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ABSTRACT

Two-dirmnensional flow of an incompressible, viscous, electri-
cally conducting {luid past a current element is studied. A solution
in the form of an asymptotic development is obtained, valid as a ¢certain
dimensionless parameter {essentially the product of the electrical con-
ductivity and the current) tends to zero. An expression for the dray
on the current clement is computed, and is found to be independent of

viscosity.



LIST OF PRINCIPAL SYMBOLS

1. Dimensional Variables and Parameters

% viéyn Cartesian space coordinates, meters
r,8;0, ¢ Polar space coordinates

i?'; '5' ' Space vectors '

i f;. T Cartesian unit vectors

q =Tu+ i;v Flow velocity vector, meters/second

P Pressure, newtons/meterz

B = 1;3 < T;Ey Magnetic induction vector, webers/ meter?
w= 2. %‘3 Vorticity

Uf; Velocity at infinity

Peo Pressure at infinity

P Densgity {constant)

v Kinematic viscosity {constant)

P  Magnetic permeability {constant)

Current in currém’. element (constant)

‘ke' : Electrical conductivity (constant), mhos/meter
ywsist See equation -1

F surt See equation 6-2

2. Dimensgionless Variables

a. Outer variables
® % & - # ¥
x =xpl, vy =ypl, § =Ll «n =nml,
P o= rop U, p* = pop U,
i —tn oo e

r =repl, p =popl;

il e ® u , > v
q af;u %iyv ﬂ{;v +iy’5’
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b. Innerx vari#bieﬁ
Faxfe, yaye, gtagtf, ofen'fe,
Harfe, ote o e,

THaTe, THeFT/e

pteep’

?’f* meﬁ*

3. Dimensionless Parameters

o= eV

R@v , ﬁﬁ;jneiﬁs number {see éguation 6-7)
Re Reynolds number a

8 Sv. - "{’:wea" for inviscid and v*isccmé fluids
8y 8y ﬂh_a,»raéteriatic size ai c‘araa

Yo U Vaiﬁcity ingide core
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I. INTRODUCTION

In all but a few problems of magnetohydreciyﬁamica, it has been
found necessary to introduce various simplifications in order to facili-
tate a solution. Part of the difficulty is undoubtedly due to the large
number of variables and differential equations involved, but a somewhat
more basic difficulty lies in the inherent non-linear character of the
equations. Many investigators have circumvented this difficulty by
éhoo&ing problems for which the non-linearity could be relaxed or even
neglected. This thesis investigates a problem in which these non-linear
offects are not neglected. |

The problem which we shall consider turns out to have two
charactefistic parameters; an € which depends linearly on both the
electrical conductivity and a certain current, and an a which depends
linearly on the viscosity of the fluid and on the electrical conductivity.
Since the solution @ve ‘shall obtain is valid for € small and u' fixed,
two distinct situations present theméelve’s:

(i) we can make € small by keeping the electrical conductivity
fixed and letting the current be small, in which case o is
constant if the viscds‘ity is kept fixed;

(ii) we can make € small by keeping the current constant and
letting the electrical conductivity be small, in which case a
is constant only if the viscosity tends to infinity like the re-
ciprocal of electrical conductivity.

Thus, in order to consider fluids of low electrical conductivity, it seems

that the fluid must possess very large viscosity. This would not be
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necessary, however, if our solution were uniformly valid in a; in
particular, if o is very small. Two reasons which indicate the sclu-
tions might indeed be uniformly valid as o — 0 are presented in
Section X.

The approach to the problem is based largely on the researches

of 5. Kaplun and P. A. Lagerstrom on low Reynolds number flow. (1)
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JI. STATEMENT OF THE PROBLEM

Ve consider the two-dimensiocnal steady flow of an éncomgafes-
sible fluid possessing kinematic viscosity v and elecirical conductivity
. At the origin of cuordinates (see {ig. 1), there ig a current element
carrying 1 amperes in a direction normal to the flow (toward the
viewer in fig. 1). The flow velocity ¢ and the fluid dynamic pressure

p are constant at infinity.

& I | .,
o= i_yy i x4 isﬁ. the

s

-l
v =@

s —gr s e
i

Ve denote the position vector by

magnetic induction vector by P = E;Eix 4 ?;B . the velocity vector by

P g : - o = T O = @

q = ixu 4 iyv. the gradient c;peraﬁoa by V¥ = ix =t iy v the

Laplacian operator ‘272 by ____28 + ------z3 and the constant magnetic per-
&x &y '

meability by p.

Pigure 1
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The flow is assumed to be described by the following differential

equations and boundary conditions (the rationalized MK3Q system is

used throughout)

Veq=0 (2-1)
e — 1 1 = x B 2— .
(Q'V)q%—;‘?gm-@(vx@) + vWoq (2-2)
V‘z@’%m"‘?x(g xB)=0 {2-3)
V-E =0 | - (2-4)
o) =p ., o) =T U, Blew)=0 (2-5)
lim gp B dr =pl , {2-6)
==

Before proceeding to non~dimensionalize the above equations,
we shall discuss the cha:racterisfic lengths and parameters of the probe
lem.

There are ’thme basic characteristic lengthe appearing, namely

{1} a length based on the current, Li = -% r&‘ $
{ii) a magnetic diffusion length, L, = 1/opU
(iii) a length based on viscous diffusion, Ly = v/U.

Intuitively, one would expect that close to the origin, ’where the
current is situated, the length over which significant changes take place
would be L,. At greater distances from the érigin both L, and 1,
would be expected to be important, since the vorticity and ma.gnetié

field tend to diffuse away from the streamlines.

#
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From the three characteristic lengthe we can obtain the two
characteristic dimensionless parameters of the problem, € and a.
Thus, the ratio LI:LZ gives

3
Lyl = Io -%. =€

and the ratio Lgily, gives

Thus € small means that the curvent length {(which canina
vague sense be considered a body length) is small compared with the
magnetic e:’tifiuaidn length, while ¢ constant means we are keeping the
ratio of the two diffusion ‘lengths constant. It will turn out that these
two diffusion lengths characterize two different types of wake far down~
stream. Firstly, there is a magnetic wake whose width depends only
on the magnetic diffusion length, L and secondly, a viscous wake
whose width depends only on the viscous diffusion length, L.

Let us now proceed to write the equations in dimensionless form,

Non-dimensional guantities are introduced as follows:

outer variables:;

L - - pm .
p = ""““‘2“"@@ 8
?’k = .ﬁ.’. . E: = Bx . E$ = .—1-3-}-’—2. H
o™ eIl Vet ”
s



inner variables:

""'i&‘r , *%w_x y'%‘& z—__
I I L
Uy T\e Ty

{(The motivation for the terminoclogy *inner® and "outer® will become
apparent later, and the method of non-dimensionalizing the dependent
variables is discussed In Section IV.)

Written iri outer coordinates, with V* = '3; -§-—* + 1 E—«* '

ox ¥ 8y
equations 2-1 to 2-6 become

VAR ‘;;* =0 (2-7)
(3F . I T = AT T x?%"* v a7 T (2-8)
v@:z.ﬁ,* . W$K (_%.* < g*’ = 0 (2-9)
vF.EB% =0 (2-10)
Tl = T plw) =0, Tw)=0 (2-11)
”gf:g § ¥, a7¥ =1 (2-12)

where e = vop and ¢ = ol

~F.
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Written in inner coordinates, with V+ = 1 -4&;-« + 1 L s
: x gt Y Bsﬁ
equations 2~1 to 2«6 become
gt. 5t = 0 (2-13)

(at vHT e Ut s U kBN B 4+ o0 Tt (2-19)

VB s eyt k(T x BN =0 (2-15)
vt Bt =0 (2-16)
THw) = T,, ple) =0, Elw)=0 (2-17)
iim' § BY. a7t =1 : | (2-18)

r*—-»O
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L. ASYMPTOTIC DEVELOPMENTS

{In the following sections, it is assumed that the reader is familiar
with reference L)

From the non-dimensional form of the equations, we chserve
that two dimensionless parameters are present, namely ¢ and a.
Under the assuraption that cur problem has a xmigueywlutim we ate
tempt to find an approxirmate solution valid for € sufficiently small,
with o held fized. OSuch an appréximate ‘salution roight be checked
by an experiment in which a given fluid flows past a thin curvent-
carrying wire -~ just how thin is discussed in section X. The value of
¢ is made small by decreasing the current in the wire. Siance o de-
pends only on the properties of the {luid, it remains fixed.

Cur approximate solution will be in the form of an asymptotic
development. As mentioned in the introduction, the gensral approach
is based on the v?ark of Keplun and Lagerstrom; however, their methods
are aimed at finding a "composite"” development uniformly valid in the
entire regim of space in which the problem is defined. For example,
in reference 1 a solution for the region of flow exterior to the sphere is
famd. There, one has an outer (Useen) limit, valid near infinity, and
an inner {Stokes) limit, valid near the baé’ay. which can be obtained by
physical reasoning. Then one finds a solution to some approximate
differential equations which in a sense completes the determination
of the solution to be perturbed by describing what is happening
between the vicinity of the body and the vicinity of infinity. In other

words, a great deal ig known about the golution to be perturbed, based
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largely on physical reasoning.

In the problem of the present study, however, the author finds
himself unable to state with confidence what the limiting solution is in
a region verv cloge to the origin; consequently, the solution found can
claim validitv only in a region away from the origin. This region will
be precisely defined in Section IV; for the present, we shall refer to it
as the "exterior region. " Moreover, simply knowing what solution in
the exterior region to perturb will not guarantee that the terms ohtained
by the perturbation scheme include all the terms that should be present.
In fact, since the mapnetic field becomes infinite near the origin, it is
conceivable that a disturbance originating very near the origin could
vield the largest term in the “exterior® region. However, certain
plausability arguments will be given later which provide us with enough
information about the flow very near the origin to assure us that terms
arising from such disturbances near the origin are small compared
with the first and second perturbation terras found by a straightforward
perturbation scheme applied to the "exterior" region. Thus, considerable
inforraation {including first and second approximations to the drag!) can
be derived, even though finding a uniformly valid composite development
appears hopelessly complicated. Furthermore, our "exterior® region
actually covers much of the flow region, ain:ee it includes everything
outside a radius of the order -%3 f% . Marcﬁr?. for example, using
U= m’l meter/second, and current of one ampere, pives -é-/g -~ w"é’
meters.

The terms cf the asymptotic development valid in the "exteriur"

region will be derived from two "principal® developments; an “inner®
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@
development valid in a region of order ?"’ E‘- meters {rom the origin,

and an "outer® development, valid at iminit‘y'. These "inner® and "outer™ -
developments will in turn be constructed from the differential eguations.

The relationship of these asymptotic developments to the exact solu-
tion is based on the assumption that asymptotic developments (relative
to a2 suitable sequence) of the exact solution can be constructed by certain
lmit prac‘asées. We shall presently define an “irmer" limit process
and an "outer" limit process, and the developments whichk in principle
could be obtained from the exact solution by means of these two limit
processes arve then identified with the inner and ocuter developments found
from the differential equations.

in general, neither the inner nor the outer development can by
itself be expected to be uniformly valid in the exterior region. Neverthe-
less they must be related, since they are assumed to be asympiotic de-
} vel;»pfmants of the same fanction. This relatianship is of fundamental
importance when discussing so-called ”matcbing conditions. ¥ These
matching conditions arisa as follows: when we come to construct the
developments from the differential equations, the inner solution, which
is valid near the origin, will not satisf{y the boundary condition at infinity.
Similarly, the outer development, which does satisfy the boundary condi«
tion at infinity, will not in general satisfy the inner boundary coaﬂiiidns.
if such conditions exist. The role of the matching condition is to replace
the boundary condition at infinity for the inner sclution and the boundary
condition at the origin for the outer solution. The method of matching

adopted in the present problem is based on the methods of reference L
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Having made a few commente on our proposed asyraptotic develop-

ments, we proceed now to a somewhat more detailed description.
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IV. LIMIT PROCESSES, INNER AND QUTER LIMITS,
INNER AND OUTER VARIABLES

¥e now define in precise terms the limit processes mentioned
in the last section. First (for ﬂw sake of easy comparison with refer-
ence 1), we non-dimensionalize ¥ with a magnetic'viscous"length
1/opU, sothat T = ?$/a§a U. Recall the characteristic parameter

3 .
€ =¢l [En (4~1)

¢

-
We then define the limit “1im£" of a function fu{r ;¢) as

lm, {fn(F €)= lim (T s ) | (4-2)
' €40
keeping r (€ . 'ﬂiﬁ constant.

Given a seguence of functions {e‘.’-‘.jﬁe‘; }} for which

€. qi¢)
Hm ‘ =0 {4-3)
€40 §
~we use the above limit process to construct an asymptotic development
S
s 8 - - haad P

PETe) ) e deolm ey ¢ e te)) (4-4)

k=0

of a flow guantity 3&”‘@?’? i€ ), as follows:

OolF i) = U F(F 56 ) | (4-5)
B
yia - ) : —{f) .
e €)- /; ck(# )g:sk&r () i€)
k=0

0 potlT i) = tim, (4-6)

¢ nt I.{éT
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Now the inner and outer independent variables are simply two
different forms of ?(ﬁ, and the inner {outer} developments are obtained
by performing the above limit process keéping the inner {outer) indepen-
dent variables fixed. To find the two forms of f{€) defining the inner
and outer variables, we proceed as foll@ws: the differential equations

to be used in the perturbation scheme are found by writing equations

2-1to 2-4 using ¥ 8 ag independent variable, and
s . 3/u | (¢-7)
Fl - 2 ge) (4-5)
ellp
and ,
£) . PPy
p( ) o ..;52" £e) (4-9)

as dependent variables.

We non-dimensionalize g according to equation 4-7 becawse
(as will be discussed in section V1), in this form the leading velocity
term is Ofl), in the set ord€¢ € ord f{€) € ord 1. The choice of the
3‘3’({) is derived from the fact that the first term in the magnetic induc«
tion development will be obtained from the induction equation, and the
cholice of i’;(ﬂ in equation 4.8 leads to a development with a leading
term UAl). "3."%&@ choice of equation 4-9 for the pressure p‘ﬂ comes
irom the fact that unless the pressure term appears in the approximate
momenturn ejuation, the system of approximate equations will be over

determined. This is easily seen as follows: the approximate momentum

equation can he writien
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2
ﬂvifﬁg{f)_ fle Wﬁf)p* e - S qoifly i)y, ) (4-10)
)
& p.pw
where p = —, and the right side of equation 4~10 is ofl) for
plU

ordée < fle) < ordl. ﬁperating on equatimn 4-10 with the divergence

operator, and noting that V(ﬁ ??(ﬂ 70 . 0, we obtain

2 v ; , |
e yt92% o ?é(ﬂ ggf’v‘ma‘;) + Eg’v‘mﬁg’) (4-11)

Thus, unless we keep the pressure term as an unknown, we shall have
a contradiction if the right side of equation 4-11 is not zero at eaéh stage
of the development. It will turn out that the right side is not identically
zero at each stage, so we are forced to non~dimensionalize the pressure
in such a way that it does not drop out of the approximate differential
equation. This is accomplished by the choice given by equation 4-9.
Using the above ?({). ?f(f). %?{ﬁ. ‘and p(ﬂ in the differential

equations, and sefting €= 0, we obtain for the case ¢ < ord fl¢)<ordl

td), g(f) =0 (4-12)

W{f)zgif), V(f)pﬁf) = 0 (4-13)

AfzeAd) g {4-14)

ot =0 . g , (4-15)
where

\?w

&
3. . &

and



«15-

2 2
{0z _ 8 . 8"
v = *m-z F m >
ox 8y

The asymptotic davelapmentarésuiting from these equations
are not valid at infinity. (This will be seen explicitly when we compute

the ioner develgpmﬁt. ) However, if ‘_we put
ord f{¢) = ord 1 ‘ {4-16)

than‘the differential equations to be used in the perturbation scheme are
found by writing equations 2-1 to 2-4 in ‘;‘(fa) independent variables
and dependent variables given by aquaﬁana 4-7, 4-8, 4-9 in which

i(e) =1 {the resulting variables are the same asg those defined after
equation 3;6). and letting ¢ = 0. The resulting equations are easily

seen to be equations 2.7, 2-10,

pors . &

It VU = ey g (4-17)
and '

TR T x@G 2T =0 {4-18)

Using these equations, we can obtain an asymptotic development satig-

fying the boundary conditions at infinity. Thus we use

% ;’*
r = T (4-1?}

as our outer variables, and the outer development will be obtained by
pe?turbing equations 2-7, 2-10, 2-17 and 2-18.

The choice of f{€¢) to be used for the inner variaﬁi&s isina
sense more flexible, since the lower limit of the order classes is zero.

{This should be compared with the low Reynolds number flow around a
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sphere, reference 1, in which the lower limnit is ord Re.) Furthermore,
as we found above, equations 4-12 to 4-15 result for ord 0 < ord £{¢)<
ord 1. Actually our choice is based on c;ﬂr information concerning the
solution to be perturbed. The choice f{¢) =€ gives us a set of equations
#ali& in a region where the author has considerable confidence in his |
"guess” of the solution to be perturbed. Thus our cholce for inner

independent variables is

—t | ~
= %— {4-20)

o 3

The resulting d@penéam variables ave identical with the "inner® vari-
ables defined after eguation 2-6.
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V. REGIONS OF VALIDITY, MATCHING CONDITIONS
) .

We continue the discussion by stating the following definition
o
from reference 1: 2«:‘*‘1( r ;€) constitutes a uniform approximation of

T(F ;€) to order € 5 in a convex set S of equivalence classas if

Fap : ' ‘
1 %
lim - = 0 uniformly for f(€)<yr < f,{€) {5-1)
€40 ejlej | 1 2

whenever the equivalence classes f(€) and £,(€) are in the set S.
Now from the "extension principle” of reference 1, we know that

the inner limit is uniformly valid in the seét

ord € < £{€) < ord ny(€) (5-2)
for some order class v;l(e) satisfying

rgl{ﬁ) > ord € ‘ {5=3)
Similarly, the outer limit is uniformly valid in the set |

7;2(6) g fle) < ord 1 ) (5-4)
for some order §1asa nz(ei satisfying

nz{e) <ordl {5«5)
If it turns out that ny(€) < x,(€), then there is a limit process using

&

by

T = ey ny(€) < n(€) < m,(€) (5-6)
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which, when applied to either the inné‘zj?br‘ the outer Iiréxit gives the

_same result. {1£ g < Tias then it is sématimes possible to construct an
"intermediate develapmn&“ which is gafé&in a more general mtching
procedure. This is éiﬁcussaﬁ in reia:gﬁca L) |

For the problem considered in %hila thesis, it turns out that ﬁzf{ef)

can be ord €, so that w(€) can be simply ord €, That is, the innexr |
Yimit process applied to the outer devaléﬁmem yields the inner develop-
ment. Thus, in order téz determine whether the outer development
matches with the inner éavelapm@nt. *&e write the outer expression in
inner independent variables, i.e. e variables. and let €$0. The

. result ahculé be the inner development.

The very simple matching condition described above implies that

the outer solution will be uniformly valid in the set
ord € € ord f{€) < ord1l » {5+7)

80 that once we have the cuter development computed {with the help of the
inner development when necessary) we can dispense with the inner develop-

ment.
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V1. DISCUSSION OF THE ZEROTH ORDER SOLUTION

As mentioned in Section II, we construct the inner and outer
asymptotic devslopm@m:a by using the irmar and outer differential acgua’éims
in a perturbation scheme, with the meult being subject to the matching
principle stated above. Before proceeding to aohm theaa equations, we‘ ;
must first discover as muc:h as pmsibl@ about the zeroth order solution.
That is, the limit of the exact solution as €¥0. The arguments to be
presented are not rigoroue, but rather heuristic and intuitive. However,
the author feels that intuition must be founded (perhaps unknowingly) on
experimental fact, and since (at least to the author's knowledge) an
experiment describing our problem has not been performed, the in!:uitive
arguments are open to criticiam. For this reason, an experiment designed
to test the theory of this paper would be most welcome. Let us now proe«
ceed with our discussion. k‘ |

Our main éoucerix will be to acquire Aammua assurance that the flow
in the ragion closer to the origin than the region of validity of cur inner

a@valapmant does not giw rise to terms in the “exterlor® region {i.e.

the region of validity of the inner and outer developments) larger than

the terms we will find by considering only the inner and outer develop-
mente.  (If such terms do exist, they will be solutions to the homogeneous
‘equations 4-7 to 4«10, and equations 2-7, 2-10, 4-17 and 4-18.) A
rather pessimistic attitude is taken in cur arguments, 80 that the actual .
situation might be better than deseribed.

First, let us determine the outer and inner limite of the velocity
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field for both a non-viscous and a viscous fluid. The outer limit is found
by keeping F* fixed and letting €40. W e cé.n fix ideas by keeping tr
constant {(hence ¥ = ?*/a‘pﬁ remains constant) and letting ¢ ge'to‘.éf-é'ro
by letting the current gé to zero. It seems obvious that for both the vié‘c.ous
and non-viscous casea,'?the result is siimply the free stream value.

The inner limit is taken by holding T fixed and letting €40. For

the ixwiscid case, we can fix ideas by kaeping the current constant (hence

| —n

T =T -ﬁr remains fixed) and letting € go to zero by letting the elec-
trical conductivity go to zero. In this limit, there is no interactxon between
the magnatic induction field and the flow, 80 we again have the free stream
value. |

The inner limit for the viscous case is not so simple, because
gince a is fixed, and we let €{0 by letting o{0, we must make v = -ig‘-&
tend to infinity. (In the outer limit, v remained fixed.) We shall con-
clude from the arguments in the following ?aragraphs that the inner limit
in the viscous case is the free stream velocity.

Let us attempt to find out something aboﬁt the flow in a region
inside a radius G(% J:%') = 0(&-—;%}. We firlst discuss the case of zero vis-
cosity in order to gain some feeling of the purely magnetic effects. W e
search for a region of the flow in which the velocity is ofl). Call this
region S;. To see if there exist flows satisfying this condition, we’ |
assume the dimensionless velocity in ;‘Si is mi(e). and a dimensionless
characteristic size (measured in outer variables) of Si is gi(e). We
consider two types of force on such a volume, namely the Loventz forces

(body forces) and the fluid dynamic pressure forces. The body force per
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unit volume is given by the interaction of a current density, whose mag-
unitude is of the order wvnia, and the magnetic field. Written in phyﬁicai

variables, and using the fact that the magnetic field behaves like pl/ r,

we have
; . gTotal body force, _ (1 2 .
Fmsist" { on Si } (Uui@"ﬂ ) {vol. of Si)
pUL 5 o1
oy €~ newtons {6-1)

' . B o 1
where for B we have uged the value at the surface Si' i.e. B 81’7%’755' .

The pressure terms can be estimated by using the stagnation pres-
2

sure %p‘{}v’ . This gives
P {Presaure forces ony g;l€) . Suc
surf surface of S, epy P
 pUgle)
~ e newtons {6-2)

4 £ - B
¥ . ot i
The ratioc of resist’ © surf 8

2
¥ resist - €y
¥ gurt gyl€)

(6-3)

which is of order unity when gi(e) ~ ezui. Since it was assumed u,= of1),

this implies
2 :
g;(€) ~ ole”) (6-4)

Thus, in the non-viscous case, there appears to be a possibility of a
"core, " defined somewhat vaguely as a region in which the zeroth ap-

proximation to the velocity is zero {i.e. o(l) ). The diameter of the core
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is ,
ofe%/cuU) meters | (6-5)
If such a core were present in the problem of this paper, in wolch vis-
cogity is present, éemparison with the low Reynolds number flow past a
circular cylinder {veference 2) indicates that the flow in the vicinity of
infinity would have a term O(1/log €) &ppearing, whereas the perturba«
tion scheme yields a term G{szlog €) as the first term. We shall next
argue that the presence of viscosity causes the flow to behave in such a
manner that a core of this size cannot exist.
Let us consider a viscous fluid, and discuss the existence of a
region S in which the dimenaionless flow velocity is o(l), say u .
We again look for a balance between the body forces and the surface
forces. Folibwing the computation above, the force on § , due to
Lorentz forces is | |
F

ety ) -
resist (G’ﬁﬂvr‘:}) (volumercf Sv)

pla '
Ve newtons. , {6-6)

T
In the viscous case, if we think of the region Sv as a more or less solid
cylinder with a flow O{1) around it, then the Reynolds number based on

such a cylinder will be -
g l€) o g lE) -
Re, a U il . : {6-7)

Since we are assuming a is conetant, if we estimate By T8 ¢ 62. where
8 is the non-dimensional size of the possible inviscid case core, we Bee
that the Reyueidé nu‘mb&f is small. From the known result that the drag

‘on a circular cylinder in low Reynolds number flow (see reference 2)
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is

Drag~ pvU{=- Wg;—ﬁ'é’" )
v

we then assume that

1
4 . [ 3
ysurf Pyt log gv(e)/a)
. el 1 .
ST we  IBgg,/e (6-8)
If we again consider f:he ratio F it F gurp W€ obtain
. , 2
¥ u_€ g. (€)
}resist o o z log 1; | (6-9)
surf '
This is O{1) if
g, {€) . e
log = - ;:;? {6-10) .
or
2
g (€) ~ ae™®/ove {6-11)
In physical variables, then, the size of the posszible core is
g l€) a mé:/ e
T ~eue Y (6-12)

whichk is much smaller, as €¥0, than the inviscid estiﬁmte. equation 6.5,

if we assume u ~u. It should be emphasized that the estimates discussed
 above have implicitly separated magnetic and viscous effects. |
We have argued that the inner limit of the velocity in the inviscid

case was simply the free stream value, and noted that viscous effects
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might make this same limit in the viscous case {keeping a constant)
different from the free stream value. Now it is known (reference 2) that
a cylinder in a uniform low Reynolde number flow has 2 viscous layer
surrounding it extending to 2 radius
- W (@ength of body) , (6-13)
outside which the velocity is essentially the free stream valus. If the
¢ ore whose @ive is given by equation 6-12 is placed in such a flow, the

viscous layer extends to a radius

- 1 . gv K-S ...
2. 8 o7 . a
(log “&K )-a?- (log e a/uf ol
&
uf 1
= . e meters . . {6-14)

This radius is transcendentally small compared with the region of valiﬁity
of the inner limit process. This makes it plausible to agsume that the
inner lmit of the velocity in the viscous case is simply the free stream
value, and for our inner pe.:rturbaticm scheme we shall assume this is the
case.

| It is apparent that the effect of a "core" such as we have deacribed
above would créat@ a disturbance in the extarior part of the flow. It h&é
been ghown in‘ reference 4 that far (m the present case €/opU is 'fmr“) '
from such a core the resulting &isturlﬁanc-e in the velocity field looks like
the fundamental solution to the Oseen gquations. Thus the outer develop~

ment would require a term proportional to this fundamental gelution,
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with the constant of proportionality being determined by the drag, which,

from equation 6-7, gives a velocity

(6-15)

In our perturbamm scheine. we shall carry our computation up to terms
Ofe 3’1&36) and Of€ ). 20 that acca:dtng to &quation 6-15, the terms
that might arise from a core should ammar only as the third parturbm v
‘tion. {Thus an experiment designed to dcatgrmim the existence or none “
existence of a core wom‘id have to meaaﬁm a thi:éd ovder effect. )

The foregoing discussion has béan an attempt to justify the use
of the free strearm velocity as both inner and outer limits for the velodity,
and also to try and convince ourselves that the terms resulting from the
inner and outer &avelnpmants actually kc‘emtain all the tarma; at least to
the order of approximation which is to be computed. Assuming thuot these
conclusions are justified, we now proceed to construct the inner and

outer asymptotic developments.
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Vil CQNSTRU{:TiQI“J OF THE PRINCIPAL DEVELOPMENYTS
We assume the following asymptotic developments:

{1) OCuter develwpments:

e = e O+ e UET - (7-1)

B* e = e BT ¢ g5 U dhes (7-2)

P e = 5™ T s e ™ Et 4 (7-3)
{2} Ianer developments:

TEe = e imH O « e et ety o L (7-4)

?%"“"G”*;e) =gl yEHO ) g e Wty . L  (7-5)

o' Fhe) = et OE Y 5 et @Eh + (7-6)

Stricily speakiﬁg. these are not the same as the final results;
there will appear, in both the inner and outer developments, additional
terms which must be introduced after terms of higher order have
already been found. As we shall see, their preéence is necessary to
satisfy the matching conditions between the inner and outer develop-

ments.

e
A. Determination of £1(ef3*(O4F*) ana e R i3 100G,

Part of the discussion of Section VI was concerned with showing
that for both the inner and the outer limits, the velocity was simply the

free stream velocity. Thus
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ey =he) =1 (7-7)
and

TN =g - T

. (7-8)

Note that this agrees@ith the statement of eguation 5-7; namely, the
outer development is valid in the set

ord€ < ord f(¢) < ord 1. (7-9)

B. Determination of g:(& )ﬁ"*w’(i’ ";“)
If we substitute the assumed inner developments into the inner

induction equation, equation 2-15, we obtain

£ yo*2810) 2 o (7-10)

The solution which satisfies the integral ccmdiﬁbn. equation 2-13, is

easily seen to be

f’;{e) =1 (7-11)
W“”“"* T M A 7-12
Ar ') = ix - 3.%72 + i}' m {7-12)

The field lines corresponding to this solution are simply concentric
circles. That is, the field is idertical with that due to a current element
placed in a fluid at rest. Hence, close to the origin, the magnetic field

is undisturbed, in the first approximation, by the motion of the fluid.
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C. Determination of g (¢)E (T
The next st&p is to substitute the assumed outer developments,
equations 7-1, 7-2, 7-3 into the outer induction equation, equation 2-‘3}

Keeping only the lowest order terms, we obtain

. (6730 4 25%0)  5p*0)
g {€) ; =0

x

, "“"1&2"" * (7-13a)
. (2 %*(0) agﬁm” 33*‘9’ o
g&)(——-g{—- f g - —f— | = 0 (7-13b)
&x by 3
Using
#(0) an¥(0) ‘
T .- % | (7-14)
8y ex
equations 7-13a, 7-13b become
gzw)(v*zﬁ*m - ZE ) =0 (7-15)
: x

This equation describes how the magﬁetia induction field is swept down-
stream from the ar-igié. There is vaiaualy a close analogy between :
this phenomenon and the convection of vertié’ity downstream from a
finite body ag deacribéd by the Useev approximation. In the latter case,

the equation is
e V20-58 20 (7-152)

where Re is the ordinary fluid dynamic Reynolds number based on the
body size, and w is the vorticity.
- ot
Returning to the task of finding. gZ{&» B *(Q)(r )y we note that a
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| gsolution of equation ?~15 which satisfies 7-14 and vanishes at infinity is

gole)B TG

* %
3®

. e & T w\
"go(e) i (‘“‘%Kl(?’)) ( »i(-‘z—) ﬁﬁo(?) (70‘16)

”ﬁ

where K o Kl aré the modified Eesmé} functions of the second kind of
the zeroth and first order (8). To verify that equation 7-16 is the correct
solution, and to determine gz(é ) we impose the matching condition.
We write g:(é BHOT*) for small T, using
; . . ' .
Kz )=-logr -log o +ofl) (7-17)
where Yy, = e¥, and v is Eulef's constant,

. v
Kltfz.) = «%— + ﬁ(rﬁlag ) | (7-18)
Cor

e ‘
and replace r by €7 . The result may be written

gele) (éﬁ’#(@)(?‘* ))

+ +
zgi{ﬁ){ix( 2‘“* > + iy (:2-;%) +€ log€g {e){”(‘.&'&}
o - 1o 4 1og-§- +2
-%uga(ﬁ){ix( po Y( 2=+ ; -1»;;‘4_2) taee

(7-19})

Remembering {see definitions before equation 2-7) that Bt &gg’ we

see immediately from equations 7-11 and 7-12 that
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gole) =1 (7-20)
Henece
Yot
P % -
™ e-z * r* o e.z . x e.z' e :
@{ix (- ;;ﬁ KI‘T’) + iy(m Bl=) - 25 Kl ))} {7-21)

This solution is independent of yiﬁcoaity. and is actually valid when v
{and hence o) is iéeatik:aily zero. {(See Section X for further comments
on thié point. )

For future ¢onvenience, we rewrite equation 7-19:

%, o#(0)t, [ * . -1
g‘)‘&#:a {r ) a{ix (- f—;—z) ‘?iy(i%>} + €logé {i?(a—i,}

A Y

+ 4 2 loge +
1€ (3’; (. iﬁ) 4‘{;(:;1-*/2 " ;T + -1%%3—)} Faee
{7-22)
' D. Determination of 8, (€)F g Hlsle
1t can be shown that there is no term O{log ¢) satisfying equations
7-14 and 7~15’which vanishes at infinity and for which the line integra}l‘
about the origin is zero in the limit asg ?# ~+= (. This implies théﬁy ﬁim
term Of€ log €) in equation 7-22 must appear in the inner develapment.
if the matching coné:itwns are to be satisfied. If we call this inner

term g {€)5 +{1a)(r J» then, as mentioned above,

g), (€) =¢ loge (7-23)
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and 'ﬁ'ﬂh)(?*) must satisfy the hemageneous equation
orzgHila) (7-24)

The solution which matches with the outer development is the constant

solution
wi{la)—t, 1
g0
gh ()8 +(1a)r~+) . iy - € la € (7-25)

E. Determination of g{ (€ )ﬁ'ﬂl)ﬁ *y
The equations for g;'(e )%'*(1’(? 4'), found as usual by substituting
the assumed éevélapmgnts, equatidma 7«4 to 7-6, into equation 2-15,

are

p2ptl)  g2HIN o +(0)
glce ("“"‘Z"’ + _:?f 4 € 3{ —= 0 (7-26)
8y by ; :
; a2ptl)  G2pH1)\  5+(0)
gifé)( ..—2’2- _.._Zz.. - € _._.Y;... ‘ {7-27)

Substituting the known values of ?3’“0} from equation 7-12, we then

have

. a'i&:x‘” ) }3:(1) et | -
sl —F + . +e(-—-§3;—) =0 (7-28)

wr

e a%;‘” 5? B;‘l’) . o
g (€) o - & - - =0 {7-29)
A vl S 2 A <3 pc R >

This implieé g';(é) =z €, and a particular solution to these equations which
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satisfies V' ?3‘“’_*‘”= o ie

+ log
ﬁgﬂnw M{ -y )+§;<m i M.;i')} (7-30)

4y

This, plus a suitable homogeneous solution, muet match with the corre-
sponding term inthe'innar‘ limit of "’ﬁs{ﬂ}(?ﬁ). which is given by e?qaé.ﬁem

7-3.?.. G‘ﬁwiwsiy the required homogeneous term is z2@T0, SO m haw

, e + 4 +2 + log
e%”f‘”“?;;’*;ﬁg{% <._.’£.§z_>+i’;(" e losx 4%‘;{')} (7-31)

4y 49y

. v ®# % PR

¥. Determination of 0{6 o w)(r }
In the outer solution, there is a possible pressure term O{1)
corresponding to the velodty term O(l). From the cuter momentum

equation, eguation 2-8, we have simply

7O = 0 (7-32)
for the largest term. Hence

?*(9}&'* } = constant : (7 . 33)
The boundary condition, equation z-n,v requires the constant f:e be zero:

9*(@3(;*3 =0 (7-34)

G. Determination of 2.(€ jpttO
From the inner momentum equation, equation 2-14, we have the

largest term
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thews' Tty =0 (7-35)
8o that ;
INE )p*“.”(;’“”i = constant (7-36)

To match with the outer pressure tm;m, 9" G}(;"",. we must have

et OF Y = 0 )

H. Determination of iﬁ (& )q ﬂh’(r )
If we substitute the assumed outer asymptotic development into
- the outer momentum equation, squation 2-8, and keep the lowest order

terms, there results

*(1) *1)
a4 - ) Eyee - 416 2
x
“(0) *(Q}
( o) <......¥... .......ﬁ.-.... ) (7-38)
5(1) PR LY
affte 3 e 012
8x o8y
a0 %)
3}3::(0’ <~lr' “"'r*) (7-39)
We see immediately that
€)= 4j(e) = €2 | (7-40).

Using equation 7-21, 7«38 and 7-39 give
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*2 (1) 8@3*(‘1)‘ . Bﬂn _e* x'2

» ,
oV g e T Ky (5 )X )
ox ax 167 ae T 5 ¥
o e * PR, * #

. %;z’i, K5 K5 + 9_,._2 KSR () (7-41)
r ¥ 4

& #{1) (1) x
agaszm- ‘§£‘V“‘ a E;% K (“Z"')Kl("r’

8x Ey

e”‘x* *
+ (=) ) : 7-42
e s (7-42)

The solution to equations 7-41 and 7-42 will be discussed later (see
‘Section VIII); for the present we use the result that for small values of
¥ the vorticity behaves like '

‘ %{1) #m) ' 2 % L &
ov du € log r log x ,,
e\ g )~ i——gg—-. + 0 -§-—- . {7-43)
2<8x’ 8y 8ra v ( r > ‘

and the pressure, ‘;ﬂ}(?‘). behaves like

| *, * *
ezp*m(?*Q ~og2 X le%: LA G?EEE") {7-44)

8" r r

In order to investigate matching, we replace E"* by é?"’. 80 that

equation 7«43 becomes

S 1) + T

[ 3"* »a“* )*-&l@g& Ma-ﬁ%i 4... {7-48)

ox oy 877ar " 8¢%r

and equation 7-44 becomes
: + + + '

: : log r

2 #{1) ™ <€ log € —poen = € HmoB T4 | (7-46)
€°p P ealete
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Now equation 7-45 contains a term O{¢ log €) and this plus the contri-
bution {rom a pmaiblg term O[€ 2 log €) in the outer solution, must
match with a term of mrmapemding-arder in tﬁe inner &awlop’ment.;‘
But the £ (¢ ;E“‘““(?”‘} equation found by the usual substitution of the
assumed asymptotic éawlaym:ft into the inner momentum eqﬁxﬁén,
@quatica {2~14}) ), has forcing terms 0{6;}, 80 £§{6§ » 6% aot ezlag €,

*. . o
as required.' © Thus a term Of(€ 21og €), which we call

| &ziagié “&""‘“3(;"*) C {7-47)

must satisfy the harﬁfaﬁgaaema equations
o g«»m; .  {7-48)
ezleg € av+aq H1a) ezlag éV{' Hla) | »(7»4*9}

and have a vorticity ?which behaves mga

 [pytlia) g ) . o
¢‘log ¢ (s; 7 3: 7 ) ~&log € Ly (7-50)
x A r

Tao investigate the problem further, | we note that the possible term in
the outer solution O(€Z log €), which we call § U3k, pﬂia‘j{?*h
satisfies the equations

el1og e v*. Fha) . | {7-51)
M{la) v
amg eav q o *a), ezlag € 9 - 6% log é‘?‘p*u&)z 0 (7-52)
%

and possesses a vmt‘iéity which for small values of e behaves like
; #la) 5 *la))
e Z10g¢ (ﬁ‘i-r- T g | €40g ¢ .gz- {(7-53)
9x 8y S
The orders of pressure and vorticity are different for the inner and

outer developments. The matching argument is clearer, though more -
tedious, if physical variables are used.
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, #(la) *{1&)) P ® :

2, . [8v du 2 vy

é.lagé(-—m—r— * g | % € “log € 'z‘lﬁz {7-57)
% 8y 8r ar

or, in inner varisbles

2 avtiia) a;ﬁm) + |
€ log € (““ﬁr‘ — = ey | ~ & log € ""EL"'Z' . {7-58)
' ox 8y sr’ar? '
This, plus the Of€¢ log €) term in equation 7-45, gives the contribution
from the outer miutimx. But they exactly cancel, so the contribution |
is sero. This is consistent with equation 7-56. Next, we note that

equation 7-55 written in inner variables is

R (7-59)

This, added to the contribution O{¢ log €) from equation 7-46, alsc gives |
zero, a result again consistent with équ&tian 7-56. This eempietas the
verification of the matching conditions. The value of drag will be dis~

cusged in Section IX.
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VIIL DISCUSSION OF &2g W) anp eI

We turn now io the question of solving equations 7-41 and 7-42
{subject ﬁo the continuity equation, of course), and the corresponding
equations in thé inner development.

The vele@ity and pressure fields, e?‘a’*“’(?*) and éaga*(l)(?+}
are brought into being by the forcing terms on the right-hand sidee of
equations 7~41 and ’?w&?.. These are just the Lorentz body forces. The
ksvalution. in integral form, can be constructed formally by use of thé
fundamental solution ieuaor of the Useen equations, reference 5. For
example, 6311*(1’{?6) is formally

¢ 2,4 () o : |
r r ) = £ * %

o ST (En) 'T“M (TN, R )

(all spaca}

*

§

# o . e
.Y em 1. (I -p 1) v - ’—%
4 E‘%“I?‘Z*’ggﬁ( .7y )lr 'k.n-a-lk
w ggm a’sn@ K o
{-—-—z-%-'%a (B, (*z*’ - lg;zzﬂ— Ky )Kii%- ﬂsg an’  (e-1)
where the variable of integration is 5’* = ?.;@a + 'i';vf =71 p +.§° @5 in

cartesian and palax'? coordinates respéctively. There are two simﬂaf

#
expressions for v, (3)(2. ) and p “)(r ). The £act that the integral ia
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taken over all space is due to the observation that the right-hand side

of equations 7«41 and 7-42 are valid in the set
ordé s ordfl€) £ ord1l

80 that from the point of view of the outer development, the non-homo-
geneous terms are valid right up to the origin.

We see immediately that the integral of equation 8.1, and the
corresponding integrals for € v m(:r )and& P m(r h do not exist
in the usual sense. However, the so-called "finite part, * (see refer- .
ence 3, page 38), is a solution of the differential equationa. (Of course,
we can still add a homogeneous solution to this partiéuiar solution. |
Later, we shall attempt to satisfly cutselves that this additional solution
is zero. ) For equation 8«1, the {inite part ("Pf") is found by the standard

methods to be expressible as

pre 2T
' 2 pkpdw p coa ¢
- € 1)y & cos é’s *2
za.i,ﬁ; y{w TRLICE g a‘“z"Kx‘*z'”

- 47 @ 0.9 - ‘L—?«g‘i‘i)} aas®
¢2 rRe2Ty * e’ p"cos bosly *2
““Z? 3 w‘{fv“(r TR T 7 P kﬁ(%—}xl@—)}dgsdp

; ® .
£ s (LB S )

T Te S oP CGQ{”:Z
+ ,} f 6 ,p.«fs;{ 5000 K(—;-)E‘ilifgi
p*eoagb '* |

- ——-()—T— K 4—3—)K (—T)}p agas*

1



«4Qw
: x* ,*cus 4]
2 poopdT L B W % _._._EZ_’ 98 ¥
3 -p ging , 1 (lr -p | -p 8inéd a .
"',ﬁ S.O S; {'—k L?‘TT\? ‘:; ‘ <+ -z-EKI Y 0) Y—T——r‘? _F‘ L] }

e P‘coa éainé p* x:»"l ef *cowcosésin@ * 9* x &
{ 16 ’a EO( 'Z‘)Kl( "z‘)" 153‘2‘ ' Kl( %‘)Kl( 'Z‘)} p dp 1 d¢

(e-2)

where

a

®O%
) -y X =D CO8 @ & %
FE 50 ) a{.;a K, Q_EZ_E‘), e ¢

(s-3)
s s i . 2 *(1) et
Similar expressions will arise in the determination of ¢ v “"/(r ) and
éapﬂn(?* ). T/he value of k is to beb l:akén a8 that value of p* below
which we can use the approximate expressions, equations 7-17 and 7~18,
* # .

for K (5-) and Kj(&). The above integral is independent of k but
this choice of k will be used when we consider matching with 'q"ﬂl )(?"’")

and p Hn(?i‘ ). We will find that the outer solutions are valid in the

get
ordé € fc) s ord 1

To investigate the question of matching, we first observe that
the e quations for ?{"{"(1)(?{“) and 3'%(1)(?"%), found from substituting
the asymptotic developments into the momentum and continuity equa._tiona.

2-13 and 2-14, are



et T =0 | » (8-4)
| . +(1) +2
oqfte) (v - g 22 t 2o TR
: ‘ o 1) + 4 ‘
aff ) (v 3 _ ey B 32y 8-6)
1'( 1 ay‘k , 4#r+z (
80 that | |
ey = 2 - (8-7)
and ’_
1t€) = €2 (8-8)

Before considering éaiutiasns of equaﬁi@né 8«4, 8-5 and 8-6, we apply
- the inner limit process to ézfc'{*{l)(;’a } € 3103%&'*(13')(?*) and
tgp*(l)(?w}é ﬁzlegé'yﬂhk(?*). The result for n*(n is

FHer

2 pkfep2me | 42
~E U b b et % -p *eosg)® +_ X .
'Z"TrSO S‘o {(fﬁfiogl? el @]r+~+tz J‘"'Z'Eiegr ZM-&E)

(_ cos?s )
(y'-p sia@(xﬁﬁ'-g cosd) (_ 'ﬁiz;éwa@) *dodo*t
( Eu\r .Ma.@‘z , 'é#p"‘ P‘» 9.

+ézlqg€;ﬁ-§- 3}2%2_(-1%1- %—«-z-)

Gn o 168%

e? 4»2
€ (la Es) lo (1o
- ﬁ-—- gr»—-——-z-. - log 40 + y)
léﬂ:g 16 “a T 8

+ € a(canst«anﬁ)"& of€ 3,) | {8-92)
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We shall next show that aqguation 8-9 is a solution for the innsr
developrent up to o.(&;z). This is done as follows: equations 8-4, 8-5,
and 8«6 are simply maémmgemm Stokes equations (except a iz of

course not a Reynnldayxmmber). with the right-hand side valid in a set

!-l(si) < ord fl¢) s ord & (8-10)

the existence of £(¢)< ord ¢ following from the extension principle,
Expressed in izmar variables, thie safw the right-hand side is valid for
2t g -é‘-’, where k is a constant, which we can define to be the same
as described below equation 8-3, | Let us then define the right-hand |
side to be iéentieall? zero for > éﬁ . Then, using the fundamenta_i’
solution of the Stokes equa.ﬁmns {see réie-ranca 3} in a purely formal

manneér, we obtain for

2 #{l)—rt, 1 k/‘?a’ _ 1 et (x -p casé)
B 2?50 '\S‘e [ﬁ?og\f g 2a| 752
[- cos? ]
4";2:?%«@'
gx -p Qﬁi@ ){z’;f’ ﬂmé) » agindcos } *:-dP ag {3-11)
|7t -7t e AL l

(Similar formal expressions will be obtained for & av"’m(?“”) and

ézpﬂn(?i.). } We note immediately that ec;tzation 8=1 does not c:anira:ijge
in the usual sense, but the "finite part" satisfies the differential equax-

tions. Similar statements are true for v+(1)(?+) and p+('-l)(-;t7"+)° sting



standard methods to express the finite part, we obtain

¢ 2u+{1}{?+} =

- o 1 A .;; 'P ﬁ@ﬁ ¢) 10 - :!i& .
50 S'O {[ a8 |z P ‘ 2a \;’“}_?‘%‘Z * 7a 8 r :FE

o]

47 “

Pxx .;Tﬁf“i&’pz aiw}:] . [ %} ptaptae
i::@ﬂk{ lagr Mf:, -3+ ..i‘%’gig-xog;- *“"z’ 3)
+ o). R | | (8-12)

~ Plainly, aquati@n 8-12 is identical with equation 89, exeeptim""
constant terms. These constant eerms can obviously be added in the
form of homogeneous eolutions. Similar statements h@ld for fsavﬂntz- )
and € p’m)(w }» 80 we have demonstrated that matching is aatisﬂed.
and the outer development, to terms in é,a, is uniformly valid in the
set |
ordé € flé) s ordl.

Furthermore, tha inner davelopment, to this order, is vedundant.
Becauae of this vadundamv our further discussion will be concerned

 with the outer éevelapzmnt only. Ch;xr next etep will be a discussion of
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the homogeneous golution that can be added to '&"*51)(?*) and p*m(?*).
A. Further discussion of €25 UN7%) ang % UT%),

In section 8, we found a solution to the differential equations
satisfied by %"‘*m(?*) and p*m(?*). (For ugm(?*) gee¢ equation
8-21 for v UNT*) ana p %) see equatione 10-2 and 10-5.) To
" this solution can be added a term proportional to the fundamental

golution; in this section we shall attempt to argue heuristically that
the conetant of proportionality should be zero.

The argument will be based on the following observation: singu-
'iarieieﬂ in the outer flow represent physical disturbances, and, unless
forced by some physical cause, do not exist, Now one can lmk at the
formal solution to uﬁn‘(?ﬁ) as a perﬁeeﬁy well-behaved function
plus a very bad singularity. We can remove this singularity by subs
tracting suitable singular solutions; the author feels that of the many
péssihilities, we should use the one that is just sufficient to remove the
gingularity -« no more, no 1@3-5. From this point of view, we can ﬁrite

equation 8«1, and the corresponding equations foy vﬁmiaml pﬂm uging |
a8 lower limit of radius some constant R > 0, and then add to the velo-

city field the term

. %LZ tleg RIT (F) {8-13)
T .
whare . . '*
. o "
EE* = - VTe® 20k (514 Le* 20 (T

- V* log r* § {8-14)
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and add to the pressure field the pressure fleld associated with equation
8-13,
-2, (1og R) l‘:g . (8-15)
67 r :

This done, we let R - 0.
To illustrate this point in move detail, let us consider the x-coms-

ponent of the velocity. The above statement says to add

Wza 2t 1t a2
ﬂ {log R’{m i%‘m b /B0 Ty g il B g o z:? {8-16)
This can &lw be wriﬁten |
% EEK‘%’@X e, ‘%*1}&&1‘ x/ae}g ga#ﬁ%%*é@
{8-17)
a,}.j g’ "er 710, 4) i‘ii;% dp*ap, (8-18)

where ﬁ‘{zr 5P .¢) iz defined by ee;zmtism 8+3. It can be seen that adﬁé.ng
. equation &ua to equation 8-1 (using P ag lower limit of ra&iw integm.v
tion) and letting R ¥ 0 gives equation 8-2. |

it should be re-emphasized that the above statements are based on
rather uncertain assumptions. However, we at least have a particular
solution, so that our expression is correct up to an additive term proe

portional to thefundamental solution of the Oseen equations.
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IX, CALCULATION OF DRAG

In principle, the force on the current element may be computed
by evaluating forces at the origin of cv:aérdinmw or by studying the
flux of momentum at infinity. The first approximation to the drag ;‘caﬁ,
thus be found by considering the momenturm flux at infinity from the
solution Ealag € w(m;{?*), &zlag € pﬂm}(?&). and any Maswell
mmsaeaéﬁ the same order. There are no such Maxwell stwsm}a of

(ia}{wﬁ ’*(1&)&;»*) is proportional to the

this order, and since g
fundamental solution of the OUseen equations, the drag, expressed in
physical variables, is well known to be the product of pU and the
gource strength, in physical variables, of the ae-eailed- 1¢ngituéinal g
component. If the {irst approximation to f:he L‘ﬁrag is computed by
finding the etresses at the origin, we find that the contribution is
entirely from Maxwell stresses arising from

wH 0’;;-"""1): + € log € ﬁ""m(?“*)

which can be interpreted as a current element ?ﬁt situated in a constant

- magnetic field
-jf- & lﬁﬁ % \/-—
In either case, the result, expressed in physical variables, is

3 .2 2
Drag/unit length = - log (ol j—' | L. 5 % {9-1)
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The cam:m{mtiautothe dragarising from e ) *u)(r ), €7 *{13(;;"*)
and B#(M(r '}, can similarly be found by considering either the golue
tion near the origin or at infinity. In this case, the answer is not
~ found so easily as was'tha first approximation, so we restrict ourselves

to camidering the flux of momenturm at infisﬁt‘y. It is easily éeman»
strated that the Maxwell stresses from B (g)(x ) die out suificiently
rayidly m infinity ta give sero cantmiwtion. Iwm:a we need contend
with only q m(r ) and p m(r }» The actual c:omwtaﬁ:m can be re-
d uced to a single iateggratian which must be carried out numerically.
The argument leading to thie integral can be stated as follows (aleo

see Appendix): we know from symmetry that the force on the current
element is in the x-d&metim i.e., there is né lift. Far away from
the origin, the solution (T %) and T ) vehaves like the
response to a concentrated force situated at the origin and directed
along the x-axis, provided the iﬁtegr&&dﬁ of the integral representations
decay sufficiently fast, and the constant of proportionality of the re-
sponse is given by the integral of the "forcing™ terms in the integrand.
This constant corresponds to m;/ 2 times the sauiwcae etrength of the
longitudinal component expressed in phyeical variables, and so the
drag will be simply the product of pU and thié source strength. If

the integral is negative, ﬂw contribution to the drag will be positive. -
Let us now carry out the procedure.

The integral of the x~direction forcing terms in the integrand
{equation 8-2 for example)is ’
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za’ of
RS b (- Sttt gt

\ (0 2T ézi*eaaéma% . ) e
T A e Ei;(%—)ﬁli%—)}? asdo
=55 M{me‘” 4%—*%»)

w%@r’ﬁ (%)} o" d¢dp” (9-2)

The author carvied out ﬁw computation on a desk calculator, and obtained
Mgil- 90 | (9-3)

Thus the cm&ribu&im‘; to the drag gwr,nnit length of current element is

Z ZU newtons i (9-4)

Force/unit length = »--?- ol e

Combining equations 9-1 and 9~4, we obtain for the total drag to

the order considered

Drag/unii length = { log (¢l J;-: )% + -L%} a‘!’apuzﬂ
newtons per meter . {9~5)
When €+~ 1, the contributions to the drag from equation 9«1 and 9«4
are about the same. For € ~ %, the contribution from equation 9.1 is
about 10 times the contribution from equation 9-4. Thus first order

effects can be expected to dominate when € ~ % or leas.
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X. SUMMARY AND CONCLUSIONS

We can couveniently summa‘rizé the results by stating the outer
asymptotic developments. The non-dimensional velocity is
THEM AT, seflog e THNTY L 27 4L (1001

where g*(la}(?% ie given by equation 7-54, ugml?fﬁ) is given by
eguation 8-3, and vwn(?*) ig given by

S
S\l 27 — oP c@aycwzép
.k Og {Fv(:i: 0" o Sl Kﬁ-mg%-n
~4F (710,06 X~ gﬂzé)}d@dﬁ

2w s:emmé By F e W
+z§5® 3 T @{ — cod ¢ zg(—’})xle%-)}p déde”
~ #
wrd p cosd # #

of ccmé *

m'-z* K, 1% (T)} o*agde

&

TN f"{ 5 Ei e ""% \—wf-nﬁ
o = ._“ X cos
. M‘i caa% 55 r =P lye 20, }

-

é
{———-—?M Sl - & sodeont @2 G} ains”

(10-2)
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where
-l
‘r 1P 9) : e % .
b ot X P COB '
Lw—.:rz%-”p sin uﬁm@ K, (‘r L ,)@’H (10-3)
’p , g !
The result for thé non-dimensional pressure is
21 o 2 #(1), %
;»(r j~e f}gé«m + €% e )., ' {16-4)
8e r ‘
where
21}, s
pm{f )

.l plnr LS p mm
el 1=z -p cosg, e ma@ *3 s'é”
‘353@5\0 ?{ir e v

—ﬁ |
= Eﬁ%—?)} ar"ad
@

g e% W f
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The renpult fov _the nen-dimensional magnetic induction field is

$ x/

., .
* /2 % 2
ﬁ*(r ) W{ (- ““-3‘!—‘ (»zu) ) + (w—-ﬁztmz- ;« » v a(az—) ’}‘ﬁ'. '
; o (10-6)
Finally, our expmséﬁm for the drag is

{ Tiog(wl/;-“»%%-}ﬂapzt . 110-7)

Some of the more interesting faa‘tumﬁ of our solution may now
be discussed. First of all, we note that the fluid acquires vorticity by
the action of the non~conservative aigﬁramgﬁ&%ic forces. (This was
pointed out by Lw&it&éd snd Murray, Aé@ﬁemma 6. ) This can be most
easily seen if we take the ¢uzl of the Wcmr equation £r.arm¢d from

equatione 7-41 and ’?w&& The resuh is

#{1) f w
L * %?_w = E‘{:ﬁ",.gi_ 2 0 {10-3)
: X . -

T SRy *
where ¥ is made up of terms which for large r have the factor

% %
% ep

® - {10-9)

appearing. Thus, a‘;% least for nﬁt t¢¢"v'1ar @, mﬂl’ should have

larger valuaa ina pambalic walke regian whose shape is outlined by
lines of x - p = conatant. This is gust one haﬂf the size of the para«l
belic wake possessed Iary the magnetic flwiﬁ, in which {f rom eqguation
10-6) the factor |

e ‘{194-10}
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appears. This is similaf to the result of Ludford and Murray. (Note
that the magnetic wake is independent of .v. )

Far from iﬁa origin, however, all the perturbation terms we
have computed hehave hke the fundamental sclution of the Oseen equations.
These solutions have a parabolic wake which dapanda ounly on tha king=~
matic viscosity, and not on the electrical properites of the fluid, ’E‘hia
can be seen by noting that the wake is outlined by lines wﬁaw

& % : . |
EoE =constant, (10:11)

which, when written iny physical variables, becomes

£r T 2 constant P ~ {10-11a)
2v/u

This result is amasistgnt with the waﬂc of 1-dee Chang (ref. 4:), which
states that the flow far from the £itxi‘§sz mgién where disturbances are
present {in cur case, these disturbances come from electromagnetic
forces which are essentially in a finite regimi) has a g@nerad characteris-
tic behavior independant of the details of the disturbances. In gﬁrﬁi@ular.
if the only force on the hédy is a dra;g, the flaw at large distances bos
haves like the fundamental solution of Useers equations when the coma?m
trated force is in the x-direction. This is obviously precisely what we
~ have found. | k
The following figure (fig. 2) shows the general outline of the two
types of wake, and representative fi@id‘ lines of the magnetic induction
field. | |
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U
—_ _ ,
— -—-  Magnetic wake
—————— Vortex wake
—<— Magnetic induction
line :

o ) Vortex line

Fig. 2

Another interesting feature of our result is that the drag is inde~
pendent of viscosity, to the approxzimation considered. This makes it
very tempting to hmmsim that the drag and the flow quantities we
have computed are uniformly valld in & as a — 0. Note that the
vigcous wake would then collapse onto the x-axis.

There is anetha‘r. reason why"wé solution might be uniformly
valid in space and in a4 as o — O: before studying the problem pre.

g ented here, the author attempted (with only limited success) to solve
the same problem with zero kinematic viscosity. The magnetic field
turned out to be identical with that given by equation 10-6, and far from
 the origin, the first perturbation term of the velocity was a simple souvce
flow with a line singularity along the positive x-a:wi# which carried an
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influx of mass juat equal to the outflux from the source. This velocity
t-mm was G{ﬁz log €). This solution is precisely what is obtained §§~om
ﬁ"ﬁ(}’a‘){?j&} in the imit as v - 0. In particular the first term of the
drag is the same in both the viscous and non-viscous cases,

A natural améwim of the above hypothesia to three dimensions
would be the study of inviscid flow past a sphere in which is embedded
a magnetic dipole source. From the above conjecture in the two-dimens
gional inviscid e#sa. one counld suggest that if the aphere were sufficiently
emall compared with some characteristic size which increases or de-
creases as *eiag a%zengih of the dipole imsmaseb or decreases, the firet
approximation {0 the drag would be ‘irgdependam of the body sizs. A
similar problem is that studied by Ludford and Murray, reference 6;
however, they s:@nsi&w the opposite case in which the size of the sphere
is large compared to a length based on the dipole strength. Ag would
be expected, their drag depends on the size of the spheve.
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31, EXPERIMENTAL POSSIBLLITIES

In section VI, we presented arguments to support the statement
that the leading terms in the mmp&eti«: éwaia@mnﬁ are given by
equations 10-1, 10-4 and 10-7. According to that discussion, the maxi-

| mum size of a "core® arcund the origin amuz&“% given by equation 6«12
Thus, an experiment designed to test our thswsr might be set up by
studying the flow of a conducting fluid past a current-carrying wire.

l# order to avoid purely viscous effects, the size of this wire should
be atyleasz a8 small as the pogsible corse, namely

wire diameter ~ ge /U (-1

wtwm u, = ofl)

Two fluids which might be considered for this experiment are
s ulphuric aeid and mercury. For these fluids we have the following
approximate values for € and a: ‘ |

Sulphurie acid at 18%¢c, 400 gmé/nm of solution:

€ ={3x 1()"93 % {(number of amperes) (:tx..-za)'
e=l7=x 16710, . (11=2b)

Mercury at 20°C:
€ = (L 3 x10"%) x {number of amperes) (li~3a)
a=L5xio”’.
These numbers are extremely small, and while € can be made
smaller by choosing small current, from the standpoint of measurements

it would be more desirable if ¢ were not 8o small. For example,
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for mmeury. if 1 =100 amperes, the magnetohydrodynamic drag, I)wagm.
is only

3 newtons/meter . (11-4)
7

Dmg e 107
{Note that since o | is‘ only 1.5 x 10° s ﬁqﬁs&tim li-4 would have to be
m‘aéd on the assumption that our golution is uniformly valid as ¢ — 0.}
Even if the wire carrying the current ware &s large as €/opU, thie
would still be 10°° meters diameter, havdly a reasonable size for carsylag
100 amperes. |

A possible alternative is to u@é a wire large enough to carry a
very high current. | If we use mawary.‘f take the wire to be 0, 0l meter

in dameter, and U = 0.1 meter/sec, tiwm }simm the fluid dynamic drag
coefficient is in this case of the order unity, the fluid dynainic drag,

Dragg 4,0 i8
Drag, , ~ 1 newton/mster . {11-5)

The m&gmﬁahyémﬁyémﬁ drag when the currvent is 100 amperes is g}iWn
by equation li-4. The ratio bragi ' ﬁfﬁz*agf. é‘ is

. ~35° ., (1-6)

Thus the main force is the ordinary fluid dynamic drag. It might be
possible to look for ic,hé smaller contribution fmm magnemhwimémmﬁe
effects by measuring ther drag on the wire with and without the current
flowing. . ‘

The above discussion suggests that we consider the posgibilities
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of a plasma. Let us assume we use Argoen szt 10, 000 QE{&ivin. U ~100

2 meters, and current in the wire

meters/second, wire diameter ~ 107
~ 100 amperes. We must of course make certain that the gas behaves
like a continuum, if the theory is to apply. We shall assume we do

have continuum behavior if the current length, Ly, is larger than

the mean free path between electronr-neutral molecule collisions. Using
8~ m“m ma%a-ra M‘the cross section for this type of collision, and
assuming the neutral gas particles obey the perfect gas law, p = NnkT.

we find that the density N of neutral particles must satisfy

20

N_>> 6 x 102 particles/mete:” . (M=7)

To obtain estimates, let ue assume

20

N_ ~ 6 x 10°7 particles/meter’.  {11-8)

Since at 1&6@99391%11 the degree of fonization is of the order 10" 3.“ the

¢lectron density, N_, is

e’

17

3

N,~6x10 electrons/meter”. (11-9)

Using the theory of Syitﬁar. {7), Chapter 5, we obtain for the
conductivity

¢~ 2x10° mhos/meter (11-10)
| For a current of 100 amperes,

¢ ~6x107% {11-11)



and the magmtahydm&mrrﬁc drag, 'mva..gm. is

Drag_ ~10™° newtons/meter . (11-12)

For thees flow conditions, the ordinary fluid dynamic drag coefficient
is again ap#rmeimataly unity, 8o that the fluid dynamic drag, Drage .

is

2

Drag, ; ~ LoU? ~ 1077 newtons/meter . (11-13)

Comparison of equations 11-12 and 11-13 shows that the magneto-
hydrodynamic drag is comparable to the fluid dynamic drag, so there
' is a possibility of finding the magnetohydrodynamic drag by measuring
the force on the _wiré with and without the current flowing.
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APPENDIX

In the text, it was stated tﬁat far away from the origin, the velocity
and pressure field behaved like the fundamental solution of the Oseen
equations, with a magmmde proportional to the integral of the forcing
terms. The author has been unable to prove this statement. However,
the following weaker statement can be proved: onme can find an R such
that the drag is determined to any accuracy i«?y considering the integral
of the forcing terms to radius R. Purthermore, the contribution from
this part of the integral gives a velocity énd pressure field at infinity
which does behave like the fundamental solution. The proof is as follows:

We consider the volume bounded by a small circle at the arigiizfand
a circle of radius unity. The integral form of the momentum equation
{for the x~direction mam@ntum) ai:ateé that a éerta,i-n combination of
surface integrals and volume integraia is mero, and the drag will be
found by considering the flux of mom@ntﬁm on the small circle at the
origin taken as its radius tenda to pero. (Since we allow no sources,
~ this momentum input will be in the form of viscous, pressure, and
Maxwell stresses. ) At the surface ;m the circle of unit radius the inﬂux
of mmomentum is due to viecous stresses, pressure, Maxwell stresses,
and in addition transported momentum. Now the preseure, velocities
and derivatives of the imlccities evaluated on the unit circle are given
in terme of integrals. We can choose an Ry such that the contribution
to these quantities (and hence to momentum flux acrose the unit circle)

from the forcing terms outside Ry ig as smsi,ll'as we please. Ag for the
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Maxwell stresses, we know that they are expreasible in terms of the

T x B volume forces outside the unit circ:ie'an& the Maxwell stresges

at infinity. At ‘mﬁnit'y. the Maxwell stresses consist of terms like
 Ker

CRUFIKYF) ~ G Bi=0l,

which is easily shown to give a zero cd&iﬁhuﬁm to the surface integral
at infinity. Thus the Maxwell stresses on the unit circle are given by
the volume iﬁtagral of the Tx¥® tferms’ {which are the forcing termé |
in our eguations) from one to inﬁniﬁy. stﬁ?y@:hmaiag an R 2 large
enough, we éan make %mir contribution to i‘:&w}'i Maxwell streeses from
the terms outside R, as emall as we please. Hence we may choose

R = max (R R,), and make the total influx of momentum at the unit
cirecle arising from forcing terms outside R as m;mn ag we pleage,

or, equivalently, we can find the forces on the small circle at the wiéin
ag accurately as we please by matriéting curgelves to the forcing teméma ‘
up to some large but finite radius R. .

We shall next show that the forcing terms inside the radius R give
velocity and yreasuré fields which baha’wv like the fundamental aaiutim
to the Oseen equations, using the exp»masiana for uﬂ'm as an example;
the computations for ;:a*m and .,,*(H are exactly similar.

%

The contribution (call it aRm(‘?*) } to the uﬂ” due to forcing

- terms ingide R is given by
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The proof that the first two integrals behave like the fundamental solu~
tion with coefficient given by the integral of the forcing terms is quite
easy, but the last integral may offer some difficulty. To avoid being |
pedantic we shall consider only this last integral. The technique for
treating the first two will then Ee obvious. Thus we are saying that the

difference
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(A-2)

The left-hand side can be written as
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where, according to the mean value theorem, ‘p 1 l <l Now the last
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(A-4)

The integrals exist and are independent of ¥ . The derivatives go to
Zero, as ?‘* approaches infinity, at least as fast as ?* -3/ 2, which
is a faster decay than the decay of the fundamental solution. This com-
pletes the proof of equation A-2. As stated above, the first two inte-
grals of equation A-]l can be shown to have a similar asymptetic be-‘
havior. ' |
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Now that we know the behavior at infinity of ug, vp, Pp. itis -
a simple matter to compute their contribution to the drag. %ut we
showed above that the resulting drag can be made as close to the real
drag as we please by choosing R large enough. This pr@ea that the

method used in seetion IX is correct.



