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ARSTEACT

The structure of laminar diffusion flames is ana-
lyzed in the limiting case of large, although finite,
reaction rates.

It is shown that the chemical reaction ta! es placé
only in a very thin region or "chemical boundary layer"
where convection effects may be neglected. Then the
temperature and mass fraction distributions within the
reaction zone are:obtained analytically.

The f1ame position, rates of fuel consumption, and
temperature and rconcentration distributions outside of
the reaction zone may be obtained by using the assumptlon
of infinite reaction rates.

For large Reynolds numbers mixing and combustion teake
place in boundary 1ayers\and free mixing layers. And
agaln analytical solutions are obtained for the temper-
ature and mass fraction distributions outside of the

reaction zone.
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NOMENCLATURE

The following is a 1list of the most important symbols
used in this paper
Ao Parameter given by 44 , that measures the
deviations from the Burke-Schumann solution
Cp Specific heat at constant pressure
D Diffusion coefficient

Activation energy of the chemical reaction

4 Dimensionless streamfunction

Ky Mass fraction of species i

L Some overall characteristic length

M Mean molecular mass
Mass rate of fuel comsumption per unit f1lame
surface

Pr Prandtl number

P Pressure

q Heat released per unit mass of fuel

R Universal gas constant

Re Reynolds number

Sc Schmidt number

T Temperature

T Adiabatic flame temperature given by 24

Te Temperature at the ideal flqme surface

te Characteristic chemical time defined by 15

tm Characteristic mixing time, L, = S;/Do

°

vi



U Characteristic overall velocity

WV Velocity components in boundary layer coor-
dinates

v Velocity vector

V4. Diffusion velocity of species t

w, Mass production rate,per unit volume,of species t
XY Mixing boundary layer coordinates

X Position vector

X,y Chemical boundary layer coordinates
y

Vo= LG/s)dy

z =Y/%

/3 Universal function giving the temperature
distribution within the reaction zone.
Defined by 39

8. IMixing length, §,,=g,Ds/ ™

aracteristic ickness o e reaction zone
8.  Characteristic thick f th ]
given by 41
n Dimensionless distance normal to the mixing
layer
(4] Non-dimensional temperature, 9:("1"‘—70)/(11’1_0)
8y = E/(R(T}’ Jl
90 = TO /(1*-‘ —-T;)
8 =(T-To) /(% —To)

A= w. /U,
/L Viscosity coefficient

v Stoichiometric ratio species 2 to 1

vit



Stress tensor

g Non~dimensional distance along the mixing
layer

? Density

g

Subscripts:

4,2,3 Indicate fuel, oxidizer and products respec-
tively

Indicates conditions at the fuel exit

O Tndicates conditions on the oxidizer side
of the flame, far from the flame

£ Indicates conditions at the flame surface
for infinite reaction rates

The asterisk is used for the non-dimensional variables
introduced in section II. 6.
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I. INTRODUCTION

Diffusion flames are obtained wheﬁ the reacting
species are initially separated. Combustion and mixing
takes place simultaneously.

In these flames the reaction zone separates the tw
reacting species which diffuse, through inert gases and
combustion products, from each side towards the flame.

The reacting specieé burn very rapidly as they
reach the reaction zone; thereby the combustion velocity
is generally conditioned to the acéesibility of the
species to the reaction zone; or in other words, to
their facility to diffuse across the inert gases and
combustion products.

It seems that we can arrive at a descriptlion of
some of the most important features of diffusion flames
by using the assumption, first introduced by Burke and
Schumann(l), of infinitely fast reaction rates. Then
the actual zones of combustion become infinitely thin,
and the mixing process alone becomes responsible for
the rate of burning and for flame location and size.

Burke and Schumann have successfully used their
assumption for the calculation of the shape and length
of the laminar diffusion flame formed when a fuel jet
discharges within a tube. In this tube an air stream

moves with the same velocity as the fuel jet. The same



assumption has been utilized by Hottel and Hawthorne(g),
Wohl, Cazley and Kapp(3), Yagi and Saji(4), and Barr(5),
for the prediction of the length of open flames, both
laminar and turbulent. Through rudimentary approxima-
tions they obtain an expression for the flame length
containing an unknown function; this they determine
empirically from the results of their experiments.
Fay(6) has calcula ted, by using Burke Schumann assump-
tion, the shapeiand characteristics of the laminar d4dif-
fusion flame obtained when a fuel jet discharges into
the open atmosphere.

The infinite reaction rate assumption has also been
utilized(7),(8) for the study of diffusion flames in
boundary layers.

In addition, an extensive literature exists on the
application of the assumption to fuel droplet combustion.

The Burke-Schumann assumption eliminates chemical
kinetics from the process, simplifying the governing
equations and their solution. However, this solution
does not provide the criterion for the extinetion of
the flame, or for the validity of the assumption and
éolution. |

Zeldovich(9) has taken into consideration the finite
thickness of the reaction zone to explain the blowing-off

phenomenon. Similar studies have been performed by
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5palding(10),(11),(12) with the purpose of relating
the fuel consumption rate per unit area at extinction
and the fuel consumption rate per unlit area in a pre-
mixed flame.

For a general description of the diffusion flames
see, for example, the review papers by Barr(13) and
Wohl and Shipmann(14), where data and bibliography on
the‘subject can be found.

We aim in this work to show the effects of finite
éhemical reaction rates on the structure of laminar
diffusion flames. In order to do so, we will study
certain limiting cases, in which simple analytical solu-
tions can be obtained. We will 1limlit ourselves to the
study of ohe step chemical reactions in which the forward
reaction is dominant.

We shall show that for large reaction rates the
chemical reaction takes place only in a very thin région
or "chemical boundary layer". This has already been
shown(15) in the simple case of the mixing and combustion
of two parallel streams of fuel and oxidizers moving with
- the same velocity. There convection effects may be
neglected compared with the much more important diffusion
conduction and chemical reaction effects. The governing
equations reduce in this case to ordinary differential

equations. The kinetics of the reaction appear in the
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solution; but the temperatures are close to the adia-
batic flame temperature, and in this range of tempera-
tures the concept of an overall kinetic scheme has been
found by Levy and Weinberg(l6) to be valid.

The solution with the assumption of infinite reaction
rates (which we shall call the Burke=-Schumann solution)
represents the true solution outside of the reaction
zgne. It may also be used to calculate the flame posi-
tion and fuel consumption per unit flame area.

If the Reynolds number, based on some overall char-
acteristic length, is large; mixing and combustion will
take place only in a very thin region or mixing layer, where
boundary layer approximations may be used(17),(18),(19),

The mixing layer location and general flow charac-
teriséics outside of the mixing layer may be determined
by using the inviscid flow equations. However, we must
allow for the existence of discontinuities in the velo-
city, density, temperature, and mass fraction distribu-
~tions within the flow field.

‘ In Figure 1 the temperature and mass fraction dis-
tributions, as obtained by different limiting assumptions,

are schematically represented.



IT. GENERAL EQUATIONS

We shall begin by)writing the general equations
governing the steady laminar flow of a reacting gas
mixture(go)r(gl)a(zz). We will use the assumption that
the fluid may be considered as a continuous medium formed
by a mixture of perfect gasese.

Only three species will be considered: Fuel, oxi-
dizers, and products.» For the sake of simplicity, any
inert species present will be considered as products.

Besides the usual dependent variables of ordinary
fluid mechanics, i.e. velocity??,xnessuref:, densityg,
and temperature1', three new variables, the mass fractions
of thé reactant species, enter. Therefore, three new
equations, stating the mass conservation law for each
of the spécies, must be added to the fundamental equa-
tions of fluid mechanics. In addition, the relations
between the transport parameters and mass fractions,
temperature, and pressure of the mixture will be required.

We shall use subscript 1 for fuel, 2 for oxidizer,
and 3 for the products. The mass fractions of species
will be written K,= §,/¢

The thfee mass fractions obviously satisfy the

relation

KQ‘PKz"—K.B:i‘ | (1)



II. 1. Equation of State

If the fluid is considered as a mixture of perfect

gases the equation of state is as follows

p=3(R/M)T (2)
where R is the universal constant of the gases, and
3 -1
M= B /M) (2)

i1s the mean molecular mass.

In order to simplify the calculations we will use
a mean constant value forfﬂ . This approximation is
justified when the molecular masses of the species are
not very different or when the reactants are very dilute.
Then ™M =X M,

In any case the results will not be essentially

changed by considering M as variable.

II. 2. Equation of Continuity for the Mixture

This simply states the law of mass conservation.
v{g¥V)=0 (4)

- II. 3. Equations of Mass Conservation for the Species

These state that the méss quantity of each constituent
entering unit volume per unit time, either‘due to con-
vection or diffusion, equals the mass quantity of the
constituent disappearing as a consequence'of the chem-
ical reaction.

These equations are as follows

' 9‘\7'VKL+V'(9KLV¢L) :VJL (5)



where Vg, 1s the diffusion velocity of species t and W,
is the mass production rate per unit volume of species L
We consider a one step chemical reaction in which
the forward reaction is dominant, the backward reaction
being negligible. For an Arrhenius type reaction with
second order chemical kinetics, we may write
wWi/% -"-"l"(%) exp{_—-E/RT] KKy (6a)
where E is the activation energy of the reaction and b
is the frequenecy factor. Also if ¥ is the stoichiometric
ratio oxidizer-fuel
W, =YW, , WyE={E+P)W, (6b)
We shall use relation 6a through most of this study.

The extension to more general reaction rates of the form

b
w,/g = -g@",p)exp[— E/RT) -K,a Ky (7)

is easily made.

The diffusion velocities depend on pressure, temp-
erature and species concentration gradients. Usually
the preésure gradient effect on diffusion velocities
is small compared to those due to mass fraction gradients.
This 1s especially true when mixing takes place 1In thin
mixing regions and boundary layers. Thermal diffusion
will be neglected because diffusion velocities due to
gradients of temperature are generally a small fraction
of the velocities due to concentration gradients.

If the molecular masses of the species are approx-



imately equal we may use Fick's law for the determination
of Vots.

KiVai =—D YV K; (8)
where D is an average diffusion coefficient.

If the éoncentration of one of the species is small,
Fick's law is valid for the other two speclies. This
always happens in diffusion flames where oxidizer con=-
@entration, for example, is very small in the reaction
zone, or in the fluld side of the flame. Then we may use
Fick's law for fuel and oxidizer with the diffusion coef=-
ficients determined by the binary mixtures: fuel~products
andg oxidizer-products‘respectively. In this study we
will use a single average diffusion coefficient D.

Inserting 8 into 5 we obtailn

Wi
v-vKi=—§-V-(?DV‘<‘L)+‘§’ (9)

IT. 4. Momentum equation

P { _L 0

: V. 2V,
Where O 1is the stress tensor i‘ :23"‘/‘5!' (a 3 5")

We neglect the diffusion stress tensor. Gravity forces
will also be neglected for simplicity, although they
can only be neglected for large Froude numbers,and this

is not always the case in diffusion flames.



IT. 5. Energy Equation

If the specific heats Cp, of the species are
assumed to be equal and constant the energy equation

may be written

d_g:9V+i-Vyp-2h
v-v—r=-§-V-(’€: VT)*ch= 3% VPTG
where g;vv is the Rayleigh dissipation function

and ] is the chemical energyvthat a combustible mixture
containing a unit mass of fuel and ¥ units of oxidizer
has available for conversion into thermal energy
q= h|°+9h:-Q+9)h: ) Pr is the Prandtk number

which will be assumed constant. Thermal radiation is
not taken into account.

Equations 2,4,10, 11 and 9 (for i=4.2 ), together
with relations 6 and the functional rela tions between
the transport parametérs and p , T and Ki, constitute
the system of differential equations governing the struc-
ture of the diffusion flames.

In addition we must include the appropriate bound-
ary conditions.

Without losing much generality we can state as
boundary conditions for the temperatures and mass frac-
tions that they be constants at some surfaces or zone

of the flow field.

For example, on some surface or region at the fuel
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side of the flame -= the fuel exit

K.= KLF » T::'TF'

L
and ‘ (12)

'<;:=‘<LO L5 T =‘Tb

on some surface or region far from the flame on the

oxidizer side of the flame,

II. 6. Dimensionless Form of the Eguations

Let us introduce the following non-dimensional
variables.

—n > - ] - UQ. >

X =xXL , V v*U 29 ?-?& s P=% P

= £ (13)
T-T, _3_. /4,,/4,/,& R._S__S_’;l; » Se= b

il

Re is the non-dimensional Reynolds number, and Secis
the Schmidt number that will be assumed to be constant
and equal to the Prandtﬁ number

Subscripts © and F will indicate.boundary conditions
‘far from the flame on the oxidizer and fuel side of the
flame respectively.

The characteristic length L and velocity U are
some overall characteristic magnitudes.

In terms of these non-dimensional variables the

governing equations take the form
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[ ] P= Q‘(H{%@]T')
v (g*v”) =0

TRl b

§
v - (14)
viy K; = _R;__P_'J—éTV .ﬁl_ﬁ V'K, +[L‘;tc] -\é.\_/i)*
R o s S T T
Here T'=g.|=| and (“‘)\‘: & (%)
= "= "|&ZU S 8
Where
= b oo L)

1; will be the adiabatic temperature of the flame.

T=’5—- Kzo(-r:"'KLE)_ _
f G KootV Kie as we shall see latere.

Then tb is a characteristic chemical time, such that
-«
Cga will be of order unity if the mass fractions are

not small and the temperature 1s close to the adiabatic

flame temperature.
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IIT. DISCUSSION OF THE EQUATIONS AND LIMITING CASES

IIT. 1. General Discussion

By choosing appropriately the characteristic mag-
nitudes the non-dimensional factors and terms in equa-
tion 14 should be of order unity except, at most, at re-
gions such as boundary layers, shock waves, free mixing
1éyers.~ In these reglons the functions?? » K, T or
thelr derivatives may change very rapidly. If such layers
do not exist,or in any other region the relative impor-
tance of the different terms in equation 14 is measured

by the values of the non-dimensional parameters

T U U U - VY |
Re Ut.” qRe ' ''q

Lo(w\"
This is not exactly true for the term IFE(?fJ ,
» c
because of the large variations of (i?) with tem-
perature and mass fractions.

From equations 6b and 9 we deduce

5~ { Co*. | y* o (K, — K.
R RE F C
> y* ' o Jt
Also if -q- <L l and -gi;— ""“q <<i

the energy equation may be written

[VAAvae ud [ReP}LV (/H,V T) L‘;‘tj(%{")* (1’7)'

And if the fuel diffusion equation is added to 17

we obtain

VT (K+T) :['ﬁé{'ﬁr} é:. v*. {/4.“ 7K, -e-T")} (18)
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If the form 17 of the energy equation is used,and
taking into account the dirfusion equations, the function

—Kap=VT¢ Ke—Kio+Tg
= T "+ Kao~ Xar £ K,~+ LE 2
? KZO"KIF"'\)(KIF“KIO) Y T (Ku-"Klo)

satisfies the differential equation

! i ‘ * o -
Vl.v" :(_l—-]——:v .04(, v ) (19)
e=(z) 3 ¢
that when solved wi th the boundary conditions 12 gives

LP - Kzo K|F —'Klo K)_F‘ -‘—(KZD_QK‘O)T;
Kzo-kZF"'v(KIF”KlD

Solution 20 is independent of the chemical kinetics.

(20)

There are cases, however, in which the boundary condi-
tions as given in 12 are not known "a priori" because
they depend on the chemical kinetics. Tor example, in
the case of a fuel droplet burning in an oxidizing medium,
the oxidizer mass fraction at the droplet surface (which
1s zero for infinite or very large reaction rates) may
build up to some unknown value when the reaction rate

becomes low.

ITI. 2. Burke-Schumann Solution

For the study of diffusion flames, Burke and Schu-
mann introduced the adsumption that the region where
W, is different from zero is infinitely thin,and ¥,=0
on one side of the flame,and K,=0 on the other.

This should be true when LyﬂJthAis very large. If

both K; and Kj; were different from zero in a region
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-

where the temperature is not low compared with 1’ 5
wi)*

then (_._) would be of order unity and the term{ tl(g‘
EVAS v/ K and

would be very large compared with

A B u'—(}*x « ) .
[Re?'l 9- v v KL , that are of order unity.
...L:_._ —y o0

Also if in system 14 we take the limit
VAV
So either

.

then we obtain the result (‘ ) =0
Kyzoor K,z0 , and system 14 takes the following form,

on the fuel ride of the flame and

where (=1,3,j= 2
on the oxidizer side of the flame,

L= 2,3, J:‘-
A

2] p= ¢ (14 ] ™)
VAR (g‘ V) =0
wevegerdders |
- VYK :{ﬁifp—]—‘—. v (et VK,
v T = (2R P]—é—v (p* vt )an-[——--—-?]e ahTV+ U‘}-v A

We can use with sYstem 21 the same boundary con-
ditions 12% of system 14,if we allow for discontinuities

in the mass and temperature distributions at the zero

thickness flame.
In the flame the equations of conservation of mass

and energy indicate that, 1) fuel and oxidizer diffuse

towards the flame in stoichiometric proportions; 2) that

3 Kw and K,pmust be zero if L/Ute_—*w
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the heat leaving the flame due to conduction equals tne
heat released by the reacting specles when reaching the

flame. That 1is

oK - goK, A
on, on, :
- (22)
94 9K = _2T _9T
CP 'an,, .ana aﬂz J
where ©2_  and 2 indicate derivatives normal to the
'3'1, fbn-z : '

flame surface toward the fuel and oxidizer sides respec-
tively. They must be evaluated at the flame.

The temperature, mass fractions, and therefore the
density and velocity,are continuous functions at the
flame. For this reason, mass and heat transport by con-
vection is not taken into account when writing the con-
servation equations through the flame.

By solving the system of equations 21,with bound-
ary conditions 12 and 22, we obtain the Burke-Schumann
velocity,mass fractions,and temperature distributions.

In particular, let

K‘-ﬂé-K1==Jﬂ§3

(23)
K, + T = £,

be the solutions of equations 16 and 18 (valid only
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Uiy 1oUt .
forg «tand o 5 1)

The equation of the flame surface is obtained by
writing Kiz=K,= 0 = -E:lLX):O

Also according to 20 at the flame 'T""'-‘—"!'"::(K‘F-*-T"')Klo
: d VK g+ Ko

and

a. (Ke+TE)Kao

= T, 24
T = Tor Cr VKF+Ky ze)
By writing [|K,=O on the fuel side of the flame
surface and K,=0 on the oxidizer side, we obtain the
temperature and mass fraction distributions.
— , _ A
L ] ‘_. —p!
T = -6 T = {2 |

It is interesting to point out that the Burke-Schu?
mann solution satisfies the complete system of equations
14 and also 1t$=s boundary conditions. This solution is
not the correct one,only because the first derivatives
ofjthe temperature and mass fraction distributions have
discontinuous first derivatives within the flow field.

Solutions 23 of equations 16 and 18 are modified
when finlte values of Lqﬂjfﬁ are considered. The
reason for these modifications is that, although the

reaction rates do not appear explicitly in equations
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16 and 18, the variables Q ,?7 and/u.that appear in
those equations will depend on the reaction rates.

However, we may expect that, for sufficiently large
values of l./ﬂ)ti , the reaction zone (or region where

W;# 0) will be very thin. Hence the Burke-Schumann
solution 25, for which the reaction zone has zero thick-
néss, will be a very good approximation in the case of
large but finite L_/QJt% « This will be especially
true outside of the reaction zone.

Equations 16 and 18, in particular, should remain
practically unchanged. This is exactly right when mixing
and reaction takes place in constant pressure regions
and boundary layers if 3/M.is assumed to be constant.

In such cases equations 16 and 18 as well as the bound-
ary conditions (for large L_,/t}tk_ ), will be indepen-
dent of the reaction rates. The same will happen then
to their solution.

Summing up: If the reaction rate is sufficiently
large the reaction zone will be very thin compared with
any other important length‘(as for example, the width
of the mixing region). Then, in order to obtain the velo-
city, temperature and mass fraction distributions outside
of the reaction zone, i.e. for the study of the external
structure of the diffusion flame, we may use the assump-

tion of infinite reaction rates.
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IV. STRUCTURE OF THE REACTION ZONE

IV. 1. The "Chemical Boundary Layer"

The fact that in the limiting case of infinite reac-
tion rates the thickness of the reaction zone is zero,
and that the first derivatives of K, and T normal

to the flame are discontinuous there, suggests that for

large, although finite, L. /Ut :
a) The thickness of the reaction zone will be small
: Lo (& 'an<> ( )
b) The diffusion terms T o 7 3 ? Bn B BN

will balance the chemical production terms k&/f,
three terms belng very large compared with all the other
terms of the equations. (Here ’%%i indicate differen-
tiation normal to the flame) |

In other words, forllarge values of the chemical
reaction rates theAthickness of the reaction zone will
be a very thin region‘or "ehemical boundary layer"
There, due to the rapidlykvarying gradients of temper-
ature and mass fractions normal to the flame, mass 4dif-
fusion and heat conduction normal to the flame constitute
the only transport mechanism required to balance the
chemical production terms. Transport by diffusion or
conduction in other directions or convection may be
neglected within the reaction zone.

In order to show this, let us assume that we know

the Burke-Schumann solution 25. Hence, we know the flame
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surface location for infinite L /Ut., and therefore
the approximate locatlion of the flame region for large
LUt .

For simplicity we will 1limit ourselves to the two-
dimensional case. The results, however, are completely
general. We shall write the equations of motion,and
mass and energy conservation equatinons in a curvilinear
system of coordinates. In this system, see Fig. 1,xXwill
be the distance measured along the flame surface,as
determined by the Burke-Schumann solution. The distance
normal to this surface will be indicated by j s W, and
v will be the velocity components in the X and y direc=-
tions; {/K 1is the radius of curvature of the flame
at point X . Limiting ourselves to a region where!(g is
small compared with L the line element has components

@_+ K‘é)d—x and d.g,and the equations are as follows:

Continuity for the mixture

H-Kté ax(? )"' G’V) H-—K:( =0
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Equations of motion

K%Lif - _JZ
?[.ukg B ¥ 3 i+l<§] - H-Kg oX +Fu
WOV v oku* -
?[H'k:j x ¥ 35 +Kyd ~ %‘%+F‘r
where Fu= Tﬁ?;ao;?x go;(i s %L
s ao- + 2%, KO-

xx‘ll"'(l-&l(u—au-*‘ll-(l-lkr) .3/["'V
Tyy = 2/*?’;; 2PV

Ty ../u_( +Ky &+ %L "%FEE)

v M PV KU
vV = T 5% T oy ¥ Ky

Continuity equation for each of the species

ey S+ S = e (o e ey 3 By (U9 Z

Energy equation

- A v,
Tﬁ(j 5% ’H"'?;- g(u-md) 2x(?.- by ax) (%G"'Kg) ]} G
| U T §L - _33

S

?CP ‘*"3
Where ¢v = /A[l(é,‘x-l-é;ﬂ) + 5-:5 - %@xx-ﬁ' 6‘;)‘3) J
- ow  Kv
and ax = -y 2% M Ky
?hr
&
%3 5

| v ot _ Ku
a“‘j 1+KY X Bg s-:-Kg‘
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Yow let L. and Ube overall characteristic length and
velocities. Let ék>and Sﬂtbe the thickness of the reac-
tion zone and of the mixing region respectively. We
could show that for low Reynolds numbers, S"mA/L_ ,
while Sm_ﬁJvﬂ%¥; for large Reynolds numbers.

The mass fractions just at the outer edge of the
reaction zohe will be of order SL/QSWL « The same
order of magnitude will be valid inside of the reaction
Zone.

Let us now introduce the non-dimensional variables

X/L o 3/& 9 Kigc/gm ” tc_“ét;_g;: " by stretching
the coordinates, mass fractions-ang reaction rates, so
as to make the non-dimensional factors and terms of or-
deyﬁnity within the reaction zone. For the remaining
variables we may use the same non-dimensional variables
used in section II.

We will write the governing equations in terms of
these non-dimensional variables. Now, if the terms ac-
counting for the conduction and diffusion normal to the
flame are going to be of the order of the chemical ?ro-
duction term g:~gm D, t. .

If we now take the limit, in the energy and diffusion
equations, g:_ /5,,.—’0 ~, most of the terms in these
equations drop out. We are left with the following

differential equations:



_L.?..(/‘ c>__ WA
g’a;( P «é —”§‘ (26)
_Ll(/‘ 2T\_ a Wi
9'3 A 3 .CPQ (27)

that we have written in dimenéional form.

From the momentumiequation we deduce that the var-
iations of pressure across the reaction zone are of
order Sc/L' . |

Hence we may assume,when writing the equation of
state, that the pressure is constant across the reaction
region and equal to the value obtained at the flame with
the Burke-Séhumann assumption.

Therefore in addition to the above equations for

K, Kl and T we have the,eqﬁation
pX)=QT R/M (28)

where POQ is a known function of X .
Al =w, =—b.[ P
S0 lw,=w= b‘(-gf-_f‘r)-)exp{~E/R,T} Ki K, (29)

or we may use the more general expression 7 for w,
as is done in appendix A.

No derivatives with respect to X appear in system
26 to 29. Therefore these equations may be solved as
ordinary differential equations in which X stands as

a parameter.
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As boundary conditions we will write that when

g—»ttoothe temperature and mass fraction distributions

coincide with those obtained by assuming the reaction

rate to be infinite.

IV. 2. The Solution of the Chemical Boundary

Layer Equations

L)
By introducing the new variable y, = Ja(g/f.,)dvg ’

if we assume that ?/L=.?7M° , equations 27 and 28
may be written

KL v (30)
OL%Z - Do §
LT _ W
ddaf* T Dby % ' (31)

From equation 30 if we take into account that W,=VW,
we get- |

Ki’JﬁKA: A,%#—B,

(32)

Similarly, from 30 and 31 we obtain
K,+T = A,y +Ba (33)
J\T‘Kz."*'Tw = Ay + B, (34)

Relations 33 to 35 are'independent of the chemical

reaction rates. However they are only valid within the

reaction zone. The constants ‘A&)‘BL must be chosen
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so that these relations coincide with the similar rela-
tions obtained from the Burke-Schumann solution,at least

for low values of g. « Then rela tions 33 to 34 may be

written.
K, = -0 +2 M
‘ ( K?.O ?oDa )
(35)
vi*[i-06- ( - )
Ka= [ T~ K20l 8,0, '
Where 9-_-_-__1_1:: » T= Kao(Te+Kir)

DK, + Koo +VKr
and - YYLQ()-QD( \4) ,sometimes called flame strength,
=0

is the mass rate of fuel consumption per unit flame sur-
face. Also we may write gODO/m.(x): SM('_X) where S”SK)
is a mixing layer thickness.

Now, by using expression 6a for the fuel production

rate, equation 31 takes the following form:

Lo 30 2 ea) ghperl- S oS (-ond ) -o-f i o)

Where eo::.&.;&. and ea‘:—%%f- is the non-dimensional
activation energy of the .reaction.

By solving equation 36 with the boundary conditions

K,=0 for gﬁ—teo and K;=¢ for m-b — oo , we obtain

the temperature distribution within the reaction zone.

If the reaction rate is sufficiently 1argé, the
temperature will not deviate appreciably, within the

reaction zone, from its limiting value ,when €.~ O,
=41 at \Jh:. |
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Then a good approximate solution of 36 may be ob-

)—-9
tained by substituting the factor BT' e,xp{ 2%, 646
by its value at ‘4‘: 0. Let O= e,.(x) for Y=o .

Then we approximate equation 36 by

d'e__»1p 4 6 1=6c {_. Dy [_ i_v\y,
dyE oot P (*9*’) exp{ i+6o 9°+9} o+ % |0 ;E;A (37)
This we may write in the form

s 2 ZZ

el | (3e)

And the boundary conditions are:

pFz=0 for z—>E°

Here P=W{“e+(%;o-z%)%;l " Z-"—'%’- (39)

(A

93 -i-:-e"} (40)

P 139 — Ja_
Dt P 9+ 6. expi i+8, Oy+&
- oDo 3"’ P. 6°+96 {.
Sm—%- ”» Sc,-smbatcvp T+ 6, exp 1+6, 9+9 (41)

Equation 39 was solved numerically(15). An approx-
imate solution 1s presented in Appendix A. Its solution
/5;/}(2) , (38a) is represented in Fig. 2 with a solid
line. In particular P(o) = 0.866 -

Fig. 3 shows the variation with Z of {:}"‘-—Zz, which
is proportionalyto the fuel mass consumption rate per
unit volume. For Z=3.2 its value is roughly one per

cent of its maximum value at | Z=0 « Hence we may
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conclude that the thickness of the reaction zone or chem-
ical boundary layer is of the order of GSC .

According to 38 the temperature at the ideal (Burke-
Schumann) flame surface position, \J'-_—.o » 1s given by the

following relation

0.87
VA

A first approximation for ec is obtained by writing

8.= L— (42)

Gczi when evaluating A . Then 6, is given by

0.87
=T
Where 2
3, 8 W3 P D,
=4VT, e, — ° 44
A =4 *(’%,)D,tc 4VT %% z (44)

A second approximation for 6:. valid for values of 9‘70.?13

= 087 63~-1-6, 087
e=1 I [l“"msme,)‘ -—-—m] (45)
Similarly

0.87

IV, Discusslon of the solution

Relation 45 shows that deviations of the tempera-
ture from its asymptotic Burke-Schumann value 90:: i
depend on the parameter Aon This parameter incorporates
both the chemical kilnetic parameters == through the value

of the characteristic chemical time t

. = and the fluid
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mechanical parameters <« through the mixing time thg>:._maﬁ

The obvious result is that the deviations of the °
temperature and mass fractions from thelr limiting asymp-
totic values increaée with decreasing values of the ratio
twm/te - Now T, is inversely proportional to the fuél
rate of supply to the flame m . Hence we deduce that
by increasing the fuel rate of supply, the flame temper-
ature will decrease.

The initial fuel and oxidizer mass fractions influ-
ence the result through the factor T:sthat appears in
44. By diluting the fuel or the oxidizer we get larger
deviations from the Burke-Schumann result.

Relation 46 indicates that the thickness of the
- reaction region decreases with increasing values of the
mass rate of fuel supply.

For this chemiéal boundary layer scheme to be valid
Sc//5;1 must be small compared to unity, hence the
same criterion may be used for the validity of the Burke=~
Schumann assumption and solution, and for the validity
of the boundary layer solution.

Obviously, the most important characteristics of
this chemical boundary later solution and those of the
Burke~Schumann solution coincide. For example, flame
location and the quantity of fuel burning per unit flame

area are the same in both solutions. The chemical bound-
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ary layer solution, however, gives a finite thickness

for the reaction zone, and a small correction to the tem-
perature and mass fraction distributions. This correc-~
tion can be evaluated very easily and accurately in terms
of the chemical kinetic parameters of the reaction.

So, the chemical boundary layer solution can be of help
for the study of chemical kinetics by means of experimen-
tation in diffusion flames.(12),(23)

The parameter A, that measures the deviations from
the infinite reaction rate solution,may be used for the
determination of an extingtion criterion. This is sup-
ported by the following reasons:

a) Due to the high values of the activation energy
of many of the chemical reactions, the chemical produc-
tion term 1s very senslitive to temperature variations.
This accounts for thé fact that flame extinction occurs
in a rather shaprply defined way. This may also be due
to the existence of some ignition temperature for the
éeaction. B

b) The concept of an overall reaction rate is not
in general valid through a large temperature range.

Then, the idea of solving the complete exact equations,
for obtaining an "exact" extinction criterion, loses
part of its interest if use has to be made of some as-

sumed- overall reaction rate expression throughout the
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whole temperature range.

¢) The chemical boundary layer solution, although
it cannot explain extinction except in a qualitative
way, can provide a criterion for extinction not to occur
if the overall reaction rate is known to be valid in a
given temperature range.

Whenever the iéﬁ£2£§£££g A,is sufficiently low as
to malke ;Tr_<0.372_ (and this occurs for, roughly, Ay,<&80),
the thickness of the reaction region begins to be compar-
able with the thickness of the mixing region. Then the
rate of fuel consumption begins to diminish and hence Te
will begin to decrease even faster with decreasing A,.

Therefore, Ay~80 may be used as an épproximate
extinction criterion as well as a criterion for the val-
idity of the Burke-Schumann solution.

We have seen that AON.?%._%E . Now, this same
parameter appears in the theory of premixed laminar
flames. There it takes a value of the order of 100,
that depends on the initial mass fractions and energy of
activation of the reaction{24), when m is substituted
by the fuel consumption rate ® per unit area. There-
fore an "approximate" relation may be established(9),(10)
between the value of m at extinction (maximum flame .
strength) and ® :

Mo ~ 6
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V. THE EXTERNAL STRUCTURE OF LAMINAR DIFIUSION FLANES

V. 1. TLarge Reynolds Number Case. Inviscid Equa-

tions

The chemical boundary layer equations,governing the
temperature and mass fractions distributions within the
reaction zone,have been solved in the most general case.
However, for the detailed evaluation of the solution we
must know some parameters appearing there. They include
the mass rate m of fuel consamption per unit flame sur-
face,and the ideal flame location.

In order to evaluate these parameters aS well as the
mass fractions and ‘temperature distributions outside of
the reaction zone, the Burke-Schumann solution must be
obtained first. |

As mentioned in the introduction this solution
has been obtained in some particular cases. Unfortu-
nately, even when using the Burke-Schumann assumption
of infinite reaction rates, the resulting system of
equations 21 and boundary conditions iz and 22 1s so
complicated that only a few approximate sfolutioﬂs -
‘exist.

Marble and Adamson(17) have pointed out that & num-
ber of important combustion problems may be investigated
analytically with the help of boundary layer approxima-

tions. Most of the solutions so far obtained make use
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of these approximations. These may be used whenever
the Reynolds number, based on some overall dimension
of the flow field, is sufficiently large.

We will show here that,by using some -additional
assumptions,a fairly simply so}ution of the Burke-Schumann
mixing problem is oBtained. ,

If in éystem 21 we take the limit Re— o8 , ye
obtain the following system of differential equations,

that we shall write in dimensional form:

p=eTR/M
»‘74§E€E:°.

V-9V=-L9p S

LAY, Ki{=0
§z§7-r:;.JL_§7.V7P
SCe

The boundary conditions 22 cannot be retained because,
in the process of taking the limit Re—~°°,‘We‘dr§pped
the higher order derivatives in the equations. |

However, the boundary conditions 12 can be satisfied
if we allow for the existence of discontinuities in tem-
perature, mass fractions, density and velocity at some
stream surface. The position of this surface is deter-
miﬁed by re@uiring tha£‘311 the boundary conditions 12

be satisfied.
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If we consider only low Mach number flows, then:

1) The density, temperature and mass fractions will
be constant, although possibly with different values,
on each side of the discontinuity surface. See Fig. 1.

2) Equation 47 reduced to the system

vV =

— (48)
\

4nd tangential discontinuities of V are allowed
for at some surface,so as to satisfy the required bound-
ary conditions on V . The pressure must, of course,
be continuous at the surface.

As an.example,the solﬁtion of this problem for the

low speed source flow 1s presented in Appendix C.

V. 2. Mixing Layer Equations

For large but finite Re.;‘the ideal discontinuity
surface is substituted by a thin mixing 1ayéf with the
same apprbximate location. Although the discontinuities
in the temperature, mass fractions, etc., no longer @xist,
the derivatives éf these variables nofmalrto the mixing
layer will be very large compared to the derivatives in
the surface direction. | |

In order to étudy‘the structure of.the mixingkregiions
we Will write the system 21 in boundéry layer'coordinatesg

Then we can obtain the mixing layer equations by using
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the well }nown boundary layer limiting process.
Limiting ourselves to the two-dimensional or axial-
1y~symmetric low Mach number flow cases, we will write

these equations in the form given by Lees(25).

- folko Y k
q_%_g—jo re/e) dY

(49)
X 2k
= r d
5 Jo So oo X
where k:o for two-dimensional flows and R=4 for axially-
symmetric flow; Lkixjis the velocity at the oxidizer side,
just outside of the mixing layer.

By introducing the stream function ly‘such that

FRo_70
gu.r"gwm_ » QT =~'§}(V (50)

The continuity equation is automatically satisfied. Let

V)= VZE Hn.5) - Then wit,=f{(08) (o1

where the primes denote différentiation wi th respect to z
Ve will assume ?)u,:?o}(a « Then the mixing layer

equations take the form

fm f,(".q. du.{%_()c?ij = t.idxy )

§
T+RfT' = tids )
Where L= | S A on the fuel side of the flame

and (=2,3 n,g: on the other side. Thet.ldxsin the
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termsg involving
right hand side of the equations indicaf® Yderivatives

with respect to ’g.

As boundary conditions we may write

BB,
'Z -1, \2T *'Zf (53a)

_a (3"'
Cp brz _.yl 3'2_ .HZ;

Where Y“ga gives the ideal flame positione.

In addition
§'=9 » K=K T="T for n—*
(53b)
}'_-:u,,/uo,, K=Ke ., T=Tp {or n-»-00
For the solution of the above mixing problem a third
boundary condition for { is required. This should
be derived from the compatibility condition of the higher
order approximation.(QG) However, for our purposes we
‘may write as third boundary condition )((a,p,)::o ,
because the only effect of changing the value of -Ho,‘g)

is a displacement of the mixing layer in the Y direction.

V. 3. Local Simllarity Approximation

As the boundary conditions are independent of g
the functions §, K; and T would be functions only of 75
and similarity would exist, if the pressure gradient

parameter 2% é:EZ were constant.
U, dE
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This occurs at the stagnation point where the para-
meter has the values \/z, for the axially-symmetric use,
and L for the two-dimensional one.

Similarity also exists in the constant pressure
case corresponding to the mixing of two parallel streams.
In this case the pressure gradient term is obviously
zero. The local similarity approximation may be used
when =28 dUs ;g a slowly varying function of & .

W, dE
Then we may neglect the C.th§3 in the right hand side
of equation 52. The resulting system of differential
equations may then be integrated as a system of ordinary
differential equations.

It is interesting to point out that the factor
{%-—G')‘J in the pressure gradient term approaches zero
at both edges of the mixing layer. The neglectemee of
the pressure gradient teréséimilar] tgageglect&nee of
free convection in diffusion flames.

The pressure gradient term is neglected, without
much justification, by Spalding.when studying the opposed-
jet diffusion flame.(12) | |

If our méin purpnse'is assessing the effects of
chemical kinetics in diffusion flames, only an approx-
imate analytical solution of the equations is required.

This may be dbtéined‘;asily if we neglect the pressure

gradient term in the momentum equation 52. Then it
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.reduces to the Blassius equation
1444 =0 (54)
with the boundary conditions
fe)y=0 , fleo)= L W)= A= U Mo

An approximate analytical solution of this equation

is given in Appendix B. The first approximation is

f'= u./u.o_. + 2 112 er{(‘r""-'- 'Z) (55)

From equations 52 we deduce the following system of

equations

(Ki=$Ka) + Pre(Ki—5K) = 0

L v (56)
(Ki+T*) + P g (K +T%)' =0

Taking into account the boundary conditions 53b

we obtain

(o) -Broo) L ol E)) o

Fﬁ#*ﬁikio

D =[1-erffEy)]

And the boundary conditions at ?+ are satisfied iden-

ticallys



37

The flame surface is located at the point =7,

where
er‘{-(‘/‘”‘ Y Kir - 3 Ko (59)
z ¢ lP*%Kw

and pokil __gepeu.rk Bk _o*pu,rk (e -t
mz= - = e
| [? o9h" Ve (’o'lll?* VZE +K9%e “Teo)
L 1 ViR 2 2 (61)
8,90 (K“,+ K")"""’.zm exp£ = &}

The parameter A, , measuring the deviations from

30

the Burke-Schumann solution,can now be evaluated. Also
the temperature and mass fraction distributions outside
of the reaction zone may be obtained from 57 and 58 by
putting K“:.O for 27?_’_ and K,=0 for 2<}z+ .

In the particular case A=4 , we get =4

and the equations may be solved even for P“¢‘ . We

obtain
Kim§Ka= Kip— KetoKao ) onfiEy]

Tk, =T+ K 4 [;_e,qc\[’,z]
e RN

6T§J—‘Zf- Kig- vj:::

V. 4., Particular Cases

In particular let us consider
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a) Axlally-symmetric stagnation point

7o (ke b (BB

And according to 44

Ro
Ao ™~ ILE.

b) Mixing of two parallel streams

A 2

o
8= [ (ke T T
1+A 2
A= o X BN e“i?"h { 2
| T [N Kigty koo
Therefore
X
Ao ~ O E,

In Reférence 15 a numerical integration of the
equations for the mixing and simultaneous chemical reac-
tion of two parallel streams of fuel and oxidizer,moving

was carried owt
with the same velociﬁ$71n order to compare with the

chemical boundary layer solution. The results are

shown in Figs. 4, 5 and 6.

(64)

(65)

(66)

(87)
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VI. RESUME

Experiments(g) and the success of the existing
theories on laminar diffusion flames have clearly shown
that, in those cases where a stable laminar diffusion
fléme has been obtained, Burke-Schumann assumption of
infinitely fast reaction rate applies. However, the
Burke-Schumann solution is independent of chemical kine-
tics,and does not give any criterion either for the flame
extinctlon or for the validity of the solution.

The fact that in this solution the flame thickness
is zero suggests that in practical cases the reaction
zone must be of negligible thickness, making 1t possible
to obtain a solution of the boundary layer type, including
the effects of chemical kinetics.

At each side of the extremely thin reaction zone,
chemical reaction effects are neglected as compared with
convection, conduction and diffusion effects. The reac~
tion zone reduces to a flame front of negligible thickness;
which acts as a sink for the reactants and as a source
for the heat and products evolved in the chemical reaction.
The location of the flame'front rate of burning, and tem-
peratufe and concentration distributions in the exterior
of the reaction zone are determined by using the Burke-

Schumann assumption.
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In order to analzye the structure of the burning
zone we may neglect in it convection effects as compared
with conduction, diffusion and chemical reaction effects.
The equations governing this chemical boundary layer
are ordinary differential equations with boundary condi-
tions deterﬁined by the Burke-Schumann solution. Tem-
peratures there are close to the adiabatic flame temper-
ature, and then an overall kinetic scheme applies.

The criteria for extinction of the flame and for the
validity of Burke-Schumann assumption approximately coin-
cide, and may be obtained by solving, once the Burke-
Schumann solution is knowp, the chemical boundary
s yer equations. This solution also provides the tem-
perature and concentration distributions in the reaction
zone.

If our main purpose is the evaluation of the chem-
ical kinetic effects in diffusion flames, an approximate
solution of the Burke-Schumann mixl ng problem will be
sufficieﬁt. This we may obtain easily for large Reynolds

numbers by using well known boundary layer approximations.
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APPENDIX A

In this appendix an integral method for the approx-
imate solution of equation 31 is presented. We will
"use the same approximations as those used in obtaining
37 from 36. We will consider the more general mass pro-
duction rate expression‘given by 7. Then 1f relations
35 are taken into account,by taking 7 into 31, we obtain

%’_S%; 2.___5::‘:')( L{ 94-%0%'—]“[:—9-(;,‘?-%)?‘]5 (A.1)

\Jum ﬁﬁ‘l&z_ {:5._ Iﬁ;—:*:_}

amd, ~3CT;P°)0XP{ R, (A.2)

Here, however, we will not choose T‘,’Qﬁlas the tem-
perature at \J':O s but as the temperature at a point that
we will determine later on.

By introducing the variables

i
bX b __e y
F: [tw DC‘X] o {4-—64-(-‘2—10-2_1_*)581:} (A.3)

< (A.4)

equation A.l transforms to

szF 2) Q§4HZ | (A.5)
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That must be solved with the boundary conditions
F»;z::o for Z-—» Xt o0

In order to solve equation A.5 in an approximate
way, we will use @k the following iIntegral method.

Ir 2 is the point where P reaches its minimum
value, the right hand side of equation A.4 may be written

in the form

_h@)

a

(/3'-—2,) ((S,-a-z,) e
2 2

" Where }eu-_-_ F(zl) omal, }’L(Z):‘.. 22 (Z'-Z;) +_ .

Veglecting higher order terms in the expansion of h(Z)

in powers of Z-Z, , equation A.5 may be written in

the approximate form

., (z—z.)

((3 .)((5*2:) e (A.6)

The constants /j;’ y Z, and R will be determined

as follows:

a) ~The solution ﬁ(z) of A.6 should satisfy the

boundary conditions for (Z) namely Fs+Z~O for 2o

Then J __.éd,z 2= ?,-z’)ﬂ@_,_z)bﬁ? 2 or
_z)@ ,)b 2k (A.7)

b) If by means of the relation

@—Z) @#‘Z}b Qk- - (Z-Zf

(A.8)



46

we define /} /3(2) s then -we will choose the parameters

ﬁw > Z, and R so that the following relations holds:

Bizy=0 , and F"(zo:@‘—z,)a@,-l-zl)b
From relation A.8 we deduce
-2k (z-2) = f‘é&__)_ b(B'+H +1)
p—Z Btz
- a’"‘gn + b-—-gu —-a‘£2‘ ') _ !g"gr_“_’:)—
-z Btz  (@-2)* (@E+2*

In particular for zZ=2 s we obtain

— -0
== " pita

-2k’ = "(Z:)" = (@+z,)

From A.10 we deduce

b+a Vo P v pz)= "‘Z‘F' e~

Then from A.9, A.11 and A.12 we get the relation

(4.9)

(A.10)

(A.11)

(A.12)

h,’---F‘- f @&% att @;‘_El.j—’—'—-'sg“)m’zﬁ,ﬁsf(ﬁq(gx.ls)

that has the solution

> ey
b=t [ (VD -1

(A.14)

Now Z, and R may be determined in terms of /3, by

means of the relations
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(A.15)

‘ —hﬁ?-zdz
5@) = preb-zerdhEagli-e |
As approximate solution of equation A.1 we may use

either the function

Z‘:t:'—‘g?, amol k: i:b) ) F' (A.16)

obtained by integrating equation A.6,or the more approx-
imate, but also more difficult to evaluate, function /éGZ)
solution of the algebraic equation A.8. In both cases

the parameters F, and R are as given by A.14 and

Z‘l
A.15.
In order to compare the above approximate solutions

of equation A.5 with the exact numerical solution, we

consider the particular case a={ , b=1L . Then

B=087 , z,=0 » R=067 (4.17)

and 75-(2)_.:0_37.,_29,,-}60.672—0.84[: exp-0.672)°] (A.18)

/2 ‘
/g_@):.[z’w. 0.76exp —@.672)‘] (A.19)
The approximate solution ﬁq;)has been plotted
with a dashed line in Fig. 2 to compare with the exact
solution drawn with a solid line.
Going back to the general case in which @& and b are

not necessarily one, let us choose the temperature at
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the point <, as the temperature used in approximat ing
equation 31.

Then from relation A.3 by making Z= z, , we get

/g’ =[,_Nbi é)'X(X,Q)]““ ,{ @p _1) b.a X}‘_‘ﬂi}A .20)

This 1s an algebraic equation for Gc
Again a first approximation to the solution is ob-
tained by making ©,=1 when evaluating X(X:QC). Then

relation AI.2O transforms to

.= I— L (4.21)

I

Wh S. L qg"g &) i lp--a. VTS ]
ere A, = XQ( t)[ +b+a. < {)
and X&)zt % P=P S:a.+(>+l

A second approximation, similar to 45, may be obtained

for 9: without major difficulties.
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APPENDIX B
In order to approximately solve the Blassius equa-
e Fleff =0 (B.1)

_ , '
with the boundary conditions 'f(w):l .,f(‘“°°)=7\ W }(U):O,

following Meksyn(27) let us write equation B.l in the

form ]
a,3d
RV N
where a,:f'(o) and Q8p= .f"(g) are assumed to be known.

Then by integrating B.2 twice we get

{82 8, Jopl {2y ByPe )} ey (5.3)

As the shear stress decreases very rapidly with
increasing values of \Ql, we may expect that mosf of the
contribution to the integral B.3 comes from those low
vélues of |2}, forvwhich { can be well approximated
using only the firét terms in the power series expansion
B.2.

If we write ,Z 4.. 1—-¢ =T

trhen

3_\/3?('*8" L+ ) for peo
CVE(-&F) e

(B.4)
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Then the integral B.3 may be evaluated and we obtain

f'=a‘+§$-[ﬁ?4r ('-e t)""“"] 729

28,
(B.5)
)( a.-.....[r‘mer+ra'- :-—e,"'t)-é--—J ,,740
If we now make T-> * oo we obtailn
+9=- - 8 [z R
j=a r.‘ .‘33?.7.;(4—-.]
: (B.6)
Aza -3 (F,, a F B
' (EFAR NS 33,"!1’1- )

The series in B.6 may be expected to converge very
raplidly. Feeping only the first two terms of the series

expansions,appearing within brackets in B.6,we get

i"“>\: %-‘7—:&1

AL .L!{ Z (B.7)
a"":i"[-z*z 4 L\ﬁ)z]

That may be approximated with less than 4% error by

=HA [y .z-.,(f:y
z L' Tir\ie

a,=122 [4.,. X ]
> Van 3n (w\
B.5

Now by means of relations B.8 the solutionVhmay be

and

(B.8)

written up to the second approximation.. A first approx-

imation is

flo)=12 . tor: L2y (5.9)
ts 2 24
amd f = +F V}m 7
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APPENDIX C

Low Speed Source Flow

The laminar diffusion flame produced when a point
source of fuel is immersed in an oxidizer stream has
been qualitative discussed by Penner. (28)

Let the density and temperature of the fuel‘leaving
the source be equal to the density and temperature of the

oxidizer stream. If M 1is the mass rate of supply of

fuel due to the source, the velocity distribution is given

by
V= v(u..xs-a%’t??) (c.1)

where q:m and the X;axis 1s in the free, oxidizer,
stream direction.

The stream surface that separates fuel and oxidizer
i1s easy to calculate,and that has been done elsewhere.
‘In particular, the radius of curvature at the stagnation
point, is . Yz,

R, = __M_.) | (c.2)
4T Q, Ups
Then A, at the stagnation point may be evaluated by

using relations 44 and 63. Ve obtain
Ao~ (B
[-4

Therefore the criterion for either the validity of

[ |
u:it; (C.3)

Burke-Schumann assumption or for extinction is practically
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independent of the trahsport properties. They enter

only through the values of Pe and Sc .
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