et

AULTI=-STAGE

FART I. AMALYSIS CF A

WITH HIGH REACTION DLADING

Thesis by
James H. Mauldin

Lieutenant, United States Navy

In Partial Fulfillment of the Requirements
For the Degree of

Aeronautical Engineer

California Institute of Technology
Fasadena, California

1963

‘:c fﬁ:ﬁ{gs%:iad ﬁ@}:

IFRESSOR



ACEKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr.
W. D. Rannie, who originally suggested the investigations in this
thesis. s many hours of encouragement, guldance, and helpful
criticism were invaluable during the course of this work,

Thanks are algo due to Mrs. Roberta Duffy for typing the

manugcript.



FART 1. ANALYSIS OF A MULTI-STAGE AXIAL COMPRESSOR
WITH HIGH REACTION BLADING



ABSTRACT FOR FART I

An analysis of a multi-stage axial compressor with high reac-
tion blading is carried out. The usual methods of linearizing the equa-
tions for flow through the compressor fail for this type of blading. A
numerical solution of the non-linear equations is worked through for
off-design operation. Flow velocities through the first six stages are
calculated for the off-design flow rates in order to insure that the flow
does indeed come to a steady-state repeating pattern. Entering flow
angles for both rotor and stator are calculated for this repeating flow
condition. The off-design incidence angles for the stators at low flow

rates indicate a possible deterioration of efficiency.



SUMMARY FOR PARTI

The pressure rise per stage in an axial flow compressor is pro-
portional to the square of the incidence velocity relative to the blades.
Almeost all axial compressors for gas turbines were designed with the
whirl in the same direction as the rotor blade speed. This choice of
design flow gave high efficiencies when the blades were designed prop-
erly. Until the introduction of transonic blading, a high efficiency was
obtained only when the Mach number relative to the blade was less than
unity ==~ usually in the neighborhood of 0. 75, Relative velocities @f this
magnitude did not require whirl opposite to the direction of rotor blade
speed and, in fact, the matching with a turbine was easier with whirl in
the same direction as the rotor spsed.

An axial compressor for a gas of low molecular weight, for in-
gtance helium, can be designed with blading similar to the axial compres-
sor for air. However, the pressure rise per stage is proportional to
the square of the Mach number of the relative velocity. The rotor blade
rotational speed cannot be increased because of strength limitations, and
hence the squaré of the relative Mach number and therefore the pressure
ratio are decreased by a factor approximately proportional to the ratic
of molecular weights. Thus, the number of stages required for a com-
pressor using helium would be approximately seven times that for air
for the same overall pressure. Clearly, higher relative velocities are
required to decrease the number of stages for a gas of lower molecular
weight. An obvious method of doing this is to introduce the whirl in the
opposite direction to rotor blade speed.

A vortex flow pattern was chosen as the design condition: then
the flow is truly two-dimensional; that is, there is no radial shift of the

streamlines as the fluid proceeds downstiream through the compressor.



This considerably simplifies the analysis of the flow at the design flow
rate. Off-design calculations must still be carried out in order to in-
vestigate the e@fnpressar performance and to indicate how rapidly losses
might increase as the compressor flow rate increases or decreases from
the design value. For conventional multi-stage compressors with rela-
tively low ideal pressure coefficients, this analysis is usually carried
out by linearizing the governing equations for three-dimensional flow
through the compressor, and is quite satisfactory. However, with whirl
against the rotor blades and its correspondingly higher pressure coef-
ficient, this type of linearization fails completely. It is necessary to al-
low for the streamline shift to avoid singularities in the solution. Thus,
the full set of non-linear equations, taking into account the radial shift

of the streamlines, must be used. In order to calculate the repeating
flow pattern characteristic of multi-stage compressors, it was necessary
to numerically determine the flow pattern through the first four or six
stages.

Although detailed calculations of efficiency are scarcely possible,
the results of the analysis can be used to give indications of probable
losses. The degree of turning required by the blades appears to be with-
in permissible limits. The off-design incidence angles for the rotors
deviate very little from the design values. The stator incidence angles
are more severe, and might produce a loss in efficiency over part of the

stator bladas.



I. INTRODUCTION

Conventional subsonic axial-flow compressors designed to use
air as a working fluid are not necessarily suitable for gases of lower
molecular weight. FPor a particular closed cvcle system, where a
working fluid other than air might be desirable, the number of stages
required will vary greatly with the choice of gas. The number of stages
is directly proportional to the specific heat at constant preesure and is
inversely proportional to the blade speed and the change in tangential
velocity of the gas through a stage. The blade speéd is fixed by the
strength of the blade material and is generally held as high as possible.
With present-day alr compressors, there is a maximum amount of
tangential velocity change that can be accomplished efficiently. Thus,
for a typical compressor designed to use air, the number of stages re-
quired wmﬁid be increased approximately five times if a gas such as
helium were uged and the same temperature ratio across the compres-
sor were to be maintained. This report describes a blade design that
will hopefully reduce this high number of stages required for helium to

approximately one-half the number presently used.



Unlike conventional multi-stage compressors, the design of the
stator blade is such as to give an accelerating flow through the stator
rows. The rotor blades then turn the flow back to the axial divection.
This type of design has been used in some single-stage fans., The nota=-

tion to be used in this report is illustrated in Figure 1.

CKQ

//// .

77 .

(2) , —

\

Figure 1.
The following list of symbole will be used throughout this repori:
¢ = axial component of velocity
¢ = tangential component of velocity

absolute velocity

¢
3

w = velocity relative to the rotor
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tangential velocity relative to the rotor

vy = angle between axial direction and absolute velocities

5
]

8 angle between axial direction and relative velocities

R = tip radius

u = tip speed

w = angular velocity of rotor

r = radius measured from compressor centerline

p = static pressure

p = density (assumed constant throughout)

Subacripté refer to stations as shown in Figure 1.

In “W@»dimaéionai” flow through an axial compressor, the
streamlines are assumed to lie on cylindrical surfaces with constant
radii. The pressure gradients in the radial direction are ign@md. al-
though it is shown later that at design for vortex blading, the flow is
two-dimensional and the pressure gradients are properly accounted for.
Since an important difficulty in applying two-dimensional flow theory to
this design arises, we will discuss it briefly here,

The blades are of the free vortex design. Thus

‘c:ml « 1/r .
A dimensionless radius is defined by
E = r/R .
Therefore, the tangential component of velocity through the stator is
taken as
c u = u/é |, {1)
where o is an arbitrary comstant to be determined,

The pregsure drop across a stator row is given by
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& b, ’ci ). {2)

Since r is a comstant along a streamline, the Bernoulli equation for
rotating axes glves, for the pressure rise across a rotor row,

Pz = Py 2 2
— = il ewyh) . (3)

£

The pressurerise across a stage is then

Pz“Pg
P

2 2 2 2
s Ay wire . *)

At design, Cu. © 0, and from the velocity diagrams we cbtain
2
e .
W o= e+ uf
u ]

1
w = uf
Y2
2 & 2 2 2 ,a 2
wyoo= e, +Wu3 = ¢, tu (fg%@)
2 2 2 2 2,2
W, = ¢ +wu2 = ¢y +u g
2 2 2 G &
¢y = ¢, +cui = ¢, +u é-gfﬂ .

After substitution of these relations into (4), we obtain, for the pres-
sure rise across the stage,
P 2 e Po

2
= %i {:{l L]
> )

A work coefficient is usually defined as

Z‘;"’:T—ﬁ\%—Z’ . (6)

spw R
Thus, when the compressor is operating at the design point,
o= 20 .
However, ¢ is not unrestricted. It has been found experimentally

desirable {Ref. 1) to have
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where § ie between 0.5 and 0.6 . Defining 2 non-dimensional dow
coeificient as

& = Cs,ju ® {8)
this restriction can be written

2
R MR S ©)
< p *
48" /1-¢ &7/

This condition must be satisfied over the eatire length of the blade.

Since the restriction is most gevere at the hub, values of § and ¢
evaluated there will be conservative over the rest of the blade. An exe
isting exp@iimﬁmal set-up prescribed the hub ratio éé;,i =0.6. There is
another restriction on the velocities that is not easily describedinanaly-
tical form. This is the amount of turning that can be accomplished ef-
ficiently in the blade rows. Due to lower blade speed at the hub and the
adverse pressure gradient in the rotor, this condition alse is most
severe at the rotor hub., $ was chosen as 0.6, and values of the turning
angle were obtained for diffevent values of ¢ . The quantities ¢ = 0.70
and ¢ = 0. 58 were subsequently chosen. The value of | can be raised
substantially for a compressor with hub ratio in the range 0.7 to 0. 75.
So far, no difficulty with the two=dimensional theory has arisen.
Thiz iz not unexpected since, as montioned before, vortex blading is
exactly two dimensional at the design flow rate. FHowever, we have yet
to consider the off-design conditions where a radial component of ve~
locity does exist. At design, the work coefficient was constant over the

blade height. This is desirable in order to cut down losses due to mix-
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ing at the ead of the compressor, and actually is necessary on all stages
after the first few because a piling up of pressure at some radiug is
impossible for a very large numbeyr of stages. Thus, this restriction
will be applied at @ﬁ;ﬁeﬁi@ flow rates also. Then
o= ._i‘:f:‘%_?. = E:. (wgz-wzamgz-cf) = constant. {310)

Lpu"R” w

Remembering that ¢ # 0 for off-design conditions, then
2
W“l = u& 4 ﬁul 9

w, = uf + Cu. *
2 2
and the work coefficient becomes

v =22 (e o)
or
y = 260€ + pltany, - tanB )] . {11)
A first approximation can be made that tany, and tan§, , correspond=
ing to the leaving angles of flow, are independent of the inlet angles and
hence are independent of flow rate. If this is done, the local value of ¢

at the root is

0.72 = 4
1 2{tand, - tany;)

$E = 0.6) =

{12}

Since under our approximation { tand 2" Eam«i} iz constant é,nc‘i. is great-
er than zero, we see that for * > 0,72 the flow coefficient at the root

. becornes negative and is meaningless. If tanf 2 and tany, ave allowed
to change with flow speed and this change calculated by cascade theory,
the singularity in 4 is not relieved appreciably. Since values of the

ideal pressure coefficient greater than 0. 72 would be required in starting,
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for instance, the two-d&nensional analysis of the flow is unsatisfactory.
It must be mentioned that if ¢ could be pushed as highas 0.72ina
standard compressor, there would be the same difficulty. Normally,
axial-flow alr compressors have an ideal pressure coefficient of be-
tween 0.4 and 0.5, It will be shown that a three-dimensional flow
analysis of the compressor does not contain this singularity in ¢ .
This difficulty is mathematical rather than physical, and appears to be
the result of an invalid linearization of the three-dimensional equations
of motion. There seems to be no way of calculating the ideal flow pat-
terns except by a numerical procedure with a radial shift of the stream-
lines taken into account.

The assumptions made in the three-dimensional flow analysis
are:

(1) imémpmasible perfect fluid;

(2) axisymmetric flow;

{3) equations are written for conditions far upstream and far
downstream of a blade row.

The notation used is the same as in the two~dimensional analysis
except that the odd subscripts refer to stations far downstream of stator
rows and the even subscripts refer to stations far downstream of rotor
rows {see Figure 2).

The Bernoulli equation for flow through a stator row is

2p.,. : , Zp., ‘
—Zntl rzuz + c:&2 s g cuz s’ . (13)
p 2n+1 20+l P 2n  Zon

The Bernoulli equation for flow through a rotor row is
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Station 2n+l ‘ Station 2n

lar2n+3 |
blade &“’an
row
F2n+l Fin
- 4 - — -
Figure 2.
2p. . 2p
___%B,;.Wz ~é»<:2 -wari *-"MM«MAIE «#cz’ uwzrg Lo {14)
P Yin  %on n e Yntl  P2n+l n+l
The equations for the pressure gradient in the radial direction are
' 2
c c
d@Zz; = p Yon and &sz-l - on+l (15)
I n “on I ontl Fan+l

By using (15) to eliminate the pressure terms, equations (13) and (14)

become, respectively,

e“? 1 2 2
2n d
4 ol + ¢ dr =
l:an z &Z’En ( Bon aZn)J Zn
2
c“z 1,1 d 2 2
n+ :
+ c +c, dy » {16)
[ Foptl 2 ana1  Yzpsd a’zn-a-i)] Zntl
2
®u, 1 4 2 2 22
&3 : 3
+ w + ol ar =
[x'zﬂ Z dz@zﬁ ( Uy Boy mﬂ 2n
2
c“a 1.1 4 2 2 2 2
n+
+ — (w +e -y dr, ., « {17}
[2za+1 Z2dr 0 (‘“znﬁx 20+l Zn*lJ atl
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Considering a cylindrical stream tube, the comtinuity equation can be
written in the differential form

d

&
gzn

o = T, dr
2n Bsnil 2a+l " 2ol

Within the scope of the assumptions previously mentioned, these equa-
tioms are quite gemeral. It is now assumed that the leaving angles of
both stator and rotor are constant with respect to flow rate and give
vortex flow at the design flow rate. Thus, evaluating the leaving angles

at the design condition, indicated by subscript ¢, we obtain

= c tany; = r& ' (18)

c
u B, !
Zn-t—lj d walj a 2n+l

or, in the non-dimensional notation,
Ya 3

o 8
tany, = = . {19)
V7 3& i % Eann
Similarly, we obtain for the rotor leaving angle
52
tanf, = —— . {20}
2 '?p'é" v

With the leaving angles so specified and the following definitions,

aa% and b = &,
Zé4 a

the equation for thé flow through the stator becornes
G2 4 ¢ g2 b

(2 + ) 2ntl 2n+1 . "é?'?}“‘z' 1],
gz ®ont1  Coa beags Pan

2o+l
g’ 28 26, b°
d Zn 2n 2n°
- "1“ o
L&gm( b* %"“) s } b <‘5’zn )

The equation for flow through a rotor row becomes
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E.Zn j) : )
2
€on 28 ne1 1 2% | 9%any
R R Lt g ) (22)
21 %485, Yen-l £5.1) “Canel

The continuity relations are

Pone1b20-1% 001 = $2n820%2n = bapsibonsi®Eonsy - 23)

The two pairs of non-linear equations {21) and {22), and {23) can be
solved approximately for b, 282 function of gm for m=20,1,2,...
in succesasion.

Notice the particularly simple solution b = Dy for all values
of m. It follows that there is no streamline shift and ne radial velocity
in this case, and the analysis of the flow reduces to the two-dimensional
one previously considered. It is largely because of this analytical sime
plification that the {ree vortex design has been used so frequently. How-
ever, for off-design flow rates, no such simple solution exists, even
for the {ree vortex design. |

To illustrate the method of solution to these equations, let us
consider an off-design constant axial flow ¢ o approaching the {irvst{ sta-
tor. In this case, care must be taken in applying equation (21), eince
the assumption of a whirl velocity is incorporated in the right-hand side
of this relation. For this incoming flow, equation (13) becomes

2p Zp
m«%-%cz-a-czmmﬁ-bca = congtant.

Since &poldro = 0, equation {16) becomes

: 2
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Substituting from equation (19), the velocity diagram relations, and the

definition of a, the equation corresponding to equation (21) is

or
é"l = constant.
This constant is then determined by integrating the continuity relation

from the hub to the tip.
i

1
r r A
J 4’1%1&%1 = J @16%@&%8

E, £,
b M-85 = o M1 -

o

% = ‘% .
Equations (21) and {22) are applicable to all of the other blade
rows now. The relation for ¢ 2 becomes, using equation (22),
2 .2
a [b +6; } B
E, T 2 L

Integrating, we obtain

= 0.

b = Py
+_,,2

K+6)
&
where K is determined as before by integrating the continuity expres-
sion.
The flow coefficients for the following blade rows are obtained in
the same manner; however, the integration for these must be done nu-

merically. Also, ancother mathematical difficulty arises in the solution
for by and the remaining stages. The existence of both independent
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variables on the right-hand side of both {21) and {22} will require an
iteration process. The procedure is to first let £ 2041 © gm and seolve
for ®2ns1 * The continuity relation can now be integrated {rom g‘z to
g , and a relation between § 2041 and £ 2n obtained. Substitution of
this relation into the differential equation for $2ns1 yields a refined

value for ¢ Fortunately, the correction to the flow coefficient is

2n+l °
not large, and the iteration process is generally not necessary.
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II. APPLICATION OF THE THREE-DIMENSIONAL THECORY

The calculation of the flow field as it progresses down the come-
pressor was carried out for two off-design conditions. The blades were
chosen such that ¢, = 0. 57751 and {, = 0.70000. The average flow
rate for the off-design conditions was taken ag ¢ = . 46000 and ¢ =
. 69000 . Figures 3 through é show the variation of the flow coefficient
versus dimensionless radius at various stations in the compressor.

The flow field at lower than design flow rate 1s converging fairly rapidly
to a steady~state condition, while at the higher flow rate the convergence
does not appear to be as good.

The error in choosing gzn 1= %sz as a first approximation is
- shown in Figure 7. The calculation was carried out for the fourth rotor
row. An error of only approximately 2 percent of bg at the mid-height
of the blade is introduced by the first approximation. It is felt that real
fluid effects will be greater than this amount.

The local values of ¥ for the two off-design flow rates are shown
in Figure 8. Notice that { is very nearly independent of the radius,
agreeing with our agssumptions leading to equation (10).

In standard compressors there exists a perturbation solution to
the three~dimensional equations. There it is assumed that the flow & 1
from a stator iz approximately équai to the flow by irom a rotor. Thus
the procedure is to find a solution for which §¢2-a§31§ << (%le) . To
the zeroth order, this resulis in a lincar compressor performance
curve in the form

§ = A-Bo . {2¢)
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The two-dimensional theory also produced an equation of this type,
since in that case «;bi was taken identically equal to $y -
To examine the possibilities of this approach for the proposed
helium compressor, consider the approximate performance equation

b= 257 + £ tany, - Eotang,) - (25)

For f{ree voriex blading, equation (25) becomes

yo= o2 %@1-%2%4'%2 : (26)
If we now assume
$yp = HoyHe,) + 2ley=b,) T b+ Ad (27a)
and
by = Hop+d,) = Hoy=d,) = & - A, (27b)

then equation (26) can be written
, 2 % 2. . Ad 2
¥ = v 6’ - 2 si& - 2 °
L] ng‘*“%[;d %J‘*%[ﬁ'*’%-} (28)

Typical values of ¢ g and A¢ for a conventional compressor allow the
term containing A4 to be ignored. However, for the compressor pro-
posed in this report, ¥ a is approaching 2&2 at the hub, and the term
containing A¢ can no longer be neglected. Figure 9 shows the per-
formance curves of both types of compressors with and without the in-
clusion of the A¢ term. The inadequacy of the two-dimensional
solution in the case of the helium compressor is obvious. To the scale
of the graph, no difference can be observed for the conventional com-
pressor.

Figure 10 shows the total pressure variation along the blades

after the flow has e¢ssentially settled into a steady pattern. Ior lower
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than design flow rates, more work is being done by the tips, while at
higher flow rates, the roots give the greater rise. The cumulative dif-
ference after six stages is still less than half the design pressure rise
for a single stage.
It was mentioned previously that it is desirable to have
o z _ w Z
1 2

LR S ¢ N I
VJ‘:;
i

This quantity is plotted in Figure 1l. Possible difficulties are indicated
at lower than design flow rates. A higher hub ratio would eliminate this
difficulty. The corresponding ratio for the stator is plotted in Figure
12. Since the stators are in a field of decreasing pressure, no diffi-
culties are expected heve.

The off-design entering angles for the stator and rotor are plot-
ted in Figures 13 and 14, respectively. The stators arve very critical
and will require care in thelr design. Sharp leading edges of the sta-
tors would probably cause high losses. The off-design flow incidence

angle deviations for the rotors appear satisfactory.
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IV, CONCLUDING REMARKS

It has been demonstrated that high reaction blading can be used
in multi-stage axial compressors to produce a significant increase in
pressure rise per stage over conventional blading. This type of blading
could be used in a closed-cycle helium compressor and greatly reduce
the total number of stages required. The analysis also indicates that
a hub ratio greater than 0. 6 would possibly be a2 more efficient design,
since stator incidence flow angle deviations become quite large near the
hub in the example shown.

It was also shown that the usual linearization of the three-
dimensional equations of flow ie not valid for this type of blading, How=
ever, a numerical solution allowing for the shift of the streamlines does
converge to a steady, repeating flow pattern after the first five or six

stages for flows as much as twenty per cent off design.
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PART II. A DESICGN STUDY OF A MULTI-STAGE AXIAL

COMPRESSCOR WITH BLADING OF HIGH ASPECT RATIC
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ABSTRACT FOR PART II

A method for designing blades of high aspect ratio in a multi-
stage axial compressor is investigated. This method requires a cal-
culation of the flow induced by all blade rows. The method is illustrated
for the limiting condition of hub ratio equal to unity and then is carried
out for the more realistic case of finite hub ratio.

An example of a blade design for a particular flow is carried
out. The results are compared with those of a previous design for the
same flow conditions but based on a theory applicable for blading of low

aspect ratio.
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SUMMARY FOR FART II

The flow through most present—ﬁa& axial flow compressors is
frequently analyzed by applying a three-dimensional theory that is based
on the assumption of blading with low aspect ratio. Even though existing
compressors do not have what could be called low aspect ratio blades,
the theory predictions and experimental results show reasonable agree-
ment,

Where weight considerations are of primary concern, the possi-
bility of reducing the size of a compressor by shortening its length is
attractive. There is no known reason why the blade rows cannot be held
to their same height but shortened in chord. There is, however, a dif-
ficulty in applying the aforementioned analysis. There, it is assumed
that equilibrium flow patterns exist at the leading and trailing edges of
the blades, THs is identical to assuming low aspect ratio for the blades,
since they rnust be wide enough to allow all changes in the flow to occur
entirely within the blade row itself. Several extensions of ﬁhe:theery
have been developed to take account of the non-equilibrium flow near the
blade rows. Some of these analyses assumed small vorticity throughout
the flow field and also a small change in vorticity through the blade rows.
Another theory relaxed the restriction of small vorticity throughout the
flow field. |

The theory presented in this thesis is an extension of the latter
approach, and is based on the assumptions of closely spaced blades of
high aspect ratio. The equations of motion are linearized by a perturba-
tion scheme that assumes small changes in perturbation velocitics across

the blade rows. To illustrate the method, the calculation is first
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restricted to the limiting case of hub ratio close to unity. Then the
more involved problem for any hub ratio is investigated. An example
is worked for blades of aspect ratio about three. Here, there appeared
little difference between the theory applicable to blades of low aspect

ratio and the theory of blades of low aspect ratio.
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I. INTRODUCTION

The theory of three-dimensional flow in the axial compressor
described in Part I of this thesis is concerned only with flow conditions
far upstream and far downstream of a blade row. This theory would be
applicable to blades of very low aspect ratio. The difference between
these velocity profiles and the actual profiles near the leading and trail-
ing edges of the blades was assumed to be negligible. It was on this
basis that the entering flow angles for the blades were determined. If
the aspect ratio is not very low, it is possible to obtain more exact in-
formation about the flow pattern near the blade rows by making use of
some of Marble's results (Ref. 1). 7This has been done by Bowen,
Sabersky, and Raanie in Ref. 2. The method carried out by these in-
vestigators forms the basis of the theory to be discussed in this report.
The approach is to consider the disturbances due to rows of blades of
high aspect ratio placed very close together. Here, the flow in any par-
ticular blade row is influenced by neighboring blade rows. In the three-
dimenaional theory of Part ], the changes in the flow pattern were ase
sumned to occur entirely within the blade row itself and one blade row did
not affect its neighbor.

The analysis begins with the calculation of the disturbances due
to an infinitesimally thin disk. These disturbances can then be super-
imposed to form a blade with finite axial extent. The effect of many
blade rows can be determined by the superposition of the disturbances
due to the finite row. In this way, the flow patteran for a multi-stage

axial turbomachine can be constructed. For a repeating flow pattern,

- the summation of the effects of all blade rows is possible.
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II. TWO-DIMENSIONAL THEORY

A. FEcquations and Boundary Conditions

Before proceeding directly into the three-dimensional theory of
high agpect ratio blading, it is informative to investigate first the limit-
ing case of high hub ratio. This problem iz simpler because the radial
pressure gradients vanish far from the blade. The analysis is based
upon the disturbances due to a disk at x = 0 {see Figure 1}, and the

equations of motion are written subject to several assumed conditions.

Avev
h I s+ AR x4
=y > u a+eu°
ve=0 va
— < disk at -
WYY e = -
v &Wa %= 0 w W'%ﬂwe
= - =
P=Ep Epa P P“‘”ﬁ'}?g
%y U
By W

Figure 1

These assumptions are: (1) there are no clrcumferential variations;
that is, «3% { )= 0. This is equivalent to having a disk with an infinite
number of blades. (2) The flow is incompressible, the density p being
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held constant. The centinuiﬁy and momentum equations then become

du 8v

§§:+B—;};=G (1)
du i 9p

?&-§-+V§-5-§ o {E}
ov _ 19

u»5-+v»§-- ‘5 By €3§

A 8“’:@ (4)

where u, v, and w are the gas velocity components in the x, y, and
z directions, and p is the static pressure.
The boundary conditions to be imposed on this system are as
follows:
(1) v=0 at y=0 and y=b forall x, since the walls of the
compressor are streamlines.
{2) u is continuous at x = 0 from continuity through the actu-
ating disk.
(3) v is comtinuous at x = 0 due to the component of force
being zero in the y direction.
{4) w is allowed to change discontinuously across x = 0.
(5) At x= =,
u = Wy) - ey,
v = O,
w = Wly) - ew (v},
p=p- ep, = comstant.
(6) &t ==+ oo,
u = uly) +eu ly),

v = 0,
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w o= Wiy) +ewly),

P = P+ep, = constant.

These last two boundary conditions are written in a form soc as to con-
form with the following perturbation scheme. Far upstream and far
downstream of the disk, the flow is independent of x ; any disturbance
due to the disk having been smoothed out. Close to the disk, the flow is
disturbed by a small amount, and the following perturbations are as«
sumed, where the symbol ¢ is carried only to denote the assumed
small quantities.

u = Gy)F euly) +eulxy)

v = ev{y)

L (5)
w = wiy) + ’é“WQ(Y@ + ewiix, v)

P = P Fep,tepyixny)
Notice that P and P, are assumed independent of either = or y and
that the mean value of v is zero. The top signs are for ~ w<x<?
and the bottor signs are for 0 <x <+ o,

Introducing equation (5) into the equation of motion yields the

linear set

Bul 8v1

~5§- %W = 0O éé’}
bu - dp

- 1 ., 8u L 1 i

Rl A S U 3 (1

= Svl o1 sz @)
8% _p 9y
ow

g'ﬁ?{' +-5=§v§z@ {9)
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B. Solution of the Equations for the Actuating Disk

The first three of the preceding equations (6, 7, and 8) can be

combined to give the differential equation for v, as

2 2
o 0 asE

z "TTZ M ¢ (10)
8% oy u 9y

with the boundary conditions that v=0 at y=0 and vy=b. A solu-
tion to equation (10) that satisfies these boundary conditions is
%
+ X
A )
v, = U Z A e ¥_y) (11)
n=l

where
b

U = é fﬁ'dy
O

and Yn(y) satisfies the differential equation

[("5‘) ] 0

with boundary condiﬁom

sz

Yn(a) = "fﬂ{b} = 0 .,

Equation (6) then vields

b IA
w=Fu) A e 2Py, (12)

where the prime denotes differentiation with respect to y . Notice that
the boundary conditions on u are satisfied at =~ and %=+ 0.
TFrom the continuity of u across the disk, the following relation is

obtained
o

b .
aly) = = U ) A o Y. (13)
n=1
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Since U and u o 2re tobe chosen and the shape of the blades is to be
determined, it is possible at this point to choose An =0 for n>1,

Also, if U is chosen as a linear function of y , then
kly

)‘}. = %
Note that it is not necessary that these particular choices be made. It
is done here only to reduce the amount of algebra in the rest of the analy-
gis. It will be pointed out later that these choices can indeed mpreseﬁa
the flow through a conventional compressor quite well. Therefore, the

perturbation velocities become
- b4
B Y
and

Ll f(

Using equation (%), Wy is determined as

, -
1 dw =" B
wy o= b= a}_;- e f ugin} dn , (14)
u 0
and with the use of equation (7),

- rmel
=P, = te u

ﬁ&

u
@

£
J a (n) dn |. {15}
G

There are several requirements that we can now impose. First,
we can require the total pressure rise across the disk to be a constant.
This will insure that the flow pattern will repeat itself. This is a similar

condition to that set upon the work coefficient in Part I of this paper. To
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caleulate the change in total pressure, one needs the change in whirl
and the change in static pressure. The change in whizl is |
aw = w(to,y) - w{-o, V),

and with the use of equations {5) and (14) becomes

4 Law [
= ?ﬁ - . SR 2 LY
Hwr eW 2e = r'va J u@{*ﬂ} dm
9

The change in static pressure is

ﬁﬁ &g -R o b
5 o {+0, v} : (=05 )

and using equations (5) and (15}, becomes

P , ,
Ap . 5. "0 = _du f
..52 = Zs —+ Zs[u U "% w@gmaﬂ}
0
Since u and v are continuous through the disk, the change in total

pressure is

Lp
.‘-5.2 z;%g-%ﬁﬁw

o

Ap P = = £
T o . - da , W dwy | ,
.....E.,...aze?+2f,€uua+wwa}+2€(-a’§+%g§; %uom)ﬁ‘?} » (16)

and we require this to be constant. Thus, we now have the four unknown
functions of v : u, u s w , and Wy o and two constants p and Po
with one equation (16) relating them. Also, since we are interested only
in the pressure rise in a compressor, we are not immensely concerned
with the mean pressure , }5 . The pressure change across the disk is
2p o and this is the more important quantity.

Another condition that we can require is that the total pressure

far upstream and far downstiream be constant from root to tip. Note



that this is not a necessary condition, but is & common choice in com=
pressor design and gives two more relations connecting cur four un-

knovm functions of v. For the total pressure to be constant we must

require that
2 ’!‘ w«p 2 m- w4 2 o
3 + ¢ [{xu euQ) +{w ew ) Ji constant
and (17)
P L oiriw Z g . 2 )
o + gghﬁuﬁrsrug) + {w#ewe) 1 = constant

and since p/p is constant far upstream and far downstream of the
digk, we derive the fallowing two equations by adding and subtracting

equations {17) and keeping only first order in = :

2, =2

B+ ws = %;i

_ _ (18)
u Ou + WQW = KZ
where Kz .m }%‘.2 are undetermined constants.
The second condition of equations {18) is now actually the same

as equation (16). If the disk were to act as a stator, then (16) would

reduce to
p@aﬁ S W W s‘{ﬁ%{:}’dw}? 2 {nir (19)
SRR C A DXL

Since pelp is a constant, and from (18) Wu_ + w W = K, , the last
term of equation (19) must be a constant. Since the integral is obviously
zero at y = 0, then this constant must be zero. Thus, with the assump-
tion of constant total pressure, we have four unknown functions of y

and two conditions upon them. Hence, for example, we could pick u,

u, and p o and the flow will be completely determined. Cmce this
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has been done, the ghape of the blades can be found,

To derive the effect on the flow due to a blade of finite width a
and height b, we can sum from x = 0 to u = a the disturbance due to
a disk located at = =§ where I vanges from 0 to a. Notice, how-
ever, that here one must make a choice of the shape of the loading on
the blade. That is, we must require that each disk contribute some
fraction £{E)AE of the disturbance of the blade. In the problem pro-
posed in this report, we are at liberty to pick the function £{E). We
then go on to find the shape of the blade. However, the inverse problem
of specifying the blading and then finding the flow is much more diffi-
cult. In that case, the loading function is in general a function of both

% and v and depends on the entering flow angles.

C. Superposition of Actuating Disks for Multi-Stage Compressors

Given the function £{8), we can proceed to determine the ve-
locities u and w throughout the compressor. The function I(§) is

normalized such that
a
r
JEHE)E = 1.
O

Tor a finite stator of width &, height b, and leading edge at 2= 0,

the axial velocity for x> 0 becomes

twE -7 e
ua'ﬁ'—au@-&vau{}e Jf{%}e °ag . {20)

s

e

for O<n<a,

- A - g (x=8) ; + g lx-6)
u=utrn J fity|1l-e df - [ flEY|l =@ dg ( . (21)
] x
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U= Wt+eu -eu_ e jfﬁg}e dg . {22)

The equations for a rotor are similar with only the algebraic sign of
u, changed throughout.

Equations (20) - {22) give the flow due to one blade row alone.
For a repeating fiow pattern, the velocities are the same as if there
were an infinite number of blade rows. Thus, for the complete fiow pat-
tern, we must superimpose the ﬁ@wza due to many stators and many ro-
tors. The following definitions will be used:

a_ = width of a stator row

a_ = width of a rotor row
¢, = gap between stator ami rotor

¢, = gap between rotor and stator

fé%}d% = fraction of digturbance due to stator

§r§ﬁ§,}dg = fraction of disturbance due to rotor

{4 = aﬁ+c$~$~a¥+cr
The leading edge of the stators are then set at

¥ = md where m=0, +1, +2, ...
and the leading edgesof the rotors are at
X 0= agé'cs'%m{, .

The axial velocity in a stator row due to all blades becomes



2
-5 (x-8) 2 g (eeB)
u = uly) + eu_{y} ffgtg) [1 -e P }d% - ij(g)[l -e P
0 %
w Ry % T
n -7 Mgea_-c_=-mi]
- }: u ly) | £ (8)e  Cag AR
m=0 0

a
-Mr%-

+e2aw me a e
m=l
«!- Tx-m&}
w}jmwfftaye &t e P
sl
@ Bg K
b [sedrnt ]
.e u {v) f £.(6) e %e’ég e © . (23)
mal )

Carrying out the summations, equation (23) becomes

#x w %s 5
- ¢ {x=§) ' + e {x-£)
w=T) + eayty)) o)1 P Jag - [aeri-o"5" Jd%}
0

X

a_
eu {y) ¥ - T we{a dc )
- o = prwgg) e %ﬁg e g&; 'g g8 8
3‘_;'5‘?* o
o +a -7 -‘“éa +c ) {;g -'i?% T -;Z‘f.a
-yfﬁreg;e “age Pe D T ¥ - [ B)e e “e
0 G

a
& E 2 w
+ 5 - = g L
% Ee B E . (24)

(’3
+ f$(g3 e ag e

For the axial velocity in a rotor row, change the sign of u_ and inter-
4] & @

change the & and r subscripts in all terms of equation (24).
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The corresponding calculation of the whirl velocity in a stator

results in
; = 7 - Elu-t)
w = Wly) +e f fg(%)[w@(v} -;_-if- %? J golnkdn e E ag
0 v 0
:g 1 4% + g (=€)
e £ w ly) - T J Bolnidn e ag
x 0
L ¥ L b erh Ry
e gy | Yolnkdn AN file T"dge “e
¥ 0 l1.e B L0
a a 2
F + - = -wé& +e_ ) nl -7 wE oy
- (5800 B, e Pe P T T fee)e %dggeg% b
9 o
3‘ . .
° o cwl anl
+ [i e %dg e Peo Lo, (25)
]

The whirl velocity in a2 rotor is determined by changing the sign of u o
and w o and interchanging the & and r subscripis in equation (25).
An exarnple will be shown later for which the following assump-

tions are made: |

a = a = a,

8 r
£08) = £(8) = 1/a ,
2 =2 2{a +c) .

D. Flow Patterns for Blading of High Aspect Ratio

If then the exponentials are expanded in polynomials of a/b,

clb, or x/b, as the case may be, and terms through second order are



retained, the velocities reduce to

u = E+emow(§-2%)

(26)
wos Thew (22-1)-eT(22-1-32452)
for a stator, and
- %  a
W E U=y W (- )
o 'L b (27)
- % _ X _ 4 _Tx  wa
w—w-ewo(za })+€I‘(2a 1 ”B'+°EE)
for a rotor. In both cases
= i% | u_fn) dn . (28)
= V5

The entering and leaving flow angles for both stator and rotor
blades can now be calculated. The defining equations for these angles
are,in the case of a stator,

u{x = 0}

ta.nyl = ey e

and {29)
u{x=a

mYZ * wilx=a

where Yy is the stator entering angles and Y, is the stator leaving

angle. For the rotor,

= ufx = 0)
~ blade speed « w(x=0)

tan g%l

and

ufx = a)

tan @z * blade speed = w{x=a}

In summary, given the blade loading, blade aspect ratio, the
axial velocity through the compressor, the whirl velocity at one radius
of a blade row, the desired pressure rise across a stage, and the de-

sired degree of reaction, one can compute the shape of the blades subject
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to the restriction that they be of high aspect ratio and very closely

spaced.
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IIi. THECRY FOR FINITE HUB RADIUS
The analysis for the limiting case of hub ratio equal to one is
extended to the axisymmetric case of finite hub radius with only slight
modifications. The y coordinate goes over into the radius r. Th@'
velocity in the r direction remains v . The major change here is that
the radial pressure gradients must be accounted for properly.

The equations of motion in the axisymmetric case are

%E g—* (rv) 0

du 1 3p
-2 "% Bx

9 2 13 e
. v W )
ngmtvgE - = - R
. Ow
123 -Sv- —g-— + -+ = g

As before, we assume a perturbation approach of the form
u = ulr)¥ euO(r) + w.i(x. r)
v = ::vléx. r)
{32)

w o= wr)F ew@(r) +ew)(x, r)
P = Plr) Fep(r) + eplx, 7)
Notice that p and P, are now functions of the radial variable, r.

The resulting linear equations are
8u

1 3
"Ei FoF lvy) = O
0 em 1%
Bx "V18F T 7 %R
= 6v1 _, WWi . 1 &pi , {33)
ox T L
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and also the radial pressure equilibrium equations

1855 WP

Se ot (34)
and _

1 BPQ wao

PO % 7T
which must be satisfiled at = = + w0 .

Eliminating the other dependent variables, the equation for vy

becomes
olv, 0%y, by, . . 35)
+ + = - + Flz)lv, = 0,
oxe T r or :2 1
where
r 4 ,1 &u 2 w od, -
F(r} = -:ai_- (;‘&?)-“-Z :-%E-av;(r‘ﬁl) s
v r k)
An appropriate solution is of the form
x
A
vy = e gRir) .
Substituting into equation (35) yields
R ¢ ! R' + rilbz ! Flr)IR = 0 (36)
H Hg) -z - FlRIR

r
where the prime indicates differentiation with respect to »r . I ¥F(r) is
chosen identically equal to zero, then {36) reduces to BDessel's equation.
If we then take only the first term of the solution for vy the boundary
condition that v = 0 at the hub and the tip gives, for the first eigen-
value

)‘I = 3,18
for a hub ratio of 0.6 . If F(r) is small compared to ()‘L/b}z » then
the first eigenvalue does not change substantially. We will now choose

F(r) identically equal to zero and later compute its actual value to
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compare with (xl/b)z .
Proceeding as in the case with infinite hub radius, the perturba-

tion quantities become

tAg
ulr- +u e
I « ]
X ¥
1y Erg o0 a
vy ® "s g °® ! ﬂuaé’ﬂ) il
i
4 ko
- 4y = (37)
_ 1 ,dw ,w ,1 =*% [
wpsiT g tgls e | nunidn
r,

i

p Hx 3
— AT 1 da P
A b[ -«;@& nu (n) dn

where ri is the hub radius.

The condition that the total pressure rise across a disk be a

constant yields
r

Lp P on -
T . Co — lda, w W  wy| [
..?;..._.. = 2e —-5- + zqﬁua-i-wwo) o Zﬁ‘i?'a;*l’wg;(?{; 4‘?):! Jﬂﬁai’n}d’n.(sa)
r
i

Again choosing the special condition of constant total pressure in the

radial direction implies to first order in ¢ that
F+ip (@ +ud) = ¥y

and (39)
Pyt lww +uu ) = K,.

Then, as in the simpler case, equation (38) applied across 2 stator re=-

quires Kg = 0. Combining equations (34) and (39) results in the two

conditions



and

’%N"“‘
Ma
)
&l
"

3
i

{40)

it

3%: irzéf'wo) - ra -5% {Eu@) .

The remainder of the analysis, consisting of the summation of

the disturbances due tc the disks in order to produce a {inite blade and

the summation over all blade rows to derive the complete flow pattern

for the compressor, proceeds exactly as in the limiting case, and only

results will be given here. With the definition

and

1‘

L "“"""‘(‘“g’i."'"*‘" b ??‘2 (’?‘?Ed‘?‘ ’
r

and for the rotors

and

i
the velocity components for the stators are
w = Theud (575 )
(41)
b ) 5 XK % Az ¢!
W= W+€\V0(éz~l)~gf“(2§-1.?4.,25)'
=% X, a
wos u-eug (‘5 '2’5)
(42)

we weew (2.1l (E-1-2 442

The blade angles are determined exactly as before with the use of equa-

tions (28) and (29).
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IV, AN APPLICATION OF THE THEORY

Before proceeding with an example that will allow us to verify
this theory against an existing compressor, we will indicate the steps
in order.

1. Choose the blade loading function £{£) for both the rotor and
the stator.

2. Choose the blade dimensions.

3. Solee equation {36) for the eigenfunctions and determine the
eigenvalues by application of the boundary conditions on the radial ve-
locity v . For many applications, #(r) can be taken equal to zero and
all constants in the series sclution for v taken equal to zero except the
first ones. For such applications, the magnitude of Ay will be approxi-
mately w . | | |

4, Continue the summation procedures that result in relations
gimilar to equations {(41) and (42).

5. Pick U and u, - Notice u_  must satisfy the condition that

by
O

: = 0
J ru, dr ¢
i
where ¥, and ¥, are the inner and outer boundaries of the cylindrical
annulus.
6. Determine W from the first of equations (40). There will
remain an undetermined comnstant to choovse.
7. Choose the pressure rise across a stage and the degree of re=-
action desired. The pressure rise across a siator Zp@ can then be dee-

termined.
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8. Determine w o {rom the second of equations {40). The unde-
termined constant is then evaluated by use of the second of eguations (39).
9. Ewvaluate the function ¢ .
10. Calculate the axial and whirl velocities for both the stator
and rotor by using the equations derived in step 4.

11. Compute the blade angles by use of equations (28) and (29).

It was decided to use this theory to compare with the blade design
given in Ref. 1 for solid body blading. The steps will be taken as listed
above and the results presented herve and in Table 1 on page 58,

1. The loading function was taken to be constant for ease in
computation. A triangular distribution would be more nearly correct.

2. The ratio a/b was taken to be 1/3.

3. P{r) was taken equal to zero and Xy found to be approximately
3.18 . The function F(r) was subsequently checked and found negli-
gible compared to (Ub)a .

4, Equations {41) and (42) were then correct as stated in the
theory.

5. u and u o Were then chosen to approximate as closely as pos-
sible the axial flow used in the design of the solid body blading in Ref. 1.
The relations were

'ﬁ/u,z, = -, 560¢& +.916

uafu,r = ,185¢ - ,151

where £ is a non~dimensional radius based on the tip radius and U is

the rotor tip speed.

6. Equation (40) was used to determine w in the form



<

(__..) = .342&-’.157 2.2

&

The constant c; was determined by choosing w=,385 at £ =0.8.
7. The ideal pressure coefficient for the compressor was 0. 40,

Then by definition

Ps+3’ L 0.40 2
P 7 Yt

where ey, is the blade tip speed that has been used throughout this
analysia in order to non-dimensicnalize the velocity components. Fifty
per cent reaction in this campfessw occurred at £ = 0.8 . Since
2130 =P,y We obtained the following relation

Py/p = 0.05 uTa .

8. The equation for w_ then became

[}
2. 0528%-.085¢ - 222,
By wluT ( g )

9. The function ¢ was evaluated numerically and is listed in
Table 1.

10. and 11. The values of u and w are listed in Table 1 for
different values of £ . Similarly, the entering and leaving angles Yy
Yo By and {3, are ﬁahula.;ed. The values of these angles used in the

original design arc also tabulated.
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V. CONCLUDING REMARKS

For most compressor designe occurring in practice, the aspect
ratio of the blades is neither very low nor very high. It falls some-
where in between. The theory of Part I of this thesis is applicabls for
blading of low aspect ratio, where it is assumed that equilibrium flow
patterns exist at the leading and trailing edges of the blade rows. A
blade row is not affected by neighboring blade rows except through the
incident velocity distributions. The theory of Part II for blades of high
aspect ratio contains the influence of disturbances of potential type that
can be felt upsiream as well as downstream.

The close agreement between the results of the two theories for
an aspect ratio of three indicates that there the flow between blades is

very near its equilibriwm state at the leading and trailing edges.
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