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The large deflection analyoits for a plate strip under uniform 

pressure and temperature loading is extendad ta inclad@ apanwise 

vipriation of temperature. kn exact temperature distribution is 

derived and strees and denection equationis are develcpped for the 

funbmeneal mode thereof. A parabolic approximation to tihe funda- 

mental mmcdc is shows to be reasonably accurate. Using this 

approdmatioh a direct analogy tc the case of uniform temperature 

dietribation can be demonstrated in terms of "effectiveu ppresuree. 

temperature moment, and average temperature. The equilibrium 

equations are formally identical, permitting tlae use of design cbnarts 

based on spanwig a conoant Psadings. 
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In an earlier paper WIlliaCia (Ref. 1) derived the equations, 

governing the large deflection of a plate e'trip subjected to covribined 

normal pressure and heating for the situation wilerein the plate was in 

plane w train with respect to i t s  (infinite) length. The equaHons for the 

in-plane: deformation v(y) aad normal deflection w(y) are non-linear 

but can be uncoupled in such a way that under c e r e i n  restrictions an 

exact sslutisn can be sbtahed. Theao con&tion~ are that the .n.saterfal 

ts are independent of the temperature, that the pressure normal 

tc the phte is uniforxaly distributed, and that the temperature distribu- 

tion, while arbitrary through the plate t'lickness, does not vary across 

the finite width (span) af the plate. resign charts werh developed, 

giving the central denection and critical streseesl for two sets  of 

boundary conditioncs, (i) c l m p e d  edges (ii) simply- supported edges, 

as functions of the applied preseure, average tea-petrature through the 

plate, and first eemgerature moment through the plate. It i e ;  therefore 

aatural to inquire into the exteneion of thie work; in pareicular, to 

remove the restriction to spanwise constrent temperature distribution@. 

The eqmticns far deflection and defornjation conbin terms 

wbich dericriba the variation of the average temperature and of the firet 

temperature moment. These are integrals with reepact to the plate 

thicl~ness and are thus variable8 of the spanwise dimension only. 

ing a heat flux into the (upper) surface of a plate atrip, diffusion 
3.111 

through the plate and heat flow out of the lower surface, including - 
loesea through striagere, a general exprassion for the temperature 

distribution urlthfn tha plate can be written. For the particdar steady 
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state condition@ to be consfdared in the following amlys i~ ,  the tempara- 

tare distribution muet, of course, satirsfy the Laplace condition ae wel l  

arr the prescribed boundary conatlone. The general form of such D 

tempc~ature listributiora is z sum of products of hyperbolic and trigono- 

metric functions, but examia~on of the physical ccnditians of a 

somewrhat idealieed pLate strip problem leads to consideration of only 

fundamenu1 mode of the general temperature &stribation by wkich 

certain cases of practical interest can bs ilpprroxisnated. 

Finally, a parabalic approximation tc the fundaments1 (cosirae) 

mode of the general tenlperaare distribution leads to a significant 

eimpllfication. ParaboPic dis tributioas, both ~spanwi~  e and through tila 

thicluaess, are fairly good apprczdnations to reality and are quite aaey 

ta work with. Their primary value, however, lies in the fact that their 

mathematical =tare allows an algebraic cornbinartion of the pressure 

and temperature terms in the deflection equations. These combinations 

can be expressed as very elmple "effectiveu pressure and temperature 

wise temperottare astribuusn. Henee the ~xtangive cdcu%aasne for tbe 

previoue case can be generalized for further deafga use. 



,A 
B 

The governing equations for the normal deflection, 9, and 

in-plane displacsment, t, for a plate of i d f i n i t e  extent in the x-direction 

and of width - b in the y-direction are, 

where 

Fig. 1 - Geometry and Loadbge 



own) constant N can be physic* identified with the average 

membrane strose per unit Length of plate. 

The bounary conditions at the edges (q = amm + 1). including the 

temperature effect, are, for clamped edges: 

and for simply- supported edges: 



1% will be convedaient to combine the leading terrna and the 

material and geometric cons s of the p h t e  inw dimensiodese 

quantfties . Thus, w e  defiae: 

Average temperalur e (sera temperature moment) 

Eqrpation (1) can be integraterd twice and, after eubstituary the dimen- 

siiodelas loading quantities and r @arranging, the governing equations 



If Youngs@ modulus i e  ea to be independent of the temperature (i. e. : 

s(q) = 11, and if the normal preesure i s  constant (i. e.: g(q) = 8). one 

obwfnrm the twa equatloas which are to be conaidered in this anaiygis. 

ft w i l l  be observed that Lf &ere ie no apanwisle variation of temperature, 

f(q)  = r(q) m 1, wMch was the case treated in Reference 1, W e  hnro 

equations reduce immediately to the situation coverad therein. 

The bending momaat equation for a preeeure - and temperature - 
loaded plate etrip is 



b terms of the dImenaiodess loading parameters, Ws bscomes 

hZ (,- The bending etress fe related to the bending moment by M = bendtag 
$30 &at 

The comtant of integrstioa N in Equation 2 16 just the membrzina 

@trees in the plate, wbfck b s  been defined (Equation 7) aa 

The total etrese, evdmted at any poiat q. i s  then 

From a si~milar development, the shear stress i s  

d d 
'membrane aq S(Q~ +q "W 



Using the obvious geometrical symmetry, the sketch can be general- 

ieed to a non-dimensional coordinate syntem with the origin st P. 

The abciseae q = rC + 1 pass through the first stringerrs cn either side 

of tlme plste and IZ = Eelh. 

Zt has been ~jha t b t  &he tran~ient &at@ 8f heat f'low is 

chsracteriaed by an increzrae in the value of the spanwise gradient of 

the temperature from aero initidly to some madm ~alkae far the 

eteady state. The trartsient atseesee are th~refcre intermediate 

between those for a epamvlse constant temperature dietributfon and 

thocse for n fully developed heat flow through the plate. The critical 

~ t r e s s e e  are either (a) tho@@ for time t = 0, corresponding to a 

large but epanwiee conatant temperature moment or (b) those for the 

steady state. The first caee was treated cornpletel$ in the references. 

The second case is that for wUch the Laplace equation 



Solutions of the Laplace equation are: 

a. T = T,, a cons 

b. T = (a + bE)(c + dq), a linear variation in either ar both directions 

a3 

or [Ad" COB d E 4- B:') sin di] [A:'' cosh d + 8;') sinh 1 
n= I 

d. imy linear combimticn of these. 

2 Note: The eolution T . c l ( ~ '  - q ) i s  nct coa~idered, eince for M i a  

geometry it presupposes heat sources or rsi&s within the plate. 

The most general srolutfon i s  the a of all particular solutions, subject 

to the phyeicd and geometric boundahy conditions of the problem. 

Before forming U s  sum, let us consider aolution (c. ) in 

detail. Two arbitra~y restriction@ are imposed, ,baeed on physical 

consideratione, to select the most reasolvable set af producte. First, 

temperature distributione are required to be oylnmetricd about the 

q = 0 axis. This i e  a tremendous mathematical simplification whoee 

physical juetification depends primarily on the efficiency of the 

stringere arr heat oinks. Second, the temperature gradient with respect 

to 3 mu8t vanish at q = + I .  Theso two conditions are eufgicient to - 
rsetrict the E ~ @ % U @ O ~  $a 



T(I. 1) = zi [a, cash nn"L t ba g i n h  n a i  cos nwq 1 
The Fourier coefficients an and ba may now be emluated in terme of 

the temperature ca the rsurfacea Z = - + 1 where it is a function of q 

only* 

T I 8  = a cash nn + b sinh nn coe nm n a I 

Now, multiplying both eides of each eqaatfcn by cog m q  and integrating 

over the interval - 1 < q ( 1, gives 

(1) T(1, q) coa mm) dq E Cm - e o ~ b  m s  + bm @ink m n  

From these relations it is seen that any surface temperatare distribu- 

tion which meets the two arbitrary restricaons can be represented in 

terms of 



Furthermore. the resulting expression i s  still a sofulion of the steady- 

state Eaphce equation. The temperature loading parametere Tf ?) and 

0) T (lg) crin be derived and the equilibrl equation@ can be solved in 

e of U s  distribution, for any rn, if the chta for a specific 

p~oblern 8hodd ~o require. It ie believed &at the majority of plate 

strip problems can be prescribed adaquateiy by the iundamental 

Fourier component, m = 1; 4s. a singfa coeine variation. jicc~rfingly, 

the ~olueaxa 

T(i,q) = [al  COB^ iZ bbl s inh  6.1 coa irr, 

will be US ad. 

a$ indiddud ololutfoas i s  then 

metry condition@ require that d = 0, eo that 

T(E, q] = T~ + CE + [ a t   COB^ ni + bl sic% i. cos wq 1 
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In the discussion of the transcendental part  of this solueion, 

an expression for the tem?erature distribution on the plate surfaces 

was used. These boundary conditions in the %-direction could. just as 

well have been expressed as the clistribution of the z lomal  gra~ents 

along the plate surface. Specwing these gratIients (which define the 

heat flow through the surfaces) would result in a N e u m a ~  problem, 

since gradients have already heen selected for the bollndary conditions, 

on q. Such ccnditionsi would, however, be very diificult to express in 

phyotcal, terms. The heat transpcrt phenornem within the boundary 

layor are complicated fuactinns of U c R  number, fluid viscosity and 

surface emi~sivi ty .  The heat losees from the innisr surface would be 

equally complicated functions of the geometry of construction and 

loacllng: and could, for example, vary with the usc of fuel. Solutions in 

such terms wsutld seen9 to be af limited onssfuhess. 

P* claesical Dirichlet problem i s  a l ~ c  precluded. since there 

i a  no chotea beat ta aqrcht~s $he a fse can&t i~ns as gradisngs. 'bPe 

are led, therefore, to a mixed boundary vase problem in which the 

temperature on each surface i s  prescribed by a coeine curve thrcugh 

two arbitrarily selected point@ whose dasi  tion la  labs shown, 
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The coefficients of Evation 20 can be expressee in terms of these 

polntei, yielding 

Equation 21 can now be integrated t~ find the aver~~ge  tempera- 

hLPe and its apanwise variation. 



f(q) = Th + COB q 

The definition of the temperature moment in Part I contains a 

numerical constant k which, for an algebraic temperature expression, 

relates the integrated moment to the surfsce and average temperatures. 

When the temperature dietribation 3s expressed in transcendental 

faaction@, k i& neiaejap 

no longer useful. T o  preserve the form cf the origfial definitions, 

however, the products k ~ ' ~ ) ( ~ )  and k~~ can be retained by 

proceeding as follows: 



By now defining 

the temperature moment can be! written as 

= ~ 2 ~ )  + cos q 



A Nos~n3aSL Daflecc~~zsd, 

Returning now to Equation 11 

wa substitute Equation 27 far the spanwise variation of the temperature 

moment. 

r(q) = T:') + coe q 

Tho ~olution of the homogeneous equation is 

in which the symmetry conation requires that ik = 0 .  (Symmetry also 

requires Wat kg  = O in Equation 11). 

g the fnhomogeneoue equation by variation of parameters, 

we find 

to which the phyeical boundary conditions can m w  iw appued. 



En similar fashion, Equation 24 
\ 

can he substituted into Zquation 12 for fn-plane deformation 

iUter rearranging and in9agraPing once, w e  obtain 

Note that the in-plane deformation 161 a function of the narmal deflec - 
tion and that the latter must be obtained in terms of given edge 

conditions before Equation 29 can be solved. 

Applying the bouadary cond2itiona 
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(thlersr! conditionsr for q = - 1 have d~eadly been applied by implication 

in tlne symmetry condirlcne used in Section A) tihe cone s in Eqwtion 

28 can be evaluated. The reraulting sxpraesion b r  normal deflection i s  

Thie expression for TG can naw be subsfiterted into Equation 29. 

Doing this aad uaing the  boundary conatfoe ?(I) = O tc cvcsluate the 

consant kg, we have 

( A c o e h A q  sin wq - -asidAq coe 11 
Tho remaMng boundary conation, (F(- 1) = 0 or V(O) = O), i~ 

equivdeat, the meanbrae stress A'. ~%pplying this condition t . ~  

Equation 31 we obtain tha rektion 



The! total strese, bending plus membrme. for any value of q 

can be f o u d  direcay from Equation 16. 

To illustrate the ealutioner of thie Sectiaae consider a plate strip 

ped to stringers along 

each edge and subjected tc iz orm normal pressure of 20 psi. The 

temperatures at (0, - + 1) sad (1. r**l + 1) are as sho 

po =ZO psi 

Fig. Z - Sample Problem 



Assume further that the materid properties sire 

7 E = lO psi 9 = 00z!5 d = 13 x ~ 0 ' ~  i n / i n / O ~  

From the definitions of Equations 23 and 25, 

The dimen~ionleles lagding parameters (Equations 8, 9, and 10) 

2 The me?mbr;me rmtrcssl can be found by nm2erical solution 

of Equation 32. 

L%U QS the corn s in the deflection and streae equations (28, 

rapan are shows in Figures 3 and 4. 
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FIG.4 - SAMPLE PROBLEM, SURFACE STRESS 



A. Formal b;onsiderationa 

The simplified form of an exact temperature distribution in a 

@ate etrip and the resulfing exprsseione for stress and deformation 

doubtless Rave soma inherent value and, inieed, the method can be 

applied to diratribution mcdes higher than the firstt if the &a permit 

and if  such detail ier required, Fhding the membrane strees (EquaHon 

erical methcd fe not difficult. though tedious, and the 

normal deflection and surface stress equations are relatively simple. 

The equations do not, b ever, lend themseivels to the developm eat of 

d e e i p  char* nor do ttzey exhibit a useful iaterrebaon among the 

eters. kr a s  section, tkerefore, we seek an apprad- 

mation which will prmit  an explicit grouping of simihr terms, with 

tha objectives of ccmbi eome of the parameters, and of faciUt;aang 

design 'c~rn~utationrs. 

Looking firat at Equation 11, we see 

2 
i i ~  P f l l l ~ c t i ~ a  of q and r(q), with &a dimensiodesa pressure and 

temperature moment as parameters on the respective terms. (The 

ft  i s  obvious that by selec r(q) to be the parabolic form 



insteadof r(q) s ~ 2 ' )  + cos wq, Equation 27, the terms in brackets 

will become 

VTe see that an "sffecaivegF preaeure can then be defined 

which will serve, formally, st least, as a aorrzal deflection parsmeter. 

For the physical sitwtion In which prestsure and heat are both applied 

to the upper surface, the pressure deforms the plate eonvsx (90 

wMLe the temperature moment causas a convex upward deformation. 

The net deformation is therefore proportional to the difference in 

mamitude of the two effects, which i s  just what the new parametel: states, 

In anernpang to find s new "effectiveH parameter in Equation 12, 

two oppsing consideratiom enter. 

First is the fact that the swawisa distribution of average temperahire, 

f(q)@ ~hauld have tAe e rme  form as the spanwise distribution of 

temperature momen& r(q) .  This i s  seen from tlze definitions af the 

two terms, which are thickness integrds of the two-dimeneianal 

tempsratur e distribution, f eaving the ~panwis e =riation unchanged. 

The eecond coneideralion i s  that we might effect soma 

simplification by m a w  the bracketed terms homogeneous in q, 



Ihat is, by getting f (q) = constant. Although this approdmation is 

physically reasonable (except for the determination of in-plane 

di~placement), it is found that it does not lead to arzy simplification 
slllll 

in eifher We in-plane di~placement o r  the membrane stress condition. 

The function f (q) carrias through the development explicitly and does 

not combine with or modify any other term. 

Thc role and development of new loading parameters based on 

ptfon of pasabolic temperature fu~ct ions may be clarified By 

a mathematical ex;lmpls. Gonsider a plate @trip Bzavlng the tempcrsture 

agtribration 

then, 

Ib we define tke reference temperatures T, and kT as 
0 



Substituting in the normal eqrailibri Equation I la, 

which may he compared to the equation for normal deflection under 

Using the newly-defined pressure, Eqaation 34, 

II II - elm 
@ 

the differential equation is formally the B 
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Similarly in the second equation of equilibrium, one finds 

odee r inte gr;a&Hazln, 
/ 

Impoeing the boundary coladtiorm ?i(+ - 1) = 0, we see that i f  we replace 

@ (1 9) by an effective average temperature 

the situaaoa is fesmnlEy the eoma a@ for (m, s 

ture* although elsewhere in the plate ?(?) will depend upon the 

particular temperature distribution. The interpretation of such an 

effective average temperature i s  entirely proper however for evaluating 

the (unlcnown) xnembrane strese A', under this boundary condition. 

If theee effsctive quantitie~ will now formally satisfy the 

boundary conditions arm bending, their utility will be established. 

Gertdnlly, the temperature term8 930 not enter the boundary C O ~ F I & $ ~ Q ~ B  

ped edge@ (TF = G'= 0 at q = -.I + 1; Equation 5). so tRia case i a  

immerliately verified. Cm the o t h e ~  lapand, for simply- erupported edgcr~, 

one has from Equation 6 



ik anew effective temparatu~c moment 

mllbt thbr@f82@ b6 I a t r ~ d ~ ~ e d  the logy to hold. 

As obted in Page a, tile ~ t r e ~ f ~ ~ a a  are 

9 
and the bendiag atress sat any p i n t  q , found from the bending moment 

* 
iG(q ) = - D 

bend 

The ei&;iUB o$ress is gou?ead ia the for~~ia 



.Ha have ~Hrllown that the aagg ption of a parabolic approxima- 

tion to an exact (Laplacfan) temperature distribuaon will satisfy the 

formal slma*ematical r eqairements of the differential sqwticna and 

the displacement end stress conditions. This conclusion might 

better be expreaeed in the negative sense; tk18t the rnathemaeics of the 

problem doee not prokibit the use of thie apprc2A;nation. ft remains 

to develop %he substance of the functions f (q) and r(q) and to show 

that the approximatton is sdicfenagr accurate. 

Given a temperature distribution defined by T T t ,  T 3, and 

T,, the exact epanwioe variation@ of the average temperature and 

temperature moment are given by Equations 22  and 26: 

C 

T(q) = To (Th + CUB sq) 

ft ie now required to f h d  the numbers A 33, and m, rro that the 

best app~odmate the exact expreseions. Considering firat the tempera- 

ture moment, it ie @can tkat the point8 q = O and q = 1 are of greatast 
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intereet for the deflection and surface strese.  Eqtaating the tranpcen- 

dental .and parabolic terms tor the temperature moment, evaluated at 

$base two points, gives 

The average tcmpe~ature appears moat criticauy in the mam- 

b r a e  stresa and in-plane asplacement equations. kz these case@, one 

ie interested in the value of the parameter integrated acrose the 

. Accordingly. the n ber A is found by eqwting the 

integrals of the exact and approamate expsessioas. 

ters ii and B are, of course, the parabolic approrimations 

(1) of To and kTo , respectively. 
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The parabolic appro aticns to the exact temperature 

&aksibution funca~ao s~ay  &@ra be written: 

Jiverage $amgesatu~@ 

CI d (a) where the e w c t  p;r%metera To, The To , sad Th are defined in 

Equations 23 and 25. 



Substttu~w the approximate expressfane for spanwis e astri- 

bution of the avexags temperature and temperature rnoment (Equation 

eqclisaons can readily be eolvted for G(q, A ) aad 

+[q ,A). 

The physical edge conditions must now be applied to determiae the 

cawant@ for B W C ~ ~ ~ C  cage@. 

Applying the boundas y conditions 

tpi 33 and k2 can be determined prc that 

'%' thein-phnedisplace- .;%f%er computing a.nd integrating the term % ICL, 



The remaining boundary condition on in-plans dispbcemf~nt, FfO) = 0, 

i s  now applied to Equatlan 45 to find tha Icbad-stress relatian 

or, in terms of the "effectfv~" parametera, 

b f i t s  form, the membrane atresg conatciow %@ identical $0 the csndi~oa 

developed +1 Ref  arence 2 fop spanwise ccns-alt temperature distribution. 

2 Reference 2 further defines the expression in brackets as FGL and 

tabulates it as a function of A .  The resdting expression 



can reaaily bs plotted w i ~  any one of the threa variables aa a para- 

meter. A' versus X I e  for various d u e s  of ee i s  s h w a  as 

Figure 5. 

B. 

e boundary condiuons +'or simply- 

supposted edges 

caa be applied to Eqaatfon~ 43 and 44, wSth the following resdte: 



FIG. 5 - EFFECTIVE PRESSURE VS. MEMBRANE STRESS FOR 
VARIOUS AVERAGE TEMPERATURES (CLAMPED EDGES) 



The mambranc stress conditicn for simply-supported edgee is 

derived from ~ ~ ~ t f ~ n  51 by requiring V(1) = 0 .  



These fuactione are agafn tabulatad in Reference Z and the sgress 

condition i~ presented in a aerie8 of parametric plcts of A' versus 11, 

for several values of 8 aad el. 

In Part the gensrd expreeasion for ~urface  stress was given 

(Equa~on 16) aa, 



2 Subsstueing f(q) = 1 - mq m d  the two vzlues of Ti?(?) from 

Equations 45 and 50, we have for the two cases 

As discussed in the references, the character of the analyeie 

2 changes when the membrane stresa A becomee negaave. The 

conpa$atione are carried out in the same manner, the o d y  change being 

&at h becomes $Ae sfnhh becomes s h h  in = i sinA, and 

coskn becomes ccsh lh = c o d .  

Physicsll ye this situation r eaulte when the linear e~yanrsion 

&crass the gpan due t c ~  the average: temperature rfea cause8 a 

compressicn which exceed8 the tension due ta the? pressure load. 

Two points are raised which require specid attention. To 

alustrate the first we write  Equation 53 as 



2 For 4 0, tkis becomes 

where A i e  the pc~itlve square root of A .  The second term wiLhin 

the brackets fe seen go be cyclic, yielding multiple solutions as 
2 different values of (- A ) are read from Figure 5. These hfghar 

energy configuratiolna uPiU generally be unstable and the, smiallast 
Z aberrlute vdue of A will be the correct one. Tha dfscontineitie6: 

arisiag from the sinA term in the denominator are of eecond order, 
@ 

ediiatiag only when He equal@ zero, and can usually be ignored . 

7 - '  - .  . ' 

By substituting i h = A in the membrane stress condition 
(Equason 48). one obtzine 

MuLCiplying through by  sin'^, 

Tbs diecontinuitiee will occur for vduee of A = na, for which 



The second point of interest under (he subject of comp~eseive 

membrane strese i s  our basic aseunmption tbat tiw erlgee q = + 1 
Ilt 

remsia fixed wndsr ths laad. Xt @earns raa@owble that a cosasuow 

eads as we13 as stringers 

allaw ody negligible Iatsra motion of the plate edges uader pressure 

loading alone. In tkt ca4e of thermal Ioad2ng. hcwssvar, it is ctsrtsin 

that .the plate edges would move apart, due to e 

Thie movement would relieve the compreerrive etraes in the plate itself. 

Thur the general expansion has %ha nature of 8 euperimpcssd tensile 

@tress whiih musit be added algebraically to the (negative) membrane 

etress. k, other wo~der, tlze compreosive effect of the average tenpara- 

tare across the plate wilh fixed edgee would. for practical purposes, be 

opposed by the? same genserd e elon throughout ~e structure. An 

lysis based on fi=d edges, such aa the present one, therefore errs 

in favor of compreesive etrasees. Pany specific elructure ehould be 

analyssd to determine ftr weraU thermal e~yaneion characterietico 

before attemptfng a detailed analysie of its components. The preeeslt 

study w i l l  yield unconeervative tensile stresee. if thca edgea of the strlg 

are allowed to move apart. 

The caee for II < Barn, that i s ,  when the moment caueed by 

preasura loading i s  less than the momant caused by uneven heating, 

results Ln nothing more than a c ge of oign. Figure S i s  epmtttrical 
2 about the iI = 0 ad. and tlte same ~ l u a s  of A wi l l  be uoed (for &e 

eame 8). ti corngut- normal deflection, the eign of i@ must be changed 



if negative valuos of (If - elm) ape ucjed. la compumg ttle bending 

stress, such negative values will give the result that the two beadkg 

stress terms now have the same eia;n and eo yield greater absolute 

F. Preksure and T,em2eratare Moments of Like Sease 

If the (outer) eurface i s  pressure lmded and dlso chilled, the 

average temperamre and the temperature moment wfll be smaller t 

their respective refesencen and B and will be negative. The 

effecLive prcleaute, for exampla, becomes 1l = - (- elm) or jurpt e 

II f elm and $be deeign charts are entered at the reeuiting value. The 

ekatts include curves for @4= - I, - 2.25, and -4, whfch are used in 

emcay the same manner sr;, their positive countergarte. 



The sample problem of Part IV D can now be set up wiU3 the 

parabolf c apprcximations and the two sets af solutimar can be com - 
pared directly. 

Materhf  and Gecpxmettsy: 

Clamped edges; b = 10 in; h = 0.1 in 

7 E 10 p s i i  3 = 0.25; d = 13 x 1 0 ' ~  in/in/ '~ 

Applied Pressure and Temperature toads: 

p, = 20 psi T i  400'~ T~ = 2 5 0 ~ ~  

Ttq) = To(T h + cos wqb 

= 2 .43  (7 .6  s cosl wq) 

The correslponding wlues to be uead in the parabolic approximation are 



Thesa distribution functions are compared graphically below. 



The approximate dfmensiodess loading per 

Eater Figure 5 at Zta = 8. E and move up to the Line for Be = 12. 

~ e a d  A' = 4.5 ec~raaponding ta B@ = 12.3. valrts ot A' 

compare8 to A' = 6.25 which was feud by the sxaet equations. This 

error ia  membrane! etress i s  not an accurate measura of the appro&- 

mation, eincs the parhbolic dirstributicne were selected to aquste the 

bending etrassas and defiectione, rather than the membrane stress. ) 

Figure 5 ie ,  of course, a plat af the sa1utlon8 of Equation 49, from 

wXtaaek tba membr;.e.~9ae s t r a s ~  G O U ~ $  ~ % B O  have been f ~ m d .  

The normal defiecticn (Equation 45) and tha erurface stresses 

(Eqution 53) can now be found ae funetion~ of q. Thehrer curve5 are 

plotted in dashed lines on Figures 6 and 7. For eomparisan, the exact 

I O ~ ~ Q ~ ~ Q F ~ $ E  8 8  found b3 Pv 8333 @@ud 1k~2@8 . 
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NORMAL DEFLECTION, EXACT (SOLI D) AND APPROX.(DASHED) 

FIG. 7 - SURFACE STRESS, EXACT (SOL1D)AND APPROX.(DASHED) 
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In developing the pasabolic temperatur o distribution Eunction 
2 1 - rn- ageveral ixigher order fanctionts of the farm 

l - lrirla 

were confidered. Using this function in the nomag equilibti 

tion givee an equation which may be written as 

SSZ~CS there wide@ ber of linearly independent d e r i ~ t i v e e  

genard sofuUon can be obtained, however, by the following procedure. 
\ 

The solution of the hcmogeaeourr eq~ation i s  

Par$ic&r eolutione to the fnhomogensous sqaation can be found by 

$: successive integral vahee to n. Such eolutfons are 

We note that the q2 and qo terme in the Womogeneous 

2 0 equation give ~ i s e  to recurring terme in the coefficients of 1 and q , 
b 2 2b c will Independent of the value of n. T h u ~  w = - - q 

P1 a a a - 7 - -  
appear ar part of each sotution. Rewrit@ the table, omittfng these 

terms, we obtain the  coefficient^ given in Table A. 2. 





The paPtern followed by the coefficient@ now becomes obvious. W e  can  

This sequence can be written in eummirtion form as 



The complete sollwEiosl is &en 


