giurs <Py (), (A2.5.27)

all becoming dipoles (for wR,/c < 1), and with intensity

1 2

There are also a multitude of solutions which are not well-behaved as r — o

(i.e., the intensity diverges).
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- CHAPTER 3

A Simple Model of Plume Convection

Numerical studies of turbulent convection in a stratified atmosphere sug-
gest that large scale, steady structures (plumes) play a significant role in the
transport properties of the medium (Spruit, Nordlund and Title (1990), here-
after SNT; Stein and Nordlund (1989)). We develop a simple analytic model
of axisymmetric plumes to provide insight into these calculations. In particu-
lar, we discuss the asymmetry between upward and downward directed flows,
and develop an understanding of what sets the mixing length scale, commonly
used in astrophysical calculations. The fibrillar downflows reported in the sim-
ulations are shown to be an artifact of poor resolution. For plumes with a
fixed luminosity, we find that the scale of vertical mixing (the mixing length
)) depends very weakly on the Froude number (A F1/8). In addition, our
calculations suggest that flows of this type undergo a ‘phase’ transition at some
critical Froude number, F., below which the flow takes the form of a plume,

and above which the flow becomes a self-collimated jet.

The model differs in important ways from previous work describing plumes.
In particular, it is argued that energy bearing upflows are of a sufficiently large
scale that mixing on the horizontal boundary (entrainment) in not an impor-
tant effect in determining its shape or transport properties. While we neglect
entrainment as a mechanism for decelerating the flow, our model allows for a
steady, subsonic pressure excess to develop at some height in the atmosphere.

This is unavoidable if energy and mass are to be conserved simultaneously.
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The pressure center brakes the rising vertical material and directs it outward.
Most of the radial diversion occurs in a very thin layer, which gives the plume
an anvil shape, as is commonly observed in convective structures in the Earth’s
atmosphere. For sufficiently low Froude numbers, there is always a well-defined

top of the plume, with or without entrainment.
3.1 Introduction

The Mixing Length Theory (MLT') of turbulent convection has been widely
applied in astrophysical problems. The theory has a long history of develop-
ment, starting with the concurrent efforts of Schmidt, Taylor, and Prandtl,}
(Schmidt(1941); Taylor (1945); Prandtl (1952)) and reaching canonical form
in the work of Béhm-Vitense (1958). To the extent that MLT provides a rea-
sonable estimate of the convective energy flux, it is sufficient to address a large
number of problems in stellar structure and evolution. For the most part,
numerical simulations of convection in gravitationally stratified atmospheres
validate the mixing length concept (Chan and Sofia (1987)), but strongly sug-
gest that the physical picture presented in MLT is flawed in important ways,
and many features of the simulations cannot be readily interpreted within the
framework of MLT (SNT). The purpose of this work is to present a model of
turbulent plumes suitable for discussing the results of these simulations. The
eventual goal is to adapt the Mixing Length Theory to accommodate a more
physical view of the underlying processes involved in convection. To this end,

several observations should be made to place our concerns in context.

The character of convective elements. Mixing length theory avoids a pre-
cise description of convective structures, and ignores any constraints imposed
by the overall convective topology. The theory provides a physical picture of

rising and sinking blobs of material, traveling with a single convective veloc-

1 These authors essentially developed the same theory in parallel, although
they disagree on some of the details. See Wasiutynski (1946) for an early

review.
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ity over a mixing length, and breaking up into smaller eddies for a variety
of reasons. The connection between this picture and the apparent structures
in 3-dimensional simulations is somewhat remote. Stratification distorts the
buoyant eddy giving it an elongated shape. The essential structural compo-
nent of a convecting atmosphere may be properly characterized as a turbulent
plume (SNT), and a compelling theory of convection should be consistent with
this observation. Moreover, without reference to the structures or topology
of convection, MLT provides little insight into the problem of magnetic field
transport, and a somewhat limited framework within which to discuss non-local

effects, such as overshooting and undershooting.

The role of turbulent dissipation. The MLT makes implicit reference to the
Kolmogoroff cascade as a mechanism for dissipation. The theory of homoge-
neous isotropic turbulence (HIT) has been applied to MLT, and convincingly
argued to be relevant in several applications (Spiegel (1962); Goldreich and
Keeley (1977ab)). However, the simulations suggest that this may be superflu-
ous (SNT), since the topology of the flow does not allow for much interaction
among eddies. Even for very large Reynolds numbers, the mean flow may be
largely unaffected by turbulent mixing, which acts only to make the transport

less efficient by diluting the buoyancy of the convecting material.

The determination of the mizing length. The choice of mixing length
scale has long been a controversial subject (see Chan, Wolff and Sofia (1981)
and the references therein). Uncertainty about the value of the mixing length
parameter o remains the most unappealing feature of MLT. The intermittent
nature of the convective flows directly conflicts with the idea of a fixed mixing
length parameter, despite the fact that the mixing length hypothesis leads to
mean entropy profiles consistent with simulations (Chan et al. (1981, 1982,
1984, 1986, 1987, 1989); Stein and Nordlund (1989)). By considering a theory
based on plume transport, the mixing scale can be calculated explicitly and

self-consistently, allowing for variation as a fundamental feature of the model.
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The original theory of turbulent plumes is due to Morton, Taylor and
Turner (1956), who studied systems in which buoyant material is ejected from
small, point-like sources. The MTT theory was based partly on the work of
Schmidt (1941) who viewed the observed conical plumes as a balance between
horizontal turbulent diffusion of heat and momentum and vertical convection.
Assunﬁng the horizontal dependence of the fluid variables maintains a similar
functional form along the plume, MMT derived a set of equations expressing
the conservation of mass, vertical momentum and energy (buoyancy). In ad-
dition, the Boussinesq (1903) approximation and the entrainment hypothesis
of Batchelor (1954) were integral parts of the theory. The latter assumption
offers a way of reducing the complicated hydrodynamic phenomena to a sim-
ple statement: the infall velocity adding mass and cool material to the flow
is proportional to the local vertical velocity. The constant of proportionality
a ~ 0(1/10) depends on the choice of horizontal profile. The assumption of
horizontal similarity breaks down near the top of the plume where entrain-
ment erases the density contrast. Although analytic modeling of convective
plumes has received considerable attention in the meteorological and engineer-
ing literature, very few applications have been sought in astrophysical contexts,
with certain notable exceptions (Moore (1967); Scalo and Ulrich (1973); Ulrich
(1970abc); Schmitt, Rosner and Bohn (1984)).

While the MTT theory has been applied to the case of an extended source
(through the use of virtual sources), large plumes with radial scales of order a
density scaleheight present a new set of complications which must be addressed
by a new model. Energy bearing upflows begin with a horizontal scale on this
order and diverge upstream in order to conserve mass flux. The horizontal
diffusion resulting from shear at the edge of the plume cannot fully mix the
core, since the turbulence is advected away with the expanding flow. For this
reason, entrainment in large scale plumes should be viewed as a surface effect
which does not alter the transport along the central axis. Mixing is confined

to a boundary layer which serves mainly to join the structure to the ambi-
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ent medium. The mass, momentum and energy exchange at the entrainment
horizon can be neglected to lowest order. On the other hand, for converging
downflows, the antibuoyant material accelerates, producing large shears which

quickly detrain and dissipate the flow.

The organization of the remainder of the chapter is a follows. In Section
3.2, the plume model is developed, and the implications of the model are
discussed in Section 3.3. Section 3.4 discusses the limitations of the model and
offers some suggestions for future applications, including an effort to construct

a global theory of convection with the plume as the elemental structure.
3.2 The Plume Model

A plume is an isolated, steady (time-independent) flow structure super-
posed on the background atmosphere. For an upward-directed plume, the rising
material carries excess heat relative to the ambient gas. The extra entropy in
the region induces a buoyancy force causing the material to rise. Although
the term plume connotes expansion, we also use it to describe downward-
directed, convergent flows, driven by relatively cool material injected at the
upper boundary. In either case, if the outer boundary conditions are time-
independent, a steady structure will develop upstream, lasting as long as the

source is maintained.

Since efficient convection leads to an adiabatically stratified atmosphere,
we adopt a plane-parallel polytrope as a model for the ambient medium. For
such an atmosphere occupying the region z > 0, hydrostatic equilibrium implies
that po o< 2™, po & 2™, Ty = gz/C,p, and s = const., where pg, po, Ty, and
so are the unperturbed density, pressure, temperature, and entropy, respec-
tively. The constants g,C}, and m are the gravitational acceleration (assumed
uniform), constant pressure specific heat and polytropic index. The gas has a
constant I' equation of state, with I' = 1 4+ 1/m, and the density scaleheight
at depth z is given by H = z/m. This background state is appropriate if

the mean entropy deficit of the atmosphere is small compared to the entropy
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contrast inside and outside the plume. Although neutral stability is assumed
in the following derivation, one can easily extend our results to more general

environments.

For sub-sonic convection, the ram pressure of the flow is small compared
to the background pressure of the atmosphere (i.e., pov? < po ~ poc?, where ¢
is the adiabatic sound speed). Our treatment allows for a pressure perturba-
tion to develop on this order, as part of the hydrodynamic equilibrium. Most
theories of sub-sonic convection, including all models of buoyant plumes, have
neglected this based on the assumption that sound waves act quickly to erase
any local variations which develop in the pressure. This assumption is ques-
tionable for several reasons. First, the high frequency sound waves are excited
by forces out of equilibrium, only propagating when the net restoring force
must be balanced by changes in inertia. A starting plume can develop quasi-
statically, with gas pressure gradients balanced on the longer time scale by
advection of momentum. Hence, the cancellation of pressure perturbations by
sound waves occurs only to order §p ~ pv?. Second, numerous meteorological
structures with a net, sub-sonic pressure perturbation have been observed, all
being formed on timescales long compared to the sound crossing time (e.g., hur-
ricanes). Finally, the radial expansion of gas must be caused by some force with
a component in that direction. This is required to escort the fluid aside and aid
in conserving mass in the region of lower density upstream. Although earlier
models of plumes omit the horizontal equation of motion, turbulent Reynolds
stress is implicitly invoked as a source of horizontal momentum through the
entrainment hypothesis, but this is not applicable to the large-scale, unmixed
plumes. In order to incorporate the effect of gas pressure into our model, two
additional equations must be included to govern the horizontal momentum and

the perturbed pressure.

With the assumption of low Mach number (M = v/c « 1) convection,

it is appropriate to make approximations to the steady Navier-Stokes equa-
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tions. Since pressure variations are quadratic in the perturbed fluid velocity,
we retain the terms in the advective part of the fluid inertia, in contrast to
approximations performed to derive linear wave equations. In the mean flow
equations, for now, we neglect contributions from turbulent fluctuations which
lead to mass and entropy entrainment. These effects are treated as a geometric

correction below.

To develop a simple analytic model, we must assume a particular form
of the cylindrical radial dependence of the perturbed variables. For point
sources of buoyancy, two choices of profiles have been considered: a top hat
model in which all the fluid variables are constant out to the horizontal plume
boundary, and a gaussian model with one horizontal scale for the vertical
velocity and another for the buoyancy (density and entropy contrast). Since
both models lead to qualitatively similar equations, the choice is not critical,
except when relating model parameters to experiment. The gaussian ansatz has
been successfully applied to interpreting measurements of point source plume
(Schmidt (1941), MTT). For problems in which the source region is extended,
however, it is unlikely that small scale turbulence (which sets up the gaussian
profile) will be available, so it may be inappropriate to extend the laboratory
results to this case. Therefore, we adopt a quadratic profile to describe the
flow near the core of the plume, and consider only the lowest non-vanishing
terms in ’an expansion about » = 0. This procedure gives a simple set of
equations whose interpretation is physically meaningful, and avoids altogether

complications arising from profile modeling.

At any point along the central axis (r — 0), the vertical velocity must
approach a constant, and the pressure gradient must vanish. In addition, to
obtain closure in the plume equations, we assume the radial motion is homolo-

gous to lowest order v, o 7, and any rotation is of solid body type.f Therefore,

t This is equivalent to stating that the physical variables are analytic to first

order in their radial behavior. Notice that solid body rotation is consistent with
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consider an ansatz of the form
V= -W(2)z + rU(2)/R(2)¢ + rQ(2) + ..., (3.1)

for the mean velocity, and

8p = 6po(z) (1 - (72%5)2 +.. ) (3.2)

5p = 6po(2) (1 - (R_E‘Z)')z ¥ ) (3.3)

55 = 6s0(2) (1 - (ﬁy + .. ) (3.4)

for the mean values of the perturbed density, pressure and entropy. The above
ansatz is an expansion of the steady solutions to the Navier-Stokes equations
for » < R(z), where R(z) is the radial scale over which the perturbed variables
decay (the effective plume radius). One could take the above system as correct
to all orders, except that its substitution into the Navier-Stokes equations
implies that an additional scale (other than R(z)) is required to keep the system
from being overdetermined. At the plume horizon, the core flow is joined by a

turbulent boundary layer to the ambient medium.

The seven model functions include three velocity variables {W, U, (1}, three
thermodynamic variables {§po, épo, 850}, and the plume radius R. Since there
are only six relations among these functions generated by substituting (3.1) —
(3.4) into the steady Navier-Stokes equations, closure requires an additional

model relation for R. Notice that the outer plume radius is defined by

a,
&

5.(Rz) U £ 4g
TRz W f 4 (3.5)

the homologous scaling, which can be seen by computing d2/dz.
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yielding the required relation

dR
-W—=U (3.6)

Manipulating the other six equations for the model variables, we obtain four
first integrals (constants of the motion), a perturbed equation of state, and a

first order ordinary differential equation for U

v 2Q _,
-W— == + 'R, (3.7)

where the function Q = épo/po is the adiabatic part of the Eulerian enthalpy
perturbation (8 H = Q+T65S). Equation (3.7) is essentially the radial equation
of motion with fluid inertia balanced by the pressure gradient and a possible

centrifugal force.

The constants of the motion are the mass flux

M = pow R*W, (3.8)
specific angular momentum
J =QR?, (3.9)
entropy contrast
530
€= —, (3.10)
p

and the familiar Bernoulli constant

W2

where AH is the total enthalpy perturbation

Noting that Tydsg = €gz, the Bernoulli constant could also be considered to

include the buoyancy potential as an effective external field. Since the model
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describes the flow near the core of the plume, it is not surprising that the con-
stant B appears to lowest order (it is a constant on the central axis streamline,
which explains why there is no radial kinetic energy in this constant). More-
over, since B is the excess energy per unit mass carried by the flow, one can

form an alternative constant, the luminosity of the plume
L= MB = ponR*W(W?/2 + AH), (3.13)

which includes both kinetic and thermal contributions. If turbulent mixing is
added to the model (in the form of entrainment term corrections), none of the
integrals remain. In that case, mass, energy, and momentum are exchanged

with the external medium, so none of these quantities is conserved.

Since only two thermodynamic variables are needed to specify a state,
dpo does not appear in any of the above expressions. However, the density

perturbation may be computed by

8po = po (% — e) (3.14)

once @ is known from the solution to the above equations. (3.14) is the per-

turbed equation of state.

Notice that the above model equations involve two distance scales - the
scaleheight of the atmosphere and the plume radius. Hence, it is not possible
from dimensional analysis to argue that the mixing length (the vertical scale
for the plume which appears once the equations are integrated) should be
proportional to the scaleheight. In fact, we shall see that the mixing length
also depends on the ratio of the plume radius to scaleheight. However, if one
measures the radius in units of local scaleheights, the above system is a scale-
independent model of plumes. Thus, it describes plumes which originate at any
point in the atmosphere, provided that the background remains adiabatically
stratified.

To add the effect of entrainment to the model, we make the substitution

U — U + AU, where AU is the expansion velocity of the boundary due to
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turbulent diffusion (relative to the mean flow). According to the entrainment
hypothesis, AU = aW, where a is the entrainment parameter. In Appendix
3.1, we offer a justification of the constant a hypothesis. This extension of
the basic model is only appropriate for fully mixed plumes, either smali scale
upflows or converging downdrafts. The effect of entrainment on global rotation
is unclear at present, so we set {J = 0. Performing the substitution leads to

the following set of equations for the remaining five independent variables:

dR U

oW (3.15)
—W%g— = -2-]—? + aUTW (3.16)
48 _ g 2 (3.17)

%4_ = %"‘M (3.18)
Gdjj" =(1— C)%"‘aso. (3.19)

The constant C depends on the assumed horizontal profile; for tophat and
gaussian profiles, C = 1/2. The additional term in the horizontal momentum
equation (3.16) is a model for the turbulent Reynolds stress. (3.17) implies that
the energy carried by the flow is altered only by an exchange of heat with the
atmosphere (dB = Tydésg), and equations (3.18), (3.19) model the entrainment
of mass and buoyancy into the plume (they agree with the canonical plume

models).
3.3 Implications of the Model

The system of ODE’s (3.6),(3.7) are integrated from the source end of the
plume in the direction of the initial vertical velocity, maintaining the constancy
of the integrals (3.8) — (3.11). The solution depends only on the boundary
conditions at the origin of the flow, which have the form of initial conditions

at a depth z = 2. To reduce the size of the solution parameter space, we
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Figure 3.1: Sample Radius, Horizontal Velocity, Vertical Velocity, and En-
thalpy Perturbation for Updrafts Without Entrainment. The equations were
integrated with R/H=0.5 and F, = 0.15. The singularity in radius occurs at
z = 0.554. An entrainment parameter o = 0.1 was used for all the calculations.

simplify our analysis to the case of no rotation (2 = 0), and require that the
perturbed pressure and horizontal velocity vanish at the starting boundary. In
that case the solutions to the zero entrainment model are scale-invariant and
depend only on the dimensionless Froude number F = W 2 /egzy and the ratio

of initial plume radius to the local density scaleheight 8 = R/ H,.T

Figure 3.1 shows the behavior of the model variables for an upward-
directed plume without entrainment. When entrainment is neglected, the
updraft generically maintains a constant radius for most of the penetration

distance, until suddenly the radius diverges. This divergence is caused by a

t Our definition of the F differs by a factor of Ry/zy from what is normally
used in the literature. This makes comparison of the energy terms in equation

(3.11) more convenient.
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Figure 3.2: Sample Radius, Horizontal Velocity, Vertical Velocity, and En-
thalpy Perturbation for Entrained Downdrafts. The equations were integrated
with R/H=0.5 and Fo = 0.15. The downflow is also detrained by mixing.
mathematical singularity in the model equations, to which we devote a sub-
section below. When entrainment is included for the downdrafts, the plume
diverges is the same fashion, as may be seen in Figures 3.2 and 3.3. Note the

approximate conservation of the constants e, M, B and L.

The Figure 3.4 plots the dependence of the penetration scale on Froude
number, for a fixed value of the initial plume radius (for updrafts without
entrainment). The mixing scale A depends on F as A o« F1/% a scaling law

that is justified in section 3.3.2.

Above some critical Froude number F., the character of the flow shifts
from a plume to a jet, although the strong shear in these solutions implies that
the approximation used to derive the model equations has broken down. This
shift is similar to a phase transition, because of the way the penetration scale

A approaches Amax (the entire atmosphere). The singularity fits a power law of
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Figure 3.3: Sample Energy, Bernoulli Constant, Mass Flux, and Luminos-
ity for Entrained Downdrafts. The equations were integrated with R/H=0.5
and Fy = 0.15. Note the approximate conservation of these quantities.

the form Apax — A ~ A|F — F|7, with v < 1. Typical values of F, are of order
10 %, so we can confirm the assumption of the mixing length theory that the

kinetic energy flux can be neglected when compared to the enthalpy term.

The next few subsections focus on some of the details of the qualitative

results of this model.

3.8.1 Nature of the Anwil Singularity

The first equations of motion (3.6) can be written as

d 1\  por
p (R) = (3.20)

using the mass flux constant. Integrating (3.20), one obtains a relation for the

plume radius

Ro

R(z) = — :
1-Ro [dz222l

(3.21)
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Figure 3.4: The Mixing Length as a Function of Froude Number for
Upward-Directed Plumes. The best fit power law exponent was 0.345, close to
the scaling law value of 1/3 discussed in the text.

Provided the plume is always expanding (U > 0), and rising z < zo, there

is a potential singularity in the plume equations at a height z = z. defined

implicitly by

0=1-R, /dzp‘”.rU. (3.22)
M

Ze

There is no guarantee that this condition will result from an arbitrary choice of
initial conditions, but in practice it always occurs for plumes with sufficiently
low Froude numbers. If the radius of the plume does diverge at some finite
depth, it appears that the plume has an effective mixing length A = (29 — 2.).
This can be computed by solving the plume equations.

To estimate the behavior of R(z) as z — z., consider the following ar-

gument. Near the critical depth z., the enthalpy perturbation approaches a
constant @ — Q.. (That is, it changes much less rapidly than the diverg-
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ing R or U). Making this approximation in (3.6),(3.7), the system has an
approximate integral

U? ~ 4Q.log(R)1. (3.23)
Using this integral again in (3.20), one obtains an asymptotic relation

oo

VaQ: dR
Kc (Z—ZC)NR/W-—F(I/2,IOgR)

) I

where K. = Wy R2po/pcis a constant and I is the incomplete Gamma function.

Inverting the transcendental asymptotic relation to lowest order in |z — z.|, one

finds that the radius and horizontal velocity diverge as
K. 1 1

VAQc z — zc \/—log (z — z.)

R(z) ~

(3.25)

and
U(z) ~ 2\/_Q—C—\/ —log(z — z.). (3.26)

The divergence of the plume radius is very nearly like a simple pole. However,
while the factor m 1s a slowly varying function, with higher order
terms, it may give a substantial contribution to (3.25),(3.26). Combining the
two expressions, another meaningful relation 1s
RU ~ -—-—————A{—-—-——— (3.27)
mpole = 22)

Equation (3.27) can be used to show that mass is conserved as the plume

spreads out. The horizontal mass flux is

M, = / d2' p(z")2r R(zU (') g((;)) ~ M (1 +0 (@1—_—;—)» , (3.28)

Ze

t Although the argument of the logarithm has dimension, bear in mind that
this is an asymptotic relation. Any term involving a fiducial distance scale can
be neglected in the asymptotic expansion, but may contribute corrections of

order unity due to the weak divergence.
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so the above divergence does not lead to contradictions with the conservation

equations.

Inspection of the plume equations reveals that non-linearity is responsible
for producing this singularity. Using the mass flux constant to rewrite the
equation for U, one finds that both R and U increase unabated provided the
pressure excess remains positive. In addition, the rate of increase in radius
depends non-linearly on R and U. However, for sufficiently high Froude num-
bers, in order to conserve both mass and energy, the pressure perturbation
must become negative, inducing an infall which continues to accelerate. In
this case, a self-collimating jet appears, which is possibly destabilized by the

sudden strong shear.

The above anvil singularity does not appear in models of plumes which
neglect the pressure perturbation, and hence, has gone unnoticed in previous
work. For those models, the flow is decelerated (or detrained) by dilution of
the buoyancy when mass and lower entropy material is mixed at the plume
horizon. Schmitt, Rosner and Bohn (1984) correctly point out an inadequacy
- of those models, that the material always remains buoyant (or anti-buoyant),
and hence, it continues to accelerate without end. This problemis overcome by
the inclusion of a pressure perturbation in the model. In addition, the model
suggests that one need not invoke entrainment to regulate the accelerating flow;

this naturally occurs by conservation of energy, mass and momentum.

Finally, we note that the anvil singularity occurs only if the flow is 3-
dimensional. If one considers a 2-dimensional convective topology (a sheet
source, as opposed to a bubble source), the resulting plume equations are
identical to those above, with one exception. Mass conservation along the line

now requires the mass flux per unit length
My = poWR (3.29)

to be a constant. (In this case, R is the horizontal scale of the plume in the

direction normal to the symmetry axis.) The above demonstration of the sin-
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gularity is no longer valid. In fact, one can show that in 2-dimensional plumes,
the vertical rise may be unbounded (see Appendix 3.2). This is interesting be-
cause thé cylindrical flows may be unstable and take on a 2-dimensional shape.
Moreover, it is noted several times in the simulations (see Stein and Nordlund
(1989)) that the convection ‘cells’ appear sheetlike.

3.3.2 Scaling Relations for The Mizing Length Parameter

The dependence of the mixing length on the initial plume radius Ry and
Froude number F can be determined from the following argument. The sin-
gularity in the system (3.6),(3.7) appears when AR ~ R and AU ~ U, while
the vertical velocity W — 0. At that point, for very low Froude numbers
F < 1, conservation of energy forces the enthalpy perturbation to behave like
Q ~ €g(zo — z) (only these two terms survive in the Bernoulli constant as
W — 0). Setting the mixing length A ~ (20 — z.) in the ODE’s (3.6),(3.7)
gives a scaling relation

A~ R3zF. (3.30)

In terms of the local density scaleheight, the mixing length parameter behaves

like 2/s
R
an~ FU3 (-—-"-) , (3.31)

when F < 1.1 For modest Froude numbers up to the critical value F < F. <
1, the enthalpy excess driving the horizontal flow approaches the Bernoulli

constant, which implies a scaling relation
A~ RoF/2, (3.32)

In either case, the mixing length is not simply proportional to the scaleheight;
it depends on the initial horizontal scale of the flow, as well as the Froude

number.

1 Unfortunately, a is used for both the entrainment function and the mixing
length parameter. This hints at the fact that the two fields have not been

joined.
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The luminosity of the plume scales as

R\ 2
L <—£) FU2(1 4+ F). (3.33)
Hy
For plumes carrying a fixed luminosity, with low F, Ry « HoF~1/%. Hence,

energetically important plumes mix on a scale
Ao FU8, (3.34)

for low Froude numbers. One infers that the mixing length is very weakly
dependent on the initial conditions which gave rise to the plume. Moreover,

expressing (3.34) in terms of the plume radius, one has

Ry —2/3
A o (Fo) , (3.35)

at fixed luminosity. In the absence of entrainment, smaller plumes would trans-
port energy over a longer path. When entrainment 1s included, only the larger
plumes with Ry ~ Hy are not detrained by turbulent mixing. On the other
hand, if the plume gets too large, the constant luminosity mixing length de-
creases, making the transpoft process less efficient. A compromise between
these two effects is reached when the plume radius is of order a local scale-
height. Since the model is scale invariant, this statement is true of all plumes,
regardless of their points of origin in the atmosphere. For Froude numbers
approaching criticality, these arguments remain valid, although the scaling ex-

ponents differ.
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3.8.8 The Downflow/Upflow Asymmetry

Many authors have noted the asymmetry between downflows and upflows
in a stratified atmosphere (see Stein and Nordlund (1989)). The simulations
suggest a characterization of downflows as fibrillar, spiraling and convergent,
often penetrating through many scaleheights of atmosphere. When entrain-
ment of mass into the downdraft is allowed, the structure quickly dissipates
and loses coherence. The result of the simulations appears to be caused by a
lack of resolution, since the flow converges to a scale for which the Reynolds

number of the code is too small to simulate entrainment correctly.
3.4 Discussion

The utility of the plume as a meaningful elemental flow requires several
assumptions. The source must be maintained for more than one rise time, the
flow must not cause other motions which disturb the source, and the structure
must be stable. In order to sustain the structure, it must be fed with heated gas
at its lower boundary, which depends on the environment in which the plume
resides. Plume lifetime and stability are the subject of a future investigation.

2o
One of the unfortunate features of the model is that the rise time 7 = %‘3

Ze

formally diverges, although it is clear that the model breaks down when the

singularity is approached.

Petrovay (1990) has offered a generalization of MLT which should be men-
tioned by way of comparison. Two topological types (ascending and descend-
ing flows) and two filling factor classes (cellular and fibrillar) are identified in
the simulations, leading to four morphological categories. Making plausible
assumptions about the statistical distributions of horizontal and vertical ve-
locities, Petrovay forms a closed set of equations from which the filling factors
can be calculated. The model is used to obtain a basic understanding of the
overall topology of convection, and its use would be more compelling if the

distribution function could be understood better.
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In future work, we plan to develop a global theory of convection in which
the atmosphere contains an ensemble of independent plumes. Schmidt, Rosner
and Bohn (1984) have suggested one way to form a closed set of stellar structure
equations using a plume model, as have Scalo and Ulrich (1973). We anticipate
making only minor refinements to make our model suitable for applications.
Since the behavior of the solutions is scale invariant, we envision the convecting
environment consisting of a network of nested plumes, with smaller plumes high

in the atmosphere fed by the heat transported by the larger structures below.

The ideas presented in this chapter should also have some bearing on
the theory of the excitation of the solar p-modes, as well as the transport of
magnetic fields through the solar convection zone. A more physical picture
of convection may provide insight into the detailed modeling of acoustic wave
generation. Moreover, an appreciation for the topological properties of the flow
is required to understand the redistribution of fluxtubes, which is at the heart

of the dynamo problem.
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Appendix 3.1
An Alternative Derivation of the Entrainment Function

The entrainment hypothesis of Taylor (1945) holds that the infall velocity
at the boundary of a turbulent buoyant plume is proportional to the vertical
velocity along the central axis. The ‘constant’ of proportionality, a, is known
as the entrainment function. Several forms of the function have been proposed
(Schatzmann (1978), Schmitt et al. (1984)), although a constant entrainment
function is adequate for our purposes.

Consider a turbulent flow which is steady (0; = 0) and axisymmetric
(0p = 0) in the mean field. Within the Boussinesq (1903) approximation, the

continuity equation becomes
V - (po¥) = 0. (A3.1.1)

Hence, there exist well-defined streamlines for the mean flow, with stream

function, M:
110rM
Vy = *p—;‘;‘" a’]‘ (A312a)
_ 1 OM

Notice that (A3.1.1) is linear in ¥, so the mass flowing between any two stream
surfaces is conserved within this approximation. To say that the plume ‘en-
trains’ mass is to say that the plume radius does not coincide with a streamline.

For an arbitrary function R(z), one has an identity

Eé—[po(z) /0 ) dr27rriz(r,z);l :szPO{%vz(R,z) -ET(R,Z)}. (43.1.3)

Define the entrainment velocity as

dR

—
dz

(R, z) — 5,(R, 2). (A3.1.4)

ve(z) =

v, is the infall velocity at the boundary. One is free to define R in any manner.

However, if self-similarity of the radial profile is to remain valid, a particular
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definition may be required. If W is the area-averaged vertical velocity, then

the entrainment function is given by

a = v.(z)/7.(0, 2). (A3.1.5)
Moreover, the plume radius obeys the equation
dR _ wgr(R,2) 7.(0, 2)
& TR TR (43.1.6)

The assumption that W scales with the central and outer vertical velocities

then justifies the model equation (3.15) up to a sign convention

As an alternative, consider a plume radius defined implicitly by the rela-

tion
8§5(R(2),z) = n85(0, 2), (A3.1.6)

where 7 < O(1) is a constant. This equates the plume radius with the surface

on which the entropy excess is a fixed fraction of the value on the central axis

Then the energy equation implies

81n 165(0,2)]

— 5 bl A S S}
dig - ;R((JJ;:)) - f‘(E 8 TR (43.0.7)
(R.2)  w,(R,2)ZE(R,z) 2alFSal

The later two terms are approximately constant if the eddy diffusion coefficient

scales like D ~ Rv,.
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Appendix 3.2

Two-Dimensional Plumes

The possibility of 2-dimensional (sheet-like) plumes is sufficiently great to
warrant some consideration (SNT)). In this case, constancy of the mass flux
along the sheet (M L = poWR = const.) allows the equation for the horizontal

plume scale to be written

dln(R) _ _pU (43.21)
dz ML il
This equation has exponential solutions
R(:) = R(xa)exp{ [ depal/(12)}, (43.2.9)

which need not possess singularities as in the 3-dimensional case. This does
not appear to be a problem, because the power law divergence resumesin 2+ ¢

dimensions.
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CHAPTER 4

Observations of High Degree Solar p-Modes

High resolution observations of the solar p-modes (£ < 2000) are presented,
with measurements of the dispersion relation and estimates of the mode ampli-
tudes. The data set consists of a 4 hour time series of disk-centered Doppler im-
ages taken under good seeing conditions with a 7700 A Cacciani Cell magneto-
optical filter at Big Bear Solar Observatory. The mode energy distributions
inferred from the data fit the Boltzmann (exponential) form extremely well,

offering evidence in support of the stochastic excitation model.
4.1 Introduction

The solar oscillations of high spherical harmonic degree (£ 2 100) have
been observed by various groups in recent years (Tarbell et al. (1988); Lib-
brecht and Kaufman (1988); Tomeczyk (1988); Dolfuss (1990); Kaufman (1991);
Rhodes et al. (1991); Fernandes (1992); Fernandes et al. (1992)), but impor-
tant questions remain unanswered. Accurate estimates of the mode energies
and lifetimes (coherence times) are still unavailable for this range of horizontal
wavenumbers, although reliable frequency measurements exist. The difficulty
with obtaining quality measurements of mode energies is due to the degradation
of spectral power on short scales from atmospheric seeing, and the determina-
tion of coherence times requires high quality observations of duration longer
than the predicted lifetimes, of order days to weeks. The decline in power can

be extreme, by a factor of as much as two decades.

Since the eigenfunctions of the highest horizontal wavenumbers are lo-
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calized in the top layers of the sun, further study of these modes is required
to probe this important region. Existing solar models are most uncertain in
the few scale-heights beneath the photosphere, due to our incomplete under-
standing of compressible convection and order unity Mach number turbulence.
Moreover, according to the prevailing model for the excitation and damping
of the p-modes (Goldreich and Kumar (1990,1991); Goldreich, Murray and
Kumar (1994); Goldreich and Murray (1994)), strong turbulence in the upper
convection zone generates, absorbs and scatters the waves. Hence, improve-

ments in observation in this regime are critical to test predictions of the theory.

In this chapter, we analyze a time series of velocity images (Dopplergrams)
taken with a magneto-optical filter mounted on the 10 in refracting telescope at
Big Bear Solar Observatory (BBSO).t The filter was the 7700 A (Potassium)
Cacciani Cell described by Cacciani (1993). Aside from providing estimates of
the mode frequencies and amplitudes, our observations offer a suitable test for
the stochastic excitation model of Goldreich et al. (1994). The model makes
specific predictions regarding the dependence of mode energy on frequency
and wavenumber. The theory holds that modes with frequencies at the peak
of excitation (v ~ 3.3 mHz) are in ‘thermodynamic equilibrium’ with the con-
vective eddies in the exciting region below the photosphere, and all should have
the same energy according to equipartition. The low n p-modes and f-mode
should depart from this standard, however, since these are nearly incompress-
ible are more difficult to excite. (See Chapter 2 and Goldreich et al. (1994) for
an anticipation of this effect.) In fact, such a decline in peak mode power is
found in our data, particularly for the f-mode. Moreover, the instantaneous
mode energy distributions inferred from the data follow a Boltzmann profile,

in agreement with the theory.

The observation was partly motivated to test certain results reported in a

t A video of these observations is available from BBSO by reference to the

observation date.
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thesis by Kaufman (1991). To some extent, the work described in this Chapter
is a reproduction of the main part of that thesis. For that reason, much of our
technique is based on Kaufman’s work. The main difference between the two
observations is that Kaufman used a Lyot filter, and a Cacciani Cell was used
to obtain our data. For the most part, the latter filter results in images of
better quality. There are also several instances in which different approaches
to data reduction and analysis were taken, and these are noted below. (Refer

to Kaufman (1991) for a detailed discussion of the observational technique.)

The remainder of the chapter is structured as follows. In section 4.2, the
data set and observational parameters are described. Section 4.3 discusses the
reduction and analysis performed on the data. The final section discusses the

implications of our observations and compares the results to previous work.
4.2 Description of Data Set

The Data Set consists of a sequence of velocity images taken at the center
of the solar disk. The sampling was done at a rate of one image per minute,
yielding a Nyquist frequency of 8.333 mHz. Our goal was to obtain a time series
of duration several hours under good seeing conditions. Over the course of a
two week observation run, only one sequence of high quality data resulted. In
addition to the Doppler data, every 15 minutes the telescope was pointed to the
limb where a white light image was taken to measure the Modulation Transfer
Function (MTF). (See section 4.3.2 for a discussion.) Table 4.1 outlines the

parameters of the observation.

Calibration measurements were performed before and after the time series,
since the telescope was busy in the interim period. The dimensions of the field
of view were determined by fixing the telescope on a small sunspot, moving a
known angular distance, and measuring the displacement of the spot center in
pixels corresponding to that angle. The full field of view was determined to be
304" x 228" or 224Mm x 168Mm. The average velocity signal was measured

at two locations along the solar equator and related to a physical velocity by



I A

comparison with the known solar rotation, after correcting for the motion of

the Earth.

Although the observation continued for 7 hours, only the first 4 hours
were selected for reduction. This first segment offered an uninterrupted series
of uniformly good seeing, while the latter period had several gaps in the data
and a general decline in image quality. The increase in observation time would
only improve the frequency resolution by a factor of two, and the benefit is
offset by image gap error and loss of coherence in the highest wavenumber
modes. Moreover, it is unlikely that the observed mode linewidths are related

to the actual lifetimes, expected to be of order several days.

Table 4.1

Observational Parameters

Date 1991 August 9
Time (UT) 16:30-20:30
No. of Images 240

Telescope BBSO 10 in Refractor
Image Size 304" x 228"
Number of Pixels 497 x 473
Horizontal

Image Scale 0.593" /pixel
Ry 948"

K-Space Scale

Factor, d¢/dk 21.38
Qualitative Seeing GOOD
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4.3 Data Reduction and Analysis

Reduction and analysis of the data involved several steps briefly outlined
in the subsections that follow.

4.8.1 Fourier Analysis of the Data

The calibrated signal in the Dopplergrams gave a digitized surface velocity
map v(e,y,t). (Figure 4.1 shows a typical Dopplergram.) After trimming the
noisy pixels from the edge of the image, the Fourier components #(k s, ky, t) for
the plane-parallel projected horizontal wavefunction were computed using the
standard FFT algorithm with a Welsh window. (See Press et al. (1992) for a
description of the numerical procedure.) The wavevector magnitude k = |k| is
related to the spherical harmonic degree [ by the scale factor dl/dk in Table
4.1. For each k, a temporal FFT was performed on the time series #(k s, ky, 1)
resulting in positive and negative frequency spectral components ¥(kz, ky,w)
with a frequency resolution 69.4uHz. The velocity power peaks at certain
frequencies corresponding to the different radial node numbers, n. Spikes in
the power spectra appear like ‘emission lines’ in an electro-magnetic spectrum. -
Finally, the surface velocities of the modes, vg(k,n), were computed by doing
a multi-gaussian ridge fit of the power spectra. (See Libbrecht and Kaufman
(1988) for a discussion of the ridge fitting algorithm.) A contour plot of the
Spectral Power is given in Figure 4.2, and Figure 4.3 shows the power spectra

for various values of Z.

The use of the term mode to describe the observed waves is somewhat
misleading. The horizontal modes occur because of the periodic boundary
condition on the sphere, which is not applicable to our lirﬁited field of view.
Moreover, resolution in wavenumber is limited by the image scale, and each
Fourier component k corresponds to d¢/dk ~ 20 global modes. For this reason,
groups of modes (wave packets) were observed, rather than quantized, global
modes. Traveling at the group velocity vy = Ow/0k ~ w/2k, any wave train

has a transit time across the image of a few hours at most. Hence, these are



Figure 4.1: A Typical Doppler Image. The high quality of the data is seen
in this image. The top of the graph is the eastern direction; one can see a
trend in the signal from light to dark which results from the line-of-sight solar
rotation.

observations of traveling disturbances, not modes. A future study of these

wave packets using wavelet analysis could prove interesting in this regard.
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Figure 4.2: Contour Plot of Power Spectra. The uncorrected power is
shown, and the axes are the integer indices from the Fourier transform grid.

4.3.2 Mode Frequency and Energy Measurements

The mode frequencies were taken from the ridge fits described in the pre-
vious section. A plot of the dispersion relation for the observed waves (an w—k
diagram) is found in Figure 4.4. The ridge structure is apparent up to order
¢ ~ 2000. Dark triangles are from this data, horizontal lines from Kaufman
(1991), and the theoretical eigenfrequencies of Kumar (1988) (using the solar
model of Christensen-Dalsgaard (1982)) are shown in fine points. The lowest
ridge corresponds to the nodeless (n = 0) f-mode, the incompressible sur-
face gravity wave with theoretical dispersion relation w? = gk. There is good
agreement with theory for our observed f-mode frequencies, which depart from
Kaufman’s (1991) reported negative frequency shift of order 10s to 100s of yHz.
On the other hand, our p-mode frequencies agree more with Kaufman, showing
a trend which is consistently lower in value than predicted by the model. The

k-space scale factor was adjusted to match the measured low-£ frequencies, and
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Figure 4.3: Selected Power Spectra. The peaks correspond to the different
values of n for the fixed wavenumber.

this corrects for the systematic frequency shift due to background power with

gaussian ridge fits (see Kaufman (1991)).

The mode energies are related to the surface velocity through the mode
mass, M(¢,n), as E({,n) = M({,n)v4(¢,n). Once again, the eigenfunction
solver of Kumar (1988) was used to determine the mode masses. Figure 4.5
shows the inferred mode energies on a logarithmic scale, as a function of [ for
each of the 8 ridges seen in the data (n=0,1,...,7). Figure 4.6 plots the mode
energies with a correction for the seeing degradation (the Modulation Transfer
Function). (The next section describes this correction.) Finally, peak energy
per mode is shown as a function of degree in Figure 4.7. There is an apparent

decline in mode energy with increasing £ even with a seeing correction.

4.3.8 The Inferred Modulation Transfer Function

The degradation of velocity images due to atmospheric seeing was cor-

rected in the spatial spectra using a technique developed by Kaufman (1991).
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Figure 4.4: The Measured Dispersion Relation. The dark triangles are this
data, the horizontal lines from Kaufman’s 1987 data (1991), and the theoretical
frequencies are shown in fine points.

The smearing of light on the limb of the sun offers a quantitative estimate of
the Point Spread Function (PSF). This was determined by inverting the dis-
tributed light profile with respect to a theoretical limb intensity function. The
MFT is then found as the FFT of the PSF. A simple gaussian PSF with a
FWHM of 1" was used to correct the data, and this was consistent with the
limb smearing scale. The correction for power degradation is largely uniform
in time, so a single MTF was used. This differs from the technique of Kaufman
(1991), who corrected the spatial spectra before performing the temporal FFT.
At several arcseconds of scale, the MTF is down by a factor of order 10, so the
correction is quite large. The tail of the MTF is quité uncertain in this region
as well, due to its sensitivity on the limb light profile model. For this reasomn,

more elaborate modeling of the MT‘F lacks justification.
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Figure 4.5: The Measured Mode Energies as a Function of Frequency. The
different ridges are marked as follows: dark triangles for the f-mode (n = 0),
bold skeleton triangles for p; (n = 1), light skeleton triangles for p; (n = 2),
open triangles for ps (n = 3), and horizontal lines for ps — p7 (n = 4,5,6,7).
Note the decline in mode energy with decreasing n (increasing {) at fixed fre-
quency.

4.3.4 The Inferred Instantaneous Energy Distribution

The stochastic excitation model predicts that the observed mode energies
should follow a Boltzmann (exponential) distribution (Kumar, Franklin and
Goldreich (1988); Gabriel (1993ab)). In Appendix 4.1, we give an independent
account of this result, showing that this distribution is a stationary solution to
the Fokker-Planck equation for the state distribution of a damped harmonic

oscillator driven by White Noise.

The spatial Fourier amplitudes, |9(k, t)|2, were used as proxy for the mode
energies at fixed k. For sufficiently high wavenumbers, only the f-Mode is
substantially excited (£ 2 1500). Fixing k and the radial node number n, all

the modes should the same mass and reduction in amplitude from seeing. (The
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Figure 4.6: The Measured Mode Energies as a Function of Frequency (Cor-
rected). The different ridges are marked as follows: dark triangles for the f-
mode (n = 0), bold skeleton triangles for p; (n = 1), light skeleton triangles
for p; (n = 2), open triangles for ps (n = 3), and horizontal lines for ps — pr
(n =4,5,6,7). Note the decline in mode energy with decreasing n (increasing
1) at fixed frequency still exists when a correction is made for loss of power due
to seeing.

MTF is assumed to be a function of k£ only.) Hence, up to a constant change
of scale along the ordinate, at each time slice, the distribution of |3(k,1)|?
resembles that of the instantaneous distribution of mode energies. The data
are slightly contaminated by granulation velocities in the highest wavenumbers
and from the inclusion of the n = 1 modes at lower £. The inferred mode
energy probability distribution is plotted in Figures 8 a-c for a selection of
wavenumbers. Since the energies are uncertain up to a constant multiplicative
factor, no scale is given of the energy axis. The exponential distribution with

the same observed mean is also plotted. Although the theoretical curve is not

a best fit, it conforms well to the data.
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Figure 4.7: Variation of Peak Modal Energy with Wavenumber. The open
triangles are the uncorrected data, and dark triangles are for the seeing cor-
rected energies. In both cases, the decrease in mode energy is approximately
exponential.

4.4 Discussion

The central result of this analysis is the demonstration of the exponential
distribution obeyed by the mode energies. This favors the theory of stochastic
excitation, but does not necessarily rule out other proposed mechanisms. For
the most part, our mode energies and frequencies are in qualitative agreement
with Kaufman (1991), although there remains an unresolved discrepancy con-
cerning the f-mode frequency shift. There is substantial agreement with the
energy measurements of Rhodes et al. (1991), and departures of order unity
in the estimates are accounted for by the crude correction of the MTF to the

spectra. We believe the decline in power with decreasing n is real.
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Figure 4.8a: Selected Mode Energy Probability Distribution Function. The
sample includes 565 modes £ ~ 500. The error bars cover the range of a prior:

probabilities consistent with the distribution.

Appendix 4.1

Fokker-Planck Equation for Stochastic SHO Excitation

Consider a damped harmonic oscillator with mass, M, frequency, wg, and

damping constant, I'. If the oscillator is subject to a time dependent force, the

amplitude obeys the equation

F(i)

§ 4T +wie = o,

M
Let the driving force, F', be due to white noise

P&
Mw,  dt’

where ¢ is a Wiener Process obeying

<dé >=10

(A4.1.1)

(44.1.2)

(A4.1.3)
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Figure 4.8b: Selected Mode Energy Probability Distribution Function.
The sample includes 1245 modes £ ~ 1000. The error bars cover the range
of a priori probabilities consistent with the distribution.

and

< (d¢)? >= Ddt, (A4.1.4)

according to the Ito Calculus (see Karatzas and Shreve (1988)). The constant
D is the diffusion coefficient of the process.

Define Coordinates

=2 (A4.1.5)
zy = &/wy (A4.1.6)

and a mode energy
Elzy,22) = M;S (22 + 22). (A4.1.7)

Then the Fokker-Planck equation for the probability density p(z1, 2,1) is given
by

18p 0p 0 42 Op
o Bt + 36 = 3o (amzp-r-/\DE;-z—>, (A4.1.8)
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Figure 4.8c: Selected Mode Energy Probability Distribution Function. The
sample includes 2405 modes £ ~ 2000. The error bars cover the range of a prior:
probabilities consistent with the distribution.

where
¢ = arctan(z/z2), (A4.1.9)
a=TI/w, (A4.1.10)
and
2y = D/2ws. (A4.1.11)

The stationary distribution (0p/8t = 0) is given by
T 2, .2
p(z1,z2) = =D eXP{"P/D(% + 3"2)}> (A4.1.12)

and this is the only such solution which is normalizable. Using (A4.1.7), the
joint distribution (A4.1.12) corresponds to a mode energy distribution of the

Boltzmann type
- 1 =
p(E) = = exp{—-E/E}, (A4.1.13)
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where

E = MuwiD/2T (A4.1.14)

is the mean energy of the oscillator. This derivation agrees with that of Kumar

et al. (1988).

For comparison with the solar p- and f-modes, the mass behaves like
the mode mass, the frequency like the mode ‘frequency, and I' is related to
the linewidth. Although the simple White Noise model may be hard to justify
from first principles, it provides insight into the mode energy distribution. One

expects the actual excitation to be broad-banded in frequency.
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CHAPTER 5

Variational Principle for an Incompressible Fluid

The equation of motion for an inviscid, incompressible fluid is derived
from a variational principle without using a Lagrange multiplier to impose
the constraint of incompressibility. These results may be used to investigate

non-linear coupling of incompressible modes.
5.1 Introduction

Variational principles in fluid dynamics have proven useful in solving wave
interaction problems (Dewar (1970); Kumar and Goldreich (1989)). The origi-
nal principle for compressible fluids due to Herivel (1954) has been generalized
to magneto-fluids (Katz (1961); Su (1961); Newcomb (1962); Lundgren (1963)).
The incompressible case is less tractable, but admits broad application, from
the study of water waves in Naval Research to the calculation of three mode
coupling among g-modes (Wu et al. (1994)). In this chapter, a variational
principle for the incompressible fluid is presented for later use in calculations

of this type.

The natural manner in which to deal with incompressibility is to include
a ‘force of constraint’ in the action by means of a Lagrange multiplier. While
this method works, another approach is available which is more suitable for
calculation. The Lagrangian density £ is varied with respect to two fields:
one component of the displacement field (£,), and the scalar potential for
the solenoidal part of the transverse velocity (A4 : v, = V x (A4%)); this
field decomposition is permited by the fact that only two components of the
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velocity field are independent for an incompressible fluid. Since the pressure
does no work on the fluid (—pV - v = 0), it contributes no potential energy to
the Lagrangian. In fact, it appears nowhere in our calculation. The ‘force of

constraint’ is manifest in the choice of generalized position variables.

The Lagrangian can be expanded to any order in £, and A. The second
order yields a linear wave equation and the three mode coupling is described by
the third order. Assuming that V ;po = 0 and Fi,y = —Vp (i.e., a conservative
constraint), we see below that the field A is of order O(é2). It does not appear in
L until the fourth order, aﬁd hence, does not affect the three mode interactions.
Although £, evolves independently of A in the lowest three orders, A may be
computed once ¢, is known to lowest order. Variation of the fourth order £

with respect to A gives the appropriate equation.

In the next section, the variational principle is derived and applied to the
problem of gravity waves in a power-law atmosphere. The second and third
order contributions to £ are calculated explicitly, using an infinite-dimensional
configuration space of the complex wave components {£,, }, {Ak}. Finally, the
Hamiltonian is given, along with some technical points in the last section to be
understood when applying these results. Appendix 5.1 clarifies the geometric

issues in the discussion, and Appendix 5.2 exhibits our Fourier conventions.
5.2 Derivation of the Principle

The equations describing an inviscid fluid are

o)
p (—(% + V- Vv> = —Vp+ Fext (5.1)
Op
—B*'t'+V-Vp~O (5.2)
and
V.v =0, (5.3)

where p,p,v and Fex are the density, pressure, velocity and external force,

respectively. We seek a variational principle to describe fluid motions with



- 87—

respect to a background state of hydrostatic equilibrium (v = 0). To simplify
the discussion, we restrict our attention to the case in which the unperturbed
density is of the form po(z) « 2™, and where the only external force is a

constant gravitational field Feyy = pg2.

It is convenient to consider the Lagrangian displacement field defined as
£(x,t) = x'(x,t) — x, (5.4)

where x' is the position of the fluid element located at x in the unperturbed

state. The field £ is related to the velocity through the implicit relation

VI, 8) = vix + €05 1,1) = (1), (5.5)
and to the density by
J(x,8) = p(x + €(x, ), 1) = po(x). (5.6)

Equation (5.6) is equivalent to the statement of mass conservation (5.2), while
(5.5) is a fundamental relation. To express the condition (5.3) in terms of ¢,

notice that

Vw-W:xQJ%jﬁ:O (5.7)

where J;; = 0z!/0z;. One can show that (5.7) is equivalent to
J=|Jl=1 (5.8)

where J is the Jacobian of the coordinate transformation x' — x. (5.8) con-
nects the constraint on v to one on ¢. Notice that J is cubic in € in three

dimensions. Kumar and Goldreich (1989) show that 7 is given by
1 2 ji 3
J=1+V-£+5 (V€ - &;87) +0(€) (5.9)
to second order. In Appendix 5.1, it is shown that 7 can be put in the form

J=1+V.j (5.10)
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where j is the vector
. 1
j= €& VE+ SVEE+O(E) (5.11)

This vector has an interesting geometric interpretation as the non-linear dis-

placement field.

If we set the external force to zero, according to Hamilton’s Principle, the

Lagrangian for the fluid is

1
L= /d3x£ =T= /dax'-;-p'v’2 = /dsx—z-pgv'2 = /d%c%po

since the only form of energy in the dynamics is kinetic. To vary £ with respect

2

o¢ , (5.12)

ot

to £, the condition (5.3) must be imposed through an undetermined Lagrange

multiplier such as
L=L+XNT-1). » (5.13)

To lowest order, (5.1) implies that A = p. This approach is problematic since
p is a functional of &; in general, one must solve a partial differential equa-
tion to determine the pressure, and eliminate it in favor of the displacement
field. Moreover, since only two of these fields are independent (by (5.9)), this

Lagrangian is not suitable for expansion in powers of €.

An alternative method is to enforce the solenoidal constraint by making
the symmetry explicit in the form of v. For example, one might use only two of
the displacement field components, and express the kinetic energy associated
with the third as an effective potential, as in the case of Kepler’s problem.
Through an appropriate choice of independent fields, the equation of motion for
the waves fields may be derived without requiring a calculation of the pressure.
The first obvious choice is to consider the pair of scalar fields ¢ and 7 which are
the Euler potentials for the velocity (v = Vo x V7). This is commonly done
when studying magnetic fields (see Willette (1988) and references therein).

Unfortunately, the variation leads to complicated non-linear elliptical partial
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differential equations with no direct connection to the equation of motion, and

which do not reproduce the linear wave equations in a simple way.

The fact that p must be eliminated from the momentum equation to solve
for £ implies that the form of £ may not be given in terms of simple functions
of spatial coordinates. One has to work with the Fourier components of the
displacement field to make any progress. For this reason, consider the omne-

dimensional Lagrangian density

ZE/dleﬁz/dle—;—po(z)‘v'lz. (5.14)

Since V1 po = 0, one may make use of Parseval’s Theorem to show that

= 1 |0
L= .
5 3o B (5.15)
where £ has been expanded in Fourier modes
é(xL,z2,t) = E:Ekz t)ekxs (5.16)

(See Appendix 5.2 for a discussion of our Fourier conventions.) Notice that the
reality of £ implies that £%, = &,.

The goal of this approach is to enforce the constraint (5.8) explicitly in
(5.15) and reduce the problem to two dimensions. Consider decomposing the
velocity field into the sum

v =vy+7V, (5.17)
where v satisfies

'L.ki_ a’Uzk_L
Vo = —=
Lk, ki 5z )

(5.18)

and vg, = v,. It follows that
V- -v=10 (5.19)

and

2. =0 (5.20)
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Equations (5.19) and (5.20) can be satisfied only if ¥ is of the form
v=Vx(92)=VyY x 2=V, x (¢2). (5.21)

To make comparison of ¥ and v, convenient, we write ¥ = 8A4/8t = A. This
decomposition forces £ to be a functional of two fields only: v, and A. Since the
modes are expressed in terms of the displacement field, v, is further expressed
as a functional of {, and A, the two fundamental independent fields. It follows

from (5.5) that
_ 9
T

£€-VE +0(8D). (5.22)

In the linear wave equation, the field A does not appear, so clearly A = O(£2).
This depends on the fact that the constraint force is due to a simple scalar
pressure. Hence, to order O(€3), the second term on the right-hand side of
(5.22) depends only on £,. With these comments in mind, let us now expand
L in powers of ¢, and A and calculate the second and third order Lagrangians.
One has that

V|2 = |v(x + &)]? (5.23)

2
+lvo P+ 2vy, ¥+ VLR

_ |9
"}at

Consider each term separately. The first one is already in a form suitable for
variation, but the others require a bit of work. To expand the second term in
&, notice that

Vo, =voy +& Vvoy + O(&2) (5.24)

The first term in (5.24) gives contributions to all orders above O(£.). To get

the lowest two orders, we work in k space and find

/deJ.IV:)ﬂz = Z VoLl (5.25)
k

1, .1
= Z ﬁlfﬂclz’
k
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1 .1
2 E p‘fzks
ky,kg k3 3
ki+ko+ka=0

1 . 7 .
{Eziqukz + K2k Bl Eak, Eax, + K Brzbay o, + kangzﬁlfzkg})

where
tky - iko
By = By = —5—— .
12 21 k%k% ) (5 26)
and the notation - = 8§; and ' = 0, is unambiguous if it is applied only to the

fundamental fields ¢, and A. In deriving (5.25), one makes use of the lowest
order behavior of £ | in its dependence on {;; in doing so, the error introduced
is of order O(£2). Notice that momentum conservation for the three wave

interactions is enforced through the restricted sum

which will be true of all the contributions to L3, the third order contribution

to L.

The remaining terms in (5.23) do not contribute until order O({ £, £2 4, A?).
This is valid for the last one, but somewhat subtle for the penultimate. Up to

the fourth order, one has

/d2X-LV3L"~”J. = /dle("u V14 0(6;, 624, A%)) (5.28)
R 1tky xtky o1 .
= Z z _l—_luc——z—_z-gzkxAkz =0
ki, kg 1
ki +kp=0

by momentum conservation. The above is true even though vo, - ¥ # 0
pointwise. This shows that the field A does not enter into the dynamics until
the fourth order. We have reduced the three mode coupling problem to one

involving a single field.

If the fluid is subjected to a constant gravitational field, the effective po-

tential
1 d2p0
6 dz?

. 1dp0

Vs 2 dz

g¢; + ¢z +0(£2) (5.29)
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must be subtracted from the above Lagrangian density. Collecting the above

results, one has the following lowest order Lagrangians

— 1 . 1 .4 1d
Lo = Z '2‘/00(|‘le<|2 + 7c‘5|fzk|2) - ’iio—giﬁzﬂz (5.30)
k
- 1 dzpo
Ly = - Z {_é-d__z_z— g GZklézszzka“{"

ki.ka.kg
ki +kp+kg=0

p 1 < 1 ) < A .
ﬁ62k3{€2;(1£7-k2 + kfkngzlekl’EZkz + k]2.B]-2£Zk1 kag + kgBIZé.zﬁlEzkz}]
3
Due to the k dependence of the summand, the Fourier expansion does not

reduce to a single spatial integral upon inversion.

Variation of L5 leads to

6L, 0%, 0 (po 83§Zk> dp

% 9é.y =0, (5.31)

i, e T wm\maee )T T
which is the equation for the linear gravity wave mode ¢,,. The two restoring
forces for the oscillator are gravity and the required pressure gradient to keep
the motion incompressible. The effective potential for the latter depends on
acceleration, so the canonical momentum for this system will differ from the
usual case. For the case of a power-law density, equation (5.31) is identical to
the wave equation for sound waves in an adiabatically stratified atmosphere

with the substitutions

w? gk

Q=& = (5.32)

gk w?
see Appendix 2.3). The boundary condition of vanishing Lagrangian pressure
g Lagrangian p

perturbation at the surface z = 0 is the same in both cases. The eigenvalues

for the mode with n nodes is therefore

2 _ gk
Ynk = T omTm o (5.33)

One can show that the eigenfunctions for the modes form a complete set (see

Appendix 2.3). Hence, the component £, can be expanded as

£z = Z G,k (t)&n 6 (2). (5.34)
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The three mode coupling can be computed by finding the interaction Hamilto-
nian H3 and working with action angle variables as in (Kumar and Goldreich

(1989)).

Integration by parts cannot eliminate the second spatial derivative of §y

from L3. Hence, a suitable generalized mechanics requires us to view L3 a
. . ! . 1

functional of £,y, &k, &2’k &2k €2k, and €. The appropriate functional

derivative to put the system in canonical form 1s

dar 0

—= 1) )
59 gg( VT s (5.35)
where we notate
d™y
(n) =
P Ton (5.36)
The canonical momenta are given by
§C
Tk = —, (5.37)
5£zk
and the equations of motion are
d §C §C
- = = . (5.38)
dt §¢,,  6&zx
Defining _
n oc
(M = “(n)? (5.39)
Bka

the one-dimensional Hamiltonian density is

H=) Y £\Mam T, (5.40)

— . —  dD
H = Z{Zf)frk ~ L+ —. (5.41)

for some function ®. This shows that only the 7 are meaningful as momenta.

As required, the Hamiltonian is a function of the generalized position variables
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Ezg(n) and the canonical momenta (5.39). Moreover, one can show that 7 obeys

a conservation equation .
' dH dF
I ds (5.42)

for some function F'.
5.3 Discussion

A few technical points should be made regarding the above calculation.
First, in deriving (5.29), one must notice that the effective force of gravity of

the fluid element has three terms to second order

d 1d? d

but the last term does not contribute to V,. The second order inertia term is

v 2
v (ndEe) o - mBE o) (4

To this order, it combines with the above term to yield the same equation for
§p as in the system without gravity. Since §p is computed by taking V - of
(5.1), gravity does not change the calculation, and the pressure is made an
explicit functional of the inertia only. Second, the equation of motion for the

{ Ay} to lowest order is found by the variation

5L ”
~5Aj = {POICZAk+ (5.45)
k
. 1k, X Zkz ol ’Lk ’Lk2 dpo
Z z- __1_k_§____ [pogzklézkz + po——5— Ezklfzkz fzklé‘zkz }
ky.kg 2
ki+ko=k

Taking 2 - [V X of the momentum equation, one finds that (5.45) is indeed
valid. To reproduce (5.45), be careful to find all three terms in £ which are
linear in Ay. Finally, we note that the invariance of £ with respect to the
gauge transformation A — A+ ¢(z,1) gives rise to a conserved current, namely
V-v = 0. This symmetry principle is a result of Noether’s Theorem (see Arnold
(1978)).
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Appendix 5.1

The Geometry of Incompressibility

THEOREM: The Jacobian of any C'! coordinate map x' : RN — M can

be put in the form
J=V-j

(A5.1.1)

The exterior derivative of the dual to the vector j (d*}) is the volume element

in the manifold M.

PROOF: Let {0/0z;} be the Cartesian coordinate basis for R¥. For any

C? vector field v, the divergence theorem (Schutz (1980)) gives an identity

d*v = (V-v)dVy,
where dVy is the volume element in RN
dVy =dz; A ... Ndzy.
Consider the vector j whose dual is given by
*i=zidzy A ... Adzly.
Since d*j = dVy, it follows that J = V . j. The vector j is given by

I !
Fii = €iriyoi 2! a_..m__._z 52:N
K] - 1112...%
1 112 N1 am’iz

B:niN ’
where €, is the N-dimensional permutation operator.

REMARK: In three dimensions, J is given by
J =Vazi - (Vzy x Vzy)
=V (2; Ve, x Vzy),
which is consistent with (A5.1.5). If one puts

x' =x +§{(x),

(A5.1.2)

(45.1.3)

(A5.1.4)

(A5.1.5)

(A5.1.6)

(45.1.7)
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then j is given by
i= %X+£+%((V'E)£—-E-V€) (A5.1.8)

(6- V&~ (V-£)8)- VE+ (V£ — i)

o =

+

j 1s unique up to an antisymmetric derivative just as any exact form may be
added to the anti-derivative of dV};. J must be an exact divergence for the
Eulerian variation of the non-linear Lagrangian volume variation to vanish for

an incompressible fluid
6AV=6(V’-—V)=5/dV(j—l):/dVV-6j=0. (A5.1.9)

Finally, notice that the pullback of j is simply the coordinate in M. For this

reason, j may be called the non-linear displacement.
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Appendix 5.2
Normalization of Horizontal Transforms

The Fourier mode expansion of a real function F' defined over a domain
of area L? is given by

1 .
F(X_L) = -j; Z erzk'x“'“ . (A5.2.1)
k
The inversion formula is
1 2 —ik.x
Fy = — d X_LF(X_L)B + (A5.2.2)
L Jp-

which yields Parseval’s Theorem in the form

d*x  |F|? = By, = Fy|? Ab.2.
/L2 xL|F| > R, R, }_;lkl, (45.2.3)

ki, k3
ki +kg=0

since the field is real:

F=F*. (A5.2.4)

Without loss of generality, the horizontal domain is taken to be a square of
area L? = 1. In the limit L — oo, the sum (A5.2.1) goes naturally over to a

Fourier integral.
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