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The large deflection analysis for a plate strip under uniform
pressure and temperature loading is extended to include spanwise
variation of temperature. An exact temperature distribution is
derived and stress and deflection equations a,reideveloped for the
fundamental mode thereof, A parabolic approximation to the funda-
mental mode is shown to be reasonably accurate. Using this
approximation, a direct analogy to the case of uniform temperature
distribution can be demonstrated in terms of "effective’ pressure,
temperature moment, and average temperature. The equilibrium
equations are formally identical, permitting the use of design charts

based on spanwise constant loadings.
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NOTATION (Cont'd)

LS coefficient of linear thermal expansion
n dimensionless plate semi-span, 1= %Z
8 dimensionless average temperature

al - dimensionless temperature moment

N dimensionless mid~plane stress

R’ Poisson's ratio

I dimensionless normal pressure

Z summation

o gtress

Subs crigts

0 reference value
e . effective

h referred to hyperbolic variation
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NOTATION

width of plate strip, inches

functional variation of average temperature
functional variation of normal pressure .
thickness of plate strip, inches

constant associated with temperature moment
parameter for spanwise temperature distribution
applied normal pressure, Ib/ina
functional variation of temperature moment
functional variation of elastic modulus
in-plane deformation, inches

. . , . - _V
dimensionless deformation, ¥ = 5

normal deflection, inches

g

dimensionless deflection, W = 5
three-dimensional coordinates
2z

dimensionless plate thickness, z = -

| 3
flexural rigidity, mi‘:f':“{j'r
modulus of elasticity

numerical values of hyperbolic functions of mid-plane stress

' constant of integration associated with mid-plane stress

temmperature
average temperature

temperature moment
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I. INTRODUCTION AND SUMMARY

In an earlier paper Williams (Ref. 1) derived the equations
governing the large deflection of a plate strip subjected to combined
normal pressure and heating for the situation wherein the plate was in
plane strain with respect to its {infinite) length. The equations for the
in-plane deformation v(y) and normal deflection wiy)} are non-linear
but can be uncoupled in such a way thaiamier certain restrictions an
exact solution can be obtained., These conditions are that the material
constants are independent of the temperature, that the pressure normal
to the plate is uniformly distributed, znd that the temperature distribu-
tion, while arbitrary through the plate thickness, does not vary across
the finite width (apan) of the plate. Design charts were @evelopéd.
giving the central deflection and critical stresses for two sets of
boundary conditions, (i) clamped edges (ii) simply-supported edges,
as functions of the applied pressure, average temnperature through the
plate, and first temperature moment through the plate. It is therefore
natural to inquire into the extension of this work; in particular, to
remove the restriction to spanwise constant temperature distributions.

The equaticns for deflection and deformation contain terms
which describe the variation of the average temperature and of the firet
temperature moment. These are integrals with respect to the plate
thickness and are thus variables of the spanwise dimension only.
Assuming a heat flux into the (upper) surface of a plate strip, diffusion
through the plate and heat flow out of the lower surface, including
loeses through stringers, a general expression for the temperature

distribution within the plate can be written. For the particular steady
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state conditions to be considered in the following analysis, the tempara-
ture distribution must, of course, satisfy the Laplace condition as well
as the prescribed boundary conditions. The general form of such a
tempm‘ature distribution is a2 sum of products of hyperbolic and trigono-
metric functions, but examination of the physical conditions of a
somewhat idealized plate strip problem leads to consideration of only
the fundamental mode of the general temperature distribution by which
certain cases of practical interest can be approximated.

Finally, a parabolic approximation to the fundamental (cosine)
mode of the general temperature distribution leads to a significant
simplification. Parabolic distributions, both spanwise and through the
thickness, are fairly gbad approximations to reality and are quite easy
to work with., Their primary value, however, lies in the fact that their
mathematical nature allows an algebraic combination of the pressure
and temperature terms in the deflection squations. These combinations
can be expressed as very simple "effective' pressure and temperature
parameters, which permit & direct analogy to the case of uniform span-
wise temperature distribution. Hence the extensive calculations for the

previous case can be generalized for further design use.



3
I, MATHEMATICAL FORMULATION

A, Displacements

The governing equations for the normal deflection, W, and

in-plane displacement, ¥, for a plate of infinite extent in the x-direction

and of width b in the y-direction are,

3

2 [4E n 2- 2 4KE_of |
d o a“w%| 4N a°% (1) ¢?
pat: [3(14/2)&»3 s{n) “‘"z} ~g-7 = py8ln) - v ig) T, ' =% (1)
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*—*—gg(ﬂ) [ + 4—-2-) - Wﬂﬂ) s{n) = N (2)
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Fig. 1 - Geometry and Loadings
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The temperature moments are defined as

h i

T =T, fn)=p [ ZTlzon)de=1 T(Z, n) 42
/ b /o
. h
k) = kxgd 2 = 25 / % aT(z ) dz
h
-3

o
=é / ZT(E, n) dB
-1 '

{3)

{4)

The {unknown) constant N can be physically identified with the average

membrane stress per unit length of plate,

The boundary conditions at the edges (n = + 1), including the

temperature effect, are, for clamped edges:

wil+1l)=0

——

gk
¥
e
"
o

and for simply-supported edges:

(3)
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It will be convenient to combine the loading terms and the

material and geometric constants of the plate into dimensionless

quantities. Thus, we define:

Average membrane stress

z ,
-
N - el D g

Normal pressure

4
3(1 - 2% PoP 1 PP

I = =
64 Eah% 256 Dh

Average temperature (zero temperature moment)
314V ) b2
® = —Tl G &7,
First temperature moment

0 =30 42) @2 g ll)

S N L Té”‘(fk)]

©)

(7)

8

(9)

(10)

Equation (1) can be integrated twice and, after substituting the dimen-

sionless loading gquantities and rearranging, the governing equations

become:



2=
stn)-gm‘%'— A% = 3%61 r(n) + légﬁ‘jfg(n) dy dn (1a)
n
282 o(n) [g% + (-g‘%ﬂ =2 A%+ 64 sln) (2a)

If Young's modulus is taken to be independent of the tempemture (i.e.:
s{n) = 1), and if the normal pressure is constant (1 e.: gin) = 1), one

obtains the two equations which are to be coneidered in this analysis.

2
gﬁ.ﬁw:&% [Gl'r(n)-t-llﬂz-&qu‘!'kz] (11)
T3 [% J\Z+ef¢n)] (12)

It will be observed that if there is no spanwise variation of temperature,
f{n) = r(n) = 1, which was the case treated in Reference 1, the two

equations reduce immediately to the situation covered therein.

B. Stresses

The bending moment equation for a pressure -~ and temperature -

loaded plate strip is

3 ; 2 (1)
2E h 2 4kE h® T

° 25 Win) 4 —2 °® | (3)
3(1 - ) o2 dn? (1- )b ' |
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In terms of the dimensionless loading parameters, this becomes

Z
M(n) = - m[% S W + -3?‘355 o, rm}
i

2

The bending stress is related to the bending moment by M = %— q. bending

80 that
q =22 ey | e 1b gt o 4
bending ‘;‘h {48) 1 ri{n) - - -5;;2 win) {14)

The constant of integration N in Equation 2 is just the membrane

stress in the plate, which has been defined {(Equation 7) as

‘ \\)
Az = (}2)2 % - g,z m%m?orane

and one has

G O (15)

membrane %k

. The total stress, evaluated at any point m, is then

2 2
bhg = A%+ 48 {91 rin) - 3 £ .3...3 wq«,)l (16)
| n

From a similar development, the shear stress is

STRPR NN N P R an
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III. TEMPERATURE DISTRIBUTION

Consider the section of an aircraft surface as shown.
e T —
| | dh

RN = T

Using the obvious geometrical symmetry, the sketch can be general-

ized to a non-dimensional coordinate system with the origin at P.

Z4

neo =1

™y
U]
L
I
| 4
3

The abcissae 1=+ 1 pass through the first stringers on either side
of the plate and Z = 2z/h.

It has been shown that the transient state of heat flow is
characterized by an increase in the value of the spanwise gradient of
the temperature {rom gzero initially to some maximum value for the
steady state. The transient stresses are therefore intermediate
between those for a spanwise constant temperature distribution and
those for a fully developed heat flow through the plate. The critical
stresses are either {a) those for time t=0, corresponding to a
large but spanwise constant temperature moment or (b) those for the
steady state. The first case was treated completely in the references.

The second case is that ior which the Laplace equation



T=0 {18)
iz satisfied,

Solutions of the Laplace equation are:
a. T = TC. a constant
b. T = (a + bZ){(c + dn), a linear variation in either or both directions

0 ;
c. T = E [Aén cosh o(%i-lﬁéu ainhoci] {&éa) coso(-q-%-Eéa) sin o('q]

1 = . - 2 2 .
or En- {Aé )cosdmwﬁBé )sm dz][&é )wsho(n-t-Bé )sinhdn]

d. Any linear combination of these.

Note: The solution T = ¢ 1(52’ - na) is not considered, since for this

geometry it presupposes heat sources or sinks withixx the plate.

The most general solution is the sum of all particular solutions, subject

to the physical and geometric boundary conditions of the problem.
Before forming this sum, let us consider solution {c.) in

detail. Two arbitrary restrictions are imposed, -based on physical

considerations, to select the most reasonable set of products. First,

temperature distributions are required to be symmetrical about the

n = 0 axis. This is 2 tremendous mathematical simplification whose

physical justification depends primarily on the efficiency of the

stringers ae heat sinke. Second, the temperature gradient with respect

to n must vanish at n =+ 1. These two conditions are sufficient to

restrict the solution to

-
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fon)
T(E, n) = {an cosh awZz + b sinh nwﬁx COB nwy {19)
=1

=]

The Fourier coefficients a a and bn may now be evaluated in terms of
the temperature on the surfaces £ = + 1 where it is a function of 4
only.

o)

T{l, n) = ‘.an cosh nw + bn,sinh nw ] cOB nwn
n=1

o)
T{-1,n) = Z ‘.an cosh nw - bn sinh mr] co8 nuy
n=

Now, multiplying both sides of ecach equation by cos mwn and integrating

over the interval - 1 <y <1, gives

1
=c 1), ,
/ T{l, n) cos mmwn dn = Cm =a_ cosh mw +b__ sinh mv
-1

1
T{ -1, *q? cos mm dn = C}j) =a_ cosh m¥ ~ bm sinh mw
-1

From these relations it is seen that any surface temperature distribu~
tion which meets the two arbitrary restrictions can be represented in

terms of



i1

c, (@ c (b _ (@)
a = _m__m b = IR m
™ 2 cosh mw m Z sinh mu

Furthermore, the resulting expression is still a solution of the steédye
state Laplace equation. The temperature loading parameters T{n) and
Tﬂ)(n) can be derived and the equilibrium equations can be solved in
terms of this distribution, for any m, if the data for a specific
problem should so require. It is believed that the majority of plate
strip problems can be prescribed adequately by the fundamental

Fourier component, m = l; viz. a single cosine variation. Accordingly,

the solution
T(Z, n) = { 24 cosh wz + bl sinh 'ﬁ%] cog

will be used.

The sum of individual solutions is then
T{Z, ) = Te 4+ (a + bzZ){c + dn)
+ ‘-al cosh #z + by sinh 1:.??.] cos mn

The symmetry conditions require that d = 0, so that

T('z'.n)=Tc+c'§+[al coshwﬁ+b1 sinhw‘é] cos wn (20)
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In the discussion of the transcendental part of this solution,
an expression for the temperature distribution on the plate surfaces
was used. These boundary conditions in the z-direction could just as
well have been expressed as the distribution of the normal gradients
along the plate éariace. Specifying these gradients {which define the
heat flow ahrough the surfaces}) would result in a Neumann problem,
since gradients have already been selected for the boundary conditions
on mn. Such conditions would, however, be very difficult to express in
physical terms. The heat transport phenomena within the boundary
layer are complicated functions of Mach number, fluid viscosity and
surface emissivity. The heat losses from the inner surface would be
equally complicated functions of the geometry of canst?uctian and
loading and could, for example, vary with the use of fuel. Solutions in
such terms would seem to be of limited usefulness.

A classical Dirichlet problem is also precluded, since there
is no choice but to express the spanwise conditions as gradients. We
are led, therefore, to a mixed boundary value problem in which the l
temperature on each surface is prescribed by a cogine curve through

two arbitrarily selected points whose designation is as shown.

Z

iy
D————>

T, +Iz
T3 4;4
= |

q:*l n=0 1

—— —%
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The coeificients of Equation 20 can be expressed in terms of these

points, yielding

= _ 1 N Yre =
T(z,n)--;}—('rl+T£+T3+T%)¢Q(Ti+T2-T3-T4)z {(21)
T, ~-T,+7T,-T T, ~T,«T,+ T
: 1 2 3 4 = 1 Z 3 "4 -
+{ y P cosh wE + oo ginh wz\ cO8 7n

Equation 21 can now be integrated to {ind the average tempera-

ture and its spanwise variation.

h
Tin) =4 | % T(z, n) a2
h
“Z
. 1
== {3, n) dz
21
= TQ ('fh + cos wn) | (22)
where
% _tanh #

'@"’”(T - T +T3-§'4)

(23)

T1+TZ+T +T
T ﬁ'
h” ok w T, -T,+T, “E‘z



14
Further,
T(n) = T f(n)
so that

i(n) = ?h»-&- cos mn {24)

The definition of the temperature moment in Part I contains a
numerical constant k which, for an algebraic temperature expression,
relates the integrated moment to the surface and average temperatures.
When the temperature distribution is expressed in transcendental
functions, k ig neither numerical nor consta.nﬁ and its identification is
no longer useful. To preserve the form of the original definitions,
however, the products kT“)(n) and kT ou) can be retained by

proceeding as follows:

T rm) = )

S AU I
i
=1 | zTEwaE
-1
T, +T, -T,-T T, «T,~T,+T
_aattemtstta 23 37 74 coth w-1) m

24 8w
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By now defining

{1) w coth w=1
RTG = W‘Z’“‘"‘Tl -Ta-’l‘gﬁ-'}?é)

S
(25)
T(“ _ ~WZ T1+T20T3—T4
h 3w coth w-1) Ty - T2-T3+T4
the temperature moment can be written as
krMm) = k1Y 2(n)
= xr {1z M 4 cos m) (26)

whence

r{n) Té” + co5 (27)
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IV, SOLUTIONS OF THE EQUILIBRIUM ECUATIONS

A. Normal Deflection

Returning now to Equation 11
d 2 _ h 2
—-—g-— Aw=8g[alr(n)+un +k1ﬂ+k2]

we substitute Equation 27 for the spanwise variation of the temperature
moment.

(1
T} )

r{n) = + cos mwy

The solution of the homogeneous equation is

Wy = Asinh Aq + B cosh Ay
in which the symmetry condition requires that A = 0. (Symmetéy also
requires that kk = 0 in Equation 11).

Solving the inhomogeneous equation by variation of parameters,

we find

(1)
8, cos m; 9 ’E‘ }c

to which the physical boundary conditions can now be applied.
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B. In-plane Deformation

In similar fashion, Equation 24
f{n) = Th + cos wy

can be substituted into Equation 12 for in-plane deformation

— — \ Z .
Frt = 30° [{}— +e f(ﬂ)l (12)

After rearranging and integrating once, we obtain

2 3 b2 | awz2 A2
vE-zR)7) G dnt g 46T n

G

)

NT

(29)

8
+-§;ainm4~k4

Note that the in-plane deformation is a function of the normal deflec-
tion and that the latter must be obtained in terms of given edge

conditions before Equation 29 can be solved.

C. Clamped-edge Solutions

Applying the boundary conditions

#1)=0; T q)=o0
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{these conditions for n = -1 have already been applied by implication
in the symmetry conditions used in Section 4) the constants in Equation

28 can be evaluated. The resulting expression for normal deflection is

Ve, =-;}.z % ‘{H {‘1 -j€cuth.l\. - nz +mcaah.ﬂn}

(30)

149/

»kal I+co&Ag3¢ }

This expression for W can now be substituted into Equation 29.
Doing this and using the boundary condition ¥{l} = 0 to evaluate the

constant k 4 we have
. &
%@)Zﬁcf %%)2 sl -3 :F&u - 1) +§5‘§§€; inh2 A - sinh2 A+ - lem)\

6csch A ’ . sinm
- "‘XZ‘““_J\. cosh A\ - Ancosh An+ sinh A 7 - sinh/\.]} +8 .....%m

{31)

2 2, 2
'(-jvj\"-z){ef% sin2m-418, {*M» AR%&-WG% ™ - % sinwn)
+n ~

+ ~——-‘z-—~wx6h‘/" (A coshAn sinm - weinhAq cos m’]}

The remaining boundary condition, (¥{-1) = 0 or ¥(0) = 0), is
now used to determine or evaluate the unknown vconstant N, or what is
equivalent, the membrane stress ./\.2. Applying this condition to

Equation 31 we obtain the relation
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_/\.2 | _/\2 2 1:'2 A
{32)
- e-gj_?z)zu +-j-% .f; coth A\ -2 3 csen®)

The total stress, bending plus membrane, for any value of 7

can be found directly from Lquation 16.

z
55 Tou = A2 oo| 0 - Aggmny con (e Lscee )
(33)

D. Sample Problem

To illustrate the solutions of this Section, consider a plate strip
of width b = 10" and thickness h = 0.1", clamped to stringers along
each edge and subjected to a uniform normal pressure of 20 psi. The

temperatures at (0, + 1) aand (1, ii) are as shown. -

‘ZOpsn
1] !111&
Te= ZSO‘H,

omimsoo [[[ ][ Bleso

T I_J—IiTat 50 T3=100 _%TP.,-Q
.

i

OO

D 10"

Fig. 2 - Sample Problem
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Assume further that the material properties are
I S = -6 o
E =10 psi 2 =0.25 oA =13x10  infin/"F
From the definitions of Equations 23 and 25,

T (1)
T, = 15.7 | KT "' = 2.73

T = 13 1 .
T, = 12.7 Th‘ = 7.6

The dimensionless loading parameters (Eqguations 8, 9, and 10)

are then,
II = 8.5
8 = 0.9
91 = 0.17

The membrane stress J\° can be found by numerical solution

of Eqguation 32.
A% = 6.25

All of the conatants in the deflection and stress equations (28,
29, and 31) are now known. Plots of normal deflection and stress versus

span are éhown in Figures 3 and 4.
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V. THE PARABOLIC APPROXIMATION

A, Formal Considerations

The simplified form of an exact temperature distribution in a2
plate strip and the resulting expressions fér stress and deformation
doubtless have soms inherent value and, indeed, the method can be
applied to distribution modes higher than the first, if the data permit
and if such detail iz required. Finding the membrane stress (Equation
3Z) by a numerical method is not difficult, though tedious, and the
normal éeﬂecﬁoxx and surface stiess eqguations are relatively simple.
The equations r?eé not, however, lend themselves to the development of
design charts nor do they exhibit a useful interrelation among the
loading parameters. In this section, therefore, we seek an approxi-
mation which will permit an explicit grouping of similar terms, with
the ebjecﬁvee of combining some of the parameters and of facilitating
design 'computationé .

Lgoking first at Equation 11, we see that the normal deflection
is a function of nz' and r(n), with the dimensionless pressure and
temperature moment as parameters on the respective terms. (The

coefficient kl is zero by symmetry).

2 .
33--%’ - Nwm=sp {elr(nnnn%kz] (11a)
~ dn .

It is obvious that by selecting r{n) to be the parabolic form

2
r{q) = 1 - mqy
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instead of r{n) = ’E’él ) + cos wn, Equation 27, the terms in brackets

will become

(If - almma + 8, +k

1 P

We see that an "effective’ pressure can then be defined
I =1I-8m (34)

which will serve, formally, at least, 2s a normnal deflection parameter.

For the physical $ituaiion in which pressure and heat are both applied

to the upper surface, the pressure deforms the plate convex downward

while the temperature moment causes a convex upward deformation.

The net deformation is therefore proportional to the difference in

magnitude of the two effects, which is just what the new parameter states.
In attempting to find a new "'effective’’ parameter in Equation 12,

two opposing considerations enter.

Bk

+ (%%3 =-§ (%)B [% A%+ fm)]

First is the fact that the spanwise distribution of average temperature,

£{n), should have the same form as the spanwise distribution of

temperature moment, r{n). This is seen irom the deﬁnitioné of the

two terms, which are thickness integrals of the two-dimensional

temperature di‘stribuﬁan, leaving the spanwise variatibn unchanged.k
The second consideration is that we might effect some

simplification by making the bracketed terms homogeneous in v,
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that is, by setting f{n) = constant. Although this apprexim‘aticm is
physically reaséna.‘nle {except for the determination of in-plane
displacement), it is found that it does not lead to any simplification
in either the in-plane displacement or the membrane stress condition.
The function f{n) carries through the development explicitly and does
not combine with or medify any other term.

The role and development of new loading parameters based on
the assumption of parabolic temperature functions may be clarified by
& mathematical example. Consider a plate strip having the temperatare

distribution
é
T(zy n) = t{z) (1 ~ mn")

then,

and

; i h/2 ,
T(“(ﬂ’ = T;n r{n) = “1::-!:2/ zt(z)éz] [ i- mrgaJ
hiz

(3

If we define the reference temperatures T o and k”ﬂ’gl) as



RTH) ‘EZ zt{z) dz
h Inl2

then the spanwise distribution functions become
2
fn)=r(n) =1 - mn - (35)

Substituting in the normal equilibrium Equation ila,

%—?- _/\_z\?a?v %[6 (1—mﬂ Y+ Iy +k2’]
!

[(u - 8,m)n” + 8 +k2]

5'%::"

which may be compared to the equation for normal deflection under

spanwise constant temperature moment

asw

2 _ h[ 2
:;;!‘Z‘Aw'g*a II +91+k2]

Using the newly-defined "effective' pressure, Equation 34,

the differential equation is formally the same.
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Similarly in the second equation of equilibrium, one finds

after integration,
" dw,2 4 hall 2 2
vmu/ ) dn=3 ) ["g ANoveon-Zq )]-n
Q

Imposing the boundary condition ¥(+ 1) =0, we see that if we replace

8 {1 - %f—) by an efiective average temperature

m
8, =8(1-5) (36)

the situation ie formally the same as for a spanwise constant tempera-
ture, although elsewhere in the plate ¥(n) will depend upon the
particular temperature distribution. The interpretation of such an
effective average temperature is entirely proper however for evaluating
the {unknown) membrane stress ./\.2. under this boundary condition.
If these effective quantities will now formally satisfy the
boundary conditions on bending, their utility will be established.
Certainly, the temperature terms do not enter the boumda;iy conditions
for clamped edges (W = W= 0at n = + 1; Equation 5), so this case is
immediately verified. On the other hand, for simply-supported edges,

one has from Equation 6

ri+ 1) 8% 5,

*
[

ot
il

h
ng(l - m) 91
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A new effective temperature moment

8y = (1 -m)8, (37)

1

must therefore be introduced for the analogy to hold.

As stated in Part I, the stresses are

_ 4D 2 .
qmembrane - bzh A", psi

&
and the bending stress at any point « , found from the bending moment
equation, is

3 2
5 | 22 n axg nixt b

oo 5 o ° *
M(n ) = Z 301 - ‘;}z)bz W' n ) + T-v7% r{n )

More specifically,

2
Mn') = - ﬂ[g %'in ) - %i—?g 8, r(n*)] = ‘%“ S pena

and therefore
4D v i 1 b, * -
G-‘tmem:’ti:ag = bzh (48) [91 #{n ) - z g i )] (38)

The total stress is found in the form

2;“- T= Altss [0, vt - § 2 #'n") (39)
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We have shown that the assumption of a parabolic approxima-
tion fo an exact (Lapiacian) temperature distribution will satisfy the
formal mathematical requirements of the differential equations and
the displacement and stress conditions. This conclusion might
better be expressed in the negative sense; that the mathematics of the
problem does not prohibit the use of this approximation. It remains
to develop the substance of the functions f{n} and r(n) and to show

that the approximation is sufficiently accurate.

B. The Approximate Distribution Functions

Given a temperature distribution defined by Tl' T 2 TB’ and
T, the exact spanwise variations of the average temperature and

temperature moment are given by Equations 22 and 26:

T(n)

'EQ (Th + cos wn)

k1)

k"rél}(’ré“ + cos ®n)

It is now required to find the numbers A, B, and m, so that the

functions

Tin) = A (1 -mnd)

xTNq) = B (1 - mn)

best approximate the exact expressions. Considering first the tempera-

ture moment, it is scen that the points =0 and n=1 are of greatest
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interest for the deflection and surface stress. KEquating the transcen-
dental and parabolic terms for the temperature moment, evaluated at

these two points, gives

= wriz e

W
I

2

Thli%l

g
1}

The average temperature appears most critically in the mem-
brane stress and in-plane displacement equations. In these cases, one

is interested in the value of the parameter integrated across the

semi-span. Accordingly, the number A is found by equating the

integrals of the exact and approximate expressions.

i - i
f Al - zzmz)dn = f To(-’fh + cos wn)dn
(o] o

The numbers A and B are, of course, the parabolic approximations

of To and kTén, respectively.
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The parabolic approximations to the exact temperature
distribution functions may then be written:

Average temperature

Tin) = T fn)
= To(Th 4+ cos @) {40)
Tea Th 2

Temperature moment

kTm(n)

kTé“ i{n)

k1 ) 4 cos my) (41)

= kx4 0 - me?)

in both of which

= {42)
- 'rhm +1 :

where the exact parameters TO. -'f‘I ' Tén

\ s and Tél) are defined in

Equations 23 and 25.
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Vi. APPROXIMATE SOLUTIONS

Substituting the approximate expressions for spanwise distri-
bution of the average temperature and temperature moment (Equation

35), the equilibrium equations can readily be solved for W(n, /) and
;'(ﬂ )A"

% = B cosh Ay - —-J—{Sz% [(II - Glm)ma-&%}@ kz I+ 6;} {43)

T w2 4 nz| AZ my 3
'*?’=-[ (gx”-} ﬁ'n-%--g(-g) {T ?%*9(3*‘{?)?’%] {44)

o

The physical edge conditions must now be applied to determine the

constants for specific cases.

A, Clamped Edges

Applying the boundary conditions

(1) = g%u)::o

the constants B and k., can be determined so that

2
Ty © = hm-em;[an4~§ccm/\+m°°sh/\"*}
CL " "AZ B 1 A

{45)

After computing and integrating the term )é 1 the in-plane displace-

B

ment is found to be



2
%‘%’ L ‘ém"“ - %) - (-‘%- +8)(1 - ) {46)

Z _

-6 5—%\@—2—'—4’« [/\cash/\. - An cosh An + sinh Ay - sinh/\]}

The remaining boundary condition on in-plane displacement, ¥{0) = 0,

is now applied to Equation 46 to find the load-stress relation

2 2
-—-J%:- + o1 - -?z??-) = K'-—Qs-z (I - Blm)] [1 'bwj\% - %coﬂa/\.«%cschzj\]

N
(47)
or, in terms of the "effective' parameters,
A2 8 2 442 [ 6 9 3 2 |
ZE 40 = {—)° 1% |14 - —Z-coth A - 5 csch®A|  (48)
877 e AT Te | TAZ 2A 2

In this form, the membrane stress condition is identical to the condition
developed in Reference 2 for spanwise constamz temperature distribution.
Reference 2 further defines the expression in brackets as FéL and

tabulates it as a function of A . The resulting expression

2 2
-—'%—-4-88: {—]%He] E"éh (49)
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can readily be plotted with any one of the three variables as a para-
meter. Az versus Ile for various values of ee is shown as

Figure 5,

B. Simply~supported Edges

In a similar manner the boundary conditions for simply-

supported edges

€l
-
Pood
T

u

o

31 +v) 2 koY) o)

a\% 8 (1 - mn?)

can be applied to Equations 43 and 44, with the following results:

— 8 h 2 2 WA »sh A
s=eb {u-gm [ 10" - 2 (1- 50 - e (- 2]
(50)

st {m [ - - ) - e (- )]
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FIG. 5 - EFFEGTIVE PRESSURE VS. MEMBRANE STRESS FOR
VARIOUS AVERAGE TEMPERATURES (CLAMPED EDGES)



w
G

2_ 2

2@ g = (- v b - Jmen’ - (Hpf @ - gy’

+ "_7\%2’2 {_Acishj\ (KZ {11 - elm){-exu -m)] {(Ancosh Ay - sinhAn)

__3A
i6 eoshZA

\;Z(H - am)® 4 91(1~m)1 ¢ (sinh2 Aq - zAn)}

(51)
z .
e e s on-dnard - R ut

8 2 3
+ (./\.2,‘ []\'caah/\,

( ig I+ Gle) {Ancosh A n - sinh An)

__3A
16 cosh®A

e

( j\z u? + Gle)z;(sinhz./\q - zj\n)]

The membrane strees condition for simply-supported edges is

derived from Equation 51 by requiring (1) = 0.
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2 :
o1 - By + A - (..]%2.)3 [(n - am)? FHN)

v 2
+3 - ome, - 8m) F2 (A) + 2 (8 - am)® F2 (A )1 (52)

2 ' 2 ‘
8, +% = () [né F2A) +3 18 FAN)+ 25 afe?’g(f\)l

where

2
qu\)=1— 6,15 tanh A 3 sech®A

AZT g A3 2 A°

F‘;‘(J\) = i.*.‘;...xh;/}.. - 2 - sech® A

Fz(/\) = tanjk\z_./\ - sech?A

These functions are again tabulated in Reference 2 and the stress
condition is presented in a series of parametric plots of A2 versus II,

for several values of € and 81.

C. Total Stress

In Part II, the general expression for surface stress was given

{Equation 16) as

A 2
U AT | et -5 S|
i
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Substituting f£{n) = 1 - mn> and the two values of W(n) from

Equations 45 and 50, we have for the two cases

BE Gopm APzes X**zﬁ 1, (1 L) sa emed)|

{53)
b°h G 2 2 A%016 \ cost A 2
75 Vss = Mras 7(2%&“(“ I, E@Hﬂ*‘%”'m ’}

(54)

D, Compressive Membrane Stress

As discussed in the references, the character of the analysis
changes wiae’n the membrane stress J\Z becomes negative. The
computations are carried out in the same manner, the only change being
that A becomes iA, sinh A becomes sinh i/\ =i sin/\, and
cosh /A becomes coshiA =cosA.

Physicé.uy, this situation results when the linear expansion
across the span due to the average temperature rise causes a
compression which exceeds the tension due to the pressure load.

Two paints are raised which require special attention. To

illustrate the first we write Equation 53 as

2 2 .
B Sous @2 |z (10 A5ER%) + go-m)



For _/\Z <0, this becomes

2 s AVD ‘
T2 Ter = "43) i{(i./\.)z I, (1- e ;_A’ﬁ> +8 (1-mn )}

2 ,
s AT [ (3 Agphn) equened)

where A is the positive square root of J\.a. The second term within
~ the brackets is seen to be cyelic, yielding multiple solutions as
different values of (- _A_Z} are read from Figure 5. These higher
energy configurations will generally be unstable and the smallest
absolute value of J\Z will be the correct‘ane. The discontinuities
arisiné from ihe sin A term in the denominator are of second order,
existing only when Il equals zero, and can usually be ignoreda.

L

%

By substituting i A = A in the membrane stress condition
{(Equation 48), one obtains

A2 8 2 6 . 9cotA.3 2
-t 8, = [“Wﬁe] [1“ Az* e+ 5 cec A

Multiplying through by sin®A,

N? 2A T 8 «1%7 .27 6ein®A . 9sinAcosA | 3
(-«—-g--& 6@) sin“/\ = {-_/\.‘ Ile] [sin A - E_AZ + su;Acus »s-z]

The discontinuities will occur for values of A = na, for which

‘I

0

i
ressm—y
Y

o
=
o
[ SR |
™
P
s w

I

e

]
<
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The sec;)xad point of interest under the subject of compressive
membrane stress is our basic assumption that the edges n = 1
remain fixed under the load. It seems reasonable that a continuous
structure which contains ribs or bulkheads as well as stringers would
allow only negligible lateral motion of the plate edges under pressure
bloading alone. In the case of thermal loading, however, it is certain
that the plate edges would move apart, due to expansion of the bulkheads.
This movement would relieve the compressive stress in the plate itself.
Thus the general expansion has the nature of a 3!&9&!!’1&2938&@ tensile
stress which must be added algebraically to the {negative) membré,ne
stress. In other words, the compressive effect of the average tempera-
ture across the plate with fixed edges would, for practical purposes, be
opposed by the same general expansion throughout the structure, An
analysis based on fixed edges, such as the present one, therefore errs
in favor of compressive stresses. Any specific structure should be
analyzed to determine its overall thermal expansion characteristics
before atteméting a detailed analysis of its components. The preseant
study will yield unconservative tensile stresses if the edges of the strip

are allowed to move apart.

E. Temperature Moment Greater than Pressure Moment

The case for II < Glm. that is, when the moment caused by
pressure loading is less than the moment caused by uneven heating,
results in nothing more than a change of sign. Figure 5 is 3ymmetricall
about the II = 0 axis and the same values of ./\.z will be used (for the

same 8). In computing normal deflection, the sign of W must be changed
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if negati\}e values of (I - Blm) are used. In computing the bending
stress, such negative values will give the result that the two bending
stress terms now have the same sign and so yield greater absolute

stress values,
]

¥, Pressure and Temperature Moments of Like Sense

If the {outer) surface is pressure loaded and also chilled, the
average temperature and the temperature moment will be smaller than
their respective references and 8 and 93. will be negative. The
effect?vé pressure, for example, becomes He =II - {- elm) or just
II + 8;m and the design charts are entered at the resulting value. The
charts include curves for ,= -1, - 2.25, and -4, which are used in

exactly the same manner as their positive counterparts.
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VII. COMPARISON OF EXACT
AND APPROXIMATE SOLUTIONS

The sample problem of Part IV D can now be set up with the
parabolic approximations and the two sets of solutions can be com-
pared directly.

Material and Geometry:

Clamped edges; b= 10in; h=0.1in

E =107 psi; ¥ =0.25; o =13 x 10”° in/in/°F
Applied Pressure and Temperature Loads: |

P, = 20 pei T, = 400°F T, = 250°F

T, = 100°F T, = 50%

The exact definitions of the average temperature and temperature

moment distributions were found to be

T(n) = T'Q(T’h + cos wm)
= 15,7(12.7 + cos wy)
kT = k'I’én(Té“ + cos wn)

2.73 (7.6 + cos 1)

The corresponding values to be used in the parabolic approximation are

Z - = 0,23

l-t-Té“ 147.6

m =




Tin)

_ Q5. 7)(12 U

it

o
-
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T

]

T

h

1~~§(3 23)

(1-mn)

0.23 n%)

217(1- 0. 23 14%)

kT M 4 1)1 - e

2.73(7.6 + 1){1-0.23 na)

23.5(1-0.23 1°)

These distribution functions are compared graphically below.
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The ap?roximate dimensionless léaéing parameters are

I = 8.5
6 = 13.4
= 1.43

!

and the effective parameters are

= m, _ 0.23, _
Ge- 9(1-——3-)— 13.4 (1 - --3*)-3,2.3
ele = 91(1 -m)=1.43(1-0.23)=1.11

Enter Figure 5 at o =8.2 and move up to the line for 8_ = 12.
“Raaé N =45 corresponding to ee' = 12.3. (This value of AN
compares to J\Z = 6,25 which was found by the exact equations. This
error in membrane stress is not an accurate measure of the approxi-
mation, since the parabolic distributions were selected to eqaa,te the
bending stresses end deflections, rather than the membrane stress. )
Figure 5 is, of course, a plot of the solutions of Equation 49, from
which the membrane stress could also have been found.

:The normal defle‘ctian {Equation 45) and the surface stresses
{Equation 53) can now be fbund as functions of w. These curves are
plotted in dashed lines on Figures 6 and 7. For comparison, the exact

solutions as found in Part IV D are shown in solid lines.
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T APPENDIX 4
A SOLUTION OF DIFFERENTIAL
EQUATIONS OF GENERAL ORDER

In developing the parabolic temperature distribution function
| mnz. several higher order functions of the form |

1= mf;n

were ccn§idered. Using this function in the normal equilibrium equa~

tion gives an equation which may be written as

i‘%«aw:bﬁz-t-c-&éﬂ“

dn
Since there are an infinite number of linearly independent derivatives
of the last term, a closed - forrn solution cannot be written. A
general soiution can be obtained, however, by the following procedure.

The solution of the homogeneous equation is

an ~an
WH’-'-'Ale &Ble

= A, sinh an + B, cosh an

2
Particular sdluﬁons to the inharn@geneaus equation can be found by
assigning successive integral values to n. Such solutions are
tabulated in Table A. 1.

We note that the nz and ne terms in the inhomogeneous

equation give rise to recurring terms in the coefficients of na and na,
independent of the value of n. Thus wp =.B 113 - Eg -£ will
1 a a a

appear as part of each solution. Rewriting the table, omitting these

terms, we obtain the coefficients given in Table A, Z.
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() 5 4 3 2 1 0
i n 7 0 H Kt} L]
n=10 .8
2
1 .8
a
d 2d
2 - — -
a 2
3 - § . 64
a 22
4 _d _lad _24d
a ";Z -3
5 4 _ 204 120d
a 2 T3
a . a
6 | .4 _ 30d 3604 | _ 7204
a 2 3 4
& & a
Table A.2

The pattern followed by the coefficients now becornes obvious. We can

write

n-2 n!

. _n! d d d ‘
Yp,*Twl 3 Tw-ar 2V Tw-ar 30 T

This sequence can be written in summation form as

B |
a! "z(P"‘a) nep
p=0,2
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The complete solution is then

w s wW,+w  +w
H o' P

2
a

‘- b, 2 c
w = A, sinhan + B, coshan~=(n -g- +g)

1
E nt "zl 2gmep
L n " p T a
)



