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ABSTRACT

Transonic flow about symmetric, non-lifting airfoils is
treated by sclving an approximate linear differential equation
of mixed type in place of the exact small-perturbation equations,
The pressure distribution and drag coefficient are obtained in
closed form for power series airfolls, The technique of local
linearization is also applied to imgr@ve the accuracy of the
results, particularly near the ieasiing edge where the linearizing
approximation is found to be invalid. Numerical results are
obtained for the parabolic arc and single wedge airfoils and aze
found to compare favorably with experimental data and with

previous theoretical results,
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L INTRODUCTION

The analysis of transonic flows about obstacles is severely
hindered by the non-linearity of the appropriate small-perturbation
eguations as derived by means of systematic expansion procedures,
such as those detailed by Mesgi%yﬁw. Some progress has been
made with the exact small perturbation equations for two-dimen-
sional transonic flows by use of the hodograph transformation,
since the resulting equations are linear and reducible to the Tricomi
eguation, which has a fairly extensive literature. However, the
hodograph method has several disadvantages: The boundary condi-
tions in all but the simplest cases are difficult, if not impossible,
to formulate in the hodograph plane and in the supersonic region
of the flow field, the Jacobian of the transformation can, and
§r@§wemﬂ§; does, vanish, thus locally invalidating the procedure.
Neé@ the less, despite these disadvantages, the hodograph method
has proven useful, particularly for simple profiles {wedge, flat
plate, etc. ) and for the inverse problem. An extensive survey of
the hodograph method is found in Refereance (2).

More recently, transonic flows have been subjected to analysis
by replacing the appropriate exact small perturbation equations with
linear equations which conform approximately with the exact equations

in the region of interest {(e. g. on the surface of the obstacle).
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(3)

Oswatitech and Keune' " 'suggested replacing the exact equation

(1) PP, = (ve) B Py

for axisymmetric flow at M_= | with the linear equation

¢N~ * ‘\.):: ¢P = az ¢X k4

by reasoning that the flow over most of a body of revolution
{in particular, a parabolic arc body) is accelerating and that
near the body the term & % is dominant and the form of the
term on the right-hand side of the equation is not as important
as its existence. The validity of this reasoning is born out by
the fact that the surface pressures obtained are not strongly
dependent on the choice of the constant a.

(4)

Maeder and Thommen' proposed the analogous method

for two-dimensional flows. They replaced the exact eguation
. z

@ (=MD P Fy = GOMA

with the linear equation

(1-MD) P+ Py = KH

4
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*Ef.;se details of this method are given in Reference (5). In this
case, however, the validity of the linearizing assumption is

more guestionable than for axisymmetric flows, primarily
because the suriace pressures so obtained are strongly dependent
on the choice of K. In addition, at sonic velocity most interesting
airfoils have, in the small perturbation theory, infinite surface
pressure at the leading edge, 8o that sericus error results near
the leading edge of the airfoil if the linear equation is used,

The method of local linearization developed by Spreiter and
.fs’%}ksme(m' (7). (8) for transonic flows yields considerable improve-
ment of accuracy over the preceding, particularly if the acceleration
bex is not nearly constant in the region of interest. For near sonic

velocities, equations 1 and 2 are replaced by

4y ~ e

respectively, where

A, = (Yr)ML P,

P

f? = (M:~‘>¢xx .
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After the appropriate equation is solved assuming A, to be constant,
XP is replaced by (YH)M;?‘;X in the expression for 4;, resulting in
an ovdinary differential equation of the form

d %
= = Foaso.

For two-dimensional flow this equation can be integrated directly,
but numerical methods must be used for the axisymmetric case.

The above choices of lincar equations to approximate the exact
small perturbation equations have the disadvantage that the mixed
elliptic-hyperbolic form of the @xacﬁ;lequatiaﬁs is lost. While the
accuracy of the results indicates that the effect of the loss of mixed
form is not great, it is still desirable to choose approximate linear
equations which retain the mixed form of the exact equations. Raycegg}
has done this for axisymmetric flow at M =/ by replacing equation 1 by

Forrh = Qe T) Hy
where X is the location of the sonic point on the body. The drag given
by the solution of this equation is independent of a and the surface
pressures are in good agreement with experiments on the forward
part of the body. The present paper investigates the approximation of
the two-dimensional small perturbation equations by a suitable linear

equation of mixed form,
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I, METHOD OF 3CLUTION

Formulation of the Problem

The small perturbation equations for two-dimensional transonic
flow, expressed in terms of the dimensionless velocity perturbation

components and coordinates, are
[!-M;—(YH)M; u.] w, + v, = 0,

{3) u, - v = O
or, upon eliminating v,

(4) (Li-mMa- ey ML ulu, ), + uyy = O .
{The problem is expressed in terms of w and v, rather than the
perturbation potential %, in order to avoid a singularity similar to
that found in (9). This singularity will be discussed later. )

The boundary conditions require that the velecity be uniform
infinitely far upstream of the airfoil and that the flow be tangent to
rthe airfoil surface. In the thin airfoil limit the condition of tangent

flow on the airfoil becomes™

{5) v(x,ot) = * T )

*Here and elsewhere primes indicate diffeventiation with
respect to the argument, unless otherwise noted.



for a symmetric non-lifting aizfoil whose surface is described by

= *
‘j T(x) .
Eliminating v between equations 3 and 5 we have
w, (x,0%) = t 7% .

The pressure coefficient based on free stream conditions is

given by

in the thin airfoil limit, and the two-dimensional drag coefficient by

2]

C = Zf C, T ) dx
[~

for an alzfoil of vnit chord.

Approximate Linear Equation

In equation 4 the term

l—M;— (Yd—))Mi L

becomes |-M in the thin airfoil limit, where M is the local mach

numbeyr. LThus, if we define

(6) - &t (x=%) = - M_- (¥+)MLuw ,



P

then x=X is the sonic line. The actual sonic line will not necessarily
be vertical, so X will be a function of y in general. With &,

squation 4 becomes
(7) -[ax-u I, v uyy = 0

Now to obtain the desired linear equation we assume that o and X
are constant, or at least vary sufficiently slowly that they can be
congidered constant in the above equation. The only real justification
for this assumption is that it yields a simple linear equation of mixed
form, which is an approximation to the exact equation near the airfoil.
It can also be looked upon as the first step in an interation procedure.
In general, the values of o aand X are not given a priori,
so suitable means of evaluating them must be found. Since we are
primarily interested in the solution at the airfoil surface, X may be

found by requiring sonic velocity on the airfoil at x=X;

- Mo

(e YME

u(x=x,y=o) =
This is reasonable since equation 7 changes form at x=X. In principle,
o® should be proportional to some representative acceleration on

the airfoil. The problem of deciding what acceleration is representative

and the evaluation of a will be deferred until later,
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For convenisnce we will introduce the courdinate transformation

Z= Xx-X , thus placing the sonic point on the airfoil at the origin

a

2= y=0 and the leading edge at ®=-X, 4=0 as shown in Figure L

The governing equations are then

() -at[zu,], F Uy T 0,
(9) Uy (2,0t) = % S'=) ,
= Ma
(3@} W (o,0) = ()"H)M; “
(11) C,@my= -2ul(zy) ,
1-X
{12) C, = j Cp(z,o) Sy dz
-

with a vyet to be determined, Here y = t S«(z) is the airfoil shape

in the (z,y) coordinate system.

(10)

Characteristics in the Hyperbolic Region

In order to solve equation 8, it is necessary to know the region
of influence of a point in the hyperbolic region; hence, to know the shape

of the characteristic curves, since they bound the region of influence.



The differential equation of the characteristics is

4

dz) = o

N
v

the solution of which gives the equations of the characteristic curves
%lj X Vg = consTanT.

Thus, the characteristics take the form of a one-parameter family of
parabolae whose major axes are parallel to the =-axis, as shown in

Figure 2,

Ureen’s Theorem for the Linearized Eqmaﬁe&gn)

If we define the operator L by
- 2
(13} Lf = -o[=2%], + 1,

o * . .
and define L to be the adjoint operator of L , then we can find a

—

vector F such that
v-E = flLq-gql"t .
Since L as defined by 13 is seli-adjoint, L= L* and the vector /?

has the componenis

{—az(Fau-a%), (Fqy-af)] -
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The divergence theorem in two dimensions is

{14) ff v-F de = / Feade ,
R

b3

where R is any region in which V'F is non-singular, Z is its

boundary on which F is non-singular, and A is the unit cutwazd

—

normal vector to X. Thus we have, substituting the value of F

into equation 14,

(15) J o [FLq-qle]ar =
,/;_["afz{?f{\;“qﬂ)lﬂi*'(&qq"q¥ﬂ§n\i]d¢'

as the form of Green's theorem for equation 8, where n, and ny

are the components of 1 .
If K(z,4;%,7) is the solution of the pseudo-equation
LK = 5(2—{)%(:.1—)2)
and /K*(z,tj; 7,7) is the solution of

* *

LK = 8(z-%)%(y-7),

oth subject to the usual condition that they tend to zero far upstream,

then it ig well-known that

K (=,4;2.7) = K(z,7;5%.y).



Fow we make the following stipulations:
a) =K', g=u
b) R is chosen sothat LK = LKk*= o ’in R.:
The second of these requires that the airfoil and the field point (7,%)

be excluded from R . Then equation 15 becomes
f15) f { ~at [ K2y o) u (3, = K (i) uzm]ng +
=
+ [ ’K(%»Lj3 Z;"Z) u"(Z;?Z) - ”(7{2,‘:!3 511?) u(Z,y)] n’l } AG‘I
= 0 s
where the airfoil, the field point (z,4), and any singularities of
K(z,4;%,7) or u(3,y) are excluded from R'. Here we have inter-
changed the variables 7,7 and 2,4 andprimed R, T, and o« to

indicate that they are taken in the ¢,7n plane. Equatiocn I& is the form

of Green's theorem to be used in this paper.

Fundamental Solution of the Linear Equation

The fundame ntal solution /K (2,4;3,%) of the linear operator L ,
which corresponds to a mathematical source, is obtained by solving the

pseudo-equation

{17) LIK = $(2-2)8(y-7) ,



where (Z,7) is the mathematical source location and § is the Dirac
delta function defined in the usual way. It should be noted that here
the "mathematical source® is not equivalent to a "fluid source®.

In fact, i we write
Lu = —o.l[izui]i + [U‘j]i = ¥(2-Z) S(Ll—)z)

and integrate with respect to % from - to =, we obtain

z

-c:?.uE * Uy = 6(:,3-72)‘[ S(z-7)dz2

which shows that the unit mathematical source is equivalent to a linsar
fluid source, of unit strength per unit length and parallel to the = -axis,
which stretches from zZ to +eo, So, to avoid confusion, the word
"gsource® will be taken to mean "mathematical source® hence forth.

By making the change of variable y,= y-n , eguation 17 can be

rewritten as

(18) —at K], ¢ Ky, = %(2-7) By

The symmetry of K about y,= 0 and the form of equation 18 suggest
the use of the infinite Fourier cosine transform pair
Flwy = Jo ‘;(g,) cos wy, dy, ,
-]

{'(%J = -;:j f(w) cos u.):.j,o(ou

=]
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to find K . With this, equation 18 is, in the transform plane,
{19) [zK,], +wK = -1 6@z-7).

"i‘%m solution of this equation is obtained by use of the general solution
of the homogeneous equation subject to the conditions

a) /R continuous at == {

by K finite for z —> -

c) /ﬁt finite at == 0

d) K=0 for =<z, 7>0
and a suitable "jump® condition on I‘Zi across 2=%. This jump
condition is obtained formally by integrating eqguation 19 acroes the

point T :

- {re l
[z K = -z
@ [2 a]}z_‘_ z

or T+ |

e) /Ki' ]Z- = - 2a2 7 .

The homogeneous equation is a form of Bessel's eguation and has the

general solution (12)

{20) K = AT (2vF)+ BY (&vy) ,

or, in a form move convenient for the case =z<o,

~

{21) K = CI, (=) + DK (&vT).



Here J_ and Y, are Bessel's functions of the first and second
kinds, respectively, and I and K  , modified Bessel's functions

of the first and second kinds.

For the hyperbolic case (Z7>0) we use the solution of the form
20, subject to conditions a), d), and e). The first two of these condi-

tions requires that

(22) Kiz=7) = AL (32vT) + BY, (32vT) = o,

and the third that

(23) K] = -&leneewsvieeml= -5

By use of the Wronskiantt?) of Jowand Y, x),

wi{Lw,v.} = &,

we can solve equations 22 and 23 for H and B

-
A= z= Y, (2vT) ,

i

I

m 2w
B Tz I, (=2 v7)

Then the transformed solution is

o)

| K ® <
(24) K (z2) =
2’,7{1 [Yo(&f'\/f)];(%\/?)— JLK%V—S—)YQ(%"’\/E)]
x>

for ;?o;



For the elliptic case (Z7<o) we use the solution of the form 21,
subject to conditions a), b), ¢), and e). The first and third of these

conditions require that

C(zecz) = o,

D(z>7) = o,
the second condition that
(25) K(z=2) = Clz>2) I, (B VT) = D(2e ) K, (%2vT),

and the last that

~ Ir
(20) K] =-S5 [0k, (2vE) « ceon L2V = -5

Then, using the Wronskian of I ) and K,x),

WiLy, Keen} = - <
we can solve equations 25 and 26 and obtain

D(z<g) = -5 I(B&vT) ,

L4 @

Clz>7) = -5 K (%3 VvT).
Then the transformed solution is
. -n LB T ) K (B2 vr) x< ¥
{27) K(z;7) =
"é‘a Ko (BT ) I, (32 V=) £> Z

for T <O,
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Now, for T<o< 2z, we canput K into a more suitable

form than that of equation 27 by making use of the equality

oI .
— ~tPZ ‘3
Iy = e %] (ze'?),
from which we obtain

o _ - 2w 2w
(28) K(z;3) = -3 K (5 vg) T, (52 ve)

for Zz<o«cz,
The inverse transforms for the right-hand sides of equations
24, 217, and 28 are tabulated in Reference {13). The fundamental

solution is found to be

o T70, 2<% or V<
_z_j‘;' z_\/q- Z-‘Iq. P_L (1}) O(;(i)j}))
(29) Klz,y;2,%) = *
g (2T QL (-v) 7,2 ¢0

| _ -1 Y/
“sven RGP TP (Bey)  xeocs

and Q

X 1
2 “z

first and second kinds, respectively, and where, for convenience, we

where P are associated Legendre functions of the

have introduced the function

EF+ L~ %(%—;2)1
2 VI=T ViZl

YV o=

{the absolute values are used to avoid having to worry about signs).
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In the elliptic region ( ¥,2<0),-7 is unity only at the
mathematical source point (2=, y= n) it is greater than one
for all other points in the region. We can examine the form of
IK  near the elliptic source through the use of the asymptotic

expansion for Q (-v)for -o — | (M).

Q. cY) = -3lg(-F) + 0w
Then we have

(VE -V + E (g
$VEVT

K = g (87" (-27" [ Log + ow .

Now, since we are near the source, let z= T [ 1+ (—”f—) )]
with [£-1] << . Then

{30) K = lﬁmr Log [ (z-zy+ (-a* ) (y-n)] + © (——3£

Thus if |z| is of order 1, the leading term near the elliptic source
has the proper logarithmic behavior. This might have been expected
since, if 7| is of order 1, near the source we may replace the
coefficient -a'z in equation 17 with -z [1+ (£-1)], which would
lead directly to equation 30. |

In the hyperbolic region (7 >0), 7V is unity only on the
characteristics passing through the source point (¢, %), as is easily

verified with the equations of the characteristic curves. It is greater
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than 1 only between these characteristics, so the region of influence
of K for Z>0 is that region downstream of the source point and
bounded by the characteristics passing through the source point, as

expected. Now for vV near 1

P (v)= | + o (v-1) ,

3

80 we have

(31) K = -3 2" 7™ [1+ o-n] 257, V71

nzay the characteristics defined by vV =/, Sufficiently near the source

point we can put £ = g[u—(?f-;)] with (%—I) << | in 31 and the

eguation 7 =1 to obtain
o <7 or (2-7)<aVs Iyl
K =
|
“zave *t O %—:) x>%, (2-3)>aVT|y-7] .

Again this is the expected behavior near a hyperbolic source and could
have been obtained by substituting -z [1+ (?i—x)] for -d*z in the
differential equation.

The fundamental solution /K can also be expressed in terms
of K, the complete elliptic integral of the first kind. The easiest
way to obtain this representation is to find suitable integral represen-
{14)

tations of the Legendre functions and evaluate them in terms of
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-

elliptic im:egralg(w.} For example, a suitable integral for Q, (-V)

Nl

is
m

i -2
Q.é(-u)) Y~ .[ [-V + cost] " dt
which can be evaluated to give

Qyen = [ KT

_‘}
Similar expressions can also be found for P, (¥) and P, (- NN ).

The resulting expressions for K are:

(@] 0<Z,2<% or VI

-y
Z [4 2 i
" e Lyt K(V ;_}) 0<¢g <z V>

_eay gy ‘—”] K([5)) z,2<0

RiTa I-v

(32) K(z,4;2,79) =

W

2™ v+\/11‘+|
—ﬁﬂa.[V‘-H]*K([ ]) ¢eocz.

ﬁl&h@ugh these expressions appear to be somewhat clumsy, they will
be usefvl later when we consider the thin airfoil limit because the
literature concerning elliptic integrals is relatively more extensive
than that concerning Legendre functions of order -%.

We can now examine the behavior of K as the source point
approaches the origin. If we bound =2 away from —i;‘:z(«j-q)z, then as

I~ ot  J— Feo , And, since

K(k) = log 702 + O(1-k]leg[1-%1)



for [I1-k*| << ) , the leading terms in [K are

I 2 - 1 <
Zra [ 2- %(g-q)z']b“ Iocjlel > 9‘4-_((3_,1)
(33) K(z,y;e,7) =

L8

} al 21 o]
~ Za [z 7 (4-7) ] 2< 7(y-n)

kS

for &£ <<| . The logarithmic singularity for =z> 95( cj—rl)z indicates
that caution may be needed near 7 = 0  when applying the fundamental

solution K .

Application of Green's Theorem

Having obtained the fundamental solution |K , we are now in
a position to apply Green's theorem in the form given by equation 15,
We will restrict our attention to the cases where there are no shock
waves upstream of the trailing edge of the airfoil, so that the shock
relations are not needed. Further, we will assume that the slope of
the airfoil surface is continuous.

If we take the airfoll to lie on the I-axis and consider an
arbitrary field point (z,4) » where neither z nor y is zero, then
there are three general cases: 1) z <o , 2) 0¢ 2« %‘3«37“,

3) = > %_z%z .

Taking the case z< 0 {irst, we consider the two regions

R’  and R, shown in Figure 3. The region R, is bounded by

$

a small rectangle about the field point (z,4) and the rectangle with
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4

sides (g—-oo, n-—++o  T— 0-, y—=0+), and the region R, is
bounded by the rectangle with sides ({—-e, n— -0 T—0- y—0-).
in these regions equation 16 is valid, We will assume a priori that
the parts of the boundaries of R, and R, which are infinitely

distant give no contribution to the integral.

To consider the integrals of equation 16 taken about the small
rectangle (Z= 2+g,y=y+$§, 7= 2-€, n=y-$) enclosing the field point
(2,4) as shown in Figure 4, we can use the leading term in the
expansion of /K for -V npear 1, as given in equation 30, From

this we have

aVv-z

-a}Z,Kg(za‘jf»}t&)'*Z) = - z (xe) [ et - a.li:(%~q)"]_l+--~ s
V-7 2 I
Ky (2,45 7, 9q28)= - O;'_n-i (£8) [ (g-27-at2s ) +-

so the integrals ave, letting T = z7-2 N ER AR

€
. V2 8 - &
lim %?E W(z,q) [j o d7 +j i J.JZ] = u.(z,ol) .

8,8"0 -£ -

Finally for the boundary T — o- , we can use equation 33 for

K . Since we have a smooth airfoil, u and Uy are finite at
Z =0 . Therefore

Lim Tu Kk = lim Zulk, =0

g0~ Lo~

and there is no contribution from the boundary 7 - o-.
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With these results we can now write equation 16 for the regions

R’ and Rz' » respectively, as

ulz,y) - f_“[u,(z,m) K (z,4;7,0¢) - u(z,00)K,@y;z,00)] dz
= 0O

_[“ [ u,(3,0-) K(z,4;7,0-) - urg,0-) K, (2,4;7,0-)]dz = ©

But K and K, are continuous at -0 if y+o0, and, from equation 5,

u,(gor) = £ S$"(Z) , so combining the two above equations we have

(34) wiz,gq) = z] S“Z)IK (2,4;7,0)d7

for the streamwise component of the velocity perturbation for =z <o.
MNow if we let z- o0-, then -7 — and
-

IK(z,%;Z,O) —> —-.f; [‘Z*(%‘f‘)l} .

Therefore from equation 34
- ' ° “ ayr -
(35) . uloy) = ulomgqy= -& [ S'@y[-c+@Er) 4z,

since W is continuous at =0 . As y—>o we have, from eguation 10,

> dz = Ma
(36) ~éf S FF T GEomMn

-

which is used to determine X .
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The second case O< %< (‘1%-")z is that in which the field
point (z,q) is in the hyperbolic region, but ocutside the region
of influence of that part of the airfoil lying in the hyperbolic region.
For this case we take the region R; shown in Figure 5, whose
boundary is formed by the line T =¢ (£-0) and lines lying just
upstream of the characteristics passing through the field point (z,4).
For this region, equation 16 is valid,

The equations of the characteristics passing through (z,4)

are the solutions of the equation +/ =1, which are
(37) 7.(8)= y*2[vi-vyl ,

where the * refer to the down-and upstream running characteristics,

respectively. From this we find

S +__aVT
"t T Viea g s " T VT+a'T

to be the components of the unit outward normals to these characteris-
tice. Then that portion of the integral of equation 16 taken along these
characteristics is

(F=%")

(38) f { ",/—————T‘}:,,%[k(iuj;z.m)u,fzm) = Ky rys T ) w(zme) ] #

(Z=g)

avy p
imllk(i,‘ﬁiz:’?:)u,(;’ﬁ)' kq(i»q.'?,’?x)u(tﬂh)]}"(% .



The terms in the square brackets can be written as

[}sz_? (71%)] * [ IKlj_;l (T’%)]’zﬂu :

kg /)

Also, from equation 37, we have

avy

" 1+a*7

o ‘Q_,

N
4l

T

1

w

m‘l,
~X

!

al®

80 we can write the integral 38 as

(F=2-)
' 1 J u 4
{39) ma ) VT K () do, .
=g

Sy My

Now, for v=1, P, (v=1 and IK=-z, =" 7 " Withthis and

the preceding equation, equation 38 is equal to 3 u (2,4) .

The integral along the boundary at = € is

7,(8)

{40) e j [ K (zyie,m) ug (e) = Ky (2,45 &) wee,y) | Aoy .
L)
If 7 is not within a distance of order €% of 7,¢) or 7 &) ,

then for € << | or 2-(38) we have v >71 , and from equation 33

Koz = =g L2 FeyqrT™ ey e v ooe

I »n iscloseto 7, () or 7 () , K will be at most of order
e-"" . Therefore, the first term of the integral 40 is zero in the

limit € —+>o0 , since U (o,7) is assumed to be finite. For the second
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term, if % is not within O(g")of 7.() or 7 @), then

e K, (rie,n) = —gm [2- §@- "
While if % is near »x,() or 3 (¢) » alKr(z,u&;z,n) is at most of
order £ *. However, since this neighborhood of 7,@® and 7. @)
is of order &"* , this singularity will contribute nothing in the
limit &£- o . Thus, in the limit, the integral 40 is

4R VE

-2 i wory) [2- g 1" d
Since w is continuous at 7 =0, u(o+,n) is given by equation 35,
with which the above integral becomes

'j"i"fi o-
¢

e [2-Ecy-n1]™ _s'@) [-z+E9] "dzdy .

-2
a

Interchanging the order of integration, we have

»w

—z,j S"(Z){“u'm[, [(n,cos NN = 7.@)(7 + i 2VZN - V?)]Jn}c’

“aVe

(15)

But the term in the brackets is just

RPN 2 ny) Y, + vﬂ V2
—E ey e K (L= T) s

where ,= V(y=0). Thisis /K(z,y4;Z,0) for T<o<z , 80 in

the limit & — o , the integral 40 is

o~

~zf s”(2) K(z,4;%,0) dz.

— oo
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Then, collecting the above results, equation 16 applied to the

region R, gives
(41) wezr,) = 2] s"@) K(zuiz,o)dz

The final case = > (%%)z is that in which the field point
is influenced by at least a part of the airfoil lying in the hyperbolic
region. For this case we consider the two regions R; and R; as
shown in Figure 4. The boundaries are the same as those of R;
except that the region is cut to exclude the T7-axis.

We can use the same arguments as used for R; to write
equation 16 for the regions R, and R, as, respectively,

et
w(z,y) - f [ @) K(2,4; 7,0¢) ~ u(z,0¢) K, (2,4;%,0+)] d T ~

o+

MN(0)

"ZL s‘@{ - [ [ope-po-1.0)(n 2V \(7-i 2T Ay bt -

-z EME-IT w(E-I1IT, o) = 0,

-1
_/ L S”(Z')}K(ii‘j; Z,0-) + u(g,o-) )K,[ (z,gj;g',o-)] dz -

o+

o- °- -
~2 ] swfs] [ mornen(re i 2ee - 2T by} des
o 1.0

+ 22 vt w (w1 @) = o

The integrand of the double integrals is continuous at n=-o0, as are

w, K, and K so combining these two expressions we have

” k]
[ve- 18811

ulz,gq) = 2 -[.,e s’ @) K(z,q;Z,0)dZ
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Finally equations 34 and 40 have the same form, 80 we can

write

2] "7y K(z,y;%,0)dC z< (P

{42) LLCZ:,L&) = LVE- I29]"

2/ "I K (zy;7,00dT 2A(E) .

-

It is of interest at this point to consider the singularity which
would have arisen if we had used the perturbation potential $ instead

of w . The linear equation in terms of P is

—a =z quz + 95.” = 0.

Now let % be the solution of

(43) —atr e, t F,, = S(2-7) S(y-y),

and ‘/"52 , of

) z

(44) —alr A, r R, T Syn) f 8(2-7)dz ,

both subject to the boundary condition that V<% — 0 fay upstream of
(Z,7) . Then < is the solution for a unit fluid source and &,
is the potential corresponding to K . From equations 17, 43, and

44 we have the following relations:

(45) + =K , - _= < .

Zm
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Now let us assume that the potential < for an airfoil y = Sz) is

given by

2] S'(Z)C?%(i,«j;z.O)AZ z< (7
+ =

Dve- 1341
sz S'Z) < (2,y5z.00d7 2> (F) .
Then, for =< (%“‘)1 » we have
a—

w = <#z= 2,-[ S’(Z)q%l(z,%jZ,O)JZ.
But by 45 this can be written

w = - zj s’ @) /K;(i.a; 7,0)d Z,
or, upon integrating by parts,

W = =2 S‘(Z)IK(E,LX;I,O)‘ * z,f s'@) K (zy;z0)dT.

Then, with equation 33, we obtain

6-

(46) W= 5'3(19) [(2)- %]’V‘ r 2 j s"(z) K(=,y4 z,0)d¥

for =< () . For 2z > (2)*, by the same procedure we have

W= oy = 2 S (EIRIN[O-18) # (2406 1%4T50) -

ve- 191

=K (=,q; FE-121T50) ] + 2f S"@)K(2,y4; z,0)d T .
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We note, without proof, that

* (z,q:[E-12150) = -5 =27 [ve- 197"

Za

(this was found by solving equation 43). Then, with eguation 31, we
obtain

[ve-1231°

(47) w = Zj S"(z) K(z,y; 3,0)dz

-
for = > ("—5’2‘):t . While equation 47 agrees with our results (equation

42), equation 46 has the extra term
’ s -
= S [()-=]",

T
which is singular at the limiting characteristic == (c—}'ﬂ) . This

{9)

singular term is analogous to those found by Royce'’’ in his treat-

ment of the axisymmetric problem.

Results on the Airfoil Surface

In general, equation 42 cannot be integrated in closed from
for an arbitrary field point (2,4) . However, in practice the
results on the airfoil surface are of greatest interest. Since the
airfoil is thin, the solution on its surface is found by letting y—o
in equations 32 and 42, The fundamental solution K for y=%=0

ig
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0O T>0, 24 %
- 7o = K (V- 2>%>0
K(z,0;%,0) =
| S 2w
T 7 )R K(T;—J) I
! N 1 1
~ o ® Vit K(VH-E) 7ozt
where ¥ = )—-;Z;I and w-+ —g « Therefore, on the airfoil
-h ” 1" L _lh Olt
—ﬁi(—i)_LQS(I)K(ﬁ;) e <o
= 2 o [ oy 42
{48) w(z0) = -~ % {j”S(Z)K(m)\/:TE +
z
+ / $@@) K(VIFE) d ¢ 2>0.
ot
This can be put into an interesting form in the following way:
if we define k by
=V~ m*
k = [ +Vi-m*
for osm«l, then(ig)
Km) = (i+k)Kk) .
: 2w’
in the integral in equation 48 for %<0 weput m = ,,,L:, y which
gives
w w4 |
k =

gl-
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Then changing the variable of integration to k we obtain
i
3 4 1 1 H
{49) u(z,0) = —T—r‘%(—z)“f [kS"=K)r &S ({—;)] Kk) dk
=]

for =Z<o . Inthe first integral in equation 49 for z2>0 we
i
change the variable of integration to k= Vire and in the second

integral, to k= VI-§g , to obtain

u(z,0) = — % z”‘jo [ k S (2-210) + —L-z S(z- %i)] Kik) d k

Ta

for >0 . Thus, we have expressed the sclution on the airfoil
in similar forms for z <o and z >0 . The latter equation is

more interesting than useful, however.

Power Series Alrfoils

If we have an airfoil whose upper surface can be expressed
as a power series in z {i.e. all derivatives are continudus on the

airfoil surface), then we can write

¢
S M(O) n
nl! Z

Se) = [H(zﬂ“d - Ho-=2-0] g:a

where H(x) is the Heaviside unit function, == -X is the leading

(]

edge of the airfoil, and S'(0) = fg—;.. S(i)}z:o . Then

S"@) = S'(—i) D (z2+x) - S 1-%) S (1-2-%) +

n+2)
SWZ(O)

+ [ H(z+x) - H(l—z-i)] i:: nl z

n=o
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From equation 49, the pressure coefficient on this airfoil

for =z<o0 is

KG-F) +

p ns2) i ne
P& ocay 52 L T R dk -

- n!
Ta n=o o

&
i

Al
wh
0
|

-

(50) C,

+ f K72 Kky ok

-2/%

We now define the function G, (x) by
] I
G, x) = f K™ Kk dk + f K72 Kk ol k
o X

for nzo and o0 <x<¢ 1 . Inthe Appendix G, ) is shown

to satisfy the recursion relation
(A, 6) (2nr1) G, 0 - @RnY G,_x) = X[ Ex) + 2n0-21Kw ] ,

which gives

G, xy = —:;E(x) , ETC.

With these definitions, equation 50 can be written

. gy |
(51) C,@ = - S;.ﬁ K(varz) + £ " 2. o =G, (ER)

Ta =

for z<o0 . Inthe Appendix it is further shown that, for X <! and
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T -t ! X
{A. 8) C’n x)y= =z X D‘H)[ Znet T Fan-n ¥ }
and
XZ
(A7) Koy = Z [0+ g+ 1 .

Then, if we put ]%} << | 1in equation 51, which is equivalent to letting

the field point z approach 0- , we obtain

2 r S'%) v 2 S0 "
(52) Ce = &l &= * X7 Z, n!(m-‘—)(“”] -
’ {(n+2)
oz S (-%) S S T w7y,
T2a X [ X7 :‘:.‘:D nln-g) 5% ]

The first term is equivalent to the integral in equation 36, and the
second term assures us that W, is finite for =z—-o0-,

For the case z >0 , we have, from equation 48,

i LAV - A
Com) = 5 S&X) [2+%7" K('\/;ﬁ) +

S(hv&)

(-4
=iy = ©) ’—L—‘____. ci{
+1}L§;z' :z_;o n {[x E"K(\/ug)m +

2

+f 2 Kvire) dz ),

(-]

or, with € as the variable of integration,
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+

{53) C.) = 4= Stx) [2+3)" K(VZ5 )

wix

(n»i}
y) S
2

8 0y = ©) n n 1 45
@ 2L, T w2 {fo ENC D
i

cen] ekemE)de .

+

We now define a function H, x) by

- b ooty dE L
Z .{x g K(\/l+§ ) \r——v‘+§ h<-z
H,x) =

x i
1 v 5 ren [ v kemRidsl o

In the Appendix it is shown that H, ), defined in this way, satisfies

the recursion relation

(A.12) znr1) Hooy + Y H o) = x"Virx [E(\/,—':;) +2n K(v‘j‘—,,‘—;)].

Thus

Hooys Vieg Elg=) , H, 0= VX [E(7=)-Kgz)], ete.

"z

Then we can write equation 53 as

(n+r1}

Sh ", b ©) " x
{54) C,@) = & Stx[zrz]” K(\,g‘i &3 5 o H(R)

(-]

for z >0 . Inthe Appendix it is also shown that, for n = 0,1, 2, ...
and x>1 ,

! | i
Intt = W x T ] s

(A.13) Hox) = T xm7]

) ] . 1 _-h L
W;;'K(ﬁ;)—fx [1-& + 1.
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Therefore
¢« (ned)
_ oz sen a2 S™er oy
CP - a [ x> + X nz=o n! (n+x) =x) 1
; (n+2)
[ P S'(-x) iy <A S ®) - n
- = + - FR—
Za X o+ 3R ST O]
for %‘ L1, ®%>0 . But these two terms are the same as those

in equation 52, so we have ascertained that

Ll

and

u, are

continuous at the origin {sonic point) for the power series airfoil.

The drag coefficient is, from equation 12,

C

o]

o -X
= Zf_ Co@) S'(z) dz + 2_[ C, ) S‘@ardz
-X o

The first integral is the contribution of the subsonic part of the airfoil

and the second integral is that of the supersonic part.

(o9

can be used to find C,

iIf we assume

to be constant, rather than slowly varying, then the above results

in closed form as follows:

For the subsonic part we have, using equation 51 and the series

for S’®),

S=x%)

8

T

(-]
Zf_i Co) S'@) dz =

mzo

" f i S(waﬂ)(o) S(nrx)(O)
+ T—r:- mzo M=o M! Vl\. -%
or, putting k=V-z/x ,
° oo
7 16 _v A7 _
Zf_ Ce@) S'aydez = 7 X SR Z
-X
o 2 € ) [t e W]
" 32 ;_(3& f: Z g ©) S ((=)]
Ta mzo h=o m! nl

m!

(»m)

m!

-x

S(m«-n

S0 [ ek de

-X

o
/- 2"yt G, (V=27 ) dz

©) X )n

[ di -

i
)vn-n\j kl(mrmﬂ)(;“d() ol.k .

o
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The integral in the first term is just G, (1) . Forthe integral in

the second term, we integrate by parts to obtain

[G.u) + G,.]

[ e e adk = g

Thus, the contribution of the subsonic part of the airfoil to the drag

coefficient is
-4 SCMM)( )
1 1 ¢ %o o
(55) 2_[ C,x) S @dz = = XUsen) X4 —— -7 G, ) ¥
‘i mTo *
S(mrn(o) Slnn.so) o
M’ x> :A:DLZ.O il (mens 2) (- X) [ G, + Gmu)],
where G, 0) is givenby
@nri ) G, ) - @WG,, 0 = .
For the supersonic part we have, from egquation 54 and the
series for S'(=)»
X oo S(.wwn(o) =X
<3 ‘o m
e S('x) Eo m! j K(I{;:-' z+‘

i-x
2,_[ Coa)S@dz = 75
o
PO S(Mﬂ)(o) Stmr)._)coj =X . _
DA — R U e IES

'n‘a. mzo M=o

or, putting § = 3
=X g P Sﬁmu){) o 3
’ . i el - -{m+ |
2 L Co» S‘@dz = xSty :Z.;o X7 j_ig * K(\,ﬁg)v-‘flﬁ%
s ST S o) R R
e e B STRSTO g guen [ Bl ) ds
=



The integral in the first term is

-2 H(W,) ( ,—_Z,-;) , and the integral
in the second term is found, upon integrating by parts, to be
-(\n+m+z) = ! tmmv X
\/_;: 13 H.s)dg ntm+3 [(» x) ( ) (m+3)(‘-
Thus, the contribution of the supersonic part of the airfoil is
1-X , " y , o S(mn)c ) - 7
Zjo CP(%) S (})42 =7 Ta. X S(_i) .,}E-, m! X H—[m#%) (T:.f) -
(m+ Cﬂfl)
{56) o & S ) S (o) - _L
T ;ogo m. (V“’WH'?) (—l) [ -tm+3) ) -
=g \"rE X
- (_:)Z—) Hn (T-:'( ) ] .
The total drag coefficient is then the sum of equations 55 and
56:
6w . 0o S(Mfl)(o)
C, = 7o X' { sex) -x)"[G,0) - -ITH W)(‘_—)]+
oo oo S(mh)(p) S(m—l
{57) + % MZOE,

m!nl (M*hf—?’i) ('7_(-)

H, (=) }}

No attempt has been made to prove the convergence of the

"G o+ G0 -
m X -X nemed X
-, L (5R) e ()

various sevies appearing in this section, since, for any practical

problem, only a finite number of terms will be used to approximate
any smooth airfoil.
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Determination of o

Discussion of the methods of determining o has been
delayed until now so that the form of the solution of the linear equation
would be available. If, in keeping with the linearizing assumptions,

a is taken to be constant, then we must have a reasonable
method of finding the best value of a . From the viewpoint of
simplicity, the suggestion of Reference {4) appears to be best.
According to this suggestion, the acceleration u,, measured at
that point on the airfoil which has the minimum pressure in incom-
pressible flow, should be used to find a*. The reasoning behind
this suggestion is that below the lower critical mach number the flow
will then be subsonic and will be described by the linear subsonic
equation. This method is illustrated in the next section for a parabolic
arc airfoil.

If the pressure distribution on the airfoil was reasonably linear,
then taking a to be constant would be fairly accurate. However, if

S'-X) is not zero, then we see from the first term in equation 48
that the pressure is infinite 2t the leading edge since K has a logarith-
mic singularity for unit argument. Hence, the pressure distribution is
not nearly linear, and therefore no constant value for o can be

expected to accurately describe the pressure distribution over the

entire airfoil; particularly near the leading edge.
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The use of local linearization greatly improves this situation,
since o is evaluated locally for each point on the airfoil surface.
Since -a’'z replaced |-M_o - (¥+I) ML u  in the small perturbation
equation, we should replace -a'z inthe solution {e. g. equation 48)

by [-Ma-Or1)ML u and then solve the resulting equation for W,

- |~ Moo
In general, X will be a function of XML >+ 8O the equation

may be difficult to solve. However, if M_ =1 or if the sonic point
is determined by a shoulder on the airfoil, then X is independent
of o andthe equation for w is easily solved. For example,
for M, = | /. we see from equation 48 that the solution of the linear
equation is proportional to f; on the airfoil. Therefore, if we

take u_(2) to be this solution, we can write
v
[rryu]  w = aViEl u,@).

The right-hand side of this equation is independent of o , hence u
is easily obtained once u, (2) is found.

The above method of local linearization does not exhibit the
mach number *freeze" phenomenon {i.e. dM/dM_=0 }for M =1 .
If we replace ?a‘ 2 by I-Mo-(+OMZ w  in du,/dz, we have,
for X fixed,

. ! du,
[1—M,°~(Y+|)M:u}{1% T aVizi 17 ,

the solution of which does exhibit the mach number "freeze®, However,
this solution is less accurate for M_.=1 than the one above, and

canaot be evaluated in a closed form, so it is not used in this paper.
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11l. EXAMPLES

Parabolic Arc Airfoil at M. = |
The parabolic arc airfoil is described by the equation

S(z) = IZT’(zq—i)(]—i—;) -X & R I-X

where T is the thickness ratico. Then

S'ey = =27 (1-2x-2%) [H(z+x) - H(i-2-%) 1

S"z) = -4t [H(2+) ~H(I-2-8)] + 2% [ $(2+D + S (1-2-0)] .

From equation 36 we find

o
dz 27 .
" a4 i = - ol —
‘L S (z)\/:_g__ = BT X o}
for M, =1 . B0 X= QL_ and the sonic point is at the quarter

chord line., From equations 51 and 54 we have

22 | K(aver) - E(zv )] 2co
{58) CP&): . |
Ta [\/Té?T K(WEs) - vaeri E (V22 270 .

If we assume a to be constant and follow the suggestion
of Reference (4), then we must evaluate u,; at mid-chord since the
pressure is minimum there in incompressible {flow. Since CP =-2u,

we have on the airfoil surface

1 [ KWE) - v E(WE)]  #7e.

- 8T
W= 7 Fa dz



Then, using the relations

d G 1

5 KOED) = Z[e(aER) -wn KIVE)DT,

e SFET \ T

EAE[ ‘-r—ﬁ—t):ﬁq-%,ﬂ[E(E??)—K( %‘I)]’
we find

u, = ;’_—r% [4-2--0—!]-‘/2 E (‘Vq_%’;) 2>0 .

Thus, at the mid-chord point (2= ),

N 8V® EN _ al
ug(2=%)= —=% E(F) = 5 >
or
a = (‘(-H)V‘3 23 [‘S—T\-'-F{E(\L;——f)]”s = Le9% (‘(H)'I3 2",
Finally, we have
3.0l [KQVE)- E(avT)] 220
(59) @r)? e c, = C, =

3.0l [v*—;"———-;; K(\/%)— Ve E(\/—E—i,ﬂ

220
on the airfoil at M_=|. Here we see that the solution obeys the
éraasamc similarity rule at M, =1 . With a constant we can use
equations 55 and 56 to find the drag coefficient. The contribution of

the subsonic part of the airfoil is

o
4 —- ev——
zj_ C@ Sardr = Fr
-X
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and the contribution of the supersonic part is

i

-X
’ brtr 2 )
zfo Coy Sardr = - == [ % H_%(-%) - % He(3)- 498 W21
= 3.21 £ (g7

Therefore, the total drag coefficient is
{60} @+ e, = Cp = #.9s

and again transonic similarity is observed.
Now we use the local linearization approach instead of
assuming a to be constant. If we take (,(®@) as given in

equation 58 tobe C, , then, as outlined'in the last section,

we have, for M_=1,

8% 7 [ K avF)- E (2vF3)] 240,

[t}

) (- u)

J

o o [ KUEER) - v EGE)T 2o

(YH)II1 u.3h
From which we find

8 3
ﬁ'ﬂs(*i)3[KL1Vf¥)~E(z\f:¥)] 240,

(61) Co2) =
- 2 = KWEE) -veen E(WE)] woo

v 42+

The drag coefficient is found by numerical integration to be

{62) C = 4.58 .
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The pressure coefficients given by equations 59 and 61 are
plotted for comparison in Figure 7. The results are in close agree-
ment on the bsup@rsrmic part of the airfoil, but are considerably differ-
ent over most of the subsonic part. This discrepancy is directly
related to the breakdown of the linearizing assumption at the leading
edge of the airfoil. Sufficiently near the leading edge, the leading
term of K(2VF) is 3 103 T,«,‘T} » 80 the leading term in C,,

as given by equation 59, is

CP = I.§ Loci ;‘;’;"‘ o = 1.8 Loa —;Z oo,

while the leading term in C, , as given by equation 61, is
C, 2 37 [logt 1+ -

In Figure 8, equations 59 and 6l are compared with the results
of References {5) and {7) and experimental resulis from Reference (16).
To the right of the sonic point the four theoretical distributions agree
fairly well with each other and with the experimental data. The
discrepancy between experiment and theory near the trailing edge ie
probably due to separation of the flow caused by boundary layer-shock
wave interaction. Forward of the sonic point the results are in consid-
erable disagreement, except for the distributions of equation 61 and

Reference {7), which are very close. The experimental data are
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probably in considerable error near the leading edge due to the
experimental procedure, in which the airfoil was simulated by a
bump on the tunnel wall and hence was immersed in the wall boundary
layer. A better experimental precedure would probably produce much
better agreement between experiment and theory.

The drag coefficients C_ as given by equations 60 and 62
compare fairly well with the value 60 = 4,77 obtained in Reference (7).
The corrvected experimental results contained in {7) show these three

results to lie within the experimental scatter.

Single Wedge Airfoil at Mo =1

The upper surface of a single-wedge profile is given by

r(Xx+2) —i'<24"i~i
Se) =

g_z‘_ 2> %-x

where v is the wedge semiapex angle, to the ordey of the thin airfoil
theory. Equation 36 places the sonic point at the shoulder, 80 X= 3z .
The presence of the shoulder invalidates the equation for the pressure
distribution for 2% >0 . However, if we are only interested in the

pressures on the wedge, we can proceed as before. Then from

equation 51, we have

vz .
{63) C, @) = 4“_7:: K (V-z3) _t<zco




Now this is obviously a very poor approximation to the actual pressure
distribution since, for =z-— 0-, it gives Co — 2VZ t/a , which
is non-zero for finite o . This result is due to the fact that the
linearizing assumption breaks down near the shoulder,

However, if the local linearization technique used earlier is

applied to equation 63, a fairly accurate result is obtained. We have,

b

for M_=1,

[-aenul]®u = - 2% vE Kevere)
o
(64) C, = [+ vFK( =57 .

This result is plotted in Figure 9. Also shown in the same figure are
the distributions from %ef@r@ﬂces {7) and {17) and experimental points
from Reference {18). The results due to Guderley and Yoshihara(”)
are usually taken to be the exact solution for the wedge at M_ =1,

although some approximations are made in the numerical calculations.

As can be seen, the present resulis are somewhat too high except

near the leading edge but agree very well with those of Reference {7).
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Ewvaluation of Ceriain intggrals

The function G, )  is defined by
(A1) G.ooy = | KKK dk o+ [ K K di
(-] X

for nzo, 0<x¢1 . From Reference (15) we have

f}; Kky = —,}@ [Eca-X K],
(A, 2) N
FER = £ [ER-K®&T,
where k'= Vi-k? and E (k) is the complete elliptic integral

of the second kind, Then we have

fr\& [K"(Ed-K*KK) ] = Gnen) KKK + 20 K [EGI- KK,
A n n- n-1
GLK"E®K] = (ane) K ER - K7 KK) S

and, upon eliminating K" E(k) from these expressions,
(4.3) S [ K" (E®- [ 1KTKE)] = @nn) KKK - (2] K KA.

We integrate this from O to | to obtain, for nzo ,

{A. 4) 1= (znm‘J K KGK) d k '“"’1], K™ K dk .
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If we substitute -n- 3z for n in equation A, 3, we obtain

S LK™ (Bm +znk k)] = @al K" K do =~ (ne) kK
and, upon integrating thﬁs from x to | ,
(A. 5) b= X" [Ewx) + zn-m K] =

G [ KK Ak =m0 K dk

for 0<x<¢1. ¥Finally, taking the difference of equation A. 4 and A, 5

and using the definition A.10f G, (),

-n+ 1)

{A. &) (2n+\)lG,“ x)y — @nY G,., Xy = X [ Exy+ an (-0 K]

for nzo and o< x <1 .

For Ixl1<1l we have the following series for E ) and
K) {15),

Eer= Z[1-5x-&x---1,
{a. 7)
Kx) = 1;[|+&x1+§;,,x°‘+—--].

Substituting these into equation A. 6, we obtaln for o <x< |

- on+i
(2ne1) G )= Rn) G, ) = g X~ @) [(Zn+1)" G ST 1.

MNow, if n=o0,1,2,..., we find by induction that the leading term of

- .
G, for Ixle<<l is Fi’::"&?n XA Thevefore, we can



4G

eliminate G, _ (x) term by term to obtain

. . ks - (x ) ! - ! z e
{A. 8) GHLX) = Zz X w [an\—\ F(xn-1) * M ]

for n=0,1,2,..., 0<XxX<|

The function H,_(x) is defined by

-—f ¢ Kigs) & pe-t
H,x) = ;
{f g" K(V—,;g)\m’—gﬂ + =" L 13 K(\ﬁ:'i)clg}

nszo.

In the integral for n<-%i and in the first integral for nzo0 we make
the change of variable k= ﬁ.‘::g » and in the second integral for n2o0,

k= Vi€ . Then we have

i

+n

Vi¥x
-j; e Kk)ydk n<-3

{A.9) Hn Xy = K 2 !
/| e Kk)dk pe [ KKK AR nzo .

Vi+x

Using equations A. 2 we have

d’ 7 2Un-y) k/ln
My (AN
S LK K" Ew)] = -2n o E®) - e KK,
d L ) ¢ 2(n-1) k/z”
G [ KK K] = (Sem E®) - 20 jEmm KK -
12{n-1)
—zn X Kk,

klh
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and, upon eliminating £E(k),

kl Un-1)

/ln

(.10) -3 | Smm (B0 v 2nK0)] = Gren)’ o KK + @A) o Kb,

Also, using equations A, 2,

12n

12{n-)
n K
L [K™EX] = [Rarn)K - 2n] El) - 5 ko),
d' 12 2l )
Ik L (2n-1ans1K*) K "K(k 1= -[annkK —xn} Ek)+

F K+ nnd KKK - @al kT K

the surn of which is

[ klln( Ek) + [an- (ans) K'* ]Kl)c))}

s

Enr ) kK™ KK) - @n) kK 5 Kk .

Integrating this expression from Oto | , we obtain

f'kK(k) = |

o

{A.11) 1 I 2
(znm‘f k k'™ K (k)dk -(m“j k k" VKk)dk =0 nvo.

» s s i
Now, if we integrate equation A.10 from T te | for nzo,

we obtain

I Un-r)

(Z.VH—!)f kz(nﬂ) Kk)dk +(2n)_[ K 2n Kk)dk =

+X

X

<"ViEx [E(A=) + 20 K(G=)]



for n >0 , and

1
i i
Jo mKbde = v EG) -
Virex'

for n =0 . Then finally, adding this to equation A. 1], we have

2 LY n
Enr ) H,x) + (2n) H“_l(X) = X Vi*x [E(\—/—,:——.;;.) +2n K(lﬁ)]
for nz o . If we integrate equation A. 10 from O to \/-l-—l;—;

then we again obtain the above equation. Therefore

for n 5"'2— ’

(A.12)  (2ne) B0 + (el H, 0 = X'VEx [ E(GE) *2n K(gg) ]

For \7;’1“? < ,» the series A, 7 are convergent, so for
X > 0 equation A, 12 can be expressed as follows:
ks n An-1
(2ne )" H, 00 + @) H,x) = 7 x VIRX [ (an+1) + Oy
¥ x>1 , then the series
i 1
Viex = x [y 37 +-7] ,
{ - \ i
+x - X " xe "
are convergent. Therefore we can write
i VH-L bn+l N
(2n+1) H, ) + (2n) H,, x)= z x * [(lm-l) *oax v

]
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for x > 1 . The convergence of the series follows from the double

series theorem. Nowif n=0,1,2,... , then by induction the

leading texrm of H, (x) is I z:m x"*= » and therefore
ntx ! RS ..

{.13) Hh ®x) = IZE xE [1n+l Y ¥(am-) X T ]
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z= =X z=0 z=1-X
x=0 x=% X

Figure 1. Coordinate System of the Linearized Problem.

Figure 2. Characteristics of the Linear Equation,

mY
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Figure 3. Regions of Integration for z < 0.
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Figure 4. Path of Integration About (z, y) for z < 0,
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2
Figure 5. Region of Integration for 0< z < 6??‘22) .

mv
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Figure 6. Regions of Integration for z > (EZY) .

ey
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Figure 7.
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Pressure Distribution on Parabolic Arc Airfoil at MOO= 1
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Figure 8. Comparison of Theoretical and Experimental Results for
Parabolic Arc Airfoil at M = 1.
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Figure 9. Comparison of Results for Wedge at M =L
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vi. NOTATION

Some of the symbols have been used in several different contexts.
in this case, the page is given on which a particular meaning is first

used or best illustrated.

H constant of integration
o streamwise acceleration constant
as used by Oswatitech p. 2
as used in the present case p. &
constant of integration

C constant of integration

drag coefficient based on freestream conditions

- [MZ(v+)]7

D 2'5'/3 =3
pressure coefficient based on freestream conditions

(M2 (ye) ]
T3 P

ol

constant of integration

complete elliptic integral of the second kind
2. 71828. ..

function p. 3 -
vector

arbitrary function

(Ma—1) <’£xx

function defined by Eq. A.1

1

arbitrary function

I O

Heaviside unit function



wblin

function defined on p. 34
modified Pessel's function of the first kind
Pessgel's function of the first kind

solution of the linear equation for a unit mathematical
source

infinite Fourier cosine transform of K

solution of the adjoint equation for a unit mathematical
source

modified Bessel's function of the second kind

streamwise acceleration constant of Maeder and
Thommen p.2

complete elliptic integral of the first kind p. 18
variable (always defined as the argument of K or E )
operator e[0T, ¢ Oy

adjoint operator to L

local mach number

freestream mach number

summation index (0, 1, 2, ... ) p. 35

variable p. 30

summation index p. 31

arbitrary real constant p. 32

unit outward normal vector to X

components of n

Legendre function of the first kind

Legendre function of the second kind

region in the (2,y) plane



Scz)
S'( 0)
T

=<1

-~
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radial coordinate in axisymmetric flow

airfoil shape in (2,4) coordinate system

[ %én Stz) ]1-:0

airfoil shape in (x,y) coordinate system

Z {or X ) - component of the dimensionless
perturbation velocity

- component of the dimensionless perturbation
velocity

Wronskian

dimensionless coordinate oriented along the free
stream velocity vector ( x= 0 at airfoil leading
edge, x = | at trailing edge)

variable p. 31

sonic line in (x,y) coordinate system

Bessel's function of the second kind

dimensionless coordinate normal to x~-axis

y-n

X - X

ratio of specific heats

Dirac delta function p.1l

arbitrary small positive number p. 21

arbitrary small positive numbeyr

z = coordinate of source point

y = coordinate of source point
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Ao (¥+1) M, A,
y 2+ 2§ (4’
R NTETVI Y
v, V(n=0)
E variable
[% pe 30
—i— p. 36

™ 3, 14159. . .

= boundary of R

airfoil thickness ratio
perturbation velocity potential
fluid source pétenﬁial
potential corresponding to K

infinite Fourier transformation variable p. 12
\/% p. 30

\4 operator r

S A T

Q.
Wl
+
e
810

Subscripts

( )i refers to down- and up-stream running
characteristics



3,

4,

5.

8.

9.

10,

1L

iz,

-63-

REFERENCES

Messiter, A.F.: Expansion Procedures and Similarity Laws
for Transonic Flow, OSK TN 57620, September 1957,

Guderley, K. G.: The Theory of Transonic Flow, Permagon
Presgs (1962).

Oswatitsch, K. and Keune, F.: The Flow Around Bodies of
Revolution at Mach Number l. Proceedings of the Conference
on High opeed Aeronautics, Polytechnic in&txtme {}f Ersaklyn,
pp. 113-131 {1955). Lo7a :

s ,= <

Maeder, P. ¥F. and Thommen, H. U.: Same Resul&a ei Linearized
Transonic Flow about Slender Airfoils and Bodies of Revolution,
Journal of the Aeronautical SCiences, Vol 23, MO, 2
pp 187 - 188 {February 1956).

Maeder, P. ¥, and Wood, A, D, : Linearized Transonic Flows
Past Isolated Non- Lifting Airfoils, Brown University, Division
of ngineering, lechnical Heport WT-24 (1957).

Spreiter, J. R, and Alksne, A. Y, : Slender-Body Theory Based on
Approximate Solution of the Transonic ¥low Equation,

Y A A PN 60 )

Spreiter, J. R. and Alksne, A. ¥. : Thin Airfoil Theory Based on
Ap) raximate&alutzon of the Transonic ¥low Equation,

Alksne, A. Y. and Spreiter, J. R.: Theoretical Pressure Distribu-
tions on Wings of Finite Span at Zero Incidence for Mach
Mumbers MNear One, NASA T8 R-88 (1921}

Royce, W. W.: Transonic Flow Over a Non-Lifting, Slender BDody
of Revolution, California Institute of Technology, Luggenheim
Aeronautical Laboratory Thesis {1959).

Courant, R, and Hilbert, D.: Methods of Mathematical Physics,
Vol. 2, Interscience Publishers (1962).

Courant, R. and Hilbert, D.: Methods of Mathematical f?hysxcs.
Vol. 1, Interscience Publishers {1953).

Brdelyi, A. ot all : %}i%h@r Transcendental Functions, Vol. 2,
Che 7, pp. 1-114, McGraw-Hill Book Company (195 3).



13.

14,

15,

16.

17,

18‘

bl

Oberhettinger, F. : @belian zur Fourier Transformation,
Springer Verlag (1957).

Erdelyi, A, et al. : Higher Transcendental Functions, Vol. 1,
Ch. 3, pp. 120-181, McGraw-Hill Book Company {1953).

Byrd, P.¥. and Friedman, M. D.: Handbook of Elliptic
Integrals for Engineers and Physicists, Springer Verlag
H"’?g%).

Michel, B.,, Marchaud, F., and Le Gallo, J.: Etude des
Ecoulements Transsoniques Autour des Profils Lenticulaires,

a Incidence Nulle, ONKRA Publication No. 65, 1953,

Guderley, K. G. and Yoshihara, H., : The Flow Over a Wedge
Profile at Mach Number 1, Journal of the Aeronautical
Bciences, Vol 17, no. 1, November 1950, pp 723-735.

Habel, L. W., Henderson, J.H., and Miller, M. ¥.: The Langley
Annulary Transonic Tunnel, NACA Rep. 1095 (1952)




