TETE MOTLON ON A CURRENT ELEMENT THROUCLA YLUD OK LOW ELECTRICAL CONDUCTIVITX

Thesis by

Dean MacGillivray

In Partial Rulifilment of the Requirements
 For the Degree of Doctor of Philosqphy

I wish to express my gratitude to Profeser Julian D. Cole, who suggested the problem and supervised the research.

Thanke are aleo due to Mrs. A. Tingley for her very competent typing of the manuscript.

The author was supported by the Air Force Oxfice of Scientific Research under Contract $A 5-49(638) 476$.

Abstract

Two dimensional flow of ancompressible, viscous. electrically conducting nuid past a current element is studied A solution in the form of an adymptotic development is obtained, valid as a cextain dimensionlese parameter (essantially the product of the electrical concuctivity and the current) tends to zero. An espression for the drag on the current element is computed, and is found to be independent of viscosity.

LIST OF PRINCIPAL SYMBOLS

1. Dimensional Variables and Parameters

$x, y ; 5$	Cartesian space coordinates, meters
r, 0; 0,0	Polar space coordinates
$\vec{r} ; \vec{p}$	Space vectors
$\vec{T}_{x}, \vec{i}_{y}, \vec{r}_{z}$	Cartesian unit vectors
$\vec{q}=\vec{i}_{x} u+\vec{i}_{y}{ }^{v}$	Flow velocity vector, meters/second
p	Pressure, newtons/meter ${ }^{2}$
$\begin{aligned} & \vec{B}=\overrightarrow{i_{x}} x_{x}+\vec{i} y D \\ & \omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \end{aligned}$	Magnetic induction vector, webers/meter ${ }^{2}$ Vorticity
$\mathrm{US}_{\mathbf{x}}$	Velocity at infinity
P_{∞}	Pressure at infinity
ρ	Density (constant)
v	Sinematic viscosity (constant)
μ	Magnetic permeability (constant)
1	Current in current element (constant)
σ	Electrical conductivity (constant), mhos/meter
${ }^{\text {resist }}$	See equation 6-1
$\mathrm{F}_{\text {surf }}$	See equation 6-2

2. Dimensionless Variablos
a. Outer variables

$$
\begin{aligned}
& x^{*}=r \text { rqu }, \quad \rho^{*}=\rho o \mu \mathrm{U} \text {. } \\
& \vec{r}^{*}=\vec{x} q_{u} U, \quad \vec{\rho}^{* *}=\vec{p} q_{\mu} U ;
\end{aligned}
$$

$p^{*}=\frac{p-p_{\infty}}{\rho U^{2}}$.
$\vec{B}=\vec{B} / \sigma \mathrm{H}^{2}$
b. Inner variables
$x^{\dagger}=x^{*} / \epsilon, \quad y^{\psi}=y^{*} / \epsilon, \quad \xi^{*}=\xi^{*} / \epsilon, \quad \eta^{+}=\eta / \epsilon$,
$r^{+}=r / \epsilon, \quad \rho^{+}=\rho^{*} / \epsilon$.
$\vec{r}^{+}=\vec{r} / \mathrm{E}, \quad \vec{p}^{+}=\vec{p}^{*} / \epsilon:$
$\mathrm{p}^{+}=\epsilon \mathrm{p}^{*}$
$\vec{B}^{+}=\epsilon \mathrm{B}^{*}$

3. Dimensionless Parameters

$\alpha=\sigma \nu \mu$
$E=\sigma I \sqrt{\mu^{3} / \rho}$
Re \quad Reynolds number (see equation 6-7)
Re Reynolds number
$S_{i}, S_{v} \quad$ Cores" for inviscid and viscous fluids
$g_{i} \cdot g_{v} \quad$ Characteristic sime of cores
$u_{i}, u_{v} \quad$ Velocity inside core

I. INTRODUCTION

In all but a few problems of magnetohydrodynamics, it has been found necessary to introduce various simplifications in order cofacilitate a solution. Part of the difficulty is undoubtedly due to the large number of variables and differential equations involved, but a somewhat more basic difticulty lies in the inherent non-linear character of the equations. Many investigators have circumvented this dificulty by choosing problems for which the non-linearity could be relased or even neglected. This thesis investigates a problem in which these non-linear effects are not neglected.

The problem which we shall consider turns out to have two characteristic parameters; an e which depends linearly on both the electrical conductivity and a certain current, and an a which depends linearly on the viscosity of the fluid and on the electrical conductivity. Since the solution we shall obtain is valid fox ϵ small and axed, two distinct situations present themselves:
(i) we can maice ϵ mall by keepimg the electrical conductivity fixed and letting the current be small, in which case a is constant if the viscosity is kept fixed;
(ii) we can make \in small by keeping the current constant and letting the electrical conductivity be small, in which case a is constant only if the viscosity tends to infinity like the reciprocal of electrical conductivity.

Thus, in order to consider fluids of low electrical conductivity, it seems that the nluid must possess very large viscosity. This would not be

-2-

necessary, however, if our solution were uniformly valid in a; in particular, if a very small. Two reasons which indicate the solutions might indeed be uniformly valid as $a \rightarrow 0$ are presented in Section X.

The approach to the problem is based largely on the researches of S. Kaplun and P. A. Lagerstrom on low Reynolds number flow. (1)

11. STATEMENT OR TEE PROBLEM

We consider the two-dimensional steady llow of an incompressible fluid possessing kinematic viscosity v and electrical conductivity 3. At the origin of coordinates (see ing. I), there is a current element carrying I amperes in a direction normal to the flow (foward the viewer in fig. 1). The flow velocity \vec{a} and the fluid dynamic pressure p are constan atinfinity.

We denote the position vector by $\vec{x}=\vec{i}_{x} x+\vec{b}_{y} y=\vec{i}_{x} x+\vec{i}_{0} \theta_{0}$ the magnetic induction vector by $\vec{B}=\vec{i}_{x} x_{x}+\vec{i}_{y} \mathrm{E}$, the velocity vector by $\vec{q}=\overrightarrow{s_{x}} u+\vec{i}_{y}$, the gradient operator by $\nabla=\vec{i}_{2} \frac{\partial}{\delta x}+\vec{i}_{y} \frac{\theta}{\partial y}$, the Laplacian operator ∇^{2} by $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ and the conatant magnetic permeability by μ.

The flow is assumed to be described by the following differential equations and boundary conditions fhe rationalized MRSQ system is used throughout) :

$$
\begin{align*}
& \nabla \cdot \vec{q}=0 \tag{2-1}\\
& (\vec{q} \cdot \nabla) \vec{q}+\frac{1}{\rho} \nabla \vec{p}=\frac{1}{p \mu}(\nabla \times \vec{b}) \times \vec{B}+\nu \nabla^{2} \vec{q} \tag{2-2}\\
& \nabla^{2} \vec{B}+q \times(\vec{q} \times \vec{B})=0 \tag{2-3}\\
& \nabla \cdot \vec{b}=0 \tag{2-4}\\
& p(\infty)=p_{\infty} \cdot \quad \vec{q}(\infty)=\vec{i}_{x} U, \quad \vec{B}(\infty)=0 \tag{2-5}\\
& \lim _{r \rightarrow 0} \quad G \vec{B} \cdot d \vec{x}=\mu I \tag{2-6}
\end{align*}
$$

Before proceeding to non-dimensionalize the above equations, we shall discuos the characteristic lengths and parameters of the problem.

There are three basic characteristic lengtha appearing, namely
(i) a length based on the current, $\mu_{1}=\frac{I}{U} \sqrt{\frac{\mu}{\rho}}$;
(ii) a magnetic diffusion length, $L_{2}=1 / 0, \mathrm{U}$;
(iii) a length based on viscous difusion, $\Sigma_{3}=v / U$.

Intuitively, one would expect that close to the origin, where the current is situated, the length over which significant changes take place would be L_{1}. At greater distances from the origin both L_{2} and L_{3} would be expected to be important, since the vorticity and magnetic field tend to difuee away from the streamlines.

From the three characteristic lengthe we can obtain the two characteristic dimensionless parameters of the problem, \in and a. Thus, the ratio $L_{1}: L_{2}$ givee

$$
I_{1}: I_{2}=I \sigma \sqrt{\frac{\mu^{3}}{p}}=\epsilon
$$

and the ratio $\tilde{L}_{3}: \mathcal{L}_{2}$ gives

$$
L_{3}: I_{2}=v \operatorname{lom}_{2}=0 .
$$

Thus ϵ mall means that the current length fwhich can in a vague gense be considered a body lergth) is small compared with the magnetic diffumion length, while a conatant means we are leeping the ratio of the two diffusion leagthe congtant. It will turn out that these two difusion lengthe characterize two different typeo of wake far downstream. Firstly, there is a magnetic wake whose width depends only on the magnetic disfusion length, z_{2} and secondy, a viscous wake whose width depends only on the viscous difusion length, In.

Let us now proceed to write the equations in dimenoionlees forme Non-dimensional quanticies are introduced as follows:
outer variables:

$$
\begin{aligned}
& \vec{q}=\vec{q}, \quad u^{*}=\frac{u}{0}, \quad v^{*}=\frac{v}{0}: \\
& p=\frac{\rho-p_{\infty}}{\rho U^{2}} ;
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=\vec{x} q u, \quad x^{*}=\operatorname{sop} U, \quad y=y \sigma \mu U .
\end{aligned}
$$

inner variables:

$$
\begin{aligned}
& \overrightarrow{q^{+}}=\overrightarrow{\overrightarrow{0}}, \quad u^{+}=\frac{u}{U}, \quad v^{+}=\frac{v}{v} ; \\
& p^{+}=\left(p-p_{\infty}\right) \frac{d I}{U^{2}} \sqrt{\frac{\mu^{3}}{p^{3}}}=\epsilon p^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}^{+}=\frac{\vec{r}}{\frac{I}{V} \sqrt{\frac{\mu}{\rho}}}, \quad x^{+}=\frac{x}{\frac{I}{U} \sqrt{\frac{\mu}{\rho}}}, \quad y^{H}=\frac{y}{\frac{I}{V} \sqrt{\frac{\mu}{\rho}}} .
\end{aligned}
$$

(The motivation for the terminology "inner" and "outer" will become apparent later, and the method of non-dimensionalizing the dependent variables is discussed in Section IV.)

Written in outer coordinates, with $\nabla^{*}=\vec{i}_{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}}+\mathrm{I}_{\mathrm{y}} \frac{\partial}{\partial y^{\psi}}$, equations $2-1$ to $2-6$ become

$$
\begin{align*}
& \nabla^{*} \cdot \vec{q}^{*}=0 \tag{2-7}
\end{align*}
$$

$$
\begin{align*}
& \nabla^{* 2} \bar{E}^{*}+\nabla^{*} \times\left(\underset{q}{(*)} \times \vec{B}^{*}\right)=0 \tag{2-9}\\
& \nabla^{*} \cdot \vec{E}^{* * *}=0 \tag{2-10}\\
& \overrightarrow{\mathrm{q}}(\infty)=\overrightarrow{\mathbf{T}_{\mathrm{x}}}, \quad \mathrm{p}(\infty)=0, \quad \overrightarrow{\mathrm{E}}(\infty)=0 \tag{2-11}\\
& \lim _{x_{3 \rightarrow 0}} \oint \mathrm{~B}^{* *} \cdot d x^{* *}=1 \tag{2-12}
\end{align*}
$$

where $\sigma=v q$ and $\epsilon=\sigma \sqrt{\frac{\mu^{3}}{\rho}}$.

Written in inner coordinates, with $\nabla^{+}=\vec{i}_{\mathrm{x}} \frac{\partial}{\partial \mathrm{x}^{+}}+\overrightarrow{\mathrm{i}}_{\mathrm{y}} \frac{\partial}{\partial \mathrm{y}^{+}}$, equations $2-1$ to $2-6$ become

$$
\begin{array}{ll}
\nabla^{+} \cdot \vec{q}^{+}=0 \\
\epsilon\left(\vec{q}^{+} \cdot \nabla^{+}\right) \vec{q}^{+}+\nabla^{+} p^{+}=\epsilon\left(\nabla^{+} \times \vec{B}^{+}\right) \times \vec{B}^{+}+a \nabla^{+2} \vec{q}^{+} & (2-13) \\
\nabla^{+2} \overrightarrow{\mathrm{~B}}^{+}+\epsilon \nabla^{+} \times\left(\vec{q}^{+} \times \vec{B}^{+}\right)=0 & (2-15) \\
\nabla^{+} \cdot \vec{B}^{+}=0 \\
\vec{q}^{+}(\infty)=\vec{i}_{x} \cdot p^{+}(\infty)=0, \quad \vec{B}^{+}(\infty)=0 \\
& (2-16) \tag{2-18}\\
\lim _{x^{+} \rightarrow 0} G \vec{B}^{+} \cdot \overrightarrow{d r}^{+}=1
\end{array}
$$

III. ASYMPTOTIC DEVELOPMENTS

In the following sections, it is asaumed that the reader is familiaz with reference 1.)

From the non-dimensional form of the equations, we observe that two dimensionless parameters are present, namely \in and a. Tnder the assumption that our problem has a unique solution, we attempt to find an approximate olution valid for suficiently small, with a held fixed. Such an approximate salution might be checked by an experiment in which given fluid flows gaet a thin currentcarrying wire - - just how hin is discussed in section X. The value of ϵ is made mall by decreasing the current in the wire. Since a depende only on the properties of the fluid, it rematns fixed.

Our approximate solution will be in the forw of an asymptotic development. As mentioned in the introduction, the general approach is based on the work of Kaplun and Lageratrom; however, their methoda are aimed at finding a "composice" development uniformly valid in the entire region of space in which the problem is definec. For emample, in reference 1 a solution for the region of flow exterior to the sphere is found, There, one hat an outer (Oseen) limit, valid near infmity, and an imer (Stoices) limit, valid near the body, which can be obtamed by physical reasoning. Then one finds a solution to come approximate difierential equations which in a sense completes the determination of the solution to be perturbec by describing what is happening between the vicinty of the body and the vicinity of infinity. In othex worda, a great deal is Known about the solution to be perturbed, based
largely on physical reasonimg.
In the problem of the present atudy, however, the author finds himself unable to atate with conficlence what the limiting solution is in a region very close to the origin; concequemly, the solution found can clatm vallaty only in a region away from the origin. This region will be precisely defined in Section IV; for the present, we shall refer to it as the "exterion region." Moreover, simply knowing what solution in the exterior region to perturb will not guarantee that the terms obtained by the perturbation scheme include all the terms that bhould be present. In fact, dince the magnecic field becomes infinte near the origin, it is conceivable that a disturbance originating very near the origin couid yield the largest term in the "exterior" region. However, certain plausability arguments will be given latex which provide us with enough information about the flow very near the origin to assure us that terms arising from vuch disturbances near the origin are mall compared with the first and second perturbation terms found by a straightorward perturbation scheme applied to the "exterior* region. Thus, considerable information (including first and second approximations to the dxagl) can be derived, even though finding a unifommly valid composite development appeara hopelessly complicated. Purthemore, our "exterior" region actually covers much of the flow region, aince it inclucles everything outside radius of the order $\frac{1}{V} \sqrt{\frac{\mu}{\ell}}$. Mexcury, for example, using $U=10^{-1}$ meter $/$ second, and current of one ampere, gives $\frac{1}{\nabla} \sqrt{\frac{\mu}{\rho}} \sim 10^{-4}$ meters.

The terms of the asymptotic development valid in the "exterior" region will be derived from two "principal" developments; an "inner"
development valid in a region of order $\frac{1}{U} \sqrt{\frac{\mu}{p}}$ metere from the origin, and an "outer" development, valid at infinity. These "inner" and "outer" developments will in turn be constructed from the difereatial equations.

The relationship of these asymptotic developments to the exact solution is based on the assumption that asymptotic developments (relative to a sutable aequence) of the exact solution can be constructed by certain limit processes. We shall presenty define an "inner" limit process and an "outer" limit process, and the developments which in principle could be obtained irom the exact solution by means of these two limit procesces are then identified with the inner and outer developments found from the differential equationg.

In general, neither the inner nor the outer development can by itself be expected to be unioxnly valid in the extexior region. Nevertheless they muat be related, since they are assumed to be asymptotic development of the amme function. This relationship is of fundamental importance when discussing so-called "matching conditions." These 'matching conditions arise as follows: when we come to construct the developments from the differential equations, the inner solution, which is valid near the origin, will not satisfy the boundary condition at infinity. Bimilarly, the outer development, which does satisfy the boundary condition at infinity, will not in general satiaty the inner boundary conditions, if auch conditions exiat. The role of the matching condition is to replace the boundary condition at infinty for the inmer solution and the boundary condition at the oxigin for the outer solution. The method of matching adopted in the present problem is based on the methods of reference 1.
-11-

Having made a few commenta on our proposed asymptotic developmenta, we proceed now to a sonewhat more detailed descrigtion.
IV. LIMT PROCESSES, INNER AND OUTER LIRTTS, INNER AND OUTER VARLABLES

We now define in precise terme the limit processes mentioned in the last saction. n irst for the sake of easy comparison with referm ence 1), we non-dimensionalize \vec{F} with a magnetic "viscous"length $1 / \mathcal{q}_{\mathrm{u}} \mathrm{V}$, so that $\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}} /$ /qu . Recall the characteristic parameter

$$
\begin{equation*}
\epsilon=\sigma I \sqrt{\frac{\mu^{3}}{\beta}} \tag{4-1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{f}\{\ln (\rightarrow * ; \in)\}=\lim _{\epsilon \rightarrow 0} \operatorname{mn}\left(\frac{\infty}{2} ; \in\right) \tag{4-2}
\end{equation*}
$$

keeping $\vec{s}(f)=\frac{\vec{x}}{(6)}$ constant.
Given a sequence of functiong $\left\{e_{f}(f)\right\}$ for which

$$
\begin{equation*}
\lim _{\epsilon 0} \frac{e_{j+1}(\epsilon)}{\epsilon_{j}(\epsilon)}=0 \tag{4-3}
\end{equation*}
$$

we use the above limit process to construct an asyruptotic development

$$
\begin{equation*}
\left.F(\vec{x} ; \epsilon) \sum_{k=0}^{N} \epsilon_{k}(\epsilon) \varphi\left(\vec{r}(f)_{i \epsilon}\right)+q_{k} \epsilon_{N+1}(\epsilon)\right) \tag{4-4}
\end{equation*}
$$

Of a flow quantity $\bar{E}\left(\mathrm{~F}^{4} ; \epsilon\right)$, as follows:

$$
\begin{align*}
& \theta_{O}\left(\vec{r}^{(f)} ; \epsilon\right)=\lim _{f} F^{\left(r^{*} ; \epsilon\right)} \tag{4-5}
\end{align*}
$$

$$
\begin{align*}
& \varphi_{n+1}\left({ }^{(f)} ;(\epsilon)=\lim _{E} \frac{k=0}{k \in 1^{(\epsilon)}}\right. \tag{5-6}
\end{align*}
$$

Now the inner and outer independent variables are aimply two different forms of $\vec{r}(f)$, and the inner (outer) developments are obtained by performing the above limil process keeping the inner (outer) independent variables fired. To find the two forme of $f(\epsilon)$ defining the nner and outer variables, we proceed as follows: the differential equations to be used in the perturbation scheme are found by writing equations $2-1$ to $2-4$ using $\vec{r}^{(1)}$ as independent variable, and

$$
\begin{align*}
& \vec{q}^{(f)}=\vec{q} / U \tag{4-7}\\
& \vec{B}(f)=\frac{\vec{B}}{\mathrm{IU}^{2}} f(\epsilon) \tag{4-8}
\end{align*}
$$

and

$$
\begin{equation*}
p^{(f)}=\frac{p-P_{\infty}}{\rho u^{2}}(f(c) \tag{4-9}
\end{equation*}
$$

as dependent variables.
We non-dimengionalize $\underset{q}{ }$ according to equation $4-7$ because (as will be discussed in section VI), in this form the leading velocity term is $0(1)$, in the set ord $\epsilon \leqslant$ ord $(f) \leqslant$ ord 1 . The choice of the $\vec{B}^{(f)}$ is derived from the fact that the first term in the magnetic induction development will be obtained from the induction equation, and the choice of $\mathrm{B}^{(1)}$ in equation $4-8$ leads to a development with a leading term oll. The choice of equation $4-9$ for the pressure $p^{(f)}$ comes from the fact that unless the pressure term appears in the appromimate momentum equation, the system of approximate equations will be over determined. This is easily seen as follows: the approximate momentum equation can be written

$$
\begin{equation*}
a \nabla^{(f) 2} \vec{q}^{(f)}-\left\{(\epsilon) \nabla^{(f)} p_{p}^{*}=-\frac{\epsilon^{2}}{f(\epsilon)}\left(\nabla^{(f)} \times \vec{B}^{-(f)}\right) \times \vec{B}^{(f)}\right. \tag{4-10}
\end{equation*}
$$

where $P^{*}=\frac{p-P_{\infty}}{\rho U^{2}}$, and the right sicie of equation $4-10$ is of (1) for ord $\epsilon \leqslant f(\epsilon) \leqslant$ ord 1 . Operating on equation 4-10 with the divergence operator, and noting that $\nabla^{(f)} \cdot \vec{q}^{(f)}=\nabla^{(f)} \cdot \vec{B}^{(f)}=0$, we obtain

Thus, unless we keep the pressure term as an unknown, we shall have a contradiction if the right side of equation $4-11$ is not zero at each atage of the development. It will turn out that the right side is not identically zero at each stage, so we are forced to non-dimensionalize the pressure in such a way thet it does not drop out of the approximate differential equation. This is accomplished by the choice given by equation $4-9$.

Using the above $\vec{r}^{(f)}, \vec{q}^{(f)}, \vec{B}^{(f)}$, and $p^{(f)}$ in the differential equations, and setting $\varepsilon=0$, we obtain for the case $c \leqslant$ ord $f(c)<$ ord 1

$$
\begin{align*}
& \nabla^{(f)} \cdot \vec{q}^{(f)}=0 \tag{4-12}\\
& a^{(f) 2-q^{(f)}}-\nabla^{(f)} p^{(f)}=0 \tag{4-13}\\
& \nabla^{(f) 2_{2}(f)}=0 \tag{4-14}\\
& \nabla^{(n)} \cdot \vec{B}^{(f)}=0 \tag{4-15}
\end{align*}
$$

where
and

$$
\nabla^{(f)}=\vec{i}_{\mathrm{x}} \frac{\partial}{\partial x^{(x)}}+\overrightarrow{i_{y}} \frac{\partial}{\partial y^{(x)}}
$$

and

$$
\nabla^{(i) 2}=\frac{\partial^{2}}{\partial x^{(x) 2}}+\frac{\theta^{2}}{\partial y^{(2)} 2}
$$

The asymptotic developments resulting from the eqe equations are not valid at infinity. This will be seen explicitly when we compute the inner devalopment.) However, if we put

$$
\begin{equation*}
\text { ord } f(\epsilon)=\operatorname{ord} L \tag{4-16}
\end{equation*}
$$

then the differential equations to be used in the perturbation acheme are found by writing equations $2-1$ to $2-4$ in $\overrightarrow{w^{(}(f)}$ independent variables and dependent variables given by equations 4-7, 4-8, 4-9 in which $f(\epsilon)=1$ (the resulting variables are the same as those defined after equation $2-6)$, and letting $t \equiv 0$. The realting equations are easily seen to be equations $2-7,2-10$,

$$
\begin{equation*}
\left.\left(-q^{*} \cdot \nabla^{*}\right)\right)_{q}^{* *}+\nabla^{*} p^{*}=a \nabla^{* 2}-\frac{m}{q} \tag{4-17}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{*} 2_{\mathrm{B}^{*}}^{*}+\nabla^{*} \times\left(\mathrm{q}^{*} \times \overrightarrow{\mathrm{B}}^{*}\right)=0 \tag{4-18}
\end{equation*}
$$

Using these equations, we can obtain an asymptotic development satisEying the boundary conditions at infinity. Thus we use

$$
\begin{equation*}
r^{*}=\frac{\vec{x}}{I} \tag{4-19}
\end{equation*}
$$

as our outer variables, and the outer development will be obtained by perturbing equations 2-7, 2-10, 2-17 and 2-18.

The choice of $f(\epsilon)$ to be used for the innex vaxiables is in a sense more flexible, since the lower limit of the order classes is zero. (This should be compared with the low Reynolds number flow around a
sphere, reference 1, in which the lower limit is ord Re.) Furthermore, as we found above, equations $4-12$ to 4 -15 result for ord $0<$ ord $f(\epsilon)<$ ord 1. Actually our choice is based on our information concerning the solution to be perturbed. The choice $f(\epsilon)=\epsilon$ gives us a set of equations valid in a region where the author has considerable confidence in his "guess" of the solution to be perturbed. Thus our choice for inner independent variables is

$$
\begin{equation*}
\vec{r}^{+}=\frac{\overrightarrow{r^{*}}}{\epsilon} \tag{4-20}
\end{equation*}
$$

The resulting dependent variables are identical with the "inner" variables defined after equation 2-6.

V. RECIONS OF VALIDITY, MATCHING CONDITIONS

We continue the discussion by stating the following definition from reference 1: $E_{1}\left(\overrightarrow{\mathbf{T}^{*}} ; \in\right)$ conetitutes a uniform approximation of $I(\vec{x} ; \epsilon)$ to order ϵ_{j} in a convex set S of equivalence classes if

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} \frac{F-F_{1}}{\epsilon}=0 \quad \text { uniformly for } \mathbb{S}_{1}(\epsilon) \leqslant w^{*} \leqslant \mathbb{E}_{2}(\epsilon) \tag{5-1}
\end{equation*}
$$

whenever the equivalence classes $f_{1}(\epsilon)$ and $\hat{1}_{2}(\epsilon)$ are in the set S.
Now from the "extension principle" of reference 1, we know that the inner limit is uniformly valid in the set

$$
\begin{equation*}
\text { ord } \epsilon \leqslant f(\epsilon) \leqslant \text { ord } T_{1}(\epsilon) \tag{5-2}
\end{equation*}
$$

for some order class $\eta_{1}(\epsilon)$ satisfying

$$
\begin{equation*}
\eta_{1}(\epsilon)>\text { ord } \varepsilon \tag{5-3}
\end{equation*}
$$

Similarly, the outer limat is uniformly valid in the set

$$
\begin{equation*}
\eta_{2}(\epsilon) \leqslant\{(\epsilon) \leqslant \operatorname{ord} 1 \tag{5-4}
\end{equation*}
$$

Sor some order clase $\eta_{2}(\epsilon)$ satisfying

$$
\begin{equation*}
\eta_{2}(\epsilon)<\text { ord } 1 \tag{5-5}
\end{equation*}
$$

If it turns out that $\eta_{2}(\epsilon)<\eta_{1}(\epsilon)$, then there is a limit process using

$$
\begin{equation*}
\tilde{r}=\frac{x^{n}}{\eta(\epsilon)}, \quad \eta_{1}(\epsilon) \leqslant \eta_{1}(\epsilon) \leqslant \eta_{2}(\epsilon) \tag{5-6}
\end{equation*}
$$

which, when applied to either the inner or the outer limit gives the same result. (If $\eta_{1}<n_{2}$, then it is sometimes possible to construct an "intermediate development" which is used in a more general matching procedure. This is discussed in reference 1.)

For the problem considered in this thesis, it turns out that ${ }^{7} 2^{(\epsilon)}$ can be ord ϵ, so that $n(\epsilon)$ can be simply ord ϵ. That $i s$, the inner Limit process applied to the outer development yields the inner development. Thus, in order to determine whether the outer development matches with the inner development, we write the outer expression in inner independent variables, $i \cdot e . \vec{r}^{\dagger}$ variables, and let $\epsilon \frac{0}{0}$. The result should be the inner development.

The very simple matching condition described above implies that the outer solution will be uniformly valid in the aet

$$
\begin{equation*}
\text { ord } \epsilon \leq \operatorname{ard} f(\epsilon) \leqslant \operatorname{ord} 1 \tag{5-7}
\end{equation*}
$$

so that once we have the outer development computed fith the help of the innor development when necessary) we can dispense with the inner development.

VI. DISCUSSION OR THE ZERORG ORDER SOLUTION

As mentioned in Section II, we construct the inaer and outer asymptotic developments by uaing the inner and outer diferential equations in a perturbation scheme, with the result being aubject to the matching principle stated above. Before proceeding to aolve these equations, we must first discover as much as possible about the zex oth order solution. That is, the limit of the exact solution as Є४. The argumente to be presented are not rigorous, but rather heuristic and intuitive. However, the author feels that intuition mast be founded (perhaps unknowingly) on oxperimental fact, and since (at least to the author's knowledge) an experiment describing our problem has not been performed, the intuitive arguments are open to criticism. For this reason, an experiment designed to test the theory of this paper would be most welcome. Let us now proceed with our discuesion.

Our main concern will be to acquire some assurance that the flow in the region closer to the origin than the region of valldity of our inner development does not give rise to terms in the "exterior" region (i.e. the region of validity of the inner and outer developmental larger than the terms we will find by considering only the inner and outer developments. (If such terms do exist, they will be solutions to the homogeneous equations 4-7 to 4-10, and equations 2-7, 2-10, 4-17 and 4-18.) A rather pessinaistic attitude is taken in our axguments, so that the actual situation might be better than described.

Firet, let us determine the outer and inner limite of the velocity
field for both a non-viscous and a viscous fluid. The outer limit is found by keeping \vec{r}^{*} fixed and letting $\epsilon \uparrow 0$. We can fix ideas by keeping σ constant (hence $\vec{x}=\vec{x} / \sigma \mu U$ remains constant) and letting ϵ go to zero by letting the current go to zero. It seems obvious that for both the viscous and non-viscous cases, the result is simply the free strearn value.

The inner limit is taken by holding \vec{r}^{+}inxed and letting efo. For the inviscid case, we can fix ideas by keeping the current constant (hence $\vec{r}=\vec{r} \frac{1}{0} \sqrt{\frac{\mu}{\rho}}$ remains fixed) and letting e go to zero by letting the electrical conductivity go to zero. In this limit, there is no interaction between the magnetic induction field and the flow, so we again have the free stream value.

The inner limit for the viscous case is not so simple, because since a is fixed, and we let $\epsilon \frac{10}{}$ by letting $\sigma=0$, we must make $v=\frac{a}{\mu \sigma}$ tend to infinity. (In the outer limit, v remained fixed.) We shall conclude from the arguments in the following paragraphs that the inner limit in the viscous case is the free stream velocity.

Let us attempt to find out something about the flow in a segion ingide a radius $\left.O \frac{1}{U} \sqrt{\frac{\mu}{\rho}}\right)=O\left(\frac{\epsilon}{\sigma}\right)$. We first discuss the case of zero viscosity in order to gain some feeling of the purely magnetic effects. We search for a region of the flow in which the velocity is o(1). Call this region S_{i}. To see if there exist flows satiarying this condition, we assume the dimensionless velocity in S_{i} is $u_{i}(\epsilon)$, and a dimensionles characteristic size (measured in outer variables) of s_{i} is $g_{i}(\epsilon)$. We consider two types of force on auch a volume, namely the Lorenta forces (body forces) and the fluid dynamic pressure forces. The body force per
unit volume is given by the interaction of a current density, whose magnitude is of the order oUu E_{i}, and the magnetic field. Written in physical variables, and using the fact that the magnetic field behaves like $\mu \mathrm{I} / \mathrm{x}$, we have

$$
\begin{align*}
\sum_{\text {reaist }}=\left\{\begin{array}{c}
\text { Total body force } \\
\text { on } S_{i}
\end{array}\right. & -\left(U u_{i} \sigma B^{2}\right) \cdot\left(\text { vol. of } S_{i}\right) \\
& \sim \frac{\rho U u_{i}}{\sigma \mu} \epsilon^{2} \text { newtons } \tag{6-1}
\end{align*}
$$

where for B we have used the value at the surface S_{i}, i. e. $B \sim \frac{\mu I}{g_{1} / \sigma \mu U}$. The pressure terms can be estimated by using the stagnation pressure $\frac{1}{2} \rho U^{2}$. This gives

$$
\begin{align*}
F_{\text {guri }}=\left\{\begin{array}{c}
\text { Presgure forces on } \\
\text { gurface of } S_{i}
\end{array}\right\} & \sim \frac{g_{i}(\epsilon)}{\sigma \mu U} \cdot \rho U^{2} \\
& \sim \frac{\rho U g_{i}(\epsilon)}{\sigma \mu} \text { newtons } \tag{6-2}
\end{align*}
$$

The ratio of ${ }^{\text {resise }}$: $\mathrm{F}_{\text {urf }}$ is

$$
\begin{equation*}
\frac{F_{\text {resist }}}{T_{\text {surf }}}-\frac{\epsilon^{2} u_{i}}{g_{i}(\epsilon)} \tag{6-3}
\end{equation*}
$$

which is of order unity when $g_{i}(\epsilon) \sim \epsilon^{2} u_{i}$. Since it was assumed $u_{i}=o(1)$, this implies

$$
\begin{equation*}
\left.s_{i}(\epsilon) \sim d \epsilon^{2}\right) \tag{6-4}
\end{equation*}
$$

Thus, in the non-viscous case, there appears to be a possibility of a "core," defined somewhat vaguely as a region in which the zeroth approximation to the velocity is zero (i.e. o(1)). The diameter of the core
is

$$
\begin{equation*}
o\left(e^{2} / \sigma u\right) \text { meters } \tag{6-5}
\end{equation*}
$$

If such a core were present in the problem of this paper, in waich viscosity is present, comparison with the low Reynolde number low past a circular cylinder (reference 2) indicates that the flow in the vicinity of infinity would have a term $O(1 / l o g \epsilon)$ appearing, whereas the perturbation scheme yields a term $O\left(e^{2} \log \ell\right)$ as the first term. We shall next argue that the presence of viacosity causes the flow to behave in such a manner that a core of this sise cannot exist.

Let us consider a viscous fluid, and discuss the exiatence of a region S_{v} in which the dimensionless flow velocity is o(1), say uv. We again look for a balance between the body forces and the surface forces. Following the computation above, the force on S_{v} due to Lorentz forces is

$$
\begin{gather*}
E_{\text {resist }}-\left(\sigma \mathrm{Uu}_{\mathrm{v}} \mathrm{~B}^{2}\right) \cdot\left(\text { volume of } S_{v}\right) \\
-\frac{\rho U u_{v}}{\sigma \mu} \epsilon^{2} \text { newtons. } \tag{6-6}
\end{gather*}
$$

In the viscous case, if we think of the region S_{v} as a more or less solid cylinder with a flow o(1) around it, then the Reynolds number based on such a cylinder will be

$$
\begin{equation*}
R e_{v}=\frac{g_{v}(\epsilon)}{\mu U} \frac{U}{v}=\frac{g_{v}(\epsilon)}{a} \tag{6-7}
\end{equation*}
$$

Since we are assuming a is constant, if we estimate $g_{v}=g_{i}=\epsilon^{2}$, where g_{i} ia the non-dimensional size of the possible inviscid case core, we see that the Reynolds number is mmall. From the known result that the drag on a circular cylinder in low Reynolds number flow (see reference 2)

$$
-23
$$

is

$$
\operatorname{Drag} \sim \rho v U\left(-\frac{1}{\log _{\mathrm{V}}}\right)
$$

we then assume that

$$
\begin{align*}
F_{\text {surf }} & \sim-\rho v U\left(\frac{1}{\log g_{v}(\epsilon) / a}\right) \\
& =-\frac{p u U}{\mu \sigma} \cdot \frac{1}{\log _{g} / a} \tag{6-3}
\end{align*}
$$

If we again consider the ratio $F_{\text {resist }} F_{\text {surf }}$ we obtain

$$
\begin{equation*}
\frac{F_{r e s i s t}}{\operatorname{ruri}}-\frac{u_{v} \epsilon^{2}}{u} \log \frac{G_{v}(\epsilon)}{Q} \tag{6-9}
\end{equation*}
$$

This is O(1) if

$$
\begin{equation*}
\log \frac{g_{v}(\epsilon)}{a} \sim-\frac{a}{u_{v} \epsilon^{2}} \tag{6-10}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{g}_{\mathrm{v}}(\epsilon) \sim a e^{-a / u_{v} \epsilon^{2}} \tag{6-11}
\end{equation*}
$$

In physical variables, then, the size of the possible core is

$$
\begin{equation*}
\frac{g_{v}(\epsilon)}{\sigma \mu U} \sim \frac{a}{\sigma \mu U} e^{-a / u_{v} \epsilon^{2}} \tag{6-12}
\end{equation*}
$$

which is much smaller, as efo, than the inviecid estimate, equation 6-5. if we assume $u_{v} \sim u_{i}$. It should be amphasized that the estimates discussed above have implicitly separated magnetic and viscous effecte.

We have argued that the inner limit of the velocity in the inviscid case was simply the free stream value, and noted that viscous efects
might make this same limit in the viscous case (keoping a constant) different from the free stream value. Now it is known (xeference 2) that a cylindar in a uniform low Reynolde number now has a viscous layer surrounding it extending to a radius

$$
\begin{equation*}
-\frac{1}{\text { Kefog Rel }} \cdot \text { (Length of body). } \tag{6-13}
\end{equation*}
$$

outside which the velocity is easentially the free stream value. If the core whose size is given by equation 6-12 is placed in such a flow, the viscous layer extends to a radius

$$
\begin{gather*}
-\frac{1}{\left(\log \frac{g_{v}}{a}\right) \frac{g_{v}}{a}} \cdot \frac{g_{v}}{\sigma \mu}=\frac{-a}{\left(\log e^{-a / u_{v} \epsilon^{2}} \operatorname{huv}\right.} \\
=\frac{u_{v} \epsilon^{2}}{\sigma} \cdot \frac{1}{q_{0}} \text { meters. } \tag{6-14}
\end{gather*}
$$

This radius in transcendentally small compared with the region of validity of the inner limit process. This makes it plausible to assume that the inner limit of the velocity in the viecous case is simply the free stream value, and for our inner perturbation scheme we shall assume this is the саве.

If is apparent that the effect of a "core" such as we have described above would create a disturbance in the exturior part of the flow. It has been shown in reference 4 that far (in the present case $\epsilon / 0 \mu \mathrm{U}$ is "far") from buch a core the resulting disturbance in the velocity field looks like the fundamental solution to the Oseen equations. Thus the outer development would require a term proportional to this fundamental solution
with the constant of proportionality being determined by the drag, which, from equation 6-7, gives a velocity

$$
\begin{equation*}
-\frac{U}{\log R e}-\frac{U u \varepsilon^{2}}{o}=o\left(\epsilon^{2}\right) \frac{U}{a} \tag{6-15}
\end{equation*}
$$

In our perturbation gcheme, we shall carry our computation up to terma $O\left(\epsilon^{2} \log \epsilon\right)$ and $O\left(\epsilon^{2}\right)$, so that according to equation $6-15$, the terms that might axise from a core should appear only as the third perturbation. Thus an experiment deaigned to determine the existence or nonexistence of a core would have to measure a third order effect.)

The foregoing discusgion has been an attempt to justify the use of the sree atream velocity as both inner and outer limits for the velocity, and also to try and convince ourselves that the terms resulting from the inner and outer developments actually contain all the terma, at least to the order of approximation which is to be computed. Assuming thet these conclusions are justified, wow proceed to construct the inner and outer asymptotic developmente.

VII. CONSTRUCTION OF THE PRTNCIPAL DEVELOPNENTS

We assume the following asymptotic developments:

(1) Outer developments:

$$
\begin{align*}
& \vec{B}\left(x^{*} ; \epsilon\right)=g_{0}^{*}(\epsilon) \bar{B}^{*}(0)\left(x^{*}\right)+g_{1}^{*}(\epsilon) \vec{B}^{*(1)}\left(\vec{x}^{*}\right)+\ldots \tag{7-2}\\
& p^{*}\left(\vec{x}^{*} ; \epsilon\right)=l_{0}^{*}(\epsilon)_{p}^{(0)}\left(x^{*}\right)+l_{1}^{(4)}\left(\epsilon p^{*(1)}\left(r^{*}\right)+\ldots\right.
\end{align*}
$$

(2) Inner developments:

$$
\begin{align*}
& \vec{B}^{+}\left(x^{4}: \epsilon\right)=g_{0}^{+}(\epsilon) B^{+(0)}\left(x^{+}\right)+g_{1}^{+}(\epsilon) B^{+(1)}\left(x^{+}\right)+\ldots \tag{7-5}\\
& p^{+}\left(x^{+}, 6\right)=2_{0}^{+}(6) p^{+(0)}\left(\vec{x}^{+}\right)+d_{1}^{+}(6) p^{+(1)}\left(x^{+}\right)+\ldots
\end{align*}
$$

Strictly 5 peaking, these are not the same as the final results; there will appear, in both the inner and outer developments, additional terme which muet be introduced after terms of higher order have already been found. Ao we shall see, their preaence is necessary to satisfy the matching conditions between the inner and outer developments.
A. Determination of $f_{0}^{*}(\epsilon) \vec{q}^{*(0)}\left(x^{*}\right)$ and $f_{0}^{+}\left(c \sqrt{q}(0)\left(x^{4}\right)\right.$.

Part of the discussion of Section VI was concerned with showing that for both the inner and the outer limits, the velocity was amply the free stream velocity. Thus

$$
\begin{equation*}
f_{0}^{*}(\epsilon)=f_{0}^{+}(\epsilon)=1 \tag{7-7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{-7(0)}{q}(x)=\vec{q}+(0)(x)=\vec{i}_{x} \tag{7-8}
\end{equation*}
$$

Note that this agrees with the staternent of equation 5-7; namely, the outer development is valid in the set

$$
\begin{equation*}
\text { ord } \epsilon \leqslant \operatorname{ord} f(\epsilon) \leqslant \text { ord } 1 \tag{7-9}
\end{equation*}
$$

B. Determination of $g_{0}^{t}(\epsilon) \vec{B}+(0)\left(x^{2}\right)$

If we substitute the assumed inner developments into the inner induction equation, equation 2-15, we obtain

$$
\begin{equation*}
f_{0}^{4}(\epsilon) \nabla^{+2} \vec{B}^{(0)}=0 \tag{7-10}
\end{equation*}
$$

The solution which satisfies the integral condition, equation $2-18$, is easily aeen to be

$$
\begin{align*}
& f_{0}^{f}(\epsilon)=1 \tag{7-11}\\
& \vec{B}^{+}(0)\left(r^{+}\right)=\vec{i}_{x}\left(-\frac{y^{+}}{2 \pi r^{+2}}\right)+\vec{i}_{y}\left(\frac{x^{4}}{2 \pi r^{+Z}}\right) \tag{7-12}
\end{align*}
$$

The field line corresponding to thie colution are simply concentric circles. That is, the field is idenfical with that cue to a current element placed in a fluid at rest. Hence, close to the origin, the magnetic field is undisturbed, in the first approximation, by the motion of the fluid.
C. Determination of $\mathrm{S}_{0}^{*}(\mathrm{E}) \overrightarrow{\mathrm{B}}^{*(0)}(\vec{x})$

The next step is to substitute the assumed outer developmenta, equations $7-1,7-2,7-3$ into the outez induction equation equation 2-9. Keeping only the lowest order terms, we obtain

$$
\begin{align*}
& g_{0}^{*}(\epsilon)\left(\frac{\partial^{2} B^{*}(0)}{\partial x^{*}}+\frac{\partial^{2} B^{*}(0)}{\partial y^{*}}+\frac{\partial B^{*}(0)}{\partial y^{*}}\right)=0 \tag{7-13a}\\
& \varepsilon_{0}^{*}(\epsilon)\left(\frac{\partial^{2} B^{*}(0)}{\partial x^{*}}+\frac{\partial^{2} B^{*}(0)}{\partial y}+\frac{\partial B^{*}(0)}{\partial x}\right)=0 \tag{7-13b}
\end{align*}
$$

Using

$$
\begin{equation*}
\frac{\partial x^{*}(0)}{\partial y^{*}}=-\frac{\partial B_{x}^{*(0)}}{\partial x^{*}} \tag{7-14}
\end{equation*}
$$

equations 7-13a, 7-13b become

$$
\begin{equation*}
g_{0}^{*}(\epsilon)\left(\nabla^{* 2} \vec{B}^{*(0)}-\frac{\partial \bar{B}^{* *(0)}}{\partial x^{*}}\right)=0 \tag{7-15}
\end{equation*}
$$

This equation describes how the magnetic induction field is swept downstream from the origin. There is obviously a close analogy between this phenomenon and the convection of vorticity downstrean from a finite body as described by the Oseen approximation. In the latter case, the equation is

$$
\begin{equation*}
\frac{1}{K e} \nabla^{2} \omega-\frac{\partial \omega}{\partial x}=0 \tag{7-15a}
\end{equation*}
$$

where Re is the ordinary fluid dynamic Reynolds number based on the body size, and ω is the vorticity.

Returning to the tagk of finding $\Xi_{0}^{*}(\epsilon) \bar{B}^{*(0)}\left(x^{*}\right)$, we note that a
solution of equation $7-15$ which satisfies $7-14$ and vanishes at infinity is

$$
\begin{aligned}
& g_{0}^{*}(\epsilon) \vec{B}^{*}(0)\left(x^{*}\right) \\
= & g_{0}^{*}(\epsilon)\left\{\overrightarrow{L_{x}}\left(-\frac{e^{\frac{x^{*}}{2} y^{*}}}{4 \pi r} K_{1}\left(\frac{x^{*}}{4}\right)\right)+\vec{i}_{y}^{*}\left(\frac{e^{\frac{x^{2}}{*}}}{4 \pi x^{*}} \mathbb{K}_{1}\left(\frac{x^{*}}{2}\right)-\frac{e^{\frac{x^{*}}{2}}}{4 \pi} \mathbb{K}_{0}\left(\frac{x^{*}}{2}\right)\right)\right\}(7-16)
\end{aligned}
$$

where $K_{0} K_{1}$ are the modified Bessel functions of the gecond kind of the zeroth and first order (3). To verify that equation $7-16$ is the correct solution, and to determine $\xi_{0}^{*}(\epsilon)$, we impose the matching condition. We write $g_{o}(\epsilon) \bar{B}^{*}(0)(x)$ for small \vec{x}, using

$$
\begin{equation*}
K_{0}\left(\frac{x^{*}}{2}\right)=-\log r^{*}-\log \frac{Y_{o}}{4}+o(1) \tag{7-17}
\end{equation*}
$$

where $\gamma_{0}=e^{Y}$, and γ is Euler's constant,

$$
\begin{equation*}
\left.K_{1}\left(\frac{x^{*}}{2}\right)=\frac{2}{x^{*}}+C x^{*} \log x^{*}\right) \tag{7-18}
\end{equation*}
$$

and replace \vec{T} by \vec{T}. The result may be written

$$
\begin{align*}
& g_{0}^{*}(\epsilon)\left(G \vec{B}^{*}(0)(\vec{r})\right) \\
& =⿷_{0}^{4}(\epsilon)\left\{\vec{i}_{x}\left(-\frac{y^{+}}{2 \pi x^{+2}}\right)+\overrightarrow{r_{y}}\left(\frac{x^{+}}{2 \pi r^{+2}}\right)+\epsilon \log \epsilon g_{o}^{*}(\epsilon)\left\{\overrightarrow{i_{y}}\left(\frac{1}{4 \pi}\right)\right\}\right. \\
& +\operatorname{eg}_{o}^{*}(\epsilon)\left\{\vec{i}_{x}\left(-\frac{x^{4} y^{4}}{4 \pi x^{+2}}\right)+\vec{i}_{y}\left(\frac{\log x^{+}}{4 \pi}+\frac{\log \frac{\gamma_{0}}{4}}{4 \pi}+\frac{x^{+2}}{4 \pi x^{+2}}\right)\right\}+\ldots \tag{7-19}
\end{align*}
$$

Remembering ((ee definitions before equation $2-7$) that $\vec{B}^{4}=\epsilon \overrightarrow{\mathrm{B}}$, we see immediately from equations 7-11 and 7-12 that

$$
\begin{equation*}
g_{0}^{*}(\epsilon)=1 \tag{7-20}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& g_{0}^{*}(6) \vec{B}^{*}(0)\left(x^{*}\right) \\
& =\left\{\vec{i}_{x}^{*}\left(-\frac{e^{\frac{x^{*}}{2}}}{4 \pi x^{*}} \mathrm{~K}_{1}\left(\frac{x^{*}}{2}\right)\right)+\vec{i}_{y}^{*}\left(\frac{e^{\frac{x^{2}}{2}} x^{*}}{4 \pi x_{1}^{*}}\left(\frac{x^{*}}{2}\right)-\frac{e^{\frac{x^{*}}{2}}}{4 \pi} x_{0}\left(\frac{x^{*}}{2}\right)\right)\right\} \cdot(7-21)
\end{aligned}
$$

This solution ia independent of viscosity, and is actually valid when v (and hence a) is identically zero. (See Section X for further comments on this point.)

For future convenience, we rewrite equation 7-19:

$$
\begin{align*}
& g_{o}^{*}(\epsilon) \in \vec{B}^{*}(0)\left(x^{*}\right)=\left\{\vec{i}\left(-\frac{y^{+}}{2 \pi x}\right)+\overrightarrow{i_{y}}\left(\frac{x^{+}}{2 \pi x^{+2}}\right)\right\}+\in \log \left\{\vec{i}_{y}\left(\frac{1}{4 \pi}\right)\right\} \\
& \qquad \in\left\{\vec{i}_{x}\left(-\frac{x^{+} y^{+}}{4 \pi r^{+2}}\right)+\vec{i}\left(\frac{x^{+2}}{4 \pi x^{+2}}+\frac{\log \frac{\gamma_{0}}{4}}{4 \pi}+\frac{\log x^{+}}{4 \pi}\right)\right\}+\ldots \tag{7-22}
\end{align*}
$$

D. Determination of $g_{1 a}^{4}(\epsilon) \vec{B}^{\left.+(\mathrm{la})_{\left(B^{+}\right.}\right)}$

It can be shown that there is no term Olog 6) satisfying equations 7-14 and $7-15$ which vanishes at infinity and for which the line integral about the origin is zero in the limit as $\vec{F}^{*} \rightarrow 0$. This implies that the term $O(\epsilon \log \epsilon)$ in equation $7-22$ must appear in the inner development, if the matching conditions are to be satisfied. If we call this inaer term $\left.\mathrm{g}_{\mathrm{la}}^{+}(\epsilon) \overrightarrow{\mathrm{B}}+(\mathrm{la})_{(\vec{r}}{ }^{+}\right)$, then, as mentioned above,

$$
\begin{equation*}
g_{1 a}^{4}(\epsilon)=\epsilon \log \epsilon \tag{7-23}
\end{equation*}
$$

and $\bar{B}^{+(1 a)}\left(\bar{r}^{+}\right)$must satisfy the homogeneous equation

$$
\begin{equation*}
\nabla^{+2} \frac{\mathrm{~B}}{}+(1 a)=0 \tag{7-24}
\end{equation*}
$$

The solution which matches with the outer development is the constant solution

$$
\vec{B}+(1 a)\left(x^{+}\right)=\vec{i}_{y}\left(\frac{1}{4 \pi}\right)
$$

80

$$
\begin{equation*}
g_{l a}^{+}(\epsilon) \vec{B}^{+(1 a)}\left(x^{+}\right)=\vec{i} \frac{\epsilon \log \epsilon}{4 \pi} \tag{7-25}
\end{equation*}
$$

E. Determination of $\mathrm{g}_{1}^{+}(\epsilon) \bar{B}^{+(1)}\left(\mathrm{F}^{+}\right)$

The equations for $g_{1}^{\dagger}(\in) \overrightarrow{B^{+(1)}}\left({ }^{+}\right)$, found as usual by substituting the asaumed developments, equations $7-4$ to $7-6$, into equation $2-15$. are

$$
\begin{align*}
& g_{1}^{+}\left(\epsilon\left(\frac{\partial^{2} B^{+(1)}}{\partial x^{+2}}+\frac{\partial^{2} B^{+(1)}}{\partial y^{+2}}\right)+\epsilon \frac{\partial B_{y}^{+(0)}}{\partial y^{+}}=0\right. \tag{7-26}\\
& \varepsilon_{1}^{+}(\in)\left(\frac{\partial^{2} B^{+(1)}}{\partial x^{+2}}+\frac{\partial^{2} B^{+(1)}}{\partial y^{+2}}\right)-\epsilon \frac{\partial B^{+(0)}}{\partial x^{+}}=0 \tag{7-27}
\end{align*}
$$

Substituting the known values of $\vec{B}+(0)$ from equation $7-12$, we then have

$$
\begin{align*}
& \mathrm{g}_{1}^{+}(\epsilon)\left(\frac{\partial^{2} \mathrm{~B}^{+(1)}}{\partial x^{+2}}+\frac{\partial^{2} \mathrm{~B}^{+(1)}}{\partial y^{+2}}\right)+\epsilon\left(-\frac{x^{+} y^{+}}{\pi x^{+2}}\right)=0 \tag{7-28}\\
& \mathrm{~g}_{\mathrm{L}}^{+}(\epsilon)\left(\frac{\partial^{2} \mathrm{~B}^{+(1)}}{\partial x^{+2}}+\frac{\partial^{2} \mathrm{~B}^{+(1)}}{\partial y^{+2}}\right)-\epsilon\left(\frac{1}{2 \pi x^{+2}}-\frac{x^{+}}{\pi x^{+4}}\right)=0 \tag{7-29}
\end{align*}
$$

This implies $g_{1}^{f}(\epsilon)=\epsilon$, and a particular solution to the se equations which
satisfies $\nabla^{\dagger} \cdot \bar{B}_{p}^{+(1)}=0$ is

$$
\begin{equation*}
\epsilon B_{P}^{*(1)}\left(x^{+}\right)=\left\{\vec{x}_{x}\left(-\frac{x^{+} y^{+}}{4 \pi x^{+2}}\right)+r_{y}^{+2}\left(\frac{x^{+2}}{4 \pi x^{+2}}+\frac{\log x^{+}}{4 \pi}+\frac{\log \frac{Y_{0}}{4}}{4 \pi}\right)\right\} \tag{7-30}
\end{equation*}
$$

This, plus a suitable homogeneous solution, must match with the correo sponding term in the inner limit of $\vec{B}^{(1)(0)}(\vec{r})$. which is given by equation 7-22. Obviously the required homogeneous term is zero, so we have

$$
\begin{equation*}
\epsilon \vec{B}^{-1(1)}\left(\vec{F}^{4}\right)=\epsilon\left\{\bar{r}_{x}\left(-\frac{x^{4} y^{+}}{4 \pi x^{+2}}\right)+\vec{i}_{y}\left(\frac{x^{+2}}{4 \pi x^{+2}}+\frac{\log x^{+}}{4 \pi}+\frac{\log \frac{V_{o}}{4}}{4 \pi}\right)\right\} \tag{7-31}
\end{equation*}
$$

F. Determination of ${ }_{o}^{*}(\epsilon) p^{*(0)}\left(x^{*}\right)$

In the outer olution, there is a possible pressure term oll. corresponding to the velocity term o(1). From the outer momentum equation, equation $2-6$, we have simply

$$
\begin{equation*}
\nabla^{*} p^{*(0)}\left(x^{m}\right)=0 \tag{7-32}
\end{equation*}
$$

for the largest term. Hence

$$
\begin{equation*}
p^{*}(0)\left(x^{*}\right)=\text { constant } \tag{7-33}
\end{equation*}
$$

The boundary condition, equation $2-11$, requires the constant to be zero:

$$
\begin{equation*}
p^{*(0)}(\vec{x})=0 \tag{7-34}
\end{equation*}
$$

G. Determination of $t_{0}^{t}(\epsilon)_{p}^{+(0)}$

From the innex momentum equation, equation $2-14$, we have the largest term

$$
\begin{equation*}
i_{0}^{+}(\epsilon) \nabla^{+} p^{+(0)}\left(\vec{r}^{+}\right)=0 \tag{7-35}
\end{equation*}
$$

so that

$$
\begin{equation*}
t_{0}^{+}(6) p_{p}^{+(0)}\left(\vec{r}^{+}\right)=\text {constant } \tag{7-36}
\end{equation*}
$$

To match with the outer preesure term, $p^{(0)}\left(\overrightarrow{r^{*}}\right)$, wo must have

$$
\begin{equation*}
i_{0}^{4}(6) \mathrm{p}^{+(0)}\left(\vec{x}^{+}\right)=0 \tag{7-37}
\end{equation*}
$$

H. Determination of $f_{1 a}^{*}(\epsilon) \vec{q}^{(l a)}(\vec{r})$

If whbstitute the assumed outer asymptotic devolopment into the outer momentum equation, equation 2-8, and keep the lowent order terms, there result

$$
\begin{align*}
& a f_{1}^{*}(\epsilon) \nabla^{* 2} u^{*(1)}-f_{1}^{*}(\epsilon) \frac{\partial u^{*(1)}}{\partial x^{*}}-\mu_{1}^{*}(\epsilon) \frac{\partial p^{*}(1)}{\partial x^{*}} \\
& =\epsilon^{2} B_{y}^{*(0)}\left(\frac{\partial B_{y}^{*(0)}}{\partial x^{*}}-\frac{\partial B^{*(0)}}{\partial y^{*}}\right) \tag{7.38}\\
& a f_{1}^{*}(\epsilon) \nabla^{* 2} v^{*(1)}-f_{1}^{*}(\epsilon) \frac{\partial v^{*}(1)}{\partial x^{*}}-2_{1}^{*}(\epsilon) \frac{\partial p^{*}(1)}{\partial y^{*}} \\
& =-\epsilon^{2} B_{x}^{*}(0)\left(\frac{\partial B^{*}(0)}{\partial x^{*}}-\frac{\partial B_{x}^{*(0)}}{\partial y^{*}}\right) \tag{7-39}
\end{align*}
$$

We aee immediately that

$$
\begin{equation*}
f_{1}^{*}(\epsilon)=\ell_{1}^{*}(\epsilon)=\epsilon^{2} \tag{7-40}
\end{equation*}
$$

Using equation 7-21, 7-38 and 7-39 give

$$
\begin{align*}
& a \nabla^{* 2}{\underset{u}{*}}_{*}^{*}-\frac{\partial u^{*(1)}}{\partial x^{*}}-\frac{\partial p^{*(1)}}{\partial x^{*}}=\frac{e^{x}}{16 \pi^{2}} \frac{x^{* 2}}{x^{*}} K_{1}\left(\frac{x^{*}}{2}\right) K_{1}\left(\frac{x^{*}}{x}\right) \\
& -\frac{e^{x} x^{*}}{8 \pi^{2}} K_{0}^{*}\left(\frac{x^{*}}{2}\right) K_{1}\left(\frac{x^{*}}{2}\right)+\frac{e^{x^{*}}}{16 \pi^{2}} K_{0}\left(\frac{x^{*}}{2}\right) K_{0}\left(\frac{x^{*}}{2}\right) \tag{7-41}\\
& a \nabla^{* 2} \mathrm{v}^{\psi}(1)-\frac{\partial v^{\psi(1)}}{\partial x^{*}}-\frac{\partial p^{*(1)}}{\partial y^{*}}=-\frac{e^{* *} y^{*}}{16 \pi^{2}} K_{0}\left(\frac{x^{*}}{2}\right) K_{1}\left(\frac{r^{*}}{2}\right) \\
& +\frac{e^{x} x x^{*}}{16 \pi^{2} y_{2}^{*}} \operatorname{Ki}_{1}\left(\frac{x^{*}}{2}\right) K_{1}\left(\frac{x^{*}}{2}\right) \tag{7-42}
\end{align*}
$$

The solution to equations $7-41$ and $7-42$ will be discussed later (see Section VII) for the present we use the result that for small values of r the vorticity behaves like

$$
\begin{equation*}
\epsilon^{2}\left(\frac{\partial y^{*}(1)}{\partial x^{*}}-\frac{\partial u^{*}(1)}{\partial y^{w}}\right)-\frac{e^{2}}{8 \pi^{2} c} \frac{y^{*} \log ^{*} x^{*}}{r}+\circ\left(\frac{\log x^{*}}{r^{*}}\right) \tag{7-43}
\end{equation*}
$$

and the preasure, $p(1)\left(\boldsymbol{p}^{* *}\right)$, behavea like

$$
\begin{equation*}
\epsilon^{2} p^{*(1)}\left(x^{*}\right) \sim-e^{2} \frac{x^{*} \log x^{*}}{8 \pi^{2} x^{* 2}}+o\left(\frac{\log x^{*}}{x^{*}}\right) \tag{7-44}
\end{equation*}
$$

In order to investigate matching, we replace $\overrightarrow{r^{*}}$ by $\in \vec{r}^{\dagger}$, so that equation $7-43$ becomes

$$
\begin{equation*}
\epsilon\left(\frac{\partial v^{*}(1)}{\partial x^{+}}-\frac{\partial u^{*(1)}}{\partial y^{+}}\right) \sim-\epsilon \log \epsilon \frac{y^{+}}{8 z^{2} a x^{+2}}-\epsilon \frac{y^{+} \log x^{+}}{8 \pi^{2} x^{+2}}+\ldots \tag{7-45}
\end{equation*}
$$

and equation $7-44$ becomee

$$
\begin{equation*}
\epsilon_{p}^{2}(1)-\epsilon \log \epsilon \frac{x^{4}}{8 \pi^{2} r^{+2}}-\epsilon \frac{x^{+} \log x^{4}}{8 \pi^{2} x^{+2}}+\ldots \tag{7-46}
\end{equation*}
$$

Now equation $7-45$ containe a term $O(e \log 6)$ and thi 6 plus the contribution from a possible term o($\left.\epsilon^{2} \log 6\right)$ in the outer olution, must match with a term of correaponding order in the Inner development. But the $f_{1}^{+}(\epsilon) \vec{q}^{+(1)}(\vec{x})$ equation found by the usual substitution of the assumed asymptotic development into the inner momentum equation, (equation $(2-14)$, has forcing terms o(ϵ^{2}, so $f_{1}^{*}(\epsilon)=\epsilon_{0}^{2}$ not $\epsilon^{2} \log \epsilon_{0}$ as required。 ${ }^{*}$. Thus a term $O\left(\epsilon^{2} \log \epsilon\right)$, which we call

$$
\begin{equation*}
e^{2} \log \epsilon \vec{q}+(\operatorname{la})(\vec{x}) \tag{7-47}
\end{equation*}
$$

must satisfy the homogeneous equations

$$
\begin{gather*}
\nabla^{+} \cdot \vec{q}^{+(l a)}=0 \tag{7-48}\\
\epsilon \log \epsilon \nabla^{+2} \vec{q}^{+(1 a)}-\epsilon^{2} \log \epsilon \nabla^{+} p^{+(\operatorname{la})}=0 \tag{7-49}
\end{gather*}
$$

and have a vorticity which behaves like

$$
\begin{equation*}
\epsilon^{2} \log \in\left(\frac{\partial v^{t(1 a)}}{\partial x^{+}}-\frac{\partial u^{+(1 a)}}{\partial y^{t}}\right)-\epsilon^{2} \log \in \frac{y^{+}}{x^{+2}} \tag{7-50}
\end{equation*}
$$

To nvestigate the problem further, we note that the possible term in
 satisfies the equations

$$
\begin{align*}
& \epsilon^{2} \log \epsilon \nabla^{*} \cdot \vec{q}^{*(1 a)}=0 \tag{7-51}\\
& \epsilon^{2} \log \epsilon a \nabla^{* 2-w(l a)}-\epsilon^{2} \log \frac{\partial q^{*}(1 a)}{8 x^{*}}-\epsilon^{2} \log \epsilon \nabla^{*} P^{(1 a)}=0 \tag{7-52}
\end{align*}
$$

and possesaes a vorticity which for small values of $\overrightarrow{\mathbf{r}}$ behaves like

$$
\begin{equation*}
\epsilon^{2} \log \epsilon\left(\frac{\partial v^{*(l a)}}{\partial x^{*}}-\frac{\partial u^{*(l a)}}{\partial y^{*}}\right)-\epsilon^{2} \log \epsilon \frac{y^{*}}{v^{*}} \tag{7-53}
\end{equation*}
$$

The orders of pressure and vorticity are different for the inner and outer developments. The matching argument is clearer, though more tedious, if physical variables are used.

pure
$(55-2)$

$$
\frac{2_{4} x^{* 8}}{x}, \text { Bot }_{2}=(x)(\text { et })_{*} d, \operatorname{sot}_{2} 3
$$

$(59-2)$

 'วิต

$$
\begin{equation*}
e^{2} \log c\left(\frac{\partial v^{*(1 a)}}{\partial x^{*}}-\frac{\partial u^{*(1 a)}}{\partial y^{*}}\right)-e^{2} \log \epsilon \frac{y^{*}}{8 \pi^{2} c x^{2}} \tag{7-57}
\end{equation*}
$$

or, in inner variables

$$
\begin{equation*}
\epsilon^{2} \log \epsilon\left(\frac{\partial v^{*(1 a)}}{\partial x^{*}}-\frac{\partial u^{*(1 a)}}{\partial y^{*}}\right)-\epsilon \log \epsilon \frac{y^{+}}{8 \pi^{2} a x^{+2}} \tag{7-58}
\end{equation*}
$$

This, plus the O($\in \log 6$) term in equation $7-45$, give the contribution from the outer solution. But they exacty cancel, so the contribution is zero. This is consistent with equation 7-56. Next, we note that equation $7-55$ written in inner variables is

$$
\begin{equation*}
\epsilon^{2} \log \epsilon p^{*(l a)}=\epsilon \log \in \frac{x^{+}}{8 \pi^{2} x^{+2}} \tag{7.59}
\end{equation*}
$$

This, added to the contribution $O(6 \log \epsilon)$ from equation $7-46$, also gives zero, a result again consistent with equation 7-56. This completes the verification of the matching conditions. The value of drag will be discussed in Section IX.
VIII. DISCUSSION OF $e^{2 \vec{q}(1)}(\vec{r})$ AND $6 \vec{q}^{+(1)}\left(\vec{r}^{-1}\right)$

We turn now to the question of solving equations 7-41 and 7-42 (subject to the continuity equation, of course), and the corresponding equatione in the inner development.

The velocity and pressure fields, $\epsilon^{2-a *(1)}\left(\vec{x}^{*}\right)$ and $\epsilon^{2}{ }^{*}(1)\left(\vec{x}^{+}\right)$ are brought into being by the forcing terma on the right-hand sides of equations 7-41 and 7-42. These are just the Lorentz body forces. The solution, in integral form, can be constructed formally by use of the fundamental solution tensor of the Oseen equations, reference 5. For example, $\epsilon^{2} u^{(1)}\left(x^{*}\right)$ is formally
$\epsilon^{2} u^{*}(1)\left(x^{*}\right)=$

$+\left\{-\frac{y^{*}-n}{|\vec{x}-\vec{\rho}|^{2}}+\left.\frac{1}{2 a} x_{1}\left(\frac{|\vec{r}-\vec{p}|}{2 a}\right) \frac{y-n}{|\vec{z}-\vec{p}|}\right|^{\frac{x^{*}-\xi^{*}}{2 a}}\right\}$.
$\left.\left\{\frac{e^{\xi^{*}} \eta^{*}}{16 \pi^{2} \rho} \pi_{0}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho}{2}\right)-\frac{e^{\xi} \xi^{*} n^{*}}{16 \pi^{2} \rho}\left(\frac{\rho^{*}}{2}\right) K_{1} \rho \frac{\rho}{2}\right)\right\} d \xi^{*} \mathrm{~d} \eta^{*}$
where the variable of integration is $\vec{p}=\vec{T}_{x} \vec{F}^{*}+\vec{I}_{y}^{\eta}=\vec{i}_{\rho} \rho+\vec{i}_{\phi} \phi$ in cartesian and polar coordinates respectively. There are two similar expressions for $v^{*(1)}\left(\vec{z}^{*}\right)$ and $p^{*(1)}\left(x^{* *}\right)$. The fact that the integral is
taken over all space is due to the observation that the right-hand aide of equatione $7-41$ and $7-42$ are valid in the set

$$
\text { orde } \leqslant \text { ord } f(\epsilon) \leqslant \text { ord } 1
$$

so that from the point of view of the outer development, the non-homogeneous terms are valid right up to the origin.

We mee immeciately that the integral of equation $8-1$, and the corresponding integrals for $\epsilon^{2} v^{(1)}\left(\vec{r}^{(1)}\right)$ and $\epsilon^{2} p^{(1)}(\vec{r})$, do not exist in the usual sense. However, the so-called "finite part, " (see reference 3, page 38), is a solution of the difierential equations. (Of couree, we can still add a homogeneous solution to this particular solution. Later, we shall attempt to satisfy outselves that this additional solution is zero.) For equation 8-1, the finite part ("Pi) iq found by the standard methods to be expressible as

$$
\begin{aligned}
& =\frac{\epsilon^{2}}{2 \pi} \int_{0}^{k} \int_{0}^{2 \pi} \frac{1}{\rho^{*}}\left\{x\left(x^{*}, \rho^{*} \phi\right)\left(-\frac{e^{\rho(\cos 4} \cos ^{2} \phi}{16 \pi^{2}} \rho^{2} k_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right)\right. \\
& -4 m\left(x^{*} ; 0, \phi M\left(\frac{\cos ^{2} \phi}{16 \pi^{2}}\right)\right\} d \phi d \rho^{*} \\
& +\frac{\epsilon^{2}}{2 \pi} \int_{k}^{\infty} \int_{0}^{2 \pi} \frac{1}{\rho^{*}}\left\{r\left(r^{*} i p^{*} \cdot \phi\right)\left(-\frac{e^{\rho} \cos \varphi^{2} \cos ^{2} \varphi}{16 \pi^{2}} \rho^{* 2} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{p}{2}\right)\right\} d \phi d \rho\right. \\
& +\frac{e^{2}}{2 \pi}(-\log k)\left\{\frac{1}{4 \pi a} K_{0}\left(\frac{x^{*}}{2 a}\right) e^{\frac{x^{*}}{2 a}}-a \frac{x^{*}}{x^{*}}+\frac{1}{2} K_{1}\left(\frac{x^{*}}{2 e}\right) \frac{x^{*}}{x^{*}} e^{\frac{x^{*}}{2 a}}\right\} . \\
& +\frac{\epsilon^{2}}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi} E\left(x^{*} ; p, \phi\right)\left\{\frac{e^{\rho} \cos \phi \cos \phi}{8 \pi^{2}} K_{0}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{p^{*}}{2}\right)\right. \\
& \left.-\frac{e^{\rho} \cos \phi}{16 \pi^{2}} K_{0}\left(\frac{\rho^{*}}{2}\right) K_{0}\left(\frac{\rho^{*}}{2}\right)\right\} \rho^{*} \mathrm{~d} \phi \mathrm{~d} \rho^{*} .
\end{aligned}
$$

$$
\begin{align*}
& +\frac{e^{2}}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi}\left\{-\frac{y^{*}-p^{*} \sin \phi}{\left|\vec{r}-\vec{p}^{*}\right|^{2}}+\frac{1}{2 a} K_{1}\left(\frac{\left|x^{*}-\vec{p}^{*}\right|}{2 a}\right) \frac{y^{*}-p^{*} \sin \phi}{\left|\overrightarrow{r^{*}}-\vec{p}\right|^{*} \mid} e^{\frac{x^{*}-p^{*} \cos \phi}{2 a}}\right\} . \\
& \left\{\frac{e^{\rho} \cos \phi}{16 \pi^{2}} \sin \phi_{K_{0}}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)-\frac{e^{\rho^{*} \cos \phi} \cos \phi \sin \phi}{16 \pi^{2}} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right\} \rho^{*} d \rho d \psi \tag{8-2}
\end{align*}
$$

where

$$
\begin{align*}
& F\left(\vec{r} * \rho^{*}, \phi\right)=\left\{\frac{1}{2 a} K_{0}\left(\frac{\left|\vec{r}-p^{-\phi}\right|}{2 a}\right) e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}-\frac{x^{*}-p^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{p}^{*}\right|^{2}}\right. \\
& \left.+\frac{1}{2 \alpha} k_{1}\left(\frac{\left|\overrightarrow{x^{*}}-\vec{p}\right|}{2 \theta}\right) \frac{x^{*}-p^{*} \cos \phi}{|\vec{r}-\vec{p}|} e^{\frac{x^{*}-p^{*} \cos \psi}{2 a}}\right\} \tag{8-3}
\end{align*}
$$

Similar expressions will arise in the determination of $\epsilon^{2} v^{*}(1)\left(r^{*}\right)$ and $\epsilon^{2} p^{*(1)}\left(\vec{r}^{*}\right)$. The value of k is to be taicen as that value of p^{*} below which we can use the approximate expressions, equations 7-17 and 7-18, for $K_{0}\left(\frac{\rho^{*}}{2}\right)$ and $\Sigma_{1}\left(\frac{\rho}{2}\right)$. The above integral is independent of k, but this choice of k will be used when we consider matching with $\vec{q}+\overrightarrow{\|}\rangle\left(\vec{r}{ }^{+}\right)$ and $\vec{p}+(1)\left(\vec{r}^{+}\right)$. We will find that the outer solutions are valid in the set

$$
\text { ord } \epsilon \leqslant f(\epsilon) \leqslant \text { ord } 1
$$

To investigate the question of matching, we first observe that the equations for $\vec{q}^{+(1)}\left(\vec{r}^{+}\right)$and $\vec{p}^{+(1)}\left(\vec{r}^{+}\right)$, found from substituting the asymptotic developments into the momentum and continuity equations, 2-13 and 2-14, are

$$
\begin{align*}
& f_{1}^{+}(\epsilon) \nabla^{+} \cdot \vec{q}^{+(1)}=0 \tag{8-4}\\
& a_{1}^{+}(\epsilon)\left(\nabla^{+2} u^{+(1)}\right)-L_{1}^{+}(\epsilon) \frac{\partial p^{+(1)}}{\partial x^{\psi}}=\epsilon^{2} \frac{x^{+2}}{4 \pi r^{+4}} \tag{8-5}\\
& a_{1}^{+}(\epsilon)\left(\nabla^{+2} v^{+(1)}\right)-L_{1}^{+}(\epsilon) \frac{\partial p^{+(1)}}{\partial y^{+}}=\epsilon^{2} \frac{x^{+} y^{+}}{4 \pi r^{+2}} \tag{8-6}
\end{align*}
$$

so that

$$
\begin{equation*}
f_{1}^{+}(\varepsilon)=\epsilon^{2} \tag{8-7}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{1}^{+}(\epsilon)=\varepsilon^{2} \tag{8-8}
\end{equation*}
$$

Before considering volutions of equations $8-4,8-5$ and $8-6$, we apply the inner limit process to $\varepsilon^{2}-\operatorname{con}^{(1)}(\vec{x})+\varepsilon^{2} \log \in q^{*}(\operatorname{la})(\vec{x})$ and $\epsilon^{2}{ }_{p}^{*}(1)\left(\mathrm{r}^{*}\right)+\epsilon^{2} \log _{\mathrm{P}^{*}}(\mathrm{la})\left(\mathrm{r}^{* *}\right)$. The resuli for $u^{*(1)}$ if

$$
\begin{aligned}
& u^{*(1)}\left(\epsilon \vec{r}^{+}\right) \\
& \sim \frac{\epsilon^{2}}{2 \pi} \int_{0}^{k / \epsilon} \int_{0}^{2 \pi}\left\{\left(-\frac{1}{2 a} \log \left\lvert\, \vec{r}-\vec{p}+1+\frac{\left(x^{+}-\rho^{+} \cos \phi\right)^{2}}{2 a\left|\vec{r}^{+}-\vec{p}^{+}\right|^{2}}+\frac{1}{2 a} \log r^{+}-\frac{x^{* 2}}{2 a r^{+2}}\right.\right)\right. \\
&\left(-\frac{\cos ^{2} \phi}{4 t^{2} p^{+2}}\right)
\end{aligned}
$$

$$
+\left(\frac{\left(y^{+}-p^{4} \sin \phi\left(x^{t}-p^{4} \cos \phi\right)\right.}{2 a\left|\vec{r}+\vec{p}^{+}\right|^{2}}\right) \cdot\left(-\frac{\operatorname{tin} \phi \cos \phi}{4 \pi^{2} p^{+2}}\right) \rho^{+} d \phi d p^{+}
$$

$$
+\epsilon^{2} \log \epsilon \frac{\log k}{16 \pi^{2} \alpha}-\epsilon^{2} \frac{\log k}{16 \pi^{2} \alpha}\left(-\log r^{+}+\frac{x^{+2}}{r^{+2}}\right)
$$

$$
-\frac{\epsilon^{2}(\log \epsilon)^{2}}{16 \pi^{2} e}-\frac{\epsilon^{2} \log \epsilon}{16 \pi^{2} \alpha}\left(\log x^{+}-\frac{x^{2}}{r^{+2}}-\log 4 a+\gamma\right)
$$

$$
\begin{equation*}
+\epsilon^{2}(\text { constant })+o\left(\epsilon^{2}\right) \tag{8-9}
\end{equation*}
$$

We shall next show that equation $8-9$ is a solution for the inner development up to of ϵ^{2}. This is done as follows: equations 8-4, 8-5, and 8-6 are aimply non-homogeneous Stokec equations (except a is of course not a Reyrolde number), with the right-hand gide valid in a set

$$
\begin{equation*}
f_{1}(\epsilon)<\text { ord } f(\epsilon) \leqslant \text { ord } \epsilon \tag{8-10}
\end{equation*}
$$

the existence of $f_{1}(\epsilon)<$ ord ϵ following from the extenaion principle. Expreased in inmer variables, this says the right-hand aide is valid for $r^{+} \leqslant \frac{k}{\epsilon}$, whers k is a constant, which we can define to be the same an described below equation 8-3. Let us then deinn the right-hand side to be identically zero for $x^{+}>\frac{k}{6}$. Then, using the fundamental solution of the Stokes equatione (see reference 3) in a purely formal manner. we obtain for

$$
\begin{align*}
\epsilon^{2} u^{+(1)}\left(\vec{r}^{+}\right)= & \frac{1}{2 \pi} \int_{0}^{k / \epsilon} \int_{0}^{2 \pi}\left\{\left[-\frac{1}{20} \log \left|\overrightarrow{x^{+}+}-\vec{p}^{+}\right|-\frac{3}{4 a}+\frac{\left(x^{+}-p^{+} \cos \phi\right)^{2}}{2 a\left|\vec{r}-p^{+}\right|^{2}}\right]\right. \\
& {\left[-\frac{\cos ^{2} \phi}{4 \pi^{2} p^{2}}\right] } \\
& \left.+\left[\frac{\left(x^{+}-p^{+} \cos \phi\right)\left(y^{+}-p^{+} \sin \phi\right)}{2 a\left|\vec{r}^{+}-\vec{\rho}\right|^{2}}\right]\left[-\frac{\sin \phi \cos \phi}{4 \pi^{2} p^{+2}}\right]\right\} \rho^{+} d \rho^{+} d \phi \quad(8-11) \tag{8-11}
\end{align*}
$$

(Similar formal expresmions will be obtained for $\epsilon^{2} v^{+(1)}\left(\vec{r}^{+}\right)$and $\varepsilon_{p}^{2+(1)}\left(\dot{r}^{+}\right)$) We note immediately that equation $8-11$ does not converge in the usual sense, but the "finite part" satisfies the differential equations. Similar statements are true for $v^{+(1)}\left(\vec{r}^{+}\right)$and $p^{+(1)}\left(\vec{r}^{+}\right)$. Using
standard methods to exprees the finite part, we obtain

$$
\begin{align*}
& e^{2}+(1)\left(\overrightarrow{x^{+}}\right)= \\
& \frac{\varepsilon^{2}}{\Sigma \pi} \int_{0}^{k / \epsilon} \int_{0}^{2 \pi}\left\{\left[-\frac{1}{2 a} \log \left\lvert\, \overrightarrow{x^{+}}-\vec{p}+\frac{\left(x^{+}-p^{+} \cos \phi\right)^{2}}{2 a|\vec{x}+\vec{p}|^{2}}+\frac{1}{2 a} \log x^{+}+\frac{x^{+2}}{2 a x^{+2}}\right.\right] \cdot\right. \\
& {\left[-\frac{\cos ^{2} \phi}{42^{2} \phi^{+2}}\right]} \\
& +\left[\frac{\left.\left(x^{4}-\rho^{+} \cos \phi\right) y^{+}-\rho^{+} \sin \phi\right)}{2 \theta\left|\vec{x}^{+\phi}-\rho^{+}\right|^{2}}\right] \cdot\left[-\frac{\sin \phi \cos \phi}{4 \pi^{2} p^{+2}}\right] \rho^{+} d \rho^{+} d \phi \\
& -\frac{e^{2} \log x}{16 \pi^{2} a}\left(-\log x^{+}+\frac{x^{+2}}{x^{+2}}-\frac{3}{2}\right)+\frac{e^{2} \log 6}{16 \pi^{2} a}\left(-\log x^{+}+\frac{x^{+2}}{y^{+2}}-\frac{3}{2}\right) \\
& +o\left(e^{3}\right) . \tag{8-12}
\end{align*}
$$

Plainly, equation $8-12$ ie identical with equation $8-9$, except for constant terms. These constant terms can obviously be added in the form of homogeneous solutions. Sinilar statements hold for $\varepsilon^{2}+(1)\left(\frac{2}{2}\right)$ and $\varepsilon^{2}{ }_{p}+(1)\left(\vec{r}^{+}\right)$, so we have demonstrated that matching is atisfled, and the outer development, to terms in c^{2}, is uniformly valid in the set
orde $\leqslant f(G) \leqslant$ ord 1.

Furthermoxe, the inner development, to this order, is redundant. Because of this redundancy our further discustion will be concerned with the outer development only. Our next step will be a discuasion of
the homogeneous eolution that can be added to $\vec{q}(1)(\vec{r})$ and $p^{*(1)}\left(\overrightarrow{x^{*}}\right)$.
A. Further discussion of $\varepsilon^{2 \rightarrow(1)}\left(\underset{q}{ } \rightarrow\right.$ and $\epsilon^{2} p^{*(1)}\left(\vec{r}^{*}\right)$.

In section 8, we found a solution to the differential equations satisfied by $\mathrm{q}^{(1)}\left(\overrightarrow{r^{*}}\right)$ and $p^{*(1)}\left(\vec{r}^{*}\right)$. (For $u^{*(1)}\left(\overrightarrow{x^{*}}\right)$ see equation
 this solution can be addec a term proportional to the fundamental colution; in this aection we shall attempt to argue heuristically that the conetant of proportionality nhould be zero.

The argument will be based on the following observation: aingularitien in the outer glow represent physical disturbances, and, unlese forced by come physical cause, do not axist. Now one can look at the formal solution to $u^{\left({ }^{(1)}(1)\right.}\left(\boldsymbol{x}^{*}\right)$ as a pexfectly well-behaved function plus a very bad aingularity. We can remove thie singularity by subtracting suitable singular solutions; the author feels that of the many possibilities, we should use the one that is just sufficient to remove the aingularity -- no more, no lesa. From thia point of view, we can write equation $8-1$, and the corresponding equations for $v^{*(1)}$ and $p^{*(1)}$ using as lower limit of radius some constant $R>0$, and then add to the velocity field the term

$$
\begin{equation*}
\frac{1}{8 \pi^{2}}(\log R) \vec{C}(\vec{x}) \tag{8-13}
\end{equation*}
$$

where

$$
\begin{gather*}
\overrightarrow{\mathrm{G}}\left(\vec{r}^{* *}\right)=-\nabla^{*}\left[\epsilon^{\left.* / 2 a_{\mathrm{K}_{0}}\left(\frac{x^{*}}{2 a}\right)\right]+\frac{1}{a} e^{*} / 2 a_{K_{o}}\left(\frac{r^{*}}{2 a}\right) \vec{R}_{\mathrm{K}}}\right. \\
-\nabla^{*} \log r^{*} \tag{8-14}
\end{gather*}
$$

and add to the pressure field the pressure field associated with equation 8-13.

$$
\begin{equation*}
-\frac{1}{8 a^{2}}(\log R) \frac{x^{6}}{x^{2}} \tag{8-15}
\end{equation*}
$$

This done, we let $2 \rightarrow 0$.
To illustrate this point in more detail, let un coneider the x-component of the valocity. The above atatement saye to add

$$
\begin{equation*}
-\frac{1}{8 \pi^{2}}(\log B)\left\{\frac{1}{2 a} \mathbb{E}_{0}\left(\frac{x^{*}}{2 a}\right) e^{x / 2 a}-\frac{x^{*}}{x^{*}}+\frac{1}{2 a} K_{1}\left(\frac{x^{*}}{2 a}\right) \frac{x^{*}}{x^{*}} e^{x / 2 a}\right\} \tag{8-16}
\end{equation*}
$$

This can also be written

$$
\begin{align*}
& =\frac{1}{2 \pi} \int_{R}^{1} \int_{0}^{2 \pi} 4 F\left(x^{*} ; 0.6\right) \frac{\cos ^{2} \phi}{16 \pi^{2} p^{*}} d p d \phi . \tag{8-18}
\end{align*}
$$

where $x\left(x^{*} ; p^{*}, \phi\right)$ is defined by equation $8-3$. It can be seen that adding equation $8 \mathbf{1 8}$ to equation $8-1$ (using R as lower limit of radiue inkegration) and letting R 0 givec equation $8-2$.

It ohould be re-emphasized that the above statements are based on rather uncertain essumptions. However. we at least have particular solution, so that our exprestion is correct up to an additive term pro. portional to thefundamental solution of the Dseen equations.

1K. CALCULATION OR DRAG

In principle, the force on the current clement may be computed by ovaluating forces at the oxigin of coordinaten or by atudying the flus of momentum at infinity. The firat approximation to the drag can thue be found by conoidering the momentum fiux at infinity from the solution $\epsilon^{2} \log \in \mathrm{q}^{*}\left(\operatorname{la)}\left(\mathrm{r}^{*}\right), \epsilon^{2} \log \in \mathrm{p}^{*(1 a)}\left(\vec{x}^{*}\right)\right.$, and any Matwell stresses of the ame order. there are no such Maxwell stresses of this ordex, and since $\mathrm{c}^{(\mathrm{La})}\left(\mathrm{r}^{(4)}\right), \mathrm{p}^{*(\mathrm{la})}\left(\mathrm{r}^{*}\right)$ is proportional to the fundamental solution of the Oseen equations, the drag, exprested in physical variablem, is well known to be the produce of pU and the source strength, in physical variables, of the so-called longitudinal component. If the first approxination to the drag is computed by Ending the otresaes at the origin, we find that the contribution is entirely from Maxwell stresses arising Irom

$$
\vec{B}+(0)(\vec{x})+6 \log \in \vec{B}^{+(l a)}(\vec{x})
$$

which can be interpreted as a current element ${ }_{z}^{\prime \prime} 1$ situated in a constant magnetic field

$$
\mathrm{T}_{\mathrm{y}} \frac{6 \log \mathrm{t}}{4 \pi} \mathrm{U} \sqrt{P^{2}} .
$$

In either case, the result, expreseed in physical variables, it

$$
\begin{equation*}
\text { Drag/unit length }=-\log \left(\sigma I \sqrt{\frac{\sigma^{3}}{p}}\right) \frac{x^{2} \sigma^{2}}{4 y} \quad \frac{\text { newtons }}{m e t e r} . \tag{9-1}
\end{equation*}
$$

The contribution to the drag arising from $\epsilon^{2}-\frac{1}{q}(1)\left(r^{*}\right), \epsilon^{2} p^{*(1)}\left(r^{*}\right)$ and
 tion near tho oxigin or at infinity. In this case, the answer is not Lound so easily as was the first approsimation, so we restrict ourdelves to considering the flus of momentum at infinity. It is easily demonetrated that the Maxwell streases from $\vec{B}(0)(\vec{r})$ die out pufficientiy rapidly at infinity to give zero contribution. Hence we need contend with only $\mathcal{q}^{(1)}\left(\mathrm{P}^{*}\right)$ and $p(1)(\underset{x}{ })$. The actual computation can be reduced to a single integration which must be carried out numerically. The argument leading to this integral can be stated as follows falso see Agpendix): we know from symmetry that the force on the current element is in the x-dizection, I.e., there is no lift. Par away from the origin, the oolution $\left(q^{*}(1)\left(\overrightarrow{w^{*}}\right)\right.$ and $p^{(1)}\left(\mathbf{F}^{*}\right)$) behaves Hke the response to a concentrated force situated at the origin and directed along the r-axis, provided the integrands of the integral representations decay sufficiently fast, and the constant of proportionality of the reaponge is given by the integral of the "iorcing" terme in the integrand. This constant corresponde to $q \mu / 2$ \% times the source atrength of the longitudinal component expreased in phyaical variables, and the drag will be aimply the product of pV and this source atreagth. If the integral in negative, the contribution to the drag will be poaitive. Let ue now carry out the procedure.

The integral of the mairection forcing terms in the integrand (equation $8-2$ for example) is

$$
\begin{align*}
& J=\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{1}{\rho}\left\{-\frac{e^{p} \cos \cos ^{2} \phi}{16 \pi^{2}} \rho^{2} \mathbb{K}_{1}\left(\frac{\rho^{*}}{2}+K_{1}\left(\frac{\rho}{2}\right)+\frac{4 \cos ^{2} \phi}{16 \pi^{2}}\right\} d \phi d \rho\right. \\
& +\frac{1}{2 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi}\left\{-\frac{e^{p \cos \cos ^{2}}}{16 \pi^{2}} \tilde{K}_{1}\left(\frac{\rho^{*}}{2} \left\lvert\, K_{1}\left(\frac{\rho^{*}}{2}\right)\right.\right\} \rho^{*} d \varphi d p^{*}\right. \\
& +\frac{1}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi}\left\{\frac{e^{p} \cos \phi}{8 z^{2}} \cos \theta K_{0}\left(\frac{P^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right. \\
& \left.-\frac{e^{p \operatorname{con} \psi}}{16 \pi^{2}} K_{o}\left(\frac{\rho^{*}}{2}\right) K_{o}\left\{\frac{\rho^{\omega}}{2}\right)\right\} \rho d d d \rho^{*} . \tag{9-2}
\end{align*}
$$

The author carziet out the computation on a desk calculator, and obtained

$$
\begin{equation*}
J=-\frac{1}{16 \pi^{2}}(1.90) \tag{9-3}
\end{equation*}
$$

Thus the contribution to the drag per unit leagth of current element is

Force/unit length $=\frac{1.9}{16 \pi^{2}} \operatorname{cl}^{2} \beta^{2} U \frac{\text { newrons }}{\text { meter }}$.

Combining equations 9-1 and 9-4, we obtain for the total drag to the order considered

$$
\begin{align*}
\text { Drag/unit length }=\left\{-\log \left(\sigma 1 \sqrt{\frac{\mu^{3}}{\rho}}\right) \frac{1}{4 \pi}+\frac{1.9}{16 \pi^{2}}\right\} \operatorname{rI}^{2} \mu^{2} U \\
\text { newtons per meter. } \tag{9-5}
\end{align*}
$$

When $\in-1$, the contributions to the dragform equation 9.1 and $9-4$ are about the ame. For $\epsilon * \frac{1}{4}$, the contribution from equation 9.1 is about 10 times the contribution fromequation 9-4. Thus firat order effect can be expected to dorainate when $\in \frac{1}{4}$ or less.

X. SUMMARY AND CONCLUSIONS

We can conveniently summarize the results by statitg the outer asymptotic developments. The non-dimensional velocity is

$$
\begin{equation*}
q^{*}\left(x^{*}\right)-x^{*}+e^{2} \log \in a^{*(1 a)}\left(x^{*}\right)+e^{2} q^{(1)}\left(x^{*}\right)+\ldots \tag{10+1}
\end{equation*}
$$

where $\vec{q}^{*(l a)}\left(\vec{r}^{*}\right)$ is given by equation $7-54, \quad u^{*(1)}(\vec{r})$ is given by equation $8-2$, and $v^{*(1)}\left(x^{*}\right)$ is given by

$$
\begin{aligned}
& v^{*(1)}\left(x^{*}\right) \\
& =\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi} \frac{1}{\rho}\left\{F\left(F^{*} * \rho^{*}, \phi\right)\left(-\frac{e^{\rho} \cos \cos ^{2} \phi \rho^{* 2}}{16 \pi^{2}} K_{1}\left(\frac{\rho}{2}\right) K_{1}\left(\frac{\rho}{2}\right)\right)\right. \\
& \left.-4 w_{v}\left(T^{*} ; 0, \phi\right)\left(-\frac{\cos ^{2} \phi}{16 \pi^{2}}\right)\right\} d \varphi d p \\
& +\frac{1}{2 \pi} \int_{1}^{\infty} \int_{0}^{2 \pi} F_{v}\left(r^{*} * \rho, \phi\left\{-\frac{e^{p} \cos \phi}{16 \pi^{2}} \cos ^{2} K_{1}\left(\frac{\rho}{2}\right) K_{1} \frac{\rho^{*}}{2}\right)\right\} \rho^{*} d \phi d p
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{e^{\rho} \cos \phi}{16 \pi^{2}} \operatorname{k}_{0}\left(\frac{p^{*}}{2}\right) K_{0}\left(\frac{\rho^{*}}{2}\right)\right\} \rho^{*} d \phi d \rho \\
& +\frac{1}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi}\left\{-\frac{1}{2 a} \Sigma_{0}\left(\frac{\left|z^{*}-\vec{p}\right|}{2 a}\right) e^{\frac{x^{*}-p \cos \phi}{20}}-\frac{x^{*}-p^{*} \cos \phi}{|\vec{*}-\vec{p}|^{2}}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& =-\frac{y^{*}-p^{*} \sin \phi}{\left|x^{*}-\vec{p}\right|^{2}}+\frac{y^{*}-p^{*} \sin \phi}{2 a\left|\vec{x}-\bar{p}^{*}\right|} \mathbb{K}_{1}\left(\frac{\left|\overrightarrow{x^{*}}-\bar{p}^{-*}\right|}{20}\right) a^{\frac{x^{*}-p^{*} \cos \phi}{20}}
\end{aligned}
$$

The rebult for the non-dimensional pressure is

$$
\begin{equation*}
p\left(x^{*}\right)-e^{2} \log \in \frac{x^{*}}{8 \pi^{2} x^{2}}+e^{2} p^{*}(1)\left(x^{*}\right)+\ldots \tag{10-4}
\end{equation*}
$$

where

$$
\begin{aligned}
& p^{(1)}\left(x^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{4 x^{*}}{x^{3 / 2}}\left(-\frac{\cos ^{2} \phi}{16 \pi^{2}}\right)\right\} d p d \psi
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi}\left\{\frac{x^{3}-p^{*} \cos \phi}{\left|-p^{2}\right|^{2}}\right\} \cdot\left\{\frac{e^{p} \cos \cos \phi}{8 \pi^{2}} \mathbb{K}_{0}\left(\frac{p}{2}\right) K_{1}\left(\frac{p^{*}}{2}\right)\right. \\
& \left.-\frac{e^{p \cos \theta}}{16 \pi^{2}} \operatorname{m}_{0}\left(\frac{p^{*}}{2}\right) K_{0}\left(\frac{p^{*}}{2}\right)\right\} \rho^{\omega} \operatorname{dpc} \rho^{m}
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{e^{\rho} \cos \phi \cos \phi \sin \phi}{16 \pi^{2}} \mathbb{R}_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right\} \rho d \phi d \rho^{*} . \tag{10-5}
\end{align*}
$$

The resuit for the non-dimensional magnetic induction field is

Finally, our expreeator for the drag is
$\frac{\text { Drag }}{\text { unit length }}-\left\{-\frac{1}{4 \pi} \log \left(\sigma I \sqrt{\frac{\mu^{3}}{\rho}}\right) \cdot \frac{1.9}{16 \pi^{2}}\right\} \sigma^{2} \mu^{2} U \frac{\text { newtons }}{\text { meter }}$.

Some of the more interesting teatures of our solution may now be discusaed. Fixat of all, we note that the futd acquiree vorticity by the action of the non-congervative electromagnetic forces. (Thit was pointed out by Ludiford end Murxay, reserence 6.) This can be most easily aeen if we take the curl of the rector equation formed from equatione 7-41 and 7-42 The result is

$$
\begin{equation*}
a \nabla^{* 2} \omega-\frac{\partial \omega^{*}(1)}{\partial x^{*}}=E\left(x^{*}, y^{*}\right) * 0 \tag{10-8}
\end{equation*}
$$

where F is macle op of terma which or lasge ${ }^{*}$ have the factor

$$
\begin{equation*}
e^{x^{*}}-p^{*} \tag{10-9}
\end{equation*}
$$

appaaring. Thus, at least fow r^{*} not too large, $\omega^{\text {(1) }}$ should have Larger values in a parabolic wake region whose shape is outlined by linea of $x^{*}-p^{*}=$ constant. This is just one half the aize of the parabolic wake possessed by the magnetic field, in which (from equation 10-6) the fector

$$
\begin{equation*}
e^{\frac{x^{2}-p}{2}} \tag{10-10}
\end{equation*}
$$

appears. Thí is similar to the result of Ludford and Muxray. (Note that the magnetic wake is independent of v_{0})

Far from the origin, however, all the perturbation terms we have computed behave like the fundamental solution of the Oseen equations. These solutions have a parabolic wake which depende only on the kinematic viscosity, and not on the electrical properites of the fluid. The can be eeen by noting that the wake is outlined by lines where

$$
\begin{equation*}
\frac{x^{*}-x^{*}}{2 a}=\text { constant, } \tag{10.11}
\end{equation*}
$$

which, when written in phybical variables, becomes

$$
\begin{equation*}
\frac{x-x}{2 v / U}=\operatorname{con} \operatorname{stan} t \tag{10-11a}
\end{equation*}
$$

This reauli le consistent with the work of l-dee Chang (ref. 4), which states that the flow far from the fiaite region where disturbances are present (in cur case, these disturbances come from electromagnetic forces which are eqsentially in a finite region) has a general characteristic behavior independent of the details of the disturbances. In particular. if the only force on the body is a drag, the now at large distances behaves like the fundameatal polution of Oseents equations when the concenErated force is in the x-direction This is obviously precisely what we have found.

The Lollowing figure (tig. 2) show the general outline of the two types of wale, and repreqentative field lines of the magnetic induction field.

$$
\text { Fig. } 2
$$

Another interesting feature of our rosult is that the drag is imdependent of viacosity, to the approximation considered. This makes it very tempting to hypothesize that the drag and the now quantities we have computed are uniformly valid in ac $a \rightarrow 0$. Note that the viscous wake would then collapse onto the s -axis.

There is another teason why our aolution might be uniformly valldin apace and in a as $a \rightarrow$ D before atudying the problem pre* ented here, the author atempted (with only limited access) to golve the ame problem with mero Linematic viscosity. The magnetic field turned out to be identical with that given by equation $10-6$, aad far from the origin, the first perturbation term of the velocity was a simple source flow with a Hine aingularity along the positive x-axig which carried an
influs of mass just equal to the outhux from the source. This velocity term was $O c^{2} \log 6$). This golution is precisely what is obtained from $\vec{q}^{-(1 a)}\left(r^{*}\right)$ in the $4 m i t$ as $v \rightarrow 0$. in particular the first term of the drag it the same in both the viscons and noz-viscous eases.

A natural astenaion of the above hypotheais to three dimensione would be the study of inviecid flow past a sphere in which is ambedded a magnetic dipole source. From the above confecture in the two-dimensional inviscid case, one could suggest that if the aphere were nufficiently mall compared with ome characteriatic sime which increaees ox decreases as the atrength of the dipole increases or decreases. the tiret approximation to the drag would be indepencent of the body size. A similar problem ts that atudied by Ludiord and Murray, reference 6 however, they consider the opposite case in which the size of the sphere is large compared to a length based on the dipole atrength. As would be expected, their drag depencs on the size of the sphere.

YI. EXPERMMENTAL POSSHBLLITES

In section VI, we preaented arguments to ampport the statement that the leading terms in the asymptotic development are given by equatione $10-1,10-4$ and 10-7. According to that discussion, the maximum size of a "core" around the origin ohould be given by equation 6-12. Thus, an emperiment dedigned to teat our theory might be aet up by studying the flow of a conducting fiuid past a current-carrying wire. In order to avoid purely viscous effects, the size of thit wire should be at least anall as the poesible core, namely

$$
\begin{equation*}
\text { wixe diameter } \rightarrow e^{-a / e^{2}} / \text { pu } U \tag{11-1}
\end{equation*}
$$

where $u=\mathrm{o}=\mathrm{I}$.
Two thids which might be considered for this experiment are a ulphuric acid and nercury. For the se fluids we have the following approximate values for e and a:

Sulphuric acid at $18^{\circ} \mathrm{C}$. $400 \mathrm{gms} / \mathrm{Liter}$ of solution:

$$
\begin{align*}
& \epsilon=\left(3 \times 10^{-9}\right) \times(\text { number af amperes }) \tag{11-2a}\\
& a=1.7 \times 10^{-10} \tag{11-2b}
\end{align*}
$$

Mercury at $20^{\circ} \mathrm{C}$:

$$
\begin{align*}
& \epsilon=\left(1.3 \times 10^{-5}\right) \times(\text { number of amperea }) \tag{11-3a}\\
& a=1.5 \times 10^{-7}
\end{align*}
$$

These numbera are extremely small, and while can be made gmaller by choosing gmall current, from the standpoint of measuremente it would be more desirable if ϵ were not so small. For example,
for mercuxy, if I = 100 amperes, the megnetohydrodynamic duag, Drag ${ }_{m}$ in only

$$
\begin{equation*}
\text { Drag } \mathrm{m}_{\mathrm{m}} \sim 10^{-3} \text { newtone/meter } \tag{11-4}
\end{equation*}
$$

(Note that alnce a is only 1.5×10^{-7}, equation $11-4$ would have to be baeed on the assumption that cur olution is uniformiy valld as $\rightarrow 0$.) Even if the wire carrying the current were as large as $\in / 0 \mu \mathrm{~V}$, this would atil be 10^{-5} meters diameter, hardy a reasonable size for carrying 100 amperes.

A possible alternative is to use a wre large enough to carry a very high current. If we use mexcury, take the wire to be 0.01 meter Sn dameter, and $0=0.1$ meter/sec, then since the fuid dyamic drag coefficient is in thi case of the order unity, the Iuid dynamic dyag. Drase. d. is

$$
\begin{equation*}
\text { Dreg if. d. } 1 \text { newton/meter } \tag{11-5}
\end{equation*}
$$

The magnetohydrodynamic drag when the current is 100 amperes id given by equation li-4. The ratio Drag : Drag $_{\text {. }}$ d. is

$$
\begin{equation*}
\frac{\operatorname{Drag}_{\mathrm{ma}}}{\text { Drag }_{\mathrm{f} \cdot \mathrm{~d}}} \sim 10^{-3} \tag{11-6}
\end{equation*}
$$

Thue the main force to the oxdinary nuid dyamic drag. It might be pogatble to look for the gmaller contribution from magnetohytrodymamic effects by measuring the drag on the wire with and without the current nlowing.

The above discussion suggest that we conaider the posebilities
of a plamaa. Let ue assume we use Awgon at $10,000^{\circ}$ Kelving U ~ 100 metera/second, wire diameter -10^{-2} meters, and current in the wire * 100 amperes. We must of course malte certain that the gas behave Like a continuum, if the theory is to apply. We shall assume we do have continuum behavior if the current length, L_{1}, is larger than the mean iree path between electron-neutral molecule colliaions. Using -10^{-20} meter ${ }^{2}$ an the cross section for this type of collision, and asauming the neutral gas particles obey the perfect gas law, $p=N_{n} k T$, we find that the density N_{n} of neutral particles must satiefy

$$
\begin{equation*}
N_{n} \gg 6 \times 10^{20} \text { particles/meter }{ }^{3} \tag{11-7}
\end{equation*}
$$

To obtain estimates, let us assume

$$
\begin{equation*}
\mathrm{N}_{\mathrm{n}}-6 \times 10^{20} \text { particles/meter }{ }^{3} \tag{11-8}
\end{equation*}
$$

Since at 10000° Kelvin the degree of ionization is of the order 10^{-3}. the electron density, N_{e} is

$$
\begin{equation*}
N_{e}-6 \times 10^{17} \text { electrons/meter }{ }^{3} \tag{11-9}
\end{equation*}
$$

Using the theory of Spitzer. (7), Chapter 5, we obtain for the conductivity

$$
\begin{equation*}
\sigma * 2 \times 10^{3} \text { mhos/meter } \tag{11-10}
\end{equation*}
$$

For a current of 100 amperes.

$$
\begin{equation*}
\epsilon-6 \times 10^{-2} \tag{11-11}
\end{equation*}
$$

and the magnetonydrodynamic drag, Drag m_{m} is

$$
\begin{equation*}
\operatorname{Drag}_{\mathrm{m}}-10^{-3} \text { newtons/meter } \tag{11-12}
\end{equation*}
$$

For these flow conditions, the ordinary fluid dynamic drag coefficient is again approximately unity, so that the fluid dynamic drag, Drage. ${ }_{\text {f. }}$. is

$$
\begin{equation*}
\operatorname{Drag}_{\mathrm{f} . \mathrm{d}} \sim L_{\rho} U^{2} \sim 10^{-3} \text { newtons/meter } \tag{11-13}
\end{equation*}
$$

Comparison of equations $11-12$ and $11-13$ shows that the magnetohydrodynamic drag is comparable to the Nuid dynamic drag, so there is a possibility of finding the magnetohydrodynamic drag by meaburing the force on the wire with and without the current flowing.

REPERENCES

1. Saul Kaplun and P. A. Lagerstrom, "Asymptotic Expansions of Naviez-Stokes Solutiong Lor Small Reynolds Numbers, Journal of Mathematies and Mechanics, Vol. 6, No. 5, Sept. 1957. pp. 585-593.
2. Sal Kaplun, "Low Reynolda Number Flow Past a Circular Cylinder," Journal of Mathematice and Mechanics, Vol. 6. No. 5, Sept. 1957. pp. 595-603.
3. L. Schwartz, Theorie des Distributions, Tome 1," Actualité Scientifiques ef Industrielles 1245, Hermann, Paxis, 1957.
4. I-dee Chang, Ph. D. Thesis, 1959, California Institute of Technology.
5. C. W. Oseen, "Hydrodynamil, " Akademische Verlagageaellschatt, Letpaig, 1927.
6. G. S. S. Ludford, J. D. Murray, On the Flow of a Conducting Eluid Pate a Magnetized Sphere," Technical Note BN-169, AF OSR TN 59-424 AD 214-774, Apri1, 1959, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.
7. L. Sptizer, 3 . . Whyrics of Eully Lonized Gases, " Interscience, 1956.
8. Erclelyi, Magnus, Oberhettinger, Tricomi, Higher Transcendental Functione," Vol. 2, McGraw-Hill, 1953.
9. Exdelyi, Magnus, Oberhettinger, Tricomi. "Tables of Integral Transforms, "Vol. 1, MeGraw-Hill, 1954.

APPENDIX

In the text, it was stated that far away from the origin, the velocity and pressure field behaved like the fundamental solution of the Oseen equations, with a nagnitude proportional to the integral of the forcing terms. The author has been anable to prove this statement. However, the following weaker otatement can be proved: one can find an R such that the drag is determined to any accuracy by considering the integral of the forcing terme to radius R. Furthermore, the contribution from this part of the integral givee a velocity and presgure field at infinity which does behave like the fundamental oolution. The proof it as follows:

We consider the volume bounded by a small circle at the origin and a circle of radius unity. The integral form of the momentum equation
 surface integrals and volume integrals is zero, and the drag will be found by considering the flux of momentum on the mall circle at the origin taken as its radius tends to zero. (Since we allow no sources, this momentum input will be in the form of viscous, preasure, and Maxwell atresses.) At the purface on the circle of unit radius the influx of momentum is due to viscoue otresses, pressure, Maxwell stresses, and in addition transported momentum. Now the pressure, velocities and derivatives of the velocities evaluated on the unit circle are given in terme of integrals. We can choose an R_{1} auch that the contribution to these quantities (and hence to monentum flum across the unit circle) from the forcing terms outside R_{1} is as small as we please. As for the

Maxvell atresses, we know that they are expreasible in termo of the $\mathrm{j} \times \overrightarrow{\mathrm{B}}$ volume forces outgide the unit circle and the Maswell atreeses at infinity. At infinity, the Maxwell atressea consigt of terms like

$$
e^{x_{K_{i}}\left(\frac{r}{2}\right) K_{f}\left(\frac{r}{2}\right) \sim \frac{e^{x-r}}{r}, i, j=0,1 . . .1 .}
$$

which is eagaly shown to give a aero contribution to the nurface integral af infinity. Thus the Maxwell stresees on the unit circle are given by the volume integral of the $\vec{j} \times \vec{B}$ terms (which are the forcing terms in our equations) from one to infinity. But by choosing an R_{2} large enough, we can make their contribution to the Maxwell stressee from the termo outside R_{2} as mmall as wease. Hence we may choose $R=\max \left(R_{1}, R_{2}\right)$ and make the total influs of momentum at the unit circle arising from forcing terma outside R as small a we please, ox, equivalently, we can find the forces on the small circle at the oxtgin as accurately as we plane by restricting ourselves to the forcing terms up to nome large but finte radius R.

We shall next show that the forcing terms inside the radius R give velocity and pressure flelds which behave like the fundamental solution to the Oseen equations, using the expressions for $u^{*(1)}$ as an example; the computations for $p^{*(1)}$ and $v^{*(1)}$ are exactly aimilar.

The contribution (call it $\left.u^{*}(1)\left(x^{*}\right)\right)$ to the $u^{*(1)}$ due to forcing terme inaide R is given by

$$
\begin{aligned}
& U_{R}^{*(1)}\left(\vec{r}^{*}\right)= \\
& \frac{1}{2 \pi} \int_{0}^{R} \int_{0}^{2 \pi}\left\{\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}-p^{*} \cos \phi}{2 \alpha}-\frac{x^{*}-p^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{p}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}-\vec{p}^{*}\right|}{2 \alpha}\right) \frac{x^{*}-p^{*} \cos \phi}{\left|\vec{r}-\vec{p}^{*}\right|} e^{\frac{x^{*} p^{*} \cos \phi}{2 \alpha}}}\right\} . \\
& \cdot\left\{\frac{e^{\rho^{*} \cos \phi} \cos \phi}{8 \pi^{2}} K_{0}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)-\frac{e^{\rho^{*} \cos \phi}}{16 \pi^{2}} K_{0}\left(\frac{\rho^{*}}{2}\right) K_{0}\left(\frac{\rho^{*}}{2}\right)\right\} \rho^{*} d \phi d \rho^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left\{-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi}{16 \pi^{2}} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right\} \rho^{*} d \phi d \rho^{*}
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left\{-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi \rho^{*}}{16 \pi^{2}} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right\} \\
& -\left\{\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}-\frac{x^{*}}{\left|\vec{r}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right\} . \\
& \left.\cdot\left\{-\frac{4 \cos ^{2} \phi}{16 \pi^{2} \rho^{*}}\right\}\right] d \rho^{*} d \phi . \tag{A-1}
\end{align*}
$$

The proof that the firet two integraln behave like the fundamental solum tion with coefficient given by the integral of the forcing terme ia quite easy, but the last integral may offer some difficulty: To avoid being pedantic we shall conaider only thia last integral. The technique for treating the first two will then be obvious. Thus we are aaying that the difference

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi}\left[\left\{\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}-\frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{p}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) \frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|} e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}\right.\right. \\
& \left.-\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}+\frac{x^{*}}{\left|\vec{r}^{*}\right|^{2}}-\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right\} \cdot \\
& \cdot\left\{-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi \rho^{*}}{16 \pi^{2}} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho}{2}^{*}\right)\right\} \\
& \begin{array}{l}
-\left\{\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}-\frac{x^{*}}{\left|\vec{r}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}} .\right. \\
\left.-\frac{1}{2 \alpha} K_{0}\left(\frac{\mid \vec{r} *}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}+\frac{x^{*}}{\left|\vec{r}^{*}\right|^{2}}-\frac{1}{2 \alpha} K_{1}\left(\frac{|\vec{r}+|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right\} .
\end{array} \\
& \left.\cdot\left\{-\frac{4 \cos ^{2} \phi}{16 \pi^{2} \rho^{*}}\right\}\right] d \phi d \rho^{*} \mid \\
& =0\left\{\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}-\frac{x^{*}}{\left|\vec{r}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right\} \cdot
\end{aligned}
$$

The left-hand aide can be written as

$$
\begin{aligned}
& \left.-\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}+\frac{x^{*}}{\left|\vec{r} \vec{r}^{*}\right|^{2}}-\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r} \vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right\} . \\
& \left.\cdot\left\{-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi}{16 \pi^{2}} \rho^{*} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{f^{*}}{2}\right)\right\} d \phi d \rho^{*} \right\rvert\, \\
& =\left\lvert\, \frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{2 \pi}\left[\frac{1}{2 \alpha} K_{0}\left(\frac{\mid \vec{r} *}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}-\frac{x^{*}}{\left|\vec{r}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right.\right. \\
& +\left(-\rho^{*} \cos \phi\right)\left\{\frac { \partial } { \partial (\rho ^ { * } \operatorname { c o s } \phi) } \left(\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}-\frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|^{2}}\right.\right. \\
& \left.\left.+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}-\vec{p}^{*}\right|}{2 \alpha}\right) \frac{x^{*}-p^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|} e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}\right)\right\} \begin{array}{c}
\text { evaluated at } \\
\text { some } \vec{\rho}_{1}^{*} .
\end{array} \\
& +\left(-\rho^{*} \sin \phi\right)\left\{\frac { \partial } { \partial (\rho ^ { * } \operatorname { s i n } \phi) } \left(\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*} \cdot \vec{\rho}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}-\frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r} \vec{r}^{*}-\vec{\rho}\right|^{2}}\right.\right. \\
& \left.\left.+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) \frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|} e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}\right)\right\} \begin{array}{c}
\text { evaluated. at } \\
\text { some } \rho_{1} \text {. }
\end{array} \\
& \left.-\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}}{2 \alpha}}+\frac{x^{*}}{\left|\overrightarrow{r^{*}}\right|^{2}}-\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}\right|}{2 \alpha}\right) \frac{x^{*}}{\left|\vec{r}^{*}\right|} e^{\frac{x^{*}}{2 \alpha}}\right] \cdot \\
& \cdot\left[-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi}{16 \pi^{2}} \rho^{*} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right] d \phi d \rho^{*} 1
\end{aligned}
$$

where, accordiag to the mean value theorem, $\left|\vec{P}_{1}\right|<1$. Now the last exprestion satissies

$$
\begin{aligned}
& {[\text { Equation } A-3] \leqslant \frac{1}{2 \pi} \max _{\left|\vec{\rho}^{*}\right| \leq 1} \left\lvert\, \frac{\partial}{\partial\left(\rho^{*} \cos \phi\right)}\left(\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}\right.\right.} \\
& \left.-\frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|^{2}}+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) \frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|} e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}\right) \mid \cdot \\
& \cdot\left(\int_{0}^{1} \int_{0}^{2 \pi}\left|-\rho^{*} \cos \phi\left(-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi}{16 \pi^{2}} \rho^{*} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right)\right| d \phi d \rho^{*}\right. \\
& +\frac{1}{2 \pi} \max _{\left|\vec{\rho}^{*}\right| \leq 1} \left\lvert\, \frac{\partial}{\partial\left(\rho^{*} \sin \phi\right)}\left(\frac{1}{2 \alpha} K_{0}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}-\frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|^{2}}\right.\right. \\
& \left.+\frac{1}{2 \alpha} K_{1}\left(\frac{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|}{2 \alpha}\right) \frac{x^{*}-\rho^{*} \cos \phi}{\left|\vec{r}^{*}-\vec{\rho}^{*}\right|} e^{\frac{x^{*}-\rho^{*} \cos \phi}{2 \alpha}}\right) \mid
\end{aligned}
$$

$$
\begin{equation*}
\cdot \int_{0}^{1} \int_{0}^{2 \pi}\left|-\rho^{*} \sin \phi\left(-\frac{e^{\rho^{*} \cos \phi} \cos ^{2} \phi}{16 \pi^{2}} \rho^{*} K_{1}\left(\frac{\rho^{*}}{2}\right) K_{1}\left(\frac{\rho^{*}}{2}\right)\right)\right| d \phi d \rho^{*} \tag{A-4}
\end{equation*}
$$

The integrals exiat and are independent of $\vec{r} *$. The derivativea go to zerc, as \vec{x} approaches infinity, at least as fat as $\vec{r}-3 / 2$, which is a faster decay than the decay of the fundamental solution. This completes the proof of equation A-2. As atated above, the first two integrals of oquation A-1 can be chown to have aimilar asymptotic behavior.

Now that we know the behavior at infinity of u_{R}, v_{R}, P_{R}, it is a simple matter to compute their contribution to the drag. But we showed above that the resulting drag can be made as close to the real drag as we please by choosing R large enough. This proves that the method uned in section IX is correct.

