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Abstract

The A.C. impedance response of mixed ionic and electronic conductors (MIECs) is derived

from first principles and quantitatively compared with experimental data of three model sys-

tems: pO2 |Pt|Sm0.15Ce0.85O2−δ(1350 ◦C)|Pt|pO2 (system I), pO2 |Pt|Sm0.15Ce0.85O2−δ(1550 -

◦C)|Pt|pO2 (system II), and pO2(c)|Ba0.5Sr0.5Co0.8Fe0.2O3−δ|Sm0.15Ce0.85O2−δ(1350 ◦C)|Pt|-
pO2(a) (system III). For the equilibrium systems I and II, which differ in terms of the prepa-

ration of the electrolyte, a broad spectrum of electrical and thermodynamic properties is

extracted solely from the measurement of impedance spectra over wide oxygen partial pres-

sure (10−31–0.21 atm) and temperature ranges (500 to 650 ◦C). Electrolyte parameters

derived from quantitative fitting of the impedance spectra include the concentration of

free electron carriers, the mobilities for both ion and electron transport, the entropy and

enthalpy of reduction of Ce4+ to Ce3+, and, for system II, the space charge potential char-

acterizing the grain boundary behavior. In addition, the electrochemical behavior of O2

and H2 at the Pt|ceria interface has been characterized from these measurements. Under

oxidizing conditions, the data suggest an oxygen electro-reduction reaction that is rate lim-

ited by the dissociated adsorption/diffusion of oxygen species on the Pt electrode, similar

to Pt|zirconia. Under reducing conditions, the inverse of the electrode polarization resistiv-

ity obeys a p
−1/4
O2

dependence, with an activation energy that is similar to that measured

for the electronic conductivity. These results suggest that ceria is electrochemically active

for hydrogen electro-oxidation and that the reaction is limited by the rate of removal of

electrons from the ceria surface. For the nonequilibrium system III, examined from 550 to

650 ◦C, the cathode oxygen partial pressure was fixed at 0.21 atm and the anode H2 was

varied from 0.2 to 1 atm. The combination of Open Circuit Voltage (OCV) measurement

and quantitative fitting of the impedance spectra yields electrochemical information at the
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two interfaces. The results are consistent with the H2 electro-oxidation mechanism at the

Pt|ceria interface of systems I and II, whereas the resistance to the electro-reduction at the

Ba0.5Sr0.5Co0.8Fe0.2O3−δ|ceria is negligible.
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Chapter 1

Introduction

A.C. impedance spectroscopy is a valuable tool for studying both the bulk transport proper-

ties of materials and the electrochemical reactions at interfaces. Typically, A.C. impedance

experiments are carried out over a wide range of frequencies (several millihertz to several

megahertz), and the interpretation of the resulting spectra is aided by analogy to equiva-

lent circuits involving simple components such as resistors and capacitors. In general, such

equivalent circuits are not unique, and indeed there exists an infinite set of circuits that

can represent any given impedance. It is common to select a physically plausible circuit

containing a minimal number of components and, in a somewhat ad hoc way, assign physi-

cal significance to the derived parameters. Often, meaningful insight into material behavior

can be gained from such analyses. However, the ad hoc approach is lacking in mathematical

and physical rigor, and can lead one to overlook some of the more subtle, but significant,

features of the data.

In the present study, a first principle derivation of the equivalent circuit is provided

and the analysis then applied to the evaluation of a mixed ionic and electronic conductor

(MIEC)—ceria. It is shown that not only can one extract the important electrical parame-

ters of a MIEC, but also, from measurements carried out over wide oxygen partial pressures

and at a range of temperatures, essential thermodynamic parameters. The measurements

and analysis furthermore provide some indication as to the rate-limiting step for hydrogen

electro-oxidation at the metal|ceria interface.

Ceria has been selected for study because of increasing interest in this material as

an electrolyte for “reduced” temperature solid oxide fuel cells (SOFCs),2 that is SOFCs in



2

which the traditional operating temperature of 800–1000 ◦C has been reduced to 500–800 ◦C.

Samaria doped ceria (SDC) and gadolinia doped ceria (GDC) exhibit higher conductivity

than YSZ at 700 ◦C, and it has been possible to obtain power densities as high as 1 W/cm2

from anode-supported SDC fuel cells at 600 ◦C using humidified hydrogen as the fuel and air

as the oxidant.4 Fuel cell operation in this intermediate temperature regime has the potential

for substantially lowering auxiliary component costs and increasing the thermomechanical

stability of the SOFC system. The large body of experimental data already existent for

acceptor-doped ceria5 as a consequence of its value for fuel cell applications renders this an

ideal model material against which to verify a new measurement approach, whereas the new

insight that is to be gained from careful analysis of impedance data into electro-catalytic

pathways is of great value to the design of SOFC electrodes.

1.1 Defect Chemistry and Electrical Properties of Acceptor-

Doped Ceria

1.1.1 Defect Chemistry

In acceptor-doped ceria, there are three main types of charge carriers—the dopant, the oxy-

gen vacancy and the electron that are created both intrinsically and extrinsically. Intrin-

sically, there is a thermodynamic equilibrium between the lattice oxygen ions and ambient

oxygen molecules. Under reducing conditions, ceria tends to lose oxygen to the ambient

atmosphere, accompanied by the creation of oxygen vacancies and a change in the cerium

oxidation state from 4+ to 3+. In Kröger-Vink notation,6 this equilibrium can be written

as

O×
O ↔ 1

2
O2 + V ••

O + 2Ce′Ce

(
2e′

)
(1.1)

where O×
O represents an oxygen ion residing on a regular oxygen ion site, V ••

O represents

an oxygen vacancy, Ce′Ce represents a Ce3+ ion residing on a Ce4+ site and e′ represents

an effective electron. Extrinsically, the acceptor doping of dopant, e.g., Sm2O3, into CeO2

introduces oxygen vacancies through the doping reaction
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Sm2O3 + 2Ce×Ce + 4O×
O → 2Sm′

Ce + 3O×
O + V ••

O + 2CeO2 (1.2)

where Ce×Ce represents a Ce4+ ion residing on a Ce4+ site and Sm′
Ce represents a Sm3+

ion residing on a Ce4+ site. The dopant, Sm′
Ce, oxygen vacancy, V ••

O , and electron, e′, are

denoted as “AD,” “ion” and “eon” respectively in the following discussion.

The concentration of oxygen vacancy cion and the concentration of electron ceon are

related by the equilibrium constant, Kr, of reaction (1.1)

Kr = cionc2
eonp

1/2
O2

(1.3)

where the concentration of O×
O is taken to be unity. Kr depends on temperature according

to

Kr = exp
(

∆Sr

kB

)
exp

(
−∆Hr

kBT

)
(1.4)

where kB is the Boltzmann constant, T is the absolute temperature, and ∆Sr and ∆Hr are,

respectively, the reduction entropy and enthalpy.

Under certain materials and experimental conditions such as heavily doped materials and

oxidizing atmospheres, the creation of oxygen vacancy through the reduction reaction (1.1)

is negligible compared to the doping reaction (1.2). Thus the oxygen vacancy concentration

is mainly dominated by the dopant concentration. That is

cion = cAD/2 (1.5)

This is called the constant oxygen vacancy approximation.7 From (1.3) and (1.5), the elec-

tron concentration becomes

ceon =
√

2Kr

cAD
p
−1/4
O2

(1.6)

where electron concentration increases with decreasing oxygen partial pressure in a power

of −1/4.
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1.1.2 Electrical Properties

1.1.2.1 Mobilities

At the interested temperature range, the dopant is assumed to be immobile. The oxygen

vacancy moves from one to another oxygen sublattice site through a thermally activated

process. The mobility of oxygen vacancy uion is

uion =
u0

ion

T
exp

(
−∆Hion

kBT

)
(1.7)

where u0
ion is a constant and ∆Hion is the activation energy for ionic motion.

The electronic charge carrier in ceria is in the form of “small polaron.” When the elec-

tronic carrier is moving in the polar oxide, it polarizes (by its electric field) the lattice around

it. The resulting lattice polarization acts as a potential well that hinders the movements of

the charge, thus decreasing its mobility. A polaron consists of the charge carrier and the

distortion of the ionic lattice induced by the carrier itself and it is a quasi-particle. When

the interaction between the electronic charge carrier and the lattice is relatively weak, the

polaron is referred to as a large polaron. Large polarons behave much like free carriers

except for an increased mass caused by the fact that polarons carry their associated distor-

tions. When the interaction between the electronic charge carrier and the lattice is strong,

the polaron is referred to as a small polaron. The electronic charge carrier is now so slow

that it can be imagined to become self-trapped in its own polarization field generated in

the ionic lattice, and thus to become localized at a certain lattice site (valence defect). At

high temperatures, movement of a small polaron is an activated hopping process similar to

that of ionic conduction with the mobility8

ueon =
u0

eon

Tα
exp

(
−∆Heon

kBT

)
(1.8)

where u0
eon is a constant, ∆Heon is the activation energy for electronic motion, α equals 1 for

adiabatic hopping and 3/2 for non-adiabatic hopping. In this work, the adiabatic hopping

mechanism is used.
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1.1.2.2 Conductivities

The conductivity is the product of charge and mobility. The ionic and electronic conduc-

tivities are

σion = 2euioncion = euioncAD (1.9)

σeon = eueonceon = σ0
eonp

−1/4
O2

(1.10)

with

σ0
eon = eueon

√
2Kr

cAD
(1.11)

The total conductivity, σT (the sum of the ionic, σion, and electronic, σeon, conductivities),

thus exhibits an oxygen partial pressure dependence given as

σT = σion + σeon = σion + σ0
eonp

−1/4
O2

(1.12)

In the ionic regime of doped ceria, the total conductivity (essentially equal to the ionic

conductivity) is independent of oxygen partial pressure. Under slightly more reducing con-

ditions, the well-known −1/4 power law for the dependence of electronic conductivity on

oxygen partial pressure is obtained. From a plot of conductivity as a function of oxygen

partial pressure one can, by fitting to (1.12), determine the ionic and electronic conductivi-

ties over the entire pO2 regime of interest, and such measurements are performed relatively

routinely.3, 9, 10

Under the conditions of a fixed oxygen vacancy concentration (as considered here),

the temperature dependence of the ionic conductivity, (1.9), derives from the temperature

dependence of the ionic mobility, (1.7). This gives

σion =
σ0

ion

T
exp

(
−∆Hion

kBT

)
(1.13)

where σ0
ion is a constant. Thus, an Arrhenius plot of the ionic conductivity directly yields

∆Hion from its slope.

For the electronic conductivity, because Kr also depends on temperature via (1.4), the
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temperature dependence of σ0
eon is then

σ0
eon =

σ00
eon

T
exp

(
−∆H0

eon

kBT

)
=

σ00
eon

T
exp

(
−∆Heon + 1/2∆Hr

kBT

)
(1.14)

where σ00
eon is a constant, and σ0

eon exhibits an apparent, or combined, activation energy of

∆H0
eon = ∆Heon + 1/2∆Hr.

1.2 Three Systems

Three specific systems are investigated in this work. From the point view of materials, they

can be written in the form of pO2(a)|anode|electrolyte|cathode|pO2(c) where pO2(a) and

pO2(c) are the oxygen partial pressures in the anode and cathode chambers respectively.

The electrolyte is 15% Sm-doped ceria sintered at 1350 and 1550 ◦C. Specifically, three

systems are

I. pO2 |Pt|Sm0.15Ce0.85O1.925−δ (1350 ◦C)|Pt|pO2 ,

II. pO2 |Pt|Sm0.15Ce0.85O1.925−δ (1550 ◦C)|Pt|pO2 ,

III. pO2(a)|Pt|Sm0.15Ce0.85O1.925−δ (1350 ◦C)|Ba0.5Sr0.5Co0.8Fe0.2O3−δ|pO2(c).

For systems I and II, both the anode and cathode are the same, Pt. The systems are

also exposed to a uniform atmosphere such that pO2(a) = pO2(c) = pO2 . Accordingly, there

is no charge carrier transport under open circuit and such systems are called equilibrium

systems. The only difference between I and II is the electrolyte. As will be shown in the

following, the electrolyte sintered at high temperatures such as 1550 ◦C shows space charge

effect at 500–650 ◦C while the space charge effect is not observable at this temperature

range for the electrolyte sintered at the lower temperature 1350 ◦C. For system III, the

anode is also Pt and the cathode is a high-performance material Ba0.5Sr0.5Co0.8Fe0.2O3−δ

(BSCF). There is also an oxygen chemical potential gradient across the system such that

pO2(a) < pO2(c). Accordingly, there are charge carrier transports even under open circuit

and it is called a nonequilibrium system.

From the point view of microstructure, all three systems are treated in one dimension

for mathematical simplicity. The polycrystalline electrolyte, along the current direction, is
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divided into multiple layers of the same width. This is called the serial layer model.11 The

schematic plots of microstructure and concentration profiles are shown in Figure 1.1. In

all three systems, the dopant concentration is assumed to the same across the electrolyte.

For the system with space charge, system II, every layer is divided into two space charge

(SC) regions and one grain interior (GI) region as shown in Figure 1.1(b). In the space

charge region, there is depletion of oxygen vacancies and accumulation of electrons. The

neighboring two space charge regions constitute the grain boundary (GB). In the grain

interior region, both the oxygen vacancy and electron concentrations are constants using

the constant oxygen vacancy approximation. For the systems without space charge, systems

I and III, the microstructure can be ignored and the whole electrolyte can be treated a

single crystal as shown in Figure 1.1(a) and 1.1(c). Again, the constant oxygen vacancy

approximation is used. For system I, this gives the constant electron concentration in

Figure 1.1(a). For system III, since there is an oxygen potential gradient from the anode to

the cathode, pO2(a) < pO2(c), there is a gradual decrease of electron concentration according

to (1.6) as shown in Figure 1.1(c).
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Figure 1.1: Schematics of carrier concentration profiles of (a) system I, (b) system II and (c) system III.
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1.3 Fundamentals of Impedance Spectroscopy

A.C. impedance spectroscopy is a powerful technique for the characterization of electro-

chemical systems. As shown in Figure 1.2, the fundamental approach of the impedance

spectroscopy is to apply a small amplitude sinusoidal current excitation to the system un-

der the steady-state and measure the voltage response. The experiment is carried at a wide

range of frequencies. The value of A.C. impedance spectroscopy derives from the effective-

ness of the technique in isolating individual reaction/migration steps in a multistep process.

That is, because each reaction or migration step has, ideally, a unique time constant as-

sociated with it, these steps can be separated in the frequency domain. In recent years,

impedance spectroscopy has found widespread applications in the field of characterization

of materials. It is routinely used in the characterization of coatings, batteries, fuel cells,

etc.

V

I( )i t

v t

Figure 1.2: Principles of impedance spectroscopy.

1.3.1 System Dynamics

1.3.1.1 Dynamics of Linear System

Generally, a linear system is such that the output function y is related to the input function

x by

a0y(t) +
n∑

i=1

ai
diy(t)
dti

= b0x(t) +
m∑

i=1

bi
dix(t)

dti
, n ≥ m (1.15)

In the steady-state mode, one obtains

a0y0 = b0x0 (1.16)
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For small variations of the input function: x = x0 +∆x, the output function can be written

as y = y0 + ∆y such that

a0∆y(t) +
n∑

i=1

ai
di∆y(t)

dti
= b0∆x(t)+

m∑

i=1

bi
di∆x(t)

dti
(1.17)

The Laplace transform gives

∆Y (s)
n∑

i=0

ais
i =∆X(s)

m∑

i=0

bis
i (1.18)

where ∆Y (s) and ∆X(s) are the Laplace transforms of ∆y(t) and ∆x(t) respectively. Trans-

fer function of the system is defined as

H(s) =
∆Y (s)
∆X(s)

=

m∑
i=0

bis
i

n∑
i=0

aisi

(1.19)

The factorization of
n∑

i=0
ais

i = 0 can be written as

n∏

i=1

(s− si) = 0 (1.20)

where si are the poles of H (s). The application of partial fraction decomposition to (1.19)

gives

H(s) =
n∑

i=1

di

s− si
(1.21)

where di are constants. Inverse Laplace transform of (1.21) gives

h(t) =
n∑

i=1

die
sit (1.22)

where h(t) is the inverse Laplace transform of H(s). For a stable system, the real part of

si must be negative. This suggests

lim
t→∞

n∑

i=1

die
sit = 0 (1.23)
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If the input is an impulse signal ∆x(t) = δ (t), ∆y(t) is called the impulse response. The

Laplace transform of the impulse input is

∆X(s) = 1 (1.24)

The Laplace transform of the impulse response is the transfer function

∆Y (s) = H(s) (1.25)

Equation (1.22) and the inverse Laplace transform of (1.25) give

∆y(t) = h(t) =
n∑

i=1

die
sit (1.26)

Since ∆y(t) decays after sufficient time, it is also called the transient response or natural

response. It is obvious that the transient response or the natural response in the time

domain for the impulse input is due to the poles of H(s).

If the input is a sinusoidal signal ∆x(t) = ∆x0 sin(ωt), the Laplace transform of this

signal is

∆X(s) = ∆x0
ω

s2 + ω2
(1.27)

From (1.18),

∆Y (s) = ∆x0

m∑
i=0

bis
i

n∑
i=0

aisi

ω

s2 + ω2
(1.28)

This can be written as

∆Y (s) =
d

s− jω
+

d∗

s + jω
+

n∑

i=1

ki

s− si
(1.29)

where si again are the poles of H(s), d and d∗ are complex conjugates and ki are some

constants. Inverse Laplace transform of (1.29) gives

∆y(t) = dejωt + d∗e−jωt +
n∑

i=1

die
sit (1.30)
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As t →∞,
n∑

i=1
die

sit again vanishes while de−jωt+d∗ejωt remains. Thus the output response

for the sinusoidal input has two components.
n∑

i=1
die

−sit is called the transient response

or natural response. The expression de−jωt + d∗ejωt is called the sinusoidal steady-state

response ∆ySSS(t) or forced response. It is obvious that the sinusoidal steady-state response

in the time domain is due to the poles of ∆X(s). The unknown parameter d can be

determined from (1.29)

d = lim
s→jω

[(s− jω)∆Y (s)] = lim
s→jω

[
(s− jω) H(s)

∆x0ω

(s− jω) (s + jω)

]
=

H(jω)∆x0

2j
(1.31)

H(jω) can be written in the polar coordinates

H(jω) = |H(jω)| ejθ(ω) (1.32)

where |H(jω)| is the modulus and θ (ω) is the phase angle of H(jω). The sinusoidal steady-

state response is then

∆ySSS(t) = de−jωt + d∗ejωt

=
∆x0

2
|H(jω)| ej[ωt+θ(ω)−π/2] +

∆x0

2
|H(jω)| e−j[ωt+θ(ω)−π/2]

= |H(jω)|∆x0 sin [ωt + θ (ω)] (1.33)

Thus for a sinusoidal input the steady-state output is also a sinusoidal signal with the

same frequency. The ratio of output and input amplitude is the modulus of H(jω) and the

phase shift between the output and input is the phase angle of H(jω). H(jω) is called the

frequency response of the transfer function H(s) and it describes the response characteristics

of the system at the steady-state subject to sinusoidal inputs. It is given by its evaluation

as a function of a complex variable at s = jω

H(jω) =
∆Y (jω)
∆X(jω)

(1.34)

Experimentally, H(jω) is obtained through the Correlation Frequency Response Anal-

ysis method.1 The sinusoidal steady-state response ∆ySSS(t) to the perturbing signal is
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correlated with two synchronous reference signals, one in phase with x(t) and the other 90◦

out of phase, i.e., sin (ωt) and cos (ωt) as in Figure 1.3.

Figure 1.3: Principle of the Correlation Frequency Response Analysis.1

The sine and cosine channel outputs are

Re(T ) =
1
T

∫ T

0
sin (ωt)∆ySSS (t) dt =

|H(jω)|∆x0

T

∫ T

0
sin (ωt) sin [ωt + θ (ω)] dt (1.35)

Im(T ) =
1
T

∫ T

0
cos (ωt)∆ySSS (t) dt =

|H(jω)|∆x0

T

∫ T

0
cos (ωt) sin [ωt + θ (ω)] dt (1.36)

If T = N
2π

ω
,

Re(N
2π

ω
) =

|H(jω)|∆x0

2
cos θ(ω) (1.37)

Im(N
2π

ω
) =

|H(jω)|∆x0

2
sin θ(ω) (1.38)

From (1.37) and (1.38) both the modulus and phase angle of the frequency response func-

tion H(jω) can be recovered from the signals Re(T ) and Im(T ) evaluated at appropriate

multiples of 2π/ω.

1.3.1.2 Dynamics of Nonlinear System

However, in reality few systems are linear, and so we are really measuring some linear

approximation. For a nonlinear system, the output function can be expanded around the

steady-state solution

∆y =
(

dy

dx

)

x0,y0

∆x +
1
2

(
d2y

dx2

)

x0,y0

(∆x)2 + . . . (1.39)
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For a sinusoidal perturbation ∆x(t) = ∆x0 sin(ωt), the quadratic terms, containing sin2(ωt)

= [1− cos(2ωt)] /2, give rise to a second harmonic and a D.C. response. If the magnitude

of the perturbing signal ∆x0 is small, then the higher-order terms (including the quadratic

terms) in (1.39) can be assumed to be negligible. Thus the nonlinear system under the

small perturbation can be approximated to a linear system.

In the context of correlation frequency response, the nonlinear signal S(t) can be ex-

pressed as a sum of sine and cosine waves

S(t) = |H(jω)|∆x0 sin [ωt + θ(ω)] +
∑

m=2

Am sin [mωt + θm(ω)] (1.40)

The correlation of this signal to reference sine and cosine waves gives

Re(T ) =
1
T

∫ T

0
sin (ωt) S(t)dt (1.41)

Im(T ) =
1
T

∫ T

0
cos (ωt) S(t)dt (1.42)

If T = N
2π

ω
,

1
T

∫ T

0
sin (ωt)

∑

m=2

Am sin [mωt + θm(ω)]dt = 0 (1.43)

1
T

∫ T

0
cos (ωt)

∑

m=2

Am sin [mωt + θm(ω)]dt = 0 (1.44)

one still obtains

Re(N
2π

ω
) =

|H(jω)|∆x0

2
cos θ(ω) (1.45)

Im(N
2π

ω
) =

|H(jω)|∆x0

2
sin θ(ω) (1.46)

Considering harmonics, the only non-zero integral is given by the first harmonic (fundamen-

tal); all other harmonics are rejected. By correlating the output of a system with harmonic

frequencies 2ω, 3ω, . . ., the harmonic components of frequency response are obtainable.

These higher-frequency components are useful in computing the exact frequency response.
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1.3.2 Complex Impedance and Graphic Representation

If the input is current and the output is voltage, H(jω) is called the impedance and denoted

as Z(jω). If the input is voltage and the output is current, H(jω) is called the admittance

and denoted as Y (jω) = 1/Z(jω). In the study of dielectric properties of materials, two

other complex functions are more widely used. One of them is the complex permittivity

which is related to the complex admittance by

ε (jω) =
Y (jω)
jωC0

(1.47)

where C0 is the vacuum capacitance of the material

C0 =
ε0A

L
(1.48)

where ε0 is the vacuum permittivity, A is the area and L is the thickness of the material.

The other one is the complex modulus

M (jω) =
1

ε (jω)
(1.49)

For the graphic representation of these complex functions, both polar and Cartesian

coordinates can be used. Specifically, for the complex impedance Z(jω), the plot of modulus

|Z(jω)| and phase angle θ(ω) vs. frequency ω or f = ω/2π is called the Bode-Bode plot.

Like other spectroscopic plots, the frequency is explicit. The plot of imaginary part of the

impedance, ImZ(jω) or −ImZ(jω), vs. real part of the impedance, ReZ(jω), is called the

Nyquist plot. In this case, the frequency is implicit. It is worth mentioning that the plot

of Imε (jω) vs. Reε (jω) is called the Cole-Cole plot and sometimes in the literature the

name is exchangeable with the Nyquist plot. Unless specified, both the Nyquist plot and

Bode-Bode plot are called the impedance spectrum.

Figure 1.4 gives an example of the Nyquist plot and Bode-Bode plot for the same

impedance function. There appears to be three different processes (I, II, III) in both plots.

Three different processes appear as three arcs in the Nyquist plot with the frequency in-

creasing from the right to the left. An analogy can be drawn between one of the Bode-Bode
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plot, |Z| vs. f , and the thermogravimetry plot in which weight is plotted against the tem-

perature. There is a corresponding weight loss for every process. A similar analogy can be

drawn between the other one of the Bode-Bode plot, θ vs.s f , and the infrared spectrum.

There is a corresponding peak for every process.
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Figure 1.4: An example (a) the Nyquist and (b) the Bode-Bode plots.

In the study of polycrystalline electroceramics, the three processes are found to be

related to the grain interior conduction (I), grain boundary conduction (II) and electrode

reaction (III) respectively. This is also the field where the Nyquist plot is more popular

than the Bode-Bode plot because from the size of the arc the resistance of the different

processes can be easily estimated.

1.3.3 Equivalent Circuits

One of the most attractive aspects of impedance spectroscopy is the direct connection that

often exists between the behavior of a real system and that of an idealized model circuit

consisting of discrete electrical components. For example, the impedance plot in Figure 1.4

can be fitted using the circuit in Figure 1.5. R is resistor and Q is Constant Phase Element

as discussed in the following. This circuit is called the equivalent circuit of the impedance

function given in Figure 1.4. Thus it is worth looking at the impedance expression for some

common circuit elements.
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RI

QI

RII

QII

RIII

QIII

Figure 1.5: One equivalent circuit corresponding to the plots in Figure 1.4.

1.3.3.1 Resistor

The current ∆i(t) and voltage ∆v(t) relation for a resistor is

∆v(t) = R∆i(t) (1.50)

where R is the resistance. Laplace transform of (1.50) for the sinusoidal input gives

∆V (jω) = R∆I(jω) (1.51)

The impedance for the resistor is thus

Z(jω) =
∆V (jω)
∆I(jω)

= R (1.52)

1.3.3.2 Capacitor

The current ∆i(t) and voltage ∆v(t) relation for a capacitor is

∆i(t) = C
d∆v(t)

dt
(1.53)

where C is the capacitance. Laplace transform of (1.53) for the sinusoidal input gives

∆I(jω) = jωC∆V (jω) (1.54)

The impedance for the capacitor is thus

Z(jω) =
∆V (jω)
∆I(jω)

=
1

jωC
(1.55)
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1.3.3.3 Inductor

The current ∆i(t) and voltage ∆v(t) relation for an inductor is

∆v(t) = L
d∆i(t)

dt
(1.56)

Laplace transform of (1.56) for the sinusoidal input gives

∆V (jω) = jωL∆I(jω) (1.57)

where L is the inductance. The impedance for the inductor is thus

Z(jω) =
∆V (jω)
∆I(jω)

= jωL (1.58)

1.3.3.4 Constant Phase Element

The Constant Phase Element12 (CPE) is a non-intuitive circuit element that was invented

while looking at the response of real-world systems. Mathematically, it is defined as

Z(jω) =
1

(jω)α Cα
(1.59)

with two parameters α and Cα. It reduces to pure resistor, capacitor and inductor when

α = 0, α = 1 and α = −1 respectively. However, in the real application of this element, α

is defined between 0 and 1 and this element can be thought of as a fractional generalization

of a conventional capacitor.

1.3.3.5 Generalized Finite-Length Warburg Element

Mathematically, the Generalized Finite-Length Warburg Element (GFLW) is the solution

to the one-dimensional anomalous diffusion equation subject to the absorbing boundary13

Z(jω) = RGFLW
tanh (jωCGFLW )αGFLW

(jωCGFLW )αGFLW
(1.60)

with three parameters RGFLW , CGFLW and αGFLW . When (jωCGFLW )αGFLW À 1, it



19

reduces to a CPE as in (1.59). When αGFLW = 0.5, it reduces to a Finite-Length Warburg

(FLW) element14

Z(jω) = RFLW
tanh

√
jωCFLW√

jωCFLW
(1.61)

with two parameters RFLW and CFLW . Again, in the real application of this element,

αGFLW is defined between 0 and 0.5. GFLW element gives a half-tear-drop arc called

Warburg arc in the Nyquist plot as shown in Figure 1.6. For the FLW element, the slope at

the high-frequency part is 45◦ as in Figure 1.6(a). For the GFLW element, the arc is more

depressed and the slope at the high-frequency part is less than 45◦ as in Figure 1.6(b).

 FLW
 GFLW

 

-Im
 Z

Re Z

45o

Figure 1.6: Schematic Nyquist plots of a Finite-Length Warburg (FLW) element and a Generalized Finite-
Length Warburg (GFLW) element.

1.3.3.6 A Simple Subcircuit—ZARC Element

Series and parallel connections of the above basic elements will produce subcircuits or

circuits. One of the most important subcircuits is the parallel connection of a resistor R

and a Constant Phase Element Q as one of the three shown in Figure 1.5. This subcircuit

is called the ZARC element and labeled as RQ in the circuit code. Thus the circuit in

Figure 1.5 is labeled as RIQI −RIIQII −RIIIQIII . The impedance of the ZARC element

is
1

Z (jω)
=

1
R

+ Cα(jω)α (1.62)

It can also be written as

(
ReZ − R

2

)2

+
(
−ImZ +

R

2
cot

απ

2

)2

=
(

R

2
csc

απ

2

)2

(1.63)
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If α = 1, the ZARC element is a parallel connection of a resistor and a capacitor

(
ReZ − R

2

)2

+ (−ImZ)2 =
(

R

2

)2

(1.64)

This gives a perfect semicircle in the Nyquist plot as shown in Figure 1.7. The center of

the semicircle is on the real axis. The angular frequency corresponding to highest point in

the imaginary axis is called the characteristic frequency ω0, which can be written as

ω0 =
1

RC
(1.65)

 Capacitor
 CPE

 

-Im
 Z

Re Z

R1/ C1/
0=1

RC 0=1

 

Figure 1.7: Schematic Nyquist plots of the parallel connection of a resistor and a capacitor and a Constant
Phase Element.

In the more general case of a ZARC element with a Constant Phase Element, (1.63)

gives a depressed arc in the Nyquist plot with the center located below the real axis as also

shown in Figure 1.7. The associated characteristic frequency is

ω0 =
(

1
RCα

)1/α

(1.66)

It is worth noting that Cα does not have the unit of capacitance. The equivalent capaci-

tance of a Constant Phase Element Cequiv can be obtained by equating the characteristic

frequencies from (1.65) and (1.66)

1
RCequiv

=
(

1
RCα

)1/α

(1.67)
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This gives

Cequiv = C1/α
α R1/α−1 (1.68)

The physical concept behind the parallel connection of a resistor and a capacitor to

represent a process is that the resistor describes the resistance of the process to the moving

charge carriers and the capacitor describes the dielectric response of the process. The

resistance is defined as

R =
L

σA
(1.69)

where σ is the conductivity, L is the thickness and A is the area of the material. The

capacitance is defined as

C =
εrε0A

L
(1.70)

where εr is the relative permittivity and ε0 is the vacuum permittivity. From (1.65), (1.69)

and (1.70), one obtains

ω0 =
1

RC
=

1
L

σA

εrε0A

L

=
σ

εrε0
(1.71)

It can be seen that ω0 is a materials constant.

As mentioned above, the parallel connection of a resistor and a capacitor will give a

perfect semicircle in the Nyquist plot. However, the perfect semicircles are rarely observed

in real measurements. Instead the depressed arcs are often encountered and can be modeled

reasonably well by the ZARC element with the Constant Phase Element. The most widely

used explanation for the arc depression is the distribution of characteristic frequency. While

the variation of relative permittivity εr can be safely ignored, the distribution of both carrier

concentration and mobility will lead to the distribution of conductivity σ and thus the

distribution of ω0 in (1.71).

1.3.4 Physical Models vs. Empirical Equivalent Circuits

One of the biggest disadvantages of the equivalent circuit method is that equivalent circuits

are seldom unique. A simple example would be that the circuit in Figure 1.8 will also give

the plots in Figure 1.4.

While the equivalent circuit in Figure 1.5 have some physical roots, sometimes arbitrary
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RI

QI

RII

QII

RIII

QIII

Figure 1.8: Another equivalent circuit corresponding to the plots in Figure 1.4.

equivalent circuits lacking explicit physical explanations are used. On the other hand, if

the physical processes in the system are already known, it is possible to directly derive

the impedance response of the system under the small-signal perturbation. In the next

chapter, it will be shown that the impedance response of the electrolyte can be derived

from basic equations describing the charge carrier transport within the electrolyte. It is

worth mentioning that an accompanying equivalent circuit can also be constructed for this

impedance response and all the circuit elements have explicit physical meanings. It will

also be shown in the next chapter that the equivalent circuit in Figure 1.5 is only a rough

approximation to a system with only one mobile charge carrier and it is not sufficient to

describe a system with more than one mobile charge carrier.

1.3.5 Complex Nonlinear Least-Squares Fitting

The fitting of the model impedance response to the experimental impedance spectrum is

performed by the Complex Nonlinear Least-Squares (CNLS) fitting. Consider a model

expression f cal (x;P) which is a nonlinear function of both x and a set of model parameters

P = (p1, p2, . . . , pm). Consider i = 1, 2, . . . , n (n ≥ m) experimental values fexp
i (xi). The

least-squares procedure involves minimizing the sum of square function

S =
n∑

i=1

wi

[
fexp

i (xi)− f cal
i (xi;P)

]2
(1.72)

where wi is the weighting function.

For the CNLS fitting of impedance spectra, the data points are collected at different
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frequencies ωi and the function f is the complex impedance Z (ω). Z (ω) is separated into

real and imaginary parts and the objective function becomes

S =
n∑

i=1

{
wRe

i

[
ReZexp

i (ωi)−ReZcal
i (ωi;P)

]2
+ wIm

i

[
ImZexp

i (ωi)− ImZcal
i (ωi;P)

]2
}

(1.73)

where Zexp
i (ωi) and Zcal

i (x;P) are the experimental and calculated impedance respectively.

There are several choices for the weighting function.

1. Unit weighting or no weighting

wRe
i = wIm

i = 1 (1.74)

Unit weighting treats each data point equally. This tends to overemphasize data

points with a large magnitude.

2. Proportional weighting

wRe
i =

1
(ReZi)

2 , wIm
i =

1
(ImZi)

2 (1.75)

At high and low frequencies the imaginary part of the data is very small. This tends

to overemphasize data points at high and low frequencies.

3. Modulus weighting

wRe
i =

1
|Zi|2

, wIm
i =

1
|Zi|2

(1.76)

Weighting the data by the modulus of impedance is the most recommended weighting

strategy and is the default weighting in several kinds of commercial software.

In this work, the weighting function is chosen as the modulus of the calculated impedance,

i.e., the function that needs to be minimized is15

S =
n∑

i=1





[
ReZexp

i (ωi)−ReZcal
i (ωi;P)∣∣Zcal

i (ωi;P)
∣∣

]2

+

[
ImZexp

i (ωi)− ImZcal
i (ωi;P)∣∣Zcal

i (ωi;P)
∣∣

]2


 (1.77)
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CNLS starts with initial guesses for the model’s parameters P. Then one or several

parameters in P are changed according to the algorithm. For every set of parameters,

the objective function S is calculated. If the change of parameters decreases S, the new

parameters are kept. If the change of parameters increase S, the old parameters are kept.

The fitting stops when S is below a preset tolerance. Generally, the objective function S

has several local minima so a good initial guess is essential. Most of the time this requires

some prior basic knowledge of the physical system.

The algorithm used in this work for the CNLS fitting is the Levenberg-Marquardt16, 17

algorithm. It is a standard technique for nonlinear least-squares problems and can be

thought of as a combination of steepest descent and the Gauss-Newton method.18 When

the current solution is far from the correct one, the algorithm behaves like a steepest descent

method: slow, but guaranteed to converge. When the current solution is close to the correct

solution, it becomes a Gauss-Newton method.
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Chapter 2

Derivation of Impedance from
Physical Models

The derivation of impedance from physical models has its roots in earlier studies by Mac-

donald et al.19–30 The mapping of physical models to equivalent circuits for the equilibrium

(flat-band) conditions was intuitively recongized by Barker31 and later proved by Brumleve

and Buck.32 Some recent developments include the works of Jamnik and Maier33, 34 and of

Moya, Hayas, and Horno.35 However, so far the discussion of this kind of equivalent circuits

has only been limited to equilibrium conditions, namely, constant concentration, zero elec-

tric field and charge density, and zero flux. In this work, a rigorous derivation of impedance

and equivalent circuits has been presented to include both equilibrium and nonequilibrium

conditions.

2.1 Basic Equations

2.1.1 Charge Carrier Transport in the Electrolyte

A set of three fundamental equations govern charge transport in solids. The first is the

generalized transport equation that relates the driving force (electrochemical potential) to

the mass flux36

Jmass
i (x, t) = −σi(x, t)

(zie)
2

∂µ̃i(x, t)
∂x

(2.1)

where x is position and t is time, i is the species of charge carrier, zi is the number of

charges, e is the electron charge, Jmass
i (x, t) is the carrier mass flux, σi(x, t) is the electrical

conductivity and µ̃i(x, t) is the electrochemical potential. The electrical conductivity σi(x, t)
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of charge carrier i is related to the diffusivity by the Nernst-Einstein relation

σi(x, t) =
(zie)

2 Di

kBT
ci(x, t) (2.2)

where Di is the diffusivity (assumed independent of position and concentration), ci(x, t) is

the carrier concentration, kB is the Boltzmann constant and T is the absolute temperature.

The electrochemical potential µ̃i(x, t) is the sum of the chemical potential µi(x, t) and

electrical energy zieφ(x, t)

µ̃i(x, t) = µi(x, t) + zieφ(x, t) (2.3)

For the ideal solution, the chemical potential µi(x, t) is given as

µi(x, t) = µ0
i + kBT ln

ci(x, t)
c0
i − ci(x, t)

(2.4)

where µ0
i is the standard chemical potential, c0

i is the concentration of the total available

lattice sites. Here the site exclusion was explicitly taken into account. In the dilute limit,

(2.4) becomes

µi(x, t) = µ0
i + kBT ln

ci(x, t)
c0
i

(2.5)

such that the mass flux, (2.1), becomes

Jmass
i (x, t) = −Di

∂ci(x, t)
∂x

− σi(x, t)
zie

∂φ(x, t)
∂x

= −Di
∂ci(x, t)

∂x
− zieDici(x, t)

kBT

∂φ(x, t)
∂x

(2.6)

Equation (2.6) been given a variety of different names in the literature such as the diffusion-

drift, diffusion-migration, Nernst-Planck or electrodiffusion equation. Equation (2.1) can

also be rewritten in terms of charge flux and reduced potentials as

Jcharge
i (x, t) = −σi(x, t)

∂µ̃∗i (x, t)
∂x

(2.7)

with

Jcharge
i (x, t) = zieJ

mass
i (x, t) (2.8)
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µ̃∗i (x, t) =
µ̃i(x, t)

zie
= µ∗i (x, t) + φ(x, t) (2.9)

µ∗i (x, t) =
µi(x, t)

zie
(2.10)

where Jcharge
i (x, t) is the carrier charge flux, µ̃∗i (x, t) is the reduced electrochemical potential

and µ̃∗i (x, t) is the reduced chemical potential. It is worth noting that both µ∗i (x, t) and

µ̃∗i (x, t) have units of electrical potential.

The second fundamental equation is describing continuity. In the case where there are

no sources or sinks of mass, continuity requires that the variation in mass flux with position

balance the variation in concentration with time according to the continuity equation

∂ci(x, t)
∂t

+
∂

∂x
Jmass

i (x, t) = 0 (2.11)

In terms of charge flux, this can be written as

zie
∂ci(x, t)

∂t
+

∂

∂x
Jcharge

i (x, t) = 0 (2.12)

The third fundamental equation is that due to Poisson, which relates the sum of the

charges in the system,
∑
i

zieci(x, t), to the electrical potential according to

−εrε0
∂2φ(x, t)

∂x2
=

∑

i

zieci(x, t) (2.13)

where εr is the dielectric constant or relative permittivity and ε0 is the vacuum permittivity.

2.1.2 Charge Carrier Transport at the Boundaries

In order to solve the above system of equations one requires, in principle, knowledge of

the relevant boundary conditions. These can be formulated in terms of the fluxes at the

electrolyte|electrode interfaces, which are fixed by the values of the electrochemical potential

at the respective interfaces and in the respective gas phase chambers. This type of boundary

condition can be written in the most general case as
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Jcharge
i (0, t) = g [µ̃∗i (a, t), µ̃∗i (0, t)] (2.14)

Jcharge
i (L, t) = h [µ̃∗i (c, t), µ̃

∗
i (L, t)] (2.15)

where µ̃∗i (a, t) and µ̃∗i (c, t) are the reduced electrochemical potentials at the electrodes a and

c, g and h are functions which embody the characteristics of the electrochemical reactions.

The explicit forms of the boundary condition functions, g and h, depend on the details of

the electrode reactions including steps such as adsorption, surface diffusion, charge transfer

etc. Of course, the relevant parameters such as surface coverage, surface diffusivity, charge

transfer rate constants etc. have to be known. Two forms of these functions have been

discussed in the literature. The first is the Butler-Volmer (B-V) type equation, in which a

portion of the voltage is taken to drive a concentration gradient and hence the overall rate

of reaction.37 Written in terms of the reduced electrochemical potential for the electrode a,

the B-V equation is

Jcharge
i (0, t) = Ji0(a) exp

{
αi(a)

e [µ̃∗i (a, t)− µ̃∗i (0, t)]
kBT

}

− Ji0(a) exp
{
− [1− αi(a)]

e [µ̃∗i (a, t)− µ̃∗i (0, t)]
kBT

}
(2.16)

where Ji0(a) is the exchange current density and αi(a) is the transfer coefficient. When

the arguments of the exponential terms are small, the B-V boundary conditions can be

approximated as a linear function

Jcharge
i (0, t) = Ji0(a)e

µ̃∗i (a, t)− µ̃∗i (0, t)
kBT

(2.17)

Another possible function for g or h has the form of the Chang-Jaffé (C-J) equation,21, 38

in which the overall rate of reaction is directly proportional to the voltage driving force

Jcharge
i (0, t) = ki(a) [µ̃∗i (a, t)− µ̃∗i (0, t)] (2.18)

where ki(a) represents the rate of the electrochemical reaction.

If g and h are linear functions, one can define a charge transfer resistance, R⊥
i (a), which
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relates the electrochemical potential drop at the interface to the flux across the interface

µ̃∗i (a, t)− µ̃∗i (0, t) = Jcharge
i (0, t)AR⊥

i (a) (2.19)

For the linearized B-V boundary condition, the charge transfer resistance is simply

R⊥
i (a) =

kBT

eJi0(a)A
(2.20)

whereas for the C-J boundary condition it is

R⊥
i (a) =

1
ki(a)A

(2.21)

2.2 Steady-State Solution under Open Circuit Conditions

2.2.1 Steady-State Solution in the Electrolyte

For the steady-state solution, the time dependence in the three fundamental equations (2.7),

(2.12) and (2.13) can be dropped. From (2.12)

d

dx
Jcharge

i (x) = 0 (2.22)

This implies the charge flux is constant Jcharge
i . Thus from (2.6)–(2.8)

Jcharge
i = −σi(x)

dµ̃∗i (x)
dx

= −zieDi
dci(x)

dx
− (zie)2Dici(x)

kBT

dφ(x)
dx

(2.23)

If Jcharge
i = 0, it is called the steady-state equilibrium condition. If Jcharge

i 6= 0, it is called

the steady-state nonequilibrium condition. From (2.13), if there is no time dependence

−εrε0
d2φ(x)

dx2
= −

∑

i

zieci(x) (2.24)

Finally, in the absence of an external applied electric potential gradient, i.e., under open

circuit conditions, the charge fluxes of all the carriers are balanced so as to produce no net

charge flow. That is
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∑

i

Jcharge
i = 0 (2.25)

which provides an additional constraint on the system.

The above set of equations (2.23)–(2.25) are coupled nonlinear differential equations

for which only numerical solutions are typically available. However, some approximate

methods can be used to simplify the solution process. Two widely used approximations are

the constant-field approximation and electroneutrality approximation, both of which rely on

the fact that the terms in equation (2.24) are small.39, 40 The constant-field approximation

results when the left-side term in equation (2.24) is assumed to be zero, but the right side

remains non-zero

−εrε0
d2φ(x)

dx2
= 0,

∑

i

zieci(x) 6= 0 (2.26)

This implies
dφ(x)

dx
= −E (2.27)

in which E is the electric field and a constant. In the field of biological system, it is usually

called the Goldman constant field approximation.41 The electroneutrality approximation

results when the right term in equation (2.24) is assumed to be zero, but the left side

remains non-zero, the result is simply

∑

i

zieci(x) = 0, − εrε0
d2φ(x)

dx2
6= 0 (2.28)

This is called the electroneutrality approximation since the total charge at any position is

zero. This approximation has been employed in the work of Tannhauser42 and Liu.43 There

have been some investigations in the literature as to determine which approximation works

better under different conditions.40, 44

For the MIEC ceria, three charge carriers are the mobile oxygen vacancy, mobile electron

and immobile acceptor dopant, from (2.23)–(2.25)

Jcharge
ion = −σion(x)

dµ̃∗ion(x)
dx

= −zioneDion
dcion(x)

dx
− (zione)2Dioncion(x)

kBT

dφ(x)
dx

(2.29)

Jcharge
eon = −σeon(x)

dµ̃∗eon(x)
dx

= −zeoneDeon
dceon(x)

dx
− (zeone)2Deonceon(x)

kBT

dφ(x)
dx

(2.30)
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−εrε0
d2φ(x)

dx2
= zionecion(x) + zeoneceon(x) + zADecAD (2.31)

Jcharge
ion + Jcharge

eon = 0 (2.32)

As discussed in Chapter 1, an additional constraint is the local equilibrium

O×
O ↔ 1

2
O2 + V ••

O + 2e′ (2.33)

with the equilibrium constant

Kr = cion(x)c2
eon(x)p1/2

O2
(x) (2.34)

Again, the solution of coupled differential equations (2.29)–(2.32) and (2.34) requires

some approximation methods. In this work, the constant oxygen vacancy approximation is

used.

2.2.1.1 System III. Nonequilibrium Conditions without Space Charge

For the investigated system, the oxygen vacancy concentration is mainly dominated by the

acceptor doping while the creation of oxygen vacancy by the reduction reaction is negligible.

This is called the constant oxygen vacancy approximation.7 That is

cion(x) = cion = cAD/2 (2.35)

In the context of constant-field and electroneutrality approximations mentioned above, it is

important to recognize that the constant-field approximation is implicitly included in the

constant oxygen vacancy approximation because from (2.29) and (2.35)

dφ

dx
= −Jcharge

ion

σion
= −E (2.36)

with the Nernst-Einstein relation from (2.2)

σion =
(zione)2 Dion

kBT
cion (2.37)
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The concentration of the electron can be evaluated by taking the derivative of the drift-

diffusion equation (2.30) with respect to position

0 = −d2ceon(x)
dx2

− zeone

kBT

dceon(x)
dx

dφ(x)
dx

− zeone

kBT
ceon(x)

d2φ(x)
dx2

(2.38)

For the constant-field approximation (2.36), (2.38) becomes

0 =
d2ceon(x)

dx2
− zeoneE

kBT

dceon(x)
dx

(2.39)

The solution of (2.39) gives the electron concentration profile

ceon(x) = ceon(0)− [ceon(0)− ceon(L)]
1− exp

(
zeoneE

kBT
x

)

1− exp
(

zeonE

kBT
L

) (2.40)

with the boundary values obtained from the local equilibrium

ceon(0) =
√

Kr

cion
p
−1/4
O2

(0) (2.41)

ceon(L) =
√

Kr

cion
p
−1/4
O2

(L) (2.42)

Inserting (2.40) into (2.30), and making use of the constant-field approximation, (2.36),

yields the electron flux

Jcharge
eon =

σeon(L)− σeon(0) exp
(
− eE

kBT
L

)

1− exp
(
− eE

kBT
L

) E (2.43)

with

σeon(0) = σ0
eonp

−1/4
O2

(0) (2.44)

σeon(L) = σ0
eonp

−1/4
O2

(L) (2.45)

σ0
eon =

Deone2

kBT

√
Kr

cion
(2.46)
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Using the fact that the electron and ionic charge fluxes are exactly balanced under steady-

state conditions, (2.32), and combining this with the solution to the electric field under the

constant vacancy approximation, (2.36), one obtains the electric field

E = −kBT

eL
ln

σion + σ0
eonp

−1/4
O2

(L)

σion + σ0
eonp

−1/4
O2

(0)
= −φ(L)− φ(0)

L
(2.47)

Thus, under the constant vacancy approximation, one needs only to know the value

of the oxygen partial pressures at the MIEC|electrode interfaces, pO2(0) and pO2(L) and

one can immediately evaluate electron concentration profile (2.40) from (2.41), (2.42) and

(2.47). The concentration profiles are schematically drawn in Figure 1.1(c). From the local

equilibrium, the oxygen partial pressure profile is then simply

pO2(x) =
[

Kr

cionc2
eon(x)

]2

(2.48)

2.2.1.2 System II. Equilibrium Conditions with Space Charge

At the steady-state equilibrium condition, Jcharge
ion = Jcharge

eon = 0. Equations (2.29) and

(2.30) become

dµ̃∗ion(x)
dx

= 0 (2.49)

dµ̃∗eon(x)
dx

= 0 (2.50)

From the definition of the reduced electrochemical potential (2.5) and (2.9)

d ln ci(x)
dx

= − zie

kBT

dφ(x)
dx

(2.51)

Defining c∞i as the concentration at the reference point ∞ where φ = 0, integrating (2.51)

from the reference point to x yields

cion(x) = c∞ion exp
[
−zioneφ(x)

kBT

]
(2.52)

ceon(x) = c∞eon exp
[−zeonφ(x)

kBT

]
(2.53)
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This is the Boltzmann distribution. At the reference point φ = 0, from (2.24)

zionec∞ion + zeonec∞eon + zADecAD = 0 (2.54)

This is the electroneutrality condition. At the reference point, from the local equiblibrium

Kr = c∞ion (c∞eon)2
(
p∞O2

)1/2 (2.55)

As discussed above, the solution of coupled nonlinear differential equations (2.52)–(2.55)

require some approximations to be made.

In the grain interior region, the potential is assumed to be zero, i.e., the reference point

is assumed to be situated in the whole grain interior region. Actually, the numerical solution

suggests that at distances several Debye length away from the interface, the potential can

be approximated to be zero.45 Thus the oxygen partial pressure p∞O2
is the experimental

oxygen partial pressure pO2 . The concentrations of charge carriers are given by the solution

of (2.54) and (2.55). Of course it is possible to directly solve (2.54) and (2.55) to obtain

the ionic c∞ion and electronic concentrations c∞eon. However, for the interested material and

experimental conditions, further simplification is applicable. Again, under the constant

oxygen vacancy approximation, (2.54) and (2.55) become

c∞ion = cAD/2 (2.56)

c∞eon =
√

2Kr

cAD
p
−1/4
O2

(2.57)

In the space charge region, the concentrations of ions and electrons are assumed to be

negligible compared with the concentration of the dopants, cion(x), ceon(x) ¿ cAD, thus

(2.24) becomes

−εrε0
d2φ(x)

dx2
= −ecAD (2.58)

If the boundary conditions are chosen as

φ(x = 0) = φ0 (2.59)
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φ(x = λS) =
dφ

dx

∣∣∣∣
x=λS

= 0 (2.60)

where λS is the arbitrary space charge layer width, the solution of (2.58) gives the approx-

imate solution

φ(x) = φ0

(
1− x

λS

)2

(2.61)

with

λS =
√

2εrε0φ0

ecAD
(2.62)

This is called the Mott-Schottky profile.46–48 From (2.52) and (2.53) the carrier concentra-

tions in the space charge region are

cion(x) = c∞ion exp

[
−2eφ0

kBT

(
1− x

λS

)2
]

(2.63)

ceon(x) = c∞eon exp

[
eφ0

kBT

(
1− x

λS

)2
]

(2.64)

Equations (2.56), (2.57), (2.63) and (2.64) give the complete description of the steady-

state carrier concentrations in both the space charge and grain interior regions within a

grain. In one-dimension condition, this is the solution within one serial layer. The solution

will be repeated for N numbers of serial layers. The concentration profiles are schematically

drawn in Figure 1.1(b).

2.2.1.3 System I. Equilibrium Conditions without Space Charge

If there is no space charge effect
dφ(x)

dx
= 0 (2.65)

From (2.51) and (2.65), this means that the carrier concentration is constant

ci(x) = ci (2.66)

Now the whole grain is assumed to be the reference. As in (2.56) and (2.57), similarly, the

ionic and electronic concentrations are given by
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cion = cAD/2 (2.67)

ceon =
√

2Kr

cAD
p
−1/4
O2

(2.68)

The concentration profiles are schematically drawn in Figure 1.1(a).

2.2.2 Steady-State Solution at the Boundaries

A complete description of the electrode|MIEC|electrode system requires application of the

boundary conditions discussed in section 2.1.2. While the flux through the system is a

constant under steady-state conditions, the voltage will be influenced by the electrochemical

activity of the electrodes. The macroscopically measured voltage generated between the

anode and cathode chambers is given as

Vca = Vc − Va = µ̃∗eon(c)− µ̃∗eon(a) (2.69)

Under the assumption of local equilibrium for reaction (2.33), the electrochemical potentials

of the species in the electrodes chambers are related according to

1
4e

µO2(a) + µ̃∗ion(a)− µ̃∗eon(a) = 0 (2.70)

1
4e

µO2(c) + µ̃∗ion(c)− µ̃∗eon(c) = 0 (2.71)

Inserting the expressions implied by these relationships into (2.69) yields

Vca =
1
4e

µO2(c)−
1
4e

µO2(a) + µ̃∗ion(c)− µ̃∗ion(a) (2.72)

The difference between the first two terms in (2.72) is readily recognized as the Nernst

potential, VN , of the system

VN =
1
4e

[µO2(c)− µO2(a)] =
kBT

4e
ln

pO2(c)
pO2(a)

(2.73)

The final two terms can be evaluated by reference to the charge transfer resistance, as

defined in (2.19). That definition implies
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µ̃∗ion(a)− µ̃∗ion(0) = Jcharge
ion AR⊥

ion(a) (2.74)

µ̃∗ion(L)− µ̃∗ion(c) = Jcharge
ion AR⊥

ion(c) (2.75)

and thus (2.72) becomes

Voc = VN + µ̃∗ion(L)− µ̃∗ion(0)− Jcharge
ion A

[
R⊥

ion(a) + R⊥
ion(c)

]
(2.76)

The quantity µ̃∗ion(L) − µ̃∗ion(0) in this expression can be obtained by integration of (2.29)

and is given as

µ̃∗ion(L)− µ̃∗ion(0) = −Jcharge
ion ARion (2.77)

with

Rion =
∫ L

0

dx

σion(x)A
(2.78)

where Rion is defined as the total ionic resistance of the electrolyte. Thus, the externally

measured voltage is

Vca = VN − Jcharge
ion A

[
R⊥

ion(a) + Rion + R⊥
ion(c)

]
(2.79)

This voltage depends not only on the oxygen partial pressures at the electrodes (which

establish VN ), but also on the ionic resistivity of the electrolyte and the electrochemical

activity of the electrodes.

The voltage can also be alternatively expressed in terms of the electronic properties of the

MIEC, if again, appropriate boundary conditions are applied. If the electrodes are taken to

be reversible with respect to electrons, such that the variation in electrochemical potential

of electrons throughout each electrode and across each electrode|electrolyte interface is

assumed to be negligible, then

µ̃∗eon(a) = µ̃∗eon(0) (2.80)

µ̃∗eon(c) = µ̃∗eon(L) (2.81)

Insertion into (2.69) simply yields
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Vca = µ̃∗eon(L)− µ̃∗eon(0) (2.82)

which can be evaluated by integration of (2.30) to obtain

µ̃∗eon(L)− µ̃∗eon(0) = −Jcharge
eon AReon = Vca (2.83)

with

Reon =
∫ L

0

dx

σeon(x)A
(2.84)

where Reon is defined as the total electronic resistance of the electrolyte. This treatment

takes the voltage drop across the electrodes to be zero (implied in the statement that there

is no change in the electrochemical potential of the electrons). However, there is a change

in oxygen chemical potential (and hence virtual oxygen partial pressure gradient) across the

electrodes as a consequence of non-ideal kinetics for the ionic reactions. The situation is

shown schematically in Figure 2.1. The characteristics of the electrodes thus establish the

total electronic conductivity of the MIEC by fixing the oxygen partial pressures at x = 0

and L, which, in turn, fix the values of the electronic conductivity at the integration limits

of (2.84).

*

ion

2
O

*

eon

a 0 x

gas phase anode electrolyte 

Figure 2.1: Schematic illustration of the chemical potential changes occurring at an electrode|electrolyte
interface, shown for the particular case of the anode, under the assumption of an electron reversible electrode.

Physically, the oxygen chemical potential change across the electrodes must be related

to the atomistic terms describing the boundary conditions. The electron reversibility of the

electrodes implies from (2.70)
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1
4e

µO2(a) + µ̃∗ion(a)− µ̃∗eon(0) = 0 (2.85)

Simultaneously, local chemical equilibrium at the anode|electrolyte interface implies

1
4e

µO2(0) + µ̃∗ion(0)− µ̃∗eon(0) = 0 (2.86)

Taking the difference yields

1
4e

[µO2(a)− µO2(0)] + µ̃∗ion(a)− µ̃∗ion(0) = 0 (2.87)

Defining ∆µO2(a) as the difference in oxygen chemical potential in the anode gas chamber

and that at the electrolyte interface, and making use of (2.74) gives

∆µO2(a) = −4eJcharge
ion AR⊥

ion(a) (2.88)

Inserting the expressions for the charge transfer resistance obtained from the B-V and the

C-J boundary conditions, (2.20) and (2.21), respectively, yields

∆µO2(a) = −4kBT
Jcharge

ion

J ion,0(a)
(2.89)

and

∆µO2(a) =
−4e

kion(a)
Jcharge

ion (2.90)

The change in partial pressure across the electrodes, furthermore, contribute, along

with the electronic leakage, to the reduction of the cell voltage below the Nernstian value.

As discussed above, the measured cell voltage can be expressed as (2.79) and (2.83) from

the ionic and electronic properties of the system. At open circuit conditions, given the

relationship between Jcharge
ion and Jcharge

eon , (2.32), the measured open circuit voltage Voc can

be expressed as

Voc =
Reon

Reon + R⊥
ion(a) + Rion + R⊥

ion(c)
VN (2.91)

In the case of ideally active electrodes, in which the oxygen partial pressures at the x = 0
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and x = L matches precisely the respective values in the anode and cathode chambers, the

open circuit voltage the theoretical maximum voltage across the mixed conductor, V th
oc , is

obtained. Setting the charge transfer resistors to be zero in (2.91) yields

V th
oc =

Reon

Reon + Rion
VN (2.92)

A noteworthy consequence of these relationships is that it is not possible to directly evaluate

the mean ionic transference number of a mixed conductor from a simple measurement of

the voltage at open circuit unless care is taken to develop ion reversible electrodes (which

is not the case for the typical experiment). That is, in general, 〈tion〉 6= Voc/VN , a result

which has received some attention in the recent literature.

As discussed above, if the electrodes are taken to be reversible with respect to electrons,

the voltage is determined by the difference in reduced electrochemical potential of the

electronic species

Voc = µ̃∗eon(L)− µ̃∗eon(0) (2.93)

Rewriting (2.93) in terms of the chemical and electrical potentials, (2.9)–(2.5), yields

Voc =
kBT

zeone
ln

ceon(L)
ceon(0)

+ φ(L)− φ(0) (2.94)

Upon insertion of the oxygen partial pressure dependence of ceon(0) and ceon(L), (2.41) and

(2.42), and the value of the electric field, (2.47), the voltage becomes

Voc =
kBT

e
ln

σ0
eon + σionp

1/4
O2

(L)

σ0
eon + σionp

1/4
O2

(0)
(2.95)

The open circuit voltage Voc is generally an experimentally measurable parameter. Thus to

continue the above discussion in section 2.2.1.1, if either one of pO2(0) or pO2(L) is known,

the electron concentration profile can be obtained using (2.40), (2.41), (2.42), (2.47) and

(2.95).
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2.3 Small-Signal Impedance Solution

2.3.1 Small-Signal Solution in the Electrolyte

If a small perturbation is applied to a system otherwise described by the above steady-state

conditions, the system will evolve with time. The small perturbation can be the impulse

signal or the sinusoidal signal, etc. For sufficiently small perturbations, all quantities can be

written as the sum of their steady-state values and time dependent perturbations to those

values

φ(x, t) = φ(x) + ∆φ(x, t)

ci(x, t) = ci(x) + ∆ci(x, t)

σi(x, t) = σi(x) + ∆σi(x, t)

µ̃∗i (x, t) = µ̃∗i (x) + ∆µ̃∗i (x, t)

Jcharge
i (x, t) = Jcharge

i + ∆Jcharge
i (x, t) (2.96)

Plugging (2.96) into (2.7), (2.12) and (2.13) and employing the steady-state solution (2.23)

and (2.24) while ignoring the second-order term ∆σi(x, t)∆µ̃∗i (x, t)

∆Jcharge
i (x, t) = −σi(x)

∂∆µ̃∗i (x, t)
∂x

−∆σi(x, t)
dµ̃∗i (x)

dx
(2.97)

∂∆Jcharge
i (x, t)

∂x
= −zie

∂∆ci(x, t)
∂t

(2.98)

−εrε0
∂2∆φ(x, t)

∂x2
=

∑

i

zie∆ci(x, t) (2.99)

For the dilute solution, from (2.5)

∆ci(x, t) = ci(x)
[
ci(x, t)
ci(x)

− 1
]

= ci(x)
{

exp
[
∆µi(x, t)

kBT

]
− 1

}
(2.100)

For the small signal, the second order term ∆µi(x, t)∆µi(x, t) can be ignored

exp
[
∆µi(x, t)

kBT

]
≈ 1 +

∆µi(x, t)
kBT

(2.101)
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Thus (2.100) becomes

∆ci(x, t) = ci(x)
∆µi(x, t)

kBT
(2.102)

From (2.102), (2.98) can be written as

zieci(x)
kBT

∂∆µi(x, t)
∂t

= −∂∆Jcharge
i (x, t)

∂x
(2.103)

From (2.2) and (2.102)

∆σi(x, t) = σi(x)
∆µi(x, t)

kBT
(2.104)

From (2.23) and (2.104), (2.97) can be written as

∆Jcharge
i (x, t) = −σi(x)

∂∆µ̃∗i (x, t)
∂x

+ zieJ
charge
i

∆µ∗i (x, t)
kBT

(2.105)

As (2.98) is true for any particular species, it must also be true for the sum of all species

such that
∑

i

∂∆Jcharge
i (x, t)

∂x
= −

∑

i

zie
∂∆ci(x, t)

∂t
(2.106)

Insertion of (2.99) yields

∂

∂x

[∑

i

∆Jcharge
i (x, t)−εrε0

∂

∂t

∂∆φ(x, t)
∂x

]
= 0 (2.107)

which implies the total charge flux ∆Jcharge
T (t) is

∆Jcharge
T (t) =

∑

i

∆Jcharge
i (x, t) + ∆Jcharge

dis (x, t) (2.108)

with

∆Jcharge
dis (x, t) = −εrε0

∂

∂x

∂

∂t
∆φ(x, t) (2.109)

where ∆Jcharge
dis (x, t) is the displacement current.

The Laplace transform of (2.103), (2.105), (2.108) and (2.109) for the sinusoidal signal

gives
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∆Jcharge
i (x, ω) = −σi(x)

∂∆µ̃∗i (x, ω)
∂x

+
zieJ

charge
i

kBT
∆µ∗i (x, ω) (2.110)

∂∆Jcharge
i (x, ω)

∂x
= −jω

(zie)
2 ci(x)

kBT
∆µ∗i (x, ω) (2.111)

∆Jcharge
dis (x, ω) = −jωεrε0

∂∆φ(x, ω)
∂x

(2.112)

∆Jcharge
T (ω) = ∆Jch arg e

dis (x, ω) +
∑

i

∆Jcharge
i (x, ω) (2.113)

2.3.2 Small-Signal Solution at the Boundaries

If the function g and h in (2.14) and (2.15) are known, the same methodology for the

small-signal solution can be applied after obtaining the steady-state solution. However,

generally the electrode reactions are much more complicated and the detailed electrochemi-

cal mechanisms can not be easily obtained. Thus here the boundary conditions were treated

phenomenologically with boundary impedance Zi(a), Zi(c), Zdis(a) and Zdis(c). The idea

is that for any specific electrochemical mechanism, it can be modeled by an equivalent

impedance function.

The boundary conditions can be written as

V (a)−∆µ̃∗i (0, ω) = Zi(a)∆Jcharge
1 (0, ω)A

V (a)−∆φ(0, ω) = Zdis(a)∆Jcharge
dis (0, ω)A

∆µ̃∗i (L, ω)− V (c) = Zi(c)∆Jcharge
i (L, ω)A

∆φ(L, ω)− V (c) = Zdis(c)∆Jcharge
dis (L, ω)A (2.114)

where V (a) and V (c) are boundary voltages.

2.3.3 Impedance Calculation

The total impedance is defined as

Z(ω) =
V (a)− V (c)

∆Jcharge
T (ω)

(2.115)

Again, equations (2.110)–(2.115) can only be solved numerically. First, the steady-state

concentrations of charge carriers are calculated at discrete grid points xi. The total number
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of grid points is N + 1 with x0 = 0 and xN = L. Then the system of volume elements is

constructed. The edge of the volume elements is taken to be the middle position of the two

adjacent grid points as in Figure 2.2. This method is the same as the work of Brumleve

and Buck.49

2
( )

i
c x

0
x

1
x

2
x

0
( )

i
c x

1
( )

i
c x

0 1

2

x x
1 2

2

x x

Figure 2.2: The system of carrier concentration grids and volume elements. The edges of volume elements
are defined at the middle point between two grid points.

For this system of volume elements, equations (2.110)–(2.113) are discretized as

∆Jcharge
i (

xn + xn+1

2
, ω) = −σi(xn) + σi(xn+1)

2
∆µ̃∗i (xn+1, ω)−∆µ̃∗i (xn, ω)

xn+1 − xn

+
zieJ

charge
i

kBT

∆µ∗i (xn+1, ω) + ∆µ∗i (xn, ω)
2

, 0 ≤ n ≤ N − 1 (2.116)

∆Jcharge
i (

xn + xn+1

2
, ω)−∆Jcharge

i (
xn−1 + xn

2
, ω)

= −jω
(zie)

2 ci(xn)
kBT

xn+1 − xn−1

2
∆µ∗i (xn, ω), 1 ≤ n ≤ N − 1 (2.117)

Jcharge
dis (

xn + xn+1

2
, ω) = −jωεrε0

∆φ(xn+1, ω)−∆φ(xn, ω)
xn+1 − xn

, 0 ≤ n ≤ N − 1 (2.118)

∆Jcharge
dis (

xn−1 + xn

2
, ω) +

∑

i

∆Jcharge
i (

xn−1 + xn

2
, ω)

= ∆Jcharge
dis (

xn + xn+1

2
, ω) +

∑

i

∆Jcharge
i (

xn + xn+1

2
, ω), 1 ≤ n ≤ N − 1 (2.119)

The above equations can be written as

Ii(n) = −Vi(n + 1)− Vi(n)
Zi(n)

+ I0
i (n + 1) + I0

i (n), 0 ≤ n ≤ N − 1 (2.120)

Ii(n)− Ii(n− 1) = −Vi(n)− Vdis(n)
Zchem

i (n)
, 1 ≤ n ≤ N − 1 (2.121)



45

Idis(n) = −Vdis(n + 1)− Vdis(n)
Zdis(n)

, 0 ≤ n ≤ N − 1 (2.122)

Idis(n) +
∑

i

Ii(n) = Idis(n− 1) +
∑

i

Ii(n− 1), 1 ≤ n ≤ N − 1 (2.123)

with the following parameters

Zi(n) = Ri(n) =
[
σi(xn) + σi(xn+1)

2

]−1 xn+1 − xn

A
, 0 ≤ n ≤ N − 1 (2.124)

Zdis(n) =
1

jωCdis(n)
, 0 ≤ n ≤ N − 1 (2.125)

Cdis(n) = εrε0
A

xn+1 − xn
, 0 ≤ n ≤ N − 1 (2.126)

Zchem
i (n) =

1
jωCchem

i (n)
, 1 ≤ n ≤ N − 1 (2.127)

Cchem
i (n) =

(zie)
2 ci(xn)

kBT

xn+1 − xn−1

2
A, 1 ≤ n ≤ N − 1 (2.128)

Z0
i =

2kBT

(zie)
2 Jmass

i A
(2.129)

Ii(n) = ∆Jcharge
i (

xn + xn+1

2
, ω)A, 0 ≤ n ≤ N − 1 (2.130)

Idis(n) = ∆Jcharge
dis (

xn + xn+1

2
, ω)A, 0 ≤ n ≤ N − 1 (2.131)

Vi(n) = ∆µ̃∗i (xn, ω), 0 ≤ n ≤ N (2.132)

Vdis(n) = ∆φ(xn, ω), 0 ≤ n ≤ N (2.133)

Vi(n)− Vdis(n) = ∆µ∗i (xn, ω), 0 ≤ n ≤ N (2.134)

I0
i (n) =

Vi(n)− Vdis(n)
Z0

i

, 0 ≤ n ≤ N (2.135)

It is apparent then that Ri in (2.124) is the resistance of carrier i in the volume element

and Cdis in (2.126) is the dielectric capacitance of the element. Cchem
i in (2.128) is the

“chemical capacitance” of carrier i, as termed by Jamnik and Maier,33 and discussed in

detail in Appendix A. The estimate of the usual electrical and chemical capacitances is

given in Appendix B. Z0
i in (2.129) is the “source resistance” caused by the constant flux

Jmass
i . Ii in (2.130) is the current flowing through Ri and Idis in (2.131) is the current flowing

through Cdis. Vi in (2.132) is the reduced electrochemical potential, Vdis in (2.133) is the

electrical potential and Vi− Vdis in (2.134) is the reduced chemical potential. Finally, I0
i in

(2.135) is the voltage dependent current source. Using Kirchhoff’s law, the above equations
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(2.120)–(2.135) can also be mapped to an equivalent circuit with passive elements such as

resistors (Ri) and capacitors (Cdis, Cchem
i ) and active elements such as voltage controlled

current sources (I0
i ). This mapping can give a better understanding of the physical processes

and the frequency response of the system. For the mixed ionic and electronic conductor,

the equivalent circuit is shown in Figure 2.3(a).

The boundary conditions (2.114) can be written as

V (a)− Vi(0) = Zi(a)Ii(0)

V (a)− Vdis(0) = Zdis(a)Idis(0)

Vi(N)− V (c) = Zi(c)Ii(N)

Vdis(N)− V (c) = Zdis(c)Idis(N) (2.136)

Similarly, (2.136) can also be mapped. The equivalent circuit at the boundaries is shown

in Figure 2.3(b). Finally, the complete equivalent circuit including the electrodes is shown

in Figure 2.4.

The above equations (2.120)–(2.136) can be written in the matrix form

AX = B (2.137)

where A is a (6N + 3)× (6N + 3) sparse matrix with elements of Zi(n), Zdis(n), Zchem
i (n),

Z0
i , Zi(a), Zi(c), Zdis(a) and Zdis(c). The matrix B is a 6N +3 column vector with elements

of V (a) and V (c). The matrix X is a 6N + 3 column vector with elements of Ii(n), Idis(n),

Vi(n) and Vdis(n). For arbitrary chosen V (a) and V (c), X can be solved using Gaussian

elimination and the impedance Z can be calculated as

Z(ω) =
V (a)− V (c)

Iion(1) + Ieon(1) + Idis(1)
(2.138)

An example of the circuit, A, X and B for N = 2 is shown in Appendix C.
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Figure 2.3: A.C. equivalent circuits for the mixed conductor under the nonequilibrium condition (a) within
the electrolyte (1 ≤ n ≤ N − 1) (b) at the boundary (n = 0).
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Figure 2.4: A.C. equivalent circuit for the mixed conductor including the electrodes under the nonequilibrium
conditions.

2.3.3.1 System III

For the investigated system I, II and III with highly electronically conducting electrodes, Pt

and BSCF, the electronic and dielectric transport at the boundaries is generally assumed

to be reversible. In other words, the resistance to the electron and dielectric transport

is assumed to be zero. For the ionic transport, the application of Chang-Jaffé boundary

conditions will give interfacial resistors. If, however, one wishes to introduce interfacial

capacitive effects, this can be done by replacing the interfacial resistors with parallel RQ

circuits. This treatment is the modeling at the empirical level mentioned in Chapter 1.

Although it is to be emphasized that electrodes in the most general case cannot be described

by this simple representation, this model, as discussed below, yields an impedance that fits

the experimental data very well. The complete system including the electrodes for system

III is then represented as in Figure 2.5.

It is to be noted that, in fact, equilibrium conditions cannot be attained in a mixed con-

ductor exposed to a chemical potential gradient because the flux in such a system will always

be non-zero. With fixed partial pressures in the anode and cathode chambers (achieved via

a constant flow of gases) steady-state conditions can be created, but not equilibrium. The

present analysis shows that the equivalent circuit derived for a mixed conductor exposed to

a uniform chemical potential (and thus equilibrium conditions), such as in the literature33, 50

and in the following, can not be directly applied to represent the electrochemical behavior

of mixed conductors exposed to chemical potential gradients.



49

( )
eon

R n

( )
chem

ion
C n

( )
chem

eon
C n

( )
dis

C n ( )V c( )V a

0
( 1)

ion
I n

0
( )

ion
I n

0
( 1)

eon
I n

0
( )

eon
I n

( )
ion

R n
( )

ion
C a

( )
ion

R a

( )
ion

C c

( )
ion

R c

Figure 2.5: A.C. equivalent circuit for the mixed conductor of system III.

2.3.3.2 System II

In the above discussion for the nonequilibrium condition, Jmass
i is a non-zero constant. For

the equilibrium condition Jmass
i = 0, the voltage controlled current source is zero from

(2.129) and (2.135)

I0
i (n) = 0 (2.139)

(2.120) becomes

Ii(n) = −Vi(n + 1)− Vi(n)
Zi(n + 1)

(2.140)

An example of the circuit, A, X and B for N = 2 under equilibrium condition is shown

in Appendix C. Combining with the boundary conditions discussed above, the equivalent

circuit to describe the equilibrium system is shown in Figure 2.6. It is to be noted that

the elements are the same at the two boundaries since it is in equilibrium condition. This

circuit has recently been discussed in the literature for a mixed conductor.33, 50
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Figure 2.6: A.C. equivalent circuit for the mixed conductor of systems I and II.
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Of course it is possible to calculate the whole frequency response of the whole circuit

in Figure 2.6. However, it is also worthwhile looking at the simplified circuits at certain

ranges of frequency limits and their corresponding physical characteristics. Depending on

the magnitude of all the resistor and capacitor components in the circuit, the circuit can

be separated to several subcircuits. The most popular approach is to separate the whole

circuit to two subcircuits, a “low-frequency subcircuit” and a “high-frequency subcircuit.”

To keep the continuity of the subcircuits, the low-frequency limit of the “low-frequency

subcircuit” should be equal to the D.C. limit of the whole circuit. The high-frequency limit

of the “low-frequency subcircuit” should be equal to the low-frequency limit of the “high-

frequency subcircuit.” Finally, the high-frequency limit of the “high-frequency subcircuit”

should be equal to the A.C. limit of the whole circuit.
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Figure 2.7: (a) D.C., (b) “low-frequency subcircuit,” and (c) “high-frequency subcircuit” limits of the
equivalent circuit in Figure 2.6.

The unit impedances of the components in Figure 2.6 in the Laplace domain are

Ri(n)
(xn+1 − xn)/A

=
[
σi(xn) + σi(xn+1)

2

]−1

(2.141)
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Zdis(n)
(xn+1 − xn)/A

= (jωεrε0)
−1 (2.142)

Zchem
i (n)

(xn+1 − xn−1)A
2

=

[
jω

(zie)
2 ci(xn)

kBT

]−1

(2.143)

(1) At the D.C. limit (ω → 0). From (2.142) and (2.143), all the capacitors are effectively

open. The whole circuit in Figure 2.6 is reduced to the circuit in Figure 2.7(a). The

impedance of this circuit is

Z0 =
(

1
Rion + 2R⊥

ion

+
1

Reon

)−1

(2.144)

with

Ri =
∑

n

Ri(n) (2.145)

which are the conventional resistance terms.

(2) At low frequencies, ωεrε0 ¿ 1. From (2.142), the capacitor Cdis(n) is effectively

open. The chemical capacitors Cchem
ion (n) and Cchem

eon (n) are in series and can be combined

into a single chemical capacitor

Cchem
ion−eon(n) =

[
1

Cchem
ion (n)

+
1

Cchem
eon (n)

]−1

(2.146)

The resulting circuit is called the “low-frequency subcircuit” and shown in Figure 2.7(b).

The low (0) and high (∞) frequency limits of this circuit are

Z low
0 = Z0 (2.147)

Z low
∞ =

∑
n

[
1

Rion(n)
+

1
Reon(n)

]−1

(2.148)

It is worth noting the low-frequency limit of this “low-frequency subcircuit” is the same as

the D.C. limit of the whole circuit as in Figure 2.7(a).

(3) At high frequencies, ωC⊥
ion À 1, ω (zie)

2 ci(xn)/(kBT ) À 1, both the capacitors C⊥
ion

and Cchem
i (n) in (2.143) are effectively shorted. The resistors Rion(n) and Reon(n) are in

parallel and can be combined into a single resistor
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Rion//eon(n) =
[

1
Rion(n)

+
1

Reon(n)

]−1

(2.149)

The resulting circuit is called the “high-frequency subcircuit” and shown in Figure 2.7(c).

The low(0) and high(∞) frequency limits of this circuit are

Zhigh
0 = Z low

∞ (2.150)

Zhigh
∞ = 0 (2.151)

It is worth noting the low-frequency limit of this “high-frequency subcircuit” is the same

as the high-frequency limit of the “low-frequency subcircuit” in Figure 2.7(b).

(4) At the A.C. limit (ω →∞), all the capacitors are effectively shorted.

Z∞ = 0 (2.152)

It is worth noting the high-frequency limit of the “high-frequency subcircuit” in Figure 2.7(c)

is the same as the A.C. limit of the whole circuit. Thus the continuity of the subcircuits

has been verified.

In predominately ionic conductors, ωe2ceon(n)/(kBT ) ¿ 1 holds at all experimental

frequencies. The circuit in Figure 2.6 is reduced to the one in Figure 2.8. Again, this circuit

can be separated to a “low-frequency subcircuit” and a “high-frequency subcircuit.”
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Figure 2.8: A.C. equivalent circuit for the ionic conductor of system I and II.

(1) At the D.C. limit (ω → 0), all the capacitors are effectively open. The whole circuit

in Figure 2.8 is reduced to the circuit in Figure 2.9(a). The impedance of this circuit is

Z0 = Rion + 2R⊥
ion (2.153)
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(2) At low frequencies, ωεrε0 ¿ 1, the capacitor Cdis(n) is effectively open. The resulting

circuit is called the “low-frequency subcircuit” and shown in Figure 2.9(b). The low(0) and

high(∞) frequency limits of this circuit are
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Figure 2.9: (a) DC.., (b) “low-frequency subcircuit,” and (c) “high-frequency subcircuit” limits of the
equivalent circuit in Figure 2.8.

Z low
0 = Z0 (2.154)

Z low
∞ = Rion (2.155)

(3) At high frequencies, ωC⊥
ion(n) À 1, the capacitor C⊥

ion(n) is effectively shorted. The

resulting circuit is called the “high-frequency subcircuit” and shown in Figure 2.9(c). The

low(0) and high(∞) frequency limits of this circuit are

Zhigh
0 = Z low

∞ (2.156)

Zhigh
∞ = 0 (2.157)

(4) At the A.C. limit (ω →∞), all the capacitors are effectively shorted

Z∞ = 0 (2.158)
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Again, the continuity of the subcircuits has been verified.

Now we turn to the physical characteristics of the two subcircuits. Both the “high-

frequency subcircuits” in Figure 2.7(c) and Figure 2.9(c) only include the contributions of

the electrolyte components and thus can be characterized as “electrolyte subcircuits.” If

space charge regions exist at the grain boundaries, it can be shown numerically that both

the two circuits will give two arcs in the Nyquist plot as shown in Figure 2.10. The one closer

to the origin (high-frequency one) is the contribution from the grain interior and called the

bulk or grain interior (GI) arc. The one farther away from the origin (low-frequency one)

is the contribution from the space charge and called the grain boundary (GB) arc. If there

is no space charge, the two arcs will be combined to a single arc.

Both the “low-frequency subcircuits” in Figure 2.7(b) and Figure 2.9(b) include contri-

bution from both the electrolyte and electrode components. The circuit in Figure 2.9(b)

will give a semicircular arc displaced from the origin in the Nyquist plot and the circuit in

Figure 2.7(b) will give a half-tear-drop (Warburg) arc displaced from the origin as shown in

Figure 2.10. While the “low-frequency” arc in Figure 2.10(b) can be described as the elec-

trode arc since the electrolyte components only contribute a displacement from the origin,

the arc in Figure 2.10(a) is mainly dominated by the chemical capacitance of the electrolyte

as will be shown in the following discussion. It is worth noting Jamnik has obtained the

similar results using a less strict approach.51
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Figure 2.10: Schematic Nyquist plots of the equivalent circuits in (a) Figure 2.6 for the mixed conductor
and (b) Figure 2.8 for the ionic conductor respectively.
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2.3.3.3 System I

For the equilibrium condition without space charge, the small-signal solution can also be

simplified if electroneutrality is assumed to obey all the time. That is

zionecion(x, t) + zeoneceon(x, t) + zADecAD = 0 (2.159)

For the small-signal perturbation

zione
∂∆cion(x, t)

∂t
+ zeone

∂∆ceon(x, t)
∂t

= 0 (2.160)

Combining this with the continuity equation, (2.12), one obtains

∂∆Jcharge
ion (x, t)

∂x
+

∂∆Jcharge
eon (x, t)

∂x
= 0 (2.161)

In the discrete form, this means

Iion(n− 1)− Iion(n) + Ieon(n− 1)− Ieon(n) = 0 (2.162)

This result implies that any flux flowing from ionic carrier rail to the displacement rail

is exactly balanced by that flowing to the displacement rail from electronic carrier rail. As

a consequence, there is effectively no current flow between the carrier rails and the dis-

placement rail (although flow between the two carrier rails remains possible). Accordingly,

the elements in the circuit of Figure 2.6 can be simplified to that shown in Figure 2.11, by

removing the electrical connection between the displacement rail and the two carrier rails.

Doing so places Cion(n) and Ceon(n) directly in series with one another (with no intervening

branchpoints) and, thus, they can be combined into a single capacitance element Cchem
ion−eon

defined in (2.146).

For the equilibrium condition without the space charge, the carrier concentration ci(x)

is constant from (2.66). If the volume elements are chosen to be equal in Figure 2.2, all the

circuit elements Cdis(n), Rion(n), Reon(n) and Cchem
ion−eon(n) are equal individually.

Because of the isolated flow along the carrier and displacement rails, each of the dis-
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Figure 2.11: Simplified differential element of the equivalent circuit of Figure 2.6 under the additional
condition of local charge neutrality.

placement capacitor elements are directly in series with one another and they can also be

combined into one element

Cdis =

[∑
n

1
Cdis(n)

]−1

=
εrε0A

L
= Cdielec (2.163)

Thus, the capacitance along the displacement rail simply reduces to the conventional di-

electric capacitance.

Although the resistances along the two carrier rails cannot be combined into single

components, one can nevertheless define the total resistances encountered along these rails.

They are given by

Ri =
∑

n

Ri(n) =
L

σiA
(2.164)

which are the conventional resistance terms for the two species. The resistances of the

differential circuit elements are then

Ri(n) =
Ri

N
(2.165)

where N is the (arbitrary) total number of differential subcircuits comprising the complete

system.

One can similarly define a total chemical capacitance, Cchem, of the material system,

which is simply the sum of all of the chemical capacitances of the differential portions of

the circuit

Cchem =
∑

n

Cchem
ion−eon(n) =

e2

kBT

(
1

z2
ioncion

+
1

z2
eonceon

)−1

AL (2.166)
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with

Cchem
ion−eon(n) =

Cchem

N
(2.167)

describing the chemical capacitance of the element in the differential portion of the circuit.

The complete circuit is shown in Figure 2.12.
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Figure 2.12: A.C. equivalent circuit for the mixed conductor of system I under the electroneutrality approx-
imation.

Because Cdielec is typically small, it affects the impedance spectrum only at high fre-

quencies, in most cases beyond the high-frequency measurement limit. For the remainder

of the discussion the impact of the bulk dielectric capacitance, Cdielec, on the impedance

response is omitted for clarity. Under these conditions, the equivalent circuit of Figure 2.12

is reduced to that given in Figure 2.13(a). This is the same circuit as in Figure 2.7(b) for the

position independent circuit elements, i.e., equilibrium condition without the space charge.

For the pure ionic conductor, Figure 2.13(a) is reduced to that given in Figure 2.13(b). This

is the same circuit as in Figure 2.9(b).
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Figure 2.13: A.C. equivalent circuits for (a) the mixed conductor and (b) the ionic conductor of system I.
The analytical expression for the impedance is given in (2.168)–(2.172) and (2.173) respectively.
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The analytical expression for the impedance of the circuit of Figure 2.13(a) has been

given by Jamnik and Maier34 and is derived here in Appendix D. It is hereafter called

the Jamnik-Maier model. It is worth noting there is a typographical omission of the term

(Z0 − Z∞) in equation (7) of reference.34 The impedance of Figure 2.13(a) is

Z(ω) = R∞ + (Z0 −R∞)
tanh

√
jωL2

4D̃
+ Rion + Reon

2Z⊥ion

tanh

√
jωL2

4D̃√
jωL2

4D̃
+ Rion + Reon

2Z⊥ion

tanh

√
jωL2

4D̃

(2.168)

where

R∞ =
RionReon

Rion + Reon
(2.169)

1
Z0

=
1

Rion + 2Z⊥ion

+
1

Reon
(2.170)

Z⊥ion =
R⊥

ion

1 + jωR⊥
ionC⊥

ion

(2.171)

D̃ =
L2

(Rion + Reon)Cchem
(2.172)

The analytical expression for the impedance of the circuit of Figure 2.13(b) is given by

Z(ω) = Rion + 2Z⊥ion (2.173)

This equation can also be obtained by letting Reon →∞ in (2.168)–(2.172) as expected.

Plotted in the complex plane (i.e., in Nyquist form) the impedance spectra of the cir-

cuits in Figure 2.13(a) and Figure 2.13(b) have the general appearance of a single arc that

is displaced from the origin (along the real axis of Z), examples of which are shown in

Figure 2.14(a) and Figure 2.14(b) respectively. It is worth noting these plots have the same

shapes as those of “low-frequency” arcs in Figure 2.10.

Graphical analyses of the types of spectra that result under certain limiting conditions

from the impedance expressed in (2.168) have been presented by Jamnik and Maier,34

but without analogous explicit expressions for Z(ω) or physical interpretation of the char-

acteristic parameters of those spectra. Interpretation of the intercepts of the impedance
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Figure 2.14: Schematic Nyquist plots resulting from the circuit in Figure 2.13 for (a) the mixed conductor
and (b) the ionic conductor.

spectra with the real axis, labeled R∞ and R0 in Figure 2.14, can be achieved by evalu-

ation of the high and low-frequency limits of the circuit of Figure 2.13(a). At the high-

frequency limit, all of the capacitors are effectively shorted, producing the circuit shown in

Figure 2.15(a). The electrode resistance effectively disappears, and the impedance in this

limit is Z(ω →∞) = R∞. Thus, the high-frequency intercept corresponds to the total elec-

trical resistance of the MIEC that results from adding the electronic and ionic components,

Reon and Rion, in parallel, with

1
R∞

=
1

Rion
+

1
Reon

(2.174)

This is the same as (2.169).

At the low-frequency limit, all of the capacitors are effectively open, producing the circuit

shown in Figure 2.15(b). This is the same as the one in Figure 2.7(a). The impedance in

this limit, Z(ω → 0) = R0, can be immediately determined from the circuit to obey

1
R0

=
1

Rion + 2R⊥
ion

+
1

Reon
(2.175)

This is the same as (2.144). In this case, the intercept corresponds to the electrical resistance

of the system as a whole, and is the value that results from first adding the two ionic

components together in series, and then adding this composite term with the electronic

component together in parallel fashion.
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Figure 2.15: A.C. equivalent circuits representing that of Figure 2.13(a) in (a) the high-frequency limit in
which all capacitors are shorted, and (b) the low-frequency limit in which all capacitors are open.

Two features of R0 and R∞ are noteworthy. First, in the case of a perfectly ion block-

ing electrode (R⊥
ion, Z⊥ion → ∞) with perfect reversibility for electrons (R⊥

eon, Z⊥eon = 0), R0

reduces to Reon, which is precisely how one obtains the electronic component of the con-

ductivity of a MIEC using blocking electrodes. Second, the difference between R0 and R∞

does not, in the general case, equate to the resistance of the electrodes, as it would in the

case of a purely ionically conducting electrolyte. Instead, because R0 depends on all three

resistance terms of the system, further analysis, as described below, must be performed in

order to extract the electrode resistance from the impedance data.

While (2.168) has been employed here for the analysis of the metal|ceria|metal system,

it is noteworthy that under certain conditions, further simplifications occur. If Cchem is

substantially larger than C⊥
ion, then C⊥

ion can be ignored in the overall equivalent circuit

(Z⊥ion → R⊥
ion) and the impedance becomes

Z(ω) = R∞ + (R0 −R∞)
tanh

√
jωL2

4D̃
+ Rion + Reon

2R⊥
ion

tanh

√
jωL2

4D̃√
jωL2

4D̃
+ Rion + Reon

2R⊥
ion

tanh

√
jωL2

4D̃

(2.176)

The equivalent circuit of Figure 2.13(a) applies to a system in which a single step dom-

inates the entire electrochemical reduction/oxidation reaction. In many cases, however,

multiple sequential steps with differing time constants contribute to the overall process.

Ideally, the impedance spectra yield detailed information regarding each of these reaction

steps. In the present system, however, because Cchem À C⊥
ion (as shown below), the parallel

resistor and capacitor of the electrode impedance to ion transfer can readily be approxi-

mated as a simple resistor (that is, C⊥
ion ∼ 0). Thus, the possible presence of additional

parallel RC subcircuits that are in series with one another cannot be observed; each RC
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subcircuit reduces to a resistor, and simple resistors in series cannot be individually mea-

sured. Electrode processes at the interface with a MIEC are thus inherently masked by

the material’s large chemical capacitance. This behavior is quite distinct from that of pure

ionic conductors, in which multiple electrode arcs are routinely observed and their presence

used to probe complex reaction pathways.52

2.4 Comparison of Empirical Equivalent Circuit Modeling

and the Physical Equivalent Circuit Modeling

As discussed in Chapter 1, the Generalized Finite-Lengh Warburg (GFLW) element and

ZARC element are the two most widely used elements in the empirical equivalent circuit

modeling. In this section, the physical roots of these two elements will be shown in the

context of the present physical equivalent circuit, Figure 2.7(b) of the mixed conductor and

Figure 2.9(c) of the ionic conductor respectively.

2.4.1 Generalized Finite-Length Warburg Element

For the circuit in Figure 2.7(b), if there is no position dependence of the circuit elements,

the impedance of the circuit is given analytically in (2.168) and simplified to (2.176). If,

in addition, the resistance of the electrodes to ion transfer is high (i.e., ion blocking) such

that 2R⊥
ion À Rion + Reon, (2.176) is further reduced to

Z(ω) = R∞ + (R0 −R∞)
tanh

√
jωL2

4D̃√
jωL2

4D̃

(2.177)

where R∞ is unchanged and R0 is equal to Reon. The second term of this result has the

same mathematical form as the Finite-Length Warburg (FLW) impedance in section ??. At

the same time, without even resorting to the position dependence of the circuit elements,

(2.176) alone will give the GFLW instead of FLW behaviors. An example is given for a set

of parameters such as Rion = 3 Ω, Reon = 11 Ω, R⊥
ion = 14 Ω, Cchem = 4 F. The Nyquist

plot is shown schematically in Figure 2.16 along with a schematic FLW arc.
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Figure 2.16: Schematic Nyquist plots of the Finite-Length Warburg (FLW) element and the Generalized
Finite-Length Warburg (GFLW) element from the circuit in Figure 2.7(b).

2.4.2 ZARC Element

It is shown above that the GFLW element has its root in the equivalent circuit of the mixed

conductor, Figure 2.7(b). It will be shown below that the ZARC element has its root in

the equivalent circuit of the ionic conductor, specifically, Figure 2.9(c). For the circuit in

Figure 2.9(c), if there is no position dependence of the circuit elements, the impedance

can be obtained analytically when the discrete elements become continous or the number of

elements N becomes infinite. In the terminology of Appendix D, the circuit in Figure 2.9(c)

suggests ZA = ZB = 0, Z1 = Rion and Z2 = Zdis. From (D.19), the impedance of the circuit

is

Z =
RionZdis

Rion + Zdis
(2.178)

with

Rion =
L

σionA
(2.179)

Zdis =
L

jωεrε0A
(2.180)

and the circuit in Figure 2.9(c) becomes the one in Figure 2.17. The Nyquist plot is shown

schematically in Figure 2.18. This is the reason why a parallel RC circuit is used to model

the charge carrier transport in the electrolyte in the literature.

On the other hand, if there is position dependence of the circuit elements, the impedance

can only be obtained numerically. The material properties that can have position depen-
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Figure 2.17: A.C. equivalent circuit simplified from Figure 2.9(c) for position independent circuit elements.
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Figure 2.18: Schematic Nyquist plots of the circuit in Figure 2.9(c) with constant and lognormal distribution
of concentrations.

dence are the ionic concentration cion, ionic mobility uion and dielectric constant εr. Here,

the ionic concentration is taken to be an example. A number of N = 100 random val-

ues, representing 100 serial layers, is generated for the ionic concentration cion obeying the

lognormal distribution. The simulation yields a depressed arc as schematically shown in

Figure 2.18 for a set of materials parameters T = 200 ◦C, cion = 1.83 × 10−27 m−3, uion =

1.68 × 10−12 m2 V−1 s−1 and εr = 50. The standard deviation of ln cion is taken to be 30%.

The two arcs are scaled to the same magnitude for comparison. As discussed in section

1.3.3.6, the depressed arc can be modeled by a ZARC element with CPE. This simulation

gives an example that CPE might come from the distribution of material properties in the

real inhomogeneous materials.

2.4.3 Two ZARC Elements in Series

It is shown above the lognormal distribution of concentration in Figure 2.9(c) gives the

depressed arc. On the other hand, if the position dependence of concentration is caused by

the space charge like in Figure 1.1(c), it can be shown numerically that this leads to two

arcs as those two GI and GB arcs shown in Figure 2.10. An example is given in Figure 2.19
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for the same set of parameters as above, along with φ0 = 0.250 V.
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Figure 2.19: Schematic Nyquist plot of the circuit in Figure 2.9(c) with space charge.

Alternatively, the two GI and GB arcs in Figure 2.19 can be traditionally modeled by

the equivalent circuit RGIQGI − RGBQGB. Constant phase elements QGI and QGB are

converted to capacitances CGI and CGB using (1.67). If there is only mobile charge carrier

such as ion, for the microstructure in Figure 1.1(b), one obtains

RGI =
1

σGI

ND

A
(2.181)

RGB =
1

σGB

NδGB

A
(2.182)

CGI = εrε0
A

ND
(2.183)

CGB = εrε0
A

NδGB
(2.184)

where σGI is the grain interior conductivity, σGB is the average grain boundary conductivity,

D is the grain size or layer width, δGB is the grain boundary thickness, N is the number

of grains or number of serial layers, A is the area and L is the length as in Figure 1.1(b).

Here the dielectric constants are assumed to be the same for both GI and GB.

Since the grain size D is generally much bigger than the grain boundary width δGB, the

approximation of L ≈ ND is used and (2.181) becomes

σGI =
L

RGIA
(2.185)

Dielectric constant εr can be obtained from (2.183)
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εr =
LCGI

Aε0
(2.186)

(2.182) and (2.184) leads to

σGB =
εrε0

RGBCGB
(2.187)

Thus microscopic properties σGI , σGB and εr can be obtained from impedance measurement.

There is a simple model that relates the space charge resistance to the space charge

potential.53–55 The space charge resistance is generally written as

RSC =
∫ λSC

0

1
σion(x)

dx

A
=

∫ λSC

0

1
2euioncion(x)

dx

A
(2.188)

If it is assumed that the mobilities in the grain interior and space charge regions are the

same, one gets

RSC =
1

σ∞ionA

∫ λSC

0
exp

[
2eφ(x)
kBT

]
dx (2.189)

with

σ∞ion = 2euionc∞ion (2.190)

The space charge potential has a quadratic form as in (2.61) thus there is no analytic

expression for (2.189). Since only the region very close to the origin contribute to the total

resistance, φ(x) can be expanded around x = 0 as

φ(x) ≈ φ0 +
dφ

dx

∣∣∣∣
x=0

x = φ0

(
1− 2

λSC
x

)
(2.191)

(2.189) and (2.191) lead to

RSC =
λSC

σ∞ion

1
4eφ0

kBT
A

[
exp

(
2eφ0

kBT

)
− exp

(
−2eφ0

kBT

)]
(2.192)

This is the same result as the work of Fleig, Rodewald and Maier.53 Actually, when (2.191)

is used, the space charge potential becomes 0 at λSC/2. Changing the upper limit in (2.188)

from λSC to λSC/2 gives



66

RSC =
λSC

σ∞ion

1
4eφ0

kBT
A

[
exp

(
2eφ0

kBT

)
− 1

]
(2.193)

This is the same result as the work of Guo and Maier.54 Under typical conditions, 2eφ0/(kBT ) À
1, both (2.192) and (2.193) become

RSC =
λSC

σ∞ionA

exp
(

2eφ0

kBT

)

4eφ0

kBT

(2.194)

(2.194) can be written as

σ∞ion

σSC
=

exp
(

2eφ0

kBT

)

4eφ0

kBT

(2.195)

with specific space charge conductivity defined as

σSC =
λSC

RSCA
(2.196)

(2.195) is widely used to calculate the space charge effect.56 It is worth noting that σGB

is the same as σSC and σGI is the same as σ∞ion. Thus from (2.185), (2.187), (2.195) and

(2.196)

exp
(

2eφ0

kBT

)

4eφ0

kBT

=

L

RGIA
εrε0

RGBCGB

(2.197)

The numerical solution of (2.197) gives the space charge potential φ0. For example, the

application of this method gives a space charge potential of 0.254 V which is almost the

same as 0.250 V in the physical equivalent circuit model.
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Chapter 3

Experiments, Results, and
Discussions

3.1 Experiments

3.1.1 Materials

Commercial Sm0.15Ce0.85O1.925−δ (SDC15) powders were purchased from NexTech Materi-

als. The loose powders were annealed at 950 ◦C in air for 5 hours in order to lower the

surface area and ensure the desired sintering behavior. Pellets were uniaxially pressed at

300M Pa and then sintered at 1350 ◦C (systems I and III) and 1550 ◦C (system II) for 5

hours to obtain a relative density of over 95%. The samples used for measurement were 0.78

mm thick with a diameter of 13 mm (System I), 0.65 mm thick with a diameter of 13.08

mm (system II) and 0.64 mm thick with a diameter of 13 mm (system III), respectively.

Pt ink (Engelhard 6082) was applied to the complete surface of the pellets and fired

at 900 ◦C for 2 hours. Cathode material Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was prepared

by a sol-gel method in which both EDTA and citric acid served as chelating agents.4 The

resulting powders were mixed with α-terpineol (Sigma-Aldrich) to form a paste, which was

then brush-painted onto the surface of the pellets and fired at 1000 ◦C for 5 hours, with an

electrode area of 0.71 cm2.

Powder X-ray diffraction (XRD) data of SDC15 were collected at room temperature

using a Philips PW 3040 diffractometer with CuKα radiation in the Bragg-Brentano geom-

etry. The lattice constant of SDC15 was obtained from Rietveld refinement of the powder

X-ray diffraction data, using Ni as the internal standard. The thermal expansion was taken
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to be 12.1 ppm.57 The dopant concentration cAD is obtained from the nominal composition

and the lattice constant. The microstructure and morphology were examined using ZEISS

LEO 1550VP field-emission Scanning Electron Microscope (SEM). The average grain size

of SDC15 was obtained from the mean linear intercept method. The relation between the

averaging grain size D and the mean linear intercept l̄, depends on the grain shape and

grain size distribution.58, 59 For example, the proportional constant is 1.5, 1.775 and 2.25

for single size spheres, tetrakaidecahedra and cubes respectively. Generally, a reasonable

choice for the grain shape is a tetrakaidecahedron and the grain size shape distribution has

been estimated from both theoretical and experimental studies. A proportionality constant

of 1.56 is generally used in the literature.58 In this work, the same constant will be used

such that D = 1.56l̄.

Typical SEM pictures of SDC15 sintered at 1350 ◦C (surface) and 1550 ◦C (cross sec-

tion), BSCF on SDC15 (surface) and Pt on SDC15 (surface) are shown in Figure 3.1. The

mean linear intercepts are 0.5 um and 4.0 um for SDC15 sintered at 1350 ◦C and 1550 ◦C

respectively.

3.1.2 Experimental Setup

The schematic experimental setup is shown in Figure 3.2(a) for systems I and II, and in

Figure 3.2(b) for system III. Electrical contacts were made with silver meshes and silver

wires. For system III, the pellet was sealed onto alumina tubes using an alumina-based

adhesive (Aremco, Cerambond 552-VFG) with a cathode area of 0.71 cm2. The internal

resistance and inductance of the setup were measured from blank tests.

For systems I and II, two-probe A.C. impedance spectroscopy was performed using a

Solartron 1260A impedance analyzer with a voltage amplitude 10–70 mV and a frequency

range spanning from 10m Hz or 1m Hz to 10k – 1M Hz. The impedance was measured

at 500, 550, 600 and 650 ◦C under atmospheres ranging from simulated air to 3% H2O-

saturated H2. Oxygen partial pressures from 10−6 to 0.21 atm were obtained from mixtures

of Ar and O2; lower oxygen partial pressures were achieved using mixtures of Ar, H2 and

H2O, assuming thermodynamic equilibrium between O2, H2 and H2O. The gas flow rates

were fixed using mass flow controllers (MKS Instruments) to a total flow rate of 100 sccm,
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(a) (b)

(c) (d)

Figure 3.1: SEM images of (a) surface of SDC15 sintered at 1350 ◦C, (b) cross-section of SDC15 sintered at
1550 ◦C, (c) surface of BSCF on SDC15 and (d) surface of Pt on SDC15.
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Figure 3.2: Schematics of experimental setup of three systems

Schematics of experimental setup of (a) systems I, II and (b) system III.

which, for the dimensions of the system utilized implies a linear gas flow rate of ∼0.74 cm/s.

The whole system was allowed to stabilize at each condition before the final measurement.

The typical stabilization time was 1 hour under high oxygen partial pressures and 5-8

hours under low oxygen partial pressures. In light of the small amplitude of the applied

voltage and the small sample size relative to the overall flow rate and dimensions of the

experimental apparatus, the gas composition is safely assumed to be unperturbed by the

impedance measurement.

For system III, the electrochemical impedance measurement was carried out using a

Solartron 1260A impedance analyzer in combination with a Princeton Applied Research

EG&G 273A potentiostat/galvanostat. A small amplitude of 10 mV in the potentiostatic

mode was used and data were collected over the frequency range 1m Hz – 60k Hz. A flow

of 100 sccm air was supplied to the cathode side as the oxidant. Mixtures of Ar and H2

(with Ar:H2 ratios of 0:100, 50:50, and 20:80) saturated with 3% H2O were supplied to the

anode at a total flow rate of 50 sccm. The oxygen partial pressure in the anode chamber

was calculated assuming thermodynamic equilibrium between O2, H2 and H2O. Data were
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collected at 550, 600 and 650 ◦C after stabilization for 30 minutes.

3.2 System I

3.2.1 Impedance Spectra and Data Analysis Procedures

Typical impedance spectra obtained from Pt|SDC15|Pt are presented in Figure 3.3(a) and

3.3(b). The data were collected at 600 ◦C at several different oxygen partial pressures.

The spectra in Figure 3.3(a) reveal quite clearly that for oxygen partial pressures as low as

1.1×10−17 atm (at 600 ◦C) SDC15 is a pure ionic conductor. The high-frequency intercept

with the real axis is unchanged for the three measurements, and the single arc in each

spectrum has the form of a depressed, yet symmetric, semicircle. In contrast, the spectra

in Figure 3.3(b) demonstrate that ceria is a mixed conductor at oxygen partial pressures of

5.5×10−23 atm and lower (at 600 ◦C). The arcs are asymmetric, exhibiting a characteristic

Warburg-like shape, and the high-frequency intercept with the real axis decreases with

decreasing oxygen partial pressure. The shape of the arcs in both oxidizing and reducing

conditions correspond to those in Figure 2.14.

0 50 100 150 200 250 300
0

50

100

150

3 4 50

1

 

 

-Im
 Z

 (
)

Re Z ( )

 1.1 10-17 atm

 2.2 10-6 atm
 0.21 atm

(a)

2 4 6 8 10 12
0

2

4

 

 

-Im
 Z

 (
)

Re Z ( )

 5.5 10-23 atm

 4.5 10-24 atm

 7.0 10-25 atm

(b)

Figure 3.3: Measured impedance response of Pt|SDC15|Pt at 600 ◦C under (a) moderately oxidizing condi-
tions where ceria is an ionic conductor (insert shows the high-frequency portion of the data) and (b) reducing
conditions where ceria is a mixed conductor.

As discussed in Chapter 2, for system I, the steady-state solution in the electrolyte

is given in (2.67) and (2.68). The small-signal solution is described by the equivalent

circuit is Figure 2.13(a) and the analytical expression is given by (2.168)–(2.172). For
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both the steady-state and small-signal solutions, there are five independent parameters:

the bulk ionic and electronic resistances, Rion and Reon, the interfacial resistance R⊥
ion

and capacitance C⊥
ion of the electrodes to ion transfer, and the chemical capacitance Cchem.

Since the concentration of the majority carriers cion is given from the material stoichiometry

(i.e., extrinsic dopant concentration), (2.56), one can use the definition of the chemical

capacitance, (2.166), to evaluate the concentration of minority carriers ceon. Morever, from

the behavior of ceon as a function of oxygen partial pressure, (2.57), Kr can be obtained and

its dependence on temperature evaluated to yield ∆Sr and ∆Hr. With both the resistances

and concentrations of the mobile species known, one can then establish the mobilities. In

this manner, it is possible to completely characterize the thermodynamic and electrical

properties of mixed ionic and electronic conductors simply from the measurement of A.C.

impedance spectra.

Under oxidizing conditions, the equivalent circuit becomes the one in Figure 2.13(b) and

the analytical expression of the impedance, (2.168), becomes (2.173). Rion is obtained from

the high-frequency intercept with the real axis. Due to the inhomogeneity of the electrode,

Rion − R⊥
ionQ⊥

ion is used to fit the experimental spectra where Q⊥
ion is the constant phase

element. Q⊥
ion is then converted to C⊥

ion according to (1.67). As discussed above, Rion is

independent of pO2 , and C⊥
ion can be, to a first approximation, also taken to be independent

of pO2 .

Under reducing conditions, the values obtained for Rion and C⊥
ion under the ionic regime

were used as fixed parameters in the analysis of the experimental spectra. Thus Reon, R⊥
ion

and Cchem were the three fitting parameters. The experimental impedance spectra were

fitted to (2.168) using ZView (Scribner Associated). It must be emphasized that such a

procedure works well for a material such as ceria in which both the electrolytic and mixed

conducting regimes are experimentally accessible. Alternative strategies may be required if

only data from the mixed conducting regime are available.

3.2.2 Derived Results

The oxygen partial pressure dependence of the total electrical conductivity of SDC15 (as

determined from the high-frequency intercept) at 500, 550, 600 and 650 ◦C is shown in
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Figure 3.4(a). At moderate oxygen partial pressures, the conductivity is predominantly

ionic and remains constant, whereas at low oxygen partial pressures, the conductivity is

primarily electronic, rising as pO2 decreases. The experimental data of Figure 3.4(a) are

well described by the defect chemistry model σT = σion + σ0
eonp

−1/4
O2

, (1.12), yielding both

σion and σ0
eon. The Arrhenius plots for these two parameters are shown in Figure 3.4(b).

As discussed in Chapter 1, the activation energy obtained for σion, 0.67 ± 0.01 eV, is the

oxygen ion migration enthalpy, whereas that obtained for σ0
eon, 2.31 ± 0.02 eV, includes

both the electron migration enthalpy and the reduction enthalpy.
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Figure 3.4: (a) Total electrical conductivity of SDC15 at 500, 550, 600 and 650 ◦C as a function of oxygen

partial pressure. Solid lines show the fit to σT = σion + σ0
eonp

−1/4
O2

. (b) Ionic conductivity, σion, and oxygen

partial pressure independent term in the electronic conductivity, σ0
eon, of SDC15 as functions of temperature,

plotted in Arrhenius form.

Turning to the physical parameters determined from direct fits of the impedance spectra

obtained under mixed conducting conditions to Z(ω) as given in (2.168), it is important to

first establish whether or not the data are well described by the Jamnik-Maier formalism.

As evidenced from Figure 3.5, comparisons of the measured and fitted data at 600 ◦C and

pO2=5.5×10−23 atm, the fit to the Jamnik-Maier model is very good.

While in the previous discussion, the electronic resistance Reon or electronic conductivity

σeon was obtained from the high-frequency intercept with the real axis of the impedance
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Figure 3.5: Comparison of the measured and fitted impedance obtained from the Pt|SDC|Pt system at 600
◦C and an oxygen partial pressure of 5.5×10−23 atm. The fit is to (2.168) of the main text. (a) Nyquist
representation, and (b) Bode-Bode representation.

spectra only, Reon is also one of the fitting parameters from the direct fits of the impedance

spectra obtained under mixed conducting conditions to Z(ω). Similarly, the fit of electronic

conductivity σeon to the σeon = σ0
eonp

−1/4
O2

will also give σ0
eon. σ0

eon obtained in this way is

shown in Figure 3.6 along with the values obtained from the high-frequency intercept. The

values obtained by the two methods are similar but the direct fitting method gives a slightly

higher activation energy of 2.44 ± 0.03 eV than 2.31 ± 0.02 eV from the high-frequency

intercept method. The values from the direct fitting method will be used in the following

discussions.

The interfacial capacitance C⊥
ion under oxidizing conditions and chemical capacitance

Cchem under reducing conditions are shown in Figure 3.7(a) and Figure 3.7(b) respectively.

As expected from (2.166), the behavior of Cchem is dominated by the concentration of

electronic carriers. Furthermore, this parameter is, under all conditions examined, far

greater than C⊥
ion, and C⊥

ion as measured within the electrolytic regime is indeed largely

independent of pO2 . Because Cchem À C⊥
ion, analyses performed in which C⊥

ion was omitted

from the equivalent circuit, i.e., using (2.176), had negligible impact on the quality of the

fits and the derived values for the other parameters. Thus, the assumption of a constant

C⊥
ion (independent of pO2), even if in error, would introduce negligible errors to the other
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Figure 3.6: Oxygen partial pressure independent term in the electronic conductivity, σ0
eon, obtained from the

high-frequency intercept of the impedance spectra and fitting of the whole impedance spectra, as a function
of temperature plotted in Arrhenius form.

terms.

The electronic defect concentration ceon, Figure 3.8(a), behaves as expected on the basis

of the defect chemistry model. In particular, for the two lower temperature measurements,

ceon obeys a clear −1/4 power law dependence on oxygen partial pressure over the entire

pO2 range examined. At higher temperatures, the electronic defect concentration begins

to deviate from the expected pO2 dependence as the oxygen partial pressure is lowered.

Under these conditions, the concentration of oxygen vacancies generated by the reduction

reaction, (1.1), becomes significant and the oxygen vacancy concentration can no longer be

treated as constant. To ensure that the approximation cion = cAD/2 is adequately obeyed,

further analysis is restricted to the region in which the electronic defect concentration is less

than one-fifth of the (extrinsic) oxygen vacancy concentration. Taking this restriction into

account and fitting ceon to (2.68), one obtains the equilibrium constant, Kr, as a function

of temperature, Figure 3.8(b). From these data the reduction entropy ∆Sr and enthalpy

∆Hr are derived to be (1.18 ± 0.05) ×10−3 eV/K and 4.18 ± 0.05 eV, respectively.

From the conductivities and charge carrier concentrations, Figure 3.6 and Figure 3.8(a)

respectively, one can obtain both the ionic and electronic mobilities, and these are presented

in Figure 3.9 along with available literature data.2, 3 The activation energies are 0.67 ± 0.01



76

-24 -20 -16 -12 -8 -4 0
-4

-3

-2

 

 

lo
g(
C

io
n /

 F
)

log(pO2 / atm)

 650 oC
 600 oC
 550 oC
 500 oC

(a)

-32 -30 -28 -26 -24 -22 -20
0

1

2

3

 

 

lo
g(
C
ch
em

 / 
F)

log(pO2 / atm)

 650 oC
 600 oC
 550 oC
 500 oC

(b)

Figure 3.7: (a)Interfacial capacitance C⊥ion, and (b) chemical capacitance Cchem of SDC15 as functions of
oxygen partial pressure as determined from the measured impedance spectra with temperatures as indicated.
Solid lines are a guide for the eyes.
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Figure 3.8: (a) Electron concentration in SDC15 as a function of oxygen partial pressure as determined from
the measured impedance spectra with temperatures as indicated. Solid lines are fits of the data to ceon =
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doping. Lower dashed line corresponds to an electron concentration beyond which the approximation 2cion =
cAD À ceon is no longer valid. (b) Equilibrium constant for the reduction of SDC15 (1.1) as a function of
temperature.
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eV and 0.35 ± 0.03 eV for ions and electrons respectively. The results clearly demonstrate

that the mixed conducting behavior of doped ceria results from the very high mobility of

electronic defects, which are present in much lower concentrations than the ionic defects.
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Figure 3.9: Ionic and electronic mobilities as a function of temperature plotted in Arrhenius form. Open
symbols are for electronic mobility, whereas closed symbols are for ionic mobility. Symbols ◦ and • are for
SDC15 from the current work. Symbol B is for Gd0.1Ce0.9O1.95−δ (GDC10) from reference.2 Symbol C is
for Gd0.2Ce0.8O1.9−δ (GDC20) from reference.2 Symbols M and N are for GDC10 from reference.3 Symbols
O and H are for GDC20 from reference.3

The oxygen partial pressure dependence of 1/ρ⊥Pt in the two regimes is summarized

in Figure 3.10(b) and 3.10(c). Under the more oxidizing conditions of the ionic regime,

the slope of log 1/ρ⊥Pt vs. log pO2 changes, even changing sign, decreasing from 0.19

at 650 ◦C to −0.11 at 500 ◦C. In contrast, under more reducing conditions, a −1/4

power law dependence is observed. Fitting the area specific electrode polarization resis-

tivity to 1/ρ⊥Pt = 1/ρ⊥Pt,0p
−1/4
O2

, yields an associated activation energy for the electrode

process of 2.75 ± 0.11 eV, Figure 3.10(d). It is noteworthy that Sprague et al. simi-

larly observed a p
−1/4
O2

dependence for the Pt electrode conductivity on mixed conducting

(Gd0.98Ca0.02)2Ti2O7 in CO/CO2 atmospheres, however, a p
−1/6
O2

dependence was obtained

from (Gd0.9Ca0.1)2Ti2O7.60

Overall, the quality of the fits of the data to the Jamnik-Maier model, (2.168), pre-

sented here are significantly better than those reported by Atkinson et al. in their study

of Pt|Gd0.1Ce0.9O1.95−δ(GDC10)|Pt.61 These researchers investigated ceria under air and
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Figure 3.10: (a) Comparison of the electrolyte conductivity and inverse of the electrode area specific po-
larization resistivity in Pt|SDC15|Pt at 600 ◦C as a function of oxygen partial pressure. Solid lines show
the best fits to equations given below. (b) Area specific electrode polarization conductivity of Pt|SDC15|Pt
as a function of oxygen partial pressure and temperature in the pure ionic region. Solid lines are linear
regression fits to the data, with the slopes as indicated. (c) Area specific electrode polarization conductivity
of Pt|SDC15|Pt as a function of oxygen partial pressure and temperature in the mixed conducting region.

Solid lines show the fits to 1/ρ⊥Pt = 1/ρ⊥Pt,0p
−1/4
O2

. (d) Inverse of the oxygen partial pressure independent
term in the electrode specific resistivity of the Pt|SDC15|Pt system as a function of temperature. Data
plotted in Arrhenius form.
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under hydrogen, with the stated goal of evaluating the validity of the Jamnik-Maier model.

In addition, sample thickness was varied so as to manipulate Cchem according to (2.166).

The general observations of those authors are consistent with the results presented here.

Under the electrolytic regime, the electrode arc of the Pt|GDC10|Pt system was found to

be semicircular in shape whereas it exhibited a half-tear-drop shape under reducing condi-

tions. Furthermore, the derived electrode resistivity under reducing conditions reported by

Atkinson is reasonably comparable to that measured here (∼30 Ω cm2 vs. ∼84 Ω cm2 in

the present study at T ∼500 ◦C and a 10% H2 atmosphere). The poorer quality of the fit

of their data to the Jamnik-Maier model is (as pointed out by those authors) most likely

due to the fact that several materials parameters for GDC10 were taken from the litera-

ture rather than being adjusted to improve the fit, a procedure which would not have been

justified given the limited data. Moreover, most of the measurements of Atkinson were

performed at relatively low temperatures at which complications due to grain boundary

effects arise and the electrode resistance can become excessively large. While quantita-

tive results could not be obtained because of these shortcomings, the qualitative features

reported for Pt|GDC10|Pt are entirely in agreement with the observations made here on

the Pt|SDC15|Pt system. Finally, it is noteworthy that Jasinski et al. similarly obtained

asymmetric low-frequency arcs from mixed conducting, undoped ceria placed between gold

electrodes.62 Overall, the present analysis is the first demonstration that detailed quanti-

tative thermodynamic and electrochemical properties can be obtained from the fitting of

impedance spectra to physically based models.

3.3 System II

It is generally observed that the impedance spectra change with materials processing condi-

tions such as sintering temperature and time. For example, the impedance spectra collected

at around 250 ◦C in air for SDC15 sintered at different temperatures (1350, 1450 and 1550

◦C) and time (5, 15 and 25 hours) are shown in Figure 3.11. Apparently, there are three

arcs corresponding to the grain interior, grain boundary and electrode arcs respectively as

shown in Figure 2.10. It can be seen that the grain boundary arc increases with sintering
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time for samples sintered at 1350 and 1450 ◦C while it decreases with sintering time for

the sample sintered at 1550 ◦C. Sample sintered at 1350 ◦C for 5 hours (system I) has the

smallest arc while the sample sintered at 1550 ◦C for 5 hours (system II) has the largest

arc. As discussed in Chapter 2, the grain boundary arc is caused by the space charge effect.

Thus the samples in systems I and II represent the smallest and the largest space charge

effect respectively and that is why these two samples were selected for the current study.

While it is still not clear how the processing conditions influence the space charge effect

mechanistically, the current investigation is a first step toward this understanding. From

the viewpoint of application of ceria in fuel cells, the total conductivity, including both the

grain interior and grain boundary, is the determining factor. The higher the total conduc-

tivity, the higher the power density. The total conductivity of the sample in system I is four

times that of the sample in system II at 600 ◦C, i.e., the fuel cell operating temperature.

Thus the study of space charge effect also has significant technical consequence.

3.3.1 Impedance Spectra and Data Analysis Procedures

Typical impedance spectra obtained from system II are presented in Figure 3.12. The

data were collected at 600 ◦C at several different oxygen partial pressures. Compared with

spectra from system I, Figure 3.3, it is immediately noticeable that the low-frequency arcs

have the similar behaviors in both systems, i.e., symmetrically depressed arc in oxidizing

conditions and asymmetrical Warburg arc in reducing conditions. The difference is that

an additional depressed arc appears at higher frequencies in both oxidizing and reducing

conditions. This arc corresponds to the high-frequency space charge arc in Figure 2.10.

Also compared with Figure 2.10, the grain interior arc is not observed in the present work.

This is due to the inductance effect of the experimental setup. As mentioned before, the

inductance is measured from blank tests and an inductor with this inductance value is put

in series with the circuits used below. For the space charge arc in Figure 3.12(b), the high-

frequency intercept with the real axis decreases with decreasing oxygen partial pressure,

suggesting mixed conducting behavior. It is also worth noting that this space charge arc

becomes smaller with decreasing oxygen partial pressure, just like the low-frequency arc.

As discussed in Chapter 2, for system II, the steady-state solution in the electrolyte is
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Figure 3.11: Impedance spectra collected at around 250 ◦C in air for SDC15 sintered at different temperatures
(1350, 1450 and 1550 ◦C) and time (5, 15 and 25 hours). The first number in the notation gives the sintering
temperature, the second number gives the sintering time and the third number gives the measurement
temperature.
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Figure 3.12: Measured impedance response of Pt|SDC15|Pt at 600 ◦C under (a) air and (b) reducing
conditions where ceria is a mixed conductor.

given in (2.56) and (2.57) for grain interior region, along with (2.63) and (2.64) for space

charge region. The small-signal solution is described by the equivalent circuit is Figure 2.6

and there is only numerical solution to the impedance. For both the steady-state and

small-signal solutions, the relevant eight parameters are ionic concentration c∞ion, electronic

concentration c∞eon, ionic mobility uion, electronic mobility ueon, space charge potential φ0,

dielectric constant εr, interfacial electrode resistance R⊥
ion and interfacial capacitance C⊥

ion.

Again, c∞ion is immediately given from cAD, (2.56).

Under oxidizing conditions, two different methods were used to fit the impedance spec-

tra. In the first method, similar to system I, the impedance spectra were fitted by an

empirical equivalent circuit RGI−RGBQGB−R⊥
ionQ⊥

ion. This is called the Empirical Equiv-

alent Circuit (EEC) method. The ionic conductivity σ∞ion and hence ionic mobility uion can

be obtained from RGI . The space charge potential φ0 is obtained from (2.197). Interfacial

capacitance is obtained from R⊥
ion and Q⊥

ion. Alternatively, the equivalent circuit in Fig-

ure 2.6 can also be used to fit the whole spectra. This is called the Physical Equivalent

Circuit (PEC) method. Also similar to system I, due to the inhomogeneity of the electrode,

C⊥
ion in Figure 2.6 is first replaced by the constant phase element Q⊥

ion and then converted

to C⊥
ion according to (1.67). The fitting parameters are uion, φ0, εr, R⊥

ion and Q⊥
ion.

Under reducing conditions, the values obtained for uion and C⊥
ion in oxidizing conditions

from PEC method and ueon from system I are used as fixed parameters in the analysis of

the experimental spectra. Thus there are three fitting parameters—c∞eon, φ0 and R⊥
ion.
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The volume elements were built as follows. The space charge region of width λSC

was divided to 100 uniform elements and the grain interior region of width D − 2λSC was

divided intto 200 uniform elements. Then the 400 elements were repeated N times. N is

the number of serial layers and is related to D by L = ND. The convergence has been

found for this choice of elements. The calculation of the impedance, i.e., the solution of

the matrix equation (2.137), was obtained using the sparse matrix direct solver SuperLU

3.0.63 The fitting was performed by the Levenberg-Marquardt program levmar 2.1.3.18 Both

SuperLU and levmar were incorporated into the main program written in C.

3.3.2 Derived Results

A comparison of experimental and fitted spectra in air by the two methods, EEC and

PEC, is given in Figure 3.13. The Arrhenius plots of ionic conductivities obtained from

these two methods are shown in Figure 3.14(a) along with data from the sample without

the space charge, system I. For system II, the ionic conductivities are slightly higher using

the EEC than using PEC. The activation energies are 0.66 ± 0.01 eV and 0.65 ± 0.01 eV

respectively. The conductivity from PEC in system II is comparable to that of system I and

the activation energies are 0.67 ± 0.01 and 0.65 ± 0.01 eV respectively. The space charge

potentials obtained using these two methods are shown in Figure 3.14(b). The space charge

potentials obtained by the two methods are close to each other. Finally, the temperature

dependence of dielectric constants is shown in Figure 3.15. The values are very close to 11

given in the literature.5

The comparison of measured and fitted impedance spectra using the PEC model at 600

◦C and 5.5×10−23 atm, under reducing conditions, is shown in Figure 3.16. Again, the

fit is reasonably good. However, there is still some difference between the experimental

and fitted spectra. First, the fitted high-frequency arc is asymmetric while the experimen-

tal high-frequency arc is symmetric. Second, there appears to be some mismatch at the

high-frequency region of the Warburg arc. Although for simplicity, both the space charge

potentials φ0 and the grain sizes D are taken to be the same among different grains or

serial layers, some distribution might exist for these two parameters and this can explain

the difference between the measured and fitted spectra. Some simple simulations can be
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Figure 3.13: Comparison of the measured and fitted impedance obtained from the Pt|SDC|Pt system at 600
◦C in air. The dotted line is the fit to the Empirical Equivalent Circuit (EEC) model RGI − RGBQGB −
R⊥ionQ⊥ion and the solid line is the fit to the Physical Equivalent Circuit (PEC) respectively. (a) Nyquist
representation, and (b) Bode-Bode representation.
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Figure 3.14: (a) Arrhenius plot of ionic conductivities using EEC and PEC methods for system II, along
with data for system I. (b) Space charge potentials in air φ0 using EEC and PEC methods for system II.
Solid lines in (b) are a guide for the eyes.
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Figure 3.15: Temperature dependence of dielectric constants of ceria in system II by the PEC model. The
solid line is a guide for the eyes.

performed to elaborate this. First, a simulation was performed for a space charge potential

of 0.46 V for 100 uniform serial layers. Thus the layer width is 6.5 um. Second, the space

charge potential was assumed to obey the lognormal distribution with a standard deviation

of 10% of the logarithm of the average value. In other words, 100 random numbers obeying

the lognormal distribution were generated for the average value of 0.46 V. The serial layer

width was kept the same for all layers. Third, the grain size was assumed to be obeying the

lognormal distribution with a standard deviation of 30% of the average value. Again, 100

random numbers obeying the lognormal distribution were generated for the average value

of 6.5 um. The calculated impedance spectra are shown in Figure 3.17 for comparison. It

is obvious that the space charge potential has a larger influence than the grain size. For

the space charge potential, the distribution causes some frequency dispersion in both arcs

and every arc seems to be separated to two smaller arcs. For the grain size distribution,

there is almost no difference in the Warburg arc while the grain boundary arc appears to

be more symmetrical. If both the space charge potential and grain size distribution are

considered, the difference between the experimental and fitted spectra can be accounted

for. Finally, at high temperatures and low oxygen partial pressures, there is a lot of noise

in the experimental spectra, which makes the fitting difficult. Thus these spectra are not

used.

The dependence of the space charge potential φ0 under reducing conditions is shown in
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Figure 3.16: Comparisons of the measured and fit impedance obtained from the Pt|SDC|Pt system at 600 ◦C
and an oxygen partial pressure of 5.5×10−23 atm. The fit is to the PEC model. (a) Nyquist representation,
and (b) Bode-Bode representation.
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Figure 3.17: Simulation of the effect of the lognormal distribution of the space charge potential and grain
size.
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Figure 3.18. The space charge potential increases with increasing oxygen partial pressure.

The values are comparable to those under oxidizing conditions.
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Figure 3.18: Space charge potentials as a function of oxygen partial pressure and temperature in the mixed
conducting region. The solid line is a guide for the eyes.

The dependence of electronic concentration c∞eon on the oxygen partial pressure is shown

in Figure 3.19(a) in closed symbols. Like the system I (open symbols), c∞eon obeys a clear

−1/4 power law dependence on oxygen partial pressure over the entire pO2 range exam-

ined. Fitting c∞eon to (2.57), one obtains the equilibrium constant, Kr, as a function of

temperature, Figure 3.19(b). From these data, the reduction entropy ∆Sr and enthalpy

∆Hr are derived to be (1.25 ± 0.03)×10−3 eV/K and 4.24 ± 0.03 eV, respectively. The

reduction entropy ∆Sr and enthalpy ∆Hr of system I are 1.18×10−3 eV/K and 4.18 eV

respectively. Coincidentally, the experimental conditions with very noisy impedance spectra

are also those above the lower dashed line in Figure 3.19(a).

Turning to the electrode behavior, the oxygen partial pressure dependence of the elec-

trode polarization “conductivity” (inverse of 1/ρ⊥Pt), ρ⊥Pt = R⊥
ionA, is shown in Figure 3.20(a)

in closed symbols. Again, the data from system I are also shown in open symbols for com-

parison. It can be seen at all investigated tempertures, a −1/4 power law dependence is

clearly observed. Fitting the area specific electrode resistivity to 1/ρ⊥Pt = 1/ρ⊥Pt,0p
−1/4
O2

yields

an associated activation energy for the electrode process of 2.40 ± 0.06 eV, Figure 3.20(b).
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Figure 3.19: (a) Electron concentration in SDC15 as a function of oxygen partial pressure as determined
from the measured impedance spectra with temperatures as indicated. Closed and open symbols are for
system II and system I respectively. Solid lines are fits of the data to c∞eon = (2Kr/cAD)1/2 p
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dashed line corresponds to the extrinsic vacancy concentration due to acceptor doping. Lower dashed line
corresponds to an electron concentration beyond which the approximation 2c∞ion = cAD À c∞eon is no longer
valid. (b) Equilibrium constant for the reduction of SDC15 as a function of temperature. Closed and open
symbols are for system II and system I respectively.
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Figure 3.20: (a) Area specific electrode polarization conductivity of Pt|SDC15|Pt as a function of oxygen
partial pressure and temperature in the mixed conducting region. Closed and open symbols are for system II
and system I respectively. Solid lines show the fits to 1/ρ⊥Pt = 1/ρ⊥Pt,0p

−1/4
O2

. (d) Inverse of the oxygen partial
pressure independent term in the electrode specific resistivity of the Pt|SDC15|Pt system as a function of
temperature. Closed and open symbols are for system II and system I respectively. Data plotted in Arrhenius
form.
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3.4 System III

3.4.1 Impedance Spectra and Data Analysis Procedures

Typical impedance spectra obtained from system III are presented in Figure 3.21. The

data were collected at 600 ◦C at several different oxygen partial pressures. Under oxidizing

conditions, Figure 3.21(a), there is only one depressed arc as in Figure 3.3(a) of system I.

Under reducing conditions, Figure 3.21(b), there are a small arc and a Warburg arc over-

lapped with each other. The fact that there are two arcs resembles that in Figure 3.12(b)

of system II. However, the additional small arc is not due to the space charge because space

charge arc is not observable here as in Figure 3.21(a). Since in the present system two elec-

trodes are different, it is hypothesized that the additional arc is due to the BSCF cathode.

The impedance spectrum of BSCF|SDC15|BSCF at 600 ◦C in air is shown in Figure 3.22,

exhibiting a similar shape and magnitude as those of the small arc in Figure 3.12(b).
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Figure 3.21: Measured impedance responses of BSCF|SDC15|Pt at 600 ◦C under (a) air and (b) reducing
conditions.

As discussed in Chapter 2, for system III, the steady-state solution is given in (2.35) for

the ionic concentration and (2.40) for the electronic concentration. The steady-state open

circuit voltage is given by (2.95). The small-signal solution is described by the equivalent

circuit is Figure 2.5 and there is only numerical solution to the impedance. For both the

steady-state and small-signal solutions, the relevant twelve parameters are the ionic con-

centration cion, equilibrium constant Kr, ionic mobility uion, electronic mobility ueon, open

circuit voltage Voc, interfacial oxygen partial pressures pO2(0) and pO2(L), interfacial an-
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Figure 3.22: Measured impedance responses of BSCF|SDC15|BSCF under air.

ode resistance R⊥
ion(a), interfacial cathode resistance R⊥

ion(c), interfacial anode capacitance

C⊥
ion(a), interfacial cathode capacitance C⊥

ion(c) and effective conducting area A. A was

listed here because the electrode area 0.71 cm2 is smaller than the electrolyte area 1.33

cm2. cion is given from cAD, (2.35). Since the BSCF electrode resistance in Figure 3.22 is

small, it is assumed here the oxygen partial pressure drop across the cathode is negligible.

In other words, pO2(L) = pO2(c). pO2(0) and pO2(L) are related to Voc by (2.95).

Under oxidizing conditions, as in system I, Rion was obtained from the high-frequency

intercept of the real axis. The effective conducting area is calculated based on the present

Rion and the ionic conductivity from system I. The calculated areas are 0.84, 0.78 and 0.69

cm2 respectively. Since cion is known, uion can be obtained.

Under reducing conditions, the values obtained for uion in oxidizing conditions, along

with C⊥
ion(a), ueon and Kr from system I were also used as fixed parameters in the analysis of

the experimental spectra. Thus there are four fitting parameters—R⊥
ion(a), R⊥

ion(c), C⊥
ion(c)

and A.

The volume elements were taken to be uniform and the number of elements was chosen

to be 2000 in this work. Convergence has been found for this number. The calculation of the

impedance, i.e., the solution of the matrix equation (2.137), was obtained using the sparse

matrix direct solver UMFPACK 4.6.64–67 The fitting was performed by the Levenberg-

Marquardt program levmar 2.1.3.18 Both UMFPACK and levmar were incorporated into

the main program written in C.
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3.4.2 Derived Results

The comparison of experimental and fitted spectra is given in Figure 3.16 when the H2

concentration is “100%” with 3% H2O saturation in the anode and oxygen partial pressure

is 0.21 atm in the cathode. The fit is reasonably good. Although the difference could

come from multiple sources, the most important contribution is believed to be due to the

asymmetry of the electrodes, i.e., the cathode area is smaller than those of the electrolyte

and the anode. The experimental open circuit voltages, calculated oxygen partial pressures

and all of the fitting results are given in Table 3.1.
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Figure 3.23: Comparison of the measured and fit impedance obtained from the BSCF|SDC15|Pt system
at 600 ◦C when the H2 concentration is “100%” with 3% H2O saturation in the anode and oxygen partial
pressure is 0.21 atm in the cathode. (a) Nyquist representation, and (b) Bode-Bode representation.

Table 3.1: Experimental open circuit voltages, calculated oxygen partial pressures, and
fitting results

T Voc Anode pO2(a) pO2(0) A R⊥ion(c) C⊥ion(c) R⊥ion(a)
◦C V H2, % atm atm cm2 Ω F Ω

550 0.911 50 6.634E-29 6.330E-24 0.73 2.009 0.0573 65.024

550 0.928 100 1.661E-29 1.473E-24 0.74 2.322 0.0530 46.416

600 0.854 20 2.747E-26 2.526E-21 0.77 0.685 0.0427 44.561

600 0.881 50 4.117E-27 5.211E-22 0.79 0.973 0.0445 27.788

600 0.899 100 1.031E-27 1.363E-22 0.80 1.143 0.0457 19.196

650 0.824 20 1.096E-24 8.841E-20 0.86 0.201 0.0348 19.937

650 0.851 50 1.643E-25 2.208E-20 0.87 0.257 0.0437 12.421

650 0.867 100 4.113E-26 5.922E-21 0.89 0.294 0.0423 8.884
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Nernst, theoretical and experimental voltage values as a function of temperatures for

the experiments with “100%” H2 at the anode are presented in Figure 3.24. As discussed

in section 2.2.2, the theoretical potentials are lower than Nernst values at all temperatures

due to the mixed conduction at high temperatures under reducing atmospheres. The higher

the temperature, the more the mixed conduction and thus the greater the difference. The

experimental voltages values are smaller than theoretical ones due to the contributions of

electrode polarizations. Similar results were obtained for the experiments with “50%” and

“20%” H2 at the anode.
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Figure 3.24: Nernst, theoretical and experimental voltage values as a function of temperatures. The cathode
gas is 100 sccm air and the anode gas is 50 sccm H2 saturated with 3% H2O.

For the oxygen partial pressure gradient, there is a large oxygen partial pressure drop (5

orders of magnitude) across the anode, from pO2(0) to pO2(a). The oxygen partial pressure

at the anode|electrolyte interface, pO2(0), is higher when the oxygen partial pressure at the

anode chamber pO2(a) is higher. The oxygen partial pressure profile inside the electrolyte

is obtained from (2.48). The oxygen potential profile across the whole sample is shown in

Figure 3.25 at 600 ◦C when the H2 concentration is “100 %” with 3 % H2O saturation in

the anode and oxygen partial pressure is 0.21 atm in the cathode. Because the thickness

of the electrodes is much smaller than the thickness of the electrolyte, a seemingly sharp

change appears at the interfaces.

In Table 3.1, the effective conducting areas increase with reducing anode oxygen partial

pressure and the values are comparable to those obtained under oxidizing conditions. The
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Figure 3.25: Oxygen potential profile of the BSCF|SDC15|Pt system at 600 ◦C when the H2 concentration
is “100%” with 3% H2O saturation in the anode and oxygen partial pressure is 0.21 atm in the cathode.

values of interfacial cathode resistance R⊥
ion(c) and capacitance C⊥

ion(c) are also comparable

to those in BSCF|SDC|BSCF under oxidizing conditions (not shown). It is not the goal

of this work to investigate the performance of BSCF but from our preliminary work on

BSCF|SDC15|BSCF, it is found that the polarization resistance of BSCF|ceria interface

decreases with increasing oxygen partial pressures. Thus it is interesting to note that

R⊥
ion(c) increases with decreasing anode oxygen partial pressures in the present work. Since

the cathode oxygen partial pressure is fixed to be 0.21 atm, the decreasing anode oxygen

partial pressure would lead to the decrease of the interfacial oxygen partial pressure pO2(L),

although pO2(L) is approximated to 0.21 atm for simplicity. The decreasing pO2(L) would

increase R⊥
ion(c) as expected. An interesting point about this observation is the anode will

becomes worse when the cathode becomes better. In principle it is possible to fit pO2(L)

directly instead of fixing it to be the same as pO2(c), i.e., 0.21 atm. It was found that the

fitted value of pO2(L) is around 0.4 atm, slightly higher than 0.21 atm. While it does not

make physical sense to have pO2(L) larger than pO2(c), it nevertheless suggests that pO2(L)

is close to pO2(c). Along with the small R⊥
ion(c) and reasonably good fitting shown above,

pO2(L) can be safely assumed to be the same as pO2(c).

A direct comparison of the anode polarization resistance R⊥
ion(a) at the Pt|SDC15 in-

terface obtained here with that of Pt|SDC15|Pt cells measured under uniform chemical

environments, i.e., system I, is presented in Figure 3.26, shown as the inverse of area spe-
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cific polarization resistance ρ⊥Pt = R⊥
ion(a)A vs. oxygen partial pressure in log-log form. As

mentioned above, there is a large oxygen partial pressure drop across the anode, thus ρ⊥Pt

is plotted against both pO2(0) (upper-half filled symbols) and pO2(a) (right-half filled sym-

bols). The values for Pt|SDC15|Pt cells measured under uniform chemical environments are

in open symbols. It is immediately evident that the area specific polarization resistances

from the two sets of measurements both exhibit a p
−1/4
O2

dependence. Furthermore, it is

found that ρ⊥Pt is between the corresponding values in Pt|SDC15|Pt cells measured under

uniform chemical environments at pO2(a) and pO2(0).
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Figure 3.26: Area specific electrode resistivity of Pt|SDC15 interface of BSCF|SDC15|Pt system as a function
of oxygen partial pressure and temperature. Open symbols are for system I. Upper-half and right-half filled
symbols are plotted against pO2(0) and pO2(a) respectively. Solid lines show the fits to 1/ρ⊥Pt = 1/ρ⊥Pt,0p

−1/4
O2

.

3.5 Discussions

3.5.1 Properties of Ceria

The thermodynamic properties measured here for SDC15 by electrochemical methods are in

good agreement with those of related materials obtained by thermogravimetric methods. In

particular, Kobayashi et al.68 measured ∆Sr and ∆Hr of both Sm0.1Ce0.9O2−δ (SDC10) and

Sm0.2Ce0.8O2−δ (SDC20). The reported enthalpies are 4.15 eV and 3.99 eV for SDC10 and

SDC20, respectively, and the entropies 1.10×10−3 eV/K and 1.13×10−3 eV/K, respectively.

If one assumes a linear dependence of reduction enthalpy and entropy on the dopant level,
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then one interpolates values of 4.07 eV and 1.12×10−3 eV/K, respectively. These values are

very close to 4.18 eV and 1.18×10−3 eV/K for system I and 4.24 eV and 1.25×10−3 eV/K

for system II respectively, determined in this work. These values are listed in Table 3.2 for

comparison. Given that the transport equations are derived under the assumption that the

processes are not far from equilibrium, agreement between the methods is expected.

Table 3.2: Reduction enthalpies and entropies
Substance ∆Hr(eV) ∆Sr(×10−3 eV/K)

Sm0.1Ce0.9O2−δ (SDC10)68 4.15 1.10

Sm0.2Ce0.8O2−δ (SDC20)68 3.99 1.13

Sm0.15Ce0.85O2−δ (SDC15)* 4.07 1.12

Sm0.15Ce0.85O2−δ (SDC15) (System I) 4.18 1.18

Sm0.15Ce0.85O2−δ (SDC15) (System II) 4.24 1.25

*Interpolated from SDC10 and SDC20.

The mobilities determined here for both ions and electrons in SDC15 are also in good

agreement with literature values for related materials, Figure 3.9, as are the corresponding

activation energies, Table 3.3. Specifically, the ionic mobility for SDC15 falls, in the present

study, between 10−5 and 10−4 cm2 V−1 s−1) with an activation energy of 0.67 eV. The

activation energy for electron motion, 0.35 eV, is two times smaller than for ions, and

the absolute mobilities approximately one order of magnitude greater. The relatively low

electronic mobility is consistent with the usual interpretation that electron motion in ceria

occurs via a small polaron activated hopping process.69

Table 3.3: Activation energies for ionic and electronic mobility, and for σ0
e

Substance ∆H i(eV) ∆H e(eV) ∆H e0(eV)

Sm0.15Ce0.85O2−δ (SDC15) (System I) 0.67 0.35 2.44

Sm0.15Ce0.85O2−δ (SDC15) (System II) 0.65 - -
Sm0.2Ce0.8O2−δ (SDC20)10 0.68* - 2.30*

Sm0.2Ce0.8O2−δ (SDC20)70 - - 2.22

Gd0.1Ce0.9O2−δ (GDC10)2 0.64 0.25 -
Gd0.2Ce0.8O2−δ (GDC20)3 0.71 0.52 -

*Fitted with given σi and σ0
e in reference.10

Up to now, the investigation of grain boundary behavior of MIECs have mainly been

limited to the oxidizing conditions, i.e., the MIEC being a pure ionic conductor. In the

studies of space charge regions of ceria under oxidizing conditions, it is generally found that

space charge potential increases with increasing temperatures.71 The same temperature de-
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pendence has been observed in Figure 3.14(b). The values of space charge potential φ0 at

500 ◦C in oxidizing conditions for ceria with different compositions are listed in Table 3.4

for comparison. The space charge potential φ0 obtained from system II at 500 ◦C using

Empirical Equivalent Circuit modeling is around 0.47 V while φ0 is around 0.46 V using

the Physical Equivalent Circuit modeling (PEC). Both of these two values fall into the

range of literature values. It is worth mentioning all the literature values were obtained

using the Empirical Equivalent Circuit (EEC) modeling. It is also worth noting that it is

generally found that the space charge effect becomes smaller with increasing dopant con-

centration, which roughly agrees with the low value of φ0 here. Under reducing conditions,

the space charge potential decreases with decreasing oxygen partial pressures as shown in

Figure 3.18 and the values of space charge potentials are comparable to those obtained in

oxidizing conditions. Considering the various approximations of the present model, such

as one-dimensional transport and Mott-Schottky space charge model etc., no mechanistic

explanation of the temperature and oxygen partial pressure dependence of the space charge

potential has been given at this stage. There is also no literature values available for the

space charge potential of ceria under reducing conditions.

Table 3.4: Space charge potential φ0 at 500 ◦C under oxidizing conditions
Substance φ0(eV)

Gd0.0005Ce0.9995O2−δ
72 ∼0.7

Y0.02Ce0.98O2−δ (YDC02)71 ∼0.5

Sm0.15Ce0.85O2−δ (SDC15) (System II, EEC) ∼0.47

Sm0.15Ce0.85O2−δ (SDC15) (System II, PEC) ∼0.46

Y0.2Ce0.8O2−δ (YDC20)71 ∼0.4

Overall, the correspondence between literature values of both the thermodynamic and

transport properties of SDC15 and the values measured here by A.C. impedance spec-

troscopy provides strong validation of the physical equivalent circuit model for the impedance

response of mixed conductors.

3.5.2 Electrochemistry of the Pt|Ceria System

Two possible electrochemical reactions can be considered to take place on Pt under the

experimental conditions employed in this work. Under moderately oxidizing atmospheres
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(oxygen partial pressures of 10−6 to 1 atm), the oxidation/reduction of oxygen can be

described globally via reaction (3.1)

1/2O2 + 2e− ↔ O2− (3.1)

Under more reducing conditions, achieved via introduction of hydrogen to the sample atmo-

sphere, oxidation/reduction could, in principle, also occur via reaction (3.1), and then be

followed by gas phase reaction between H2 and O2 to maintain overall equilibrium between

the three gaseous species (H2, O2 and H2O). However, more likely is the reaction directly

involving all three species, reaction (3.2)

H2 + O2− ↔ H2O + 2e− (3.2)

These two sets of conditions (moderate and reducing atmospheres) and corresponding elec-

trochemical reactions, (3.1) and (3.2) respectively, are considered separately.

The kinetics and mechanistic pathways of reaction (3.1) have been studied extensively

in the Pt|YSZ|Pt system.73 There is general consensus that the overall reaction rate is lim-

ited by the rate of arrival of oxygen atoms to the reaction sites at the Pt|YSZ interface.

According to the model proposed by Mizusaki et al.,74 at high temperatures and low oxygen

partial pressures, the surface diffusion of absorbed oxygen atoms on Pt is the rate limiting

step and gives rise to a characteristic pO2 dependence of the electrode resistance, obeying

a p
−1/2
O2

dependence at low oxygen partial pressures and a p
1/2
O2

dependence at high oxygen

partial pressures. Thus, the electrode “conductivity” first increases then decreases, taking

on a peak value at some intermediate pressure, p∗O2
, which corresponds to the pressure at

which the Pt coverage by oxygen atoms is 1/2. The position of the peak is temperature de-

pendent, moving to lower pO2 values as temperature is decreased.74, 75 At low temperatures,

the surface diffusion of oxygen becomes exceedingly slow and dissociative adsorption of oxy-

gen directly at the reaction sites becomes the rate-limiting step, resulting in an electrode

resistance that is independent of pO2 . A transition between these two types of behavior

is evident at intermediate temperatures.74 A related model has been proposed by Robert-

son and Michaels76 and discussed further by Adler.73 In this case, both surface diffusion
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and dissociative adsorption simultaneously control the overall kinetics at all temperatures,

and there is no single rate-limiting step for the behavior of the electrode. An explicit pO2

dependence for the electrode properties has not been derived for this model.

Because SDC15 as measured here behaves as a pure ionic conductor at moderate oxygen

partial pressures, it is likely that the electrochemical reduction of O2 in the Pt|SDC15|Pt

system occurs by a mechanism similar to that of the Pt|YSZ|Pt system. Although the

limited data precludes definitive conclusions, the trend evident in Figure 3.10(b), that of a

decreasing slope with decreasing temperature, is consistent with the model described above.

The data imply that p∗O2
is greater than 0.21 atm at 650 ◦C and less than 10−6 atm at 500

◦C, not unreasonable values in comparison to those reported for YSZ.77 In addition, the

SDC system examined here is similar to YSZ75, 78 in that both show only one electrode-

related arc with symmetric, semicircular appearance in their respective impedance spectra,

further supporting the conclusion that the mechanisms must be similar. That the absolute

magnitude of the area specific electrode resistance measured here, approximately 5 Ω cm2

at 600 ◦C, is much lower than that reported for Pt|YSZ,75, 78 approximately 500 Ω cm2, is

likely due to differences in Pt microstructure that influence the diffusion length and density

of reaction sites. More importantly, it likely due to the higher ionic conductivity of ceria

compared to that of YSZ at this temperature.

Alternatively, one cannot rule out the possibility that the charge transfer reaction, in

which adsorbed oxygen atoms on the Pt surface react with electrons and form oxygen

ions on the electrolyte surface, is the rate limiting step. Such a mechanism was proposed

much earlier from study of polarization phenomenon on Pt|ceria in particular by Wang and

Nowick.79, 80 In this case, a slope of 1/4 is expected at low oxygen partial pressure in a log-log

plot of 1/ρ⊥Pt vs. pO2 that gradually shifts to a value of −1/4 at high oxygen partial pressure.

As pointed out by Mizusaki et al.74 the data presented by Wang and Nowick have not been

collected over a sufficiently wide oxygen partial pressure range to distinguish between slopes

of ±1/2 from those of ±1/4 and conclusively support the charge transfer model. The model

that includes adsorption, diffusion and charge transfer was investigated by Mitterdorfer and

Gauckler.81 The authors conclude that above 800 ◦C and high pO2 , charge transfer is in

competition with surface diffusion. With decreased temperature or lower pO2 , the reaction
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is limited by adsorption and surface diffusion. Thus, we propose that diffusion/dissociative

adsorption of oxygen are the rate limiting steps in the Pt|SDC15|Pt system under oxygen

atmospheres, much as is widely accepted for Pt|YSZ|Pt.

In comparison to the behavior of O2 on Pt, the electrochemistry of the H2-H2O system

is quite complex because many more active species can be involved in the electrochemical

oxidation steps. As a consequence, no real consensus as to the reaction pathway has emerged

in the literature, even for Pt|YSZ|Pt. While Mizusaki et al.,82 who observed only one

electrode-related arc in their impedance spectra, have suggested that OH group transfer

across the Pt|YSZ is rate limiting, several other groups have argued that multiple, serial

steps are necessary to describe the reaction on the basis of the observation of multiple (2-

3) electrode related responses by impedance spectroscopy. In particular, a high-frequency

arc has been attributed to the charge transfer step and a low-frequency arc to hydrogen

dissociative adsorption on the Pt surface.52 As noted in section 2.3.3.3, it is not possible

to detect by impedance spectroscopy serial reaction steps at the electrode-sample interface

for a sample that is a mixed ionic and electronic conductor with a large value of Cchem.

Thus, it is not possible to directly establish whether Pt|SDC15|Pt exhibits a single or a

multistep mechanism. Nevertheless, from the pO2 dependent behavior of ρ⊥Pt measured here,

Figure 3.10(c), we can immediately conclude that electro-oxidation of hydrogen on Pt|ceria
occurs by a fundamentally different mechanism than it does on Pt|zirconia. Indeed, in the

case of Pt|YSZ, there is no reason to expect a direct dependence of ρ⊥Pt on pO2 in the presence

of H2. Instead, because adsorbed hydrogen atoms and hydroxyl groups are presumed to

participate in the reaction mechanism, dependencies on pH2 or pH2O are typically probed

(which only depend indirectly on pO2 via the gas phase equilibrium).

The observation here of a power law of p
−1/4
O2

suggests that the electrode reactions are

correlated to the electronic conductivity of mixed conducting ceria, which exhibits precisely

the same dependence on oxygen partial pressure. Furthermore, the activation energies of

1/ρ⊥Pt,0, 2.75 ± 0.11 eV for system I and 2.40 ± 0.06 eV for system II, are very similar to

that measured for electronic conductivity of SDC15, 2.44 ± 0.03 eV. Based on these obser-

vations we propose that the electrochemical reaction 3.2 can occur via two parallel paths

on oxygen ion conducting materials, Figure 3.27. In the first path, dissociative hydrogen
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desorption occurs on the Pt surface, followed by migration of protons to the Pt|oxide in-

terface and subsequent electrochemical reaction. In the second path, hydrogen desorption

occurs directly on the oxide surface which subsequently reacts electrochemically with oxy-

gen, giving up electrons which are then transported through the oxide to the Pt. Given

the very low electronic conductivity of zirconia, the second pathway is not available for this

electrolyte and the reaction is taken to occur via the first path, with the exact rate-limiting

step yet to be determined. In the case of ceria, we propose that although the first path

is probably fast, the second path is faster. That is, we propose that the electrochemical

reaction occurs directly on the ceria surface (i.e., that ceria is electrochemically active), and

that the reaction is limited by the rate of removal of electrons from the reaction sites (i.e.,

electronic conductivity).

O
=
 conductor 

Pt

H2 H2O

Pt

e
–O

=

H2

H2O

O
=

e
–

path 1 path 2 

Figure 3.27: Schematic diagram showing the hydrogen electro-oxidation pathways (left) on Pt|YSZ and
(right) Pt|SDC.

3.6 Summary and Conclusions

A rigorous derivation of the A.C. impedance of mixed conducting materials has been pre-

sented for both equilibrium and nonequilibrium conditions.

Using pO2 |Pt|Sm0.15Ce0.85O1.925−δ(1350 ◦C)|Pt|pO2 (system I) and pO2 |Pt|Sm0.15Ce-

0.85O1.925−δ(1550 ◦C)|Pt|pO2 (system II) as model systems, it is demonstrated that the

impedance data yield a broad range of electrical and electrochemical properties of the

mixed conductors. In particular, the concentration of free electron carriers, the mobilities

and activation energies for both ion and electron transport, the space charge potential, and

the entropy and enthalpy of reduction of Ce4+ to Ce3+ have all been measured. The values
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are in good agreement with what would be expected based on the reported properties of

Sm and Gd doped ceria with differing compositions. The oxygen electro-reduction reaction

on Pt|Sm0.15Ce0.85O1.925−δ has not been extensively studied here, but the data nevertheless

suggest that a mechanism similar to that on Pt|YSZ is operative. Specifically, the data are

consistent with a model in which oxygen surface diffusion to reaction sites is rate limiting.

The hydrogen electro-oxidation reaction, in contrast, occurs by a mechanism quite distinct

from that on YSZ. Here the electrode “conductivity” is found to obey a −1/4 power law

dependence on oxygen partial pressure, 1/ρ⊥Pt = 1/ρ⊥Pt,0p
−1/4
O2

, with an activation energy for

1/ρ⊥Pt,0 that is almost identical to that measured for the electronic conductivity. Accord-

ingly, it is postulated that ceria is electrochemically active for hydrogen oxidation, with

the reaction occurring directly on the ceria surface and limited by the rate of removal of

electrons from the reaction sites.

Using pO2(c)|Ba0.5Sr0.5Co0.8Fe0.2O3−δ|Sm0.15Ce0.85O2−δ(1350 ◦C)|Pt|pO2(a) (system III)

as the model system, it is demonstrated that the combination of OCV and impedance mea-

surements yield valuable information at both the anode and cathode interfaces. It is sug-

gested that the same electro-oxidation mechanism as that of system I and II is occurring

at the Pt|ceria interface, whereas the resistance to the electro-reduction at the Ba0.5Sr0.5-

Co0.8Fe0.2O3−δ|ceria is negligible.
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Appendix A

Dielectric and Chemical
Capacitances

The chemical capacitance has certain similarities to conventional dielectric capacitance.

While the latter is a measure of the ability of the system to store electrical energy in the

form of polarized electric dipoles, the former is a measure of the ability of the system to

store chemical energy in the form of changes in stoichiometry in response to changes of

ambient partial pressures. The analogy is made more explicit as follows.

For a parallel plate capacitor with area A and length L, the conventional dielectric

capacitance is

Cdielec =
∂q

∂∆φ
=

ADdis

EL
=

Aεrε0

L
(A.1)

where Ddis = εrε0E is the electrical displacement and E is the electrical field.

In the case of chemical capacitance, the stored charge due to species i is

qi = zieciAL (A.2)

The voltage drop across the capacitor is µ∗i , defined previously from (2.5) and (2.10)

µ∗i =
µ0

i

zie
+

kBT

zie
ln

ci

c0
i

(A.3)

Defining the capacitance in analogy to (A.1) as ∂qi/∂µ∗i and evaluating this quantity yields

Cchem
i =

∂qi

∂µ∗i
=

(zie)2

kBT
ciAL (A.4)
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which, as implied by (2.128), is the total chemical capacitance associated with species i.



104

Appendix B

Estimates of Electrical and
Chemical Capacitances

The system is Sm0.15Ce0.85O2−δ (SDC15) with the following physical parameters.

• Vacuum permittivity ε0 = 8.8542× 10−12 F m−1

• Boltzmann constant kB = 1.38× 10−23 J K−1

• Relative permittivity (dielectric constant) εr ≈ 10

• Sample area A ≈ 10−4 m−2

• Sample length L ≈ 10−3 m

• The total grain boundary thickness LGB = 10−6 m

• Lattice constant a0 = 5.47 Å

• Temperature T = 600 ◦C

• The number of electrical charge of oxygen vacancies zion = 2

• The number of electrical charge of electrons zeon = 1

• Oxygen vacancy concentration cion

cion =
nion

a3
0

=
4× 0.075

5.473 × 10−30
= 1.83× 1027 m−3 (B.1)
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• Electron concentration ceon can be taken as 1% of oxygen vacancy concentration for

0.5% H2 saturated with 3% H2O at 600 ◦C

ceon = 1.83× 1025 m−3 (B.2)

B.1 Grain Interior Capacitance

The total grain interior thickness is approximated by the sample length

CGI ≈ εrε0
A

L
≈ 10× 8.8542× 10−12 × 10−4

10−3
≈ 10−11 F (B.3)

B.2 Grain Boundary Capacitance

The total grain boundary thickness is approximated to be 1 um

CGB = εε0
A

LGB
= 10× 8.8542× 10−12 × 10−4

10−6
≈ 10−8 F (B.4)

At 600 ◦C, generally neither grain interior (GI) nor grain boundary (GB) arc is observ-

able in the impedance spectra. The fitting for impedance spectrum circuit taken at 200 ◦C

gives 10−11 and 10−8 F respectively for GI or GB using RGICGI −RGBCGB circuit. Since

dielectric constant is not a strong function of temperatures, the experiment agrees with the

estimate.

B.3 Interfacial Capacitance

Oxygen vacancy concentration in the interface can be roughly taken as the same as in the

sample, thus the Debye screening length

LD =

√
εε0kBT

e2z2
ioncion

=

√
10× 8.8542× 10−12 × 1.38× 10−23 × 873

(1.6× 10−19)2 × 22 × 1.83× 1027
= 0.7 Å (B.5)

The interfacial capacitance is then
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C⊥
ion = εε0

A

LD
= 10× 8.8542× 10−12 × 10−4

0.7× 10−10
≈ 10−4 F (B.6)

The fitting of the impedance spectrum taken at 600 ◦C in air gives 10−4 F using R⊥
ionC⊥

ion

circuit which agrees with the estimate.

B.4 Chemical Capacitance

The chemical capacitance is determined by both the ionic and electronic concentration

Cchem =
e2

kBT
AL

(
1

z2
ioncion

+
1

z2
eonceon

)−1

=
(1.6× 10−19)2

1.38× 10−23 × 873
× 10−4 × 10−3 ×

(
1

22 × 1.83× 1027
+

1
1.83× 1025

)−1

≈ 4 F (B.7)

The fitting of the impedance spectrum at 600 ◦C in 0.5% H2 saturated with 3% H2O gives

4 F using the Jamnik-Maier model.
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Appendix C

Example Matrices

The equivalent circuits for the nonequilibrium and equilibrium conditions when N = 2 are

shown in Figure C.1. The corresponding matrices (Aneq and Aeq) and vectors (X and B)

are given in the next page.
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Figure C.1: (a) Nonequilibrium and (b) equilibrium equivalent circuit for N = 2.
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Appendix D

Analytical Impedance Calculation

The impedance of the general electrode|MIEC|electrode system represented in Figure 2.13(a)

of the main text can be evaluated by first recasting the circuit from one composed of R

and C to one composed of elements with arbitrary impedance in Figure D.1. Here, Va

and Vb are the input and output voltages respectively. I is the total current. V1(x) and

I1(x) are the voltage and current for the branch point in rail 1. V2(x) and I2(x) are the

voltage and current for the branch point in rail 2. ZA and ZB are the terminal impedances

corresponding to the impedance of the electrode|MIEC in rails 1 and 2 respectively. Z1 and

Z2 are the impedances in rails 1 and 2 respectively whereas Z3 is the impedance between

rail 1 and 2.

2
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Z
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Z

B
Z

1
Z

B
Z
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( )V x

1
( )I x
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( )V x

2
( )I x
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Figure D.1: Generalized circuit.

Z1, Z2 and Z3 are defined respectively as

Z1 = ZT
1

∆x

L
(D.1)

Z2 = ZT
2

∆x

L
(D.2)

Z3 = ZT
3

L

∆x
(D.3)

where ZT
1 , ZT

2 and ZT
3 are the total impedance of three components. When N=L/∆x
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reaches infinity, ∆x → 0 and the discretized circuit in Figure D.1 becomes a continuous

one. Ohm’s law implies

dV1(x)
dx

= −ZT
1

L
I1(x) (D.4)

dV2(x)
dx

= −ZT
2

L
I2(x) (D.5)

Kirchhoff’s law implies

−dI1(x)
dx

=
dI2(x)

dx
=

V1(x)− V2(x)
ZT

3 L
(D.6)

I = I1(x) + I2(x) (D.7)

The boundary conditions are

Va − V1(0) = ZAI1(0) (D.8)

Va − V2(0) = ZBI2(0) (D.9)

V1(L)− Vb = ZAI1(L) (D.10)

V2(L)− Vb = ZBI2(L) (D.11)

Va − Vb = ZI (D.12)

where Z is the total impedance. From (D.4)–(D.7), one obtains

ZT
3 L2I ′′1 −

(
ZT

1 + ZT
2

)
I1 + ZT

2 I = 0 (D.13)

The solution to (D.13) is

I1(x) =
ZT

2

ZT
1 + ZT

2

I + C1e
kx + C2e

−kx (D.14)

with

k =
1
L

√
ZT

1 + ZT
2

ZT
3

(D.15)

and C1 and C2 are two unknowns. The solutions to other parameters are
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I2(x) =
ZT

1

ZT
1 + ZT

2

I − C1e
kx − C2e

−kx (D.16)

V1(x) = − ZT
1 ZT

2

ZT
1 + ZT

2

x

L
I − C1Z

T
1

kL
ekx +

C2Z
T
1

kL
e−kx (D.17)

V2(x) = − ZT
1 ZT

2

ZT
1 + ZT

2

x

L
I +

C1Z
T
2

kL
ekx − C2Z

T
2

kL
e−kx (D.18)

Applying boundary conditions (D.8)–(D.12), one obtains

Z =
ZT

1 ZT
2

ZT
1 + ZT

2

+
2

ZT
1 + ZT

2

kLZAZB(ZT
1 + ZT

2 ) +
[
(ZT

2 )2ZA + (ZT
1 )2ZB

]
tanh(

kL

2
)

kL(ZA + ZB) + (ZT
1 + ZT

2 ) tanh(
kL

2
)

(D.19)

For the circuit in Figure 2.13(a), the corresponding circuit elements are

ZA = Z⊥ion (D.20)

ZB = 0 (D.21)

Z1 = Rion/N (D.22)

Z2 = Reon/N (D.23)

Z3 = (jωCchem/N)−1 (D.24)

Thus one obtains

ZT
1 = Rion (D.25)

ZT
2 = Reon (D.26)

ZT
3 = 1/(jωCchem) (D.27)

The argument of the hyperbolic tangent in (D.15) can be evaluated

k =

√
(Rion + Reon)jωCchem

L2
=

√
jω

D̃
(D.28)

with

D̃ =
L2

(Rion + Reon)Cchem
(D.29)



112

Plugging (D.20), (D.21) and (D.25)–(D.29) into (D.19) then yields

Z(ω) = R∞ + (Z0 −R∞)
tanh

√
jωL2

4D̃
+ Rion + Reon

2Z⊥ion

tanh

√
jωL2

4D̃√
jωL2

4D̃
+ Rion + Reon

2Z⊥ion

tanh

√
jωL2

4D̃

(D.30)

with
1
Z0

=
1

Rion + 2Z⊥ion

+
1

Reon
(D.31)

and

R∞ =
RionReon

Rion + Reon
(D.32)

(D.30) differs from Equation (7) given in reference34 by the term (Z0 − Z∞) which has

apparently been omitted from that paper due to a typographical misprint.
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Appendix E

High-Surface-Area Ceria Aerogel

Abstract

Ceria (CeO2) aerogels with high surface area and high porosity have been prepared.

Ce-methoxyethoxide diluted in excess methoxyethanol was slowly hydrolyzed to yield a gel,

which was then supercritically dried in CO2. Both as-synthesized and annealed aerogels were

examined by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy

and BET surface area and pore size analyses. Thermal analysis of the as-synthesized gel

showed it to contain only ∼5 wt% residual organics which were removed by 300 ◦C under

oxygen. The unheated ceria aerogel was crystalline and exhibited a specific surface area of

349 m2/g with average pore diameter of ∼21.2 nm and 90% porosity. Heat treatment led

to a reduction of porosity and pore size, as would be expected, but the extremely narrow

pore size distribution of the aerogel was retained.



114

E.1 Introduction

The mesoporous nanoarchitecture of aerogels leads to high-performance materials for cataly-

sis and electrocatalysis. While the importance of high surface area has been well appreciated

by researchers, the ability to manage the pore-solid architecture to support electrochemical

reactions and achieve facile mass transport of products and reactants has not been widely

considered.83, 84 Early indications are that the use of aerogels in a nanoscopic building-

block approach is extremely promising; for example, considerable improvement in the per-

formance of electrodes for electro-oxidation of methanol in proton-exchange membrane fuel

cells (PEMFCs) has already been demonstrated.85 Aerogels are highly porous (open poros-

ity with large pore volume) three dimensional networks with an extremely large inner sur-

face that is easily accessible to reactants.86–88 Aerogel preparation procedure combines the

flexibility and advantages of the sol-gel process in terms of control of the composition,

homogeneity and retention of the textural properties of the wet gel.

The present paper extends aerogel synthesis to cerium oxide, a material of significant

industrial importance. Ceria-based materials find application in a wide range of processes;

for example, they serve as additives or promoters for fluid catalytic cracking, ammoxidation

and dehydrogenation processes89–92 and as supports for automotive three-way catalysts.

Because of the low redox potential of the Ce4+–Ce3+ couple, ceria can release oxygen during

fuel-rich conditions and uptake oxygen in fuel-lean conditions, key for optimal performance

of automotive catalytic converters. Ceria has also been used as an oxygen ion conducting

electrolyte for solid oxide fuel cells.93, 94 More recently, it has been shown that ceria has

the ability to resist carbon deposition, and can be utilized in solid oxide fuel cell (SOFC)

anodes, either for indirect or direct electrochemical oxidation of hydrocarbon fuels such as

methanol or methane.95, 96

The synthesis of pure ceria aerogels has received little attention, although the po-

tential of aerogels to have tremendous positive impact on catalysis has been increasingly

recognized.86–88 We are aware of only one publication on the topic,97 if one uses the standard

definition of an aerogel as a material prepared by sol-gel synthesis followed by supercritical

drying to remove the solvent.86–88 In that work supercritical methanol (240 ◦C, 80 bar)
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was employed to dry a ceria alcogel derived from Ce-acetylacetonate. The surface area

of the amorphous product ranged from 65 to 104 m2/g and no other characterization of

the aerogel was presented. Routes that lead to materials with higher surface area and

higher crystallinity, both of which are important for developing the desired catalytic and

electrochemical properties, are clearly desirable.

Given the importance of ceria in catalysis, high surface area CeO2 has indeed been pur-

sued by a variety of chemical synthesis routes.98–105 Resultant surface areas have typically

been ∼100 m2/g, and in limited cases as high as ∼200 m2/g. Moreover, such materials

tend to exhibit a broad pore size distribution. Most recently, surfactant templated synthe-

sis has been attempted.106–109 This route is promising in that it yields materials with high

surface area (as high as ∼245 m2/g).108 However, the pore size and size distribution are not

optimally suited for catalysis. In particular, the pores in surfactant templated materials

tend to be small and are often assembled in a one-dimensional arrangement rather than an

interconnected, three-dimensional structure. Moreover, there are reports that mesopores

in these materials can be blocked upon deposition of metallic catalyst particles.106 These

features can impede diffusion of the reactant and by-product gases and prevent effective

catalysis.

In this work we report the synthesis and characterization of high-surface-area ceria

aerogels prepared by cold (CO2) supercritical drying. The synthesis process is complete in

a matter of hours and it is possible, by appropriate heat treatment, to control the crystallite

size of the fluorite phase that comprises the solid network as well as the pore structure of

the aerogel. This synthetic approach enables one to consider ceria aerogel as a building

block with tailored morphology for catalytic and electrochemical applications. In contrast

to other approaches, aerogel materials can furthermore be obtained as monoliths and thus,

in principle, porosity and surface area are not compromised in post synthesis processing of

loose powders. The key to the success of the method reported here is the identification of a

chemical system incorporating cerium precursor, solvent, and chelating agent which allows

for controlled hydrolysis and condensation of the ceria phase, without rapid precipitation.
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E.2 Experimental

Ceria aerogel synthesis involved, as is conventional, two steps: gel synthesis and supercritical

drying. Gel synthesis was achieved by dilution of the precursor, Ce-methoxy ethoxide in

methoxyethanol (18–20 w/w%, Alfa Aesar, USA), with solvent (2-methoxy ethanol, Alfa

Aesar, USA). The solution was then modified with acetyl acetone (Avocado, USA) and

hydrolyzed with water, to yield a transparent, light brown gel, similar in color to the

cerium precursor compound. The time for gelation could be varied from instant to several

days by changing the ratio of precursor : solvent : acetyl acetone : water. Aerogels with

the highest surface area were obtained for the molar ratio 1 : 8 : 0.5 : 8, in which case gel

formation occurred within an hour, yielding a monolithic, self-supporting material. After

gelation, the sample, typically ∼2 gm, was aged for 3 days in a closed container. In order

to improve the miscibility of the liquid within the pores of the gel with the super critical

drying medium (liquid CO2), an intermediate solvent exchange with acetone was performed.

The monolithic gel was fractured into small pieces to facilitate fast solvent exchange and

then immersed in acetone for three days, over the course of which the solvent was exchanged

with fresh acetone three times. During solvent exchange the morphology of the gel remained

intact. The modified gel was then placed in a critical point dryer (Quorum Technologies

E3000, specimen chamber: horizontal, 30.1 mm internal diameter and 82 mm long). The

acetone in the gel was exchanged with liquid CO2 at 10 ◦C by rinsing 10 or more times over

a period of more than four hours. The carbon dioxide solvent was eliminated by heating

past the critical point of liquid CO2 (45 ◦C, ∼82 bar) and slowly releasing the resulting CO2

gas (<20 mL/sec). The quantity of liquid CO2 utilized for the supercritical drying process

was approximately 300 mL/gm of gel precursor, which corresponds to ∼750 mL CO2 per

gm of CeO2 samples prepared using excess water for hydrolysis in the initial synthesis steps.

The as-synthesized aerogel was obtained in the form of monolithic pieces, up to 8 mm

× 6 mm × 2 mm in size, along with fine powder. The sample retained its light brown color,

suggesting that some of the coordinating/chelating organic groups which are responsible for

the color of the precursor (in which all Ce is in the 4+ oxidation state) were still present in

the aerogel. Portions of the as-prepared aerogel were annealed in air at 300 ◦C and at 600
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◦C, in both cases for 2 hours. Annealing induced a color change to pale yellow, indicating

complete removal of the organic groups. Cerium likely exists in the 4+ oxidation state at

all stages of sample preparation, irrespective of the sample color.

Several techniques were used to characterize the properties of the resultant material.

Thermo gravimetric (TG) and differential scanning calorimetry (DSC) analyses were carried

out in flowing oxygen (Netzsch thermo analyser STA 449C) from 25 to 1,000 ◦C at a heating

rate of 10 ◦C/min. Infrared (FTIR) spectra were recorded using a Nicolet Magna 860 IR

spectrometer over the wave number range 4000 to 400 cm−1. Powder X-ray diffraction

(XRD) data were collected at room temperature on the aerogel samples using a Philips (PW

3040) diffractometer with Cu Kα radiation in the Bragg-Brentano geometry. Grain/particle

size measurements were made by applying the Scherrer equation to the FWHM of the (111)

peak, after accounting for instrument broadening using silicon as a standard. The aerogel

microstructure and morphology were studied by a LEO 1550VP Field Emission SEM.

Specific surface area and pore size distribution were determined using a Micromerit-

ics surface area analyzer (ASAP 2010). Nitrogen adsorption/desorption isotherms were

obtained at 77 K after outgassing the samples at 120 ◦C for 2 hours. Surface area was

calculated using the BET method.110 Pore size distribution was determined by applying

the BJH method111 to the desorption branch of the isotherm. It has been shown that ni-

trogen adsorption and desorption (NAD) analysis of compliant porous materials such as

aerogels is significantly influenced by the equilibration time, and possible compliance of the

sample.112, 113 In particular, both insufficient equilibration and contraction of the sample

due to capillary forces will yield measured pore volumes that are less than the actual val-

ues. Evidence for insufficient equilibration is apparent in the isotherm data in the form

of adsorption and desorption branches that are strongly shifted from one another, and for

compliant gels in the form of a continued increase in nitrogen adsorption beyond the ap-

parent saturation point. For the present NAD analysis of ceria aerogels, equilibration was

considered to be reached when the first derivative of the pressure was less than 0.01% of the

average pressure over a specified time interval which was 10 seconds for the present study.

The maximum volume adsorbed between points was set to be 50 cm3/g.
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E.3 Results and Discussion

Thermal analysis of the as-synthesized aerogel (Figure E.1) revealed weight-loss steps. The

first step, over the temperature range 150–200 ◦C is assigned to desorption of water adsorbed

on the aerogel surface. The second step, with peak weight loss occurring at ∼280 ◦C and

accounting for ∼5 wt%, is taken to be due to the burn-off of the residual organic chelating

agent, acetyl acetone. Exothermic peaks accompany both weight loss steps.
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Figure E.1: Thermalgravimetric and differential scanning calorimetry curves of as-synthesized CeO2 aerogel
obtained under flowing O2 at a heating rate of 10 ◦C/min.

The presence of residual organics and hydroxyl ions/water, in the as-synthesized gel is

confirmed by the FTIR spectrum. Figure E.2, curve (a), shows a strong C=O stretching

peak at ∼1600 cm−1, several C-H bands, and a weak O-H stretching band at ∼3400 cm−1.

After heat-treatment at 300 ◦C, curve (b), the intensities of the peaks due to the organics

are substantially reduced, while treatment at 600 ◦C eliminates all peaks except that due to

Ce-O stretching at ∼500 cm−1, curve (c). These observations are in general agreement with

the thermal analysis. The high intensity at 300 ◦C of the IR peak corresponding to O-H

stretching is attributed to the rapid adsorption of atmospheric H2O onto the ceria aerogel

surface after removal of the chelating organic groups.

As-synthesized, the CeO2 aerogel shows very broad and weak diffraction peaks that can

be attributed to the cubic fluorite phase of ceria, Figure E.3. Upon annealing, these peaks

sharpen considerably, as would be expected for the growth in the crystallite size with heat
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Figure E.2: FTIR spectra collected from ceria aerogel, heat treated as indicated.
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Figure E.3: X-ray diffraction patterns of CeO2 aerogel, heat-treated as indicated.

The morphology of the as-synthesized aerogel is highly porous and extremely uniform,

as evidenced both by electron microscopy (Figure E.4), and nitrogen adsorption studies

(Figures E.5 and E.6) and Table E.1. The aerogel exhibits an adsorption isotherm of

type IV (IUPAC classification) with a marked hysteresis loop of H1 type (Figure E.5a).

Type IV isotherms are characteristic of mesoporous materials.110 The hysteresis loop of

type H1 is usually associated with agglomerates or compacts of uniform spheres, which

have a narrow pore size distribution and open tubular pores with circular or polygonal

sections. While hysteresis between the adsorption and desorption branches is evident, its

magnitude is sufficiently small as to confirm that nitrogen adsorption equilibration has been

reached. Furthermore, the adsorption reaches a clear saturation value, particularly for the

annealed samples, indicating corrections for compliancy need not be applied. In any case,
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should equilibration and compliancy influence the results, the pore volumes reported here

correspond to a lower bound.

(a) (b) (c)

Figure E.4: Pore size distribution in (a) as-prepared, (b) 300 ◦C/2hr annealed and (c) 600 ◦C/2hr annealed
CeO2 aerogel.

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

Relative pressure (p/p0)

 Adsorption
 Desorption

c

b

a

(a) as-synthesized aerogel
(b) annealed at 300oC/2hr
(c) annealed at 600oC/2hr

 

 

Am
ou

nt
 a

ds
or

be
d 

(c
m

3 /g
) 

Figure E.5: Nitrogen adsorption isotherms at 77 K of (a) as-prepared, (b) 300 ◦C/2hr annealed and (c) 600
◦C/2hr annealed CeO2 aerogel.

The narrowness of the pore diameter distribution, which has a maximum at 21.2 nm,

is further evident in Figure E.6a. The as-prepared aerogel has a large surface area of 349

m2/g and, the large pore size (>10 nm) is well suited for facile mass transport. Moreover,

the pores are randomly connected in a three-dimensional network (Figure E.5), which is

further anticipated to promote gas diffusion through the aerogel structure.

Heat treatment reduces the porosity and increases the average grain size (Table E.1).
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Figure E.6: Pore size distribution in (a) as-prepared, (b) 300 ◦C/2hr annealed and (c) 600 ◦C/2hr annealed
CeO2 aerogel.

Table E.1: Microstructural properties of ceria aerogel
CeO2 X-ray BET Ave. pore Most freq. Pore Porosity

Aerogel grain size surf. area diameter pore diameter vol.

nm m2/g nm nm cm3/g %
As-prepared <2 349 14.3 21.2 1.33 90

300◦C/2hr 4.8 155 11.5 13.4 0.40 80

600◦C/2hr 15.9 49 10.4 11.0 0.15 51

However, the overall morphology of the aerogel remains unchanged, consisting of nano-

cale grains with interconnected, mesoscale porosity (Figure E.5). Furthermore, the type of

isotherm and hysteresis are also unchanged by the heat treatment; the pore size remains

large and the distribution remains extremely narrow. The overall reduction in porosity is

evident from the sharp decrease in the amount of nitrogen adsorbed (Figure E.5). Quanti-

tatively, the specific surface area decreases from 349 to 49 m2/g, the porosity from 90% to

51% and the average pore diameter from 14.3 to 10.4 nm upon annealing at 600 ◦C, while

the maximum in the pore size distribution shifts from 21.2 to 11.0 nm. The average grain

or particle size, which is related to the aerogel wall thickness, increases from a value that

cannot be reliably determined by X-ray diffraction, smaller than 2 nm to almost 16 nm

upon heat treatment.

Implementation of aerogels in high temperature catalysis requires that high surface area

and porosity be maintained for long time periods. Thermally stable structures can be

pursued by introduction of zirconia via incorporation of zirconium precursor compounds in
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the gel solution, which has been shown to mitigate loss of porosity.114

E.4 Conclusions

We have successfully synthesized ceria aerogels. The material exhibits high surface area,

large pore volume, mesoporosity and a narrow pore size distribution. To date only one

other synthetic route to ceria aerogels has appeared in the literature.97 In that work a

maximum surface area of 104 m2/g was obtained, which is much lower than the value of

349 m2/g achieved here for as-synthesized gels. Also, using our synthetic route, the fluorite

phase is already apparent before any thermal treatment. Even for aerogels in which residual

organics have been removed via heat treatment at 300 ◦C, the surface area remains at the

high value of 155 m2/g. In terms of fuel cell anodes, no particular surface area, porosity

or pore size targets have been established. Nevertheless, the materials fabricated in this

study appear well suited to electrode function. In particular, the narrow distribution of

large pore diameters and tuneable porosity lend themselves to optimized electrocatalysis.

Furthermore, the route is readily adapted for the preparation of bulk ceria aerogels (although

no particular efforts were made in the present study to retain monolithic structures) and

also for zirconia incorporation through cogelation of Ce-alkoxide and Zr-alkoxide, which can

result in thermally stable structures for high temperature applications.
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Appendix F

Proton Conduction in Mg-Doped
La2Zr2O7 Pyrochlore Oxide

Abstract

Undoped and Mg-doped La2Zr2O7 with a pyrochlore structure were prepared by a com-

bined EDTA-citrate complexing method. La2Zr2−xMgxO7 was single phase up to x = 0.2

and lattice parameters increase with Mg doping. Proton conduction in Mg-doped La2Zr2O7

pyrochlore oxide was studied by A.C. impedance spectroscopy. Both grain interior and spe-

cific grain boundary conductivities were extracted from impedance data by using the brick

layer model. An isotope effect under H2O- or D2O- containing atmospheres was observed,

indicating that protons (or deuterons) are the mobile species. The isotope effect was dis-

cussed on the basis of a statistical mechanical transition state theory.
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F.1 Introduction

Since the discovery of high-temperature proton conduction in a SrCeO3-based system,115

many attempts have been made to find new oxides which show high proton conductivity at

high temperatures because of their potential applications such as fuel cells and hydrogen

sensors. Proton incorporation into such materials has been generally recognized to occur by

a two-step process.116–118 The first step is the creation of oxygen vacancies. The second step,

the exposure of the material to H2O or H2 containing atmospheres, leads to the occupation

of previously vacant oxygen sites by hydroxyl groups.

Up to now, most efforts have been devoted to perovskite-based oxides like simple per-

ovskites ABO3 (A=II; B=IV—Roman numericals represent the valences) and complex per-

ovskites A2(B′B′′)O6 (A=II; B′=III; B′′=V)and A3(B′B′′2)O9 (A=II; B′=II; B′′=V).116–118

The acceptor-doping in simple perovskites such as Yb-doped SrCeO3 or nonstoichiometry

of B site cations in complex perovskites such as Ba3(Ca1.18Nb1.82)O9−δ will introduce oxy-

gen vacancies. Subsequent exposure to hydrogen containing atmospheres leads to proton

incorporation. On the other hand, the proton conduction in fluorite-based oxides has been

less studied compared to the extensive investigation of fluorite-based oxides as oxygen ion

conductors. Pyrochlore oxide A2B2O7 (A=III; B=IV) has a fluorite-based structure.119

For a fluorite structure, there are four cations and eight oxygen ions in the unit cell. The

cations A and B in pyrochlore structure have a significant size difference and they are com-

pletely ordered at the cation sites of the fluorite structure. Furthermore, the anion sites of

the fluorite structure are ordered into three different sites; six equivalent oxygen sites, one

differing oxygen site, and one structurally empty site. The structural oxygen vacancy and

possible acceptor doping at A or B site make pyrochlore oxide also candidates for proton

conduction.

Recently, it was reported by Shimura et al.120 and Omata et al.121 that doped La2Zr2O7

with a pyrochlore-type structure is a promising material for high-temperature proton con-

ductor. Shimura et al.120 found La2Zr1.8Y0.2O7−δ has the highest conductivity among the

Ln2Zr1.8Y0.2O7−δ (Ln=La, Nd, Gd, Sm), around 3×10−4 S/cm at 600 ◦C in wet hydro-

gen. Omata et al.121 found the solubility limit of La2Zr2−xCaxO7−δ is around 0.015 and
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La2Zr1.985Ca0.015O7−δ has a conductivity of 1.0×10−4 S/cm at 600 ◦C in wet hydrogen.

In the pyrochlore structure, Zr site is approximately surrounded by six oxygen ions.

According to Shannon’s ionic radius,122 Mg2+ (VI, 0.72 Å—Roman numericals represent

the coordination number) is a better dopant than both Y3+ (VI, 0.89 Å) and Ca2+ (VI, 1.00

Å) to Zr4+ (VI, 0.72 Å). Furthermore, according to Pauling’s electronegativity scale,123 Zr

has an electronegativity of 1.33. Compared with Y(1.22) and Ca(1.00), Mg has a similar

scale of 1.31 to Zr. Based on the ionic radius and electronegativity, we expect the solubility

of Mg at Zr site will be higher than Y and Ca. The increased doping will be able to provide

more oxygen vacancies for proton incorporation. In the present study, proton conduction of

grain interiors and grain boundaries of undoped and Mg-doped La2Zr2O7 was investigated.

The conductivity isotope effect under H2O or D2O containing atmospheres was discussed

on the basis of a statistical mechanical transition state theory.

F.2 Experimental

F.2.1 Sample Preparation

Starting materials La2O3 99.9%, MgO 99.95%, ZrO(NO3)2·xH2O (x was determined by

thermogravimetric analysis), nitric acid (ACS, 70%), NH3·H2O (ACS, 28.0–30.0%) and

ethylene eiamine tetraacetic acid (EDTA, ACS, 99.4+ %) were purchased from Alfa Aesar.

Hydrogen peroxide 30 % aqueous solution and citric acid monohydrate were obtained from

Fisher Chemical and Mallinckrodt respectively. La2Zr2−xMgxO7 was synthesized by a com-

bined EDTA-citrate complexing route.124 Briefly, La2O3 and MgO were first dissolved in

nitric acid and ZrO(NO3)2 was dissolved in H2O2 water solution at 150 ◦C. Two solutions

were mixed together and EDTA-ammonia solution and citric acid solution were added se-

quentially in a ratio of La : EDTA : citric acid of 1 : 4 : 8. The obtained whole solution was

continuously stirred at 80 ◦C until gelation occurred. The obtained gel was first dried at

200 ◦C, then pre-fired at 400 ◦C and finally calcined at different temperatures from 700 to

1100 ◦C. The powders calcined at 900 ◦C were first uniaxially pre-pressed at 65 MPa, then

cold isostatically pressed at 220 MPa for 5 mins. The green pellets were finally sintered at

1550 ◦C for 12 hrs. Densities were determined by simple measurements of pellet dimensions
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and weight after polishing the surfaces.

F.2.2 X-ray Diffraction

The X-ray diffraction (XRD) analyses were carried out at room temperature in a Siemens

D-500 diffractometer with Cu Kα radiation. Intensities were obtained in the 2θ range

between 20◦ and 90◦ with a step of 0.02◦ and a measuring time of 3 s at each point.

Because the diffraction peaks of Si standard overlap with those of samples, nickel powders

with particle sizes around 50 um were used as the internal standard. Full With at Half

Maximums (FWHMs) of the peaks were obtained using Origin program (OriginLab Corp.).

The instrument broadening was approximated by the FWHM of (111) peak of Si powders

around 100 um. The particle sizes of the sample powders were calculated by Scherrer

method using FWHMs of (222) peak. The crystalline structures were refined by using

Rietica program with Rietveld method.

F.2.3 Nitrogen Adsorption

The specific surface area was measured by nitrogen adsorption at 77 K using the BET

(Brunauer-Emmett-Teller) equation. The experiments were performed on Micromeritics

Gemini 2360 surface area analyzer. Prior to measurement, the samples were outgassed at

120 ◦C overnight with flowing nitrogen using FlowPrep 060 degasser.

F.2.4 Impedance Spectroscopy

The Pt ink (Engelhard 6082) was applied to both sides of the 95% dense pellets and fired at

900 ◦C for 2 hours. Two probe impedance spectroscopy was performed by Solartron 1260

impedance analyzer with an amplitude 30 mV and frequency range from 0.1 to 10 M Hz.

The atmospheres were 3% H2O- saturated or D2O-saturated argon. Impedance data were

fit to an equivalent circuit model (R1Q1)(R2Q2) using the least-squares refinement program

of ZView (Scribner Associates Inc.). R is resistance and Q is constant phase element.
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F.3 Results and Discussion

F.3.1 La2Zr2O7

F.3.1.1 XRD Characterization

XRD patterns of pure La2Zr2O7 (Figure F.1) show that there is indication of pyrochlore

phase formation at 700 ◦C. Pure cubic pyrochlore phase is formed at 800 ◦C. The peaks

become sharper with increasing calcination temperature which means both the crystallinity

and particle sizes increase from 800 to 1100 ◦C. Particle sizes of powders can be estimated

from XRD patterns by applying the Scherrer equation. First, the X-ray diffraction peaks

were found to be better fitted to Lorentzian rather than Gaussian profiles. Second, for

Lorentzian peaks, peak broadening Γsample caused by the particle size effect can be obtained

by

Γsample = Γtotal − Γinstrument (F.1)

where Γtotal and Γinstrument are the measured total broadening and instrument broadening

respectively. The Scherrer equation is given as

DScherrer =
0.9λ

Γsample cos θ
(F.2)

where λ is X-ray wavelength and θ is diffraction angle for peak (222). The calculated

XRD particle sizes DScherrer of powders calcined at different temperatures are listed in

Table F.1. The table shows a growth of particles from 0.05 um to 0.17 um when the

calcination temperature increases from 800 to 1100 ◦C.

Table F.1: Specific surface areas and particle sizes calculated by the XRD and BET
methods of La2Zr2O7 powders calcined at different temperatures

Temperature DScherrer by XRD Specific Surface Area (SSA) DBET by BET

(◦C) (um) (m2/g) (um)

800 0.05 18.1 0.06

900 0.06 13.0 0.08

1000 0.10 8.9 0.11

1100 0.17 6.3 0.16
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Figure F.1: X-ray powder diffraction patterns of La2Zr2O7 calcined at given temperatures for 4 hrs.

F.3.1.2 BET Characterization

In Table F.1, the surface areas of pure La2Zr2O7 powders decrease with increasing calci-

nation temperatures as expected. Assuming the particles are spherical, the specific surface

area (SSA) can be used to estimate the particle sizes by the following formula

SSA =

V

4π(DBET /2)3/3
· 4π(DBET /2)2

ρV
⇒ DBET =

6
ρ · SSA

(F.3)

where ρ is density, V is volume of powders, and DBET is BET particle size. The BET

particle sizes DBET of powders calcined at different temperatures are also listed in Table F.1

for comparison with XRD particle sizes. The particle sizes calculated by the two different

methods correspond to each other within experimental errors. This shows that particles are

approximately spherical and not agglomerated.

F.3.2 La2Zr2−xMgxO7−δ (x = 0.1 to 0.4)

F.3.2.1 XRD Characterization of La2Zr2−xMgxO7−δ (x = 0.1 to 0.4)

XRD patterns of Mg-doped La2Zr2O7 (Figure F.2) show that La2Zr2−xMgxO7−δ remains

to be single cubic pyrochlore phase up to x = 0.3. When x is increased to 0.4, a second

phase appears and it is identified to be monoclinic zirconium oxide. The Rietveld refinement

results with Ni as the internal standard are reported for x = 0 to 0.3 in Figure F.3. Lattice

constants increase with doping level x from x = 0 to 0.2 because the ionic radius of Mg2+
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is larger than that of Zr4+ (rZr4+(VI)=0.72 Å, rMg2+(VI)=0.72 Å; rZr4+(VIII)=0.84 Å,

rMg2+(VIII)=0.89 Å—Roman numericals represent the coordination number).
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Figure F.2: X-ray powder diffraction patterns of La2Zr2−xMgxO7−δ (x = 0, 0.1, 0.2, 0.3, 0.4).
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Figure F.3: Lattice parameter and activation energy of grain interior conductivity of La2Zr2−xMgxO7−δ as
a function of Mg doping level.

However, lattice constants decrease when x is increased to 0.3 and the value lies some-

where between that of x = 0.1 sample and that of x = 0.2 sample. If Mg2+ can totally

dissolve in La2Zr2−xMgxO7−δ for x = 0.3, it is expected the lattice constant would follow

the increasing trend from x = 0 to 0.2 and it would be higher than that of x = 0.2 sample.

This observation implies actually La2Zr1.7Mg0.3O7−δ may not be pure although it appears

to be single phase in XRD pattern. Thus the solubility of Mg in La2Zr2−xMgxO7−δ is

expected to be only up to x = 0.2.
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F.3.2.2 Conductivity Measurement of La2Zr1.9Mg0.1O7−δ

Ionic conductivities of La2Zr2−xMgxO7−δ were measured by A.C. impedance spectroscopy.

Briefly, an A.C. voltage perturbation is applied to the sample and since grain interiors and

grain boundaries have different time constants for the response to the voltage so they can

be separated in the frequency domain. The advantage of this method is that in many cases,

resistances due to grain interiors and grain boundaries can be obtained independently. In

order to convert the measured resistances to the real conductivities, one needs to know the

geometry of grain interiors and grain boundaries such as the average grain size and the

average grain boundary thickness. Following the procedures for calculating grain interior

and grain boundary conductivities from the “brick layer model”,125 the true grain bound-

ary conductivity (so-called specific grain boundary conductivity) can be obtained in the

absence of microstructural investigations. In this paper, the grain interior conductivities

were obtained by applying the dimensions of the pellets to the measured grain interior re-

sistances. The specific grain boundary conductivities were obtained by applying the “brick

layer model.”

The temperature dependences of grain interior conductivity under H2O- and D2O-

saturated argon were plotted as Arrhenius plots in Figure F.4. It is obvious that the

grain interior conductivity in H2O saturated argon is higher than that in D2O saturated

argon. The Arrhenius plots of grain boundary and specific grain boundary conductivities

(not shown) give the similar behavior, indicating that protons (or deuterons) are the mo-

bile species. The results of detailed analyses of the pre-exponential factors and activation

energies are given in Table F.2.

Table F.2: The values of two parameters quantifying the isotope effect
Grain interior (GI) Specific GB (SGB)

Ea(D2O) - Ea(D2O), eV 0.03 ± 0.01 0.05 ± 0.01

A(H2O)/A(D2O) 1.04 ± 0.13 0.78 ± 0.14

For proton conductors, the conductivity measured in H2O saturated atmospheres is

higher that measured in D2O saturated atmospheres. This phenomenon is usually called the

isotope effect. Isotope effect of proton conductivity of various proton conducting perovskites

has been observed126, 127 and reviewed by Nowick et al.128 In most cases, the activation
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Figure F.4: Temperature dependence of grain interior conductivity of La2Zr1.9Mg0.1O7−δ in H2O-saturated
and D2O-saturated argon.

energy difference is between 0.02 and 0.06 eV while pre-exponential factor ratio AH/AD is

generally < 1. In this paper, La2Zr1.9Mg0.1O7−δ was chosen to investigate the isotope effect

and isotope exchange effect in proton conductivity. Both activation energy difference and

pre-exponential factor ratio of the isotope effect were discussed on the form of a statistical

mechanical transition state theory similar to Bell’s semi-classical theory.129

The migration of H from one oxygen ion to another one can be written as

O-H+O O O

H

O+H-O

The potential energy surface along the reaction coordinate is plotted in Figure F.5.

According to transition state theory,130 rate constant can be expressed as

r =
kBT

h

qt(OHO)qr(OHO)qv(OHO)
qt(OH)qr(OH)qv(OH)qt(O)

exp
(
− E0

kBT

)
= A exp

(
− E0

kBT

)
(F.4)

with

E0 = Eb +
1
2
hνOHO − 1

2
hνOH (F.5)

where r is rate constant, h is Planck constant, kB is Boltzmann constant, T is temperature,

qt and qr are translational and rotational partition function respectively, qv is vibrational

partition function excluding the zero point energy, and ν is vibrating frequency. The initial
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Figure F.5: The potential energy surface along the reaction coordinate.

state is labeled as OH and the transition state is labeled as OHO. A is the pre-exponential

factor. Eb is the apparent energy difference between the transition state OHO and the initial

state OH and E0 is real energy difference that includes the zero point energy difference

between the two states. The translational and rotational partition functions depend on

the mass of the molecules while the vibrational partition functions depend on the reduced

mass of the molecules. Since the mass of proton or deuteron is much smaller than that of

oxygen, in the discussion of hydrogen isotope effect, we can ignore the translational and

rotational partition functions. While the initial state OH has only one normal vibration

mode, the transition state OHO is not linear from both theoretical calculations and neutron

diffraction experiments.131–134 Thus the three-atom transition state has 3n−6−1 = 2 (−1

because one degree of freedom has already been singled out in getting the rate constant)

normal vibration modes, called OHO1 and OHO2 in the following discussion. From (F.4),

the ratio of isotope rate constants can be expressed as

rH

rD
=

qν(OHO1)qν(OHO2)
qν(ODO1)qν(ODO2)

qν(OD)
qν(OH)

exp
(

∆E

kBT

)
(F.6)

where the vibrational partition function, assuming harmonic oscillators, excluding zero point

energy is

qv =
∞∑

n=0

e−nhν/kBT =
ehν/kBT

ehν/kBT − 1
(F.7)

with
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ν =

√
k

µ
(F.8)

where k is the force constant which is the same for the two isotopes, and µ is the reduced

mass of the harmonic oscillator. Since the mass of proton or deuteron is much smaller than

that of oxygen, the reduced mass can be approximated by the mass of proton or deuteron.

The ratio of vibrating frequency of two isotopes are then

νOH

νOD
≈

√
mD

mH
=
√

2 (F.9)

νOHO

νODO
≈

√
mD

mH
=
√

2 (F.10)

where mH and mD are the masses of proton and deuteron respectively. Since isotopes have

the same chemical properties so it is assumed that Eb is also the same for two isotopes as

force constant k. From (F.5), thus

∆E = ED
0 − EH

0 =
1
2
hνOH − 1

2
hνOD +

1
2
hmin(νODO1 , νODO2)−

1
2
hmin(νOHO1 , νOHO2)

(F.11)

where “min” represents minimum.

For the initial state OH, the vibrating frequency is high (around 3300 cm−1 which

corresponds to 1014 s−1), thus hvOH ≈ 6.63× 10−34 J · s × 1014 s−1 ≈ 0.41 eV. Taking the

temperature to be 300 ◦C, kBT ≈ 1.38 × 10−23 J · K−1× 573 K ≈ 0.05 eV, we can safely

make the approximation, hvOH/kBT À 1. From (F.7), this leads to

qOH ≈ 1 (F.12)

For the transition state OHO, due to the longer bond distances, the vibrating frequency

is smaller than that of the initial state.

(a) If the vibrating frequency of the transition state is much higher than kBT , hνOHO/kBT À
1, from (F.7)

qOHO ≈ 1 (F.13)

from (F.6), (F.12) and (F.13)
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rH

rD
≈ exp

(
∆E

kBT

)
(F.14)

thus the ratio of pre-exponential factor AH/AD is around 1. To be more specific, if we as-

sume that vibrating frequency of transition state is half of that of initial state, the difference

in activation energy ∆E =
1
2
hνOH − 1

2
√

2
hνOH +

1
4
√

2
hνOH − 1

4
hνOH ≈ 0.03 eV.

(b) If the vibrating frequency of the transition state is very low, hνOHO/kBT ¿ 1, from

(F.7)

qOHO ≈ kBT

hνOHO
(F.15)

from (F.6), (F.12) and (F.15)

rH

rD
=

νODO1νODO2

νOHO1νOHO2

exp
(

∆E

kBT

)
=

1√
2

1√
2

exp
(

∆E

kBT

)
=

1
2

exp
(

∆E

kBT

)
(F.16)

thus the ratio of pre-exponential factor AH/AD is around 1/2. Since the vibrating frequency

of transition state is negligible compared to that of initial state, the difference in activation

energy is approximately ∆E =
1
2
hνOH − 1

2
√

2
hνOH ≈ 0.06 eV. From the above analysis

we can see 0.06 eV is basically the maximum activation energy difference predicted. This

agrees well with the experimental value.

At the same time, it is worth noting there is also correlation between the pre-exponential

factor ratio and the activation energy difference. If the vibrating frequency of the transition

state is going to the lower limit, AH/AD will approach 0.5 and ∆E will approach 0.06 eV. If

the vibrating frequency is going to the higher limit, AH/AD will increase to 1 and ∆E will

decrease to 0.03 eV. This correlation is true for grain interior and specific grain boundary

conductivity in our La2Zr1.9Mg0.1O7−δ sample. Grain interior conductivity has smaller ∆E

(0.03 eV < 0.05 eV) and larger AH/AD (1.04 > 0.78). Since the structure of grain boundary

is more open compared to that of grain interior, we would expect the vibrating frequency

of the transition state will be lower.

The dynamic isotope exchange effect was also investigated by switching between H2O-

and D2O- saturated argon while keeping the temperature unchanged at 500 ◦C. Both grain

interior and specific grain boundary conductivities are extracted from the impedance data

and they are plotted in Figure F.6. In Figure F.6(a), when the atmosphere was changed
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from H2O- saturated argon to D2O-saturated argon, there was a gradual decrease in grain

interior conductivities. When protons in the oxide were exchanged by deuterons, conduc-

tivities will go down from the above discussion on isotope effect. On the other hand, when

the atmosphere was changed from D2O-saturated argon to H2O-saturated argon, there was

a gradual increase in conductivities. Both grain interior and specific grain boundary curves

exhibit scissor behaviors. In Figure F.6(b), a closer look at the portion of the curves upon

changing atmospheres shows the curves corresponding to grain interior conductivities have

larger curvatures compared to grain boundary conductivities. Also, the pivotal point of

“grain boundary scissor” is lagging behind that of “grain interior scissor.” This observation

implies that the exchange rate of isotopes is faster along grain interiors than along grain

boundaries. Since the conductivities of grain interiors are higher than those of grain bound-

aries, it is expected that the transfer of protons or deuterons is faster in grain interiors.

This leads to the favored exchange kinetics along grain interiors while the exchange along

the grain boundaries would be rate limiting. Thus large grained sample would have a faster

rate than the small grained sample.

0 5 10 15 20 25 30 35
1.4

1.6

1.8

2.0

2.2

2.4

2.6

 

 

G
I (

10
-5
 S

/c
m

)

Time (hr)

 D2O to H2O
 H2O to D2O

(a)

0 1 2 3 4 5
1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

 D2O to H2O (SGB)
 H2O to D2O (SGB)

G
I (

10
-5
 S

/c
m

)

Time (hr)

 D2O to H2O (GI)
 H2O to D2O (GI)

 
S
G
B
 (1

0-7
 S

/c
m

)

 

(b)

Figure F.6: (a) The dynamic isotope effect of grain interior (GI) conductivities upon change of H2O or
D2O-saturated argon at 500 ◦C (b) Comparison of the dynamic isotope effect of grain interior (GI) and
specific grain boundary (SGB) conductivities.
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F.3.2.3 Conductivity Measurement of La2Zr2−xMgxO7−δ (x = 0 to 0.2)

The effects of the amount of dopant on the conductivities are shown in Figure F.7(a) and

Figure F.7(b) for grain interior and specific grain boundary respectively. The corresponding

activation energies are listed in Table F.3.
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Figure F.7: Temperature dependence of (a) grain interior and (b) specific grain boundary conductivities of
La2Zr2−xMgxO7−δ (x = 0, 0.1, 0.2) in H2O-saturated argon.

Table F.3: Activation energies of grain interior and specific grain boundary conductiv-
ities as a function of Mg doping level

Ea, eV x = 0 x = 0.1 x = 0.2

Grain Interior 0.80 ± 0.01 0.62 ± 0.01 0.57 ± 0.01

Specific Grain Boundary 1.18 ± 0.01 1.13 ± 0.01 1.14 ± 0.03

The doped samples exhibit higher grain interior proton conductivities than the undoped

sample because of the increased amount of oxygen vacancies in the doped samples. These

oxygen vacancies can incorporate more protons into the structure. The relationship of the

activation energies of grain interior conductivity and lattice constants are also plotted in

Figure F.3. The grain interior activation energies decrease with increasing lattice parame-

ters. Such a correlation was also proposed to exist in ABO3 perovskites.135 In structures

with larger lattice constants, there is more free volume so it is easier for the migration of

protons.

However, in the case of specific grain boundary, the doped samples show lower conductiv-
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ities than the undoped samples. This is probably caused by the structural and compositional

difference of the grain boundary between the undoped and doped samples. Presumably, the

grain boundary composition of the undoped sample is closer to grain interior. The lower

specific grain boundary conductivity is only the result of the loose structure. On the other

hand, for the doped sample, generally, the dopant tends to be enriched around the region

of grain boundary so both the structure and composition might be far different from the

undoped sample. Simply the grain boundary phase of the doped sample is not as conductive

as that of the undoped sample. The higher conductivity of x = 0.2 sample than that of x

= 0.1 can be explained by the increased oxygen vacancies from the previous discussion.

The conductivity of undoped La2Zr2O7 is in the order of 10−5 S/cm which is about 2–3

orders of magnitude lower than that of doped perovskite oxide. This implies the structural

oxygen vacancy in the pyrochlore structure is probably not active to proton incorporation.

Also, the extrapolation of grain interior conductivity of La2Zr1.9Mg0.1O7−δ at 600 ◦C gives

5.4×10−5 S/cm which is lower than 3×10−4 S/cm of La2Zr1.8Y0.2O7−δ
120 and 1.0×10−4

S/cm of La2Zr1.985Ca0.015O7−δ.121

F.4 Conclusions

The results of this work can be summarized as follows:

(1) Undoped and Mg-doped La2Zr2O7 with a pyrochlore structure were prepared by a

combined EDTA-citrate complexing method. Pyrochlore phase was formed at 800 ◦C and

the particle sizes are in the range of 0.05 um and 0.17 um from 800 ◦C to 1100 ◦C.

(2) La2Zr2−xMgxO7−δ was single phase up to x = 0.2 and lattice parameters increase

with Mg doping because the ionic radius of Mg is larger than Zr.

(3) An isotope effect under H2O- or D2O- containing atmospheres was observed, in-

dicating that protons (or deuterons) are the mobile species. Both pre-exponential factor

ratio and activation energy difference were discussed on the basis of a statistical mechanical

transition state theory.

(4) The dynamic isotope exchange effect shows the exchange of isotopes along the grain

boundary is the rate-limiting step.
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(5) The grain interior conductivity of Mg-doped La2Zr2O7 is higher than that of undoped

La2Zr2O7 while the specific grain boundary conductivity is lower. The extrapolation of grain

interior conductivity of La2Zr1.9Mg0.1O7−δ at 600 ◦C gives 5.4×10−5 S/cm which is lower

than conductivities of Ca or Y doped La2Zr2O7.
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