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Abstract

An attempt is made to derive and to solve the Schrodinger equation in the
low energy region (vacuum, first excitation etc.) of the lattice. The complete
orthonormal basis in the physical Hilbert space is constructed by classifying
independent solutions of the Gauss' law. Loops of electric flux are chosen as ele—
mentary variables. The loop space Hamiltonian is derived, an ansatz is made for
the low~energy wave functionals and the Schrodinger equation is solved in the

(truncated) loop basis.

The resulting physical picture for the Yang—Mills vacuum in the cross—over
region is that of, still quite dilute, gas of fluctuating loops. The glueball in this
formalism looks like a local inhomogeneity in the loop distribution. A definite
candidate for the confining force emerges: the repulsive non—Abelian loop-loop
interaction (rather weak but persistent) generates an effective external field
("external pressure”) prohibiting unbounded loop size fluctuations. The negative

sign (repulsion) is universal for all compact groups.
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Introduction

The basic aim of High Energy Physics is to understand what the fundamental
constituents of matter are and how they interact with each other. Among the
well-known strong, electromagnetic, weak and gravitational interactions, the
latter three have been rather well understood, at least in a certain limit (lowest
order, classical etc.). But the solution of the strong interaction problem still
eludes the physicists. The only realistic candidate field theory of strong interac—
tions that is both renormalizable and consistent with the known symmetry pro-
perties of the hadrons is Quantum Chromodynamics (QCD). It is unambiguously
defined and is capable of describing qualitatively the experimental data. How-
ever, even more than a decade after it was first proposed, we are still far from the

full quantitative understanding of the theory.

QCD is a gauge theory describing the interaction between spin %— quarks and

massless vector gluons. The difficulty in constructing reliable computational
methods stems from the fact that though the interaction is weak at short dis—
tances, a property known as asymptotic freedom, it grows strong at long dis-
tances. The expected physical spectrum should consist not of free quarks and
gluons, but only of color singlet bound states — candidates for hadrons. In high
energy expériments,—:at large enough momenta where the coupling is weak
enough to make the quark—-gluon language adequate, one can use the standard
renormalization group improved perturbation theory to calculate the predictions
of QCD, and these do agree reasonably well with the experimental results. But to
make sure that the theory is correct as a whole, one has to solve the problem of
how quarks and gluons turn into hadrons as the coupling becomes stronger at
lower momentum scales. It is an intriguing and unsolved problem, as to whether
or not the theory construéted locally has the right global non—perturbative pro-
perties. To analyze this problem, quantitative non-perturbative methods are

needed: methods, where the approximations can be controlled, and where there
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exists the possibility of improving the calculation by increasing the computa-

tional effort. .

The existing non—perturbative methods like the large N expansion, the
mean field technique and instanton calculations provide some qualitative
understanding of non—perturbative phenomena, but they do not provide results
which can be directly compared with Particle Data. On the other hand, Monte—
Carlo techniques on the lattice, although numerically successful, are still unable
to give good insight into the dynamics of the gauge fields, at least with the

current computing power.

This work is an attempt to compromise and to interpolate between the qual—
itative and quantitative techniques, and to develop a semianalytic approach to

the quantum field theory formulated on the space—time lattice.

Even in the absence of quarks, QCD is a highly non—linear and complicated
field theory of gluons interacting with each other. Phenomena such as confine-
ment are expected td be present in a simpler theory than QCD — the pure Yang-
Mills field theory. The study of the pure Yang—Mills gauge theory is a natural first
step towards the understanding of the non—-perturbative aspects of QCD. In this
work the Yang—Mills theory is used as an example on which the semianalytic

technique is developeq. The method has been described in [13].

Our strategy in the semianalytic approach is to reduce first the gauge sys—
tem to physical variables — this can be done analytically to a large extent — and
then to solve numerically the reduced ""physical” problem. Proceeding this way,

one can hope to get both numbers and intuitive understanding.

The natural route to the physical degrees of freedom is via the Hamiltonian
formalism in the temporal gauge. To get rid of the residual time-independent
gauge symmetry, one has to extract the physical Hilbert subspace, which is

accomplished by imposing and solving Gauss' law.
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As the first .ste'p in this program, we have classified the independent solu-
tions of Gauss’' law, and we have constructed the complete orthonormal basis of
states in the physical Hilbert space. Next, an attempt has been made to solve the
Schrodinger equation for the 0** glueball mass, using two different computa-
tional methods. The first method, simpler, more computer—oriented, is based on
the idea borrowed from the theory of the Mathieu equation in non-relativistic
quantum mechanics. This method has numerical difficulties and problems with
stability, which are caused by various infrared infinities (volume effects). Using
the Mathieu—like method as a guide, we tried next to construct a more realistic
computational scheme, with the volume effects factored out by means of the
appropriate ansatz for the wave functionals (cluster expansion in the loop
space). The latter method is used to calculate the 0** glueball mass in SU(2)

gauge theory.

Chapter 1 contains a general overview of the Yang—Mills theory and a brief
discussion of the relevant non—perturbative methods. In Chapter 2 the descrip-
tion of Gauss' Law is presented and the complete orthonormal basis is con-
structed. Chapter 3 presents an attempt to solve the Schrodinger equation and
to calculate the 0** glueball mass in the Yang—Mills theory, using the first com-
putational technique. This chapter also describes the sequential and concurrent
computer program toﬁproduce states in the Hilbert space. Chapter 4 contains the
description of the second method, presenting both a general formalism as well as
an intuitive explanation of factorization. The fesults of calculation of the 0**
glueball mass in the Yang—Mills theory are presented in the last part of chapter

4. Chapter 5 contains conclusions.
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1. Introduction to Lattice Gauge Theories.

1.1 Yang—Mills Theory.

Yang—Mills theory is defined on the classical level by the following lagran—

gian:
L =—é—t'rF',wFl“’, (1.1)

where
D,=08,—-194,, (1.2)
A =AgT®, (1.3)
Fu=0,4, - 08,4, —ig[4,.4,]. (1.4)

A/, is the vector gauge field. T® are the SU(2) gauge group generators, conven-—

tionally normalized to the delta function :

tr ToT® = 1590 (1.5)
The theory is invariant under local SU(2) gauge transformation:
‘ - 1 i,
Az) > Uz )4 (z)0 N z) + _'Lg(a’“‘Q(x Na-Yz), (1.8)

where Q(z ) is SU(2) matrix.

It is expected that only the singlet sector of the theory is physically relevant,
i.e., that all physical quantities like spectrum, scattering amplitudes etc. are
gauge—invariant, whereas all higher representations of the gauge group have
infinite energies and they are absent on the list of observables (the phenomenon

conventionally referred to as ""confinement' of the gauge degrees of freedom).
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1.2 Quantization of the Classical Field Theory.

Once the theory is formulated on the classical level, it can be quantized by
one of the standard methods. The most elegant way of quantization is through

the Feynman Path Integral formalism.

Let S [¢] be the action of a classical field theory :

S{¢] = [dzL(¢(z)), (1.7)

where L(¢(x)) is the lagrangian of the theory and ¢(z ) represents all the fields

in this theory. The integration is carried over the whole space~time.

The quantum amplitudes are calculated by averaging the classical expres—
sions over all field configurations, weighted with the exponential of the action.
E.g., in units h=c=1, the vacuum—-to—~vacuum transition ("'generating func-

tional") takes the form:
Z = [d[g]esIel, (1.8)

and the quantum vacuum expectation value of an operator 0 [(/)] is given by :

[dl¢] 0[p]essIe] |

<0[¢]>= fd[gb] eiS(¢]

(1.9)

The complex measure in the formulas (1.8—1.9) oscillates very rapidly
around the classical value of the action. There is a large amount of cancellation
between the interfering phases, and most of the contribution comes from the
integrals with stationary phases. This is more easily understood after perform-
ing the Wick rotation to imaginary time {-17, which defines the theory in the
Euclidean space. The complex phase is transformed into an exponentially
damping factor, and the resulting Euclidean field theory becomes equivalent to
some well-defined problem from statistical mechanics. After the Wick rotation

the formula (1.9) takes the form :
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[dl¢l0[p]e~SI¥] |

<o[¢]>= Talg) ot

(1.10)

1.3 Lattice as an Ultraviolet Regulator.

The Feynman path integral as defined in Eq. (1.8) has ultraviolet divergences
which must be regulated. One of the methods, particularly useful in the low-
energy region is to replace the continuous Euclidean space by a discrete lattice.
Consider the regular hyper—cubic lattice. The lattice unit is denoted by "a', the
lattice point by 'n,#=('n, 1,M2,73,74). The Fourier transform of a function f(n)

defined on the lattice is given as:

f(p)=atLe®ref(n). (1.11)

The function }(p) is periodic over p* = 271/a; therefore, the momentum values

can be constrained within the first Brillouin zone :
-n/a sp,sT/a. (1.12)

Thus, the lattice provides for a cutoff in the momentum space.

The lattice regularization destroys the Lorentz invariance of the theory
which, according to common belief, is expected to be restored dynamically in the

continuum limit a -0 {3].

Given the continuum lagrangian, there is a natural way to define the field
theory on the lattice : scalar fields are defined on points, vector fields, on links

of the lattice, and derivatives are replaced by finite differences :

0uf (z) = Auf (n) = 1/a(f(n+u)-f(n)), (1.13)

where u is the unit vector along the u direction. However, this definition does
not preserve the gauge symmetry of the theory. The local gauge invariance is an

intrinsic part of the dynamics, and hence we want to retain it while formulating
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the theory on thé lattice. For this reason, it is convenient to work with the man-—
ifestly gauge—invariant quantity — connection, i.e., the exponential of the

path—ordered line integral of the gauge field 4 ,(z),
2
K(1,2) =exp[ig fd:z:'“A#(x) ]. (1.14)
1

As shown by Wilson et al. [1], the gauge invariant lattice theory can be formulated

in the natural way in terms of these connections between adjacent lattice sites,

Uun),
Uy(n) = e 924udn) (1.15)

rather than directly in terms of the gauge fields A ,(x). Here 4, are the group
matrices in the adjoint representation, and the variables U ,(n) live on links
going from the site n to the site n+u . The gauge invariant action is defined in

terms of closed loops of link matrices. The simplest choice is,

S[U]=8 ¥ Spiag s (1.16)
plags
Splag = Elﬁ-tr(U”('n)U,,(n +u) U (n+v)U ;N (n) + he.). (1.17)

Here g is the coupliﬁg constant. The sum in Eq. (1.16) is over all the plaquettes

and the trace in Eq. (1.17) is taken around a single plaquette.

The action defined in Eq. (1.16) is explicitly invariant under the local gauge

transformation by a unitary matrix V,, in every lattice point :
Uun) = VU n)Voile, (1.18)

The action in Eq. (1.168) respects maximally the symmetries of the lattice: it
is invariant under 71/4 rotations and lattice translations. It is also invariant
under parity transformation and charge conjugation, but it breaks, as was men-

tioned before, the Lorentz symmetry.
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The action ('1.16) expanded in terms of the lattice constant " a " should
reproduce the continuum action of formula (1.1). This leads to the following

relation between S and g :
B=2N/g?. (1.19)

With the above definitions the Feynman path integral in Eq. (1.8) takes the

form :

Z = [TIaU u(n)e bS], (1.20)
U

1.4 Continuum Limit of the Lattice Gauge Theory.

The pure gauge theory has no dimensional parameters but the lattice spac—
ing "a". The correct dimensions of all physical quantities calculated in such a
theory must be constructed out of powers of "¢'. For instance, the physical
mass Mgy, the mass calculated on the lattice 74440 and the lattice spacing "a"”

are related through the following formula:

m .
Mpp, = __la;twe ) (1.21)
When the theory approaches the continuum limit a -0, ™M, must tend to 0
in order to keep the physical mass constant. It is known from statistical physics
that the inverse of the correlation length £ is equal to the value of the mass cal-—
culated on the lattice. Thus, the relation between the physical mass and the

correlation length is the following:
1
Mpp = _f a (1.22)

The formula (1.22) shows another important feature of the lattice gauge

theory. When the theory is close to the continuum limit, the correlation length
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goes to . Thus, the lattice system approaches the second—order phase transi-
tion. The hope is (and there are some insights from the Monte—Carlo calcula—
tions [6,7]) that Yang—Mills gauge theory on the lattice has only one phase tran—
sition with a - 0, g - 0. At this point the lattice theory is the continuous Yang—
Mills field theory. In the vicinity of the critical point, the coupling constant and
the lattice spacing ""a'’ should obey the general scaling equation from perturba-—

tive Yang—Mills theory [16] :
B(g) = a-2g(a). (1.23)
da

In general, the B(g) function depends on the renormalization scheme, but

the first two terms of its expansion in terms of g are scheme—independent and

are :
B(g) =Bog®+ B19®+ -, (1.24)
where
1 11N
= -, 1.25
Bo=Tgz ~3 (1.25)
1 o 34N°?
= ; 1.26
B1=( 16172) 3 (1.26)
and N is the number of colors.
The last three equations allows us tb solve Eq. (1.23) for " a '
1
a = 3= (%80 **® eap(~1/(2605%)) . (1:27)
where
Ao = -2B_ Ao - 200MeV (1.28)
0= 575 OF e '

The Ap is the integration constant [4,5] and Ap for SU(3) theory is determined



from experiments.

From Ecis. (1.22) and (1.27) we can derive the correlation length as a func—

tion of the coupling constant :

£= 72:" (gzﬁo)—p‘/(zﬁ&)exp(1/(213092)) , (1.29)

where My, is the physical mass.

1.5 Calculational Methods in the Lattice Gauge Theories.

Most of the calculational methods in the lattice gauge theories come from
statistical physics. The essential elements of the Monte—-Carlo simulations, mean

field techniques and strong coupling expansion, will be discussed briefly.
a) Monte—Carlo simulations.

At present, Monte—Carlo simulation is the most powerful technique for the

quantitative study of the lattice gauge theories.

For any operator 0 its vacuum expectation value is defined as:

<0>= %fd[qS]O(qb)e‘S[‘ﬂ : (1.30)

On a finite lattice this is a well-defined problem (finite—dimensional integral)
but, even on a relatively small lattice, like 10% for SU(2) gauge theory, there are
120,000 independent variables to be integrated over. This huge multidimensional
integral can be calculated numerically by summing over randomly generated
field configurations. But, due to the Boltzman factor e~°, the integrand changes
very rapidly, and with naive (flat distribution) random sampling one would gen-—
erate most of the time—irrelevant field configurations. The important confi-

gurations should be generated with the probability distribution [17]:

P([¢]) ~ eS8l (1.31)
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With this "importance sampling’ the integral (1.30) takes the form:
<0 >= ;1!-20[951] , (1.32)
$,

where M is the number of generated field configurations. The statistical errors of

these calculations decrease like Vlﬂ (modulo volume effects).

" In Monte Carlo method some quantities such as the string tension or the qq

potential can be calculated relatively easily.

The string tension is defined as the coefficient K in the "area law'' :
<W > ~ e 9K (1.33)

where W is a rectangular Wilson loop with the edges of size, respectively, J,/.
When the theory approaches the continuum limit, the string tension should scale
like 1/a? . Figures 1 and 2 show results of the Monte Carlo calculations of the
string tension for the SU(2) and SU(3) gauge theory [6,7]. These pictures were
intentionally chosen to present calculations on relatively small lattices , where
the correlation length in the "scaling window'" must be of order of few lattice
units. In our approach we consider the rapid onset of scaling in the Monte—Carlo
calculations as a kind of " experimental data” about the low—energy behavior of
the lattice Yang—Mills theory, and we try to build a more analytical calculation

scheme, based on this observation.
b) The mean-field technique.

The mean-field method is a well-known procedure in statistical physics
[18]. It is a quick, easy method to obtain some information about the system,
and in many cases it works well in predicting the existence and location of phase

transitions.

In the mean—field analysis one concentrates on a single link in the partition

function. The effect of all other links is replaced by a mean~field value A, which
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is taken to be proportional to the unit matrix. In this approximation the action is
reduced to:

Slel=3% Splag = 2*(d—1)*A3(trU“,,+h.c.) (1.34)
plag

+ terms independent of U, ,

where U,w is the SU(N) matrix on the link under consideration and d is the
number of the space time—dimensions. The consistency requirement is:

1

N <%(trU,w + h.c.)>=A. (1.35)

Solution of this equation allows us to determine the phase transitions of the
theory under consideration. For simple spin models, the predictions of Eq.
(1.35) agree quite well with the known phase transition points. For SU(2) and
SU(3) gauge theories, where no deconfining phase transition is expected to occur,
it is hoped (and there are indications for that) that the phase transition,
predicted by the lowest approximation, disappears after including systematically

higher—order effects.

The mean—field method has not yet become a new quantitative method in
lattice gauge theorieg, although it provides a very crude overall picture of the

cross—over region (strong—coupling » weak coupling transition region).
¢) The high temperature expansion.

The high temperature expansion is a systematic expansion in l/g2 , starting
from the exact confining solution at g = < . The idea is to derive a reasonably
long series for the physical quantity in question and then to extrapolate this

power series towards the continuum point g = 0 [19,20].

There are two equivalent ways to do the high temperature expansion. The
first is by expanding the path integral in Eq. (1.20) in terms of l/g2 . The second

is the standard perturbation theory in the Hamiltonian formalism. This type of
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expansion will be.discussed in the following chapters.

The h'igh’temperature expansion in the Lagrange formalism is slightly aside
from the main stream of this work, and it will be discussed only briefly on an

example of the calculation of the Wilson loop operator <W(C)> .

The Boltzman factor in Eq. (1.30) is a class function on the group SU(N).

Thus, it can be expanded in a character series:
trU_ + h.c.
UVt he) = 530, 60(8) Xr(Up) (1.36)
-

where d, denotes the dimension of the representation r. The orthogonality rela—

tion for characters allows us to determine the constants 8, :

JaUx(SURA0) = 223, (5) . (1.37)

r

The Wilson loop <W(C)> is the trace of the product of group matrices U/ along
the curve C. The lowest order of the expansion is given by the configuration with
the minimal area of the Wilson loop covered by plaguettes. Thus, the Wilson loop
in the lowest order will be proportional to some (g dependent) constant raised to

the power of the area of the loop :
<W(C)> = C ~orea/a* (1.38)

This shows that to lowest order, the high temperature expansion gives a confine—
ment phase of QCD [8]. The higher orders of the expansion are obtained by

building more and more complicated surfaces over the Wilson loop.



2. Description of the Method.

2.1 General Idea.

The goal of this work is to develop a semianalytic method for low—-energy
calculations (vacuum, mass gap) in SU(2) gauge theory and to apply it. Semi-
analytic technique requires keeping track of a large number of variables. For
this reason, it is essential to reduce the number of fields in the theory to a
minimal possible set. It is also convenient to have variables that are mostly

linearly independent.

The lattice gauge theory, as presented in Chapter 1 (Section 2), has many
degrees of freedom that are redundant, and they may be eliminated from the
theory. The first step on the way to reducing the number of variables is to pass
from the Lagrangian formalism to the Hamiltonian formulation and to get rid of
the time dependence. The transition to the Hamiltonian language is realized by
fixing the gauge 4 =0 (temporal gauge). The theory still has the residual gauge
freedom in 3 spatial dimensions; i.e., it is invariant under the time-independent
gauge transformations . This freedom is removed by restricting the Hilbert space

to the ""physical sector", given by solutions of Gauss' Law.

It is very difficult to solve Gauss’ Law in-the basis of eigenstates of the vector
potential |4 >. Itis rﬁore natural to use for this purpose the electric field basis|
E >, where the requirement of the gauge invariance imposes simply the con-
tinuity condition of the flux lines. The | £ > basis also has another nice feature:
for large coupling constant g , the gauge theory is in the electric confinement
phase and electric fluxes are stable. On the other hand, the vector potential A
fluctuates very rapidly in this region. When g—-0, the electric flux starts to fluc—
tuate and more and more degrees of freedom are activated in the |F > basis. The
hope, supported by the Monte~Carlo calculations (Chapter 1), is that the corre—
lation length is still reasonably small in the region of g where the scaling

behavior sets on. This leads to the expectation that fluctuations of the electric
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flux are moderate in the "scaling window' and |£ > can still be efficiently used as
a basis for calculations.

In the electric flux basis it is possible to choose variables, closed loops of

electric flux, such that they automatically obey Gauss’' Law.

The structure of this chapter is the following:
Section 2 :Derivation of the Hamiltonian for the SU(2) gauge theory in £ basis.
Section 3: Solution of Gauss’' Law.

Section 4: Possible choices of basis variables.

2.2 Derivation of Hamiltonian for the SU(2) Gauge Theory.

Derivation of the Hamiltonian for SU(N) gauge theory was first done by
Kogut and Susskind by using the standard prescription for canonical quantiza-
tion [2]. We present here another method based on the transfer matrix formal-—
ism. Most of this section is valid for any SU(N) gauge theory. Only in the last part

of the derivation we use some special features of SU(2).

The starting point is the action for the SU(2) gauge theory in Eq. (1.16):

S=-3 2N(To~(UUU+U+)+h.c.), (2.1)
palgs

where
U = g~gad” (2.2)

In the gauge 4 ;=0 all matrices in the time direction are one { U¢=1 ). Thus, the

action in Eq. (2.1) can be divided into two parts:

-- % & he)— 5 o
S = pmqZS)WZN(TT(UUU+U+)+h.c.) pza%;MZN(TT(UUJr)JFh'C')' (2.3)

Summation in the first term goes over all spatial plaquettes (these which do not

have any link pointing in the time direction). The second sum goes over all
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plaquettes which have a link pointing in the time direction. In general, 8 and £,
(coupling in the time direction) can be different. They are related to the original
coupling constant g, spatial lattice spacing a , and time lattice spacing a,

through the following relations :

agl2N

B=—"r, (2.4)
ag

Bo azfg
g

To find the Hamiltonian, one needs to define a Hilbert space on which the
Hamiltonian acts, and to derive an explicit form of the Hamiltonian in this
space. The Hamiltonian is an operator that transforms a system in time between
two infinitesimal time slices. The corresponding discrete operator, which
transforms in the time direction between two adjacent configurations on the
lattice, is the transfer matrix, often used in statistical physics. The transfer

matrix is defined through the equation:
Z = fdUeS = TrT¥ | (2.5)

where Z is the vacuum—to—vacuum transition amplitude in Eq.(1.8), M is the size
of the lattice in the time direction. In the limit ay—0 the transfer matrix is

related to the Hamiltonian A through the infinitesimal relation:
T =e % = 1— quH . (2.6)

The space of states for the Hamiltonian is constructed as a tensor product of
single link states |g ,nu> parameterized by group elements geSU(N ) on every
link, @ , the direction of the link, and n=(no,nz,ny,nz), the vertex from which
the link comes out. In this space, one can define two useful operators: the
representation operator GLg , and the group multiplication operator D. The

representation operator, acting on the state Ig,'n,y,> multiplies it by the
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representation matrix in the representation 7 :

Ghglg mu>=Ros(g) lg.nu>. (2.7)

In particular, for 7=f= the fundamental representation, we have

R £ﬂ (g )=Uaﬁ(g ). The group operator, D, realizes shifts in the group space:
D(h)|g.nu>=|hg nu>. (2.8)

The explicit form of the transfer matrix will be derived from Eq. (2.5) by
inserting between every pair of adjacent T operators the full spectrum of states
in the three—dimensional lattice (|g > represents the tensor product of states in

3D space) :
Z =Tr(T..T)= [dg'dg, - <g'|T|gy> - <gy-1IT|g'>. (2.9)
The above relation together with (2.3) implies that :

1 1
——Shn _S (gn 'gn + ) _-—Shn +
<G| T I gne1> =€ = Mo~ 2T (2.10)

where Spp, is the action in 3-D space (fixed time slice), and Solg no,gnoﬂ) is the

single bit of action in the time direction. Equation (2.10) suggests that the

operator T 'should be-constructed out of two different operators. The first one,

1s
2% L3N

acting on state Ign‘> (|gnn+1>), should give the part of the action e

1
~-5S nt
(e 27k '). This operator acts only on the space links. It can be constructed by

replacing all U by G in the first term of Eq. (2.3) . The second operator, which

) °(g"n'g"o+

1)
should produce action in the time direction (e ), acts between two sub-

sequent 3D configurations, shifted by one lattice unit in time. It can not be con-

=S D(gun’gn"" 1)

structed in this simple way. The term e is a class function on the

group; thus, it can be expanded into the character series:

e—so(g.o.y..oﬂ) - 1 Eeﬂ;xr(g_’('no)g (no+1)). (2.11)

n=n,n,n,r
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The f, is a numerical coefficient and is calculated in Appendix A.

To proceed further, one defines the projection operator A:

AT = d, [dgx(g)D(g). (2.12)

where d, is the dimension of the representation. It is easy to see that the matrix

element of the operator A" between two states [gno o Ing+1 18 :

<Gn AT | gn+1> = dpxr (97 (n0)9(no+1)). (2.12a)

Projective properties of A" together with Eqs. (2.11) and (2.12a) lead to the fol-

lowing form for the e™% :

=S (gn 'Fn +1) -Eﬁ; A'
g "M =<gn,le T Igno+1>' (2.13)

Thus, the final operator form of the T matrix can be written :
1 1
—=V -Lv
T=e 2 ehe 2" | (2.14)
where V represents S ;, with U matrices replaced by G operators, and

A=-YBiA,. (2.15)

As already discussed, the basis |g,nu> — the vector potential basis (denoted
by IA > in Section 2.1) — is not very convenient to solve Gauss' Law, and it is
better to Fourier—transform it to an electric field basis |7,a8,nu>(denoted by

|E > in Section 2.1) through the following transformation :
|7.0B,nu> = va, fdg Rig(g™4) | g,np> . (2.16)

In this basis operator A is the Casimir operator for the SU(N) group, and

operator V is the rising/lowering operator in the representation space.
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The final step to get the Hamiltonian is to take a—0 limit in Eq. (2.14). The

result of this operation for SU(2) gauge theory is the following :

) 2
T _ e——a-’- (-F;T(Tﬁ-l) +'§§S,) ,

(2.17)
where Sp is the action for a given time slice. The first/second sum in the Eq.
(2.17) runs over all links/plaquettes. The Hamiltonian can be extracted from the

Eq. (2.17):

H = ——'—2—27'(7'+1)~+~£ES3J ) (2.18)
ﬁ 4 2 P

2.3 Solution of Gauss' Law.

In the electric flux basis every state on the lattice | ¥> is a tensor product of

|r,a8,nu>! on each link:
I
| ¥> = lEﬁFa‘,é,,a,ﬁ,,--- [21,0081, 41> | L2, 0282, apte> - - -
a

where the product is over all sites and the sum is over all indices laf. The func-
tional F' is yet unknown. Gauss' Law in the operator language demands that a

state on the lattice must be invariant under local gauge transformation :

(TIUn,a )| ¥> = |¥>, (2.19)

where |\I'> represents a global state on the lattice and Q(n,a) is the gauge sym-—
metry operator acting at the vertex n with the group element @ . In the |r,a8>
basis the operator Q(n,a) acts by multiplying each link outgoing from vertex n
by the representation matrix R7,(a) . Suppose first, for simplicity, that each

vertex has only three outgoing links instead of six . Let V,g,(n) be the function

! From now on we will use the shorthand notation |7',&> to label the states in the | £ >
basis.
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which is used in vertex n to contract indices (V is the part of the functional #').

Then the state | ¥> can be written as:
[¥> = |l,aa;> |m,BB1> |1, 771> Vagy(n) | Yo, (2.20)

The indices ay,3;,7 are connected to the remaining part of the state — | \I'alﬂ‘71>.

The operator ((a,n) acting on link variable |l,xa;> multiplies it by
R! _(a), the representation matrix. The condition in Eq. (2.19) implies that the

function Va,g,, in each vertex must obey the following relation :

a%nyla(a)Rg‘ﬂ(a)R;‘y(a) Vagy(n) =Vyg,(n). (2.21)

The Eq. (2.21) is valid for each value of a. Thus, it can be integrated on both sides

over the whole group:

Jda R (a) RE® R (a) Vagn) = Vg, (). (2.22)

Using the Clebsch—Gordon coefficients, the left—-hand side can be reduced to :

[da iR 1838 RE (@) Ry (@) Vagy(n) = Vg, (n). (2.23)

The representation matrices R;‘,}, are orthogonal; thus, the formula (2.22) takes

the form :
TUk F&BS Okn 04y Oyy Vagy(n) =V 5. (n), (2.24)
and
TERfEBY Vagy(n)) = Vg, (n) . (2.25)

In the last equation f{F"V,g,(n) has all indices contracted and it can be
regarded as a constant. Thus, the form of the function V in case of three links

going out of each vertex is:
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Vagy =C fiB7. (2.26)

Applying the same argument at each lattice site we can reduce the whole func-
tional ¥ to the product of Clebsch—Gordon coefficients with the indices «,f
attached to appropriate states I'r,cxﬁ>. In consequence, any physical state is
fully specified by the representations /,m,n. The numbers [,m,n obey the tri—

angle inequality at each vertex:

l+m—mn20, m+n-120, n+l—-m=20.

The construction in the real 3—-dimensional space is very similar to the
example presented above. The structure of the vertex in this case is presented in
Fig. 4. Every vertex has four Clebsch-Gordon coefficients and three new vari—
ables called "'r"". Again all the variables should obey triangle inequality for every

Clebsch—-Gordon Coefficient, as pointed in the picture.
Tu+T,—71,20, v #p. (2.27)

The description of the physical state is in terms of a set of variables {13,
representations in links, and supplementary variables { 7 |, which reside on ver—

tices.

2.4 Possible Choices of Basis Variables.

As pointed out in the previous section, the state can be uniquely described
by the set of variables { {1},{r] }. The only flaw of this parameterization is that one

must keep track of the triangle inequality when the state is constructed.

There is a way to visualize global aspects of the triangle inequality con—
straints. One can draw a vacuum diagram combining elements from Fig. 4b,

according to the following rules:



-22 -

1) each black dot has three white neighbors,
2) each ivhite dot has two whites and one black,
3) each loop contains at least four blacks.

One then draws a triangle around each dot with the edges equal to appropriate
values of [ and 7. Since any two adjacent triangles have a matching edge, all
edges match somehow, and we obtain as a result the closed trangulated surface.

This surface is in the one—to—one correspondence with the set of variables [ ,7.

In the continuum limit §-+« , when all triangles fluctuate (I, >>0), the sur—-
face can be very complicated. For small 8 the surface collapses to very simple
structures; e.g., the temperature vacuum (all /,7 are zero) corresponds to a sin—
gle point, one excited plaquette — to a single edge etc.. In the intermediate f8
regions, [,7=0,1,2 with rapidly decreasing amplitudes for higher excitations, the
surface probably has a structure of independent bubbles of size a few lattice

units.

The triangle inequality (2.27) can be resolved locally by the following change

of variables:

Ty =fz:y + fzz» Ty =fry +fyz' Tz =fyz + fez- (2.28)

The flow variables f are now non-negative, independent integers.

Introduction of the flow variables admits a natural hydrodynamaical intui-
tion, we will use throughout this work. Imagine a vacuum diagram in Fig. 5a,
defining the physical states, as built from pipes filled with quantized liquid
(integer flow lines f). The pipes are connected at vertices in such a way that all

three flows are possible.

By introducing the flow variables, one shifts the constraint from the vertex
to the link where it is required that the flow lines continuously connect adjacent
vertices. The above requirements can be easily fulfilled by introducing closed

loops of electric flux. One can realize various admissible configurations of the
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l,r field by injeciing closed loops. of unit electric flux into the network on Fig. 5a
in all possible ways. The fluxes [, are derived by counting the loop lines flowing

in corresponding pipes.

Any set of variables { {r},{l} ]} obeying the triangle inequality can be loop-
decomposed. The decomposition is not unique. In consequence, there are zero
modes in the loop space, activated when loops touch or overlap. (Two simple
examples of possible degeneracies are given in Fig. 12a.) The existence of these
modes is a quantum effect — one cannot measure simultaneously all shape
details. What can be measured depends on the convention . With our choice of

the vertex (Fig. 4a), the good quantum numbers are:
a) number of flux lines going through the vertex without changing direction,
b) number of flux lines changing direction.

The flow decomposition of the vertex constraint in the way presented above
looks special to the SU(2) case, but is in fact a general procedure, applicable to
any compact group. Actually, it is equivalent to a certain graphical convention of
representing the familiar Young tableaux algorithm for decomposing tensor

products. For details see [13].

2.5 Hamiltonian in the Physical Hilbert Space.

The formalism described in the previous sections is very useful in semi-
analytic lattice calculations. The number of variables is reduced drastically.
Originally, any state was described as the product of |7,a,8> on each link con-
tracted in o, with some unknown functions in neighboring vertices. Gauss' Law
implies that the vertex functions are determined by the group theory so that we
can effectively forget about the variables o,8 . They are contracted with the
Clebsch—Gordon coefficients, which in turn can be regarded as built into the
structure of the léttice in every vertex. The whole calculation can be carried out

without explicit reference to the Clebsch—Gordon coefficients.
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We now derive the action of the Hamiltonian on a given physical state on the
lattice. The procedure is presented graphically (Fig.5b—9) on example of the
action of the plaquette operator V, on some general state on the lattice. (The
term A in the Hamiltonian is diagonal in |7,af8> basis.) To derive the formula,
one starts by pulling out a plaquette (on which operator Vp acts) from the net—
work, with all attached pipes. Fig. 5b presents a convenient planar way of draw—

ing all pipes in such a way that no lines intersect. The plaquette operator Vp act—

ing on links multiplies them by G ,g(g ) contracted around the plaquette. This is
marked by a dotted square in Fig.6 . Using the tensor product decomposition
formula one reduces products of representation matrices on each link and one

obtains the result as in Fig.6 [9] . This corresponds to the following chain of

identities:
6% |n.uv> = G verfdg Rp(g™) o> =
= vazfdg Ri(g "R Z,(9) 1 g> = (2.29)
= \/‘—l’_z fsa:f:ﬁp Jdg R%(g) 19> = NIy fm fupi, lw,o0> .

Zwop

The dotted lines in the picture are in the fundamental representation, whereas

the fat lines indicate that the representation on a given link has been "excited"’,

i.e., raised/lowered by oneunit ([ - ' =1 + —é— ). All 24 = 16 contributions are

summed over. Using the orthogonality of 3j symbols, one performs further
reduction as indicated in Fig.7 . The final resuit, displayed in Fig.8, is that, going
around the plaquette, all 12 pipes are excited and all 12 vertices get one-loop
corrections. The vertex loop diagram can be reduced to the bare 3j vertex times

the constant (which is the Wigner symbol), given by an appropriate contraction,

as in Fig.9.
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The final result is:

Vpl Lr>= EP}-(8132)| l+31,7'+5‘2>, (230)

5,8,
where s;,S2 = + 1/2, raising/lowering applies to each of 12 pipes building the
plaquette (hence the sum in Eq. (2.30) contains 2!% = 4096 terms) and the
amplitudes P}(ss3) are given (up to a sign) by the product of 12 Wigner symbols,
one per each of 12 vertices around the plaquette. The general formula for the

amplitude P} is given in Appendix B.

The number of terms in Eq.(2.30) is rather depressing. In practice, however,
for low loop densities only a few terms in the sum are non—zero, all others being
eliminated by the triangle inequalities. It is only in the very asymptotic limit

B - oo, with all pipes full of flux, when all 4096 terms are alive.
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3.The Linear Approach.

3.1 Solution of the Schrodinger Equation.

We have shown in the previous chapter how to construct the physical Hilbert
space and how the Hamiltonian acts on physical states. These are our basic tools,
which facilitate the low—energy calculations in the SU(2) gauge theory. There
are at least two possible choices of basis in the Hilbert space: the description with
the set of the local flux variables [, 7 and in terms of the closed loops of electric

flux. In this chapter the first method will be used.

It was also shown that the Hamiltonian consists of two parts: A, which is
diagonal and V, given by the sum of the plaguette operators Vp raising and
lowering the flux representations on links . This property of the operator V', can
be used to construct an algorithm to generate states in the physical Hilbert
space. The algorithm is as follows. First, the operator V,, acts in different places
on empty space (all 1 and r equal 0) and produces one—plaquette states. We call
these states the first generation. Since all one—plaquette states are translation-—
ally or rotationally equivalent, it is enough to keep only one representative (a
plaquette in some randomly chosen place on the lattice). This state will be

described as [1>.

Next, the operator Vp acts on state {1>, and it produces several two plaquette
states (or empty space). Again, some of these two plaquette configurations are
translationally or rotationally equivalent. For every different class of states only
one member is kept. This state is denoted as |2i> , where i labels the equivalence
classes. All two plaquette states are called the second generation (in general, all
n—plaquette states are called n—th generation). Acting with the operator Vo
again and again, we construct states with higher and higher numbers of pla-

quettes. In this way one can generate (in principle) the entire Hilbert space.
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Our goal is to calculate glueball mass 0** . For this reason, we can restrict
the above construction to states transforming as singlets under translations and

cubic rotations of the lattice.

The state is uniquely described by its generation (n), its number in this
generation (i) and its physical position in space. The position in space of a state
can be parameterized by an element of the symmetry group of the lattice. The
mapping between the group and the positions of the state is performed in the

following way:

a) the position of the representative of the class to which the state belongs is

assigned to the unit element of the group,

b) the position of any ot.her state from this class is described by that element
of the group by which the representative should be transformed to coincide
with the state. The above parameterization is not one—to—one. To make it
unique, the position of the state in space is assigned to the element g of a
coset of the rotational-translational group modulo the symmetry group of
the state. Using this language the state i from the n—th generation in posi-

tion g will be described as |n;,g >.

The one plaquette state | i> , which is singlet under translations and rota-—

tions, is defined in the following way:

11>= 3 |t.g>, (3.1)
9€G,

where g is an element of the one plaquette coset. The general n—th generation

i—th state invariant under rotations and translations is:

In>= 3 [nu.g>. (3.2)
g¢G,

The generic 0** state |¥> can be expanded as follows:

[¥> = Yfnl >, (3.3)



- 28 —-
where fnt are coefficients, to be determined from the Schrodinger equation:
H |y>=E |y>. (3.4)
According to Eq. (2.18) the Hamiltonian can be written as :
H=A+7V (3.5)
Combining Egs. (3.4) and (3.5) one obtains the following formula :

A+V)|y>=FE |v>, (3.8)

which together with Eq. {3.3) gives :
(A + V)E_fn‘lﬁi> =FE Z_fnJ 'ﬁi> s (3.7)
n,: n,
Since the operator A is diagonal, we have, finally:
D An | N> + T VN> = Tfn E | 2> . (3.8)
n,t n,i n,i

The Eq. (3.8) will be used as the basis for subsequent calculations.

The equations for the wave functions fn‘ are constructed by multipling both

sides of Eq. (3.8) by different states |n;> .

The first equatio-h is obtained by multipling Eq.(3.8) by the state of pertur—
bative vacuum <0 I (empty lattice ). As it was pointed out earlier, the operator V
can change representétions on plaquettes only by 1/2. Thus, the only states for
which the scalar product <0|V | 7;> is not zero, are states | 1> . The first equa~-

tion takes form :
Kofo + <OV |1>f1 =E f,. (3.9)
Since Ap=0 (no flux), we get simply:

O|VI|I>Hi=E fo. (3.10)
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The second equation is obtained by multipling Eq. (3.8) by state < 1 |. In this
case only states from the second generation and state [0> give a contribution to

the V term in the Hamiltonian :
AfL+ <LIV[0>Fo+ X fa<l|V |2> =E fy . (3.11)
i

Following the above procedure, one gets an infinite set of linear equations

for unknown functions £, fn‘. This system can be made solvable by truncating it

to n generations and by neglecting in the equations for the n—th generation all

functions f(n+1), . For example, if calculations are made only up to the third

generation, the equation for the three—plaquette function f3‘ looks as follows :

Agrfz’ + <2] | V|i>f1 + ;<2]|V Iéi>f2¢ = E le N (312)
Asfs, + 2<3;|V 12> fo,=E f3, . (3.13)
2

Calculating f3 from Eq. (3.13) and inserting it into (3.12) one gets :

<2: |V 18:5<%|V |25
7 1 L v
Az fa, — 2,

ik A3 —FE + <2V |1>=Ef;. (3.14)

Taking into account Egs. (3.10) and (3.11) with some algebra, one gets the final

equation for energy :

£ <0|V |1><1|V]0> ) (3.15)
- <LV ]2 ><2 |V ]1>
BELS SYan
<2V I3><3,. |V I2,>
lE"Az,—E LI I k kl ' i

- E—As,

The last equation can be generalized to n—th order by performing further itera—

tions in the denominator (following Aa,) .

The Eq. (3.15) is the n—th order algebraic equation for £ . Its lowest solu—

tion gives the vacuum energy; the next lowest solution is the first excitation.
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Obviously, the accuracy of the solutions depends on the number of included gen—

erations.

The last equation is very similar in structure to the Mathieu equation in
non-relativistic quantum mechanics [10], so it is useful to describe the method

used to solve the Mathieu equation in more detail.

3.2 The Mathieu Equation and the High Temperature Expansion.

The Mathieu equation describes a continuous Abelian spin in a homogeneous

magnetic field. Tuning parameters in the appropriate way we get

1 a2
5 d¢2F(¢) + 2Bcos¢F () = EF(¢), O0<¢s2m (3.18)

In Fourier space

F(¢) =3 e"¢r, , (3.17)

r

the Mathieu equation takes the form of a finite difference equation in integers:
r2
( "E""’E )Frzﬁ(Fr+l+Fr—l)- (3.18)

The standard method of finding normalizable solutions of Eq.(3.18) is the
following. Let us consider, e.g., the even solutions

Fo=F_, . (3.19)

Defining

Gy = , E=Be, wv.=7%, (3.20)
we get the recursive formula for the "Green's function” G

Cr = — , (3.21)
_._t-_;_l;. + & - G”'+1




with the initial condition
26, =¢. (3.22)

Since the normalizability implies G,. - O for 7 - «, we are allowed to reiterate the

recursion in Eq.(3.21). We get

—é—a= o L 1 (3.23)
F+8— V2 1
—B—5+8_’U3 1
—_— & -
B? 4

and similar infinite fractions for G,'s.

The last equation is very similar to Eq. (3.15). The difference is that in the
Mathieu equation the coefficients are numbers and in Eq. (3.15) the coefficients
are matrices. If we consider a lattice which consists of only one plaquette, then
Eq. (3.15) would have the exact form of the Mathieu equation. Thus, the differ—
ence between the equations arises because of operator V acting in different

places on the lattice.

Despite the differences, one may get some insight into the exact solution of
the Eq. (3.4) from the solution of the Mathieu equation. The standard method to
solve the Mathieu equation is by truncating it at some level 7. The accuracy of
the solution depends on the ratio of the potential and kinetic terms at level 7

(In the case of Eq. (3.15), the ratio of £ —A; and the remaining sum on the third
level of the extended fraction.).
It is well known that the truncation method to solve the Mathieu equations is

very efficient. But in the case of Eq. (3.15) it might not be so, because of the

spatial dependence of coefficients.

It is interesting to compare the above numerical method with the "high

temperature” expansion, i.e., the perturbation expansion in powers of 8. This



expansion, done up to the third generation in Eq. (3.15), gives for the vacuum
energy the following formula:

_n3(B% _ 11, g7 1t
F=n3(E -« By oooi6z 1), (3.24)

where 7 is the size of the lattice.

Very similar eipansion can be done for the first excitation . The difference
between the vacuum energy and the first excitation gives the value of the mass
gap:

SRS -&3 (3.25)

m=23
g 105 8

Both Egs. (3.24,25) can be equivalently derived from the standard perturbation

theory in the Hamiltonian formalism.

The high temperature expansion leads to similar truncation in Eq. (3.15) as
the method to solve Mathieu equation — indeed, each new ""floor” of the fraction
contributes an additional power of 8°. However, the "high temperature' series
for the Mathieu equation has only a finite convergence radius due to complex
singularities, whereas the same truncation followed by the exact solution of the
truncated equation can produce numerical results with arbitrary preassigned

accuracy for any value of B, if only 7, is chosen appropriately.

The lesson from the Mathieu equation is that the high temperature expan-
sion might be a good pguide as far as the relevant configurations are
concerned.Oﬁe may try to perform the indicated truncations (r<7, in the
Mathieu case, loops ¢ of size 0<0 in the Yang—Mills case) — but then to solve as
precisely as possible the truncated system, instead of power expanding and fac—

ing usual convergence problems.
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3.3 Computer Program to Produce States and Calculate Matrix Elements.

The cbmputer program produces states generation after generation using
the algorithm described in the previous sections, (i.e., by acting with the opera—
tor ¥V on the lattice). Each new state is checked against a current list of states. If
the state is distinct from those already on the list, it is added to the list; other-
wise, it is forgotten. In both cases, the contribution to the coefficient
<(n+1)¢ |V | 7>, "on line"” with generating states, is calculated using the for-
mula from Appendix B. Thus, the computer program, calculates also all numbers

which are needed in Eq. (3.15).

The program was implemented in sequential version on a VAX11/780 and in
parallel version on Mark II (5 MHz) Caltech/JPL hypercube [14]. We present the
parameters of the sample program, producing states up to the third generation

on 43 lattice in Appendix C.

3.3.1 The Sequential Implementation.

The exact algorithm implemented on sequential the machine is
1. Generate a new state
2. Compare state with current list

3. If state is distinct from those already on list, add it to list; otherwise, return

to step 1.
One can abstract f,his as a data base problem by mapping the steps into:
1. Generate a data base query

2. Examine data base to see if query satisfied. We define success to be that

state (record) already exists; failure that state is new.
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3. Add new record to data base if query fails; otherwise, return to step 1.
The data base consists of a set of records with one record per state.

The performance of the algorithm on the concurrent processor will natur-
ally depend on such parameters as the size of the data base; time taken to gen—
erate query; time taken to compare the candidate state (query) with a single
record in the data base. Thus the design of the concurrent algorithm must be
based on the specific problem at hand. We consider here a particular example,
namely, the production of the third generation (k=3) of states for a4 x 4x 4 lat—

tice.

3.3.2 Concurrent Implementation

This subsection describes the implementation on the Caltech Mark Il hyper-
cuﬁe which consists of 32 8086—-8087 based nodes with the 5—dimensional hyper—
cube geometry. The system has a separate 80B6 based controller in which the
control process runs. The algorithm does not depend on the particular machine
architecture and will work well on any MIMD architecture with large grain size
(reasonable memory per node) and ability to send messages between processors.
Suppose we have a total of N nodes in the concurrent processor (excluding the

control processor).

The problem is decomposed in a simple fashion storing N equal fractions

(1/N) of the data base in each node. The algorithm is as follows:

1a) Control process sends to each processor the information necessary to gen-
erate the next group of states or in our more general language a group of
queries. These 20-30 queries correspond to actions of the operator V on all

second generation states.



1b)

2a)

2b)

3a)

3b)

3c)

3d)
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Each node empties its message buffer and accepts the message from control

process.’.
In each node, we loop over queries in this group.

Each query is first checked to see if it is referenced in a message buffer
corresponding to another processor, having found it in its local data base.

(See steps 3a, ¢).

If this check fails, we compare queries with the records currently stored in a
given node. This is identical to sequential algorithm but corresponds to a

data base that is 1 /N of the size.

If the query is successful, a message is sent to all processors indicating this
so that they may terminate consideration of a query corresponding to this

state.

If the query is unsuccessful, the node either moves to the next one or stores
record corresponding to a new state if a simple hashing algorithm deter—
mines that this new record (state) is to be stored in this particular node's

data base.

At any time, messages may be received from another processor. This mes-
sage can concern either the current query, a query already considered or a
future query. In the first two cases, appropriate action is taken — which
might require deletion from the data base of a past state whose query failed
in the current node but which was later found in a data base stored in
another node. If the message concerns a future state, it is stored in a buffer

to be used in step 2a).

A message is sent to control process when the node finishes the given group
of queries. When the control process receives N such completion messages,

it moves on to the next group.

The steps above are labeled so that, for instance, 1a and 1b of the con-

current algorithm correspond to step 1 of the sequential case in Section 3.
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Essential features of the concurrent algorithm are

. The generation of states (queries) is done in every node; i.e., no concurrency

is achieved in this step.

The nodes operate asynchronously on groups of queries and so achieve
approximate load balancing that averages over fluctuations in query com-—

parison time.

. A message is sent as soon as a query succeeds in a given node, and the other
nodes can therefore immediately terminate any current or future com-—

parison of this query.

. The algorithm not only uses in an essential fashion a general message pass—
ing system but also ensures that receipt of a message interrupts the node
processor. This is necessary to easily process possible termination of
current query. The relevant software was built in terms of the message

passing operating system IDOS built internally at Caltech [15].

We ran the concurrent algorithm on the 32 node machine, producing states
up to the third generation on the 43 lattice. We found that the program ran with
the efficiency of 60%. Clearly, the algorithm will perform better as the size of the
data base increases. In Appendix D we present the full analysis of the perfor—

mance of the algorithm.

3.4 Problems with the Linear Approach.

The Eq. (3.15) can be used to calculate exactly (not through the 8 expansion)
the vacuum energy and the mass gap. In Fig. 10, we plot a typical solution. The
straight line in this picture represents the left—hand side of the Eq. (3.15). All
the other curves correspond to the right-hand side of the Eq. (3.15) plotted as a
function of energy £'. The interesting value (mass gap) is given by the difference

between points b and a.



This approach has two problems which will now be explained. The vacuum
energy must be proportional to the volume of the lattice. In Eq. (3.15), the first
numerator <0|V |1><1|V|0> is proportional to N3 as expected, which implies
that the whole denominator in 3.15 should be of order of 1 (¥ independent). It is
possible only if the huge O(Na) numbers: £ and the rest of the fraction cancel
out to constant terms. In numerical calculations the fraction 3.15 is truncated
somewhere. This introduces an error, which can spoil the whole calculation,
unless the truncation is done for a high enough generation. Calculations for very
high generations are impossible because of the large number of produced states
(up to the third generation, on the 4*4*4 lattice, the number of states is 820, but
in the fourth generation, on the same lattice, the number of states rises to

40000). That is why the cancellation should be done exactly and analytically.

The second problem, related also to the first one, is that the distance
between the numbers a and b in Fig. 10 is very small and it goes to 0 when
increases. We face the same difficulty as before: two huge 0 (N 3) numbers can—

cel, when subtracted up to a constant term, being the actual result (mass gap).

Within the formalism developed in the next chapter, the above mentioned
difficulties are removed since all volume effects are canceled analytically. The
Schrodinger equations to be solved are finite; i.e., they contain only N indepen—

dent terms.
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4 .Factorization.

4.1 An Intuitive Explanation of Factorization.

At the end of the last chapter it was pointed out that the linear approach has
troubles with cancellations of the volume effects. This cancellation can be done
analytically using the ansatz for the wave functions, motivated by the cluster
expansion techniques in statistical physics. The method will be first described

intuitively on the simplest example of states up to the second generation.

We divided these states into two groups (Fig. 11). The first one consists of
states which are single loops of electric flux. The second one is the set of two pla—
quette! states. The operator V,J acting on one plaquette state may produce a
single-loop state (with the transition amplitude 1/2) or a two—plaquette state.
In the latter case the transition amplitude is Y3/2 if the plaquettes touch each

other and 1 otherwise.

In the previous chapter each state from the second generation has its own
coefficients in the formula (3.3). For states that are loops this will not change.

But for states that consist of two plaquettes, the wave coefficient Sz, can be

decomposed in the following way:

fo,=f1 )1 +}2,~ (4.1)

The Eq. (4.1) is based on the assumption that the state 2, consists mainly of two
independent plaquettes. The second term in Eq. {(4.1) takes into account that the
plaquettes interact when touching each other. The coefficient }2‘, called the
connected wave function, is expected to decrease exponentially with the distance

between plaquettes.

lin this chapter we will use the word plaquette to describe the smallest loop on the lattice with
representations 1/2 on its links.
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The ansatz idea is to rewrite Egs. (3.10) to (3.12), decomposing the functions
Sz, as in Eq. (4.1) and performing analytically the cancellations of disconnected
pieces (like ff; in Eq. (4.1)). In consequence, we get rid of all volume effects and
we obtain the system of equations for (finite) connected amplitudes }',-. Because,
in general, the functions }' are smaller than f, neglecting them in the last
equations introduces a smaller error than the negligence of the corresponding f
functions. This is one of the advantages of factorization. The same type of fac—
torization can be made for states with an arbitrary number of plaquettes. The

general formula for factorization will be shown in the next section.

We illustrate the procedure on a simple example of the first two equations

(functions fg and f;). Equation (3.10) has the form:

<0|XVILg>fi=E fo. (4.2)
g

The coefficient <0 |}V | 1,9 > is equal to 3N 3, because operator V. acting on the
g

emptly space gives a one—plagquette state with coefficient 1, and the sum over g
goes over all plaquettes on the lattice. Thus, the Eq. (4.2) can be rewritten to the

form:
Mfi=F. (4.3)

In the last equation ¥ = N3, and fp=1.

The Eq. (3.11) has the form:

Alf1+<1|V|O>f0+Ef2‘<l|VZIzi’g>=Eflr (4.5)
i 9

which can be simplified to the form :

MAi+1+E<UV T |2u9>f2=E fi. (4.6)
i g

Using the ansatz (4.1) for the function fzt one gets the formula :
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Afi+ 1+ T<UV B 1209 >fifs + D<UIV B |209>F5, = Efy . (4.7)
(3 g 1 g

In the last equation the terms £ f; and Y,<1|V 3, | 2;,9 >f,f1are proportional to
1 g

the volume, whereas the term }.<1|V Y |2;,9 >}g‘ is finite (connected ampli-
U g

tude).

The states contributing to the coefficient Y<1|V 3 |2;,9 >fif1 can be
1 g

divided into two groups. The first one contains all states in which two plaquettes
touch each other (Fig. 11). For these states, the coefficient that arises when the
operator V, acts on them is either 1/2 when the state is a loop, or V3/2 if a state
consists of two independent plaquettes. All these states are confined to the finite
volume around state <1|. The volume contains 33 plaquettes (Fig. 12b), and it
will be denoted by ;. All other states (i.e. those with disconnected plaquettes),
contribute the coefficient 1 multiplied by M —(Q; (the volume of the lattice
excluding the plaquette positions in which the coefficient is V3/2). Thus, the

term },<1|V Y | 2;,9 > can be written as :
i g

<V ¥ |2ug >fifi = L <1V I|2u9>fufi + (M—Q)fif1 (4.8)
i 9

g€Q, i
or

LUV X |2ug >fifi =5 L (<1|VI|21,9> — )fify + Mfify (4.9)
@ g

1 geq,
Combining Egs. (4.7) and (4.9) one gets:

A,_f1+1+Z)2Q(<111/'|2,;,9v>—1)le°1 (4.10)
i geq,

+ D<UV T | 209 >fa, + Mfify = E f1 .
i g

From the Eq. (4.3) £ = M f;, thus terms M f,f, and E f| cancel each other. Finally,



the Eq. (4.10) takes form:

Afi+1+73 Z{:}(<1|V|2¢-,g> — D)fifs + <LV £ [24,g>f2= 0. (4.11)
i geq, 1 g

As seen, all large volume effects disappeared: the disconnected piece ff; is to be
summed only over the finite "'excluded volume"'.

It should be pointed out here that the above factorization procedure
changes the system of linear equations into the nonlinear one. The generaliza—

tion of the above procedure will be presented in the next section.

The second problem of the linear approach encountered in the preceding
chapter is the difficulty in distinguishing two different soiutions of the Mathieu
equation. The way to solve this problem'is to write separate equations for the
mass gap. Solution of this problem will be again intuitively explained on the

example of equations for the first two functions.

The Eq. (4.3) for the first excitation can be written in the following form:
Mfe, =QcFy, (4.12)

where the subscript G denotes the first excitation and (); — its energy. The func-—
tion 7 is the high temperature vacuum component of the glueball wave func—

tion.

The Eq. (4.5) for the glueball takes the form :

AJG1+F0+ZfG.<1|VZ |2.,'_,g> =chc‘. (4.13)
i t g

In the glueball case, the factorization of the wave function starts from the one

plaquette amplitude:
Je,=NiFfo+Fy. (4.14)

In the last equation capital F stands for coefficients of the factorized wave



functions and f; is the coefficient for one plaquette state in the vacuum. An
intuitive explanation of Eq. (4.14) is that the plaquette in the glueball can either
be a plaquette from the vacuum (coefficient f{F;) and the glueball is in the
ground state, or a plagquette from the glueball (coefficient F{) and the vacuum is

in the ground state.

Very similar factorization is carried out for two plaquette states:
f08‘=Fg‘+2f1F1 +F0f2‘. (4.15)

In the last equation the first coefficient (Fg') tells that both plaquettes are from

a glueball. The second (2fF ) states that one is from the vacuum and the other

one from the glueball. The last coefficient (Fufz‘) tells that both plaquettes are

from the vacuum. The factorization for two-plaquette loops is the same as for

one plaquette.

Combining Eqs. (4.12) and (4.14) one gets :
MfiFo+MF,=QgFy. (4.18)
From the Eq. (4.3) M f, = £ ; thus,
MF | =(Q¢—E)F,. (4.17)

The difference (Jg—F (energy of the first excitation minus vacuum energy) is the
mass gap and it will be denoted by M. The Eq. (4.17) can be rewritten to the

form :
MFl =mcF0. (4.18)
Combining Eqgs. (4.13,15) one gets:

(A —Qe )(f 1F0+F1)F0+Zl: (FoFotF2)<1|V ¥ |2;,,9> (4.19)
g

+3(Fa+2/F 1 +Fofp)<1|V Y [2,9>=0,
i g



where subscript 2; refers to states with two plaquette loops.

In the Eq. (4.19) one can separate the following part :

Fo((Al—Qc)f1+1+;f2,<1|V Y 121,9>+3 o<1V ¥ |2,9>) . (4.20)
9 7 g

This part is the vacuum Eq. (4.6) with £ substituted by Qg . Thus, the whole

(4.20) part equals :

Fo(E —Q¢)fy = —Fomefi - (4.21)
Taking into account (4.18) the (4.20) part can be simplified to :

FolE _“Qc)fl = —MFf; . (4.22)

Thus the Eq. (4.19) takes the form:

—Mlel'F(Al—‘QG)Fl‘F;Fg,(l | |4 2 |2;,g> (423)
g
+Z(F2‘+2f1F1)<1 | |4 Z |2‘i.’g> = 0.
i g

In Eq. (4.23) the coefficient },2f1F <1|V 3} |2,,g> can be treated in the same
1 g

way as in Eq. (4.9), which gives:

2f1F12<1|VE |2,;,g> = 2f1F12 ZO(<1IV|2‘L’9 >—1)+2Mf1F1 , (4.24)
i g 1 g€,

where (Q; is the volume (33 plaquettes) around state <1|. Thus, the Eq. (4.23) can

be written as :

(AI_QG)FI + ZF21<1 | vV E |2l,g> + ZF21<1|V 2 |2i,g> (425)
L g i 9

+ 2f F ), 2(‘,)((11V 3 124,9>—1) + MfF =0
1 g€, g9

In Eq. (4.25), the term M f;F | can be combined with the term —QgF; . From the



vacuum Eq. (4.3) Mfi=F . The above two terms give —mgf"; . The final form of

the first equation for the glueball is then:

Ay—mg + L F <1V ¥ [2,,9> + TF<1|V 3] |2,,9> (4.286)
L 9 i 9

+2A T D (<L|V T 209> — 1)=0.
1 gen, g

The normalization in the last equation is chosen so that # ;=1 . This choice is
convenient for comparing results with the high temperature expansion. The Eq.
(4.28) does not contain any coefficients that are of the order of the size of the

lattice. The coefficient };F 3 <1|V }]|2;,g > is small because F'3 exponentially
i g

decreases when the distance between plaquettes increases. Equations for higher

functions can be constructed in a similar way.

4.2 Numerical Results for the Glueball Mass Using the Simple Formalism of Fac—

torization.

In the similar way as in the previous section we derived the equations to cal-
culate the glueball mass numerically . All required numerical coefficients were
produced by the computer program described in Chapter 2. The calculations
were carried out up-to states with correlation length less than 3. The states
taken into account were those which have at most three plaquettes different
from zero and such that the biggest distance between separate plaquettes was

"a" (one lattice spacing). Examples of such states are shown in Fig. 15.

To get the mass gap for a given 3, first the vacuum equations for functions]‘
were solved. Then the functions } were used as input in the equations for glue-
ball and functions F' and m; were calculated. The calculations were made for

ranging from 1 to 2.25. The results are shown in Fig. 16,17,

In Fig. 16 we plotted the logarithm of the mass gap versus . The line 1

presents scaling formula (1.29) for the physical mass, with the value of the
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lattice mass calcﬁlated in Monte—Carlo method. The shaded area shows the shift
of the line 1 due to statistical errors in the Monte—Carlo technique. Our results
for the glueball mass, in different approximations, are presented by curves 3-5.
The line 3 is the value of the mass calculated using only the loops from the
second generation. The curve 4 shows results which contained all loops up to the
third generation. The line 5 was obtained by also including two plaquette states.
For comparison we also plotted the mass gap obtained from the high tempera-

ture formula (3.25) (curve 2).

The Fig. 16 shows that the solution in our semianalytic technique improves
when including more and more states. The slope of the line 5 in the region of
change 8 between 1.8 and 2 is close to the slope of the line 1. The result for the

glueball mass is in the range 120 — 200 (170 + 30 from Monte—Carlo).

In Fig. 17 we plotted the values of the wave function coefficients versus § for
different types of states. The picture shows definite hierarchy between states.
The coefficient of the plaquette is always bigger then for any other loop. This

confirms that neglecting bigger loops is legitimate.

In all performed calculations the dominant part of the result for mg came

from terms in equations such as 213 Y (<1|V|2;,g>—1), a term in Eq. (4.26).
1 geq,

4.3 The General Formalism of Factorization.

The general forrﬁalism of factorization is constructed in the electric flux
loops basis. In this basis one can introduce raising L (g ) and lowering L,(g )
operators.The operator L 4 (g ) acting on state |¥> adds to it an electric flux loop
of shape 0 and in position g. The operator L ,{(g) subtracts the loop. The

g = (R | n) is a pair of:
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n  lattice vector specifying loop position,

R cubic rotation, describing the geometrical orientations of the loop, with one

point fixed at ..

Physical states containing one, two, etc. loops, injected into the high tem-—

perature vacuum (empty network) are denoted as follows:

lo.g>, |0102.9192>, -

where 0's describe different loop shapes.

For every one—loop state one introduces a vacuum wave function coefficient
fo. For every two—loop state the wave function coefficient is the connected func-
tion }aia',(gl’gz) where 0, is the shape of the first loop and 05 is the shape of the
second loop. The g; and g» denote the positions of loops in space. In general, the

connected wave function coefficient for a n-loops state is }01 - a,(gt s gn).

With the above definitions one can define operator I' as follows:

Y=ol L g) + 5 Yfool9u92)Li(g0L i g)+ - . (4.27)
o g 0,03 919
F=vyt -y (4.28)

The definition 4.27 is very similar to the definition of operator W generating
connected graphs in the conventional field theory. As in the perturbative case
all graphs are generated by exponentiation of I Thus, the operator which
creates all states on the lattice is el. This operator acting on the empty lattice

(state |0>) produces the exact vacuum state |C> as follows:
[ 0> = eT|0> . (4.29)

The state |()> is our ansatz for the exact physical vacuum. The requirement of
the translational and rotational invariance of the vacuum state essentially res-

tricts the possible g dependence of the loop amplitudes. We have
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fog) =7s, (gindependent ), (4.30)
}ola,(g 1,92) =}'o,a,(g itgz), etc. (4.31)

Since the l()> state is an eigenstate of the Hamiltonian, then
H|0>=F|0>. (4.32)

The E is the vacuum energy. Definition (4.27) assures that the norm is

preserved:
<0]0>=<0]0>=1. (4.33)

Combining Eqgs. (4.29) and (4.32) one gets

Hel|0> =F ef|0o>, (4.34)
or
glo>=E|0>, (4.35)
where
B=ecTH el (4.36)

For the zero momentum 0** state (glueball) one introduces operator X *:

1
X+=3F2Li(g)+ 52 EFor(91:92)L3(g1)L3(ga)+ -+ . (4.37)
a g 0103 919¢

In Eq. (4.37) functions F' are the connected wave function coefficients for
the glueball. Operator X* acting on the perturbative vacuum state | 0> produces

glueball state [G>:
|G> = elX*|0>, (4.38)

or



|G>=eX*e T|0>. (4.39)

The intuition behind this construction is very simple. The operator el simply
pumps loops of electric flux into the empty network in all possible ways. The
singlet conditions assure that the resulting medium is globally homogeneous,
with "local” fluctuations described by the loop amplitudes. How local they are
depends on the acfual correlation length, or, equivalently, on the characteristic

loop size.

The operator X T(g) generates local inhomogeneity by injecting extra loop (or
loops) around g . The operator el assures that the medium far from the glueball
looks exactly as in the vacuum. The zero momentum 0%+ condition imposes the
same restrictions on the glueball loop amplitudes; i.e., the local inhomogeneity

might happen everywhere in space with the same probability.

The state |G > is the first excitation eigenstate of the Schrodinger equation:
H|G>=Q¢lC>, (4.40)

where (); is the first excitation energy. Taking into account 4.38 and 4.40 one

gets :
eTBxX+]0> = eN([B . X*]+X*8) 0> = (4.41)
= e"([B.X*] + X*E)|0> = QgefX*|0>,
or |
[B.X+] 10> =meX*|0>. (4.42)
Denoting X = e~TX el the Eq. (4.42) takes the following form:

[H.£%] 10> =meK+]0> . (4.43)

Both Eqs. (4.35) and (4.43) can be used to produce an infinite set of
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equations for the vacuum energy £ and the mass gap mg.

Taking the scalar product of Eq. (4.35) with state <0/, one gets:
<0|8|0>=F . (4.44)

This is the only equation that contains explicitly the size of the lattice and that
can be produced from Eqs. (4.35) and (4.43). In all other equations the lattice
size dependence is factored out by operators ﬁ and x? and commutator [H ,y] It

is the general way of factorization of the volume effects.

So far the whole formalism is completely general. To proceed further, we try
to follow intuitions coming from the analysis of the Mathieu equation. The high

temperature expansion would suggest:
fa,a, KfeX1, (4.45)

i.e., small loop density and negligiblé correlations. One may therefore try the
ansatz (4.45) without power expanding. In other words, we say that the loop den—

sity is small, correlations marginal, but nothing is expected to be analyticin § .

Instead of f, we use the loop amplitudes f, as expansion parameters.

Expansion of the effective Hamiltonian ﬁ
ﬁ=H—[F,H]+%[F,[F,H]]+--- (4.46)

generates a series of connected "local” n-loop vertices, where "local” means that
the non—-zero contribution from the nested commutator comes only from the

loop configurations with at least one common plaquette, touching all n loops.

The simplest vertices emerging in the expansion are

Pgr==<al|l[7*P ]| 0>, (4.47)

1
Q

<eg|[rtH [P ]1]1 0>, (4.48)

O

J o, T, Ty
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[a',cr,,'r,‘r, = % ( <0402 I T1T2> — 92(601715%.,.2 + 60,1',60,1', ) ) ’ (4-49)

where () = volume of the space group S = 48 x space volume. The states |0'>,
| 7> etc. are obtained from | 0,9 >, | T,g > by summing over all loop positions g.

The normalizationis < 0 | T > = 84, Q.

The quantity P, is the single loop deformation amplitude: loop 7, deformed
by the plaquette operator P goes into loop 0. We derive it using formula from
Appendix B and multiplying the resulting product of the Wigner symbols by

appropriate geometric factors.

To derive the vertex JU,.,.‘T', one expands commutators and, using the fact

that single loop states are always orthogonal, one gets
1
Jo.-rl‘r, = 6( <0iP 1717'2> - Qz(da-r,‘s'r,l + 607261'11 ) ) ’ (4.50)

where T =1 is the plaquette loop. There are two typical contributions to the
vertex J: one comes from the decay process Fig. 12c; the other one, present only
for non—Abelian groups, is due to the touching interactions. E.g., consider the

case Ty =0 # 1, Tg = 1. Theresultis

Jq_,,,l = ( %ﬁ- — 1) x geometrical factor .

Hence, the connected amplitude for creating a plaquette from the vacuum in the

v
"external field" of the loop o is always negative. The factor 3 comes from

2

touching (see Fig. 12b), whereas the subtraction is due to the fact that the com-—
mutator measures only the departure of a given transition from the factorized
value. A new plaquette can be created anywhere in space with unit amplitude and
this trivial ("infrared"”) singularity is subtracted in Eq.4.50. The subtraction
affects, however, the final value as well. Intuitively, we may say that the loop ¢
repels the plaquette. This repulsive force turns to be of crucial numerical impor—

tance.
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The interaction IU;%‘QT. is due to the loop zero modes. Indeed, as seen from

Eq.(4.49), I measures the departure from the uniqueness of the loop decomposi-
tion. Non—zero contributions come, e.g., from the loop configurations of Fig. 12a
Hence, the effect of loop zero modes can be represented by additional interac—

tion vertices (with four or more external loop lines).

As usual in the case of connected Green's function expansions, one can for-
mulate the diagrammatic interpretation (Feynman rules) of the resulting for—
mula. Pictorial conventions are presented in Fig. 13 . The loop potential v, is

given by
Vs = 3 X loop length (in lattice units ). (4.51)

All higher vertices appearing in Eq.(4.46) are of / or J form with an increasing

number of external lines; e.g., Ja‘a',,.l.,' in Fig. 13 is given by

%«rlogl[ T T3 H 1] 0> (4.52)

0,09 T Ty

The Schrodinger Eqs. (4.35,42) are presented in Fig. 14a. They have the form
of an infinite coupled system of Bethe—Salpeter—type equations with calculable

vertices and with differentiation (kinetic term) replaced by loop deformation.

4.4 Calculations up to 3 Correlation Length.

The ""Mathieu method” for solving this system, where we try to mimic the
procedure of building the infinite fraction, is the following. First, following the
finite loop density ansatz, we neglect all n—loop correlation functions for n > n,
(n, = ?). Then we proceed recursively, iterating equations downward, i.e.,
expressing always more complicated correlations (with larger n) by simpler
functions, to end up with effective ""'renormalized” equations for one loop ampli—-
tudes }'a,Fa. E.g., for n, = 2 the procedure is as in Fig. 14a. We first derive two-

loop functions fﬂtaa’FU.O‘a , as indicated in Fig. 14b and we insert the result into
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the first equation. We get one—loop equations with the Feynman loop corrections,
renormalizing the deformation amplitudes P,, (in the vacuum, we also get J

vertex renormalization at this order) — see Fig. 14c.

Hence, by varying n, we can control the renormalization effects ""from the

top"”. Starting at n, = 1 with only the global contours of the bound state,
sketched by the loop shapes, we can then go inward, asking for more and more
granular structure, with 7, tuned appropriately to the size of external probe.
The renormalization effects organize indeed in the form of an infinite fraction,
with the Mathieu nested denominators being the energy denominators in the
nested loop corrections. It is quite opposite to the conventional renormalization

in continuum theory, where we start ""from the bottom" with so detailed a

microscopic description that we do not see bound states at all.

Technically, the Feynman loops diagrams are as they always are: momentum
integrals over some energy denominators, in our case given by the spectrum of
the "bare' single loop Hamiltonian H ,, (corrected for the scattering effects) —
see Fig. 14c . Loops propagate by a chain of successive deformations. The calcu-
lations are, however, more complicated than in conventional perturbation theory
since, when dealing with the extended virtual objects (loops), we have to sum
both over translational and rotational degrees of freedom and over the full spec—

trum of H 4.

We tried first the simplest case n, = 1; i.e., we have neglected all correla—
tions. In principle, there is nothing that prevents more extensive calculations -
in particular we have already worked out all necessary rules for dealing with
loop—loop diagrams, based on the representation theory of thé lattice symmetry
group. Everything is calculable - it is just a matter of human and computer

time.

The explicit form of the equations we used is:
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vacuum energy density:

~ o~ o~

E 13 1
To N Ifl h —é- ( JTI'Ts"'s + ‘1% ITsz'Tal )ijTst + o (453)

vacuum equations:

Vg = 1 ~
ﬁ_gfo=1601+Parfr+ (4.54)
1 1 P
+ 2 ( JU,TIT, + J-r,.‘r,a' + J‘r,,'rlo + 4 I-r,a,‘r,l )f‘rj‘r, + e

glueball equations:

v ~
(ﬁ_g_A)Fa=(PU7+EUT(f))FT’ >\=%m0, (4.55)
Ecr‘r(f) = ( ']rr,‘r'r; + J'r,on + 'é" ([crn,-rl + Irn.al) )}n + - (4.58)

(all repeated loop indices are summed over).

The approximations are rather drastic: we have neglected all correlations,
and we included only a few powers of }a (3 for the vacuum density, 2 for vacuum
equations, 1 for the glueball Hamiltonian). The point, however is that, even with
so naive input, we get on return some non-trivial information about the non-

Abelian loop dynamics.
We solve Eqgs. (4.53,56) as follows:

a) loop basis is generated and truncated at a certain value of ¢, = surface in
lattice units. The actual calculations were performed with all loops up to o,
= 3. There is one loop with o, = 1 (plaquette), 4 loops with ¢, = 2, 34 loops

with ¢, = 3. We draw all of them in Fig. 15 .



b)

c)

d)
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deformation amplitudes P and vertices /,J are derived, partially analyti-
cally (SU(2) content), partially numerically (geometrical multiplicity factors

due to the loop shapes by computer program).

the vacuum equations are solved numerically. It is a system of 39 nonlinear
inhomogeneous equations, with, however, rather moderate nonlinearity

(loop amplitudes }' are small). We start with the high temperature result for

"small 8 (8~ 0.1), and then we go in small steps in f, using the standard

iteration method (matrix Newton with the solution at given 8 used as input

for the next step). The convergence is very fast.

using the derived vacuum loop amplitudes we calculate and diagonalize the
effective glueball Hamiltonian (Eq. (4.56)). We then select the smallest

eigenvalue and, starting in the cross—over region, we look for the scaling

' signal

-
mo(ﬁ) = /~L037°e A, ’ (4.57)

with 8, , 7, given by the standard weak coupling renormalization group.

This is the basic numerical procedure, which, after adding enough powers of

}', correlations, quarks, strings, changing SU(2) to SU(3) etc., is expected to

return as (1, the low energy QCD spectrum.

Our results, in the region 2 < 8 < 2.5 are as follows:

The loop amplitudes are small, as expected, supporting the ansatz of the

dilute loop gas. Typical values for 8 2 are :}'051 0.1, }q‘,:a 0.05, }%:3 0.02.

The mass gap is very sensitive to the vacuum corrections to the effective

Hamiltonian. The dominant terms come from the J vertex. The leading contri—

bution is diagonal, i.e., modifying the loop potential:

Vg > Vg = Vg = 2B W g.0nfr + 0(F2). (4.58)
T
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Since J's are negétive, as discussed, potential is increased by the "external field"

contributions, which is the similar term to 2f ;) ) (<1|V|2;,9g>—-1) in Eq.
1 geq,

(4.28).

With the correction term switched off, the mass gap vanishes around 8 = 2.
This seems to be the usual Abelian phase transition: the potential term v, and
the _kinetic term P ,,, being both of order of the loop length, effectively cancel at
a certain value of 8. The potential is not strong enough to bind the loop size; the

entropy of loop deformations wins and the loops blow up.

Now the touching interaction enters. Even if small (proportional to }0)1 it
plays crucial role because of cancellations in the original Hamiltonian. Since the
sign of correction is always positive, the touching interaction keeps the mass gap

small and positive.

The value of u,(B) in Eq. (4.57), expected to be constant (i, = 170+ 30 from
Monte Carlo [12]), actually moves between 100 < u, < 200, depending on partic—
ular approximations (we played with Egs. (4.53,57), switching on/off various
pieces like loop decays, zero modes etc.), to blow up finally to either plus or

minus infinity beyond § & 2.5.

We havg, nevertheless, learned something. It seems that the "external pres—
sure' due to the touéhing interaction does the job, stabilizing the loop system,
but one should calculate it more precisely than we did. Only the linear term has
been included, which‘ is against any numerical rules of the game, once the

"correction” turns out to be, in fact, the leading effect.

An optimistic observation is that the loop zero mode contributions (/
interaction) are rather marginal, which supports our choice of variables. The
reason is purely combinatorial: the ambiguities arise only for special geometrical
configurations, whereas touching is much more extensive and geometrically

enhanced.
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Whether the ktouching interaction is the mechanism for confinement in our
language or just one of many contributions, accidentally dominating in this
region, is obviously an open question, requiring more accurate calculations. It is
nevertheless amusing that the sign of the effect is well defined, that it switches
on in the right beta region and, finally, that, in a similar way as the sign of the
beta function, our sign is also negative due to infrared subtraction, just a little
bit larger than the original, positive definite quantity. The amplitude for touch-

ing is always less than unity, since there is another open channel-deformation
\/g 2 1 2 _ . . . " "
((—é—) + (—2—) = 1; see e.g., Fig. 12b). This suggests the "Sudakov formfactor

interpretation: the whole effect sums up to unity but, being reshuffled between
various energy levels, it generates some kind of unitarity damping for large loop

fluctuations in a given level.
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5. Conclusions

This work contains the proposal for the semianalytic lattice loop calculus
useful in the low—energy sector of the Yang—Mills theory. The formalism can be
extended to any SU(N ) theory and, in particular, it can be applied for Quantum
Chromodynamics, after including quark degrees of freedom. As a first applica—
tion, the method has been used to calculate the mass gap (0** glueball) in the
Yang—Mills theory. The formalism seems to be very promising. It provides both
numerical results and some understanding of the dynamics of the gauge fields.
The actual numerical value of the glueball mass varied, depending on the
approximation, between 100-200 (Compare Monte—Carlo result, 170 + 30). Our
best value of the glueball mass 150, or in physical units 520 MeV!, is entirely con—
sistent with the Monte—Carlo data (Fig.16). We found that the physical picture for
the Yang—Mills vacuum in the cross—over region is that of, still quite dilute, gas
of fluctuating loops. The glueball looks in our formalism like a local inhomo-—
geneity in the loop distribution. We made the simplest possible approximation of
the glueball, describing it by one extra loop® . In the future calculations of the
mass gap one should also take into account multiloop elements of the wave
function (loop—loop correlations). In our language the mechanism of confine—
ment is provided by the ' touching interaction' between loops from the glueball
and loops from the \r;lcuum. This looks like an "external pressure' exerted by
the vacuum on the glqeball state, which is very similar to the external pressure
in the Bag Model. The "touching interaction" ("'external pressure’’) prevents the
glueball loop.from blowing up in the strong - weak coupling transition region (as

it would happen in the Abelian theory).

! The actual value of Apom for SU (2) gauge theory is unknown. If one takes A,y for
SU Z 35) equal 200 MeV, and uses it to rescale the result, then the value of the glueball mass in
physical units'” is 520 MeV.

In the calculations presented in Section 4.2 we also took into account the plaquette—plaquette
correlations.
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We presented two types of numerical calculations. The first one, simpler and
more numerically oriented (Section 4.2), provided the value of the 0** glueball
mass in SU(2) gauge theory. This calculation gave some insight into the

dynamics of the gauge fields. The intuitive informations we got from it were that:

a) the largest contribution to the mass comes from terms which describe the
renormalized  interaction between the vacuum and glueball loops (This
effect was later identified in the second numerical attempt as the candidate

for mechanism of confinement.)

b) the loop amplitudes are small and there exists hierarchy in the loop size
(the largest is plaquette and the other loops have an order of magnitude of

smaller value), which justifies the cut in the loop size in our calculations.

The second numerical attempt (Section 4.4), more analytic and complete, gave
the similar value for the mass gap. It provided us with intuition about the
"touching interaction” and the mechanism of confinement. It also gave us
better understanding of the importance of different terms in equations (4.53,55).
In particular , an optimistic observation was that the loop zero mode contribu-
tions (/ interactions) are rather small, supporting our choice of loops as vari-

ables.

The presented numerical results seem to justify the expansion in terms of
the loop amplitudes. The values of the coefficients are small. Typical values of
loop amplitudes at 872 for loops from the first, second and third generation,

respectively, are:}%ﬁ”.l ,f,,°=2".05,}0°=3".02.

The described numerical calculations were in some parts performed on
sequential machine and in other parts on the Caltech/JPL hypercube. In both
cases they did not require a long computer time (the longest program was exe-

cuted in less then half an hour).

The natural way to improve the accuracy of the result is to include into cal-

culations loops up to the fourth generation and to include loop—loop correlation
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functions. This task requires a large programming effort. There are three limi—

tations for the possible numerical improvement of the result:
a) Computer memory.

With the present computer memories, of size of a hundred Mbytes, it should be

possible to do calculations including loops up to the fifth generation.
b) Computer time.

This criterion is of less significance. Computer time for calculations with loops

up to the fifth generation should be about one hundred hours.
¢) Human resources.

Programming of this method is a rather tedious task and requires a lot of time,
This is the most crucial limitation. It took us about a year of programming effort
to produce the current numerical results. Our programs, after some changes,
can be used to do calculations with larger loops. However, the complete analysis
should also contain the multiloop states, loop—loop correlations, etc. In fact, we
have developed the formalism for dealing with loop-loop correlations, but
implementing it on the computer is much more complicated than the work for

single loops.
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Appendix A.

In this Appendix we calculate the coefficients Br(see Eq.(2.11)) for SU(2)

group. The character expansion formula takes the form:
9 = Q(B)1 + T diefixi()], (a.1)
i%

where d; is dimension of representation; ¥ denotes characters and

Q(B) = [dg %9 (A.2)

Multiplying both sides of (A.1) by xS(g~!) and integrating over the whole group,

one gets:
Jdgxs(g=1)e™9) = q(g ) fdgxs(gt) + gomeﬁffdgxs(g'l)xi(g )] . (A.3)

The last equation for s =0 gives:

Jag P9 =q(g), (A.4)
and for s #0:
Jagxc(g™)e™ 9 = a(p)d, e (4.5)
g fdgxs(g"l)eﬁx’(g)
d e = L (4.6)
fdg e X\
The SU(2) invariant measure is parameterized by angular variables:
2
fdg=-N [av [sin2¢ dg¢ . (A.7)
0
The characters are:
xi{g) = sin((2L+1)¢) (A.8)

sing
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Eqs. A.7, A.B and A.6 give:

2
[sing sin((21+1)¢)e?beostdg

dz eﬁ‘ =

2n
f sin?¢ e?fcos g
0

(A.9)

Both integrals are calculated using the saddle point method. This gives after

some algebra:

_+1)t 1
pz‘_ e 8 —p g
dle 1
e B —1

Expansion of both sides of Eq.(A.9) leads to :

a1+ B7) = (2L+1)(1 — l—(l—éil) _

Finally from Eq. (A.10) one gets:

g = — Mi+1)
i ﬁ .

(A.10)

(A.11)

(A.12)
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Appendix B

In this é‘ppendix we present the general formula for amplitude Pt. Suppose
that operator Vp acts on a state characterized by a set of variables {/ ,’r} in the xy
plane, as indicated by the dashed line in Fig. 20 (the circles in the picture present
Clebsch—Gordon vertices as in Fig. 4a). The formula for amplitude P} is the pro-
duct of four similar expressions around plaquette v,, so we present only one of

them. Let consider the right lower corner of the plaquette. The expression for

this vertex is:

v, = ’lryu- Y- Z.yn x ::leIZ, :xl i:z:‘_ :{:I+ T, %
Y ) Yis Ty 5 Y, Ty 5 .
x V(Bry, ¥ 1)(Rr,, F 1) (R(7y, ¥ 7y, ) T ) (Z(r;, T74) F 1) x (B1)

x ((R(Ly,, +1, )+ 1L, +1.) + 1)(2L,_+ 1)(2l, + 1))/4,

where primes denote the change of the value by 1 /2, and 7 has the same mean-

ing as in picture 4a.

The expression for other vertices is obtained by changing indices in formula

(B1). The global formula for P} is then:
P} = phase x vy, vy vy Vp (B2)
where phase is:

A'rv’ + A'rv‘ + M": + Ar,’

phase =(-1) , (B3)

and

Arp =7, —Th. (B4)
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Appendix C

Table 1: Parameters of a Sample Problem

Production of Third Generation of 4° Lattice

Total Execution Time

Number of Queries
(Candidate States)

Number of Distinct Records
(Final number of States)

Fraction of Time Spent
on failed queries (new states)

Fraction of Time Spent
on successful queries
(States already on list)

Fraction of Time
Spent Generating Queries

Total number of
Data base comparisons

Average number of comparisons
for successful queries

Average number of comparisons
Comparisons for failed queries

1300 Seconds
6600 Seconds

2571

890

0.62

0.36

0.02

1.06 x 108

412

445

(VAX11/780)
(Single 8086-87 node
of Caltech Hypercube)
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The details 6f the sample program to produce states are given in Table 1.
Note that queries of the data base involve a brute force search through all
records, and it was considered impractical to set up special indices (hashing) to
speed up the search. In the case of successful queries (candidate state on list)
the match was, on the average, found after searching a fraction 0.46 of the
entries in the data base. A histogram of this fraction is given in Figure 18!, Note
how flat the distribution is. As we had to search many records to find the match
(and so terminate step), it will turn out to be straightforward to find a con-
current algorithm as the search time (step 2) dominates the "'sequential” steps 1
and 3 corresponding to generation of query and updating the data base. We
should also note that the comparison of a candidate state with a pre—existing
state is arranged hierarchically and that the comparison time varies from case
to case. This inherent load imbalance due to the irregularity of the problem

needs to be kept in mind for the concurrent algorithm.

! Note that most of the successful queries are generated with the data base nearly complete;
i.e., initially most queries fail, the data base builds up, and then most queries succeed.



Appendix D

In Figure 19, we plot the inverse of the efficiency £ (sequential time divided
by N times the time taken on the N node concurrent implementation) as a func—
tion of N in the range 1 to 32. Even for N=32 we find an efficiency of 60% in spite
of the modest size of the local data base with a maximum of 28 entries. Clearly,
the algorithm will perform better as the size of the data base increases. The

approximate formula for the inverse of the efficiency is :

1 _ N*concurrent time

€ sequential time (D1)
- Ci N (Dz)

g*éw*Q + d*Q
1

Here we put ¢y equal 2 because in average only half of the data base is searched
for query (see Figure 1, Table 1). For the constant ¢, we took 2/3 because nodes
communicate only for failed queries. With these values of constants ¢, and ¢

equation (D2) takes form:

2d 4b
g*MN + 3g*MNloggN
2d '

1+ P

1+

1 _
== (D3)

where
g — time spent on query per state,
d — time spent to produce query,
b — time to broadcast message,
§ — number of queries,
M - size of the data base.

The logarithmic dependence on N is expected as this is dependence of com—

munication time for the broadcast message passing used in the algorithm.
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Constants d and g can be calculated, using data included in the Table 1, from the

following formulas :

sequential time
number of data base comparisons

g = = 5.76ms (D4)

d= sequential time*fraction of time spent generating queries
number of queries

= 51méED5)

Equation (D1) is compared with the results in Fig. 19. Values of the constants g
and d are taken from Eqs. (D4) and (D5) and constant b, regarded as a free
parameter, is fitted to be 1.41. The exact value of b is difficult to predict due to
the asynchronous, independent operation of nodes. One would expect blogsN to
be roughly the time taken for a broadcast message to traverse half the cube. This
model would predict b to be 1 ms, which is in satisfactory agreement with the

fitted value?.

2 The value of b could be reduced by about a factor of two using a full assembly language coding
[15].
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Figure captions
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4a

4b

Sa
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Monte Carlo calculations of string tension for SU(2) gauge theory.
Monte Carlo calculations of string tension for SU(3) gauge theory.
Correlation length as a function of 8 for SU(2) gauge theory.

3r vertex—our choice for the parameterization of the SU(2) rank 8 invari—

ant tensor.
Triangle inequality for rrr and Irl vertices.

Fragment of the triangulised surface, illustrating geometrically the tri-—

angle inequality constraints.

Plaquette with all attached pipes — planar picture (dotted lines indicate

correct directions).

Derivation of the deformation amplitudes — step 1: reduction on links.
Derivation of the deformation amplitudes — step 2: reduction in vertices.
Derivation of the deformation amplitudes — step 3: final result.
Reduction of the one—loop vertex diagram: w = Wigner symbol.

A typical solution to the Equation 3.15.

A stfaight line presents LHS of Equation 3.15

Distance between a and b is the mass gap

Continuous curves present the RHS of equation 3.15

States from the second generation.

12aExamples of the loop zero modes (ambiguities in the loop representa—

tion).
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Fig. 12bExamples‘of typical transition amplitudes for small loops.

Fig. 12cDecay process 0—T;,Tg, contributing to the vertex Jorr,

Fig. 13 Diagrammatical conventions for the connected vertices.

Fig. 14aSchrodinger equations.

Fig. 14b and 14c Building Mathieu fraction by solving the equations for correla—

tions and inserting the result to the loop equations.

Fig. 15 Loops up to g, = 3.

Fig. 16 Mass of 0** glueball in SU(2) gauge theory as a function of (.

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Lines 1 and the dashed area presents Monte—Carlo results together with

statistical errors
Line 2 is the high temperature expansion

Lines 3—-5 present different approximations in calculations for the glue—

ball mass,
Line 3 contains only loops up to the second generation,
Line 4 loops up to the third generation

Line 5 loops up to the third generation plus disconnected two pla—

quette states
Values of vacuum wave functions as functions of §.

Histogram of the number of successful queries vs. the number of com-

parisons for sequential implementation.

Plot of the inverse of efficiency vs. logs of the number of nodes. The solid

line is the plot of formula D3 and crosses are the measured values.

Action of the operator Vp on a physical state
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