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ABSTRACT

The equal time U{12) algebra of scalar, pseudo-
scaiar, vector, axial and Tenscer currents abstracted from
Lagrangian quarkx fisld theory is studied. The attempt
is made tc represent the "good" part of this algebra at
infinite momentum on ncnexotic states, i.e., on hadron
states of conventional nonrelativistic quark models,

© -+
Relat

vigtic constraints embodied in +the angular condition

=

must also be met,

Previous work has shown that the unintegrated
algebra cannot be represented on nonexotic states, In
this study, the much less restrictive problem of the
once and twice integrated algebra is considered, It is
found that even the twice Integrated algebrsz cennot be
satisfied within nonexotics, This strongly suggests

that exotics are an essentlial pars of the hadron spectrum.
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I. Introduction

We shall be concerned here with two ideas: the-
quark model for the hadron spectrum and current algebra.
In particular, we wish to see if the quark model can be

a solution to the equal time current algebra.

1. It is well known that mesons can be described

(1,2) Moreover

approximately as qg and baryons as qqq.
very naive non-relativistic dynamics, e.g. "springs"
betweeen the quarks, seem to give a good approximate
description of the spectrum of stable particles and low-
lying resonances.(B) Here, the quark model will be taken
gimply as a specification of the quantum numbers:
intrinsic gquantum numbers (baryon number, isospin and
strangeness), spin (I ), mass (M), parity (&), charge
conjugation (&) etec.

Among the features of the meson speétrum implied
or "explained" by such a description are :

(1) Mesons can be classified into SU(B)‘&:S and B8's

(2) The spin J can be thought of as made of the
quark spin S (= 0, 1 for mesons), and the orbital angular
momentum L; and in first approximation, M2 is linear in
L and very approximately independent of S. Mesons can
therefore be classified intd u(6) 36's.

(3) The parity and charge conjugation satisfy



£= (-1, T= (-1)*5,
States violating (1) and (3) are said to be exotic,

fesPectively of the first and second kind.

2. Vector and axial vector currents of hadrons can be

defined through their participation in the electromagnetic
(&)

Gell-Mann proposed for these

(5),

and weak interactions
currents a local algebra of equal-time commutators
which can be abstracted from the currents defined in a

field theory of quarks:

fl

D($A,T, x) = ¥T(x) % ¥(x)

¥(x) #r,v T ¥(x) (1)

whefe ¥(x) is the 12 component quark field (SU(3) & Dirac
indices), Ay the usual matrices of SU(3) and T any one

of the 16 Dirac matrices. ( By D(%kar;:d we simply mean
a local operator at x, with the Lorentz properties of

YT and commuting as the expression on the RHS of (1) ).
For example, the well known isotopic charges are

I, = J&’x D(&7, , %) a=1, 2, 3 (2)

and obey the equal time algebra

(1, . I,] = iegpe Io (3)



3. There is no a priori reason for any connection
between the quark fields in the currents and the quarks
in the.spectrum — for example a spectrum where mesons
occur only in SU(3) 8's can be compatible with current
algebra, Whatever connection there might be must be
vnontrivial,ksince they have different relativistic
properties. In other words, a nonrelativistic "charge
distribution” inside a hadron and relativistic form
factors are related in nontrivial ways. The possibility
of a unitary transformation linking the "current quarks”
with the "spectrum quarks”" has been emphasized by Gell-
Mann.

(Real quarks, should they exist, are a third thing
altogether. For example, the negative results of
acceleratbr searches(6)’indicate that real quarks are
rather heavy — several Gev — whereas a "spectrum quark"
is usually‘thought of as having =~ 1/3 of a proton mass.
We ignore completely the'question of real quarks.)

There is, however, much phenomenological evidence
‘that "current quarks" and "spectrum quarks" are Closely
related., Simple quark models of the hadrons seem to
yield the correct pattern bf electromagnetic, weak and
pion-emission amplitudes. Unfortunately these models
are typically non-relativistic, or relativistic but

infested with ghosts (states with negative norm), or
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fail to respect current algebra sum rules. For one
recent example, see Feynman gt g;(7). Perhaps the best
known success in calculating electromagnetic matrix
elements from a quark picture is the result for the

(8),

magnetic moments

= 1 = = =D 2
by = 3 2u bn = =2 2y
L, OQur starting poirt is the hypothesis that the

spectrum generated by the quark model saturates the
equal time commutators abstracted from a field f
of quarks. That is, we try to represent the local current
algebra on the space of quark model states. The important
constraint will be relativity. The problem of saturating
current algebra sum rules was first proposed by Dashen
and Gell-Mann'®),

Should the program succeed, i.e. should we find
a representation of current algebra on the space of
quark modei states ~ pefhaps an almost unique one — we
would have all electromagnetic and weak matrix elements
between hadron states, and by PCAC, soft pion emission
amplitudes. One might even find that a particular form
of qd interaction (e.g. "springs") or that particular
values of parameters (e.g. af(o) = %) are required — such

has been the case with the study of dual resonance models(lO)



The program has been known to have difficulties
for many years. By considering the subproblem of the
isotopic subalgebra restricted to strange meson.states,
(the case of a single "charge carrier"), Dashen et g;(ll)
showed that tachyons (states with space-like momenta)
are required. Moreover, for the full problem of two

"charge carriers”, Weyers(lz) and Hill(la) found that it

was impossible to satisfy relativity and current algebra

simultaneously.
5. In this study, we loosen the hypothesis from the
saturation by nonexotics (i.e. quark model states) of

»the entire local algebra of densities to saturation of
just the integrated algebra of the charges. In doing so,
we evade the proof for the necessity of tachyons and
also the difficulty found by Weyers and Hill. We find,
however, that new difficulties arise and even this relaxed
problem has no solution.

We are led to believe that one of the following is
true:
(1) Exotics (i.e. states outside the quark model) are
an essential part of the real world. This may occur
either because of the breakdown of resonance saturation
at high energies — the continuum will surely have exotics;
or by the coupling of exotic meson resonances at high

mass., An exotic meson is one that lies outside Qé_of



U(6) or has & # @(-l)_s*'l.
By comparison, note that duwality also forces the
-existence of exotics, at least in the baryon-antibaryon

channel(lu).

(2) Exotics can be neglected but the quark mass is fixed
(in relation to the slope of the Regge trajectbry), i.e.

a(0) for the léading trajectory is fixed. Dualhresonance
(10)

model also requires a definite a(0) to yield a bootstrap
(3) Solutions exist for a range of parameters (e.g. quark
mass), but are singular in the 1limit where all mesons
are degenerate (a' - 0, d(0) fixed) or the limit where
the quark mass is infinite (a(0) = —e, a' fixed), renderihg
simple expansion procedures invalid.

Mathematical techniques employed here = that of
expansion in mass splitting or in inverse quark mass —
are incapable of distinguishing among these possibilities.
(2) is especially intriguing; it would be interesting
either to construct an example of this type or to prove
its impossibility.

A very similar no-go theorem for the Born term
(i.e. no unitarity imposed) of dual models has been
proved by Finkelstein(15). He shows the mutual incompati—
bility of
(1) The imaginary part of meson-meson scattering ampli-

tudes is saturated by nonexotic intermediate states
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(1 and 8 of SU(3) and L= (-1)75, P = (-*h,
{2) Nonexotic Regge poles control nondiffractive high
energy scatitering.

(3) Absence of parity-doudblets at t = 0,

5, Chapter 2 descibes the egual time current algebra
and the infinite momentum iimit@ Chapter 3 defines a
class of gquark models and summarizes previous work and
difficulties. In Chapters 4 and 5, expansions around a
degenerate 1limit and about an infinite quark mass 1limit
will be considered., We shall show

the problem exist in neither case,



II. Current Aleebra and the Infinite Momentum Limit

In this chapter, the egsential features of the
p, = 1imit, including the angular condition, will be
outlined. Sections 1 and 2 follow closely the lectures

(16) (17) .

of Gell-Mann and Gell-Mann and Dashen s sections

3 and 4 follow Chang, Dashen and O%Raﬁ%artaigh(lg), where

the angular condition is derived in great detail.

L, From a field theory of gquarks one can construct

symmetrical tensor currents:

S% (x) = D(%Aa’% ) X)
P, (x) = D&Y, v, - X)
Vap(x) = DAy, v, X))
A%?,(K) = D(“%‘A@‘i‘%{o Ys ‘»{% 9 3;{)
where
DT, x) = 4T (x)EATH(x)
= ¥(x) 3y, TV (x)

and a = 0, .., , & (U(3) index)s: “, v = 0, ,.. » 3

(Lorentz) index; %{x) is the 12 component (SU(3) ® Dirac)
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quark field., Our notation is such that

{YP"Y"} = ,Zg?"" ' [Y,A"Yv:‘ = _Zigpv

g}u diag (lf —ll -l’ '1)

YS - YOY1Y2Y3

The equal time commutation relations are simply

[D(M,x),D(M",y)] iD(M",x)63(x -y)

+ possible gradient terms (2)

(x, = ¥,)
if (M, M) = iM" ., For example
[V, (X)) (N] = ifabCV¢o(x)63(x-y) + e
(x, = ¥,)
since'[%Aa » 3y ] = if . B\,

Thus these currents form a local U(1l2) algebra.

It is now common to postulate that currents can be
defined in the real world with these Lorentz properties
and these equal-time commutators, exact as far as the
strong interactions are cancenned(lg). The matrix elements
of the V and A currents are accessible through electro-

magnetic and weak interactions, For these, the current
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algebra hypothesis has received confirmation: the Adler-

Wei s berger sum rule for EA1+1230(X)'“A1-1290(y)] and

" N . . , , (21)
the Cabibbo-Radicatti sum rule for [Vl+i2’o\x), Vl-izgo(y)]°

We do not know how the other currents are used in nature,

if at all.

2, The use of infinite momentum

Define fourier components

D(i.x) = jn(mag) elE X g7y (3)

The commutators in (2) then read
[D(mM,%) , D(M",k")] = 1iD(M",k+k") + ... (4)

where [M,M'] = iM” and ,.. represents possible gradient
terms, We shall sandwich (4) between stateé lay , o>
with Pag = 5 Py, = % and Pag = Ppg fixed, The importance
of this class of sum rules was first pointed out by

Fubini and Furlanizz), The important features of the

Py o 1imit will be illustrated by a simple example:

The matrix element of the AS=1 wvector current

between X and ¢ states is
[ p K> = 2mE)H (000 £, () + (p-a), 208 1.

where



11

E = B‘K = (EKSPX,PyapZ)
a = a.." = (Eﬂiqxoqytqz)
¥ = -9

Keep k fixed and send p, , q, to «, then

o L
By = b, + o(-l;l;) B, = g+ 0(3) = p, + 0(1)
HEE)HE+E) = 1+ o

Z
HEE ) (B +E) = o(-}-};)
k2 = (EK-E,")z- (pK—pﬂ)z = -kf,+_ o(2)

Thus the time component is
r[Vyogs o 0K = 2,65

It can be seen that the z-component approaches the_same.
limit, and thevtransverse components vanish., The following
properties are evident:

(1) The p, matrix elements are independent of p + g,
but only on k = (g-%ll. So we may as well set k, = 0

from now on and also drop momentum labels other that

'}S’ = ('lsi.’ 0)'
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(2) The t and z components are finite and equal; the

x and y components vanish,

S, P,V .,V

X y ’Ax

y

("bad"” operators)

T

Tx Tty

z 2z Tox sz

("good" operators)

and equal in pairs.

even numbers of Y, 0T Y, e.8.

"bad" operators contain an odd number

follows that

and commutators

symbolized as

s A ,Txy

Note that "good”

In general

0(=

, T =
2t P,

"

0(1)

operators have an

V’t ~1, Vz~yoyz while
e.g. S~y It
B B+«B=2G

fall into three classes, which may be

[G,G] = G £0(1) o(1) = o0(1)

- Ay o L

[¢c,B] = B z0(1) o(pz) = 0(pz)

[B,B] = @ ’30(51’)0(51‘) = 0(1)
Z 2

The first class will of course be the most reliable — it

is these we shall study here.

The second class-may not

converge, and the last is of course very singular.,
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This particular feature is most evident in the
following»example: For the (conserved) isotopic currents
LA ’\l__.B (+, - arevisotopic indices, a,B Lorentz indices),
the spin averaged matrix element of the following

commutator can be written in terms of the usual structure

functions W1,2’

2 [ | C B vy (500 [ ) i s

2p
Z
v o v -, 2
= E%._é (d\) (p.. -5 q..)(Pa - 5 Q.o) w’) (Cl 9 V)
PZ J q‘- a P q:, o]

P, = = B =0, q=(0; g, 0)

~

where v = p+q and commutativity of the p, =« limit
with the integral has been assumed (incorrectly in some

cases, as we shall see). Por various values of a, B, and

ignoring W1 for simplicity,
(¢,c] e.g. a=0,8=0
R}{Socydeg

[G,B] e.g. a=0,p8=1
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£

Clearly the three integrals get progressively less conver-
gent. Since W; is crossing-odd, its leading high
energy behaviour will be determined by vector exchange,

. 2
with a(q”) = aP(qz) r 1

. 5 -3_
wz(qzv V) ~ \)a(q )—2 Y 2 V — o

so that the integrands behave as v~3/2, v-l/z’ vl/z

respectively. Thus the last two integrals are not
convergent — and taking p, - o inside the integral

is not valid in those cases.

(3) k2 = -kf is independent of the masses, which is not

the case for finite p,. One is thus able to derive

2 ,k'2 sum

fixed t = (k + k')2 and fixed current mass k
rules, These invol#e a dispersion integral over the
absorptive part of a fixed t, fixed masses current-hadfon
amplitude; for t = 0 we have sum rules on total cross-
sections. The convergence rate can be estimated by |

Regge theory and comparison with experiment is easier.
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For example, the Adler-Weisbergér sum rule(zo) involves
ds N -
= (o (7p) - g;(mD)]
/g=M
The integrand is asymptotically e

convergence is assured,

(4) Since kz can be kept small throughout the sum rule,
PCAC can be usedg as in the Adler-Weisberger sum rule,
And since kz < 0, one never comes across discontinuities

in the current channel.

(5) The program of saturation by non-exotice becomes
plausible with the elimination of the Z-diagram (11)

and the disconnected diagram (III). (See Fig, 1) Diagram
11 involves pair creation by the current — leading in
general to "three particle” intermediate statszs, But

the three particles each has energy = p, and momentum

N D,o "Dys Pyo SO that the mass SQuare of this interme-
diate state is

2

"'
g = E° -p° = (BPZ)Z

2 2
- pz = BPZ - 00
But if convergence ig assured by Regge theory, then no
infinite mass states can contribute., ([fdsA(s) < = =

1im A(s) = 0), so the Z-diagram must vanish as p, - .
S0
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Figure 1 . Different classes of graphs that
contribute to the current commutator

I, Direct graphs

II. Z- graphs

IIT.Disconnected graphs

In each case the currents are represented by broken

lines and the hadrons by solid lines.
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The intermediate state in III has an energy =

P, *4 k2'+ m2 and a momentum = p, k, so that the

(mass)2 is

s = E° - p2 = 2pﬁ(4k%4-m2 - X) + m? -

By the same argument as before, the disconnected diagram
mugt also vanish., With only the direct diagram (I) left,
it is then at least plausidle to assume that the inter-

mediate state 1g nonexotic,

3, "Reduced” sgpace

Since momentum labeles for the states are no longer
needed at p, - =, it is sometimes convenient to think
of the current operators as defined not on the usual
space O of (on-shell) hadron states, but on a "reduced"

space (m@/RBD of states without momentum labels:

{vnt|p(n,x) |y = lim @wn*w]u{mg)!m) (5)
P, o
p'=p+ k ko= (ky,k,,0)

Here h , h' denote the z-component of spin and N,N° all

other "internal” quantum numbers.

4, The angular condition

The angular condition is 5imply the statement that
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the currents D(M,k), e.g. V, (¥), carry 2y < 1. One
should like to translate this into selection rules on
AJ, where J is the meson spin, To be exact, J is the

"boosted angular momentum" defined by
-1
3; | = A4 A |nnpy

where Ap is a boost taking p - rest and g is the ordinary
angular momentum. In other words, J acts only on the
spin indéx h and not on the momentum; thus it pléys the
role of angular momentium in the reduced space. The
components of J and g along p are of course the same.

Since the initial and final states will in general
have different momenta, Ag and 4J differ by an orbital
part., To get rid of this, we transform the matrix element
(N'h'p*|D(M,k)|Nhp) to the Breit frame, where all momenta
are in fhe x-direction. Then gx = JX and one gets
[AJX‘ < 1 in the Breit frame. This, in turn, can be
translated into a statement in the infinite momentum
frame. | | |

Consider for example the vector curreht (the SU(3)
jndex will be dropped in this section) and specialize to

k = k'éx , then the RHS of (5) is

~

<N”h'P'\Vu(k)lth> p = (- %L’ pz) o p' = (%L’ pz)
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where we have arbitrarily cheosen (Eé-E*L' = 0., We wish
now to take this to the Breit frame,

There is a unique (up to an inconsequential final
rotation about @?) Lorentz transformation /A (depending

on p, but approaching a definite limit as p, - ) and

a unique q such that.

AEE - sz (ﬁlaoaﬁ)
/\:-‘Eﬁ-a-g = {-q5090)
Yence the states |Nhp) can be expressed in terms of the

]Nh2> o %iJ?W f\"‘l i Nh?:? \N g haga> - einw’ /\—1 ’Nh_g>

. idw .
where the rotation elJi’ accounts for a transformation of
the spin index. Since N\ involves boosts in the x-z plane,

Jv is invariant, and thus the most general transformation

is elJYw, The angles u%cﬁ are straightiforward to calculate:
- gant —E -1 M'-M
W o= tan T + tan | T
- - T am P
W' = =tan 1._x + tan "t ME;M : (6)

URE 3¢

Therefore the transformation to the Breit frame reads

<ﬂ§h@£“’ \ej'g?w' D(Mgli,) éinw \Whg\/‘
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= (n'n'-g|AD(M,K)A™T | Nng? | (7)

Por D(M,k) = V (k) say, 0 = ADAL  on the RHS of (7) is
just some other fourier component of a combination of

v v

4 Vu» V, and carries Ag < 1 , in particular

y' oz
lAﬁx‘ < 1 . This holds for the other currents as well.

O’

But J, = , for both the initial and final states (which
is-of course the reason for going to the Breit frame in
the first place), so_ADAfl, and hence ei%mf D(M,k)e-i®"°
carries IAfos 1.

| We shall adopt the symbol & to mean "equal up to

terms with |AJ | < 1". Then the angular condition is

simply

e* ¥ p(u,x)e” I & o (8)

We shall rewrite (8) in the form

e 9(M, k) 8 0 (9

. where Q is an operation on an operator

Ay

MyQ. - (tan £)8 (10)
k Iy B’ Iy

{X,Y}‘ :

If X is the LHS of (8), the angular condition can

Q = (tan™!

and@xya[x,ﬂ ; rBXY

H

also be written as



22

AJx

n
Qo
=

i
>
<

or (AJX)3

for matrix elements of X, i.e.
[Jxo[Jx![st}(]]] = [ij X] (11)

This leads, after a few manipulations, to the form of the
angular condition used by Dashen et al(ls).

It must be emphasized that (9) or (11) éxpresses
nothing more than the 53 < 1 constraint on the currents.
In any manifestly covariant theory (e.g. field theory,
infinite component wave equations, 4-dimensional oscilla-
tors) there is no need to verify the angular condition.
The complexity of the angular condition is the price for

using "non-relativistic" models in one particular Lorentz

frame (the p, ~ o frame).

5. U(6) of currents versus U(6) of spectrum

Recall that the "good" operators at p, — © are

VaolB) = Vp,(K) = DA, K
Aol = Ayl = D(3Ao,.K)
S,(K) = Tll) = To(k) = D30 k)
Sax(®) =T () = <To(K) = D(3ro.,K)
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(Note that a, = 1 in the p, = = limit, so that
iy5 = g,a, = 0, and so on.) These satisfy a local U(6)w
algebra. It is crucial to note that this is not the same
U(6)w that approximately describes the particle spectrum,
For example the axial charge D(%Aaaz,o) leaké outside
any given U(6)w representation of the spectrum
(e.ge Ty o £0 = <E\Aaolﬂ7 # 0). It is precisely the

relation

l?
e

U(é)w,currents U(é)w,spectrum

‘that we study here, This is a more exact statement of

the idea
?
"current quarks" > "spectrum quarks"

We shall refer to any of these D(M,k) as a "chérge"
if k=0 and a "density” otherwise. Commutators are
then either charge-charge (twice integrated), density-
charge (once integrated) or density-density (unintegrated).

Only the last is sensitive to gradient terms,
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ITI. Quark Models

In this chapter we specify a class of quark models
that will be studied and write down the general form of
the current operators in these models. Previous difficul-
ties are stated in section 6, and section 7 introduces the
less restrictive density-charge problem. Only B =0

states (mesons) will be considered.

1. Quark model list of states

To represent the currents we must define a space
of states |Nh) , where N denotes all "internal" quantum
numbers and h the eigenvalue of Jz' The space of all
hadron states in the real world (modulo the centre-of-
mass momentum) will be such a space. The aim here is to
see if a simpler and more manageable space will reflect
some of the properties of the real world. Thus the
problem is similar to that of finding representations
of SU(3); for example — the real world is a representa-
tion, but there are simpler (irreducible) ones: 1, 8,

10 etc. The major differences are the relativistic
complications embodied in the angular condition and

the fact that we now have an (infinite) local algebra,

so that any nontrivial solution will require an infinite-

dimensional representation.
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The use of quark model states is motivated by two

experimental features:

(1) It appears that the imaginary part of crossing-odd
hadrun—&adron gcattering amplitudes can be approximated
by direct-channel resonance @ﬂntribuﬁi@ms(EB), It is
therefore plausible that the same may be true of current-
hadron scattering. The amplitude in this case is just
the matrix element of 2 commutator. There is also some
direct evidence of resonance satﬁration from the Adler-

Weisberger and the Cabbibo-Radicatti sum rules20721),

{2) It also appears that resonances (at least the well-
defined low-lying ones) can be described by the gquark
nodel, By this we mean principally itwo limltations on
the list of stztes, Firet, mesons, being made of qq
should lie in Jx3 = 14 8 representations of SU(3),
Secondly, the parity and charge conjugation should
satisfy C= (-1)Y1 , T= (-1)¥% | ynere S = #g+g")
ig the quark spin and L+ S = J. In particular this
forbids WP = (~1)f =+, wNe= (-1)% = -,

1™, ...) states. States violating these

{J@C’ =0
conditions will be called exotic {(of the 1lst and 2nd

kind respectively).
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2. The Simple Harmonic Oscillator (SHO)

The SHO, which pictures the gq as being held by a
"spring", incorporates the above features, as well as the
linear nature of Regge trajectories. A meson is described

by the following degrees of freedom:

quark labels Agodlys 9, ¢°

-~

"internal" variables x (separation between qq)

p (conjugate to x )

~

We shall work exclusively in the SU(3) symmetric limit,

and take the meson mass to be

M2 o= L’;[m2+(p2+ Cx2) + m-z(...) + llw]
M§[1+ s(p2+cx2) + ves ] (1)
where m may be thought of as a quark mass, and ... may

involve X, p,g,g' in any manner. The potential ox?

may also be replaced by any U(xz). (Egqn. (1) has been
written in two equivalent forms, convenient for expansion
in 1/m and around the degenerate limit respectively).

The free quark model, which has been solved exactly(lj),

is a special case of this, with ¢ = 0:

M2 = h[m2+ pz]
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3, A more general class of guark models

In what follows, a generalization of the SHO will

be considered. The spectrum is described by

quark labels : Ag s Ayr1g0'

~

"internal“ variables "arbitrary" (more will be

said as we proceed)

The meson mass is taken to be expansible either in 1/m

or around a degenerate limit respectively

=2
i

2 Lt[m2+K+m-2K'+...]

2 2

or M

i

MEL1 + eR+ €2R' + ... ] (2)
where K, K‘; R, R' are functions of g, g' and the
intermal wvariables. The internal variables must respect
= (-1)™1, ¢ = (-1)™5; for example this means that it
is impossible to construct a pseudbscalar operator |
without spin. By allowing for a more general mass
spectrum, we no longer éssume straight Regge trajectories

as in the SHO case.

4, Charge conjugation of the currents

On any quark model state,
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T = (reverse charges) - (-l)L+S
- K ) o (=T (S
- ( " )+ @ - (g gn)

Therefore the effect of # on the current cperators D{M,k)

are

o= (ge2 =0y o f s (g o) - (3)

which must be respectively -'g+ s - on V,A,T. Thus
the quark model, in excluding exoticity of the 2nd kind,

imposes a severe constraint on the form of the current.

The difficulties we encounter disappear if this condition
ie drooped. |
5. General form of currents

We assume that the currents can bs represented

on this space as®

V() = Dty LK) =B, G(R)+d, 6(x)

# We gshall not write the time (p=0) index on V and A

; a2 ; : { = he . . ()Y,
from now on; recall that S5 (k) “gljkTagkgﬁj
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by () = D(B,o, . K) = BGIO(R) - BEe(k)
S5,1(k) = D& 0;.k) = 5 G(k) + B SLGT (k) (B)

i=1,2

where G(0) = G'(0) = 1. The same G and G' occur éVery-

where on account of the density-charge commutation relations.

The conditions on € in the last section means that each

of the primed operators (for g): &', S’,G' can be

obtained from the unprimed ones (for q) by & and ¢ +— ¢’
To guarantee charge-charge commutation relations

(k = k' = 0) one needs

(Sx s S., ), (S; ,S',z') commute and anticommute

y y

as g ,go' ' ' | (5)

2 - 1 will give the Adler-Weisberger

For example, 22 = 2!
sum rule. To obtain the density-charge commutation

relations (k # 0, k' = 0) one must have
[(x,6(k)] = [X,6(K)] = 0 (6)

where X= Sj. 9 = ? Si or z' .,
To get the density-density commutation relations

(k, k' # 0), assumed to be free of gradient terms, one

needs
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[G(k) ,G(k")] = [G(k) .G (k)] = O

G(x) G(k')

"

G(k+ k")

G'(k)a (k")

i

G'(k+ k") (7)

Since,ka, ké are assumed to commute with M and J,
they factor out of the angular condition (2.9), which

then reads
erx & 0 | (8)

where X = G(k) ,2G(k) ,sic(g) or their primed counter-
parts,
A particularly simple subset of constraints can

be extracted from (8). Define

= ; - ! :
G(k) = 1+ ik;hy %kikjhij gklkikjhlij + .
then
| (am3, , n ] = z[M . ] (h, = h + ihg etc,)

i

2iry2
[2mJ, , h,, ] 5 (M°, n_ 1 etc.
[ams, , [2mM3, ,z]] - 2i[2m3, .z h+]]
2 2
- [, [M ,zhHJJ = 0
2

[ams, ,5,] = i[w*,s.n] | (9)
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Eqne. (5) — (8) are then necessary conditions for
representing the entire current algebra on quark model

gtatey,

fa Previous work and difficulties

The system (5) —(8) has been studied extensively.
Tha only known solution, however, is the free quark model.
More realistic spectra face two difficulties:

(1) Changg Dashen and OﬂRaﬁ@artaighQ;) have argued
that (5) - (8) together imply either a free quark spectrum
or the existence of negative (mass)z states (tachyons)
coupled to physical states bykthe current, Since tachyons
may not appear in formal power series salutions(ZMB, this
problem ig difficult to study except in exacltly sbluble

gystems.

{2) There is a further difficulty when both ¢ and
5 carry charge. For the sHo, Hi1l!1?) and weyers!1?)

found that in an 1/m expansion, the condition (7)1

[6(x) ,G' (k)] = 0

fails in 0(m™2),
These difficulties are usually attridbuted Zo the
presence, presumably at high mass, of exotics in nature,

In other words, the currents leak outside the space of
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nonexotics used. This is expected to be more serious

for the higher moments in k, i.e, if

nk-k'+ LI

Va(b) = Aa l Baiki + Gaig 173

then Aa is juét the charge, while B,C, ... connect to
increasingly higher masses and are therefore increasingly
likeiy to cbnnect to exotics., One is therefore led to
consider the following approximate problems: "To allow
for leakage in the higher moments, let us require (7)

to be satisfied not exactly, but only up to 2nd order

in k, k' . ' For the SHO, however, the same trouble was
found to be present:s [G(k),G'(k')]1 # 0 (the nonzero
term on the right being 0(kk’)(25). Details will be

found in the appendix.

7. Density-charge algebra

In thé rest of this work, a further relazation of
the conditions will be studied. We shall only require
.that the charges: vVa(O) ,Aa(o) ’Sai(o) stay within the
nonexotics: the densities va(g), Aa(g), sai(g) vk #0
may have nonexotic (NEx) to exotic (Ex) matrix elements.

The charge-charge commutators are of cdurse
satisfied in the space of nonexotics., Moreover, the

density-charge commutators will be valid within nonexotics
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as well. In obvious notation

(NEx'|[D, c]INEX) = vi (NEx'\D\k>'<klc\&Ex) -

where the factor (k|C|NEx) forces k to be NEx; so
the sum can be restricted to the NEx subspace,
The density-density commutators will of course not

be valid among nonexotics. Thus we abandon egn. (7)

completely, It should be noted that the restriction of
this problem to vector currents alone is now trivial —

¢(x)

. . s s .
G'(k) need only satisfy the angular condition in

’ ~

that case, without any current algebra constraints.

Thus the axial and tensor currents will be essential.

Since the problem will be studied in power series

expansions, we shall'not be able to confront directly
the tachyon difficulty. However, we do evade the argu-
ments for theilr existence given by Chang et g;(ll),
which rely heavily on the density~density commutators.
The difficulty found by Hill and Weyers is now irrelevant,
Ahother nice feature is that we are now insensitive to
gradient terms in the density-density or unintegrated
commutators, which have been the source of some contro-
versy.

The rest of this thesis will be an investigation of
this density-charge problem, i.e. eqns. (5), (6), (8).

The complexity of the angular condition requires, in
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practice, an expansion prdcedure. We study, in Chapter
4, expansions around a degenerate limit and in Chapter 5,

‘expansions in powers of inverse quark mass,
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IV. Degenerate Limit

1. We first consider the case where all meson masses
are equal and show; under plausible conditions, that no
soiutions-exist. This fact is well known for the

density-density problem; we merely extend the result to
the density-charge problem.(26’27)

For equal masses, the angular condition (3.9) on

v and S becomes

[d,,[9,,2]] = 0 (0,81 = o0 (1)
so that
L = P+ A} Sy = AgxVy o (2)
y y X

where P, A', A, V are respectively pseudoscalar, axial
vector, axial vector and vector. Moreover, I, Sx’ Sy
must behave as a spin under commutation and anticommutation.

"We shall assume that they are in fact the components of

spin,
(Sxpsynz) = (ngayvcz)
(Sy 85,20 = (04, 00,0) (3)

y

i,e. P=0, V=0, A" = A = 0, We have not shown that
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this must be the case, but believe it to be true of all
reasonable models. Aside from our inability to construct
an alternative to (3), we may make the following remarks

to make the uniqueness of (3) plausible:

2 2 2 .2 _
(1) sy = (A, + V)" = (ag+ Vo) + {Ax,vy} = 1
means (a) Vivj must have no AJ = 2 piece, (b) Vy

has bounded eigenvalues, and (c) {Ax, Vy} = 0., None of
these is easy to arrange without setting V = 0. 22 =1

also suggests P = 0,

(2) 12 (5,,5,,2) = &g 70,

hermitian operator, are to have the prescribed angular

where U is a

momentum properties for a range of values of 6, it can
be shown that U must be a scalar. So P =0, V=0 and

A' = A and we may as well call A the gquark spin.

(3) £,S close under multiplication, so barring
anomolies they must have AL = 0 or all AL, and the
latter case is impossible since AJ <1, (If A, B have
AL up to a,b respectively, then "normally" AB and BA

have AL up to a+ b). Hence (Sx’ S.,,Z) =g up to a

y
scalar whose square is 1.

(4) T = o, yields --gA/gv = 5/3 in the baryon ground

state.
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With these considerations in mind, we shall ignore
any solution other than eqn. (3).

Since G(k) commutes with Z, S, &', S' (eqn. (3.6)),
it cannot involve spin. We can show now that ZG(k) does
not satisfy the angular condition (3.8): eiQ G(k) =~ 0.

In the equal mass case, Q becomes

-1 4u, o -1 k@
Q = (%t =) - (tan™™ =)
k /" Jy By’ Jy
-1 _k
— - (tan™ 5 B
(o]
el x — 78y x 100, o = tan™t Eﬁ-
[o]
9 za(k) = e*? g a(x)
= A+ B*C

A = e—%lGGYUZ e-%lecf

B = o-ifo,’
C = e-leL;'G(k) e""leLx

The three factors have 4S and AL as follows:
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A B C
A%Gx = 0,1 Y 3 0
Azgy, = 0 3 0,135 O
ALx = 0 $ 0 H ?

It is obvious that the product contains IAJXI'> 1, vio-
lating the angular condition (3.8). This shows that
solutions do not exist in the degenerate limit.

Note, however, thatAif only one quark is charged
(e.gs S =2z 1 mesons and isotopic‘subgroup); there is
no need to impose [Z',G(k)] =[s',G(k)] =0, so that

G(k) may involve ¢' and there is no difficulty.

2, The trouble in the degenerate limit extends immediate-
1y to all spectra expansible around that 1limit, Consider

a general meson mass

M2 = M2 (14 eR+ePRUH L) (5)

where M is a constant and R, R' are arbitrary operators,
Assume that the various operators in the problem have a

formal power series expression in e

2 = zo+ 621+ ¢ 8 9

147]
1

So T €8y + 4.

G(k) = G(K), + eGlk)y + ...
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and the problem can be studied order by order in ¢.
Then in 0(¢°) we recover the degeneratevproblem just

discussed, which has no solution,

3. ,If all spectra were expansible around a degeneraté
limit, this would be the end of the story. Besides the
possibility of exotics, iealistic spectra may evade the
result just obtained by having a solution only for one
value of ¢. This would be an exciting situation —

that current algebra determines the parameters of thev
spectrum. But with the mathematical techniques used hefe,
nothing much can be said about this. A second possibility
is that various e¢'s are allowed, but the solution is
singular as ¢ = 0. We now give two examples of this
latter kind: the free quark model and the SHO restricted
to vector currents, both of which can be solved by_cther
means (exactly for thé free quark model, and in 1/m
expansion for both,)

We may write the meson mass in the free quark model

as:
e = 4 (m®+ e%p%) = 4(m?+ D7)
where P = ep, X = ¢71x, The solution is G(k) = et¥ B

where
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hy = 3% +L(..00+ ...

%Qx"’ ;]l;( 499 )+ s 00

so G(k) has formally an essential singularity at e =0 ,
(when expressed in terms of x and p). Likewise, the SHO

mass operator is

M° =vl&[m2 + ez(p2+ sz)] = l+[m2 + 52 + e#ciz

The solution is again

= 1% 4+ &
hx - %X‘*'m(-ns)"’ 904
= %€x+-3;(llﬂ)+ a8 a

(The ... are different from the free quark case due to
the "potential” teim, but the first term is the same.)
The same essential Singularity occurs in G(k).

In both of these cases the ¢ # 0 solution is
nqt smoothly connected to the ¢ = 0 case, so the degen-
erate situation is irreleant. It turns out that for
these two examples, an expansion in powers of 1/m is
possible., This means that aé the meson masses are
brought togethér, the common mass must be sent to infinity
in order to obtain a smooth limit. Whether or not this

is true of the real world is of course a separate question.
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In the next>two chapters we shall study spectra expansible

in powers of 1/m.
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V. Expansion in Inverse Quark Mass

1, In this chapter we shall take the meson mass to be
of the form
M2 = k(mP 4 K+ mAK 4 L) (1)

For simplicity, we shall assume that K is independent
of spin. The proof for the general case is more involved
and will not be exhibited here. All operators are assumed

to have expansion in in powers of 1/m:

E = 20+ 521”' 108
- L
S - SO + msl + L I I
G(k) = 1+ 1khx -3 hxx + e for k¥ = k ey
h, = h, +=h_. +
X X0 m o xl e
n_ = h.__+En_. o+ ete (2)
XX XX0 mxx1 e '

and we investigate the problem order by order in 1/m.,

It is convenient to expand the angular condition in
iQ

powers of 1/m. The expansion for e in (3.8) is
"given by Hill:

1Q _ i, _ 1 -

e = l+le 2Q2 3Q3+'o-
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_ i k
9 = &0 -3°%
2.2
_ 1 242 1 k° @
0o, = L@ -ia,4 6 +k
2 2k2aﬁ J, 4 Kaﬂ), J), 32 Jy
- L 2 -
Q, = 6k30?(aJy @z + 2)

JE(QKQJ 5, - zaf, + 8@ Q )-»O(k)

(Recall that QXY =[x,Y], GXY = {X. Y} ). One feature

worth pointing out is e’® =1 in 0(1/m®) whereas

el # 1 in the degenerate limit. To see this,

-1 “M)a - (tan™t X))@

= (tan
Q ( By 3y
an K i
Oy = v~ &5 = 2 = og)
~ £ -
03M ~  2M b 0(=)
% = 14 0P

Thus the "infinite quark mass limit" is simpler, and as
noted in the last chapter, possibly smoother, than the

degenerate limit.

The angular condition (3.9) (which are contained in

(3)
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(3.8) but written separately because they are especially
simple) can also be expanded in powers of 1/m. We write

down only the first few terms of the expansion:

[0, om0 1 = 0
= i
L9, hyy 1= ZEK ’ h++0]

| L N .
[0, om0 ] = 3K, h++1] - 3lk3, . n,]

i 9.2
[J+ ? h+3'] - 2[K ! h++2] 2[KJ+ ! +1J
ire, |
+ 3K 2 .

[J+’1'1-»'-9-<::l = 0

= 21 '
[J-i- ’ h++lJ T3 (X, h++o]

(I, s Byyo] = O ete.

"

(5, . [9,, 5] = o

’[J ’[J'l"zl]:] - 21[J+-, (2h+)0]] = 0

09,09, 510 - 2(g,,(m),0] + [k, ,z]]
- [k, [x,(zn ) 1] - 0

(I, 18, = 0
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[J+ ’ +1] ifx 'S+oh+o]

i

(9,5 8,,] ifk,(s,n),] - %[KJ+ _s+oj etc. (&)

These determine the part of X - with the largest AJ 1in
terms of Xn-l s Y1 9 e 0 X5 s Yy o s os. Where X,
Y are any of £,S, h, and n 1is an index of the power
in 1/m. Thus in each order in 1/m, the angular condition
leaves us with some freedoﬁ in the lower AJ with which
-to satisfy the current algebra cqhstraints.

The gist of the calculation below is that by
systematically foilbwing (3.5), (3.6) and (3.8), a
contradiction is found in 0(m™3), Since there is no
trouble in the SHO up to 0(m~%), even for the full density-
density problem, it is clear that nothing much can be
learmt without going to O(m-3). Consequently the calcu-
lation is somewhat tedious.

2. Order m°

From eqn. (4) we get
CARICATR S I [3.8,] = 0

which is of course the same as in the degenerate case.
We again assume, with the same plausibility arguments

as in Chapter 3, that
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(SX’Sy’Z) = (wacyccz)
(S;(nSQ’Z,) = (U%,U&,U;)_

so that to maintain [T, G(k)] = 0 etc., G(k) must not
involve spin. The angular condition elQ 56(x) ~ 0 for

o(m®) is
ZOG(k) 8 0

and since I = 0O, hanAJx =1, G(k)o =1 + 1khxo
, ;

k -
-3 hxxo 4+ aa must hgve AJx = 0, hence

=2
il

ol
o+

= 1
X0 X hxxo L "xx XXXO0

(6)
where the t's are arbitrary symmetrical tensors in 3
dimensions. (Recall thatthe h's are tensors in 2 dimen-
sions, i.e. the indiées on the h's only specify transform-
ation properties under Jz') Thé q operators h’xo ’h.xxo
etc. are obtained by & ., Factors‘of 2" are put in for
later convenience.

Note that if density-density commutation relations
were to be imposed, G(k) would take an exponential form
BB | 5o that n =hZ,n . = nl ete. This is not
assumed here; however, as shall be shown 1atei, the

system has an inherent inclination towards the exponential
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form, for the following reason:

To get say [£,G(k)] =0 , one must have

[z,nl=[z,n J=[2,n]=...=0

XXX

- This infinity of conditions collapse into just the first

one if one has h = hi . x = hi etc, The angular

XX XX
conditions likewise collapse into a finite number of
constraints in the exponential case., In other words,

deviations from the exponential form are severely cons-

Lo ]

shown that t.. is "almost" tita

3. order o™t

The calculation in this order will be presented
in some detail since it exhibits the major steps followed

in higher orders and is not overly messy.

(i) Calculate I I

From the angular conditioh (4)
(J, ;[J4 ;zlj] - 2ifg, , [k, () 1] = o
so one finds
Zl e %L'GL + (pseudoscalar) + (axial vector)Z

where for any operator X, X is defined by
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[k, x] = ~2iX (7)

The (pseudoscalar) + (axial vector), is the most general

object (subject to el™y - 4 » AT = 0) ennihilated byv

two J+’s.
1 = 2% = (g +dne.)?
= g2 . 1
- zo"'m{zO,Zl} + 4 a9

S0 that Z, must not contain any g, or any term

1
independent of g . The most general solution is then
I; = t g + (gxg)z ’ : ’ (8)

where u is an arbitrary axial vector#,

(ii) cCalculate le , SYl

From the angular condition (4)
[J+ ? -’-l:I = i[x, S+oh+oj
one finds

S, = =tg,+ (AT =1)

¥ In what follows, we shall assume for simplicity that u
does not depend on ¢g',  The argument remains valid even
if u depends on g', but is somewhat messier to write out.
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Requiring I, S to commute and anticommute as a spin

removes the ambiguity in (AJ =1) and one gets

Sex = 3,0, + (uxg), <9)‘

(iii) Calculate h o

Information about hxl can be obtained from the
angular condition (3.8) and'the current algebra require-
ment (3.6) that [X,h]=[X,h']=0 where X=1x,1',
S or §'. It is convenient to choose first of all the

following combination from (3.6):
- ] ]
0 = [z+3 vh + hx]
which, to O(m-l), gives

[Eo + 25 'hxl + hil] + [21 + Zi ’hxo + héo]

O
]

8
[Gz’ hxl + hél]

o v
gince hxo + hxo 0 and we have used the notation

=g+ ¢g'. The last equation is also valid with

[ [ s -t S .
-8 i.e. with o, = g . Thus hyy + hy, does not

Us,a

~

involve spin, And given, from charge conjugation consider-
ations, that h, and h' ; are related by  and g« a*,

one gets

h = (spin independent terms) + ( € =+ , a) +

x1
(6

(1]
]
-
]
S
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where s , a denote symmetric and antisymmetric under

¢ — o'. Now from the angular condition (4)

= 1
LI, ’h+1] = 3lk.n,, ]

one finds, by evaluating the RHS

= - 3t =

h, = 3L, , * (aJ = 1)
— _ i1 - s s =S _ ra
= %t+z 4+ (AJ =1, spin independent) + a_ + by

(10)
where a° = vector, symmetric
—a ' under ¢ — o' ,
b® = axial vector, antisymmetric

More information on hxl can be obtained from the
- angular condition on the axial current: e1Q G(k) =0

which to 0(m 1) gives

0 = ZOGl + ZlGo + 1Q120G0

and choosing 0(k') gives

~ 1 ; - : P )
ohy ® g, 3 (tt -t )+ 3Ly + %oy

where terms with AJX <1, e.g. (u:cc)ztx s have been

discarded. Hence
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= i(t t -t =
hxl 2(tztx txz) + %Ly + (AJx 0)

+ (terms depending on @) ‘ (11)

Comparison of (10) , (11) gives

— - 3 - - -S
hxl = %tztx + %Ly g c')y +oa + ay (12)

where a = vector, independent of spin

ij = tltj + titj ifi#j
or tij = titj + (aes )éij +
_(something that commutes with K) (13)

(iv) Impose density=-charge algebra .
These are the conditions [X ,hx] = [X ,hi] =0

where X =% ,5',S or S*, and can be re-written as
[X+ X',hxh!] = 0

where X = £ or § (The X -X' commutator will be guaranteed
by the symmetry between primed and unprimed operators).
The h, + hg commutator has already been exploited —

it is particularly. simple because hxo + h%o = 0., Now

-1
consider the h -h/ commutator to O(m ) and take X = I
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first.

0 = [zo + Ly hyy - hilj + [zl +Z] o h, h;o]

[52 ’ ‘%U; + 2ax + zai] + ['b_L'Uf + (E'rxg;s)z ’ tx] k)
The ¢% terms give
0o = -3[of, o8]+ [t oo, t,]

or
[ty 0851 = 185 (15)

This suggests of course that t = x,K = p2 + U(xz),

t = p. In any event, the solution is "not far" from an

~

SHO.
The symmetric part of (14) gives

]

[of,385] = -3(uxg®), . t,

If instead of (14) we consider the analogous condition

with Z - S, we get

§ =8 8
[oi, ax] = =3(uxo )i ,tx] (16)
Thus h, is almos? uniquely determined. Similar steps
give hxxl’ hxxxl and so on, e.g.
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.= 1 + 1 _ _ \ -8
LI t ot gthy %tx(a o )y +oa, toa,
where a = tensor, independent of spin

ay, = tensor, dependent on o, 0¢’ and symmetrical

under o ¢ ¢g',

In fact, similar to (16), we have
g -8 s -
[of »ay,] = -H(uxo);,t,. ] (17)

Just as tx is "almost" _ti, (see egn, (13)), from (16) ,
(

-

7) one se

s that a is "almost® 2%t and h__, is
- x . " X X XXiL

valmost" 2h  h., = t.h g
Several important features are worth emphasizing:

(a) "Almost sHO" ([t; ,tj]_= iéij)

(b) "Almost exponential” (h "almost" {hxo 'hxl} )

xx1
(c) The leading AJ 1is completely known, The "new".
arbitrary operators (e.g. u) only modify the subsidiary AJ.

4, Order m-Z

The calculation will not be shown in detail. 1In fact,

only the result on £ and S will be needed:

_ l2 L] 2 a4
z, = %tlaz - %ﬁL-thZ - %49 t,

2 _
- duo + fu sou, + (¥xg), + ...
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S, = tztxaz - %txtoa + tztxoz

- %uzox + %u-cux + (zx’g)x + 4ee

Since we shall only be interested in those terms symmetrical
in g,g¢g" when the combination I + I',S+ S' are formed,
the negative parity terms in 22 and _S2 are irrelevant

and have been represented simply by seo o Similar to
o(m™t), we get-an arbitrary axial vector u.

Ohe could, of course, continue the calculation by
brute force albng the lines of section 3. A contradiction
in O(m'a) will‘be found; this was, in fact, how the contra-
diction was discovered. A somewhat more transparent
method of obtaining the same result is given in the next

two sections.,

5. order m™3 ; the angular condition

The following notations will be convenient in this

and the next sections

g,a

g = g+ g
£ gap . R h. 4 ht
= —
o+ i hx et %
< > = matrix element between degenerate eigenstates
of X.

~ From the angular condition (3.4)
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[3, +hy5] = 3K, .0 - 3(K3, ,n, ]+ ik, n,,]

we get, after adding the analogous equation with h_"_ and

commuting with J+v

(3,03, . 8,501 = 3[K.[3, . R, 0] - 33,00, B4 ]]

= ';BL[K’[K ’ g+++1]] - %EK’EK‘T—r ’ A++o]] (18)

(3,009,003, 18,3000 = -3[K,09, s Byyyy 17

= 'ﬁ[K’[K’[K’h-e--.&-s--!-e]]] (19)
Equatién (18) means <hx3> has AJ < 2. We may decompose
~ . .
hx3 into

'ﬁxa = (terms independent of spin) + (termss o + g')

+ (terms«€ o - ¢') + (terms &£ ¢0')

and the AJ € 2 condition must be separately satisfied
for each group of terms. We shall single out the terms

& g+ ¢g' and define

= : ] 3 <
H = (terms eco+l6 in hx3)

- s s s '
= }aax + Bay + yo, (20)
so that the angular condition (18) for Hx is

<H,> has AJ g 2 (21)
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We also note that the RHS of (19) is independent of spin,

hence

H, has AJ g 3 (22)

Equations (21) and (22) are two of the conditions
imposed by the angular condition. 1In the next section
we shall calculate Hx by using the constraints of
current algebra and find that the fesult is not compatible

with (21) and (22).

6. Order m'3 : current algebra

The density-charge algebra requires (among other

things)
~ ~ ~ PaS ‘ A A )
[xe ,hx3] + [X; yhoo] + [X, .hl] = 0 , (23)
%=1 g § ‘d we have used ﬁ = h + h! =20
where X = L, x or y an e , x0 \vo %0 .

(This explains why we choose hx + h% to work with —

the necessity for knowing i3 is avoided.) We shall

-~

consider only terms « ¢ + o' in (23)., For X = I we get

L}

(£, 0] = [of.05] = [of . m 1+ ...

i

. 8 _ .8
Zl(aay Box) F onas

where ... are terms not €« g + o' and will therefore be
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ignored. Hence

21((10' - BO' ) = "'[zl 9 hxz] - [22 ] th]

(where it is understood that only terms < ¢ + ¢' on the

RHS are to be kept). Commute with Gz again

b(ag + ea;) = -[o},[5, 0,11 - (o} ,[22 ,h <113
| (24a)

Similarly, with Z replaced by Sx or S_ one gets

y

W(poS + yo3) = -[o} ["x'l h 11 - (65, [5,,, 1]
Wadh + yog) = =[of, [, 0,10 - [65, (8,1 h,]]

Thus if we know eVerything up to O(m"z) s+ We can calculate
a,B,y from (24) — each in two ways, thus obtaining

some consistency relations in the bargain. It is however
much simpler to add the three equations to bbtain'a more -

symmetrical expression:
BHX

= = [0S, 08, 0B yp00 - 0508, + 5,01 - [05.08,, + By,

P O I T [65,08,5 » ny T
(25)

Jacobi's identity can now be exploited to give
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8H

™

A S A s A S N
= [h, L6581+ [6f,5,]+ (o5, 5,7

s 2 2 s - A s
+ [Zl’[ x2 ' Uz]] ¥ [le’[hx2 ’ GX]] ¥ [Syl'[hxfa ’ Gy]]

>

A A A ~
v [R50, 8,0+ [6f, 8,0+ [a;, 5,211

where we have also uSed the fact that %xl does not

depend on spin., The second line can be further reduced

by noting

o
il

A ~ P P .

Ez:o ’ hx2:| + [21 ’ hxl‘] (hxo = 0)
s A A A

[o, s hpl + [2] ) hy, ]

8H;§=.[ﬁx2'w]+[ﬁl'wzj

+ [8,08 0,01+ [8 l,[S p g 17+ [85).08,, 00, ]
(26)

where Wl , W2 can be calculated from what is already

known:
W, = [a,z]+[a,sx1]+[c gylj
= hi(txc®_ - biu«g®
W2 = [O’ ’ 22] + [0' 9 szj + EG ? Syzj
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Notice that since %xl does not depend on spin, to get

something ¢ ¢ + o' in [hxl’ W2] we need only terms

& g+ g' in W2, and hence only terms «& o + ¢' 1in 22

etc, — which explains why we kept only ® =+ terms in

., ete, Also

2

~ ~

(5, . (%) . 7]

L}

[tl.cf-r (Exgs)Z » [t .0 + (lixgs)z , ?‘xl]]

I

[

<
Q

A LS

&, [0, B 00+ [uxd®, , 5,01+ ...

L] '3 . A ’S
tx[ty , hxlj - ty[tx , hxl] + .
' Zicz e

A
uX[uy , hxl] - uy[ux ,

=204

x1

where ... are terms not « o + o'. Likewise

P S ~
[Syy » (84 s 2 1]

- a4 a g
= <{uy[uz, hxl] uz[uy, hxl] } 2ig. + ...
so that

P A Ia) A P ”~ ~ o ~
(2,02 s hy T+ [5,,084 » h, 1]+ [syl.tsyl g 1]

_ . . & A _ L » ’N S
= 24 { t [ty ] - 0%, hxl]} o

, ~ s
+ zleijkui[uj, hq] oy .

With these, (26) becomes
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Bﬁx
=41 [, (tx0®), - u. g°]
+2i [, -t (tx0%), - 2t (tx0% - du+ (uxg®)-2vc°]
+2if lty Byl -t Lt B0 ) o
+ Zieijkui[uj ’ﬁxlj UE . (27)
To obtain a contradiction with the angular condition,

only AJ > 2 +terms need be kept; it can be verified quite

simply that the terms involving u or v can be discarded.(

. . a,.
Lj [hxl" (txo )z]

- . ay: . L a7y
= Ui [ﬁxl ,axjty Li [ﬁxz’ Gy]tx + i
= Ui [ﬁxz » Sy ~ s;co]tj - ‘*i[ﬁxz » Syp - S;;(o]tx
- i} EN . : 3 - L ;
= -4i [R, Sa s;d]ty + Lufﬁxl » 841 syljtx
Nt _+ 87 3 . 3 8.
= -4i [R . -t,0,] t, b [, ty o ]t
_ . L] *+ S - . A L] L] s
= +4i [hy, 1,160, bi [fy 0 8,08,07
= 2 x (3rd line of (23))
where we have used
l:‘BXZ’ Syo S&o] + [ﬁxl » Syy T Sil] =0

and the fact %xl does not depend on Spin;’ Thus (27)

yields
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- . A —I 2 . S - LX) S
g, = 2i[h, .-t (tx0”), - 2t (txg0%),]
. ¥ L] L ] ” s
+ 61'{tx[ty, hxl] - ty[tx, hxl]} g, + (87 < 2)
(28)
h X .= -t t 4L
where hxl = -t %, + v
7 Contradiction

For an SHO, for which, in suitable units

t=x t=p =X
(28) reduces to
_ 2 s
8H, = llrpzay+ (ad < 2)

where the AJ = 3 piece obviously does not vanish between
degenerate states of K, and a contradiction has been
shown.

Since the AJ = 3 piece does not depend on the
unknown operators u, Yy etc. (which give most of the
arbitrariness that distinguishes one model from another)
it may be expected that the general case will resemble the
SHO very closely. By requiring the AJ = 4 piece in (28)

to vanish (see eqn., (22)) one finds

['éi,%j] = -iBs - . (29)
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where B is a scalar commuting with t. This is to be
compared with [ti ’%j] = iﬁij , from which it is plausible
that &t = -Bt , with [t,B] =0 . This can in fact be
shown to be the case, using the consistency conditions
referred to just below egn. (23), With this in mind, one

finds

8H

n

12 oLy S
< (étz - 2Btz)oy + (AJ < 2)

(6t§ + 2’cztz)a;+ (AT < 2)

n

H

51265 + 2(t% + 1.t )o° + (ad < 2)
sy & o ¥

[y

_ ozs @ @ o
= utzay + 2(tztz) o° + (8 < 2)

g

o . s
8<Hx> = h<tz> ay + (AJ < 2)

Again, the AJ = 3 part is not zero if the model is to

be nontrivial. This is the contradiction we seek.
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VI. Conclusion

We have shown, for spectré expansible (a) around
a degenerate limit or (b) in powers of inverse quark
mass, that nonexotics cannot saturate the density~-charge
sum rules of U(6)w current algebra. For (a), exotic
SU(6) representations (i.e. other than ) and 35 for mesons)
will be required., For (b), either exotic SU(6) represen-
tations or C # @ (—l)s+1 is necessary‘.

In terms of Regge parameters, the two expansions
correspond to extrapolation from the limits (a) a(o) =
constant, a' = e (b) a(0) = = , a' = coﬂstant, where
a(s) is the leading meson trajectory. The real world
may evade our result by not having a smooth extrapolation
from either limit, However, all known, exactly soluble
(12)

models of simpler problems (free quarks "factored"

case(24’27)) are expansible in at least one of the above
ways.,

An important questibn that remains to be answered
is the role played by exotics. For example, can we find
a solution by allowing a small number of exotic states
(e.g. qqqq for mesons) ?

It may be that there is no answer unless the spectrum
is allowed to contain states of arbitrary "exotieity”

(e.g. ngng for mesons) — in which case one might be back
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to the Lagrangian field theories, from which the equal

time commutators were abstracted in the first place.
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APPENDIX

Here we show that considering the first few moments
of the vector currents alone leads to similar difficulties.
Indeed, it is the discovery of this fact that led us to
consider the even less restrictive problem of the zeroth
moments (twice integrated algebra) describéd in the body

of this thesis.
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It is shown that even the first few moments of the vector and axial vector charge density algebra at
infinite momentum cannot be represented realistically in the space of the non-exotic states,

It has been known for some time that the pro-
blem of saturating the SU(3)xSU(8) algebra of
vector and axial vector charge densities at infi-
nite momentum with non-exotic states admiis
only trivial and unrealistic solutions: that of de-

generate masses and that of the free quark model.

Two difficulties were discovered in attempts to
construct more realistic solutions, In the sim-
plified problem where only one quark carries
charge, the spectrum contains a spacelike part
coupled to the timelike part by the current. Sec-
ondly, when more than one quark carries charge,
the operators for the different quarks fail to
commute. We wish to consider here the possi-
hility of circumventing the second difficulty, if,
instead of the full set of commutation relations,
we impose only those involving up to the second
moments of the charge densities.

Let us first summarize the assumptions and
results of the exact problem, Detailed accounts
can be found in many places [1-10]. '

It is assumed that the vector and axial vector
charge densities, Fa(x) and F3(x), under equal
time commutation, obey the local SU(3)xSU(3)
algebra without gradient terms. The Fourier
transforms then satisfy

[Fa(k), Fb(k')] =i fabc Fc (k+k'), ete. (1)

The resylting sum rules are assumed to be
saturated by finite mass intermediate states; or
equivalently, the corresponding dispersion inte-
grals are assumed to require no subtractions,
In particular, if, following Fubini and Furlan
{11], eq.(1) is sandwiched between states with

*Work supported in part by the US Atomic Energy
Commigsion, Prepared under Contract AT (11~1)-68
for the San Francisco Operations Office, US Atomic
Energy Commissjion.
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bz = o, pair states will not contribute, since
these correspond to intermediate states of infi-
nite mass. (The pair state is due to the current
creating a pair and the initial state propagating
freely.) With pair states eliminated, ‘it is then at
least plausible to assume, as an approximation
to the real world, that non-exotic states saturate
the sum rules. Another feature of the infinite
momentum limit is that (lea (k)[i) and

(f| F2 (k1) no longer depends on p;j +pg, so that
F,(k) and Fg(k) may be represented as matrices
acting only on the internal variables of the states
|i) and |f) [1].

We try then to represent on the space of non-
exotics the charge densities Fu(k), F 3 (k), the
mass M, the transformed angular momentum J7
and the parity P. Relativity imposes a severe
constraint among these operators. In the Breit
frame, where initial and final particles have
apposite momenta, say along the x-direction, the
current can change Jy by at most one unit. This
is the angular condition. Because particles of
different masses require different Lorentz trans-
formations to be brought from pz =« to the Breit
frame, the angular condition in the p; = « frame
becomes rather complicated and reads [9]:

I3NF, (K) =1k, [F, K], (2)

and similarly for Fg(k). The operations I, Kp
are defined by

1(0) = [M2, (73, 6] - 2[Mk-J,0] - k*{a3,0}
(3a)

TJis the angular momentum boosted to py = . Speci-
fically, J acts only on the helicity of the state and not
on its momentum.
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K 60 = [MZ,[MZ,B]]} 202{12% 61 + k%6 . (3b)

Consider first the simplified problem of the
SU(2) xSU(2) subalgebra of isotopic spin, re-
stricted to states with one "active” quark (the
others being in an SU(2) singlet); for example
the K 's in the meson case and the ='s in the
baryon case. This simplified problem has been
solved exactly [4, 9], but the solution suffers
from the first difficulty mentioned earlier: ex-
cept for degenerate masses, the spectrum con-
tains a spacelike part, and except in the free
quark model, where M = 2 VmZ2+p2, the space-
like and timelike parts are coupled by the cur-
rent [8,9]. However, if the solution is formally
expanded in the mass splitting, the spacelike
part does not appear in any finite order [8].

In the full SU(3)xSU(3) algebra with more
than one active quark, the charge densities may
be represented as [3]

Fak) =5 320 explikn @) (42)
1

FU) =3 5\ Q 0@ exp[iken @], (am)
1

where )x(g) are the usual SU(3) matrices for each
quark i, We shall consider the meson problem,
so i = 1,2, In order to satisfy the commutation
relatmns (1), %) w(J) must commute with one
another, and w()2 =1, The angular momentum
is represented by

J=xxp+ 161, %0(2) ; (5)

Furthermore, (/) = (h(;), 3 must behave
as a two vector under J3 an as a scalar,
Properties under parity and time reversal are
given in ref. [3]. . .

It remains to determine () and w(¥) so as to
satisfy the angular condition, The case of all
masses equal and mflmte jves the static quark
model, with A{1) = £x, w(1) = g4(1), etc. [3]. The
more general pmblem where M = 2VmZ+ p2+ U(%)
can be solved by expanding around the static so-
lution, i.e., in powers of 1/m [3,10,12]. For the
free quark model [U(x) = 0], the solution has
also been obtained in closed form by covariant
methods [3]. However, by carrying out the cal-
culation to third order in 1/m, it was found that
for any U(x) # 0, h(l), #(2) fail to commute
[10,12]. In other words, there are no solutions
corresponding to bound quarks.
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We wish to see whether keeping only the con-
straints on the low moments of the charge den-
sities will permit a solution where [h n(2)]=0
for some non-zero potential U(x). Expandmg
eq. (2) in powers of k yields a sequence of k-inde-
pendent equations (of which only a finite number
are independent)[9]. The one involving the lowest
moments is

[2m7,, WD) = £ 3i[m2 0002 | (6)
where Jy = Jy £ 1 Jy, h(l) ( ) i h(l) Another
equation is, for mstance

(W8, ), i a2 = o ),
and there are somewhat more complicated con-
ditions on w(®

We impose the weaker condition (6) instead of
the exact condition (2) on the vector charge den-
sities. This is equivalent to imposing the exact
angular condition but requiring the charge den-
sities to satisfy only those current commutation
relations involving no moments higher than the
second, i.e., requiring eq. (1) to be true only up
to second order in k,k'. We then expand around
the static solution in powers of 1/m

(@) _ (i) -n . g (1)
h+ = Zn; h+n m . Starting with h+0

1
=3x
2 +*

eq. (8) is used to determine succesively

1y 1)
h +1’ b +2°
second quark can be obtained by letting x — - x,
p—-p, 5(1) =g (2)

Owing the weaker condition, there is a limited

amount of extra freedom. For example, eq, (8)
expanded in powers of 1/m gives ‘ ‘

. The analogous operatars for the

(0,001 = 1% + v, 101 ol ()
12, 20) = 511{2? + v, a1
+31[{p%+ 0(x), 21,20 (Tb)

3162+ v g, 107,
)

and so on. Putting the initial condition h( +0° 2%,

into (7a), the right-hand side becomes } x.p..
Therefore we have

B a(-3xp,) +b(-tep) ®
+e(zx o)) L +d(zxal 2))+

89
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where a+b =1 in order to satisfy (7a). Demanding

[A(1) h‘z)] 0 to order 1/m gives some con-
stramts (b = 0). We then put (8) into (7b) to cal-
(1)

culate & T with still more undetermined

coefficients. Carrym th1s out to third order in
1/m, we find that h( again fail to com-

mute. The trouble here, a,s in the exact problem,

comes from terms in hx , hx with the maxi-

mum allowed number of 2z indices.

The same difficulty of [#(1), A®)]# 0 is en-
countered if x and p are generalized to four-
dimensional variables.

Thus it seems that even the approximate pro-
blem of representing the zeroth, first, and sec-
ond moments of the charge densities requires
the introduction of exotics.

I wish to thank Professor M. Gell-Mann for
suggesting the problem, and for encouragement
and guidance.
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