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ON DYNAMICAL SPACE-TIHES WHICH CONTAILN A
CONFORMAL XEUCLIDEAN 3-SPACE,

Binstein's theory of gravitation requires that phys-
ical space-time be s four dimensionsl manifold whose line
element is determined by an invariant quadratic form

(0. 1) ARt = %b ., &xFAx? pov= 14

whose coefficlents g,, satisfy the ten differential equations

(0.1) Genw= 2 Aev

in points outside of matter. In these equations M is the
so-called cosmological constant and G .v the contracted
Riemann-Christoffel teasor

(<3
Z B €= 14
&

wherse

(=3
- voo,a o~ 9
vaa- Z [& E%\ e\x PR Jg&va € ]+ax,,%_\- ¢r,e\} -/;x,%‘pv,eg
ikd)¢g being the three index Christoffel symbol of the
second kind. Using this value of B vvo, , and introducing
g, the determinant wnose elements are the g,,, we nay write
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are called the components of Riemann curvature; 1f they
are constant and equal to sach other the manifold in

gusstion is & hyprer-sphere.

A material particle in a field defined uy eguations

(0.2) is assumed 1o move along a non-minimal geodesic, the
equations of which are

axr Axt dox F
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A beam of 1lizght follows a minimal geodesic, i.e. & geodesic

along which

(0.31) Cda - 0

It is the purpose of this thesis to restrict the
functions g,, a priori, to solve the equations (0.2) under
such restrictions, and to give a geometrical or, if possible,
a physical interpretation of the solutiouns. In particular,
we examine dynamical orthogonal manifolds which contain a
conformal euciidean 3-space. Tre line element of such a
world must be of the form

P N R S S e Rl R S S E

where £ 1s reaslly & function of the variable x°. If we
interpret x* as the time coordinate, we see from (0.31)
that the velocity of light in this manifold is independent
of 1its direction at a point. Physically, then, we propose
to find all dynamical space-times which admit of orthogonal

coordinates in which the velocity of 1light is isotrorpic.



I The Iguations.

‘The provlem may be stated: To determine the functions
(ra2 €) and plrat)in

\,‘\‘)' oL/-kL = QJL* [OLX\JrA-\aSL‘\- A‘L“]—eQ,LrSA\tL

so they satisfy the cosmological equations (0.2). For con-

venience we have here written
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Letting K 5 % Fa T L5 etc., we may write

the componsnts of the teusor G.,

Goa= L0 - =g, )

Gauy = Aoa- 2% =X R - X B 4 Bl By + Bis
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The other six components are obtaiuned from the stove by the

¢yclic permutation (123).

The equations (0.2) then become
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On solvinz sct A we find

Qa3 g = Hog ol 4 - L.% £Le)

where £ is an arbitrary function of t. Suvstituting tris

“value of @ in the remaining squations, anc letiing x=—JLF39
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Louation E is not indevendent, for it is a third order
aq x ’ :

differential eguation of which D is the first intesral.

HEgquations B and C give on intszration

Res = R oclxw )y etec.

Raw - 8y = & A Cuw ) ete.
etc., where a, 1 etc. are arbitrary functions of x, y and zZ.

Ve may now state: A manifold whose metrical relations

are determined by

Iyt xdated
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is an Binstein field (i.e. satisfises the sguatiouns (0.2))

of the required type, provided ¥ and ¢ satisfy
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A T = Ef‘ézt\ A
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where a, b, ¢, 1, m anid n are so far arbitrary functions

of x, y and z, except for thie identity R+t m+m=o,

ITI "The Conditions of Inteurability.

We must now find the conditions of inteszrabilit;

which insure the existence of an integral of equations

B, ¢ and D above.

The first three sets of conditions are found oy dif-
ferentiating the equations. First, since

I I R
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ext,
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whence from B and C
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The two other equations of C yleld similar conditions;

this set may be writiten



(1)

he third set is obtained from equation D in conjunc-
tion with B and C. Since

’LQ” - Q'\.w_"\" e\_s— Q\( /W\-—M\

D may be written
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Differentiating this equation with respect to x and sub-
stituting
Q\-\,"Q\L Q\\‘:Q\)o
e find

gD \-— by~ GO o« }TSLIM‘—M‘\A)‘S =~ 0

The cyclic permutation

(abe)(1lmn)(123) gives two other con-
ditions, corresponding to differentiation with respect to
y aud z, so
)
b-\‘\'c_,\_ e -}('M:‘M\
-3 e+ Ay~ 3 (M;-JL\
\
AL + b, =

The conditions (2.1) and (2.2) represent five equations
vetween the logaritimic derivatives & |
T

®x and ¥ of @
Q 8
which requires that the functions a, 1 etc. satisfy the two
eliminants of the scuations. e may then solve for the
derivativas of © |, and demand that this set of £
equations pe consist

differential
stent with the original ones.

It will oe



tfound oonvenient to var, the vrocecdure by wilc:. this 1is
accomnlished, aécording to the Zorm of a, b and <. e
heré develop these additiounal condaitions for tie cuse
albc+ 0 . the corrssvonding conditicns for the alter-
native cases are of a modifiesd forn, and i1 is ol advantage

B! -~

to develop then at = later stuwe.

In the case obero, then, we ma, solve (z.1l) for any

two of the lozaritumic derivastives of e (with reswvect to

X, 7y a1d z) in terms of thie other ouns; thus
Q, -~ b
o v o
R ¥ b ¥ ¢ + b
. LY Q-
Qﬁ-e‘ ‘-ke i

Substituting those into the first equation of (2.8) und
collecting coefficients of ¢ and ¢ we find

Y

(x.10) Ale, + Alg = o
where
A = b L - alc- b~ )
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Proceeding in this way with the otlher two cquations o (2.2)
we may throw tnem into the form

Al v. +» ALg=o

A-, Q\'*Aleo

where 4! and A, etc. are obtulued Ifrom &l wud A vy the

cycelic peruutation (sve)(Imn)(led).



In order

that our conditions be consistent
sguations B

with
we musSt have
2 - A a,- by R
S Sl BRSSP
Eliminating ®: this becomes
(LA B'e, + Be=o
where
, as by . Az \
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Correspondingly
i ~ { -
Cx Q + C«. Q\_ 4 C‘-Q - ©

1
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Y

The 14 conditions which have been obtained avbove are
not independent, but we have written them in this form for

the sake of symmetry.

ITTI ©Solution of the KEguations.

In order to solve the eguations (l.4) we divide the
problem into four mutually exclusive and exhaustive parts,
according to the form of the three logaritumic derivatives

¢ Qs >
N ¢ 0

ofe., The cases which arise are:

(a) none of the three expressions %, %, %zare functions of "t
(b) one and one only is & function of 1
(c) two and two only are functions of t

RALA-A ol

(d) all thres are functions of %

We now cousider these cases separately.

In the first case must be of the form

oo 1) & Q-_-Oa(-t\a-(\(gm.\
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in order that its logarithmic derivatives with respect to

X, ¥y and' z be independeunt of *t.

From A

9 Ct) B
T La Lty £t

go T is a function of t alone.

.

Substitutinzg the value of © given by (3.1l)a above
into B we find

Ty = o“oxﬁn\

But k is really a function of t, whereas o and a caunot
contain this variable; hence o.,and a nust vanish. Ap-
plying this reasoning to the remaining equations 5 and C

we see that b, ¢, 1 and m must also vanish. The conditigns

of intezrability are satisfied in this cass.

Thus ©t:ire equations B and C becoms

the solution of whnich 1is

o gL(X\{~J5\+7_-\ +‘o\\x+0\,\3{-okx1. L4
where tre d's are arpitrary constants. Houation U regulres
Ey py -+
that
S - See) T 0T
Oaeey D =+ < 2
where

P T R S L

!
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Por case (a), then, the fuanctions ~ and e are

o
- LA

T ok

e = Oa () i&Lﬁ»§+fﬂ‘+d\x+AL3+A31+&4E

) e

winere k is an arbitrary fuanction of t, and the d's are

arvitrary constants.

We next consider the case in which only one of the

logarithmic derivatives, say % , is a function of t.
Hence
.y e R

where %i\ is really = function of t.

V¢ d

N . R .

) and aias well as a, 1 ete. are functions of

X, y and z alone, it must ve imposgssisle to solve squatious
o . S . , v

(2.1) or (2.8) for 3 in terms of them. Hence a, b, ¢

and 1 must vanish. But then

or
La,
I.:‘\d"\'.-\.E\LZO
whence 0.= o . Similarly o, = o . We conclude, there-

fore, that © 1is a function of x and t alons.
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pN T - A is now a funztion of x alone. The con=-

ditions of iuntesrability requlire that

i.e. bm ~ 0 , But then n is & constant.

The line element is thus defined Ior this case by
t, e
('b,'L\b T = ¢ -G(t)
where © 1s a Welerstrasse ¥-function (whose periods are
dependent on t) satisfying

pAY S S A
(%3 AN S < )

¢

13N

We now led Y and %’ be functions of %, y, 2z aund t,
N . -
and -g a function of x, y and z alone. Consequently
Qf_ _Q/.\‘(%L‘t\ c~(9(~51_\
(2.1) recuires that b and ¢ be zero, so since wWe

mugt have

:‘ch*“ Ty = O
whence o,- 06 . Hence here

The conditions of inte:rawvility (2.2) are

R~ R0 = — 1 ¢ (Cmmial)

(3,\\c_
Q-,’V\ + Ry e -__L\Q(m>+q1_\
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Since it must be impossible to solve these equations for
\

- . 8
i;— and —;' y
o - o AAARVE TN
~ O
a*& m ML A
or
O\k\' Ann A = O
(3,1

~ La_« ”‘s\ r o a, - e R N

To these may be added (2.3), i.e.
/VV\.\_-*LM\_ - 3@3

) - .
L’B 'L/M_"_*_Mb'.—SQ\_

In order to intezrate the above equations on a, m

and n, we write the second of set (3.2)c
2 (R = (2)
(& - N h o a4

on eliminating n by means of the first, assuming for the
moment &M m ¢ 0 ., The general integrsl of this equation

is

where I is an arbitrary function of

To evaluate F and complete tue iaterration of (3.3)c
it is convenient to intercnange the dependent and independent
variauvles m, n and y, z, assuming that the Jacobian

) (.,Nf‘...’:‘\

" 4 o
D 4 )

Our ccuations then uscome

R R 3 (QM—LM‘- QMZ,_\\

TZm= Zm o= D (@t 4 G A
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where Aon = Qfﬁm 8lcC. Eliminating a and y from this
set by (Z.2)c anda its integral, and solving for the two

remaining derivatives z and z, we find

Z o - 5& CE-=) —
N - AR
R e b
M= ann )
The condition
VL . 2k~
a2 ™M B A

reouires that

s

Wie may either intesrate the last set of eyuations
or return to the original with y and z ac independent var-
iavles; the latter vproceedure 1s perhaps preferable. Since

ea. w -2 el

no loss of generality is iucurred by letting J, ~ 2z, Q.
Bguations (3.2)c ares now

A - OO

. b 7 i q
Using these values of m and n we may solve (Z.Z)c for A ang
[« N
. Ry
R SUS ato 4t
o~ % T S
On intezration
Con
ol T T sy
Cave ) -
whence
—_ C,"‘ C z“
ron > R Mmooz

‘i/‘_ -
C ‘5\* 1"\ ( \J)\i 2~
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The condition (&.1l)c requircs that

o

= oA xR,

i.e. © is a homogeneous function of y and z, and of Iirst
degraee. We take

o= oa o Ch, ) § -5

Substituting the above values of ¢ , a, m and n into
(l.4) we find that Atie)nmust satisiy
(3_15\1_ E._{:‘Lg”aj . ,L\%L+ ~ C }: o = b}_:_(:t_e\L
2 4 b 24 U > Cla ) LAY
whoere C is an arbitrary coustant (not zero). ©o intezrate
this equution let
Ak, ¢) - ased uld, +)
= o ¥

ulet)is tien defined by
> o

o\ . ox Sed et
(,aw\ S-S TR S A

r

The solution of this equation is

O L . ¥ ('S;% J +TTL(\\

"
)
(\

whereg7 is a Welerstrasse Y -function whose invariants are

3 |
YL X, - d*‘*_% Q%~{LLHB

We now return to o and expyress 1t in cylindrical

coordinates X — X A= B oena Y = S A U

g~ B gL‘ ;_Lc_ - B ('\}—;—ELQ +ﬁ(i\\}

(5. 4\ e

where m\Nig an arbitrary function of t.



The above solution has bveen obtained under the

restrictions
Armnm 4 0 > ? o
= Ly 2

w8 row examine %the cases in which these do not hold.

First, assume omm:o0, Then it is seen from (3.1)c

that &~ vz m ~ o0 , 1or otherwise i1t would be posgible
. Ry L . .
to exvress ?E or - in terms of x, y and z alone. Hguations

(1l.4) become

Q_‘_,s =~ QL2 Ry, = o Q«.L*QS\: E*'Q\L't\
whence
R~ Aule) o4 Aylt)e & d.Ce)
- ) < -
(.5 ereer - % - A0-4,

Consider now the case in which

2w A\
T - O
a Uy )

i.e. Q(M4M3=°. for this purpose we express a, mand n in

terms of a parameter o

ae = o) rAn A (o) M = A Ce)

The equations (Z.2)c and (3.3)c are then
O\L«\-Wv\fv\‘— o

(v )& . ‘
2N oy = o) = o

(~M'+1.M\\ . - Yal oy =0

(3.3 1) ¢ .

N o e +(L/W\)4-~\")a*}:u

where ' indicates differentiation with rospect to « .
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(3.31)c reguires that
/M“*lM‘ -3 a'

\

Y o ‘1_,w’—+m‘

for if this were not satisfiedos_ and o, would vanish. But
a, m and n would tren be constants and the determiiantg
would be zero, contrary to our assumption. Thus one of the

eguations (Z.21)c may be replaced by the eliminant of the two.

The second of equations (3.21)c can oanly be satisfied
. ~mA \.- o v . - 4
if (X)) =0 or oy = "= o, 3y 1t can be shown that

both possiibilities lead to the sams solutions. They are

here obtained by taking ("2 ):°.

o\ !
Since m\ =0 then m >y & ~Mm =N
where v and ~ are constants satisfying the condition pv+tt=o .
The eliminant of (&.31l)c yields

ol Cpter) =0

v— as e i 3 \‘_ ~ H 1 L3 1
The firet alternative, & -0 | leads to the conclusion that

a, m and n are counstants. By (3.1l)c

S0

’ )
(S, 6) ¢ R = ;}M*";—\,«f:\ S oo e e s

Kquations B and ¢ are satisfied if
Ao LN eD
3 "{‘ ) ¢

AN m ko
(,H\\ RN AT e
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2

Pinally, we may have y'si=o le€s p- 0L o
Then
p ==L o= Lo
whence 01~£Lm Cu<cn) . From (3.1)c e, ¢, sO
R K lween, &)

The golution of equations (l.4) is found to be

(3.1) < R= mL&, € =3l

where W satisfies any equation of the type

2}%\ - wrQ( g}
and
S
N = “%} J“)

Four solutions (3.4-3.7)c of the cosmological
equations have thus veen found in this case. 0f these
only the first is peculiar to (c), for the other three
are (as are also those of (a) and (b)) special cases of

solutions considered in detail at the end of this section.

The only remaiuing case is that in which all the
logarithmic derivatives of & with respect to x, y and z

are functions of +. We first dispose of the case in which
one of the quantities a, b or ¢ is zero, in crder that we
may then deal with the conditions of intezrauvility in the

form applicable in the case abct o,
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I£ one of the three quantities a, b or ¢ vanish the
conditions (2.1) reguires that the other two do likewise,
for in the case we are now considering it is not possible

1o e8xXpress % ete. in terms of X, ¥ and z slone, Simil-

|

arly the conditions (2.2) demand that A= »m= ~m =0 |

Bguations {1.4) can now be integrated immediastely, yielding

R= Ale) (e ) e d, 6y ¢ 2dlely oA ey 4o
e, !
T -~ Q‘- ’ { [ \

(. 0\ o

where the d's are aroitrary functions of t, and

heeys Ao U ret) s ASe A0~ AV - addg
b

Having disposed of the case obc 29 we nay taie as
our conditions of integrability sets (2.1), (2.21), (2.3},
(2.4) and (2.5}, Since a, 1 etc. cannot depend on t,
{2.21) and (2.4) can only be satisfied if all the coeffic-

ients A, A'; B, B' wvanish.

\ )
First /\I - A\. T /3\ .5‘ ~ ) S0
. ) o 5 . . e o
&\,\\J\ ,/Q" ‘;’i Let~-bv) Ann - —a Ca™~ ) an e qbkb a \

This makes C'" iun (2.5) venish, so the remaining coelfic-

iepnts ¢ and C' must also.

If we now consider those conditlions on the functions

"

a, b and ¢ wiich are of first order in their derivatives,
we find that they must satisfy 12 first order differential

ecuations



However, of these hut 6 are linearly independent. For
these 6 we may take two of the first set, all of the second

and one oI the last; th

e,/ are
b,’_ “ LL b: = CZ‘— + 1‘_ C,_}
b A oA
C+ P L L—‘ — CE: A ’- o.l
o b N Y b
RAY N
&3 \ d\_“g L L A - 9> , L b,
0\ Coe b W Q
-a\(c"-\o‘\*- b ' . b wbo (A -Cl+ B,s");o
—bola-ty C,a' - a,ct s ca Can=Qgic, )= ©

. \ .
[aENEE b"’— .», (/M)'/Ml\

where 1, m and n are gZiven by (2.1)d. It can be shown that
the conditions of complete integrability are not satisfied
for this set of 6 equations in 3 dependent and 3 independent
variables, so in order to find a, b and ¢ we next consider
the conditions on them which are of gecond order in their

derivatives.

Pirst, since R, ~B.= R, © we have
) i -Q - i
(a\_\o»\,,\--\- LO\,-bL\ K “L_,L‘ :;f - b«é—\—_o .t o

Now the ecuations (3.2)d may ve solved for all other deriv-
atives in terms of those with respect to z; this peing done
it is easily shown that

a, - s N .- N.} - 4 Ay _ 4 o, L <

o i, - 2
“~

s b G N oA Y b T

2 Moty p Yy v
. a" /M N o~ o [ »
- "



where

The equations above may now be intezrated once, yielding

4 l7 S/
(v A a, - b ;&4/310,‘ e >N b yOx )
Similarly 4 a 'y o .
¢ 3 >
4 4; 4

1
¢\~a1‘_(;50\3(bu N

fs(t)x\

ote that the arbitrary functions «, R and ¥ are siump

mply con-

A ) Oz x) .
S L= ¥ (X 3) N
A <
Again
- 4 1] 1
Q——l—:—il = 2 N-2 + 4 G PSS b,:} Lt Gosa I b /}C > ﬁ
“. & b N R =\ B b 3 < L_
whernce |
2 . - P Cr e
Cy.a0) A S atls g B e - T
Likewise |
3 - T %, %)
o ) \ Ny - RO I
gj i 0}“@”@” N ‘.

=

FFour other expraessions may uve optalned

from these two by the
eycelic psrmutation (abe)(«pr)(xyz).

In order to determine the so far arbvitrary functions

2y} , @y, x\ and ¥ C443) we treat the second set of con-
ditions in an analozous nmanner;
1

b (Q|— b\_\ §j % )Q—u-g [(a|~ b‘_\ ,\}_?[“ Q__‘V‘) HMXC_"I’J}
Q‘\.’-—’S\A\ . .5/ % ey a4,
Ctcanay 2 ey Denmen v et

they may be uritien
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sing the values of Q,— b, etec. given by (3%.21)d

(v ) 4

25064 . 3 B0

Corras 7 ondingzly

AR ~ 0
5 3 T
y
e R BT AP
o v B A
2 B0 Rty a g
r‘a \K a [

The solutiong of these equations are rendily found;

(5.14)A

where A, A

Retur

ald of the

(yahd R

“r

where &L 1s

’L

K = C_xﬁ— BL* A4
(\}'. A'L‘C’x+‘(3<)

5 - l&x—Ag'* Cq

etc. are arbitrary coastants.

ning now to. equations (3.22)3 we find with the

above values of o, g and ¥

,Q‘/ I é&_‘)«,hu."\*x(@a\{-(m\a(‘4‘5_841_+XL)<\
u

N b

an arbitrary function of x. Two similar ex-

nressions are obtained by the permutation (XYZ)(abc) etc.

(3.21) requires, as we have meuntioned

i
*d
e

etc. Also

A + E ~ & -—— 0O
o~ b o

plying this condition to equations (3.25)d we find, on

equating coefficients of the independent variables, that

X = 4‘% X" x f:_%‘ A & congt

/A\A\A\‘r B %44‘ C-C‘\ ~ 0

) 5/

S G \ .
(K?'C‘\ 'N” %-— A (—)(\*-ug\’«-z."\)«\~ X (83‘\- CL)+C4 ‘vb-ﬁh’-* %A}



av)
8N

or
| W e AP o
(3.1 b)d A = o v W
(;V
where . A
‘(B "’/(o‘ . % oYW Lu\*\lewx‘\

\.& - ”L.(O\b Q\\— N -

: ‘ s -
-f% v%\+§*uﬁ)+X(83+CL\+C45-DAL+HE A

AAy +BRy+CC =0

=

These values of a, b and c¢ satisfy the first order equations
(3.2)d as well as those of second order, and represent the
general solution of the conditions of intezrability (except

for the case o~{= & -0 t0o be congidered later) insofar as

the conditions do not involve ¢ .

We must now return to set (2.1) and suustitute the
knowvn values of a, b and c. Then
VR, —uw R, ~ ®R=D
\'\,\\\‘l Wl -VR, 4 xg=0

ve,~wf + pC=0

In order to effect the intezration of these equations we first

throw tnem into vector form

'VJLU—% P X ;T + e -~ O

where d ~Cuv oy & = LA BT
Now E~ 1 x A + O where

Ao L) K= (ARC, O ~(AD L, A-Ux»s
and T = _(gk AN A AR FAXD <+ %\/:

If A30 , it is possible to make a transformation of

coordinates from M to A+  where Y is defined by
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I‘S:/:\-Xf /3«\'_)‘ - 0

in this new system € and 4 uwecone

— . e _ - - ~\
& =~ A XA A - /i ANr AR AR g% A
.

(2.1)' tells us that WV Lleq e lies in the planc determined

Soe

by r and A so the surfaces QikAr &)= congt. (t fixed) are
surfaces of revolution whose &Xes are in the direction A.
Changing to polar coordinates (ms9) in which the direction

is that of A, the equutions (2.1)' are

d dwn e
> \-Q

_ i

® A — 9

3 Ay (AM~ €y q 4, 2771 o
4 ) T en

) ,,Q.u-ﬂuu&G L 4

G~ 0

3 N -
whence
N et PR
n-og At~ s
R = N Ty @«N\ % 4 % S i )
" oea @ .
If, then,
Ca [ nt- €
R~ = Ki &, &) ¢ = . a4
T
the conditions of integravility are satisfied. The eguat-
ions (l.4) reduce to
R/
ro- L l o n RN - A
(g‘— b Cd ey - 3, €+ - ’Li-c WO ey =2 )

which is of the same form as the equation obvtained in section

(c). If ¢toeit may be written

fa e 'K'— _7‘ ) A
( ° Ve ) L v { 4 \~ ('-*A \+ e
V3 b b L es M e I >
&
whence
he

(%.11)\ d
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Another type of solution arises if c¢-o, for then

EIERALY ( 2 % \k: !kic ((«\ Lo LMk
I b}
2

W is thus again expressible in terms of a % -function.

The above solutions were obtained on the assumption
A+0, and are furthermore subject to the restricdtions

imposed in assuming that no relation exists betwsen a, b

le the algebraic solution of

o

and ¢ which renders impossi
egquations (3.2)d as required on p. 20, and to the tacit
assunption that « pa¥+ o, for if this condition were not
satisfied it would Le impossible to evaluate the funcitions

L, Y and Z as on p. 22. The examination oi the cases

arieing from the relaxsztion of these counditions leads to

7 additional solutions, & of which can be reduced to those
gueountered in previous sectiouns, (In redueing solutionsg
arising under this case to those of the preceding parts we

must of course waive the requirement that all the logarithmic
derivatives of Q‘witl respect to x, y and z are really funct-
iong of t. There 1s, howsver, o ovjection to trhis wmrocsedure
for we rave divided the problem into these four narts rerely
for convenlence in solving it, so if we can show that a sol-
ution arising under (d) is reducivle to one of (h) or (c)

no loss of gzenerallty is 1ictf"“d by so doing.)

e first consider those cages in which the processes

leading to eguations (3.26)d are justifisble.
If 4 =o0 the set (2.1)" may, on suift of origi he

reduced to



or

|
Ol
A
4
©
—_
r
Ci
L
&)

R AThge - O

Hence ¢ nust satisiy

gj
)

TR

v¢. A = 8§
Choosing our axes so that D = (Aﬁxo) the above become
A8 -
As 5% =9
28 3 L3 .
k:é“XJc‘ﬁ 53*7— By N

ic. © is a function of y, z and t which ic homogeneous
of first dezree in y and z; this leads to solutlon (Z.4)c.
In this case we have tacitly assumed that O o , as well

ag 010 (in this latter case xpafwould bLe zero, so we Jo
not entertain this vossibility at »ressnt.) Sinmilariy
- - ~ -~ - -
we assumed oxn 1. 24 that not only A+ 0 but also that A #o.
As long as we are deeling w»ith real vectors these restrict-
. . ~
iong, i.e. D +tO0, A'%0 do uot councern us, vubt if s

wish to obtain the complete solution o

Hh

the »nrouwlem we nust
consider the ima-inar, and comwplex solutions aoc woll. Th
value of tris comrletensse will be evident in the nsxt

gsection, in which the relations between our solutions will

Brisfly, if A =o but A+ o we may take A = (0,13,(8),
“he iute ration of (2.1) and the svosequent limitation in-
noged by (l.4) are not as nestly efiscted here as in ihe

oy
rrecedlng case

o) [

N - . oy vy Il 3 o IS -3 ¢ - - e
but o8 the reasoning 1s ceuontially the san



ve mexrel, state the result: Lo this possiblliity there
corresgpounds the gclution
\
nt- %
(3.3 4 = tar o) Kb &) L= 13 cto
\ o Q-
wheres
o w'= %8
et e A W 2o £ .t

— —— — F
Azain, 1f A=c and D =c but O tro the prohlem cannot ue

reduces Lo that of se:tion (e) by rotation of coordinates

-

as on p. 26, for U may only uve rsduced to the form (0,8,, 8]

The solution of (2.1)' is then found to be

. _ o Y SR
(3. A) A e = x % U &) G = 0
and the cosmolozical equations regulre thalt « satisiy

. b
e B A Loy = Aot

ext we concern ourselves with the cass A py=o, A, T and

in {(3.25)d4 way no lonzer be obtainsd by the device employed

[

avove, but we may stert with

s BN Wlrsa
(v 5) d b= Y (s) wlxs)

c -~ Ziw) G4 X

detormined oy (3.2)d. It can

¥
o
ot
oy
&
@
=
@
<t
O
T
@
W

whare X, ¥,
be shown that the first five of these acuations regqulre eilther

(L) X, ¥ and 4 e constant or (2)

To these cases corrsspond the following soluticns o the

fundamental eguations:



<o

(1)* Hdere it may bve shown that rotation of the coordinate
gsystem reduces © to a function of at most two of the
varidoles x, v and z, and that the solutious then outained

are (2.2)b, (3.6)c and (3.7)c.

(2) In the se:ond case a new solution is obtained.

Prom {Z.2)d we find that

PR
yul) = C
L{/\Xﬁ \ f_\s
whence by (1.4)
(5 ) N “(“)t\
wherae
- Aot S B A
K- L n " A "N >

We now entertain the last possibility, i.e. that there

existe betwsen a, b and ¢ a relation which malkes squations

(3.2)d linsarly indevendent no longer. Examination shows
. . _ 4 \ ! . C s .
that 1f N= =" = 7+~ =0 we are not Jjustified in

N b~

concluding (3.21)4d. The solution of sguations (1.4) in-

H

cident to this case is of the type

it

(5 b)Y d Q Uy« o K(&\) £) g = EARN

where W satisfies any e.uation of the form

NSO e @)
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We have now obtained all solutions of eqﬁations (1.4).
This has veen accomplished vy breaking un the prowvlem into
four parts and solving the e uwations under the resitrictions
imposed in the several sections. It is found, hoviever,
that there is to some extent duplication of solutions. In
order to avoid this repitition, and to collect our results,
we here arrange our 14 solutions into 2 classes, cousisting
altozether of 10 sub-zroups. In collecting we have further
simplificd the sclutions vy choosing coordinates from the
group of linear orhtogonal transformations which allow us
to express ¢ 1in the least anumber of variablss. For all

these solutions
44 pw] a/a—g l

TE TR R Do)
(1) R = O AN LA e) vk ALCt\L5+A>(t\L«+A4(t\
where the d's are aruvitrary functions of t and
DleY = A« AT A - Add,
(2) = g = QUK ) s owece

satisiying any equation of the type

LI T Y S R T
2 4"
b R = kﬁerL\\Qkﬁ)t\ % - nt
N L=

where wif,€) satisfles the eguation in (a) above.

In both of these cases D)y =0 ,
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satisfying

b o= o2 ox Chy ) Lo- ?L
where
(BEY (e - Ty et A C(ﬁ.ﬁ& = D<)
c g =z AL h%) ¢ - N-gl
where .
(%—V{‘\\( (Tract) 1 in g“%_' +no- ACk&t"{:4el\H,L = D)

d This solution is really a special case of (c)
above, arising on putting e=e¢ , but the auxilliary equation
for W is intezrated by means of a different substitution

(cf. (3.28)d as opposed to (Z.27)d).

R = = \’K(ﬁ,f’\ gl /‘:'\7:

where w Savisfies

. “ A~ Y -
\%{t\) {'_\L— "Lé K %_1 + 1 - 4 C %3 "D (’ﬁ'\
e €~ « wi %\, Jc.‘\ <‘L - Ls_t/“?

, . nt- &t
£ Ro= Uhein) KU Vo Xlie €%F°
TSRV T N LA NS L N Y -
in which “e (,“«\ = 4K D)
g @ = @ lx, &)

where @a’l\\ - 4(_‘Q”’ * QL&\



Of tiese solutions only (1) has ueen expressed in int-

egral form. 'he seven cases arising under (3) have peen
defined by firet order, second dezree ordinary differential

equations, all of which ma; be thrown into the form

(A2 40 K> S T eDle) 32t

by one or another of the substitutions suggested. The solut-

ion of thls ecuwation ig reauily obtained in terms of & Yeier-

strass’ & -function whose argument is Cw , but the inter-

retation to be ziven in the suvuuud;nb gsection makes 1t

e

degirable to retain the diffecrential form at vresent.

rh

oo

Only two of the ten solutions, those of case (2),
cannot be zenerally expressed in integral form. To obtain
a solution of this type we must first assi-=wm toQ(ﬁ\

definite form, iantezrate the resulting ordinary differential
gquation in ﬁ , aud then replace the two constants of integ-

o
D

ration oy arbitrary functions of t.

IV Interprcetation.

How that we have solvod the problem proposed at the
beginning of this thesis, we turn to the interpretation of
the solutions thus obtained. This may Dbe done along either
geometrical or physical lines; for this purnose we first

set outl the appropriate tools and then proceed to the con-

gsideration of the sclutions themselves.

e .\ - .
In all cases  ~ = §ji€\ and the zeodesics (0.3) are



(&3
Ay

-t = )
.~ e\ (-\ Lo - _( %\ﬁ Ql @ﬁﬁ Lie‘ -
S S BN - ok .- =~ )
R K VA Ta R v R
with two. analogous eguations Ior ; and z, and
~ ¢ \ - B~
- q \ - \
e v Lltewewy - @“~-A '{'%\h IR o -S €
*\‘lt\ Q 4 Q {h(t\ 4"‘&&\ .Q (< Q‘\ Q +L1)
where tioe dot indicates differentiation along the curve.
One intezgral of these eguations 1s, of course,
PN et u Cu”
D e - = - Q'\_
Ly
gso for our eguations we ma, take thle relation tojether

three of the four

( & \ AN Q_L\F“ L\_‘ -~ 5

with any

e Qs eree)
N U S VR T SO
~ E\—\ * Q Q*QLL'&‘\ &
Q4'Ot\ ( T RS esq Ca " --n
Q"\ e Q QLL*\
Qiﬂ_,é_‘- '\' N €q P44 @4 "’tk - 6‘5‘(@7(}\ '~ - a
S e e~ th\ QL.(\(t\
From

these eguations 1t is ssen that 1f ¢ does not contaln

one of the variablss x, y or 2z, S&y X, then a particle which

1s at sny time moving in & surface x= const. always moves in

that surface.

Next we produce the compounents of the covariant
Riemann~Christoifsl tensor Byyee They are

Bines = ﬁ(e“xe,\\e O A A +L:£\\R

e s - T - Uy
(400 ~Q%{\€\ (e ce o) *Lffkwﬁ\&gt’gs*@;’

B = Eél‘ Ba 434 — s:‘;\u) N

%sasul

(S\‘\\‘\_ =~



The remaining 8 non-vanishing couponents may ve outalned
from the first four above uwy the cycelle rermutation (122).
In the “revious sesction we used Iresly any .lisar
tronsformation of coordinates %, v and z which 1sit the
euclidean 3-gpace elenent <A+ datw N invariant, i.e.

an; such taat

- 9\1\. o\\i\: A\X\-*&\ih;izk

Jut we may use a much more general class of trangformation

1

which sends our line elemcnt ds (1l.1) intc ome of ths same

form. In particular, this is accomplished if
Jor s+ LTCEXILNAZ T
for 4s ~ 1s then transiormed into
Ay = e,
In fact
TPIXILEN - K;XEL\Q~(‘LX T1), 3 (8T 2\ w(KTL), )

That T(XYZt) is of the correct form, i.e.

&PLXiZt ) {
(XYL &\~ -
T < \ > & vuri’au =t

is a conseyuence of (4.03).

We consider the class of btransiormations due To

Kelvin (ef. Bateman "Electrical and Cpntical wave iotionr.dl)

O\I ) Qk\— 0\_«._ {x\ _‘_5 -

X = A= . T = .
‘~<,{-(_Z_ PG E A LCL\“‘-L\
viieNCe
N w
[,Laof - - \‘ -

o
w0



Inversion, for which

4

(=N

may 56 oovainsd by .the double app

0i the previous Iorm.

E

Hence we may stats the importent theorem: I ¢ (vu-

[y
[&)]

& solution of the cosmolozical eguations (l.4), then

(e (2f R-a> Qe \

(4&.04\ PCELL ) ~ il ' Lt‘(«-d—\ Lolypec ) A

is also. Similarly, iunversion leads to & solution

a
( 5 mir’-\i) “}%‘u ‘|

401 Parzaa - A

)

now proceed to the congideration of the various

types of solutions.

<)

cation of a fTransicrmation

If we substitute the values of ¢ @nd v glven by solution

tre Hiemanu-~Christ

———
-

~—

go]
[ ]
Do
(20
fs
o
CJ-
(@]
ct
o
&
&
o
O
=
[0}
=
=
t
[4]
O
b

oilfel

1ensor Buyee , we flnd that the manifcld whicn they Jefine

is a hyversphers ofi Riemann curvaturs - X . This geolution
o i i by

aonhaing a8 % grnoe cin 1 ocase that £ Ty o e e Y -

SRS SRTIC N ¢ ag Yo gmoelial Zast uvhalt © Lie £&BTICT, 1IN wWrliCh VT~

(American Journal of .atrematiczs, Vol. XLIII (192:2)).

pe dsduccod froem the ragul

A

a function of t alons, and @ sligrd geuneralization of th

of That ssection allows us to stuto: If "etationury” ovtarve
(1.e. obzsrvers at a voint X, y, z coustent) in an ortiozonal

nhal inftorval

2rt (a) section III soove. Here < 18, 48 ws rave menbi

" .



: T R F ETm e et 3 A e con B AT e 4
ig indernendent of LTheir v ~cition in syece, ond that the

- s 4 £ : faamtraed R N e A gy
veleoeity of lisht is isotrovic at & wolint, tion space-tine

i

o0

& nyrersphere. If the cosmeolozical consgtent A is zoro

2 - b

then ¢ swnace time of this tyve ig Jxlilsan.

If transform trnis solution by (4.04) avove we find

wm

2

PCETT 4N = DO R+ 0,06) T+ 01O T + 0,06 %+ D (4)

ATedS 4T - Addy < OTe O Lur 400,

of our wroblem for wiich 2ll the compouents of what we have

called the Hiemann curvature are finite.

e do not uselieve that the two solutions (2) ». 290

. . n Y

sical significance, for they are gssentisily

o

%

CZI nave an; phy
omplex. Again, if tic cogmolozizal constant 2 1s zero the

line elemont ds degensrates.

In order to illustrate the method of arniyi

trausformation (4.04) for this and the succeeding section,

we here carr; it out for tie solution (2)Db. llere

L UB xe ® € X (! S
Q l\ Q\s&g‘l.\ \ 3{\\_ E‘) é‘ \ﬁ‘*'LL

80 there must exist @ solution

R o (—a~ M-tk
’P "'5\ /\ ( A "}i\-) t\

Writing this P (Toem BlE SN 3 2

i

\(( ’%\‘ -L-\ -~ S}; KCE)-&\

-
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and RN Ny .
3wt b => 2 BiE
2 a0 > T T
Hence W (= +) satisfies
T ~ /. 9-: [S)S 5
E S S N N~
e = —
But this scuation is of the fornm

3 =
whence (2)b goes into itself on applying (4.04). On mner-
forming various transformations of elvin's type on (2)s

and (2)b we find they go into themselves or into each other
J B ’

but not into a solution of any oth

The geven soluticns of group (&) cffer the most inter-

esting rossipllitics. We first examine the relations

).

existing between the various solutions (a) - (

og

As already mentioned, solution (4) wmay be derived from
(c) bj letting e=~©°, We have anplied to all these solubtions
the transformations (4.04) and (4.041), and heve fownd that
in ecach case e get & golution Which hes already been placed

in thls group. Further, the solutions unaturally divide un

hat starting with any solution ia eitker zroup, tio remainlug

solutiong of that sroup may be owuitained from it uy means of

(4.04). Thege relations are :rraphicelly shown on the accom-
panying diagram: here & plain arrow O =(3) means

\ . . . I
that 1 gives ; on transforming by (4.04), and (j%—‘-—~—acp

thaet j may be obtained from i on inversion (4.041).



411 solutions, with the excepbion of (d4d) snd (g), zo into

themselves on invsrsion.

In order to dlscuss this grour 1t is only necsssary
to consider {c), keeping iu mind the possibility e-o.
It 1s, however, more convenlent to discuss two separate

solutions, one from each of the sub-groups previously

) A

mentioned. In particular (a) and (g) are chosen, foxr
they are of comparabtively sinple form. (a) reprosents
N I o k \

a spherically symmetric dynamicsal solution, € being ex-
prescible in terms of a -function of r and t alone.
This velng the case, thnere exist at any time an infinite
nunoer of scheres each woint of which is & sinzular point,
and tlhese spheres are not stationary ilu time. Similarly

vaztion of x and t, thers

[

with (z), in which & is a ¥ -
exist at eny time an infinity of surfaces of sinzular
points. we do not ses at wresent any physical siznificance

in ti:ese solutiouns.

In conclusion, then, we rave found Lhat there sxist
ut three distinet orthogonal dynemical 4-gpsces which con-
tain a coaformal suclidean 3-space and satisfy the cosmolog-

4]

ical eguations. The first of tiese is « hypersghere and
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anotheyr 1s determined by fuuctions wioge wrguments are

gssentially complex. The only case 1n wiich we may hope

to find & 1
’lnlmc.-ur

weical content 1s ssen to repressnt fields of

& so far unrecognized type.

I desire to nere exrpress my appreciation of the int-

i

8¢
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Ui

t which Dr. H. Bateman and Dr. Paul BEpstein of the Instit-
ute faculty have taken in this problem, and sspecialily for
the coustructive criticism which Dr. Bateman has offsred dur-
ing the course of the work. These acknowledzements would

be incomplete did I not mention Dr. B. T. Bell of the Univ-
ersity of VWashington, who first imterésted me 1 the Theory

of Relstivity.



