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ABSTRACT 

Tani I S integral method is extended to t reat laminar two-dimensional 

compressible boundary layers with heat transfer and arbitrary pressure 

gradient for both attached and separated flows. A carefully chosen 

one-parameter family for the velocity profiles and a "universal" 

stagnation enthalpy profile are assumed for attached flows. The 

accuracy of the method is examined by comparing the re sults with 

several " exact" numerical solutions and satisfactory agreement is 

obtained. For separated flows one-parameter families are assumed 

for both the velocity and stagnation enthalpy profiles. In this case 

the accuracy of the method is poor; however, suggestions are made 

as to how it might be improved within the present framework. 
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I. INTRODUCTION 

The phenomenon of flow separation is present in almost all 

fluid mechanical devices. Its presence is seldom welcomed since it 

can cause reduced efficiencies, increased drag, buffeting, control 

surface "buzz", center of pressure shift on cylindrical-flare bodies
l

, 

and many other troublesome effects. In fact, in many cases the onset 

of separation puts an upper limit on the performance - - the well known 

"stalling" of an airfoil is a good example of such a limit. On the other 

hand, there are situations where separated flo w s may be beneficial, 

such as for the reduction of drag and heat transfer at hypersonic speeds
2

. 

Despite the obvious importance of flow separation, the problem has 

escaped analytic treatment because of its complex nature, and remains 

a poorly understood and essentially unsolved problem. 

Separation rna y be defined by introducing the concept of a 

"limiting streamline". Because of the no slip condition, one cannot 

strictly speak of a streamline "at the wall il • At an infinitesimal distance 

away from the wall, however, the flow has some finite velocity and hence 

some definable direction. Thus the limiting streamline is given by the 

limiting flow direction as the wall is approached. Since a streamline 

cannot end in the fluid it must either pass on downstream to infinity 

or close in the fluid. Separation is defined as the position at which the 

limiting streamline leaves the wall and enters the interior of the fluid. 

Reattachment is defined as the position where the streamline joins 

either the surface or another fluid streamline. In two dimensional 

flow, the slope of the limiting streamline at separation and at re-
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attachment is defined as (dy/dxJ =0 = 

The point at which the surface 

lim (v/ u) . 
y~O 

shear stress vanishes also 

coincides with the separation point in two- dimensional flow. For 

three-dimensional flo w s, however, a vanishing shear stress is not a 

sufficient condi t ion for separation; thus the definition of separation 

based upon the limiting streamline concept is preferable to that based 

upon the notion of zero shear stress. 

In the usual first order boundary layer theory the required 

"input " pressure distribution is given by the inviscid external flow. 

If flow separation is present, however, the flow pattern and hence the 

pressure distributions can be drastically altered from what they would be 

were the fluid inviscid. The present boundary layer methods, then, 

can predict when separation is likely to occur; but if separation does 

occur, in many cases they give little reliable information about the 

flow near the separation point and in particular say nothing about the 

details of the flow behind separation. When the flo w is supersonic, the 

pressure field impressed by the external flow is related to the local 

inclination of the external flow, which in turn depends on the "upwash" 

induced by the growth of the boundary layer. Thus the "feedback loop" 

is closed and in this respect the problem is somew hat simpler than in 

the subsonic case. 

Consider briefly the physical flow situation in a typical super

sonic separating and reattaching flo w
3

. Sketch A on page 3 shows the 

flow and the pressure distribution in a compression corner. Typically 

the separated flow region is characterized by a more or less constant 

pressure aft of separation followed by a rising pressure j ust before 
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SKETCH A 

reattachment 
point 

reattachment. At the separation point the velocit y along the limiting or 

dividing s t reamline is zero. Because of mixing, as the fluid proceeds 

downstream, the velocity along the dividing streamline increases. The 

fluid is thus "prepared" for the reattachment process. It is clear that 

because of t he conservation of mass flow inside the dividing streamline 

there must be regions of reverse flow. In order for the flo w to reattach 

t he fluid along the dividing streamline must be brought to re st and hence 

the flow must experience a pressure rise prior to reattachment. The 

w hole flow process is a complicated interaction between the external 

flow and the viscous flow field -- the external flow adjusts itself so as 

to affect [he viscous region in such a way as to achieve reattachment. 

Steady flow s similar to that just discussed also occur in other 

shock wave boundary layer interactions
3

, behind blunt based bodies in 
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super sonic flow 4, and near the leading edge of sharp nosed airfoils
5

• 

The flows can be either wholly lamina r , wholly turbulent or "transitional ", 

where transition takes place between separation and reattachment. 

Several analyses have been devised to deal with certain super-

sonic separated flows. The base pressure problem has received a 

great deal of attention and approximate methods have been developed 

by Chapman3 , et al. to treat the laminar case and by Korst
6 

and his 

co- workers for the turbulent case. In both methods, the details of the 

flow in the recirculating region are in effect neglected. The mixing 

process is assumed to take place at constant pressure and to be the 

same as that which occurs in t he classical free boundary mixing. The 

analyses are valid when the thickness of the boundary layer at 

separation is zero. / For thes e cases they are found to predict results 

which compare favorably with experiment. However, for flows such as 

the shock- wave boundary layer interaction the upstream boundary layer 

is of a size comparable t o the maximum height from the wall to the 

dividing streamline after separation, and the analy ses break down. 

In such cases the previous "history" of the boundary laye r becomes 

important and the sizable reverse flow velocities cause the mixing 

process to depart from the classical free boundary mixing. 

/ '" The usual one -parameter Karman- Pohlhausen momentum 

integral method for attached boundary layer flows and its extension by 

. 7 8 9 10-14 
Thwalte s , Rott and Crabtree, Cohen and Reshotko and others 

is inadequate for separated and reattaching flows. As shown in Sketch 

A there are regions between separation and reattachment where the 

static pressure is very nearly constant and reversed flow occurs near 
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the surface. Since the velocity profile is determined solely by the 

'" , 
local pressure gradient in the Karman-Pohlhausen method, a 

Blasius-type profile would be obtained for the pressure "plateau" 

region if the Pohlhausen quartic is employed, The reversed-flow 

profiles found by stewartson
15 

along the "lower branch" of the Falkner

Skan solution were incorporated into the Thwaites method by Curle
13

, 

but it is not clear that this special family provides the required 

flexibility. Curle's computed pressure distributions do not show the 

inflection in pressure as evidenced by experiments. 

In an attempt to "unhook" the velocity profile from the local 

pressure gradient Crocco and Lees
16 

introduced a new momentum 

integral method in which the profile is determined by a single inde-

pendent shape param.eter not explicitly related to the pressure gradient. 

The Crocco-Lees method has been developed quite extensivelyl?, 18, 

and has been used to calculate such problems as shock-wave boundary 

layer interactions, yielding fairly good results. The main drawback 

of the method is that it relies upon a mixing coefficient that is not 

well known for separated flows. 

Some of the arbitrary features of the Crocco-Lees method can 

be eliminated by adopting and extending the two-moment method 

developed by Tani
19 

for attached boundary layers. In this scheme the 

velocity profile is still determined by a single parameter, say the non-

dimensional slope at the surface, a(x), but this parameter is independent 
g2 dU 

of the Thwaites-Pohlhausen pressure gradient parameter A (x ) = 1) a; 
The development of the boundary layer is determined by integrating the 

two simultaneous fir st order differential equations for a(x) and A (x) 
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obtained by taking the integrals of momentwn and mechanical energy 

across the layer. 

Lees and Reeves
20 

applied this promising method to adiabatic 

separated flows. The purpose of the present study is t o extend this 

scheme to the more general case of arbitrary heat transfer at the 

surface. Theoretical analyses of heat transfer in separated regions 

have been lim ited both in scope and in nwnber. Chapman
21 

examined 

the effects of heat transfer and mass injection; however, the laminar 

layer was required t o be thin and at constant pressure. 
22 

Carlson's 

theory is one of the few that considered reverse flow velocity profiles, 

but this analysis too was for constant pressure. 
13 

Curle treated the 

shock-wave boundary layer interaction; however, when heat transfer 

was present this method gave rather poor results for the prediction of 

separation,and its accuracy in the separated flow region has not been 

established. 

It is well known that surface heat transfer can have a large 

effect on the behavior of attached boundary layers. For instance, in a 

posit ive pressure gradient cooling the surface delays separation and 

heating the surface moves separation upstream. One of the objectives 

of the pre sent inve stigation is t o determine the extent to which the 

effect of surface cooling persists in separated and reattaching flow 

regions. This effect could be significant in determining the Mach 

nwnber along the dividing streamline and hence, t he extent of the 

separated-reattaching flow itself
23 

In the interest of simplicity only steady two dimensional lam inar 

boundary layers are considered here. The flow up to the separation 
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point is treated first and results frOIu the approximate analysis are 

compared with some "exact" solutions. Tani's19 method is generalized 

by representing the velocity profiles as a weighted mean of the Blasius 

and the average of the non-adiabatic similarity separation profiles, 

rather than a quartic. The weighting parameter is again the non

dimensional slope at the surface. The analysis is developed to deal 

with the flow beyond separation and one example is briefly considered. 

Only cases for which the external velocity is prescribed are 

computed. The present study is, however, a preparation for treating 

the interaction between the viscous layer and the external flow. 
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II. BOUNDARY LAYER INTEGRAL EQUATIONS 

II. 1. The Stewartson Transformation 

The equations of the steady laminar two-dimensional com-

pressible boundary layer for perfect fluids are: 

C o n t inuity: 

Xx (f'u..) 1- (jOy (pv) = 0 

Momentum: 

Energy: 

r'f'VOU 
oy 

o 

- - ~ ax r .Q. (~du) 
dy oy 

It is assumed tha t these equations are valid for the flow beyond 

separation as well as for the attached flow. There has been some 

(1) 

(2) 

(3) 

question raised as to whether or not the full Navier Stokes equations 

are required at the separation point . Oswatitsch
24 

demonstrated that a 

regular solution of the Navier-Stokes equations exists in the neighborhood 

of the separation point. * In fact, results identical to his are obtained 

if only the usual boundary layer terms are kept. Thus by using integral 

methods it should be possible to pass through this region without too 

much difficulty. The assumption of negligible normal pressure gradients 

for the separated flow seem s to be a reasonable one, except possibly in 

* The special singular solution found by Goldstein
25 

may not be 
the one that occur s in nature. 
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certain cases near reattachment where the curvature of the external 

streamlines is large. 

For simplicity the viscosity law is taken to be 

(5) 

As shown by Cohen and Reshotko9, Eqs. (1), (2), and (3) may be trans-

formed into the form of the two dimensional incompressible laminar 

boundary layer equations by means of Stewartson's transformation
26

, 

even when the flow is not adiabatic. 

A stream function is defined 

and the following variables are introduced: 

dX= 

The transformed incompressible co-ordinates are denoted by 

(6) 

(7) 

(8) 

upper case letters X and Y. The subscript e refers to conditions at the 

edge of the boundary layer, where the flow is assumed to be isentropic, 

and the subscript 00 refers to conditions in the free stream. By using 

Eq. (5) and the assumptions that C is constant and that Pr = 1, the 
p 

following equations are obtained for the flow in the incompressible plane: 

0(/ r oV = 0 
ax o¥ (9) 
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u oU 'f V au == Ue d lle (I + 5) 
oX aY oX 

UaS f v dS =- 11"", e:/S 
dX JY oy2 

where S is a dimensionless enthalpy defined by 

and h is the local stagnation enthalpy. 
o 

+ 1-'_ ~/u 
oy'" 

The s tream function has been replaced by the transformed 

velocities (U, V) defined by 

U'" sPy 

V=-~ 

and the resulting relation between the transformed and the physical 

longitudinal velocitie s is 

V= 

Eqs. (9) - (11) are subject t o the following boundary conditions: 

U(X, 0) = 0 

V(X, 0) = 0 

S(X, 0) = S = constant 
w 

lim S = 0 
Y + 00 

lim U = Ue(X) 
Y -. oo 

(10) 

( 11) 

(12) 

(13 ) 

( 14) 
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n.2. Integral Form of Equations 

When Pr = 1 i t seems r easonable to assume that the velocity 

(momentum) and the thermal boundary layers are of the same thickness. 

Then integrating Eqs. (10) and (11) across the boundary layer between 

y = 0 and Y = A and making use of Eq. (9) the following momentum and 

energy integral equations are obtained 

U: d'E'l. + 
dX 

= 

F ollowing Tani 19, the momentum equation, Eq. ( 10 ), is multi-

plied by U and integrated across the boundary layer to obtain the first 

moment of the momentum equation: 

/J. 

(15 ) 

(16 ) 

-I '1/_ ~:.c ((d U JdY (17) 
U; 2. J I cJY) 
~ 0 

The boundary layer characteristics in the incompressible plane, 

such as the displacement thickness 6 .*, the momentum thickness Q . , 
1 1 

the energy thickness Q.*, the enthalpy thickness ~ , and the enthalpy 
1 

flux thickness Jf: are defined as follows: 

d 

cC' = J (I- ~ ) d Y 
o 

~ ();, : J U (1- U)JY 
Ue Ve 

o 

( 18 ) 

(19 ) 
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'" eo: -= 
A 

J U ( 1- V~)dY 
o u~ Ve 

A 

€ - f s dY 

t> 

= J J!. SdY 
o Ve 

Eqs. (15) - (22) have been given in similar form by Poots
27

. 

Through Stewartson's transformation the various boundary 

layer characteristic thicknesses in the physical plane may be related 

to those in the incompressible plane. Thus 

d 

6= j ~u. (1- ~. )dy -o ~ (.{~ 

d 

ti*- J 1'1.1.. 
() ~I.(~ 

( _ (41.) 
/ u~ .. dy -

where 

rt1e = 
2-

(f'-J AA 
- IVle 
2. 

(20) 

(21 ) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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III. VELOCITY AND TOTAL TEMPERATURE PROFILES 

F 11 . T . 19 P 2 7 d th l ' d ttl t o oWIng anI , oots expresse e ve OClty an 0 a em-

perature profiles as fourth degree polynomials. For each profile, 

four of the coefficients were determined by fitting the boundary con-

ditions a t the wall and the edge of the boundary layer. The remaining 

coefficient (identified with the gradient at the wall) for each layer was 

used to characterize the shape of the profile. Thus the velocity and 

temperature profiles are each members of a separate one-parameter 

family. The 

growth of Q . 
1 

development of these profiles along the surface and the 

Q.
2 

dU 
(or _1_ Tx) is found by integrating the three 

V oo 
simultaneous differential equations, Eqs. (15) - (17) • 

In the present paper it is also assumed that the profiles can be 

expressed as members of one-parameter families. However, the pro-

file shapes were determined in a somewhat diffe rent manner, because 

the use of Tani I s quartic for the velocity profile was found to lead to 

large errors near separation for the case of the cold walls. (This 

point is discussed further in Section IV. 1. 1. ) 

28 
Cohen and Reshotko present similar Falkner-Skan type 

solutions (i. e., when U = c JCll) for the laminar compressible boundary 
e 

layer with heat transfer. When the separation profiles in the trans-

formed plane for various values of S are normalized and compared, 
w 

these velocity profiles do not collapse to one universal curve (Figure 1). 

Thus it w ould appear that a t least two parameters are required to 

represent the profiles for the general case of an arbitrar y S . The 
w 

addition of a second parameter would require the addition of another 
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differential equation (for example the second moment of the momentum 

equation) in order to solve the flow problem. * However, to a void the 

added complexity of a second parameter, a kind of "mean" one-

parameter velocity profile to be used for all S was chosen in the 
w 

following wa y: 

The velocity profile is written as U = f(Y/A ) + a(x) g(Y/A ) Ue 

where a is identified with the gradient at the wall. Thus when a = 0, 

U/U = f(Y /A ) , i. e., the separation profile. The function f(Y / A ) was e 

determined by taking, in a sense, the "average" of the exact similarity 

separation profiles from Reference 28 for various values of S . The 
w 

representative average profile chosen for f(Y/I:;. ) was the same as the 

exact separation profile for S = -0.8, except for slight modification 
w 

" 
in order that the boundary layer have finite thickness. 

For a = a BL ' the velocity profiles in the trans-

f ormed plane for all values of S reduce to the Blasius profile. Thus, w 

a BL g(Y/a ) = (U/Ue)BL - f(Y/A ) , where the subscript BL refers to 

the "Blasius" values. Since "a" corresponds to the gradient at the wall, 

the function g(Y / A ) was then determined. Explicitly, 

( 
(3(U/Ue)BL) 

(3(Y!.A ) 
Y//:;. =O 

= f'(O) + a g'(O) 
BL 

By definition f'(O) = 0, and g was chosen such that g'(O) = 1. For the 

profiles as chosen, a
BL 

= 1. 99. The functions f(Y/A ) and g(Y/b. ) are 

* Based on the similar solutions, this second parameter could 
instead be determined as a function of S and thus the additional 
differential equation would not be requir~d. This approach would make 
the tabulation of the boundary layer functions defined by Eqs. (31) - (35) 
very involved. 
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given in Table 1 and are shown in Figure 2. This one-parameter 

family is used to describe the velocity profiles in the separated flow 

region as well as for attached flow. 

Cohen and Reshotk0
28 

present total temperature profiles in 

the incompressible transformed plane for various values of Sand w 

pressure gradient parameter 13. If these profiles are "normalized" by 

"scaling" the normal distance from the wall so tha t all profiles have the 

same gradi e n t at the wall, upon comparison an interesting result is 

obtained. (Figure 3 shows the profiles at separation for various S w 

compared with the "flat-plate" profile. ) As long as the flow is attached 

the sis profiles can be represented quite well by one "universal" curve. 
w 

This univer sal curve is given by Crocco's integral of the energy equation 

for the flat plate, namely, sis = w 

is the "Blasius" profile. Thus, for attached flow the thermal profile 

is taken as s/sw = [1-(r(Y/A ) + a BL g(Y/A j] In the separated 

flow region the thermal profiles can no longer be represented by this 

"universal" profile. The separated thermal profiles are assumed to be 

the one-parameter family, 

s/sw = (1 -f (Y/A )) + b(X) g(Y/6 ) 

where for convenience f(Y/A ) and g(Y/A ) are the same functions as 

those used for the velocity profiles. 

Summarizing, the velocity profile for both attached flow and 

separated flow (as long as the height of the rever se flow region is not 

too large) is taken as 

U/Ue = f(yh) + a(X) g(Y/A ) (28) 

For attached flow the "universal" thermal profile is used 
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S/Sw = r -f (Y/t:. )} - 1. 99 g(Y/td , (29) 

i. e., b = -1. 99, while for separated flow the thermal profile is given by 

S/Sw = r -f (Y/A g + b(X) g(Y/A ) (30) 

Now that the profile shapes are decided upon, Eqs. (18) - (22) 

can be integrated graphically to give the various non-dimensionalized 

boundary layer thicknesses in terms of a and b. Thus 

(Oi*)/A = .4204 - .0651a = D (31a) 

(Q.)/ 1':. = .09080 + . 02616a - .00842a
2 

= E (31b) 
1 

Q.*/ A =.1368 + . 0360a - .00655a
2 

- .001l82a
2 

= F (31c) 
1 

A 
( A/Ue 2) J( 8U/8 y)2 dY = 1. 763 - . 5040a + . 2068a 

2 
= (Q/4F) (32a) 

o 

~ /S t:, = .4204 + .0651 b = W • E 
w 

:5 /S A = .0908 + . 0456a + . 01947b + .00842ab 
w 

:::J.E=Z.F 

where J = ($ /S Q. ) w 1 
and z = (1:/S Q.*) w 1 

H = D/E G = F/E 

(2Q/Ue ) (8U/8Y)y=0 = p = 2aE 

2 
-(2~/Sw ) (8S/8Y)y=0 = R = - 2b J. E = -2bZ. F 

The quantities given by Eqs. (31) - (35) are functions of a and b 

only and their numerical values are tabulated in Table 2. 

Eqs. (15) - (17) are now rewritten in the form 

Ue d e/ + 2 12 +- H 1" S.., W) 9.. ~ d lle = ..., I P 
dX ( , / ~ CI X v.-

(32b) 

(32c) 

(33) 

(34) 

(35) 

(36) 

(37) 
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+ 
(38) 

Given the external velocit y U = U (X), the wall teInperature and e e 

the initial conditions, the set of first order differential equations, 

Eqs. (36) - (38), can now be solved for the three unknown functions 

a(X), b(X), and Q. (X) . 
1 
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IV. SOLUTIONS OF THE BOUNDARY LAYER INTEGRAL EQUATIONS 

IV. 1. Attached Flow 

For attached flow, the "universal" S/ S profile is used and thus 
w 

"b" is constant and nwnerically equal to -1. 99. The problem is 

simplified and reduced to solving the two fir st order differential 

equations, Eqs. (36) and (37). 

IV. 1. 1. Similarity Solutions 

When the flow is a similar Falkner-Skan type flow (i. e., when 

U e = C~) a = const. and Eqs. (36) and (37) reduce to two algebraic 

equations. Because of the way in which the velocity and temperature 

profiles were chosen the errors in the solution of the integral equations 

are largest for a similar flow which is always on the verge of separation 

(i. e., a = 0). For this case values of the pressure gradient parameter, 

j3 = (2m/m+l), were calculated for various values of S . Figure 3 
w 

shows a plot of f3 t' vs. S calculated by the present method 
separa lon w 

28 
compared with exact solutions obtained by Cohen and Reshotko 

It should be mentioned that initially Tani' s quartic was chosen 

for the velocity profile and a one-parameter cubic was chosen for the 

thermal profile. The full set of equations, Eqs. (36), (37), and (3 8 ), 

were solved for f3 t' vs. S . This curve is also shown in separa lon w 

Figure 4, and i t can be seen that when these profile shapes are used 

the integral method is in considerable error for cold walls. This 

error is mainly caused by the large difference between Tani's quartic 

velocity profile and the exact profiles at separation. For this reason 
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the profile shapes were determined as stated in Section Ill, resulting 

in improved accuracy for the cold wall. The qualitative shape of the 

exact 13 t" vs S curve is not matched by the integral method. 
separa Ion w 

Near S = -1. 0 the exact curve has negative curvature whereas with 
w 

only a one-parameter family for the velocity profiles the integral method 

gives positive curvature everywhere. However, the present method 

gives values fairly close to the exact solution except at S = -1. o. 
w 

The displacement, momentum and enthalpy thicknesses and the 

gradient of sis at the wall were calculated by the present method for 
w 

the separation profile. These data compared with the exact results from 

Reference 28 are shown in Table 3. 

The comparison is favorable except for the displacement thick-

ness at S = -1. 0 (highly cooled wall) where the errors brought about 
w 

by the one-parameter velocity profile show up rather strongly. 

Again it is repeated that the errors in the present method will 

most likely be greatest for this case of "incipient separation". 

IV. 1. 2. Flow with Linearly Decreasing External Velocity in 

Transformed Plane 

Calculations have been carried out for the case of a linearly 

decreasing velocity in the incompressible plane, i. e. J 

where U1 is the velocity at X = 0 and L is some characteristic length. 

A Pohlhausen type parameter is introduced 

(39) 

(40) 
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Using Ells. (39) and (40), after some manipulation Eqs. (36) and 

(37) may be put in the following form suitable for numerical integration 

where 

1t = X/ L 
2 ~) 0. = {EG a -

¢ = (1 + 2 S Z - H - S w) w w 

J = (6 + 4 S Z) w 

(41 ) 

( 42) 

(43) 

(44) 

(45) 

(46) 

Now a., ¢, ap.d J are functions only of a. Eqs. (41) and (42) may 

be solved by eliminating X and numeric ally integrating the single result

ing differential equation in the 11 - tn G plane, and then by a simple 

quadrature transforming to the X plane. A solution may also be 

obtained by numerically solving Eqs. (41) and (42) simultaneously and 

this second method was used here. 

Eqs. (41) and (42) are subject to the initial condition that 

A = 0 at X = 0 (47) 

The numerical integration was started by the Runge-Kutta 

method and continued by Milnes method
29

• As Tani
19 

and Poots
27 

found 

with a uniformly retarded external velocity it was difficult to carry out 

the solution right up to the separation point because of the rapid growth 

of (dlnG/d,t ) near separation. (The behavior near separation is discussed 

in Section V. 1.) However, the solution was carried out to X = 0.56 and 
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extrapolated from there to separation. 

From the nwnerical computation, values of a and A are 

obtained for various values of X. Using this informat i on the boundar y 

layer characteristics in the incompressible plane such as 6.*, Q . , Q * 
1 1 1 

t , 1i:, {as/ ay)y::::O and {au/ ay)y::::O can be calculated. 

Using the Hartree-Womersley method Poots
27 

obtained an "exact" 

nwnerical solution for the above case of S :::: 1. 0 and a linearly decreasing 
w 

external velocity (taking U 1 :::: 1 and L :::: 8 to simplify the numerical 

calculations). Poots also presented the results of an integral method 

which amounted to solving the set of three differential equa t ions, 

Eqs. (36) - (3 8 ) , using Tani's quartic for the velocity profile and a 

similar quartic for the total temperature profile. Calculations by the 

present method compare favorably with the exact solution of Poots
27 

as 

shown in Figures 5 and 6. The present integral method is somewhat less 

accurate, but also simpler than the integral method of Poots. It is also 

expected that the present method might be more accurate than the 

integral method of Poots for the more interesting case of a cold wall 

since the present velocity profiles are probably more realistic than 

those represented by Tani' s quartic. 

For comparison purposes, the boundary layer properties for the 

case of a cold wall w ith the wall temperature equal to the initial tem-

perature of the external stream, i. e., S :::: -0. 762 were computed by 
w 

the present method. These results are shown in Figures 7 and 8. 

The present method for a non-adiabatic wall predicts that the 

heat transfer rate at separation is finite. 13 Analy ses such as Curle's 

which express the temperature profiles as power series of the velocity 
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ratio, u/u , incorrectly yield zero heat transfer at separation and 
e 

can also reverse the sense of the wall temperature gradient in the 

reverse flow region. 

IV. 2. Separated Flow 

For separated flow it is no longer possible to use the "universal" 

sis profile and the full set of differential equations, Eqs. (36), (37), and 
w 

(38) must be solved. 

IV. 2.1. Similarity Solutions 

Again for the similar type flows, Eqs. (36), (37), and (38) reduce 

to a set of simultaneous algebraic equations. These equations were 

solved for the particular case of S = -0.8 and 13 = -0.10. The velocity w 

and temperature profile were computed and are compared in Figure 9 

with the exact solution of Cohen and Reshotko
28

. The various integral 

thicknesses were not calculat ed in Reference 28 and thus no comparison 

is made. However, as can be seen from Figure 9 the comparison of 

the profile shapes is rather poor and the present integral method gives 

only very rough estimates of such things as skin friction and wall heat 

transfer rates. The reason for these discrepancies lies in the inability 

of the assumed form of the velocity profile to match the exact profile 

shape. 
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V. DISC USSION AND FUTURE WORK 

V. 1. Singularity at the Separation Point 

The present method points out rather simply some interesting 

features that occur near the separation point. 

from Eqs. (36) and (37) one obtains 

Eliminating (dQ. 2/dX) 
1 

Near separation, as a _ 0 , G(a) goes through a minimum, 

i. e., (dG/da) = O. Thus when (da/dX) is finite and (dG/da) = 0 , a 

unique value is obtained for A , i. e., A = A o. However, for 

example, in the case- 'of a uniformly retarded external velocity (Section 

IV. 1. 2.) when Eqs. (41) and (42) are integrated, it is found that a 

value of A is reached before separation such that A < A 0 (algebraically). 

From Eq. (41) it can be seen that (dil/dX) < 0 for all X up to separation. 

Thus, when (dG/da) = 0 , A I A ~ which implies that (da/dX) = -00 , 

and a singularity occurs at this point. It is found that when (da/dX) at 

separation is infinite, (do*/dX) is also infinite; however, (dQ./dX) and 
1 

(dQ.*/dX) remain finite. Examining the wall shear stress 
1 

and since 

'Tw == (~ duJ 
dy y=o 

drr.., 
(IX ~ 

<Ill -v f 
dX a. 

Ue d().. 
A dx 

+ 

"'-' a.. U~ 
T 

a. dUe - DeC).. dD 
A dX 62. dX 

( 49) 
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do. 
dx 

Keeping fir st order t erms near separation, it can be shown 

easily from Eq. (48) that 

1 1 

a ,.., (X - X)2 
separation 

thus (au/ay) - (X . - X)2 y=O separahon 

as assumed by Goldstein
25 

near the separation point. As Goldstein 

found, for this special type of external velocity distribution (when 

(d
2

U /dX2) ;; 0 ) the solution cannot be continued downstream of the 
e 

separation point. 

Prandtl
30 

and later Meksyn31 , 32 showed that the pressure 

distribution in the region of separation cannot be chosen arbitrarily 
/ 

but must satisfy certain conditions compatible with the reverse flow 

region downstream of separation. Prior to separation A must go 

. 2 2 
through a minimum and near separahon (d U /dX ) > 0 . This e 

condition is evident from the integral form of the equations, if one 

takes Eq. (40) and examines the conditions for (dA/dX) to change sign, 

in order that .li pass through A = A 0 at separation. 

While the special class of flows where (d
2

U /dX
2

) ~ 0 e 

(right up to the separation point) lead to a singularity at separat ion and 

cannot be carried downstream, exact solutions for such cases are 

nevertheless of interest for checking approximate methods. 

(50) 
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V.2. Velocity Profiles in Separated Region 

Examination of the solutions of the Falkner-Skan equation shows 

that along the lower branch,15the maximum backflow velocity is zero at 

separation, reaches a maximum as 13 increases algebraically and then 

decreases to zero again as 13 -- O. The displacement thickness 

increases without limit as 13 __ 0 along the lower branch (i. e., at 

13 = 0 the profile is the classical free boundary mixing problem for zero 

pressure gradient) . Clearly such a behavior cannot be reprocj.uced by 

the kind of one-parameter velocity profile c hosen in the present paper. 

The need for such a behavior is illustrated by some work of Reeves* 

for the shock- wave boundary layer interaction on an adiabatic flat plate. 

Reeve s used Tani I s quartic for the velocity profile and included a 

third integral moment equation to relate the pressure gradient to the 

displacement effect of the boundary layer. It was found that the 

pressure did not level off into the usual "plateau" region but reached 

a maximum and then decreased before rising a gain at reattachment. 

The velocity profile was such that the displacement thickness could 

not grow fast enough to obtain the pressure "plateau" . 

Thus it would appear that for t he reverse flow region it may be 

necessary either to use a two- parameter velocity profile or to use 

two or more layers. Another simpler and promising method has been 

suggested by Professor L. Lees. A one-paramet er family of ve loci ty 

profiles could be constructed based upon t he "lower branch" Falkner-

Skan solutions. It should be noted that it is not necessary to relate the 

* private communication 
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paralTleter to any pertinent physical quantity, but only that the profiles 

be denoted by this single paralTleter in such a way that the integral 

properties lTlay be tabulated (as in Table 2). 

V. 3. Interaction Between Viscous Flow and External StrealTl 

For all the exalTlples cOlTlputed here the external velocity 

gradient was assulTled to be given. In a problelTl such as the shock 

wave boundary layer interaction the external velocity is not known 

a priori and the interaction between the viscous flow and the external 

strealTl lTlust be determined. The following equation is obtained by 

applying the Stewartson transformation to the continuity equation and 

integrat ing across the boundary layer 

tCLh ® _ e .. dll 
1+ m_ dX 

+ (3"K'-1 ) II 
r-I 

where 

tan ® 

m 
co 

= strealTlline direction angle relative to a flat wall 

= 

= 

(oriented in the free strealTl direction) at y = 0, 

~ 
U~ 

)'-( M ~ 
2:" .... 

And for exalTlple, when (fp < < 1, tan e c:: ® in Eq. (51) and the 
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linearized Prandtl-Meyer equation gives 

where 

® r-.. -¥M!-I 
( Ii- ~I Mo!) 

M + e 
00 

lei « M 
00 

Thus M takes the form. of a dependent variable when Eqs. (51) 
e 

and (52) are added to the set of Eqs. (36) - (38) . 

(52) 
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VI. CONCLUDING REMARKS 

Tani I S two-moment integral method has been extended to treat 

non-adiabatic two-dimensional compre s sible boundary la yer s. The 

assumption of a "universal" stagnation enthalpy profile for all pressure 

gradients and wall temperatures is found to be quite accurate for 

attached boundary layers and provides a useful simplification. The 

accuracy of the integral method is found to be sensitive to the choice of 

the velocity profile. By use of the universal temperature profile and a 

carefully chosen one-parameter velocity profile the problem is reduced 

to solving two first order ordinary differential equations when the 

pressure gradient is prescribed. Predictions of the boundary layer 

properties and the separation point by this method compare favorably 

with "exact" numerical solutions. 

Flow beyond the separation point is briefly considered. The 

"universal" temperature profile is no longer applicable. With the 

assumption of one-paramete r families for temperature and velocity 

profiles, it is necessary to solve three first order ordinary differential 

equations. By comparing the present results with the reverse-flow 

Falkner-Skan profiles found by Cohen and Reshotko
28 

one concludes 

that the separated flow velocity profiles in any integ ral method must 

be described either by a two-parameter family, or by the Falkner-

Skan family itself. Another possibility is to use a multi-layer method. 
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TABLE 1 

BOUNDARY LAYER FUNCTIONS f(Y/6.) AND g(Y~) 

Y/6. f fl g g' 

0 0 0 0 1. 000 

· 1 .0191 .431 .0903 .779 

· 2 .094 1. 095 · 1505 .404 

· 3 . 242 1. 870 · 1671 -.0864 

.4 .460 2. 41 · 1351 -. 522 

· 5 . 6 99 2. 22 .0739 -.629 

· 6 .882 1.334 .0207 -. 374 

· 7 .958 . 530 .0045 -.0635 

· 8 .988 • 1315 0 0 

.9 .996 .0474 0 0 

1.0 1. 000 0 0 0 
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