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ABSTRACT

In the heterogeneous flow of finely divided particles and gas
in a rocket nozzle, the assumptions that the flow enters the nozzle
with no lags, that the radiative transport of energy between particles
is negligible, and that there are no temperature gradients within the
particles, are commonly made. In this paper, each of these as-
surnptions is investigated in detail, and they are shown to be reasone

able for typical rocket nozzles,



I. INTRODUCTION

In recent vears, it has become commeon te add metals o the
propellant in rocket engines {o increase the chamber temperature.
Unfortunately, most of these additives form some sort of a solid
particle in the exhaust,and conssguently can cause a depreciation in
the thrust and specific impulse from the values based on gaseous
producta. That is, instead e;f an expectied 20 per cent increase in imw
pulse, say, an increase of 12 per ceant is noted.

A very common mixture is a propsellant of ammonium pey-
chlorate oxidizer and a polysulfide fuel with aluminum added. For
the numerical work in this thesis, this propellant is assumed with
pure aluminum added to it.

The amount of metal that can be added is limited, since there
is a requirement for the fuel to act as a binder for the oxidizer and
metal. Usually, the designer will add as much metal as he can; thus
a method is needed whereby he can correlate test engine performance
with the predicted performance.

Such a method is presented by Rannie in reference 1. In ref-
erence 1, Rannie used a one-dimensional hydraulic approximation,
which is known to be valid for homogeneous flow, for the heterogeneous
flow of gas and solid particles. In addition, he assumed (i) that the
flow entered the convergent section of the nozzle with no lag between
the gas and solid particles; (ii) that the radiative transport of energy
between particles was negligible; and (iil) that the thermal conductivity
of the solid particles was sufficiently high compared to that of the gas

that there were no temperature gradients within the particles.
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Aszumption (i) is lnvestigated in Part II by solving the equas
tions of motion in a cylindrical combustion chamber and determining
the velocity lags at the entrance to the nozzle., Azdally syrmumetric
flow is assumed in the chamber, and the mixture is approximated by
a heterogencous mixture of gas and solld gpherical particles. A
constant source distribution of gas and particles is assumed along
the cylindrical wall, and viscous effects in the main flow are nee
glected. Turbulence and temperature gréﬁi&m& in the chamber are
also neglected. It is shown that the particle lag at the entrance to the
nozzle is indeed very small compared to the gas velocity, and thus
the assurnption that the lag is zero is a valid one.

The magnitude of the effect of radiative transport of energy
between particles is estimated by adding a radiation term te the equaw
tion for the heat balance of a particle and investigating the size of
this additional tevm. The ratio of the absorption cross section to the
geometric cross section ig a necessary parameter in this term, and
a value is not available for aluminum ouide particles of these small
sizes and high temperatures. However, for any reascuable value of
this parameter, the radiative transport of energy is gshown to be neg-
ligible compared to the heat transfer by convection and conduction.

The temperature distribullon within s spherical particle is
found for unsteady heat flux over the surface of ithe particle in termaea
of the Laplace transform. DBy expansion of the transform, the solu~
tion for uniform teraperature within the particle is recovered and the
magnitude of the correction term is determined. The correction texrm

is shown to be negligible for practical cases.
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II. TWO-DIMENSIONAL ANALYSIS OF THE FLOW
IN A COMBUSTION CHAMBER

Following the notation of reference 1, let o be the mass
fraction of particles in the heterogeneous mixture, fg the gas denw
sity, and [ the density of the solid particles. Then the density of
the mixture is given by

I R *

= JUSEREREESY

{
P f} £ (1)

Let A be the crogs-sectional area of the ¢ylindrical combus-

tion chamber and v» the constant mass flow rate of the minture. Ap-
plying the condition that the net flow rate into any volume must be

zero, the continuity equationsfor the solids and gases separately are:

Slo-rw] +Hgfo-ryr] - o @

S<ru] +hg(ere] -0

{3)
where U.a and WY are the axial velocity components of the gas and
solids respectively, and Véa and \; ave the radial velocity com=
ponents of the gas and solids.

By considering the momentum transport through a small ele-
ment and neglecting friction forces, the momentum equation in the
axial direction can be written

—3—)(-[{(%}? uﬂrff‘;@ —oopugvg r] +;7[0(Fu;.]k )



_4‘

and the radial momentum equation is

o > z P ‘
E—X—[ﬂ(ou.svs]r‘fﬁ[d Fv_s r] +H [(l d)f"(-j, VZ] ¥

| » _o(prl (=)

T;‘—)Fl(l-“’()fvﬂ V] = —gF P
Approximating the particles by spheres of radius a , and

assuming that a modified Stokes drag law holds with a correction face
tor f; to allow for deviations from Stokes' flow, the force balance
in the axial direction on a particle is

U u YaNe )

{6)
The steady state drag law is assumed valid. 4 is the viscosity of
the gas and i constant since the temperature is assumed constant,
and the force due to the pressure gradient is added. The coefficient
f, is a function of the Reynolds number and the Mach number of the
gas relative to the particle, and is equal to 1. 0 in the Stokes flow re-
gime.

A similay equation for the radial force on a particle is

Y o3 V. - SOL Y 80y
3 ﬂ’ay\os[u:g;-—i‘\/s%yr_]— bra (Vg )75 3 a5t {7)

Equations 6 and 7 are expressed more conveniently in the fol-

lowing form:

(a9

ug“us: _sz:. L {uségé‘fvs%’*'é— %fu} {8a)

>
Q-
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» Letting U, = uﬂ + (Us = uz) and |, = \/? +<\/5-\/§ in equation

3 and subtracting it from equation 2

Sl dleeuu] bl o

Introducing the following non-dimensional variables b= %— .
o
= ‘l\//- y § o= f—- » = _E_ , where V\, is the radial ve-
[o]
locity component of the gas at 7= | just outside of the boundary laye

er and b is the radius of the burning surface. To simplify the

equations, also let
Q.LFS Vo ;&
M b

Introducing thege in the above equations, we obtain far the combined

c= 2
9

continuity equation

Slra* ?}‘3“ P sl ]‘T{“’” *”9 - o

and for the momentum equations

U

(10)

2] (1~ JF 4|7+ [(—«)F#’%‘f”gy]+§9§[o<€4ﬂ7 o
e ~——:zig-j;
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Sel <oty e [«r o {0-ort )y

— a _ {12)
7[ =F 7] Vz—a%’ll i
and for the force balance equations,
b, — 4 = {W‘*’H—w”’ NPT 3
g s 5 s > fsV: >¢ (13)
Yo—Ys = {4’52% + ¥ 9% .L__‘___‘I‘J 1‘/
& og s a1z AN 3'7 (14)

With the help of equations 2 and 3, eguations 11 and 12 can be
further simplified by rearranging so the dependent variables are ¢? ’

YCA’ ’ ‘ﬁ—— CP«a, » and ‘l’s -Lf? . Thus eqguations 11 and 12 become

‘04)% 34>"‘+fLV?"7?— “F{‘Pﬂa(qbs 4)3}‘ (“4’3)%% (‘P j 4;4)3).

b=¢)) _=L2p (15)
37 3)'}— v,

+ Aigs;zr_d’al + (%—‘Vﬁ)%‘%}——»(‘*’s*‘@

oY D %) 2% s ) d(¥=ta)
pay St iy 50 te] 4 L ()50 e LI

o(¥s~¥ oV Q(Yd W>_ — _é_f_
+ ‘f’% (212___31 —t—(q’s “lfg) 5723- [‘Vs "/’j) 7 ? v a_’( (16)

First Approximation, Zero Velocity Lags.

When the velocity of the particles approaches that of the gas,

(i.e., 28 a—=>0 ), € —>0 and by amd K=y
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Then

¢ = ¢ = &, and 5= fh= Vo (17)

where the subscript sero indicates no lag.

Then equation 10 reduces to

0P, o Yo ¥,
— 4 ~+ = O
0¥ bﬂz i (i8)

and equations 15 and 16 reduce to

> ¢, 9% - L 2p 1
> Yo d¥e] _ _1 2f
fo{: ¢, a? + o a‘vz ] - VA éjzp

{20)

It is a simple rdatter to verify that the sclution to these equa-

tions, satisfying the boundary conditions q:c = o at §E=o0

and Y,= —| at v = | , i

&
i

ral

o= —7 (21)

P g Lyt consT.
PDV;— A 72

Second Approzimation, Small Velocity Lage.

We shall assume for the sclution that the variable may be

expanded in powers of € ; thus
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c#?: ¢o+5¢,3’ o

P = b, FEP oo

Tg = Yo +eYg +0 (22)
b = ¥, +€tg +o ]

£ = oL, * € &, F o

f =Fo+€f’+ .....

The criterion for these expansions to be valid is that

¢j¢:4’o = 6?;5; << | (23)

and similar inequalities for the other variables.

Here € is merely
an indicator of a small quantity. Substituting these expansions into

equations 13 and 14, and equating coefficients of € ,

45}‘_.4,5‘ — 4;094422 + L{Jo_a__?s:- — _PQ_LI-E

o% 67 s
and
oY dYs __ fg
Ya, — Y5, = %"5§ T Ye 27 €s i

The density of the mixture, (, , is very much less than the density

(s of the solid material, so those terms can be'neglected that con~
tain fo / Es 3 therefors

24, ob
Pa, — P, = Po %42‘ Tt EEl (24)

and similarly
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A o,
\Pgt - ‘f = % abg + Y, 'y_?' {25)

Now defining the first two terms of equation 10 as [ , then

SIS ISy

Ecquation 2 can be writien as

F - ¥[ocf¢’?] :?‘awz[*foﬁﬂ

Then differentiating this by parts,

P[] gl - faSe -y -e

or
— 9% _ —
F (1=« f’cpga Fﬁfg 5 = ° (27)

Also comparing equations 26 and 10 we see that

)
F =5§[o<(°<¢3 c#s) [ocf’(‘i’ ‘Fh] (23)

From the first approximation, we may evaluate equations 24
and 25 as

457'1 “455: = L}-g } ‘
{29)
L}%J - l*JSl = }?
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Substituting these into equation 28, the solution of F is
F= ta,f, {30)
where use wag made of equation 22 and only carried to ovder epsilon.
Putting equation 30 back into equation 27 and incorporating

equation 22, and rearranging,

, >OL1 _ Qa{” = 6 -—-'7{
P28 5e T 13y A (1) (31)
Particular solutions for equation 31 are
£, = 3Bx,(I—«)LnE +A4 {32a)
L, = —bdof—) Ly t 8
(32b)

The boundary condition for oL, {is chosen so the mass flow

rates of gas and solids are the same as with no lag, Since

= (,__o(a)ﬁ\/a(/—rc— ‘?u?/)
= oéof’oVo[/Jré(% *Jg‘“fﬁﬂ

(33}

J:L§. x:L§e

-]

the conditions that "9/4 ~ and M3 are the same ag with no

1ag are
» L//?l =0
Loy by ¥, =o | (34)
K—o o

From equation 1, upon substitution of equation 22, and dropping

=
terms of order €
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P‘—.: Co oL {35)
| —A,

Substituting equations 35 and 29 into equation 34, we find that

oL, = —ol, (/=) az =/ (26)
satisfies the condition that the last term of equation 34 vanigh,
Clearly the solution 32a is not applicable, and applying condition 36

to equation 32b,
ol ="él7(.a(/“'ﬂca>[4&1'?7“—é‘] (37)

The boundary layer and {riction forces along the wall are ne-
glected and the mass fraction of particles to the mixture is assumed
to be constant along the length of the chamber since the propellant is
presumably uniform in mixture.

This solution does become infinite at the centerline, so the
solution is valid for the whole chamber except on a line dowm the cen~
ter of the chamber. This singularity doeg not cause any difficulty
because the mass Jow rate in the axial direction is finite, as will be
shown below.

Now substitute equation 22 into equation 15, and put f"fo"’ EF»
then equate the coefficients of € , dropping known zero derivatives

e, 34’0/37 and °% /3¢ ) the vesult is

> % 2be 24 2¢
(o, %—a—gf o CPS( e +P"¢°"5§‘L + 6% ngJ.

_ 2 dy—t, Obe = —L OPu -
Do Ao —;‘g*—ﬁl "060‘00(4’3.'475:} og Voo 0%
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and upon substituting equations 21, 29, and 35,

D Dby -_1 2
A g ady £2T S - - GE =k

Combining the second and third terme and putting in the value (equa-
tion 37) of %, , we obtain ‘

— 24§ Lny +4 )+z (¢ 2.~ ‘?~—;Z?‘~ 6o ‘%‘"-:'V—o 2p (38)

Similarly, equation 16 becomes
{ —_— ! c> T
- (odoﬂz[ﬁnvgﬁ'—éﬁ-)*% (7] )+1? = FAaX= ﬂ'T/}—JQ? (39)

Let us assume a solution of equation 39 to be
ta, = ~3 ey Ly (40)

Substituting equation 35 into the continuity equation for the gas {equa-

tion 2) leads to

N L J(1 %
‘a‘g" = 1? _%jll (41).

Upon substitution of ('Ug./ into equation 41 and integration,
%

where the constant of integration disappears since ‘Pg, must be

= bao§ Loy +3:, § (42)

t

zero at ? = o,
From equation 29 we find
P, = bao¥ Lay +34.F T4
and {43)

to = —3coyluy =7
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To verify the solutions, substitute the values for Lf%, ;e b 20
li)s, , and ‘Ps, {equations 40, 42, and 43) into the continuity equa~
tione {equations 2 and 3}, The mass flow rate of gas for a cylindrical

chamber of radius b , with no lags, is
my = b (1<) Blo® (44)
and with velocity lags, is
(

/7732@ ::LTTBZU—-KQXPOVO‘?%J <l+é%ﬂii'>7dj7/ {45)

]

Substituting from equation 42 and integrating, equation 45 becomes

©

Meg = Mg | {46)
The mass flow rate of the particles without a velocity lag is

V:ls = ﬂ"bl o Fovo CPO {47)

and with a velocity lag,
n
. 3 4 B L&
=S ovo DJ’ =k L4 TSt J [
Mg, = 2T b ofoVod o[z%(% & %ﬂ‘] Y (48)

Evaluating the integral

&

w\sl = My {49)

showing that the mass flow rate of the particles does not change when
velocity lags are introduced. Hence, the assumed solution and con~
stants are comsistent with mass conservation.

To obtain some numerical resulis, a specific chamber must

be chosen. The {ollowing valueg are consistent with the numerical
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example given in reference l.

b =0, 360 )L'Z: Q:Z,S’KIO_‘* cm.
-4 S .

o= 1,515 lb-Se/fr v =0,5 "Wsec

@ = 2lo “’/frz ’f’c = looolg//'n"

|

= EOOO OE' o(_ = O,Lf'

[~

The chamber length is chosen as twice the diameter, and Stokes
flow will be assumed (‘&ﬁ l.0) . Then

Vo= —18.7 Feee b= 74,9 Feec

€= 3.43x10° %:*/9‘7%}?&:.

The magnitude of the velocity lags in relation to the no-lag
flow velocity is obtained from equations 29 and 21

3%;&.216 (50)

which verifies that the lags are indeed gmall.

The uniformity of the flow across the exit plane was assumed
in the analysis in reference 1, and Table 1 is presented as a verificas
tion of this assumption. Values of & ¢%@ y € ¢€/ ¢  » and
& 0"/ pan were calculated as functions of 77 » the non~dine nsional
radius.

The Reynolds number of the gas relative to the particles was
computed at the exit plane using the particle diameter as the charace
teristic length and found to be 6.5 x 107 2. The Mach number wag
also found to be 1,36 X m"g. Combining these two values, 2 value
for M/Re of 2,09 x 1@'3 is found, which indicates that the particles

are in the Stokes flow regime, and thus the corrvection factor ]Cd is
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TABLE 1.
1 el e ¢ 5
1 -7.35 x 10”2 -3.69 x 1072 2.63 x 1072
.2 -6.10 x 10°% -2.43 x 107% 1,78 x 1072
.3 -4, 75 x 1074 -1.55 % 1074 1.28 x 10™°
.4 -4, 45 x 167% -9.15 x 10”7 9. 25 x 1077
.5 -4, 07 x107% 4,21 % 1070 6,49 x 10™°
L6 -3.69 x 10™% -2.29 x 1070 4.24x 107>
.7 -3.35 % 1074 +3,14 % 107° 2.35 % 107>
.8 -3.05x 1074 6.15 % 107° 6.95 x 1074
9 -2.81 x 16”4 8. 41 % 107> -7.58 x 10™¢
1.0 -2.55 x 1074 1.10 x 1074 ~2.06 x 1074

approximately equal to one, as taken above. Reference 1 gives a dis-
cussion on the calculation of the parameter f4 . Using equation 66

and equation 67 of reference 1,

f = Lo+ 459 Jg;— = l.oo96 {51)
€

Thus, {rom the above analysis, the assumption made in vefers
ence 1, i.e., that at the entrance to the nozzle the flow was uniform

and without lags, is a reasonable assumption.
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1Il. RADIATION BETWEEN PARTICLES

For a one-dimensional steady flow of a homegeneous fluid
without heat addition, the energy equation, in terms of internal energy
per unit mass, is

Fﬂ-u(ei'—%‘) + A‘Fd-;-@n{c. (52)

and for the heterogeneous mixture of gas and particles is

G—o() f’Ad} (631— %:‘Ji>+o((°4us(€51-%5}>+ 4—[3(&}(__‘_&_;_)61.(,[5 %): consT, (‘@3}

where « is the mass {raction of particles {aubscript 5 ). This
equation is general and independent of force interactions and heat
transfer processes between the particles and the gas.

If radiative transfer of heat between particles is allowed, an
additional term must be added on the left hand side of the equation,
since the eguation does not take care of interactions and heat transier
processes between particles. The energy transfer between particles

due to radiation is

=~k dTs | 54

zy VAX A ( }
where

ky = %%%7}3 (55)

may be regarded a8 an effective conductivity due to radiant ensrgy
transfer. The coefficient 0Oy is the Stefan~-Boltzmann constant,
and Ly is the Rosseland mean free path. Then g ,,—_-~/<Péfis_ A
must be added to the left hand side of equation 53 to account for radi-

ative transfer.
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Equations 54 and 55 are applicable only when /ZR is very
small compared {o the length scale appropriate to the problem, for
instance the nozzle throat radius, at all important wavelengths of
- radiation. |
The variable mass fraction « in equation 53 can be elimi-

nated with

”‘(’"“)“3/*xo (56)

obtained from equations 2 and 3. In cases of interest, the volume oce
cupied by the particles is negligible when compared to the volume of

the gas,and the assumption

S~

% — (1= P (57)

is valid for a particle material density of 210 Ib/f?:s as we have chosen.
Since the gas density will seldom be greater than 0.4 1b/ fi:g, this ap-
proximation is valid over a wide range, but should be checked for any
particular problem.

Substituting equations 56 and 57 into equation 53, the energy

equation becomes

(1 —=,) ey +o{oes+—‘~u%—i—v{ (u.; us) + (- %)T’

58

\"s %u 7,0
where h. is the enthalpy in the chamber.

For a perfect gas with constant specific heats

Cq t- __CVT +R T —-CT (59)
1 :



and we now introduce a specific heat, CPO » for the mixture with a

particle mass fraction o, ,

Co, = (1—ao)lp + oo ¢ (60)

and modify the gas constant to
(1—) R (61)

The right hand side of equation 58 is CFOT(._ where |, is
the stagnation temperature of the mixture. Then equation 58 may be

rewritten as

<l

4~a<o)c97:3+ococn+1{(,-0<D>u;+£aou;—(}<_c (-)dTs = Cpala  (62)

7Ug dx

where equations 56 and 59 were used,
— T 2 Z 2
Now writing [ as Tg + lg —Tz and Us as ug U~ Ug

and combining the terms of equation 62,

Coola 34 o, (Ts—Tg ng (Ha 195 —cpete  (63)

Neglecting radiation, the heat balance for a sphere of radius

A and temperature Tg is

tralfcu gl = —ky (T ) 4ra 64)

a&

where k? is the conductivity of the gas surrounding the sphere and
ﬁ\ is a correction factor that takes into account the influence of con-
vection. For the Stokes repgime of flow, —&1 = 1.6 , and it decreases

at higher Reynolds numbers.
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Rearvanging equation 64,

{65)

_ — CLIP.SC T.
Tc} TS 3 ..‘_,:Zj_jl-usé_;(_g_

To express equation 65 in dimensionless form, the following

notation from reference 1 is introduced

T= T T (66)
X = vr §

c = 2 a VR
7 = e

giving

Tg=Tg = ﬁ&k &, (67)

fiE

where

_ d
ﬁ_zc,, Pr (68)

has a numerical value not much different from unity. If the particle
radius is extremely small, & approaches zero and since the other
factors on the right hand side of equation 67 are of order unity,

Té— g =© and the temperature lag is zero. The velocity lag is
also proportional to € 8o it becomes zero as well. As @ increases,
€ becomes largen and the principle of the perturbation procedure in

reference 1 was to expand 7"@1 ’ 7\'3 . $b7_ , and ¥s in power

series in € .
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With radiative transfer, there iz an additional term in the heat
balance for the particle. Suppose a particular particle is located at
X= X, . The radiative transport of energy in the X - direction per
unit area normal to X in the space surrounding the particle and close

to the particle is

- (k4] - E%(L,.i{iﬂ()(ﬂ(a)

o
Hence the net radiative transport of energy to the sphere is

ﬂa

L Lta sin ®ade cos @["(1“‘%) "{g—x (kr%)} (cLCosg):{

Xo

= -4 55—(!“«4_@}

and the heat balance for the particle becomes

3 T
3T Gludh = - éﬂ-m—sl‘mﬁ*“”“i U‘*‘ﬁ*f) e

which replaces eguation 64. Rearranging and introducing the dimene

sionless variables from equation 66

!

d d
v lpnap b5 AT R Ree k] o

The radiative mean free path g R is given by

b= ‘ (71}
R nal & :



where . is the number of particles per unit volume and & is the
ratio of absorption ¢rose section to geometrical cross section. From

the identity

ol
ndra o= (72)
and the eqguation of state for the gas
b’lﬁ“a =3 & P -._.3_ P o \S-//‘F {(73)
Substituting into equation 71 above
lp= 4 RE Ga L =% (14)
R= 73 7 a o~
and hence L,, from equation 55 becomes
4 -y
ko= gt Rl go Lozt v (75)

Te

Substituting for L, into equation 70

d% |, 32p GRTe'e Rz
é.;: {'Bz{\.hqbs ?Pkﬁqﬂm"t &d$( g_gs)]

{76)

where @ is assumed to have small variation with \E and can be
taken out of the differential. Since Cf’ ® = V y~ » eguation 76

can be written as

e ehlsshadh cmpp Ll (a7 Ra)]

where T Ta 4
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Since the factors multiplying J—r in equation 77 can be cone
sidered to be of ordey unity, as ig the first term in the square brackets,
a value of -f—, of order unity implies that radiative transport ie as ef-
fective as the heat transfer by convection and conduction. In the exame
ple of reference 1, £ < 3%/ 0_7@. ; hence, {, is extremely small
even if Q is quite small, Hence the influence of radiative transport
on particle lags is negligible.

The zero lag solution is also affected by radiative transport of

energy. The energy equation 63 becomes

LBk 5% — ke Oy 4T
To 1 2 s CPD | T \f@f’RJ:'%CPe c(?

Upon substitution of equation 35, we f{ind that the condition for radiation

to have negligible effect cn the zero lag solution is

l.(.
Oele Lo o | (78)
BVRTL I

since the non-dimensional terms are all approximately of order one.
The concept of an effective conductivity has meaning oaly if
, -3
£r /e L4 . [For chemical rockets WzT%ﬁ,VRJ&) = Jo

Hence the radiative term gives negligible contribution. The ratio

‘[”'/r—r is

e ~ 2 f£RTa 1=« L
e ) * a

In the example a/r%—’_i’ 3 X 10—5‘ ’ _@B_E = 50" , and

%&( = /.5 . Evenif & is small, ﬁk/"’c LL /[ .
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IV, EFFECT OF PARTICLE CONDUCTIVITY

The effect of finite particle conductivity is investigated by
solving the heat conduction equation for the particle with an appropri-
ate boundary condition, then expanding that solution to investigate the
size of the correction term.

The heat conduction equation for a gspherical,uniform,solid

particle with spherically symmetric temperature distribution is

=TT n ()

2.

{79)

where O is the diffusivity of the particle material.

The initial condition is

T= T, at t=o {80)

and the boundary condition at the particle surface is

» oT _ O] )

S( O )yr=0a-06 kg ( F/r=a+o {81)

where To, is the chamber temperature and T is the time measured
from the instant the particles enter the convergent portion of the noz-
zle. The conductivities of the solid and gas are kg and \<3 re-
pectively.

For steady state, with spherical symmetry, the squation for

heat conduction in the gas is

2 ([ W~FOTN
o 2:> =

(82)



which has the solution

T= A + B

rv

At F= o0 , T= T3 , and thus B=T3 and at P=a |,
T= Ta which gives A=a.ﬁ(TcL—Tﬁ). Thus

a1 = (=T
(br>r=a+o a_< ¢ )

or

k3 (SE) . = )

{83)
For quasiesteady heat flow in particle and gas, substitute
from equation 52 into 81 to obtain
ks(g1> = kg (Tg=Ta) (84)
¥ /yza—o ek [

This will be used for the approximate boundary condition for the heat
conduction equation of the particle. The solution to these equations
(79 ,80 | 84 ) will ve obtained by making use of the Laplace trans«
form.

Define
ﬂwe"ft,:m dt = L{F@} = Fp (85)

and
= & {36)
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Then equation 79 becomes
7

@—2\%5-&—_%}11:0
oT

I

Since there is no source at V" =o© , o

—
therefore | = O where | = Z

;

4

Jl
N

which maans that

/o
Y& -8 —> o as ¥ —>o
The solution of equation 87 is

% v - Yo 1

& = Ae + Be +TcY"

Substituting this into equation 88

Té‘i-é = w?\%:—(AemrwBe_W;r
__{ Wor o W% -

at r=o0

_ ./
-= — 952 + €L

e + Be +Tc“‘}

and to satisfy condition 88 , =-A , thus

=8 - A -
T =~ = _F)_S'U’\h%*‘ +‘Tc_

Substituting this into the boundary condition (equation 84 ),

we obtain for the left hand side

W) - (-2

v =0-

and

(87)

{88)

{89)

(990)

(91)
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and for the right hand side

I { —%_—(Tg ‘Tq,)} = -E? &T—j - 2"‘“"—"‘A s;r:-k 39: ’“TCL]

a

since | = _To» at ¥ =o_ ., Combining these equations, egqua=

tion 84 becomes

et - [ T] o

and solving for A

A= q,_%ﬁi—n) ‘ -
S[za_ doslxza.— Smkzq ((——Ez)]

Substituting equation 93 into 91 gives

{93)

T ak (T—Tc[ £ g + Te o4
Y \(s Céa,castq_—Smh Z o (L —,E_i)

+ Lot us now define an average sphere temperature T; as

o
T = j; 49 ¢ T die
.L_t.ﬂdq_:?
3

and hence

_ 3 o 3 ==
‘[;:::-CLTS rTT de (95)
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Then T; - will be compared with the uniform sphere temperature in

the heat balance equation for k. infinite {reference 1),

4 o3 dTs _ _k
3 Ta Bkt = =g (T-) vt (96)

Also define:

Be aka_  (T3-T)
L{S ZQ-COSAZK“SH\AZGL[ ,3}/{?)

so that equation 94 mav be written as

Then substituting and evaluating equation 95

Ts = __25_{ coshga — sinh 5_} Te (98)
1 B
Becauge large values of time T correspond to small values
of 3 expand the expression for 7; in a power series in g to

ohiain the form correct for small % » iced;

-—__ = t J;(Za)zﬂ- L(ia)‘f * ’Lo((za)c,-‘- DR =
] J
ij( 30 ‘\‘ kj o( * a)
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Retaining only terms to order (%a)zf in equation 99

T%—T«, —(Ts"Ta)[H (_L+ks>%a 51—<++5) gaj[ ,OZJ S,o(g ]

which reduces to

— _ (= 1(5 ry \ /7(-
T1~T¢ = (ls”‘Tﬂ‘—)i [ (:&: %>@a ~ o (ga) ] {(100)
Recalling that ¢ = = ﬁf—d— we find that for |-
S .

equal to infinity, equation 100 reduces to

Tes (3R TR)

K
]
{101)
and taking the inverse Laplace transformation of this leads to
Ko (Ta~T =L d T
_OL;(Tg 3> 3 PsCa a5 (102)

which is identical with the assumption used in the heat balance of a
paé'ticm of infinite thermal conductivity, i.e., equation 96.

Reference 2 gives values for the thexmal conductivity of
aluminum oxide and its variation with temperature, Measured values
are given for temperatures up to 160 ®z, and one more point (13‘{?606}
is presented from extrapolated data. The thermal conductivity de~
creases with an increase in temperature up o 1400°C, and then be-

gins to increase again. The value given for 1400°%¢ {the minimum

value of ‘45 for this range) is . 0125 331 . gm oz
' - crn 8eg G
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BTU in

J : .

36. 25
£t hy QF

To find a reasonable value for the thermal conductivity of the
gas, the data from the numevrical example in rveference 1 was used,

that is,

i

C o= 0.500 BTU/DL °F,

P
1.5 x 107 1. sec /8%,

H

Y
Pr = 0.74 .
To be most conservative in evaluating K5/ kg o+ @ value of
M was used that would give a high kg . Since x varies con-
siderably with temperature and the FPrandtl number is almost constant
over a large temperature range, the thermal conductivity varies with
the temperature in the same manner as M . Over the temperature

range of interest, a power law of the following form is satisfactory.

ab
kg = Lo . [T (103)
TS T&)

The maximum k} would be obtained when T%: T s thus

— TWw y
kﬂmax = L&12 BT“'JJL

[+ 4
T Y F

Thus the value of l<s/ kj in equation 190 will always be
greater than 25,7, and thus one may neglect 1/5 in comparison to
ks/

kﬁ e
With this simplification in equation 100 ang substituting

L, for g
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2 2 1 4
—_— - l S, *
SR [ en S R

oG

Taking the inversge of the Laplace transfoym vyields

ke (T -\ — L dTe _ ke protadd T |
H(gT) =g htags griaher s (105)

Without the second term on the right, this equation is identical with
equation 101, and the last term is a correction term. To investigate

the size of the last term, rewrite eguation 102 ag

dTs _ 3ke (T _T {166)
= &n (T

and differentiate o obtain

2
T = « (45 - 4E) non
where o= 3 \7/ch:_ . Then equationl08 becomes
T= L dTs 3 (kqV(dTg (108)
& (o= 50| 52 - F{[ 45 45

The condition that the approximation used in the heat balance

equation of a particle, equation 96 , is valid is

5%’ (E\iY;%%“%IES} < < 1 (109)

dTs
dT



-

n_jl-n

For a first approximation, one can say that A'Tfl / clf and
‘17;/41' are of the same order, while giill unevaluated,

ficient of the numerator is 1.621 X m"‘%

The coale

J based on the constanis evalu-
T

ated earlier. Since ‘LT?/CJL- - 541' can be at most the same order
as de/c{r

is satisfied.

and will probably be less, we can say that condition 109

Since this condition is satisfied, equation 96 is z valid ape

proximation which would be in error by much less than one per cent.
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LIST OF SYMBOLS

cross section area’

specific heat

] 5510 %7

Mach number
Prandil number

ratio of absorption cross-sectional area/geometrical
cross-sectional area

gas constant

Reynolds number
temperature

axial velocity component

radial velocity component

radius of seolid particle

radius of combustion chamber

internal energy/unit mass

correction factor

enthalpy

thermal conductivity

Rosseland mean free path

massg flow rate

number of particles/unit volume
pressure; variable of Laplace transform

rate of heat transfer
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V%

radial distance; burning rate
time

axial distance

mass fraction of particle

ralio of specific heats

indicator of a small quantity
pressure ratio

non-dimensional radial distance
angle (radiens)

viscosity

non-dimensional axial distance
density

diffusivity

Stefan~Boltzmann constant
temperature ratio
non-dimensional axial velocity component

non-dimensional radial velocity component

Subscrigts

b

c

d
7
h
Z

burning surface
chamber

drag

gas phase
convection

with lag



+~ G =™y

<

constant pressure
radiation

solid particle
throat

constant volume
no lag

with small lag
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