
Dynamic UNITY

Thesis by

Daniel M. Zimmerman

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2002

(Defended 27 July 2001)

ii

© 2002

Daniel M. Zimmerman

All Rights Reserved

iii

Acknowledgements

The writing of a doctoral dissertation is a massive undertaking, and simply can’t be completed

without the contributions and support, academic and otherwise, of many people aside from

the author. I take this opportunity to acknowledge the major contributors and supporters.

I am extremely grateful to my primary adviser, Professor K. Mani Chandy, for supporting

me during my time at Caltech and for allowing me the freedom to explore research fields that

were interesting to me and to also take on some unrelated, and sometimes time-intensive,

side projects; little did I know at the beginning that my work would end up using his own

as a foundation and springboard. I am also deeply grateful to Professor Jason Hickey for the

incredible support, encouragement and assistance he has given me during the late stages of

my work. He is my secondary adviser, but denoting him as such understates his contributions.

Thanks also to Professor Jehoshua (Shuki) Bruck and Professor Alain Martin, the other two

members of my committee, for their participation and feedback on my work.

It has been a privilege to work with the former and current members of Professor Chandy’s

research group: Dr. Michel Charpentier, Mr. (soon to be Dr.) Roman Ginis, Mr. (soon to be

Dr.) Joe Kiniry, Dr. Berna Massingill, Mr. Adam Rifkin, Dr. Eve Schooler, Dr. Paul Sivilotti, and

Dr. John Thornley. They have provided encouragement, assistance, feedback, and other sup-

port throughout my graduate career, and I thank them all. A special thanks must go to Joe,

the one academic colleague with whom I have worked most closely, both inside and outside

of the department, during my graduate career. The number of projects he has in the pipeline

at any given time never ceases to amaze me, and I’m grateful to have been given the opportu-

nity to participate in some of them. I also thank Dr. Peter Hofstee and Dr. K. Rustan M. Leino

who, though they left the research group before I formally joined it in 1996, were formative

influences during my undergraduate career in the department.

The administrative assistants play an important role in keeping the department running,

and I appreciate the work that they do; in particular, I would like to thank Diane Goodfellow,

Jeri Chittum, and Betta Dawson for their assistance during my time as a graduate student.

I’ve been lucky to have the support of friends, inside and outside Caltech, throughout my

graduate career. They’ve preserved my sanity, provided both distraction and intellectual stim-

iv

ulation, and (usually through judicious application of blunt verbal trauma) given me extra

motivation to get “a rnd 2” finishing my graduate work. Guillaume Lessard, who was one of

the very first graduate students I met from outside my department, and Gustavo Joseph, with

whom I have shared a suite for the last 3 years, are my two closest friends within the Caltech

community and have been indispensable. Patrick Hung, Prashant Purohit, and Michel Tanguay,

also fellow students, are valued companions as well; I’m sure they would agree that this is an

appropriate time to say, “success, gentlemen.” Ricky Carson, David Derkits, Robert Duff, and

Vale Murthy comprise the regular weekend dinner and gaming crew, with whom I can always

be assured (once we manage to decide what to do) of relaxing and having fun. Brian Muzas has

also been a dear friend, and I always look forward to seeing him for a stimulating theological

debate or building session when I’m back in New Jersey.

For the last 5 years I have lived in Avery House, Caltech’s only residence that combines

undergraduate, graduate and faculty housing. It’s been an interesting experience (to say the

least). I’d like to thank all the faculty who have lived in Avery during my time there for their

contributions to the community, their advice, and their dinner conversation; especially the

Zmuidzinas family, who continue to be good friends.

My parents, Richard and Susan, and my brothers, Matthew and Darin, have been amazingly

supportive, both of my graduate studies and of my non-academic projects. Without their en-

couragement and love, getting to this point would have been impossible. The rest of my family

has also been encouraging and supportive throughout my academic career, and I thank them

for that.

The research described in this thesis has been supported in part by grants from the Air

Force Office of Scientific Research, the CISE Directorate of the National Science Foundation, the

Center for Research in Parallel Computing, Parasoft, and Novell Corporation, and by an NSF

Graduate Research Fellowship. I thank all these organizations for their support.

This document was prepared in LATEX2ε, using a few publicly available macro packages and

a few of my own. It was typeset directly to Adobe Portable Document Format on a PowerBook

running Mac OS X, using the wonderful pdfTEX package as included in version 4.0 of CMacTeX.

I thank the author of CMacTeX, Thomas Kiffe, for his swift personal attention to my inquiries

about the functionality and use of the software. The typeface used for the main text is Lucida

Bright, the sans serif font is Lucida Sans, and the typewriter font is Lucida Sans Typewriter—all

three designed by Bigelow & Holmes.

This thesis is available from the Caltech Computer Science Department as technical report

number caltechCSTR/2001.006.

v

Abstract

Dynamic distributed systems, where a changing set of communicating processes must inter-

operate to accomplish particular computational tasks, are becoming extremely important. De-

signing and implementing these systems, and verifying the correctness of the designs and

implementations, are difficult tasks. The goal of this thesis is to make these tasks easier.

This thesis presents a specification language for dynamic distributed systems, based on

Chandy and Misra’s UNITY language. It extends the UNITY language to enable process creation,

process deletion, and dynamic communication patterns.

The thesis defines an execution model for systems specified in this language, which leads to

a proof logic similar to that of UNITY. While extending UNITY logic to correctly handle systems

with dynamic behavior, this logic retains the familiar UNITY operators and most of the proof

rules associated with them.

The thesis presents specifications for three example dynamic distributed systems to demon-

strate the use of the specification language, and full correctness proofs for two of these systems

and a partial correctness proof for the third to demonstrate the use of the proof logic.

The thesis details a method for determining whether a system in the specification language

can be transformed into an implementation in a standard programming language, as well as a

method for performing this transformation on those specifications that can. This guarantees

a correct implementation for any specification that can be so transformed.

vi

Contents

Acknowledgements iii

Abstract v

List of Definitions x

List of Examples xi

List of Specifications xii

List of Java Classes xiii

1 Introduction 1

1.1 Motivation . 1

1.2 The UNITY Formalism . 2

1.3 Dynamic UNITY . 3

1.4 Contributions . 4

1.5 Thesis Structure . 5

2 Dynamic UNITY 6

2.1 Extending UNITY to Dynamic Systems . 6

2.2 Dynamic UNITY Notation . 7

2.2.1 Program Structure . 8

2.2.2 Type Section . 8

2.2.3 Declare Section . 10

2.2.4 Always Section . 11

2.2.5 Initially Section . 12

2.2.6 Transition Section . 13

2.2.7 System Structure . 16

2.2.8 Operations . 16

2.2.8.1 Process Instantiation . 16

vii

2.2.8.2 Process Destruction . 17

2.2.8.3 Messaging . 17

2.2.8.4 Introspection . 20

2.3 Dynamic UNITY Semantics . 21

2.3.1 Execution Model . 22

2.3.2 Messaging . 26

2.3.2.1 Messaging Operations . 26

3 Verification of Dynamic UNITY Specifications 29

3.1 Basic Concepts and Conventions . 29

3.1.1 Quantification . 29

3.1.2 Assertions . 30

3.1.3 Functions and Operators . 31

3.2 Formal Execution Model . 32

3.2.1 Program Executions . 32

3.2.1.1 Safety Constraints . 35

3.2.1.2 Progress Constraints . 36

3.2.2 System Executions . 37

3.2.2.1 Safety Constraints . 37

3.2.2.2 Progress Constraints . 39

3.2.3 Subsystem Executions . 40

3.3 Fundamental Operators . 40

3.3.1 Initially . 41

3.3.2 Next . 41

3.3.3 Transient . 42

3.4 Derived Operators . 43

3.4.1 Stable . 43

3.4.2 Invariant . 43

3.4.3 Leads-To . 44

3.4.4 Follows . 44

3.5 The Channel Theorem . 45

3.6 Other Useful Theorems . 46

3.6.1 Theorems about Next . 47

3.6.2 Theorems about Transient . 47

3.6.3 Theorems about Leads-to . 48

3.6.4 Theorems about Follows . 49

viii

3.7 Verification of an Example Program . 50

4 Deterministic Example: The Prime Number Sieve 67

4.1 Problem Statement . 67

4.2 The Sieve Program . 68

4.3 The Generator Program . 75

4.4 The Composed System . 79

5 Nondeterministic Example: Single Resource Mutual Exclusion 85

5.1 Problem Statement . 85

5.2 The Resource Program . 86

5.3 The Client Program . 90

5.4 The Composed System . 97

5.4.1 The Generator Program . 97

5.4.2 Proof of Correctness . 99

6 Nondeterministic Example 2: Dynamic Drinking Philosophers 113

6.1 Problem Statement . 113

6.2 Message Types . 116

6.3 The Beverage Program . 116

6.4 The Philosopher Program . 116

6.5 The Coordinator Program . 120

6.6 The Composed System . 121

6.6.1 Partial Proof of Progress . 121

7 Implementation of Dynamic UNITY Systems 128

7.1 Feasibility . 128

7.2 Translation . 129

7.2.1 Translation of Transitions . 130

7.2.2 Translation of Programs . 132

7.2.3 Translation of Systems . 137

8 Related Work 139

8.1 Specification Methods . 139

8.1.1 Axiomatic Specification . 139

8.1.2 Temporal Logic . 140

8.1.2.1 UNITY Variants . 141

8.1.3 Other Specification Methods . 141

ix

8.2 Communication Models . 142

8.3 “Stop” as a Failure Model . 143

9 Conclusion 144

9.1 Summary . 144

9.2 Future Directions . 145

A Java Implementation of a Dynamic UNITY Runtime Framework 147

A.1 System . 147

A.2 Process . 148

A.3 Program . 153

A.4 Outbox . 156

A.5 Inbox . 158

A.6 Message . 163

A.7 Multiset . 166

B Java Implementation of the Mutual Exclusion Example 169

B.1 The Resource Program . 169

B.2 The Client Program . 172

B.3 The Generator Program . 177

B.4 The System . 179

Bibliography 180

Index 186

x

List of Definitions

2.1 Weakly Fair Transition . 22

2.2 Weak Fairness . 22

3.1 Minimal Transition Set . 33

3.2 Maximal Transition Set . 33

3.3 Volatile and Non-volatile State . 34

3.4 Initially Operator . 41

3.5 Next Operator . 41

3.6 Transient Operator . 42

3.7 Stable Operator . 43

3.8 Invariant Operator . 44

3.9 Leads-to Operator . 44

3.10 Follows Operator . 45

6.1 Coordinator Difference . 122

6.3 Philosopher Difference . 122

6.6 Higher Priority . 124

xi

List of Examples

2.1 Type declarations . 9

2.2 Variable declarations . 10

2.3 Well-formed always-sections . 11

2.4 Malformed always-sections . 12

2.5 Well-formed initializations . 12

2.6 Malformed initializations . 13

2.7 Well-formed transitions . 15

2.8 Malformed transitions . 15

2.9 Quantified transitions . 15

2.10 Quantified Message Sends . 19

2.11 Typical usage of the type operation . 21

2.12 An illustration of a changing transition set . 23

2.13 Send operations . 27

3.1 Quantifications . 30

3.2 Transition sets . 33

7.1 Java translations of Dynamic UNITY transitions . 131

7.2 Translation of a single Dynamic UNITY program to Java 135

7.3 Translation of a Dynamic UNITY system to Java . 137

xii

List of Specifications

1.1 A UNITY program that implements integer division . 2

1.2 A Dynamic UNITY program that implements integer division 4

2.1 An example system used to illustrate a changing transition set 23

3.1 An example program used to illustrate minimal and maximal transition sets 34

3.2 The GCDCalculator program . 51

4.1 The Sieve program, part of the infinite prime number sieve system 68

4.2 The Generator program, part of the infinite prime number sieve system 75

4.3 The InfinitePrimeNumberSieve system . 80

5.1 The Resource program, part of the single resource mutual exclusion system 86

5.2 The Client program, part of the single resource mutual exclusion system 90

5.3 The SingleResourceMutualExclusion system . 98

6.1 Message types for the dynamic drinking philosophers system 115

6.2 The Beverage program, part of the dynamic drinking philosophers system 117

6.3 The Philosopher program, part of the dynamic drinking philosophers system 118

6.4 Fair transition section of the Philosopher program . 119

6.5 Unfair transition section of the Philosopher program 119

6.6 The Coordinator program, part of the dynamic drinking philosophers system . . . 120

6.7 The DynamicDrinkingPhilosophers system . 121

xiii

List of Java Classes

7.1 A translation of an example program . 135

7.2 A translation of an example system . 138

A.1 System, part of a Dynamic UNITY runtime framework 147

A.2 Process, part of a Dynamic UNITY runtime framework 148

A.3 Program, part of a Dynamic UNITY runtime framework 153

A.4 Outbox, part of a Dynamic UNITY runtime framework 156

A.5 Inbox, part of a Dynamic UNITY runtime framework 158

A.6 Message, part of a Dynamic UNITY runtime framework 163

A.7 Multiset, part of a Dynamic UNITY runtime framework 166

B.1 A translation of the Resource program . 169

B.2 A translation of the Client program . 172

B.3 A translation of the Generator program . 177

B.4 A translation of the SingleResourceMutualExclusion system 179

1

Chapter 1

Introduction

1.1 Motivation

A distributed system is a system that consists of multiple communicating processes. A dynamic

distributed system has the additional characteristic that the processes that make up the system

can enter and leave the system while the system is running. Dynamic distributed systems have

become increasingly important in recent years, as more computers have been attached to the

Internet on a part-time or full-time basis. Most of the core services on the Internet that are

used by millions of people daily, including the Domain Name System (DNS) [50, 51] and the

Simple Mail Transport Protocol (SMTP) [59], are implemented as large-scale dynamic distributed

systems, though most users never see them as such. Popular Internet-based computing projects

such as SETI@Home [65], which analyzes signals in an attempt to detect interstellar life, and

distributed.net [18], which performs various computations including brute-force encryption

cracking and searching for optimal Golomb rulers, are also examples of dynamic distributed

systems. These projects allow individual users to participate in huge distributed computations

simply by running screen savers or other client programs on their Internet-connected home

computers; when a particular computer is connected to the network it communicates with the

servers that coordinate the distributed system, and when it is disconnected from the network

it continues its computational tasks in isolation.

Both theory and experience have shown that designing correct distributed systems (that is,

distributed systems that can be proven to successfully perform the tasks they are designed for)

is substantially more difficult than designing correct non-distributed ones. The addition of dy-

namic behavior makes designing correct systems even more difficult. While many specification

and proof methods for distributed systems have been proposed and used to varying degrees

of effectiveness, the same is not true of dynamic distributed systems. There is a notable lack

of specification and proof techniques for such systems, despite the fact that they are becoming

more common.

2

program division

declare
x, y, z, k: integer

initially
x, y, z, k := 0, M, N, 1

assign
z, k := 2 × z, 2 × k if y ≥ 2 × z ∼

N , 1 if y < 2 × z
[] x, y := x + k, y − z if y ≥ z

end

Specification 1.1: A UNITY program that implements integer division

The goal of this work is to facilitate the construction of correct dynamic distributed systems,

by providing a specification language and proof logic that extends established specification and

proof techniques for distributed systems into the dynamic world. In particular, we modify the

UNITY formalism, which was introduced by Chandy and Misra [8] for the specification and proof

of parallel and distributed programs, to create a new formalism called Dynamic UNITY that

can be used to specify and reason about dynamic distributed systems. We present examples

that illustrate the utility of Dynamic UNITY, and also show how Dynamic UNITY specifications

can be implemented as real distributed systems in mainstream programming languages like

Java.

1.2 The UNITY Formalism

The UNITY formalism allows for reasoning about concurrent programs in a straightforward

fashion. A UNITY program is a set of variables, a set of initialization statements, and a set of

multiple assignment statements. An example of a UNITY program is Specification 1.1, which

divides the integer M by the integer N and stores the quotient in x and the remainder in y.1

The execution of a UNITY program proceeds in the following way: First, the assignments in

the initially section (if any) are executed. This sets the state variables of the program to their

initial values. Then, assignments from the assign section are repeatedly chosen and executed

according to a weak fairness constraint. In UNITY, the weak fairness constraint ensures that

in an infinite execution of a program, every assignment statement in the program is executed
1This program is proven to be correct—that is, it is shown that the state variables x and y eventually hold the

quotient and the remainder that result from dividing M by N—by Chandy and Misra [8], as the first complete example
of a UNITY program with a corresponding proof.

3

infinitely often. When an assignment statement is executed, its guard (if any) is evaluated, and

if it evaluates to true, the state variables change according to the assignment statement. In

the case of a conditional assignment statement, as in the program above, all the guards are

evaluated simultaneously, and the state variables change according to the assignment (if any)

whose guard evaluates to true. Each assignment statement is executed atomically, so there is

no interference among assignment statements that modify the same state variable.

This simple execution model is what makes UNITY a powerful formalism. UNITY has no

sequencing operator, and makes no guarantees about the order in which assignments are exe-

cuted other than the weak fairness guarantee; the execution order of program statements need

not be considered explicitly while constructing proofs of UNITY programs. Additionally, the

semantics of the multiple assignment operation are well-understood, which means that the be-

havior of UNITY programs—that by definition consist entirely of atomic multiple assignment

operations—is straightforward to analyze.

However, UNITY’s simplicity makes it inconvenient for use in specifying dynamic systems.

Specifically, UNITY programs have static sets of state variables and static sets of assignments,

which means that they can describe systems with dynamic behavior only with great difficulty,

by explicitly providing assignments for every possible instance of the dynamic behavior. In

addition, UNITY programs are difficult to compose into multiple-program systems, in part be-

cause there are no primitive communication operations aside from the multiple assignment

statement. While it is certainly possible to build a UNITY system composed of multiple UNITY

programs and take advantage of proof reuse, it is extremely difficult, as illustrated in Charpen-

tier and Chandy [11]. The correctness of the program in Specification 1.1 can easily be proven

in isolation, but every time it is composed with another UNITY program additional proof steps

must be carried out to ensure that no adverse effects arise from the composition.

1.3 Dynamic UNITY

Dynamic UNITY extends the UNITY formalism by adding the concept of processes, new primi-

tives for the creation and destruction of processes, and new primitives and a reliable messaging

layer for interprocess communication. It also changes the program notation to one based on

binary predicates instead of on assignment statements, similar to the notation of Hehner [23]

and of Lamport’s Temporal Logic of Actions [35], and eliminates the sharing of variables among

multiple programs. These extensions and changes, which will be discussed in more detail later,

make it easier to specify and prove the correctness of dynamic distributed systems.

As an example, Specification 1.2 is a Dynamic UNITY program that implements exactly the

same algorithm as Specification 1.1. The correctness of this program is proven in a manner sim-

4

program DivisionModule(M: integer, N: integer, proc: process, mbox: string)

declare
x, y, z, k: integer

initially
x = 0 ∧ y = M ∧ z = N ∧ k = 1

fair-transition
y ≥ 2 × z −→ z′ = 2 × z ∧ k′ = 2 × z

[] y < 2 × z −→ z′ = N ∧ k′ = 1
[] y ≥ z −→ x′ = x + k ∧ y′ = y - z
[] x × N + y = M ∧ 0 ≤ y < N −→ send(proc, mbox, x, proc, mbox, y) ∧ stop

end

Specification 1.2: A Dynamic UNITY program that implements integer division

ilar to that used for proving the UNITY program. However, while the UNITY program cannot be

easily integrated into a larger system, the Dynamic UNITY program has well-defined semantics

for such integration: when the division is complete it will send first the quotient and then the

remainder as messages to the inbox of process proc whose name is contained in mbox, and will

also stop its own execution (removing itself from the system)2. Thus, in any situation where a

division needs to be carried out and the quotient and remainder need to be sent to a particular

place in the system, an instance of DivisionModule can be created with the proper parameters.

This particular example would never be used in a real system, as division is typically available

as a primitive operation; however, the principle applies to far more complicated programs as

well.

By extending the UNITY formalism, we are able to take advantage of the experience accumu-

lated by UNITY practitioners. Much of the high-level logical framework of Dynamic UNITY is

essentially identical to that of UNITY, though Dynamic UNITY’s underlying execution model dif-

fers significantly from UNITY’s execution model. Furthermore, Dynamic UNITY’s proof logic is

based on a small set of fundamental concepts: invariants, variant functions, and leads-to and

follows properties. This facilitates both formal reasoning and informal analysis of Dynamic

UNITY specifications.

1.4 Contributions

The contributions of this thesis are as follows:
2The guard for the transition which performs the message send and stops the process is exactly the predicate

which holds at all fixed points of the original UNITY program.

5

1. A specification language for dynamic distributed systems.

2. A proof logic for dynamic distributed systems.

3. A method for transforming systems from our specification language into an implementa-

tion language, so they can be run on actual distributed systems.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

In Chapter 2, we introduce the Dynamic UNITY formalism. We discuss in some detail the

differences between UNITY and Dynamic UNITY and describe the syntax of the Dynamic UNITY

language. We also give a brief overview of the execution semantics of Dynamic UNITY systems,

including an informal definition of the message-passing layer through which Dynamic UNITY

processes communicate.

In Chapter 3, we rigorously define the execution model for Dynamic UNITY systems and the

Dynamic UNITY message-passing layer, and introduce a logic for the verification of Dynamic

UNITY specifications. We adapt the temporal operators commonly used in proving the correct-

ness of UNITY programs for use in proving the correctness of Dynamic UNITY specifications.

In Chapters 4 and 5, we present two example Dynamic UNITY systems—a prime number

sieve, which results in the creation of an infinite number of communicating processes, and a

dynamic single resource mutual exclusion system, where consumers of the single resource can

enter and leave the system at any time during their execution. We also carry out complete

proofs of correctness for these systems.

In Chapter 6, we present an example Dynamic UNITY system that implements a solution

to a dynamic version of the drinking philosophers problem. We also carry out a partial proof

of progress for our solution. The safety properties of this solution are straightforward and

similar to those of the single resource mutual exclusion system.

In Chapter 7, we discuss techniques for the implementation of Dynamic UNITY specifica-

tions on actual computer systems. As an example of one such implementation technique, we

formulate a method for the direct translation of many Dynamic UNITY specifications into Java

code.

In Chapter 8, we outline some related work and compare our research to other specification

and proof methods for distributed systems.

In Chapter 9, we present a summary of our results and a discussion of the applicability of

these results. We also discuss potential future research directions.

6

Chapter 2

Dynamic UNITY

In this chapter, we introduce the Dynamic UNITY formalism, which allows us to reason about

algorithms and protocols in which the sets of participating processes change over time. By ex-

tending the familiar UNITY formalism, we are able to take advantage of many UNITY proof rules

and techniques while reasoning about dynamic systems that cannot be adequately described

using UNITY.

We first detail the changes and extensions to the original UNITY formalism that allow Dy-

namic UNITY to encompass dynamic systems; then, we introduce the Dynamic UNITY notation

and briefly discuss the execution semantics of Dynamic UNITY systems.

2.1 Extending UNITY to Dynamic Systems

We have previously given an overview of the UNITY formalism, including a brief description

of its execution model. Changes to the execution model, as well as to the proof logic and the

specification language itself, are necessary to adapt UNITY to handle systems where processes

can be created and destroyed at runtime. In order to make this task more manageable, we

restrict our attention to systems that satisfy the following constraints:

1. Each process has access only to its own state—that is, there is no direct sharing of variables

among the processes.

2. Processes communicate only via asynchronous message passing.

3. Any process can create new processes, and any process can destroy itself, but no process

can destroy other processes.

These constraints are not chosen arbitrarily—each helps to make the tasks of designing

and proving the correctness of a dynamic distributed system easier. The first eliminates any

possibility that processes can directly interfere with each others’ operation, allowing for both

7

modular reasoning (proof reuse) and modular system construction; the second restricts in-

terprocess communication to a single well-understood mechanism, which simplifies system

design; and the third simplifies proof obligations by eliminating the possibility that a running

process will be destroyed at an unexpected or inappropriate time.

Each constraint is enforced by specific changes to the UNITY formalism. We eliminate the

notion of shared variables entirely, since we are only considering systems with no shared state.

We add reliable first-in first-out message passing as a primitive of the language and create new

operations to manipulate messages in various ways. We also add the notion of programs and

processes by changing the formalism in a fundamental way—instead of a single program, a

Dynamic UNITY system consists of multiple programs that are instantiated as processes and

that can halt their own execution. We can then prove properties about individual programs

independent of the behavior of other programs in the system.

In addition to these changes, we also change the notation for Dynamic UNITY specifications:

instead of guarded parallel assignment statements, we use guarded binary predicates to rep-

resent state transitions. This change provides more flexibility for program designers, enabling

them to focus directly on the result of each transition rather than on the precise set of assign-

ment statements needed to make that result happen. However, it also makes it much easier to

create Dynamic UNITY specifications that are not implementable on actual computer systems,

a topic we will discuss further in Chapter 7.

2.2 Dynamic UNITY Notation

We describe the notation of Dynamic UNITY using BNF. Nonterminal symbols are italicized,

and terminal symbols are in plain or boldface type. “(X)∗” denotes a syntactic unit X that may

be instantiated zero or more times, “(X)+” denotes a syntactic unit X that may be instantiated

one or more times, “(X)1” denotes a syntactic unit X that may be instantiated one time or not

instantiated at all.

During the notation description, we enumerate certain conditions under which particular

constructs are considered malformed. A Dynamic UNITY system with malformed constructs

can be syntactically legal, but we make no guarantees about the behavior of systems with

malformed constructs. A system that contains no malformed constructs is considered well-

formed; a proof of well-formedness is one of the obligations for any correctness proof of a

Dynamic UNITY system.

8

2.2.1 Program Structure

program-section 7−→ (program | initial-program) program-name ((parameter-list))1

(type type-section)1

(declare declare-section)1

(always always-section)1

(initially initially-section)1

(fair-transition transition-section)1

(unfair-transition transition-section)1

end

parameter-list 7−→ parameter-name: external-type-name

(, parameter-name: external-type-name)∗

A program can start with either the keyword program or the keyword initial-program. The

latter indicates that the program will be the first one instantiated when system execution begins.

A system’s initial program is usually a setup program that instantiates one or more other

programs to bootstrap the system. There is always exactly one initial program in a well-formed

system.

A program-name is any string of letters and digits, with the restriction that no two programs

in the same system may have identical names. A parameter-name is any string of letters and

digits, with the restrictions that no two parameters declared in a program may have identical

names and that no parameter declared in a program may have the same name as a variable or

definition declared in that program. An external-type-name is a primitive data type (such as

integer or set), the name of a data type declared in the type-section (described in Section 2.2.2)

of the system, or the name of another program declared in the system.

The program execution starts in a state where the set of parameters is as specified at process

instantiation (described in Section 2.2.8.1), the set of variables is as declared in the declare-

section (described in Section 2.2.3), the set of definitions is as declared in the always-section

(described in Section 2.2.4), and the initial states of all variables are as specified in the initially-

section (described in Section 2.2.5).

The current definition of Dynamic UNITY does not allow for hierarchical program structure.

We discuss the possibility of adding this capability to Dynamic UNITY in Chapter 9.

2.2.2 Type Section

type-section 7−→ (declared-type-name: type-specifier)+

type-specifier 7−→ array-type | primitive-type | record-type | sequence-type | set-type

array-type 7−→ arraydim {type-name | type-specifier }

9

primitive-type 7−→ any | boolean | inbox | integer | process | real | string

record-type 7−→ record {field-name: (type-name | type-specifier)

(, field-name: (type-name | type-specifier))∗}

sequence-type 7−→ sequence {type-name | type-specifier }

set-type 7−→ (multiset | set) {type-name | type-specifier }

A declared-type-name is any string of letters and digits, with the restrictions that no two

types declared in the same program may have identical names and that no type declared in a

program may have the same name as a primitive type, a type declared in the system containing

that program, or a variable declared in that program. A type-name is a primitive data type,

the name of a data type declared in the program’s type-section or the system’s type-section, or

the name of another program declared in the system. A field-name is any string of letters and

digits, with the restrictions that no two fields declared in the same type may have the same

name and that no field may be named “type” (type is a Dynamic UNITY operation that allows a

process to determine the type of an object it receives through message passing; it is described

in Section 2.2.8.4). The dim superscript used with array is a positive integer that determines the

array’s dimensionality. The any type allows for the construction of sets, arrays, and sequences

that can contain elements of any primitive or declared type.

Dynamic UNITY’s primitive types support the expected range of operations: individual el-

ements of arrays and sequences can be accessed using “[]” syntax, fields of records can be

accessed using “.” syntax, and sets and multisets can be used with the operators normally

associated with mathematical sets. In addition, a binary concatenation operator (1) generates

sequences from other sequences or elements.

Some of Dynamic UNITY’s primitive types have “special” values: the empty set is denoted

by ∅, the empty sequence is denoted by Λ, and the null process, a value given to a process

reference to indicate that it does not point to a process, is denoted by ⊥.

Dynamic UNITY’s declared types are not types in the sense of type theory. Instead, they are

tags that exist mainly for structuring and to facilitate message-based communication. They are

most commonly used to distinguish between multiple message types that may be received by a

given process when the reaction of the process is dependent on the type of a received message.

Example 2.1 (Type declarations)

1. A user record containing a username, a password, and a unique identification number:

UserRecord: record {name: string, password: string, UID: integer}

2. A set of user records:

UserRecordSet: set {UserRecord}

10

2.2.3 Declare Section

declare-section 7−→ (variable-name (, variable-name)∗: type-name)+

A variable-name is any string of letters and digits, with the restrictions that no two variables

declared in a program may have identical names, that no variable declared in a program may

have the same name as a parameter or definition declared in that program, and that no variable

may have the same name as a type declared in the type-sections of its program or the system.

A type-name is as described in Section 2.2.2.

The declare-section contains the variables whose values can be changed by the program dur-

ing execution. Initial values for these variables are specified in the initially-section (described

in Section 2.2.5). Any variable for which an initial value is not specified in the initially-section is

implicitly initialized to a canonical default value for its specified type, as follows: anys are ini-

tialized to the empty set, arrays (of unspecified length), sequences and sets are initially empty,

processes are initialized to the empty process, booleans are initialized to false, integers and

reals are initialized to 0, and strings are initialized to the empty string. Inboxes are implicitly

assigned names equivalent to their variable names (so an inbox declared as “myInbox: inbox”

would be named “myInbox”). Implicit initialization is recursive; for instance, all the elements

of an array of integers with specified length are initialized to 0. Note that it is not possible to

change the name of an inbox once it has been initialized, so any inboxes which need to have

names other than their variable names must have these names specified in the initially-section.

Variable names may appear primed (myVariable′) in the transition-section (described in

Section 2.2.6), but may not appear primed anywhere else in a program. As in the notation of

Hehner [23] and in Lamport’s Temporal Logic of Actions [35], primed variable names represent

the variables after a state transition, while unprimed variable names represent the variables

before a state transition. Primed and unprimed variable names can be used together to specify

binary predicates on the program variables.

Example 2.2 (Variable declarations)

1. Two sets of user records (explicit):

privilegedUsers, unprivilegedUsers: set {UserRecord}

2. Two sets of user records (using the type defined in Example 2.1):

privilegedUsers, unprivilegedUsers: UserRecordSet

3. A sequence where the elements can be of any type:

unrestrictedSequence: sequence {any}

11

4. An array of sequences of integers:

sequencesOfIntegers: array {sequence {integer}}

2.2.4 Always Section

always-section 7−→ definition-name , expression

(; definition-name , expression)∗

A definition-name is any string of letters and digits, with the restrictions that no two def-

initions declared in a program may have identical names and that no definition declared in a

program may have the same name as a parameter or a variable declared in that program. An

expression is an arithmetic or logical expression in one or more of the variables, parameters and

definitions declared in the program, and may also contain certain Dynamic UNITY operations

(described in Section 2.2.8). It may not contain primed variables.

The always-section is used to create definitions, which are functions of program variables

and parameters. Definition types are implicitly specified by the expressions associated with

them. A definition may be used in subsequent definitions, initialization expressions, and tran-

sition expressions. Every appearance of a definition can be considered a “macro” for the ex-

pression associated with it. Definitions are considered to be defined in the order in which

they appear (the use of a semicolon as the separator for definitions reinforces this notion of

sequencing). An always-section that contains cyclical definitions is considered malformed.

The value of a definition may not be changed as part of an initialization expression (see

Section 2.2.5) or transition expression (see Section 2.2.6).

Example 2.3 (Well-formed always-sections)

1. A Boolean flag that is true if and only if the privileged user set is empty:

privilegedUsersIsEmpty , |privilegedUsers| = 0

2. Two Boolean flags, one of which is true if and only if the privileged user set is empty and

the other of which is true if and only if both user sets are empty:

privilegedUsersIsEmpty , |privilegedUsers|=0;

noUsers , (privilegedUsersIsEmpty ∧ |unprivilegedUsers|=0)

3. An integer that holds the total number of user records:

numberOfUsers , |privilegedUsers| + |unprivilegedUsers|

12

Example 2.4 (Malformed always-sections)

1. The simplest possible cycle:

flag , ¬flag

2. A more complex cycle:

definitionA , parameterOne ≤ parameterTwo;

definitionB , ((parameterThree ≥ parameterFour) ∧ ¬definitionD);

definitionC , definitionA ∨ definitionB;

definitionD , ¬definitionC ∨ (parameterFour ≥ parameterOne)

2.2.5 Initially Section

initially-section 7−→ initialization-guard −→ initialization

(‖ initialization-guard −→ initialization)∗

An initialization-guard is a predicate on the program parameters and definitions that de-

pend only on the program parameters. An initialization is a (unary) predicate on the program

variables, parameters and definitions that may contain variable names and Dynamic UNITY op-

erations (described in Section 2.2.8). This predicate constrains the initial state of the program.

An initialization written with no guard is considered to have true as its guard.

The initially-section is used to specify the initial values of variables declared in the declare-

section (described in Section 2.2.3). All guards are evaluated simultaneously at the beginning

of initialization; for each guard that holds when evaluated, the corresponding initialization

predicate is guaranteed to hold after initialization. If multiple guards are not mutually exclu-

sive, their initialization predicates must not specify different values for the same variable. In

addition, the inclusion of a process instantiation (see Section 2.2.8.1) in one or more initializa-

tions incurs an obligation to prove that no infinite recursion of initially-sections is possible.

An initially-section that contains conflicting initializations or causes an infinite recursion is

considered malformed.

Example 2.5 (Well-formed initializations)

1. Nondeterministic initialization of an integer variable to one of two values:

anInteger = 42 ∨ anInteger = 731

2. Nondeterministic initialization of an integer to any positive value:

anInteger > 0

13

3. Initialization of privileged and unprivileged user sets from passed parameters only if a

specific flag is passed:

initializationFlag −→ privilegedUsers = initialPrivilegedUsers ∧
unprivilegedUsers = initialUnprivilegedUsers

‖
¬initializationFlag −→ privilegedUsers = ∅ ∧ unprivilegedUsers = ∅

4. Initialization of an inbox, assigning it the name “aNewName”:

myInbox = inbox(“aNewName”)

Example 2.6 (Malformed initializations)

1. Malformed nondeterministic initialization of an integer variable to one of two values:

true −→ anInteger = 42

‖
true −→ anInteger = 731

2. Malformed initialization of the privileged and unprivileged user sets from passed param-

eters only if a specific flag parameter holds:

initializationFlag −→ privilegedUsers = initialPrivilegedUsers ∧
unprivilegedUsers = initialUnprivilegedUsers

‖
true −→ privilegedUsers = ∅ ∧ unprivilegedUsers = ∅

2.2.6 Transition Section

transition-section 7−→ transition-list

transition-list 7−→ transition-list-element | quantified-transition-list

([] transition-list-element | quantified-transition-list)∗

quantified-transition-list 7−→ 〈[] variable-list | ranges � transition-list〉
transition-list-element 7−→ (variable-list :)1 transition-guard −→ transition-predicate

variable-list 7−→ variable-name (, variable-name)∗

A transition-guard is a predicate on the program parameters, variables and definitions de-

scribing only a single program state (that is, containing no primed variables). A transition-

predicate is a predicate on the program parameters, variables and definitions that may contain

14

primed variable names and some special operations detailed in Section 2.2.8. A transition-

predicate is therefore a binary predicate on the pre- and post- states of the transition. A tran-

sition written with no guard is considered to have true as its guard. Note that the −→ symbol

in a transition is not a logical implication, but rather a separator between the guard and the

transition (as found in the guarded commands of CSP [26]).

Each transition has an optional variable-list (the transition variables list) associated with it.

This list specifies all the variables whose values can be changed as a result of the transition’s

execution. Variable names in the list that do not appear in the program’s declare-section de-

note temporary variables that exist only in the scope of the transition. Every variable whose

primed name appears in a transition, either explicitly or as part of a messaging operation, is

considered to be in the transition variables list for that transition regardless of whether it is

listed. A transition variables list consisting only of variables whose primed names appear in

the transition may be omitted entirely.

A quantified transition contains a variable-list (the bound variables list), a ranges predicate

that constrains the ranges over which the bound variables are quantified, and a transition-list.

The bound variables list of a quantified transition may not contain any variable names that

appear in the program’s declare-section, and variables contained within the bound variables

list may not appear primed in, or as part of the transition-variables list of, any transition in the

quantified transition’s transition-list. The ranges predicate may not contain primed variables.

The transition-sections comprise the “body” of the program. They determine all possible

state transitions that may take place during the program’s execution. A transition is satisfiable

if, for every program state where its guard holds, its transition-predicate can be satisfied by

establishing a post-state in which every variable whose value differs from that in the pre-state

appears in the transition-variables list. A transition’s satisfiability is therefore independent of

program executions, as it depends only on the guard, the transition-predicate, and the types

of all variables in the transition-variables list.

In addition to satisfiability, we require that the quantification(s) of a Dynamic UNITY tran-

sition be countable. An unsatisfiable Dynamic UNITY transition, or one with an uncountable

quantification, is considered malformed. While we do not explicitly disallow malformed transi-

tions, it is important to note that we make no guarantees about the behavior of Dynamic UNITY

systems with malformed transitions.

Clearly, it is not always practical (or even possible) to tell whether or not a particular transi-

tion is unsatisfiable, because such a determination may itself involve an intractable or undecid-

able computation. However, we make it a proof obligation that all transitions must be explicitly

proven satisfiable. Thus, it is possible to write a Dynamic UNITY program that contains only

satisfiable transitions, but not be able to prove the correctness of that program because it isn’t

15

possible to prove the satisfiability of the transitions.

In addition, there is an important distinction between malformed transitions and uncom-

putable transitions. An uncomputable transition is one where the guard or postcondition is

uncomputable; for example, the guard, “X is a nonterminating Turing machine,” is uncom-

putable, because computing it would require a solution to the halting problem. However, we

can still make guarantees about uncomputable transitions provided that they are satisfiable

(such as, “X is a nonterminating Turing machine −→ Y′ = X”). We can therefore prove the cor-

rectness of Dynamic UNITY systems which contain uncomputable transitions, even though we

can never implement these systems on real computers. The differences between the Dynamic

UNITY systems we can prove the correctness of and the ones we can actually implement are

discussed further in Chapter 7.

Example 2.7 (Well-formed transitions)

1. Increment an integer variable by 1 if its value is less than the value of integer parameter

MAXINT:

anInteger < MAXINT −→ anInteger′ = anInteger + 1

2. Increment every integer variable in the set bigSet:

bigSet′ = {i | i ∈ bigSet � i + 1}

Example 2.8 (Malformed transitions)

1. Increment an integer variable by 1 if its value is less than the value of integer parameter

MAXINT, with an additional constraint:

anInteger < MAXINT −→ anInteger′ = anInteger + 1 ∧ anInteger′ < MAXINT

2. Perform any computation, by establishing the postcondition false:

false

Example 2.9 (Quantified transitions)

1. Fill in the values of an identity matrix of dimension N:

〈[] i, j | 0 ≤ i < N ∧ 0 ≤ j < N �

i = j −→ matrix′[i,j] = 1

[] i 6= j −→ matrix′[i,j] = 0 〉

2. Remove all the integers from set S, one at a time (the type operation is discussed in Section

2.2.8.4):

〈[] i | i ∈ S ∧ i.type = integer � S′ = S \ {i}〉

16

2.2.7 System Structure

system 7−→ system system-name

(type type-section)1

(program-section)+

end

A system-name is any string of letters and digits. There are no restrictions on this string; it

is currently used only for referring to the system in proofs and discussions. The type-section,

program-section and initially-section are exactly as described previously.

A Dynamic UNITY system contains one or more component programs, with at most one

designated as an initial program (as described in Section 2.2.1). A system containing no initial

program is legal, but such a system will have no transitions and will therefore never do anything.

2.2.8 Operations

In addition to variable state changes, Dynamic UNITY supports operations for process instanti-

ation, process destruction, messaging, and introspection on variable types. In this section, we

describe the syntax of these operations and the contexts in which each can be used.

2.2.8.1 Process Instantiation

Dynamic UNITY processes are instantiated with the new operation, which has the following

syntax:

new-operation 7−→ reference-name = new program-name (passed-parameters)

passed-parameters 7−→ parameter (, parameter)∗

A reference-name is the name of a variable of type program-name, which will contain a

reference to the instantiated process as a postcondition of the new operation. A program-

name is exactly as described in Section 2.2.1, and a parameter is any variable or value. The

types of the parameters in the passed-parameters list must match the types of the parameters

in the parameter-list of the program being instantiated.

All parameters in Dynamic UNITY are passed by value. The values held by the parameters

at the execution of the new operation are copied locally for the new process, and are treated as

constants by the new process during its execution. The new process’ initially-section is executed

immediately as part of the new operation, and its transitions are available for execution (that

is, they can be chosen by the scheduler) immediately after the new operation.

17

Process instantiations can occur in both the initially-section and the transition-sections of

a program. Therefore, the reference-name can be either primed (a variable assignment in a

transition-section) or unprimed (an initialization).

2.2.8.2 Process Destruction

A Dynamic UNITY process can halt its execution with the stop operation. The syntax for this

operation is the keyword stop, used as a conjunct or disjunct in a transition.

When a stop operation is executed, the process’s transitions are removed from the system

and no more changes to the process’s state (excluding the states of its mailboxes) ever occur.

A process that executes a stop is effectively destroyed. All messages sent by the process,

including those sent in the same transition as the stop, are delivered by the message-passing

system just as they would have been without the process destruction. Similarly, all messages

sent to the process by other processes in the system are delivered to its inboxes, even though

the process will never be able to read them.

When stop is used as a disjunct in a transition, the process may or may not be destroyed

after that transition is completed; such nondeterministic process destruction can be used to

simulate process failures.

In the Dynamic UNITY formalism, the state of a destroyed process remains in the system

perpetually. This facilitates the construction of proofs that depend on the final states of de-

stroyed processes. However, in an actual implementation, a destroyed process’s state would

most likely be removed from memory for space and efficiency considerations.

2.2.8.3 Messaging

Dynamic UNITY contains a messaging system that uses incoming and outgoing message queues.

The Dynamic UNITY type inbox implements incoming message queues, and support operations

that allow processes to receive and inspect incoming messages. Each Dynamic UNITY process

has a single outgoing message queue (called an outbox) that it can use to send messages to

other processes. The following describes the internal structure of inboxes and outboxes, as

used in proofs of correctness; however, Dynamic UNITY transitions cannot read or modify

any of this internal structure directly, and can only interact with the messaging system using

the messaging operations described later in this section. This restriction prevents Dynamic

UNITY programs from relying on any specific behavior of the messaging system (such as its

interleaving with the execution of regular Dynamic UNITY transitions) other than the fact that

it establishes point-to-point first-in-first-out channels.

Inboxes are treated as named sequences of records. They have three associated attributes:

18

name, a string that uniquely identifies the inbox within its process; length (usually abbreviated

len), the number of messages in the inbox; and count (usually abbreviated cnt), the index of

the next message to be read.

The outbox for each Dynamic UNITY process is also treated as a sequence of records, and

has one attribute associated with it—length (usually abbreviated len), the number of messages

that have been sent by the process. An additional attribute, count (usually abbreviated cnt),

is derived from the delivered fields of the message records in an outbox (described below);

it is the number of delivered fields that have the value true, which is exactly the number of

messages in the outbox that have been delivered.

Inboxes and outboxes are sequences of unbounded length, preserving the entire message

history for all processes in the system. This facilitates the construction of proofs that depend

on message histories and message ordering. However, in an actual implementation, message

histories would most likely be kept small for space and efficiency considerations.

Each record contained in an inbox or outbox has multiple fields: records in inboxes have 2

fields, while records in outboxes have 4. These fields are defined as follows:

• The process field (usually abbreviated proc) appears in both inbox and outbox records. In

an inbox record, it contains a reference to the process that sent the message contained in

that record. In an outbox record, it contains a reference to the process that will receive

(or has received) the message contained in that record.

• The mailbox field (usually abbreviated mbox) appears only in outbox records. It contains

the name of the inbox to which the message contained in the record will be (or has been)

delivered.

• The message field (usually abbreviated msg) appears in both inbox and outbox records.

In an inbox record, it contains the message data that was received. In an outbox record,

it contains the message data that will be (or has been) sent.

• The delivered field (usually abbreviated del) appears only in outbox records. It contains a

Boolean value that indicates whether or not the message contained in the record has been

delivered to its destination (it is false if the message has not been delivered, and true if

it has).

The attributes of outboxes and inboxes are all updated atomically to reflect the new state

of the messaging system when a message delivery occurs. Since these attributes are not ob-

servable by Dynamic UNITY programs, their updates do not actually have to be atomic in an

implementation of a Dynamic UNITY system as long as the messaging system correctly im-

19

plements reliable point-to-point first-in first-out channels. They are used only in proofs of

correctness, and in our detailed specification of the Dynamic UNITY execution model.

Dynamic UNITY programs use messaging operations to access the mailbox data structures

we have described, and cannot access these structures by any other means. Outboxes support

a single operation that allows for the sending of messages (or sequences of messages). Inboxes

support four operations that allow for the detection of available messages, reading of the next

available message, removal of the next available message, and reading of an inbox’s name. The

syntax and an overview of the semantics for these operations are described in the remainder

of this section. Semantics for these operations are described in detail with the semantics of

the messaging system in Section 2.3.2.

Send The send operation on an outbox causes a message (sequence of messages) to be sent

to a destination inbox (sequence of destination inboxes). Its syntax is as follows:

send-operation 7−→ send (message-send-list)

message-send-list 7−→ message-send (, message-send)∗

message-send 7−→ process-reference, inbox-name, message

A process-reference is a variable or parameter that contains a reference to a process. An

inbox-name is a string, which is the name of the inbox to which the associated message will be

sent. A message is any value or variable.

Semantically, a send operation is a manipulation of the outbox sequence that causes one or

more appropriate outbox records to be appended to the sequence. When a send operation in-

cludes more than one message-send, the message records are appended to the outbox sequence

in the order in which they are listed. Quantifier-like syntax may be used to send messages to a

set of inboxes; this is shown in the example below. The quantification of a message send must

be finite—a message send with an infinite quantification is considered malformed. While we

do not explicitly disallow malformed message sends, we make no guarantees about Dynamic

UNITY systems that contain malformed message sends.

The send operation can be used in both the initially-section and the transition-sections of

a program. If the send operation is used in two or more different initializers of a program, no

ordering guarantee is provided with respect to the sends (they are equally likely to occur in any

of the possible orderings).

Example 2.10 (Quantified Message Sends)

1. Send a different message of type “MessageType” to the inbox named “in” belonging to

each process in set P:

send (〈, p | p ∈ P � p, “in”, MessageType(p)〉)

20

2. Send identical messages to each inbox whose name is contained in set I belonging to each

process in set P:

send (〈, p, i | p ∈ P ∧ i ∈ I � p, i, theMessage〉)

Probe The probe operation on an inbox evaluates to the Boolean value true if there is a mes-

sage that has been placed in the inbox but has not been advanced past with the advance oper-

ation, and evaluates to the Boolean value false otherwise. Its syntax is inbox-var.probe, where

inbox-var is the inbox variable to probe. The probe operation is shorthand for a comparison

between the inbox’s current message counter and the number of messages in the inbox; it can

therefore be used anywhere a predicate that makes such a comparison can be used.

Current The current operation on an inbox allows read-only access to the current message in

the inbox (as determined by the inbox’s cnt attribute). Its syntax is inbox-var.current.

The current operation can be used on the right-hand side of assignments, as well as in any

non-assignment predicate. It is handled exactly as a record containing the inbox record fields

described above: the actual message data is inbox-var.current.msg, and the reference to the

sending process is inbox-var.current.proc.

If no messages have ever been placed in the inbox, or if the inbox has been advanced past

its last message, the current operation returns a record containing the null set as its message

data and the null process as its sender.

Advance The advance operation on an inbox advances the inbox to the next message. Its

syntax is inbox-var.advance. The advance operation is shorthand for an increment of the in-

box’s current message counter; it can therefore be used anywhere a predicate that increments

a variable can be used.

Name The name operation on an inbox allows read-only access to the inbox’s name as a string.

Its syntax is inbox-var.name. It can be used anywhere a string (or a variable of type string) can

be used.

2.2.8.4 Introspection

In addition to the process and messaging operators, Dynamic UNITY supports operations that

perform limited introspection on entities (such as messages received in an inbox). These op-

erations allow a process to determine the type of an entity, as well as its length (for arrays or

sequences) or cardinality (for sets). There is also an operation that allows a process to obtain

a reference to itself.

21

Type The type operation allows a process to determine and act on the type of a Dynamic

UNITY entity. Its syntax is entity.type, where entity is a variable or an entity assignable to a

variable (such as myInbox.current.msg). It is typically used in comparisons with type names

or type specifiers for conditional message receives, as shown in the examples below, but can

be used elsewhere. Type names used in a comparison must be the names of either primitive

types or types declared in the scope of the comparison; the elimination of potential confusion

about the interpretation of type comparisons is the main reason why types and variables are

not allowed to have identical names.

Example 2.11 (Typical usage of the type operation)

1. Receive a message into variable theMessage only if the message data is of type “myDe-

siredType.”

myInbox.probe ∧ myInbox.current.msg.type = myDesiredType −→
(theMessage′ = myInbox.current.msg) ∧ myInbox.advance

2. Receive a message into variable theMessage only if the message data is of the same type

as the variable.

myInbox.probe ∧ myInbox.current.msg.type = theMessage.type −→
(theMessage′ = myInbox.current.msg) ∧ myInbox.advance

Length The length operation allows a process to determine the current number of elements

in an array or a sequence, or the length of a string; it cannot be used on mailboxes. Its syntax

is entity.length, where entity is a variable holding a value of an array, sequence or string type.

The analogous operation for a set, cardinality, is performed using the standard mathematical

syntax for sets (|set|). The length (or cardinality) operation results in an integer constant, and

it can be used anywhere an integer constant can be used.

This The this operation allows a process to obtain a reference (of type process) to itself. Its

syntax is the keyword this, used in a transition within the process, and it can be used anywhere

a value of type process can be used.

2.3 Dynamic UNITY Semantics

We now describe the semantics of Dynamic UNITY, paying particular attention to the areas

where they differ from the semantics of the original UNITY formalism.

22

2.3.1 Execution Model

Dynamic UNITY’s execution model is similar to UNITY’s execution model, in that both atom-

ically execute a single statement at a time from a set of statements in a weakly fair manner.

However, this is where the similarities end. While a UNITY program has a static set of guarded

assignment statements that are all subject to weak fairness, a Dynamic UNITY system has a

dynamic set of processes, where each process has a set of guarded transitions, some of which

are subject to weak fairness and some of which are not. By including the ability to create tran-

sitions that are not subject to fairness constraints, Dynamic UNITY can more accurately model

real distributed systems in which particular events (such as requests in a resource allocation

system) may not occur in a fair manner. The definition of weak fairness itself is different in

Dynamic UNITY, because the set of transitions available in the system can change. We first

define a weakly fair transition, and then introduce our definition for weak fairness:

Definition 2.1 (Weakly Fair Transition) A weakly fair transition in a Dynamic UNITY sys-

tem is an instantiation of a transition-statement within the fair-transition section of a Dynamic

UNITY program, specified by the process to which it belongs and any quantifying terms used to

generate it.

This definition means that two different instantiations of the same Dynamic UNITY program

have two different sets of weakly fair transitions. It also means that a quantified transition is

considered not as a single weakly fair transition, but as a number of weakly fair transitions

(depending on the range of the quantification). Given this definition for a weakly fair transition,

the definition of weak fairness for Dynamic UNITY systems is as follows:

Definition 2.2 (Weak Fairness) In every computation of a Dynamic UNITY system, every

weakly fair transition is infinitely often either selected or not present in the system.

This definition implies that a transition that remains in the system forever will execute

infinitely often. It does not, however, imply that a transition that is merely present in the system

infinitely often will execute infinitely often. Weak fairness will be discussed in more detail when

we formalize the execution model in Chapter 3; the following is an informal execution model

for Dynamic UNITY systems:

In each system step, at most one state transition occurs. Transitions are selected from

the fair-transition and unfair-transition sections (described in Section 2.2.6) of the processes

currently running in the system. When a transition is selected, its precondition is evaluated.

If it evaluates to true, the transition is executed atomically and its postcondition holds at the

end of this execution, and if it evaluates to false, the state of the system is left unchanged.

If a transition is selected whose precondition evaluates to true and whose postcondition is

23

system ExampleSystem

initial-program ExampleSystemComponent

declare
theSet: set {integer}

initially
theSet = ∅

fair-transition
(1) true −→ 〈∃ i | i 6∈ theSet � theSet′ = theSet ∪ {i}〉
(2) [] true −→ stop
(3) [] 〈[]i | i ∈ theSet � i ≥ 731 −→ p: p′ = new ExampleSystemComponent〉

end

end

Specification 2.1: An example system used to illustrate a changing transition set

unsatisfiable at that point in the execution, we cannot say anything about the state of the

system which results. It is therefore important, when constructing Dynamic UNITY systems,

to ensure that they contain no malformed transitions.

In an infinite execution of the system, every transition in the fair-transition section of each

running program is guaranteed to be selected in a manner consistent with the weak fairness def-

inition. No guarantee is made about how often each transition in the unfair-transition section

of each program is selected. A system step can result in the addition or removal of processes

from the system, as well as the addition or removal of quantified transition instances due to

state variable changes. We now present a simple system, and trace an example execution to

illustrate how the set of transitions in the system changes.

Example 2.12 (An illustration of a changing transition set)

The simple Dynamic UNITY system of Specification 2.1 contains processes that have a single

set as a state variable, and that can create new processes and destroy themselves. It illustrates

the changing nature of the transition set in a Dynamic UNITY system.

This system consists of one type of process, which has only one state variable: a set of

integers. Its three transitions have the following effects:

1. Adds an integer to the set, ensuring that the added integer was not already in the set. We

note that this addition is not fair, even though the transition is a fair transition; while we

guarantee that this transition executes infinitely often, we do not guarantee that every

integer i will eventually become part of theSet.

24

2. Stops the process.

3. Expands to a transition for every integer in the set, which instantiates a new process if the

integer is greater than 731. For example, if the set consists of the integers 1013, -5, and

0, this would expand to the following three transitions (recall that the “p:” syntax defines

a temporary variable in the scope of its associated transition):

1013 ≥ 731 −→ p: p′ = new ExampleSystemComponent

-5 ≥ 731 −→ p: p′ = new ExampleSystemComponent

0 ≥ 731 −→ p: p′ = new ExampleSystemComponent

We denote the transitions of the system by a process identifier (A, B, C, …), a number (taken

from the program above), and, when necessary, a subscript indicating a particular instantiation

of a quantified transition. We subscript state variables with their corresponding process iden-

tifiers for clarity, since we are presenting the system’s transitions as one combined set. Using

these conventions, one legal execution of this system can be described as follows:

1. Initialization: A process (to which we assign the identifier A) is instantiated from the sys-

tem’s initial program. A’s state variable theSet is initialized to the empty set. Therefore,

the set of transitions in the system is:

(A1) true −→ 〈∃ i | i 6∈ theSetA � theSetA
′ = theSetA ∪ {i}〉

(A2) true −→ stop

2. Transition (A1) is chosen; the integer 5 is added to theSetA. The set of transitions in the

system changes to the following:

(A1) true −→ 〈∃ i | i 6∈ theSetA � theSetA
′ = theSetA ∪ {i}〉

(A2) true −→ stop

(A35) 5 ≥ 731 −→ p: p′ = new ExampleSystemComponent

3. Transition (A35) is chosen. The precondition does not hold, so no state change occurs,

and no change is made to the transition set.

4. Transition (A1) is chosen; the integer 1013 is added to theSetA. The set of transitions in

the system changes to the following:

(A1) true −→ 〈∃ i | i 6∈ theSetA � theSetA
′ = theSetA ∪ {i}〉

(A2) true −→ stop

(A35) 5 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A31013) 1013 ≥ 731 −→ p: p′ = new ExampleSystemComponent

25

5. Transition (A1) is chosen; the integer -7 is added to theSetA. The set of transitions in the

system changes to the following:

(A1) true −→ 〈∃ i | i 6∈ theSetA � theSetA
′ = theSetA ∪ {i}〉

(A2) true −→ stop

(A3−7) -7 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A35) 5 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A31013) 1013 ≥ 731 −→ p: p′ = new ExampleSystemComponent

6. Transition (A31013) is chosen. The precondition holds, so a new process (to which we

assign the identifier B) is created. B’s state variable theSet is initialized to the empty set.

Therefore, the set of transitions in the system changes to the following:

(A1) true −→ 〈∃ i | i 6∈ theSetA � theSetA
′ = theSetA ∪ {i}〉

(A2) true −→ stop

(A3−7) -7 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A35) 5 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A31013) 1013 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(B1) true −→ 〈∃ i | i 6∈ theSetB � theSetB
′ = theSetB ∪ {i}〉

(B2) true −→ stop

7. Transition (B1) is chosen; the integer 731 is added to theSetB . The set of transitions in

the system changes to the following:

(A1) true −→ 〈∃ i | i 6∈ theSetA � theSetA
′ = theSetA ∪ {i}〉

(A2) true −→ stop

(A3−7) -7 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A35) 5 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(A31013) 1013 ≥ 731 −→ p: p′ = new ExampleSystemComponent

(B1) true −→ 〈∃ i | i 6∈ theSetB � theSetB
′ = theSetB ∪ {i}〉

(B2) true −→ stop

(B3731) 731 ≥ 731 −→ p: p′ = new ExampleSystemComponent

8. Transition (A2) is chosen, removing process A from the system. The set of transitions in

the system changes to the following:

(B1) true −→ 〈∃ i | i 6∈ theSetB � theSetB
′ = theSetB ∪ {i}〉

(B2) true −→ stop

(B3731) 731 ≥ 731 −→ p: p′ = new ExampleSystemComponent

26

9. Transition (B2) is chosen, removing process B from the system. The set of transitions in

the system is now empty, so execution of the system terminates.

We note that, while this particular execution of this system terminates, not all executions

of it do; there are many possible executions of this system that run forever.

2.3.2 Messaging

Dynamic UNITY’s messaging system implements first-in first-out asynchronous messaging be-

tween every outbox/inbox pair. That is, all messages sent from a particular outbox to a par-

ticular inbox arrive in the order in which they were sent. The messaging system makes no

guarantees about the ordering of messages sent to different inboxes from the same outbox,

nor does it make any guarantees about the ordering of messages sent to the same inbox from

different outboxes.

Semantically, inboxes and outboxes are treated as sequences of records, as discussed in

Section 2.2.8.3. Each inbox (outbox) has a name, as well as two attributes that indicate how

many messages have been placed into the inbox (outbox) and how many messages have been

read (sent). Additionally, each message record in an inbox (outbox) has two (three) attributes

that contain the message data and information about the message’s source (destination), and

each message record in an outbox has a flag indicating whether or not that message has been

delivered to its destination inbox. For the purposes of our semantics, these attributes are

updated atomically: when a message is delivered, the attributes of the source outbox and the

destination outbox are all updated within the same atomic operation to reflect the delivery of

that message.

Both inboxes and outboxes are empty when they are initially constructed (either at process

initialization time or, for inboxes only, when instantiated during execution). All modifications

of inbox and outbox contents and attributes are made either as part of normal transitions that

use messaging operations during program execution, or by the messaging system itself. We

now describe the semantics of the messaging operations.

2.3.2.1 Messaging Operations

As described in Section 2.2.8.3, outboxes support a single operation that allows for the sending

of messages or sequences of messages, while inboxes support three operations that allow for

the reception of messages and the detection of available messages. These operations are exactly

equivalent to the following predicates, which use or modify the contents and attributes of

mailboxes:

27

Send The send operation on an outbox is equivalent to an appropriate increment of that

outbox’s len attribute and a corresponding modification of the outbox’s contents. Each process

has a single outbox, which we represent by O for the purposes of this section. Since the send

operation can take multiple forms, we give examples of each with their equivalent predicates:

Example 2.13 (Send operations)

1. A simple send operation—send(targetProcess, targetInboxName, sentMessage)—is equiv-

alent to the following predicate:

O′[O.len] = {targetProcess, targetInboxName, sentMessage} ∧
O′.len = O.len + 1

2. A multiple send operation—send(targetProc1, targetInbox1, sentMessage1, targetProc2,

targetInbox2, sentMessage2)—is equivalent to the following predicate:

O′[O.len] = {targetProc1, targetInbox1, sentMessage1} ∧
O′[O.len + 1] = {targetProc2, targetInbox2, sentMessage2} ∧
O′.len = O.len + 2

3. A quantified send operation—send(〈, p | p ∈ targetProcesses � p, “inboxName”,

MessageType(p)〉)—is equivalent to the following predicate (recall that the quantification

of a quantified message send must be finite):

〈∀ p | p ∈ targetProcesses �

〈∃ i | O.len ≤ i < O′.len � O′[i] = {p, “inboxName”, MessageType(p)}〉〉 ∧
O′.len = O.len + |targetProcesses|

Probe The operation inbox-var.probe is equivalent to the predicate inbox-var.cnt < inbox-

var.len, which compares the cnt and len attributes of an inbox. If the predicate evaluates to

true, then there is a message on the inbox that has not yet been read.

Current The operation inbox-var.current is equivalent to the term inbox-var [inbox-var.cnt];

it is the message record contained at the index of the inbox corresponding to the number of

messages which have already been read. Typically, the current operation is used to access

one or more fields of the message record, as in inbox-var.current.msg (to retrieve the actual

message content).

28

Advance The operation inbox-var.advance is equivalent to the predicate inbox-var ′.cnt =

inbox-var.cnt + 1, which increments by 1 the number of messages which have been read from

the inbox. This equivalence holds regardless of the value of the inbox’s len attribute, which

means that it is possible for cnt to exceed len. This is acceptable because we have defined

inboxes as infinite sequences, although it will result in default data being read from the inbox

until enough messages are placed in the inbox for len to catch up to cnt. To avoid this (usually

undesirable) behavior, advance should be used on an inbox only when a probe of the inbox

evaluates to true.

29

Chapter 3

Verification of Dynamic UNITY
Specifications

In this chapter, we introduce and discuss a logic for the verification of Dynamic UNITY spec-

ifications. Verification of individual programs in a Dynamic UNITY system is very similar to

verification of UNITY programs using UNITY logic [8], while verification of Dynamic UNITY sys-

tems in their entirety is accomplished by first verifying properties of the systems’ component

programs and then reasoning about their messaging interactions.

We first present some notation and basic concepts that we will use throughout this chapter

and during our proofs in the example chapters; then, we discuss the specific proof rules and

theorems that provide a basis for proving properties of Dynamic UNITY programs and systems.

3.1 Basic Concepts and Conventions

3.1.1 Quantification

We use various types of quantification while stating the proof rules and theorems of this chap-

ter, as well as in our proofs of Dynamic UNITY specifications. Our notation for quantification

is taken from Leino [37]. In general, a quantification is 〈op boundvars | ranges � expression〉,
where op is the operator of the quantification, boundvars is the set of bound variables, ranges

is a predicate restricting the ranges of the bound variables, and expression is the expres-

sion to be quantified. The operator of the quantifier must be associative and commutative,

and must have an identity element. A variable with no range specification is quantified over

the entire range of its type; if there are no range specifications in the quantifier, the shorter

〈op boundvars � expression〉 form can be used. If an empty range is specified (there are no

values for the bound variables which satisfy the range predicate), the value of the quantifier is

the identity element of op.

30

Example 3.1 (Quantifications)

1. Universal: 〈∀i | 0 ≤ i ≤ N � a[i] = 0〉 holds if every element of array a with an index

between 0 and N inclusive equals 0, and does not hold otherwise. If the range of a univer-

sal quantification is empty, the quantification holds. By convention, we use the ∀ symbol

instead of the ∧ operator in universal quantifications.

2. Existential: 〈∃i | 0 ≤ i ≤ N � a[i] = 0〉 holds if there is at least one element of array a

with an index between 0 and N inclusive that equals 0, and does not hold otherwise. If

the range of an existential quantification is empty, the quantification does not hold. By

convention, we use the ∃ symbol instead of the ∨ operator in existential quantifications.

3. Summation: 〈Σi | 0 ≤ i ≤ N � a[i]〉 evaluates to the sum of all elements of array a with

indices between 0 and N inclusive. If the range of a summation is empty, the summa-

tion evaluates to 0. By convention, we use the Σ symbol instead of the + operator in

summations.

The everywhere operator, denoted by enclosing a predicate in square brackets ([]), is a spe-

cial instance of quantification. Introduced by Dijkstra and Scholten [17] as a function from

predicates to Boolean values, it is an implicit universal quantification of the enclosed predicate

over all states. We use the everywhere operator in some of the definitions and theorems of this

chapter.

3.1.2 Assertions

In Hoare logic [25, 26], the assertion {p} s {q} (usually referred to as a Hoare triple) denotes

that execution of statement s in any state that satisfies predicate p either terminates in a state

that satisfies predicate q or does not terminate. We use a similar construct to make statements

about the execution of Dynamic UNITY transitions: if the assertion {p} g −→ t {q} holds, it

means that the execution of transition g −→ t in any state that satisfies p either terminates in

a state that satisfies q or does not terminate. Since all well-formed Dynamic UNITY transitions

terminate (by definition), we will avoid the issue of nonterminating computations by assuming

for the remainder of this discussion that all transitions are well-formed.

The execution of the transition g −→ t, as discussed previously, either establishes t (if

g holds) or is equivalent to skip (if g doesn’t hold). Thus, our g −→ t is equivalent to the

if B −→ S []¬B −→ skip fi conditional described by Dijkstra and Scholten [17] and by Morgan

[52], where B is the guard g and S is a statement that establishes the binary predicate t on the

pre- and post-states.

We now formally define the semantics of a Dynamic UNITY transition. In these definitions,

31

suppose S is a statement that establishes the binary predicate t on the pre- and post-states. In

terms of Hoare triples, a transition is defined as follows:

{p} g −→ t {q} , {p ∧ g} S {q} ∧ {p ∧¬g} skip {q} (3.1)

In terms of weakest preconditions, a transition is defined as follows (instantiating the Dijk-

stra/Scholten definition of if):

[wp.(g −→ t).X , (g ⇒ wp.S.X)∧ (¬g ⇒ wp.skip.X)] (3.2)

Thus, in order to prove {p} g −→ t {q}, we must show the following (where q′ is q with all

its free variables primed; that is, q in the post-state):

(p ∧ g ∧ t ⇒ q′)∧ (p ∧¬g ⇒ q) (3.3)

Assertions may be quantified using any quantifier that operates on the Boolean values. We

sometimes write assertions as {p} s {q}, where s is known to be a Dynamic UNITY transition

(as in a quantification over the minimal set of transitions in a running process). The context

will always eliminate any possible confusion between one of our assertions and a traditional

Hoare triple.

3.1.3 Functions and Operators

We use all the usual mathematical and logical operators, as well as some temporal operators that

will be defined later in this chapter. We denote function application, including the application

of unary operators on predicates (such as transient), with the “.” operator. We also denote

operation invocation and access to data structures with the “.” operator, but the usage of the

operator is always clear from context. Function application always associates to the left. We

adopt the following conventions regarding the precedence of logical relations. All relations

in each group have the same precedence, and the groups are listed in order of increasing

precedence:

1. follows , ; (leads-to), next

2. ≡

3. ⇒, ⇐

4. ∧, ∨

5. =, 6=

32

6. mathematical operators, with their usual binding powers

7. ¬

8. . (function application, operation execution), ↓i (filtering operator), 1 (concatenation op-

erator)

For any two predicates p and q, p ≡ q and p = q have identical meanings. However,

since the precedences of ≡ and = differ, we can unambiguously write expressions such as

p = r ≡ q = s. Note that the ≡ operator is only defined on predicates, while the = operator is

defined on everything.

The filtering operator (↓k), where k is a bound variable of the operator, is used primarily to

examine subsequences of message histories but can also be used for other purposes. It is a

binary operator taking a set, sequence or array as its first operand and a predicate as its second;

it applies the predicate to every element in the first operand (denoted by k in the predicate) and

returns a set, sequence, or array (respectively) containing only the elements of the first operand

that satisfy the predicate with their ordering (if any) preserved. For example, if x is the integer

sequence 〈1,1,2,3,1,4,5,7〉, then x ↓k (k > 1) evaluates to the sequence 〈2,3,4,5,7〉.
The concatenation operator (1) is used to generate sequences from other sequences or

elements. It takes two operands, each a sequence or an element, and returns the sequence

generated by concatenating them. For example, if x is the integer 3, and y is the integer

sequence 〈4,5,6〉, x 1 y evaluates to the sequence 〈3,4,5,6〉.

3.2 Formal Execution Model

In this section, we formalize the execution model described in Section 2.3.1. We first formalize

the execution model for programs, and then the execution model for systems. These models are

constructed in such a way that it is possible to prove properties of Dynamic UNITY programs

that remain applicable when those programs are incorporated into larger systems. This forms

the basis for reasoning about multiple communicating processes in Dynamic UNITY.

3.2.1 Program Executions

Each execution of a Dynamic UNITY program P is an infinite sequence of pairs (Si, Ti) for i ≥ 0,

where Si is the execution state at step i and Ti is the transition of P to be executed at step

i. Every nontrivial program has an infinite number of possible executions. We denote the set

containing all possible executions of a particular program P by P.X, and the subset of P.X
containing only executions where the program’s instantiation parameters satisfy a predicate p

33

by P.X(p). There is a special execution state, called the uninitialized state and denoted by U,

which holds before the initialization of the execution state, and a special transition, denoted

by initialize, which takes the system from the uninitialized state to an initial state.

The strongest predicate that holds on a state S—that is, the predicate that completely spec-

ifies the values of all variables in the state S—is denoted by Pred(S). Ti may be skip, since

all programs implicitly contain skip as a transition. We sometimes denote Ti explicitly as a

guarded transition gi −→ ti.

The transition set of a Dynamic UNITY program changes with the execution state, due to

the existence of quantified transitions. Given a complete specification of a program’s state, it

is always possible to determine the exact transition set for the program from the program text.

However, in order to prove program properties, we will often need to determine the transition

set using an incomplete specification of the program state. Given any predicate constraining

the program state, we define minimal and maximal transition sets as follows.

Definition 3.1 (Minimal Transition Set) The minimal transition set of a program P con-

strained by a predicate p contains exactly those fair transitions of P that exist in all program

states S for which Pred(S) ⇒ p. That is, the minimal transition set is the intersection of the fair

transition sets for all program states satisfying p. We denote the minimal transition set of P

constrained by p as P.T −(p).

Definition 3.2 (Maximal Transition Set) The maximal transition set of a program P con-

strained by a predicate p contains exactly those (fair and unfair) transitions of P that exist in

any program state S for which Pred(S) ⇒ p. That is, the maximal transition set is the union of

the transition sets for all program states satisfying p. We denote the maximal transition set of P

constrained by p as P.T +(p).

We sometimes denote the transition sets of a particular program execution using that execu-

tion’s label instead of its program’s; i.e., R.T −(p) instead of P.T −(p), where R is an execution

of P .

Example 3.2 (Transition sets)

The minimal and maximal transition sets of a simple Dynamic UNITY program (Specification

3.1) constrained by various predicates are listed in Table 3.1. We denote instances of transition

(2) with i = k by 2k.

Every program execution state contains the outbox state for the single outbox of the execu-

tion, the inbox state for every inbox created up to that point in the execution, and the values

of the conventional state variables of the program. We denote the outbox state at step i by

34

program ExampleProgram

declare
theSet: set {integer}

initially
theSet = ∅

fair-transition
(1) true −→ 〈∃ i | i 6∈ theSet � theSet′ = theSet ∪ {i}〉
(2) [] 〈[] i | i ∈ theSet � i ≥ 1138 −→ p: p′ = new ExampleSystemComponent〉

unfair-transition
(3) true −→ theSet′ = ∅

end

Specification 3.1: An example program used to illustrate minimal and maximal transition sets

p ExampleProgram.T −(p) ExampleProgram.T +(p)
true {1} {1,20,2−1,21,2−2,22, . . . ,3}

theSet = ∅ {1} {1,3}
〈∀i | i ∈ theSet � 0 ≤ i ≤ 3〉 {1} {1,20,21,22,23,3}

{11,21} ⊆ theSet {1,211,221} {1,20,2−1,21,2−2,22, . . . ,3}
theSet = {1,27,36} {1,21,227,236} {1,21,227,236,3}

Table 3.1: Transition sets corresponding to various predicates on the state of the program in
Specification 3.1.

Oi, the outbox state as a variable (for use in theorems and proofs) by O, the set containing the

names of all inboxes existing at step i by Ii, the state of the inbox with name k at step i by Iki ,

and the inbox with name k as a variable (for the purpose of quantifying over inbox variables in

theorems and proofs) by Ik. Every execution state Si consists of a volatile and a non-volatile

portion, which are defined as follows.

Definition 3.3 (Volatile and Non-volatile State) The volatile portion of an execution

state Si consists of the sent fields for the messages in Oi and Ik
i .history (the sequence of messages

which have been delivered to inbox k) for all inboxes k in Ii. The non-volatile portion of an

execution state Si consists of everything else in Si.

The volatile portion of an execution state can only be modified by the messaging system,

while the non-volatile portion can only be modified by program transitions. The volatile and

non-volatile portions of the state are non-intersecting, and are denoted (respectively) by V .Si
and V .Si.

An individual program execution is also called a process. Every process has a globally unique

label associated with it; when referring to the states and transitions of the process with label

35

l, we use a superscript l (as in Sli , T
l
i) to denote the process we are referring to. Processes are

subject to certain safety and progress constraints, which we describe in the following sections.

3.2.1.1 Safety Constraints

The following constraints on processes are safety constraints. They restrict the possible states

and transitions for each step of an execution. We denote the globally unique label of the process

under discussion by L.

Initial Step Every execution has an initial step, hereafter denoted by I, such that I is the earliest

step for which the execution state is not uninitialized (recall that the uninitialized state is

denoted by U).

I = 〈min i | 0 ≤ i� Si 6= U〉 (3.4)

Pre-Initial Transitions The transition at the execution step before the initial step is initialize,

and the transition at every step before the initialize transition is skip. Note that if the initial

step is step 0, the initialize transition implicitly occurs before step 0 (at “step -1”).

TI−1 = initialize∧ 〈∀i | 0 ≤ i < I − 1 � Ti = skip〉 (3.5)

Initial State The initial state, SI , is specified by the parameters and the initially-section of the

program. This state need not be the same for all executions, since there may be variation

in the initializations of variables due to differing program parameters or nondeterministic

initializations.

Transitions and Subsequent States Each transition Ti, i ≥ I, is chosen from the maximal tran-

sition set corresponding to Si (Equation 3.6), and the change in the nonvolatile state between

Si and Si+1 results from the execution of transition Ti (Equation 3.7):

〈∀i | I ≤ i� Ti ∈ R.T +(Pred(Si))〉 (3.6)

〈∀i | I ≤ i� {Pred(V .Si)} gi −→ ti {Pred(V .Si+1)}〉 (3.7)

Messaging Safety The set of inboxes in the execution is monotonically nondecreasing (Equa-

tion 3.8); for every inbox, the message sequence and the index of the current message are mono-

tonically nondecreasing (Equation 3.9); the message sequence and message delivery states in

the outbox are monotonically nondecreasing (Equation 3.10); and for every inbox in the execu-

tion state at a particular execution step, the sequence of messages in that inbox from process

36

L is the same as the sequence of delivered messages in process L’s outbox addressed to that

inbox (Equation 3.11). We denote the sequence consisting of only the msg fields of the elements

of sequence history by history.msg. For inboxes i, j, the equation i � j means that the name

attributes of i and j are equal, the cnt and len attributes of i are less than or equal to the

corresponding attributes of j, and the sequences of msg and proc fields in i are subsequences

of the corresponding sequences in j. For outboxes i, j, the equation i � j means that the len

attribute of i is less than or equal to the len attribute of j, that the sequences of msg, proc

and mbox fields in i are initial subsequences of the corresponding sequences in j, and that for

every del field of i which has the value true, the del field of j also has the value true.

〈∀i | 0 ≤ i� Ii ⊆ Ii+1〉 (3.8)

〈∀i, b | 0 ≤ i∧ b ∈ Ii � Ibi � Ibi+1〉 (3.9)

〈∀i | 0 ≤ i�Oi � Oi+1〉 (3.10)

〈∀i, b | 0 ≤ i∧ b ∈ Ii � (Ibi ↓m(m.proc = L)).msg =

Oi ↓m (m.del∧m.proc = L∧m.mbox = b).msg〉
(3.11)

Termination If there exists an i, 0 ≤ i, such that Ti contains a stop command that is executed,

then for all j > i, Tj = skip. That is, once a stop command is executed, the nonvolatile state

of the process stops changing.

3.2.1.2 Progress Constraints

The following constraints on program executions are progress constraints. They ensure that

weak fairness is guaranteed for transition executions and that all sent messages are eventually

delivered.

Weak Fairness As defined in Chapter 2, weak fairness means that every fair transition is

infinitely often either selected or not available for execution. This is equivalent to saying that

if a transition is available for execution at every step after a certain step k, and is guaranteed

to remain in the transition set at least until it is executed, then the transition is executed at

some step after k. This is expressed by the following equation.

〈∀s, k | k ≥ 0∧ s ∈ P.T −(Sk)� 〈∃j | j ≥ k� (Tj = s)∨ (s 6∈ P.T −(Sj))〉〉 (3.12)

37

Message Delivery In order to reason about message communication, we need the constraint

that all sent messages are eventually delivered to their destinations. Within the process labelled

L, this is expressed by the following equation.

〈∀i, b, k | i ≥ 0∧ b ∈ Ii ∧ k � (Oi ↓m (m.proc = L∧m.mbox = b)).msg �

〈∃j | j > i� k � (Ibj ↓m (m.proc = L)).msg〉〉 (3.13)

3.2.2 System Executions

Each execution of a Dynamic UNITY system consists of an infinite sequence of tuples (Si, Ti,

Li, Zi), where Si is the execution state of the system at step i, Ti is the transition of X to be

executed at step i, Li is a set containing the labels of all running processes in the system at step

i, and Zi is a set containing the labels of all stopped processes in the system at step i. As in

program executions, Ti may be skip. Every nontrivial system has an infinite number of possible

executions; we denote the set containing all possible executions for a particular system X by

X.X.

We use notation similar to that for program executions (for example, the maximal transition

set for a system X constrained by a predicate p is X.T +(p)). In particular, to denote the set

containing the (process-qualified) names of all inboxes in the system at step i we write Ii, to

denote the set containing the names of all inboxes belonging to a particular process l at step i

we write Ili , to explicitly denote the inbox named “in” belonging to a particular process l at step

i we write Il.ini , to denote the inbox named “in” belonging to a particular process l as a variable

we write Il.in, to denote the outbox state of process l at step i we write Oli, and to denote the

outbox state of process l as a variable we write Ol. System executions are subject to certain

safety and progress constraints, which we describe in the following sections.

3.2.2.1 Safety Constraints

The following constraints on system executions are safety constraints. They restrict the possi-

ble states and transitions for each step of an execution.

Initial Processes The set of running processes at the initial step, L0, consists of an instanti-

ation of the system’s initial program and any processes created as a result of that program’s

initialization; these are called the initial processes. The set of stopped processes at the initial

step, Z0, is empty because it is not possible for any process to execute a stop statement before

the initial step.

38

Initial State The initial state, S0, is specified by the parameters and the initially-section of the

system’s initial program and any processes created as a result of that program’s initialization.

This state need not be the same for all executions, since there may be variation in the initial-

ization of variables due to differing program parameters or nondeterministic initializations.

Transitions and Subsequent States Each transition Ti, i ≥ 0, is chosen from the transition

set corresponding to Si (Equation 3.14), and the change in the nonvolatile state between Si and

Si+1 results from the execution of transition Ti (Equation 3.15):

〈∀i | 0 ≤ i� Ti ∈ X.T (Si)〉 (3.14)

〈∀i | 0 ≤ i� {V .Si} gi −→ ti {V .Si+1}〉 (3.15)

Process Set Monotonicity The set of processes (both running and stopped) in the system

is monotonically nondecreasing (Equation 3.16); the set of stopped processes in the system

is monotonically nondecreasing (Equation 3.17); the intersection of the sets of running and

stopped processes is empty (Equation 3.18).

〈∀i | 0 ≤ i� (Li ∪ Zi ⊆ Li+1 ∪ Zi+1)〉 (3.16)

〈∀i | 0 ≤ i� Zi ⊆ Zi+1〉 (3.17)

〈∀i | 0 ≤ i� Li ∩ Zi = ∅〉 (3.18)

System State and Process States The system state at every execution step is the Cartesian

product of the states of the processes in the system at that step.

〈∀i | 0 ≤ i� Si = 〈×l | l ∈ Li � Sli〉〉 (3.19)

Execution Noninterference Every execution step of the system can be expressed as an execu-

tion step of one running process in the system (Equations 3.20, 3.21). If one running process

has a non-skip transition, it is executed and the nonvolatile portion of that process’s state is

changed, while the nonvolatile portions of other processes’ states are not changed (Equation

3.22).

〈∀i | 0 ≤ i� 〈∃l | l ∈ Li � Ti = T li 〉 ∧ 〈∀l | l ∈ Li ∧ Ti 6= T li � T li = skip〉〉 (3.20)

〈∀i, l | 0 ≤ i∧ l ∈ Li ∧ Ti = T li � {V .Sli} gi −→ ti {V .Sli+1}〉 (3.21)

〈∀i, l | 0 ≤ i∧ l ∈ Li ∧ Ti 6= T li �V .Sli = V .Sli+1〉 (3.22)

39

Process Set Determinism For all i, 0 ≤ i, if process l is in Li+1 and not in Li, then process l

must be created as a result of transition Ti. For all i, 0 ≤ i, if process l is stopped at step i+ 1,

i.e., l is in Zi+1, then either (a) process lwas already stopped at step i (l is in Zi, and T li is skip) or

(b) process l stops at step i (l is in Li and T li contains a stop). That is, processes cannot appear

in the system after the initial step without having been created by other processes and cannot

be stopped except by transitions of their own, and stopped processes can have no non-skip

transitions. Therefore, stopped processes cannot re-enter the system.

Messaging Safety The messaging safety rules specified for processes in Equations 3.8–3.11

hold for systems as well. In addition, for every inbox and process in the execution state at a

particular execution step, the sequence of messages in that inbox delivered from that process

is the same as the sequence of delivered messages in that process’s outbox addressed to that

inbox.

〈∀p,q, i, b | p ∈ Li ∪ Zi ∧ q ∈ Li ∪ Zi ∧ 0 ≤ i∧ b ∈ Iqi+1�

(Iq.bi+1 ↓m (m.proc = p)).msg = (Opi ↓m (m.del∧m.proc = q ∧m.mbox = b)).msg〉 (3.23)

3.2.2.2 Progress Constraints

The following constraints on system executions are progress constraints. They ensure that

weak fairness is guaranteed for transition executions and that all sent messages are eventually

delivered.

Weak Fairness If a transition is available for execution at every step after a certain step k and

is guaranteed to remain in the transition set at least until it is executed, then the transition is

executed at some step after k. This is expressed by the following equation.

〈∀s, k | k ≥ 0∧ s ∈ X.T −(Sk)� 〈∃j | j ≥ k� Tj = r ∨ r 6∈ X.T −(Sj)〉〉 (3.24)

Message Delivery In order to reason about message communication, we need the constraint

that all sent messages are eventually delivered to their destinations. Within a system execution,

this is expressed by the following equation.

〈∀p,q, i, b, k | p ∈ Li ∪ Zi ∧ q ∈ Li ∪ Zi ∧ 0 ≤ i∧ b ∈ Iqi ∧

k � (Opi ↓m (m.proc = q ∧m.mbox = b)).msg �

〈∃j | j > i� k � (Iq.bj ↓m (m.proc = L)).msg〉〉 (3.25)

40

3.2.3 Subsystem Executions

A subsystem consists of a fixed subset of the processes of a system. A subsystem execution is

the projection of a system execution which contains the states and transitions of the processes

in the subsystem. Subsystem executions have the same form as system executions—infinite

sequences of tuples (SVi , TVi , LVi , ZVi), where V is the set of processes in the subsystem. The tu-

ples which make up a subsystem execution are computed from the tuples of the corresponding

system execution as follows:

• For all i ≥ 0, SVi = 〈×l | l ∈ V ∧ l ∈ Li ∪ Zi � Sli〉.

• For every transition Ti such that Ti = T li , l ∈ V , TVi = Ti. For all other transitions Ti,

TVi = skip.

• For all i ≥ 0, LVi = Li ∩ V and ZVi = Zi ∩ V .

All our reasoning will be done on subsystems. We use notation for subsystems analogous

to that for systems (so that, for example, the maximal transition set of a subsystem V con-

strained by predicate p is V.T +(p)). Typically, V will consist of either a single process l (and

the subsystem will be the process l in isolation) or the entire set of processes for a system (and

the subsystem will be the entire system). The benefit of this approach is that if we can prove

properties about all executions of a particular program, these properties hold for all systems

containing any execution of that program. We use the execution model to formalize our op-

erational understanding of Dynamic UNITY executions. However, when proving properties of

programs and systems, we try to use assertions rather than directly reasoning about subsystem

execution sequences.

3.3 Fundamental Operators

In this section, we define the three fundamental operators initially, next and transient in terms

of our execution model, and present proof rules for using them in our logical framework. In

subsequent sections, we will use these fundamental operators to define other useful operators

(stable, invariant, ; (leads-to), follows). These operators will form the basis for reasoning

about our programs and systems. When these operators are used in proofs, the systems to

which they apply will generally be understood from context. However, we explicitly specify

them in the definitions and theorems of this chapter.

41

3.3.1 Initially

The initially operator allows us to formalize initial conditions for the execution of a subsystem.

It is defined as follows:

Definition 3.4 (Initially Operator) Given predicate p and subsystem X: initially.p.X holds

if, for every possible execution of X, p holds in the initial state.

initially.p.X , 〈∀Y | Y ∈ X.X � [Pred(Y .S0)⇒ p]〉

initially.p.X can be proven from the program texts which comprise subsystem X, because

the initial condition of the system can be calculated directly from the texts of the declare and

initially sections of the programs and the parameters passed to the initial programs.

3.3.2 Next

The next operator allows us to prove safety properties of a subsystem, by specifying restric-

tions on the next subsystem state given the current subsystem state. It is defined as follows:

Definition 3.5 (Next Operator) Given predicates p and q and subsystem X: (p next q).X

holds if, for every execution of X, every state in which p holds is immediately followed by a state

in which q holds.

(p next q).X , 〈∀Y , i | Y ∈ X.X ∧ i ≥ 0 � [Pred(Y .Si)⇒ p]⇒ [Pred(Y .Si+1)⇒ q]〉

Since stuttering steps are allowed in our execution model, this definition constrains p and

q such that:

(p next q).X ⇒ [p ⇒ q] (3.26)

Calculating (p next q).X by directly using this definition is impractical, since it requires

us to verify an infinite number of implications for an infinite number of execution sequences.

However, we can use the knowledge that Dynamic UNITY systems instantiate their processes

from a static set of programs and that the non-volatile state of a process can be manipulated

only by that process’s transitions to calculate stronger properties that imply (p next q).X. The

following are the resulting proof rules.

Proof Rule 1 (Next Property for a Set of Processes)

Given predicates p and q over the non-volatile state of a set of processes V in subsystem X: if every

transition in the maximal transition set of V constrained by p terminates in a state satisfying q

42

when executed in a state satisfying p, then (p next q).X holds.

〈∀s | s ∈ V.T +(p)� {p} s {q}〉
(p next q).X

This proof rule is consistent with the definition of the next operator, because any transition

of the system other than those in V.T +(p) has an effect on V ’s non-volatile state equivalent

to skip. We quantify over the maximal transition set to ensure that we take into account all

transitions that can possibly be enabled when p holds. We can use this rule to prove next

properties for a single process R, by making V the set containing only process R.

If p and q are predicates over volatile state (or a combination of volatile and non-volatile

state), the semantics of the messaging system must be taken into account. This is typically

done using the follows operator, discussed later in this chapter.

The next operator has previously appeared in the context of static systems in various forms,

including the co operator in Misra [47], the next operator in Chandy and Sanders [9, 10], the

next operator in Sivilotti [66], and the © operator in temporal logic [62].

3.3.3 Transient

The transient operator allows us to prove progress properties of a subsystem, by specifying

that certain predicates on the state of a subsystem cannot hold forever.

Definition 3.6 (Transient Operator) Given predicate p and subsystem X: transient.p.X

holds if, for every execution of X, every state is followed by some later state in which ¬p holds.

transient.p.X , 〈∀Y , i | Y ∈ X.X ∧ i ≥ 0 � 〈∃j | j > i� [Pred(Y .Sj)⇒ ¬p]〉〉

Calculating transient.p by directly using this definition is impractical, since it requires us

to verify an infinite number of implications for an infinite number of execution sequences.

However, we can use the knowledge that Dynamic UNITY systems instantiate their processes

from a static set of programs and that the non-volatile state of a process can be manipulated

only by that process’s transitions to calculate stronger properties that imply transient.p.X.

The following are the resulting proof rules.

Proof Rule 2 (Transient Operator for a Set of Processes)

Given a predicate p over the non-volatile state of a set of processes V in subsystem X: if any

transition in the minimal transition set of V constrained by p terminates in a state satisfying ¬p

43

when executed in a state satisfying p, then transient.p.X holds.

〈∃s | s ∈ V.T −(p)� {p} s {¬p}〉
transient.p.X

This proof rule is consistent with the definition of the transient operator, because all tran-

sitions in V.T −(p) are guaranteed to remain eligible for execution as long as p holds. Weak

fairness guarantees that if one or more transitions in V.T −(p) satisfy the assertion, either

one such transition will execute eventually or p will be falsified by some transition outside of

V.T −(p). We can use this rule to prove transient properties for a single process R, by making

V the set containing only process R.

If p is a predicate over volatile state (or a combination of volatile and non-volatile state), the

semantics of the messaging system must be taken into account.

The transient operator has previously appeared in the context of static systems in Misra

[46] and Sivilotti [66].

3.4 Derived Operators

In this section, we define some useful operators in terms of the fundamental operators defined

in the previous section.

3.4.1 Stable

The stable operator allows us to state that, once a particular predicate on the state of a sub-

system holds, it continues to hold thereafter.

Definition 3.7 (Stable Operator) Given predicate p and subsystem X: stable.p.X holds if,

for every execution of X, every state in which p holds is immediately followed by a state in which

p holds. That is, p is never falsified once it has been established.

stable.p.X , (p next p).X

3.4.2 Invariant

The invariant operator allows us to state that a particular predicate holds on every reachable

state of a subsystem.

44

Definition 3.8 (Invariant Operator) Given predicate p and subsystem X: invariant.p.X

holds if, for every execution of X, p holds in every state.

invariant.p.X , initially.p.X ∧ stable.p.X

3.4.3 Leads-To

The ; (leads-to) operator is the primary operator used in progress proofs. It allows us to

show that if a particular predicate on the state of a subsystem holds at some point during any

execution, another predicate is guaranteed to hold at some later point.

Definition 3.9 (Leads-to Operator) Given predicates p and q and subsystem X: (p ; q).X

holds if, for every execution of X, every state in which p holds is followed by some later state in

which q holds. In the third rule, S is any set of predicates.

(p ∧¬q next p ∨ q).X transient.(p ∧¬q).X
(p ; q).X

(basis)

(p ; q).X (q ; r).X
(p ; r).X

(transitivity)

〈∀p | p ∈ S � (p ; q).X〉
(〈∃p | p ∈ S � p〉; q).X

(disjunction)

This definition of the leads-to operator is due to Misra [46].

3.4.4 Follows

The follows operator, first described by Sivilotti [66], combines safety and progress properties

and allows us to show the following relationship between two variables x and y of the same

partially ordered type:

1. Both x and y are monotonically increasing.

2. The value of x does not exceed the value of y .

3. If the value of y exceeds some constant k, then the value of x will eventually exceed k.

4. The difference between x and y is an upper bound on how much x can increase in one

subsystem execution step.

45

Typically, the partial ordering on x and y is clear from context. We may explicitly denote

it by subscripting the follows operator with the ordering operator, as in follows≤ or follows�.

The follows operator for two variables x and y of the same partially ordered type and

subsystem X is defined in terms of stable, ; and next as follows:

Definition 3.10 (Follows Operator)

(x follows y).X , 〈∀k� stable.(x ≥ k).X〉 ∧

〈∀k� stable.(y ≥ k).X〉 ∧

invariant.(x ≤ y).X ∧

〈∀k� (y ≥ k; x ≥ k).X〉 ∧

〈∀k� (y = k∧ x ≤ k next x ≤ k).X〉

3.5 The Channel Theorem

The channel theorem allows us to reason about message channels using the follows operator,

by stating that a follows relationship holds for every inbox/process pair in a system.

Theorem 3.11 (Channel Theorem)

For all processes p, q in a Dynamic UNITY system, and all inboxes b in q, the sequence of messages

delivered to q.b from process p follows the sequence of messages sent by process p to q.b:

〈∀p,q, b, i | p ∈ X.Li ∪X.Zi ∧ q ∈ X.Li ∪X.Zi ∧ b ∈ X.Iqi �

((X.Iq.b ↓m (m.proc = p)).msg follows

(X.Op ↓m (m.proc = q ∧m.mbox = b)).msg).X〉

Proof

In order to prove the channel theorem, we must use the previously stated definition of the

messaging system. The parts of the channel safety and progress properties from this definition

that are relevant to the follows relationship in this theorem are the following:

〈∀i, b | 0 ≤ i∧ b ∈ Ii � Ibi � Ibi+1〉 (a)

〈∀i | 0 ≤ i∧ l ∈ Li ∪ Zi �Oli � Oli+1〉 (b)

46

〈∀p,q, i, b | p ∈ Li ∪ Zi ∧ q ∈ Li ∪ Zi ∧ 0 ≤ i∧ b ∈ Iqi+1 �

(Iq.bi+1 ↓m (m.proc = p)).msg �

Opi ↓m (m.proc = q ∧m.mbox = b).msg〉 (c)

〈∀p,q, i, b, k | p ∈ Li ∪ Zi ∧ q ∈ Li ∪ Zi ∧ 0 ≤ i∧ b ∈ Iqi ∧

k � (Opi ↓m (m.proc = q ∧m.mbox = b)).msg �

〈∃j | j > i� k � (Iq.bj ↓m (m.proc = L)).msg〉〉 (d)

And the definition of x follows y is the following:

(x follows y).X , 〈∀k� stable.(x ≥ k).X〉 ∧ (1)

〈∀k� stable.(y ≥ k).X〉 ∧ (2)

invariant.(x ≤ y).X ∧ (3)

〈∀k� (y ≥ k; x ≥ k).X〉 ∧ (4)

〈∀k� (y = k∧ x ≤ k next x ≤ k).X〉 (5)

It is immediately clear that conjuncts (1) and (2) of the follows definition are satisfied by

channel properties (a) and (b), respectively. Conjunct (3) of the follows definition is satisfied by

channel properties (a) and (c). Property (c) says that the filtered X.Iq.bi+1 is always a subsequence

of the filtered X.Opi and therefore, because of the monotonicity from property (a), so is the

filtered X.Iq.bi . Conjunct (4) of the follows definition is satisfied by channel property (d), which

says that every sequence exceeded by the filtered X.Op is eventually exceeded by the filtered

X.Iq.b. Finally, it is immediately clear from the definition of next that conjunct (5) of the follows

definition is satisfied by channel property (c). Therefore, the follows property holds. 2

3.6 Other Useful Theorems

In this section we present some generally useful theorems about the operators we have defined,

as well as some theorems about the functioning of Dynamic UNITY systems. Some of these

theorems are immediately derivable from the definitions of the fundamental operators; we

therefore do not present detailed proofs for all of them. In all of the following theorems, p, q,

r , s, t are arbitrary predicates, and X is an arbitrary system.

47

3.6.1 Theorems about Next

The following theorems about next are due to Misra [47], and follow directly from the definitions

of next and logical implication. Proofs for them will not be presented.

Theorem 3.12

Any predicate holds in all states immediately subsequent to states where the predicate false

holds:

(false next p).X

Theorem 3.13

The predicate true holds in all states immediately subsequent to states where any predicate holds:

(p next true).X

Theorem 3.14 (Conjunction and Disjunction)

The conjunction of any two next properties gives additional next properties:

(p next q).X ∧ (r next s).X ⇒ (p ∧ r next q ∧ s).X ∧ (p ∨ r next q ∨ s).X

Theorem 3.15 (Strengthening)

The left-hand side of any next property can be strengthened:

(p next q).X ⇒ (p ∧ r next q).X

Theorem 3.16 (Weakening)

The right-hand side of any next property can be weakened:

(p next q).X ⇒ (p next q ∨ r).X

3.6.2 Theorems about Transient

The following are theorems about the transient operator, which will be useful primarily for

proving theorems about the ; operator later in this chapter. These theorems are due to Misra

[46].

Theorem 3.17 (Stability and Transience)

The only predicate that is both stable and transient is false:

(stable.p.X ∧ transient.p.X) ≡ [¬p]

48

Proof

The definition of transient tells us that false is transient, and Theorem 3.12 tells us that false is

stable (because (false next false).X holds). Therefore, we only need to show that (stable.p.X∧
transient.p.X)⇒ [¬p]. We do this as follows:

From the definition of transient.p.X, there is some fair transition in X such that {p} g −→
t {¬p}. From the definition of stable.p.X, {p} g −→ t {p} for all fair transitions in X. Conjoin-

ing the postconditions of these two assertions gives {p} g −→ t {false}. Therefore, ¬p must

hold. 2

Theorem 3.18 (Strengthening)

Any transient property can be strengthened:

transient.p.X ⇒ transient.(p ∧ q).X

Proof

From the definition of transient.p.X, there is some fair transition in X such that {p} g −→
t {¬p}. We can strengthen the right side and weaken the left side of this assertion, to give

{p ∧ q} g −→ t {¬p ∨¬q}. This gives transient.(p ∧ q).X by definition of transient. 2

3.6.3 Theorems about Leads-to

The following are theorems about the ; operator. They are some of the most important the-

orems we will use to prove properties of Dynamic UNITY systems. These theorems are due to

Misra [46].

Theorem 3.19 (Implication)

Any implication is also a ; property:

[p ⇒ q]⇒ (p ; q).X

Theorem 3.20 (Strengthening)

The left-hand side of any ; property can be strengthened:

(p ; q).X ⇒ (p ∧ r ; q).X

Theorem 3.21 (Weakening)

The right-hand side of any ; property can be weakened:

(p ; q).X ⇒ (p ; q ∨ r).X

49

Theorem 3.22 (Disjunction)

A universally quantified set of ; properties can be transformed into a single ; property with

existentially quantified operands. In this theorem, pi and qi are predicates, and i is quantified

over an arbitrary set:

〈∀i� (pi ; qi).X〉 ⇒ (〈∃i� pi〉; 〈∃i� qi〉).X

Theorem 3.23 (Cancellation)

Two ; properties of a particular form can be combined, cancelling an intermediate variable:

(p ; q ∨ r).X ∧ (r ; s).X ⇒ (p ; q ∨ s).X

Theorem 3.24 (Impossibility)

A state satisfying false is reachable only from an unreachable state:

(p ; false).X ⇒ [¬p]

Theorem 3.25 (Progress-Safety-Progress)

Progress and safety properties of specific forms can be combined to yield more complex progress

properties:

(p ; q).X ∧ (r next s).X ⇒ (p ∧ r ; (q ∧ r)∨ (¬r ∧ s)).X

3.6.4 Theorems about Follows

The following theorems about the follows operator are due to Sivilotti [66]. They are extremely

important in proving relationships among communicating Dynamic UNITY processes. These

theorems hold when the ordering relation used to define the follows operator defines a partially

ordered set on the types of the variables.

Theorem 3.26 (Transitivity)

The follows operator is transitive:

(x follows y).X ∧ (y follows z).X ⇒ (x follows z).X

Theorem 3.27 (Reflexivity)

If a variable follows itself, its value never changes:

(x follows x).X = 〈∃k� invariant.(x = k).X〉

50

Theorem 3.28 (Antisymmetry)

If two variables follow each other, their values are always equal:

(x follows y).X ∧ (y follows x).X ⇒ invariant.(x = y).X

Theorem 3.29 (Monotonicity)

Application of a monotonic function to both sides of a follows property preserves the follows

property:

(f is a monotonic function)∧ (x follows y).X ⇒ (f .x follows f .y).X

Theorem 3.30 (Stable Fixed Point)

An element k is a fixed point of function f when k = f.k. We define the set FP.f of fixed points for

a function f as follows: FP.f = {k | k = f.k � k}. If a variable follows a monotonic function of

itself, then it never changes once it reaches a fixed point of that function:

(x follows f .x).X ⇒ 〈∀k | k ∈ FP .f � stable.(x = k).X〉

3.7 Verification of an Example Program

In this section, we present a small example program (Specification 3.2) and prove its correct-

ness using the rules and theorems described earlier in this chapter. The program implements

Euclid’s algorithm for calculating the greatest common divisor (GCD) of two integers; it repeat-

edly reads an integer message from each of its two inboxes, performs Euclid’s algorithm on

these integers, and sends the result to a specified destination process and inbox.

Let GCDSeq be a function that takes two sequences of integers greater than or equal to 1

as input and produces as output a sequence of integers, with the same length as the shorter

of the two input sequences, such that each element of the output sequence is the GCD of the

corresponding elements of the two input sequences. The property we wish to prove about

the GCD program is O.msg follows GCDSeq(xIn.msg, yIn.msg) (we use b.msg to denote the

sequence of messages on inbox/outbox b). The proof relies on the system constraint that all

messages sent to xIn and yIn are positive integers. While we could have added conditions to

the guards of GCDCalculator’s transitions to filter out bad input messages, leaving them out

reduces the complexity of the example and its proof.

In order to prove the follows property, we must first prove several other properties of

GCDCalculator. We state these as lemmas, and prove some of them in a calculational fashion

51

program GCDCalculator(targetProcess: process, targetInbox: string)

declare
x, y: integer
xIn, yIn: inbox
waiting: boolean

always
busy , ¬waiting

initially
x = 1 ∧ y = 1 ∧ waiting

fair-transition
(1) xIn.probe ∧ yIn.probe ∧ waiting −→

x′ = xIn.current.msg ∧ y′ = yIn.current.msg ∧
xIn.advance ∧ yIn.advance ∧ busy′

(2) [] x < y −→ y′ = y − x
(3) [] y < x −→ x′ = x − y
(4) [] x = y ∧ busy −→ send(targetProcess, targetInbox, x) ∧ waiting′

end

Specification 3.2: The GCDCalculator program

by showing that they follow either directly from the predicate true or from our constraints on

the system. For some lemmas we omit the calculational proofs, as the primary purpose of this

example is to demonstrate the proof techniques for our various temporal operators and many

of the lemmas use the same temporal operators. We present brief textual arguments for the

correctness of lemmas for which we omit calculational proofs.

There is an implicit quantification over all possible instantiations of GCDCalculator for each

property we state. That is, our properties hold for any instance of GCDCalculator regardless

of its execution environment (with the system constraint that all messages sent to its inboxes

are positive integers). We represent the GCD process within this implicit quantifier by G. In

addition, we will often use a transition’s number instead of the actual text of the transition

when writing assertions within our proofs.

Lemma 3.31 (Positive Integers)

The values of the state variables x and y are always greater than or equal to 1.

invariant.(x ≥ 1∧y ≥ 1)

52

Proof

invariant.(x ≥ 1∧y ≥ 1)

= {definition of invariant operator}

initially.(x ≥ 1∧y ≥ 1)∧ (x ≥ 1∧y ≥ 1) next (x ≥ 1∧y ≥ 1)

= {initially-section specifies (x = 1∧y = 1)}

(x ≥ 1∧y ≥ 1) next (x ≥ 1∧y ≥ 1)

⇐ {proof rule for next operator}

〈∀s | s ∈ G.T +(x ≥ 1∧y ≥ 1)� {x ≥ 1∧y ≥ 1} s {x ≥ 1∧y ≥ 1}〉

= {quantification}

{x ≥ 1∧y ≥ 1} (1) {x ≥ 1∧y ≥ 1} ∧ {x ≥ 1∧y ≥ 1} (2) {x ≥ 1∧y ≥ 1}∧
{x ≥ 1∧y ≥ 1} (3) {x ≥ 1∧y ≥ 1} ∧ {x ≥ 1∧y ≥ 1} (4) {x ≥ 1∧y ≥ 1}

We prove each conjunct individually:

{x ≥ 1∧y ≥ 1} (1) {x ≥ 1∧y ≥ 1}

= {definition of assertion}

(x ≥ 1∧y ≥ 1∧ xIn.probe∧ yIn.probe∧waiting ∧ x′ = xIn.current ∧
y ′ = yIn.current∧ xIn.advance∧ yIn.advance∧ busy ′ ⇒ x′ ≥ 1∧y ′ ≥ 1)∧

(x ≥ 1∧y ≥ 1∧¬(xIn.probe∧ yIn.probe∧waiting)⇒ x ≥ 1∧y ≥ 1)

= {predicate calculus: x ∧y ⇒ x}

x ≥ 1∧y ≥ 1∧ xIn.probe∧ yIn.probe∧waiting ∧ x′ = xIn.current ∧
y ′ = yIn.current∧ xIn.advance∧ yIn.advance∧ busy ′ ⇒ x′ ≥ 1∧y ′ ≥ 1

53

⇐ {predicate calculus: (x ⇒ z)⇒ (x ∧y ⇒ z)}

x′ = xIn.current∧y ′ = yIn.current ⇒ x′ ≥ 1∧y ′ ≥ 1

= {definition of current operation}

x′ = xIn[xIn.cnt].msg∧y ′ = yIn[yIn.cnt].msg ⇒ x′ ≥ 1∧y ′ ≥ 1

⇐ {substitution}

xIn[xIn.cnt].msg ≥ 1∧ yIn[yIn.cnt].msg ≥ 1

⇐ {definition of message channels}

system constraint that all messages sent to xIn and yIn are positive integers

end of {x ≥ 1∧y ≥ 1} (1) {x ≥ 1∧y ≥ 1}

{x ≥ 1∧y ≥ 1} (2) {x ≥ 1∧y ≥ 1}

= {definition of assertion}

(x ≥ 1∧y ≥ 1∧ x < y ∧y ′ = y − x ⇒ x′ ≥ 1∧y ′ ≥ 1)∧
(x ≥ 1∧y ≥ 1∧y ≤ x ⇒ x′ ≥ 1∧y ′ ≥ 1)

⇐ {predicate calculus: x ∧y ⇒ x}

x ≥ 1∧y ≥ 1∧ x < y ∧y ′ = y − x ⇒ x′ ≥ 1∧y ′ ≥ 1

= {x′ = x, since x′ doesn’t appear in transition (2)}

x ≥ 1∧y ≥ 1∧ x < y ∧y ′ = y − x ⇒ x ≥ 1∧y ′ ≥ 1

⇐ {predicate calculus: (x ⇒ y ∧ z)⇒ (x ⇒ y)}

x ≥ 1∧y ≥ 1∧ x < y ∧y ′ = y − x ⇒ y ′ ≥ 1

54

⇐ {substitution}

x ≥ 1∧y ≥ 1∧ x < y ⇒ y − x ≥ 1

= {arithmetic}

true

end of {x ≥ 1∧y ≥ 1} (2) {x ≥ 1∧y ≥ 1}

{x ≥ 1∧y ≥ 1} (3) {x ≥ 1∧y ≥ 1}

⇐ {symmetry with transition (2)}

true

end of {x ≥ 1∧y ≥ 1} (3) {x ≥ 1∧y ≥ 1}

{x ≥ 1∧y ≥ 1} (4) {x ≥ 1∧y ≥ 1}

= {definition of assertion}

(x ≥ 1∧y ≥ 1∧ x = y ∧ busy ∧ send(targetProcess, targetInbox, x)∧waiting′ ⇒
x′ ≥ 1∧y ′ ≥ 1)∧

(x ≥ 1∧y ≥ 1∧¬(x = y ∧ busy ∧ send(targetProcess, targetInbox, x))⇒
x ≥ 1∧y ≥ 1)

= {predicate calculus: x ∧y ⇒ x}

x ≥ 1∧y ≥ 1∧ x = y ∧ busy ∧ send(targetProcess, targetInbox, x)∧waiting′ ⇒
x′ ≥ 1∧y ′ ≥ 1

⇐ {predicate calculus: (x ⇒ z)⇒ (x ∧y ⇒ z)}

x ≥ 1∧y ≥ 1 ⇒ x′ ≥ 1∧y ′ ≥ 1

⇐ {x′ = x ∧y ′ = y , since x′ and y ′ don’t appear in transition (4)}

55

x ≥ 1∧y ≥ 1 ⇒ x ≥ 1∧y ≥ 1

= {predicate calculus: x ⇒ x}

true

end of {x ≥ 1∧y ≥ 1} (4) {x ≥ 1∧y ≥ 1}

Therefore, the conjunction of all four assertions follows from the predicate true and our

constraints on the system. 2

Lemma 3.32 (Inbox Synchronization)

The number of messages read from xIn is always the same as the number of messages read from

yIn.

invariant.(xIn.cnt = yIn.cnt)

Proof

invariant.(xIn.cnt = yIn.cnt)

= {definition of invariant operator}

initially.(xIn.cnt = yIn.cnt)∧ (xIn.cnt = yIn.cnt) next (xIn.cnt = yIn.cnt)

= {all inboxes are initialized with cnt = 0}

(xIn.cnt = yIn.cnt) next (xIn.cnt = yIn.cnt)

⇐ {proof rule for next operator}

〈∀s | s ∈ G.T +(xIn.cnt = yIn.cnt)� {xIn.cnt = yIn.cnt} s {xIn.cnt = yIn.cnt}〉

= {quantification}

{xIn.cnt = yIn.cnt} (1) {xIn.cnt = yIn.cnt} ∧ {xIn.cnt = yIn.cnt} (2) {xIn.cnt = yIn.cnt}∧
{xIn.cnt = yIn.cnt} (3) {xIn.cnt = yIn.cnt} ∧ {xIn.cnt = yIn.cnt} (4) {xIn.cnt = yIn.cnt}

We prove each conjunct individually:

56

{xIn.cnt = yIn.cnt} (1) {xIn.cnt = yIn.cnt}

= {definition of assertion}

(xIn.cnt = yIn.cnt∧ xIn.probe∧ yIn.probe∧waiting ∧ x′ = xIn.current ∧
y ′ = yIn.current∧ xIn.advance∧ yIn.advance∧ busy ′ ⇒ xIn′.cnt = yIn′.cnt)∧

(xIn.cnt = yIn.cnt∧¬(xIn.probe∧ yIn.probe∧waiting)⇒ xIn.cnt = yIn.cnt)

= {predicate calculus: x ∧y ⇒ x}

xIn.cnt = yIn.cnt∧ xIn.probe∧ yIn.probe∧waiting ∧ x′ = xIn.current ∧
y ′ = yIn.current∧ xIn.advance∧ yIn.advance∧ busy ′ ⇒ xIn′.cnt = yIn′.cnt

⇐ {predicate calculus: (x ⇒ z)⇒ (x ∧y ⇒ z)}

xIn.cnt = yIn.cnt∧ xIn.advance∧ yIn.advance ⇒ xIn′.cnt = yIn′.cnt

= {definition of advance operation}

xIn.cnt = yIn.cnt∧ xIn′.cnt = xIn.cnt+ 1∧ yIn′.cnt = yIn.cnt+ 1 ⇒ xIn′.cnt = yIn′.cnt

⇐ {substitution}

xIn.cnt = yIn.cnt ⇒ xIn.cnt+ 1 = yIn.cnt+ 1

= {arithmetic}

true

end of {xIn.cnt = yIn.cnt} (1) {xIn.cnt = yIn.cnt}

{xIn.cnt = yIn.cnt} (2) {xIn.cnt = yIn.cnt}

= {definition of assertion}

(xIn.cnt = yIn.cnt∧ x < y ∧y ′ = y − x ⇒ xIn′.cnt = yIn′.cnt)∧
(xIn.cnt = yIn.cnt∧y ≤ x ⇒ xIn.cnt = yIn.cnt)

57

= {predicate calculus: x ∧y ⇒ x}

xIn.cnt = yIn.cnt∧ x < y ∧y ′ = y − x ⇒ xIn′.cnt = yIn′.cnt

⇐ {predicate calculus: (x ⇒ z)⇒ (x ∧y ⇒ z)}

xIn.cnt = yIn.cnt ⇒ xIn′.cnt = yIn′.cnt

= {xIn′.cnt = xIn.cnt∧ yIn′.cnt = yIn.cnt, since xIn and yIn don’t appear in transition (2)}

xIn.cnt = yIn.cnt ⇒ xIn.cnt = yIn.cnt

= {predicate calculus: x ⇒ x}

true

end of {xIn.cnt = yIn.cnt} (2) {xIn.cnt = yIn.cnt}

{xIn.cnt = yIn.cnt} (3) {xIn.cnt = yIn.cnt}

⇐ {symmetry with transition (2)}

true

end of {xIn.cnt = yIn.cnt} (3) {xIn.cnt = yIn.cnt}

{xIn.cnt = yIn.cnt} (4) {xIn.cnt = yIn.cnt}

= {definition of assertion}

(xIn.cnt = yIn.cnt∧ x = y ∧ busy ∧ send(targetProcess, targetInbox, x)∧waiting′∧
xIn′.cnt = yIn′.cnt)∧

(xIn.cnt = yIn.cnt∧¬(x = y ∧ busy)⇒ xIn.cnt = yIn.cnt)

= {predicate calculus: x ∧y ⇒ x}

58

xIn.cnt = yIn.cnt∧ x = y ∧ busy ∧ send(targetProcess, targetInbox, x)∧waiting′∧
xIn′.cnt = yIn′.cnt

⇐ {predicate calculus: (x ⇒ z)⇒ (x ∧y ⇒ z)}

xIn.cnt = yIn.cnt ⇒ xIn′.cnt = yIn′.cnt

= {xIn′.cnt = xIn.cnt∧ yIn′.cnt = yIn.cnt, since xIn and yIn don’t appear in transition (4)}

xIn.cnt = yIn.cnt ⇒ xIn.cnt = yIn.cnt

= {predicate calculus: x ⇒ x}

true

end of {xIn.cnt = yIn.cnt} (4) {xIn.cnt = yIn.cnt}

Therefore, the conjunction of all four assertions follows from the predicate true. Having

shown that they are equal, we refer to the values of xIn.cnt and yIn.cnt as cnt in the following

lemmas. 2

Lemma 3.33 (Value Transience)

If x and y differ in a system state S, then in some system state subsequent to S either the value

of x, the value of y, or both will have changed.

〈∀X,Y � transient.(x ≠ y ∧ x = X ∧y = Y)〉

Proof

〈∀X,Y � transient.(x ≠ y ∧ x = X ∧y = Y)〉

⇐ {proof rule for transient operator}

〈∀X,Y � 〈∃s | s ∈ G.T −(x ≠ y ∧ x = X ∧y = Y) �

{x ≠ y ∧ x = X ∧y = Y} s {¬(x ≠ y ∧ x = X ∧y = Y)}〉〉

= {quantification}

59

〈∀X,Y� {x ≠ y ∧ x = X ∧y = Y} (1) {¬(x ≠ y ∧ x = X ∧y = Y)}∨
{x ≠ y ∧ x = X ∧y = Y} (2) {¬(x ≠ y ∧ x = X ∧y = Y)}∨
{x ≠ y ∧ x = X ∧y = Y} (3) {¬(x ≠ y ∧ x = X ∧y = Y)}∨
{x ≠ y ∧ x = X ∧y = Y} (4) {¬(x ≠ y ∧ x = X ∧y = Y)}〉

⇐ {predicate calculus: x ⇒ x ∨y}

〈∀X,Y� {x ≠ y ∧ x = X ∧y = Y} (2) {¬(x ≠ y ∧ x = X ∧y = Y)}∨
{x ≠ y ∧ x = X ∧y = Y} (3) {¬(x ≠ y ∧ x = X ∧y = Y)}〉

We simplify each disjunct individually:

{x ≠ y ∧ x = X ∧y = Y} (2) {¬(x ≠ y ∧ x = X ∧y = Y)}

= {definition of assertion}

(x ≠ y ∧ x = X ∧y = Y ∧ x < y ∧y ′ = y − x ⇒ ¬(x′ ≠ y ′ ∧ x′ = X ∧y ′ = Y))∧
(x ≠ y ∧ x = X ∧y = Y ∧y ≤ x ⇒ ¬(x ≠ y ∧ x = X ∧y = Y))

= {predicate calculus: x ⇒ y ≡ ¬x ∨y}

(¬(x ≠ y ∧ x = X ∧y = Y ∧ x < y ∧y ′ = y − x)∨¬(x′ ≠ y ′ ∧ x′ = X ∧y ′ = Y))∧
(¬(x ≠ y ∧ x = X ∧y = Y ∧y ≤ x)⇒ ¬(x ≠ y ∧ x = X ∧y = Y))

= {De Morgan}

¬((x ≠ y ∧ x = X ∧y = Y ∧ x < y ∧y ′ = y − x ∧ x′ ≠ y ′ ∧ x′ = X ∧y ′ = Y)∨
(x ≠ y ∧ x = X ∧y = Y ∧y ≤ x ∧ x ≠ y ∧ x = X ∧y = Y))

⇐ {Lemma 3.31, arithmetic: x ≥ 1∧y ≥ 1 ⇒ (y = Y ∧y ′ = y − x ∧y ′ = Y ≡ false)}

¬(x ≠ y ∧ x = X ∧y = Y ∧y ≤ x ∧ x ≠ y ∧ x = X ∧y = Y)

= {predicate calculus: x ∧ x ≡ x}

¬(x ≠ y ∧ x = X ∧y = Y ∧y ≤ x)

60

= {De Morgan}

x = y ∨ x ≠ X ∨y ≠ Y ∨ x < y

end of {x ≠ y ∧ x = X ∧y = Y} (2) {¬(x ≠ y ∧ x = X ∧y = Y)}

{x ≠ y ∧ x = X ∧y = Y} (3) {¬(x ≠ y ∧ x = X ∧y = Y)}

⇐ {symmetry with transition (2)}

x = y ∨ x ≠ X ∨y ≠ Y ∨y < x

end of {x ≠ y ∧ x = X ∧y = Y} (3) {¬(x ≠ y ∧ x = X ∧y = Y)}

The disjunction of the two assertions is as follows:

(x = y ∨ x ≠ X ∨y ≠ Y ∨ x < y)∨ (x = y ∨ x ≠ X ∨y ≠ Y ∨y < x)

= {arithmetic: x = y ∨ x < y ∨y < x}

true

Therefore, the disjunction of the two assertions follows from the predicate true. 2

Lemma 3.34 (Constraints on Value Changes)

If x and y differ, then after the next system step either both x and y are unchanged or the sum

of x and y is the maximum of the previous values of x and y.

〈∀X,Y � (x ≠ y ∧ x = X ∧y = Y) next ((x ≠ y ∧ x = X ∧y = Y)∨ x +y = max(X, Y))〉

Proof

This proof is similar in structure to the proofs of Lemmas 3.31 and 3.32 (after the decomposi-

tion into initially and next properties), so we will not present the calculations here. Note that

the only two transitions that change x and y contain x ≠ y in their guard. If the guard of one

of these transitions holds, the smaller of x and y is subtracted from the larger, and the sum of

x and y in the subsequent state is the maximum of the previous values of x and y . Any other

transition when x ≠ y preserves the values of x and y . Therefore, the next property holds. 2

61

Lemma 3.35 (Calculation Progress, Part 1)

If x and y differ in a system state S, then in some state subsequent to S the sum of x and y will be

the maximum of the values of x and y in state S.

〈∀X,Y � (x ≠ y ∧ x = X ∧y = Y); (x +y = max(X, Y)〉

Proof

Let p ≡ x ≠ y ∧ x = X ∧y = Y , q ≡ x +y = max(X, Y). Then we have:

〈∀X,Y � p ; q〉

⇐ {basis rule for ;}

〈∀X,Y � (p ∧¬q next p ∨ q)∧ transient.(p ∧¬q)〉

⇐ {next and transient strengthening}

〈∀X,Y � (p next p ∨ q)∧ transient.p〉

= {quantification}

〈∀X,Y � p next p ∨ q〉 ∧ 〈∀X,Y � transient.p〉

This predicate is exactly the conjunction of Lemmas 3.33 and 3.34. Therefore, the leads-to

property follows from those lemmas. 2

Lemma 3.36 (Calculation Progress, Part 2)

If x and y differ in a system state S, then x and y will be equal in some state subsequent to S.

〈∀K | x +y = K � x ≠ y ; x = y〉

Proof

We prove this lemma inductively. For K = 2 (the base case), the only possible values for x and

y are x = y = 1, since Lemma 3.31 specifies that x and y are positive integers. Thus, we have

1 ≠ 1 ; x = y , or false ; x = y , which holds by direct substitution into the basis rule for

leads-to.

For subsequent values of K, assume the leads-to holds for all 2 ≤ k < K. There are two

cases to consider: either x = y = K/2 or x ≠ y . If x = y = K/2, the proof of the leads-to is

62

symmetric to that for the base case (false ; x = y). If x ≠ y , then Lemma 3.35 says that the

sum of x and y will be reduced to max(x,y) in some later system state. Since max(x,y) < K,

the leads-to holds for max(x,y) by induction.

Therefore, the leads-to holds for all values of K greater than 1. 2

Lemma 3.37 (Calculation Safety)

Whenever at least one pair of integers has been read from the inboxes, the GCD of x and y is

equal to the GCD of the most recent pair of integers read from the inboxes.

invariant.(cnt > 0 ⇒ GCD(x,y) = GCD(xIn[cnt − 1].msg,yIn[cnt − 1].msg))

Proof

Observe that the only transition that modifies cnt is transition (1), which (using the value of cnt

in the post-state) stores xIn[cnt−1].msg and yIn[cnt−1].msg in x andy , respectively. Observe

also that the next property proven in Lemma 3.34 completely constrains the changes in x and

y such that they implement Euclid’s algorithm for GCD calculation. One of the characteristics

of Euclid’s algorithm is that, at every step, the GCD of the two intermediate values is the same

as the GCD of the initial values. Therefore, the invariant holds. 2

Lemma 3.38 (Message Counts and State, Part 1)

Assume that waiting holds and the same number of messages have been read from each inbox

as have been sent on the outbox. In the next state, either waiting still holds and the same number

of messages have still been read from each inbox as have been sent on the outbox, or busy holds

and one more message has been read from each inbox than has been sent on the outbox.

〈∀C | C ≥ 0 � (waiting ∧ cnt = O.len = C) next

((waiting ∧ cnt = O.len = C)∨ (busy ∧ cnt − 1 = O.len = C))〉

Proof

Assume waiting ∧ cnt = O.len = C holds. The only enabled transition that can change either

waiting or cnt is transition (1), and no transition that can change out.len is enabled. If any

transition other than (1) is selected, waiting∧cnt = O.len = C is maintained. If transition (1) is

selected, it establishes busy and increments cnt by 1 as a result of reading messages from the

inboxes. Therefore, after execution of transition (1), busy ∧ cnt − 1 = O.len = C holds. This

proves the next property. 2

Lemma 3.39 (Message Counts and State, Part 2)

Assume that busy holds and one more message has been read from each inbox than has been

sent on the outbox. In the next state, either busy still holds and one more message has still been

63

read from each inbox than has been sent on the outbox, or waiting holds and the same number

of messages have been read from each inbox as have been sent on the outbox.

〈∀C | C ≥ 0 � (busy ∧ cnt − 1 = O.len = C) next

((busy ∧ cnt − 1 = O.len = C)∨ (waiting ∧ cnt = O.len = C + 1))〉

Proof

Assume busy ∧ cnt − 1 = O.len = C holds. The only enabled transition that can change

either busy or out.len is transition (4), and no transition that can change cnt is enabled. If any

transition other than (4) is selected, busy ∧ cnt − 1 = O.len = C is maintained. If transition (4)

is selected, it establishes waiting and increments out.len by 1 as a result of sending a message

on the outbox. Therefore, after execution of transition (4), waiting∧cnt = O.len = C+1 holds.

This proves the next property. 2

Lemma 3.40 (Calculation Termination)

If busy holds in a system state S and x and y differ in state S, then x and y will be equal to each

other and to the GCD of the most recent pair of integers read from the inboxes in some state

subsequent to S.

〈∀C | C ≥ 0 � (busy ∧ cnt − 1 = C ∧ x ≠ y);

(busy ∧ cnt − 1 = C ∧ x = y = GCD(xIn[C].msg,yIn[C].msg))〉

Proof

This property follows from an application of the basis rule for leads-to with Lemmas 3.36 and

3.39. The invariant proven in Lemma 3.37 shows that x and y always have the same GCD as

xIn[C].msg and yIn[C].msg, so when x = y , their value must by definition be that GCD. 2

Lemma 3.41 (Communication Safety, Part 1)

If waiting holds in a system state where there are messages waiting on both xIn and yIn, then

in the next system state either this remains the case or busy holds and a message has been read

from each inbox.

〈∀C | C ≥ 0 � (waiting ∧ cnt = C ∧ xIn.probe∧ yIn.probe) next

((waiting ∧ cnt = C ∧ xIn.probe∧ yIn.probe) ∨

(busy ∧ cnt − 1 = C ∧ x = xIn[C].msg∧y = yIn[C].msg))〉

64

Proof

Assume waiting holds and there are messages waiting on both xIn and yIn. The only enabled

transition is transition (1), and its effect is to establish busy and (by means of the current and

advance operations) set x and y to xIn[C].msg and yIn[C].msg, respectively, and increment

cnt. This proves the next property. 2

Lemma 3.42 (Waiting Transience)

If waiting holds in a system state S where there are messages waiting on both xIn and yIn, then

waiting will be falsified in some system state subsequent to S.

transient.(waiting ∧ xIn.probe∧ yIn.probe)

Proof

Assume waiting holds and messages are waiting on xIn and yIn. The only enabled transition

is transition (1), which falsifies waiting. It must eventually be selected because of the weak

fairness requirement on program execution. Therefore, the transient property holds. 2

Lemma 3.43 (Communication Progress, Part 1)

If waiting holds in a system state S where there are messages waiting on xIn and yIn, then in

some system state subsequent to S the next messages on xIn and yIn will have been read.

〈∀C | C ≥ 0 � (waiting ∧ cnt − 1 = C ∧ xIn.probe∧ yIn.probe);

(busy ∧ cnt − 1 = C ∧ GCD(x,y) = GCD(xIn[C].msg,yIn[C].msg))〉

Proof

This property follows from an application of the basis rule for leadsto with Lemmas 3.41 and

3.42. 2

Lemma 3.44 (Communication Safety, Part 2)

If busy holds in a system state where x and y are equal to each other and to the GCD of the most

recent pair of integers read from the inboxes, then in the next state either this remains the case

or waiting holds and the GCD has been sent on the outbox.

〈∀C | C ≥ 0 � (busy ∧ x = y = GCD(xIn[C].msg,yIn[C].msg)) next

((busy ∧ x = y = GCD(xIn[C].msg,yIn[C].msg)) ∨

(waiting ∧ x = y = O[C].msg = GCD(xIn[C].msg,yIn[C].msg))〉

65

Proof

Assume busy holds and x = y . The only enabled transition is transition (4), and its effect is

to establish waiting and (by means of the send operation) set O[C].msg to x. This proves the

next property. 2

Lemma 3.45 (Busy Transience)

If busy holds in a system state S where x and y are equal to each other, then busy will be falsified

in some system state subsequent to S.

transient.(busy ∧ x = y)

Proof

Assume busy holds and x = y . The only enabled transition is transition (4), which falsifies

busy. It must eventually be selected because of the weak fairness requirement on program

execution. Therefore, the transient property holds. 2

Lemma 3.46 (Communication Progress, Part 2)

If busy holds in a system state S where x and y are equal to each other and to the GCD of the

most recent pair of integers read from the inboxes, then in some system state subsequent to S

the GCD will have been sent on the outbox.

〈∀C | C ≥ 0 � (busy ∧ x = y = GCD(xIn[C].msg,yIn[C].msg));

(waiting ∧ x = y = O[C].msg = GCD(xIn[C].msg,yIn[C].msg))〉

Proof

This property follows from an application of the basis rule for leads-to with Lemmas 3.44 and

3.45. 2

Lemma 3.47 (Initial Conditions)

In the initial state, waiting holds and the same number of messages have been read from each

inbox as have been sent on the outbox.

initially.(waiting ∧ cnt = O.len = 0)

Proof

The initially property follows immediately from the initially-section of GCDCalculator and the

fact that all mailboxes are empty at initialization. 2

66

Theorem 3.48 (GCD Calculation and Communication)

The sequence of integers on the outbox follows the sequence containing the GCDs of pairs of

messages on the inboxes.

O.msg follows GCDSeq(xIn.msg,yIn.msg)

Proof

In order to prove this follows relation, we must prove the five components of the follows

definition. For this follows property, they are:

〈∀s � stable.(O.msg ≥ s)〉 (1)

〈∀s � stable.(GCDSeq(xIn.msg,yIn.msg) ≥ s)〉 (2)

invariant.(O.msg ≤ GCDSeq(xIn.msg,yIn.msg)) (3)

〈∀s � GCDSeq(xIn.msg,yIn.msg) ≥ s ; O.msg ≥ s〉 (4)

〈∀s � GCDSeq(xIn.msg,yIn.msg) = s ∧O.msg ≤ s next O.msg ≤ s〉 (5)

Since xIn and yIn are inboxes, xIn.msg and yIn.msg are monotonic by definition. The appli-

cation of GCDSeq to them is therefore monotonic. This proves component (1) of the definition.

Since O is an outbox, O.msg is monotonic by definition. This proves component (2) of the

definition.

Initially, both the outbox and the inboxes are empty, so O.msg is initially a subsequence

of GCDSeq(xIn.msg, yIn.msg). By Lemmas 3.38-3.39, 3.43, and 3.46, the GCD of every pair

of messages read from the inboxes will eventually be written to the outbox in the order the

messages are read, and the number of messages written to the outbox is never more than one

fewer than the number of messages read from each inbox. Therefore, every write to the outbox

preserves the invariant in component (3) of the definition, as O.msg remains a subsequence of

GCDSeq(xIn.msg, yIn.msg). The fact that every pair of messages will eventually be processed

proves component (4) of the definition, and the fact that the number of messages written to

the outbox never exceeds the number of messages read from each inbox proves component (5)

of the definition.

Therefore, the follows property holds, and we have proven our desired property. 2

In the following three chapters, we will present systems composed of multiple Dynamic

UNITY programs. We will omit most of the calculations in our proofs of these systems, as

those proofs are similar in structure to the ones we have presented here.

67

Chapter 4

Deterministic Example: The Prime
Number Sieve

We now present the first of our example Dynamic UNITY systems, Eratosthenes’ prime number

sieve. This example is chosen for its determinism; we know the computations that must be

done to generate the set of prime numbers, so we can easily check that our system implements

the algorithm correctly. Our particular system illustrates one of Dynamic UNITY’s strengths,

by generating an unbounded number of running, communicating processes while still ensuring

progress.

4.1 Problem Statement

The problem statement for this example is straightforward: “Generate an infinite sequence

of integers such that the ith element of the sequence is the ith prime number.” We know of

an algorithm to generate arbitrarily large prime numbers: Eratosthenes’ prime number sieve.

We can use Dynamic UNITY’s communication and process creation capabilities to create an

infinitely large prime number sieve, and thereby generate our infinite sequence (provided that

we allow our system to run for infinite time).

We choose to implement each sieve element as its own Dynamic UNITY process, with knowl-

edge only about the previous and next elements in the sieve. We wish to implement a Dynamic

UNITY system that actually generates the infinite sequence of prime numbers, so we also need

a process that feeds integers into the sieve. We choose to have a central “collection point” for

the prime numbers, so that we can keep our generated sequence in one place. This allows us

to reason about the sequence and its changes, rather than reasoning simultaneously about the

states of an infinite number of processes. For simplicity, and to preserve the ordering of the

sequence, the process that acts as the collection point and the process that feeds integers into

the sieve are the same process.

68

For the purposes of this discussion, we assume that the only messages being sent in our

system are integer messages. This minimizes our proof obligations and makes the programs

less complicated, because we don’t need to worry about filtering out non-integer messages that

may arrive on the inboxes.

We specify the sieve element program first, describing and proving properties of its behavior

in isolation, and then do the same for the sequence generator and collector program. Finally,

we compose the two programs to create a prime number sieve.

4.2 The Sieve Program

program Sieve(previous: process, sieveValue: integer, sequenceNumber: integer)

declare
numberIn, primeIn: inbox
next: process

always
remainder , numberIn.current.msg mod sieveValue

initially
send(previous, “primeIn”, sieveValue) ∧ next = ⊥

fair-transition
(1) primeIn.probe −→

send(previous, “primeIn”, primeIn.current.msg) ∧ primeIn.advance
(2) [] numberIn.probe ∧ remainder = 0 −→ numberIn.advance
(3) [] numberIn.probe ∧ remainder 6= 0 ∧ next = ⊥ −→

next′ = new Sieve(this, numberIn.current.msg, sequenceNumber + 1)
(4) [] numberIn.probe ∧ remainder 6= 0 ∧ next 6= ⊥ −→

send(next, “numberIn”, numberIn.current.msg) ∧ numberIn.advance

end

Specification 4.1: The Sieve program, part of the infinite prime number sieve system

The Sieve program acts as a filter, taking two integer sequences as inputs (from the numberIn

and primeIn inboxes) and generating outputs based on these sequences and its instantiation

parameters. Additionally, each Sieve program is responsible for creating the next Sieve program

in the system. In order to show that the Sieve program filters these sequences correctly, we

must establish certain properties; we first prove that the Sieve program is well-formed:

Theorem 4.1 (Sieve Well-Formedness)

The Sieve program is well-formed.

69

Proof

We prove that the Sieve program is well-formed by showing that its always-section, initially-

section, and transition-sections are well-formed:

always-section The always-section of the Sieve program contains a single definition, which is

a simple function of 2 integers. There are no circular definitions, and no undefined variables

are referenced. Therefore, the always-section is well-formed.

initially-section The initially-section of the Sieve program sends a message and initializes

next to the empty process. Neither of these actions is capable of causing an infinite recursion,

and both of them are satisfiable. Therefore, the initially-section is well-formed.

transition-sections For each transition, we must demonstrate that its postcondition is always

satisfiable if its precondition holds. We do this individually for the four transitions:

• The postcondition of transition (1) is the conjunction of a message send (which is always

satisfiable) and an inbox advance (which is always satisfiable). Therefore, transition (1)’s

postcondition is always satisfiable.

• The postcondition of transition (2) is an inbox advance, which is always satisfiable.

• The postcondition of transition (3) is a process instantiation, which is always satisfiable.

• The postcondition of transition (4) is the conjunction of a message send (which is always

satisfiable) and an inbox advance (which is always satisfiable). Therefore, transition (4)’s

postcondition is always satisfiable.

Since all sections of the Sieve program are well-formed, the entire program is well-formed.

2

We now prove safety and progress properties that show that the Sieve process filters the in-

teger sequences as necessary to implement Eratosthenes’ algorithm. We introduce the function

SIEVE for use in the following proofs. This function takes as parameters a sequence of integers

and a single integer, and generates as a result the sequence of integers that was passed to it

with all elements divisible by the single integer parameter removed. We also use the notation

“box.msg” to refer to the sequence of messages contained in inbox or outbox box (that is, the

sequence “box[0].msg, box[1].msg, …, box[box.len - 1].msg”).

70

Theorem 4.2 (Sieve Number Output Sequence)

The sequence of messages sent to inboxes named “numberIn” follows the sequence of messages

received on numberIn, with integers divisible by sieveValue removed from the sequence.

(O ↓m m.mbox = “numberIn”).msg follows SIEVE(numberIn.msg, sieveValue)

Proof

To prove this follows relation, we must prove the five components of the follows definition.

In the following equations and their proofs, we denote SIEVE(numberIn.msg, sieveValue) by

numberInSieved and (O ↓m m.mbox = “numberIn”) by numberOut :

〈∀s � stable.(numberOut .msg ≥ s)〉 (1)

〈∀s � stable.(numberInSieved ≥ s)〉 (2)

invariant.(numberOut .msg ≤ numberInSieved) (3)

〈∀s � (numberInSieved ≥ s); (numberOut .msg ≥ s)〉 (4)

〈∀s � (numberInSieved = s ∧ numberOut .msg ≤ s) next (numberOut .msg ≤ s)〉 (5)

We address these individually:

1. Since numberOut is a filtered outbox, numberOut.msg is monotonic by definition.

2. Since numberIn is an inbox, numberIn.msg is monotonic by definition. Additionally, sieve-

Value does not change during execution because it is a parameter to the Sieve program.

This implies that numberInSieved is monotonic, because SIEVE always removes the same

elements of a monotonic sequence.

3. Two transitions, (2) and (4), perform advance operations on numberIn; the other transi-

tions do not modify the state of either numberIn or O, and can therefore not affect this

invariant). Transition (2) advances numberIn to the next message and does nothing with

the current message; it executes only when remainder is 0, which occurs when the current

message is evenly divisible by sieveValue. Transition (4) advances numberIn to the next

message and appends the current message to numberOut (by sending a message to an in-

box named “numberIn”); it executes only when remainder is not 0, which occurs when the

current message is not evenly divisible by sieveValue. Since both of these commands are

guarded by numberIn.probe, and both contain advance operations, exactly one of them

executes for each message in inbox numberIn. The SIEVE function removes exactly those

elements of the sequence that are evenly divisible by its parameter, in this case sieve-

71

Value, which is exactly what transition (2) does. Therefore, numberOut.msg is always a

subsequence of numberInSieved.

4. From the previous equation, we know that numberOut.msg is always a subsequence of

numberInSieved. Weak fairness ensures that all 4 transitions of the Sieve program—and

in particular, transition (4)—will be selected infinitely often. As long as numberOut.msg 6=
numberInSieved, transition (4) will at some point execute when selected (transition (2) may

execute a finite number of times first), extending numberOut.msg. Therefore, if at some

point numberInSieved is a supersequence of a sequence s, numberOut.msg will become a

supersequence of s after some finite number of executions of (4).

5. The only way for the sequence numberOut.msg to increase is by means of transition

(4), which reads a message from numberIn and sends it to an inbox named “numberIn.”

Therefore, numberOut.msg can never exceed the previous state of numberInSieved.

All five components of the original follows relation hold. Therefore, the follows relation

holds. 2

Theorem 4.3 (Sieve Prime Output Sequence)

The sequence of messages sent to inboxes named “primeIn” follows the sequence of messages

received on primeIn, with sieveValue prepended to the sequence.

(O ↓m m.mbox = “primeIn”).msg follows (sieveValue 1 primeIn.msg)

Proof

To prove this follows relation, we must prove the following 5 components of the follows def-

inition. In the following equations and their proofs, we denote (sieveValue 1 primeIn.msg) by

extendedPrimeIn and (O ↓m m.mbox = “primeIn”) by primeOut, for brevity:

〈∀s � stable.(primeOut .msg ≥ s)〉 (1)

〈∀s � stable.(extendedPrimeIn ≥ s)〉 (2)

invariant.(primeOut .msg ≤ extendedPrimeIn) (3)

〈∀s � (extendedPrimeIn ≥ s); (primeOut .msg ≥ s)〉 (4)

〈∀s � (extendedPrimeIn = s ∧ primeOut .msg ≤ s) next (primeOut .msg ≤ s)〉 (5)

We address these individually:

1. Since primeOut is a filtered outbox, primeOut.msg is monotonic by definition.

72

2. Since primeIn is an inbox, primeIn.msg is monotonic by definition. Additionally, sieve-

Value does not change during execution, because it is a parameter to the Sieve program.

Therefore, extendedPrimeIn is monotonic.

3. Only transition (1) and the initialization of the Sieve program change primeOut.msg. At ini-

tialization, sieveValue is sent to an inbox named “primeIn” (and thus added to primeOut).

Since primeOut.msg is monotonic, this means that the first element of primeOut.msg is

always sieveValue. Transition (1) takes the next message from primeIn and appends it to

primeOut (by sending it to an inbox named “primeIn”), and advances primeIn; it executes

exactly once for each message in primeIn, and appends each message from primeIn to

primeOut in the order it was received. Therefore, primeOut.msg is always a subsequence

of extendedPrimeIn.

4. From the previous equation, we know that primeOut.msg is always a subsequence of ex-

tendedPrimeIn. Weak fairness ensures that all 4 transitions of the Sieve program—and

in particular, transition (1)—will be selected infinitely often. As long as primeOut.msg

6= extendedPrimeIn, transition (1) will execute when selected, extending primeOut.msg.

Therefore, if at some point extendedPrimeIn is a supersequence of a sequence s, prime-

Out.msg will become a supersequence of s after some finite number of executions of (1).

5. The only way for the sequence primeOut.msg to increase is by means of transition (1),

which reads a message from primeIn and sends it to an inbox named “primeIn.” Therefore,

primeOut.msg can never exceed the previous state of extendedPrimeIn.

All five components of the follows definition hold. Therefore, the follows relation holds. 2

Finally, we prove properties that show that the Sieve program creates the next Sieve process,

with appropriate parameters, when necessary.

Theorem 4.4 (Next Sieve Process Stability)

Once next refers to a process, it refers to the same process forever.

〈∀p | p 6= ⊥� stable.(next = p)〉

Proof

Initially, next = ⊥. There is only one transition, (3), which assigns a value to next by creating a

new process. Transition (3) is guarded by next = ⊥; it can therefore only execute once during

the process’ entire execution, because thereafter next will have a non-⊥ value. Since there are

no other transitions that change the value of next, the stable properties hold. 2

73

Theorem 4.5 (Next Sieve Process Existence)

If one or more messages have been sent to an inbox called “numberIn,” there exists a next sieve

process.

invariant.(|O ↓m m.mbox = “numberIn”| > 0 ⇒ next 6= ⊥)

Proof

There is only one transition, (4), which sends a message to an inbox called “numberIn.” This

transition is guarded by next 6= ⊥, so no message is sent to an inbox called “numberIn” unless

this guard holds.

From Theorem 4.4, we know that next 6= ⊥ is stable. Therefore, if any message has been

sent to an inbox called “numberIn,” the condition next 6= ⊥ holds. This proves our implication.

2

Theorem 4.6 (Next Sieve Process Creation Safety)

At all times during the execution of the Sieve program, exactly one of the following three condi-

tions holds: (a) No next process has been created, and no number that is not evenly divisible by

sieveValue has been received on numberIn; (b) No next process has been created, and at least

one number that is not evenly divisible by sieveValue has been received on numberIn; or (c) A

next process has been created with its sieveValue parameter set to the first number received on

numberIn that is not evenly divisible by sieveValue.

invariant.

((next = ⊥∧

〈∀n | 0 ≤ n < numberIn.len � numberIn[n].msg mod sieveValue = 0〉)∨
(a)

(next = ⊥∧

〈∃n | 0 ≤ n < numberIn.len � numberIn[n].msg mod sieveValue 6= 0〉∧

numberIn.cnt ≤ 〈min n | numberIn[n].msg mod sieveValue = 0 �n〉)∨

(b)

(next =

Sieve(primeIn,

numberIn[〈min n | numberIn[n].msg mod sieveValue = 0 �n〉],

sequenceNumber + 1)∧

numberIn.cnt > 〈min n | numberIn[n].msg mod sieveValue = 0 �n〉))

(c)

Proof

The three disjuncts of the invariant are mutually exclusive, by inspection. Initially, disjunct (a)

74

holds, because the numberIn inbox is empty and the variable next is initialized to ⊥.

We now show that each of the possible transitions maintains the invariant. Since the invari-

ant contains no reference to primeIn, transition (1) always maintains the invariant, because it

only modifies primeIn. We therefore ignore transition (1) for the remainder of this proof.

When disjunct (a) holds, the only transition that can be executed is (2), since there is no

message in numberIn that yields a remainder when divided by sieveValue. This transition

maintains disjunct (a), because it does not change the contents of numberIn (it merely changes

numberIn.cnt). Additionally, when disjunct (a) holds, a message can be received on numberIn.

If this message is evenly divisible by sieveValue, disjunct (a) is maintained; otherwise, disjunct

(b) is established because there now exists a message in numberIn that is not evenly divisible

by sieveValue.

When disjunct (b) holds, the only transitions that can be executed are (2) and (3), which are

mutually exclusive. If (2) is executed, disjunct (b) is maintained, because next is unchanged.

If (3) is executed, disjunct (c) is established because execution of (3) reads the first value in

numberIn that is not evenly divisible by sieveValue and assigns to next a new Sieve process

whose parameters are exactly those specified in disjunct (c).

When disjunct (c) holds, the only transitions that can be executed are (2) and (4). Both of

these maintain (c), because neither changes next and because of the monotonicity of inbox and

outbox message sequences.

We have now shown that the invariant holds, because it holds initially and every transition

takes the system from a state where one of the disjuncts holds to another state where one of

the disjuncts holds. 2

Theorem 4.7 (Next Sieve Process Creation Progress)

If a number that is not evenly divisible by sieveValue is received on numberIn, the next Sieve

process will be created in finite time.

transient.(next = ⊥∧ 〈∃n | 0 ≤ n < numberIn.len � numberIn[n].msg mod sieveValue 6= 0〉)

Proof

The state we wish to show transience of corresponds to disjunct (b) of Theorem 4.6. Recall

that the only transitions that can be executed in this state are (2) and (3), which are mutually

exclusive. Since some element of numberIn exists that is not divisible by sieveValue, let N

be the index of that element, and let numberIn.cnt = n ≤ N. If transition (2) is executed,

numberIn.cnt is incremented from its pre-execution value, which must be strictly less than N.

N remains unchanged, because of the monotonicity of inbox message sequences. Therefore,

weak fairness ensures that numberIn.cnt will, after a finite number of executions of transition

75

(2), be incremented to N. When numberIn.cnt = N, the precondition of transition (3) holds,

and it must therefore be executed in accordance with weak fairness. Execution of transition (3)

invalidates disjunct (b) of Theorem 4.6, which proves the transient property. 2

We have now shown all the behavior of the Sieve in isolation that we need to prove the

correctness of the composed system.

4.3 The Generator Program

program Generator

declare
primeIn: inbox
sequenceNumber: integer
next: process
num: integer
primes: sequence {integer}

initially
primes = Λ ∧ num = 2 ∧ next = new Sieve(this, 2, 1) ∧ sequenceNumber = 0

fair-transition
(1) send(next, “numberIn”, num) ∧ num′ = num + 1
(2) [] primeIn.probe −→ primes′ = primes 1 primeIn.current.msg ∧ primeIn.advance

end

Specification 4.2: The Generator program, part of the infinite prime number sieve system

The functions of the Generator program are to feed the sequence of positive integers start-

ing from 2 into the prime number sieve, and to accept the sequence of prime numbers from

the sieve. Additionally, the Generator program is responsible for creating the first Sieve pro-

cess (corresponding to 2, the first prime number). For the purpose of proving properties of

the Generator in isolation, we assume that a well-formed program named Sieve which takes

3 initialization parameters (a process and two integers) and which creates no processes dur-

ing its initialization exists in the same system as the Generator, without making any other

assumptions about that program’s specification. We first prove that the Generator program is

well-formed.

Theorem 4.8 (Generator Well-Formedness)

The Generator program is well-formed.

76

Proof

We prove that the Generator program is well-formed by showing that its always-section, initially-

section, and transition-sections are well-formed:

always-section The Generator program has no always-section.

initially-section The initially-section of the Generator program instantiates a Sieve process.

To show that the Generator program’s initially-section is well-formed, we must show that this

instantiation is not infinitely recursive and that the initially-section as a whole is satisfiable. The

Sieve program’s initially-section does not instantiate any processes, so there is no recursion.

Moreover, all conjuncts of the Generator program’s initially-section are satisfiable. Therefore,

the Generator program’s initially-section is well-formed.

transition-sections For each transition, we must demonstrate that its postcondition is always

satisfiable if its precondition holds. We do this individually for the two transitions:

• The postcondition of transition (1) is the conjunction of a variable increment and a mes-

sage send, both of which are always satisfiable. Therefore, transition (1)’s postcondition

is always satisfiable.

• The postcondition of transition (2) is the conjunction of an append of a received mes-

sage to a sequence and an inbox advance operation, both of which are always satisfiable.

Therefore, transition (2)’s postcondition is always satisfiable.

Since all sections of the Generator program are well-formed, the entire program is well-

formed. 2

We now prove safety and progress properties that show that the sequence sent by the Gen-

erator program on its outbox is exactly the sequence of positive integers starting from 2, and

that the number of integers sent always increases.

Theorem 4.9 (Generator Output Sequence Safety)

The outbox of a Generator process contains a sequence of integer messages beginning with the

number 2:

invariant.(〈∀i | 0 ≤ i < O.len �O[i].msg = 2+ i〉)

In order to prove this theorem, we need to establish a relation between O.len and num. We

do so with the following lemma:

77

Lemma 4.10 (Relation between O.len and num)

For all Generator processes, the difference between the value of integer variable num and the

number of messages in the process’s outbox is always 2:

invariant.(num −O.len = 2)

Proof

Initially, num = 2 and O.len = 0 (because an outbox contains no messages at initialization, and

there are no message sends in the initially-section of program Generator). Therefore, num −
O.len = 2 holds immediately after process initialization.

Transition (1) contains a send operation that sends a single message, incrementing O.len

by 1 due to the semantics of the message passing system, and explicitly increments num by

1. Since incrementing two integers by the same value doesn’t change their difference, num −
O.len = 2 holds immediately after an execution of transition (1) if it held before the execution.

Transition (2) contains no message sends and no references to num, and therefore does not

affect the invariant. 2

Proof of Theorem 4.10 (Generator Output Sequence Safety)

Initially, O.len = 0, so the quantification is over an empty range (0 ≤ i < 0) and holds vacu-

ously. The only transition that changes O.len is transition (1), which (owing to the semantics

of send) assigns to numberOut[numberOut.len].msg the value of the integer variable num, and

increments both O.len and num. From Lemma 4.10, we know that num − O.len = 2 before

every execution of transition (1). We can therefore conclude that the value of each message in

numberOut is its index in numberOut plus 2. 2

Theorem 4.11 (Generator Output Sequence Progress)

The outbox of a Generator process always has a new message added to it in finite time:

〈∀i | i ≥ 0 � transient.(O.len = i)〉

Proof

The Generator program only has two transitions. The weak fairness property ensures that

transition (1) will always be executed after transition (2) has been executed a finite number of

times and, as we established in the proof of Lemma 4.10, transition (1) increments the value

of O.len by 1. Since the Generator program does not contain a stop statement, it runs forever.

This means that no matter what the value ofO.len is at a given point in the program’s execution,

it will always be incremented at some point later in the execution. 2

78

Next, we show that the sequence primes follows the sequence of messages received on

channel primeIn.

Theorem 4.12 (Generator Input Sequence)

The sequence primes follows the message history of primeIn.

primes follows primeIn.msg

Proof

To prove this follows relation, we must prove the following 5 components of the follows defi-

nition:

〈∀s � stable.(primes ≥ s)〉 (1)

〈∀s � stable.(primeIn.msg ≥ s)〉 (2)

invariant.(primes ≤ primeIn.msg) (3)

〈∀s � (primeIn.msg ≥ s); (primes ≥ s)〉 (4)

〈∀s � (primeIn.msg = s ∧ primes ≤ s) next (primes ≤ s)〉 (5)

We address these individually:

1. There is one transition which appends elements to primes, and there are no transitions

that remove elements from primes. Therefore, primes is monotonic.

2. Since primeIn is an inbox, primeIn.msg is monotonic by definition.

3. One transition, (2), performs an advance operation on primeIn. When it does this, it also

appends the current message to primes. Since this transition is guarded by primeIn.probe,

it executes exactly once for each message on primeIn. Both primeIn.msg and primes are

initially empty sequences (and therefore subsequences of each other), and this transition

always maintains that subsequence relationship.

4. From the previous equation, we know that primes is always a subsequence of primeIn.msg.

Weak fairness ensures that both transitions of the Sieve program—and in particular, tran-

sition (2)—will be selected infinitely often. As long as primes 6= primeIn.msg, transition (2)

will at some point execute when selected, extending primes. Therefore, if at some point

primeIn.msg is a supersequence of a sequence s, primes will become a supersequence of

s after some finite number of executions of (2).

79

5. The only way for the sequence primes to increase is by means of transition (2), which

reads a message from primeIn and appends it to primes. Therefore, primes can never

exceed the previous state of primeIn.msg.

All five components of the follows definition hold. Therefore, the follows relation holds. 2

Finally, we prove that the process referred to by next remains the same throughout the

execution of the Generator program.

Theorem 4.13 (Generator Next Reference Stability)

Once a process is instantiated and a reference to that process is assigned to next in the Generator

program, next refers to that process forever:

〈∀p � stable.(next = p)〉

Proof

Initially, next is assigned to be a reference to a new instance of the Sieve program with a

specific set of parameters. No transition in the Generator program modifies the next reference.

Therefore, next refers to the same instance of the Sieve program forever. 2

Finally, we show that the Generator’s sequenceNumber variable is always set to 0. Though

this does not seem like an interesting property in isolation, it will prove useful when we con-

struct the proof of the composed system.

Theorem 4.14 (Generator Sequence Number)

The sequenceNumber variable of a Generator process is always set to 0.

invariant.(sequenceNumber = 0)

Proof

At initialization, sequenceNumber is set to 0. No transition of the Generator program changes

sequenceNumber. Therefore, sequenceNumber is always set to 0.

We have now shown all the behavior of the Generator in isolation that we will need to use

in our proof of correctness for the composed system.

4.4 The Composed System

The composed system contains the Generator program (Specification 4.2) as an initial program,

as well as the Sieve program (Specification 4.1). We now prove that the entire system actually

implements a prime number sieve, by proving three theorems about the system using the

properties we have already proven about the Generator and Sieve programs in isolation.

80

system InfinitePrimeNumberSieve

initial-program Generator

program Sieve(previous: process, sieveValue: integer, sequenceNumber: integer)

end

Specification 4.3: The InfinitePrimeNumberSieve system

Theorem 4.15 (Generator Process Uniqueness/Stability)

There is always exactly one Generator process in the InfinitePrimeNumberSieve system, and this

process never stops.

Proof

We need to prove that a single Generator process is created in every possible execution of

the system, that it never stops, and that it is impossible for any more to be created after it.

Generator is the initial program of the system, so a single instance of Generator is created at

system initialization time. Theorem 4.8 shows that the Generator program is well-formed, and

by inspection it does not contain a stop statement. Therefore, in accordance with Dynamic

UNITY execution semantics, it runs forever. Also by inspection, neither the Generator program

nor the Sieve program contains a statement that instantiates a Generator process. This means

that no other Generator process is ever instantiated during the execution of the system. 2

Theorem 4.16 (Global Safety)

At all times, the primes sequence contained in the Generator process is comprised of the first

primes.length prime numbers in increasing order.

In order to prove this theorem, we must show first that the sieveValue parameters of the

Sieve processes in the system are prime numbers, and then that the primes sequence consists of

these sieveValue parameters, in order. We first prove several lemmas that allow us to construct

a proof of global safety.

Lemma 4.17 (Sieve Uniqueness)

For any sequence number n, there is at most one Sieve process in the system with that sequence

number.

invariant.(〈∀p,q,u,v,w,x,y, z |

p,q ∈ P ∧ p = Sieve(u,v,w)∧ q = Sieve(x,y, z)� (w = z)⇒ (p = q)〉)

81

Proof

Sieve processes are created in one of two ways: by the Generator at initialization time, or by a

Sieve process after initialization time. Theorem 4.4 tells us that when a Sieve process creates

another Sieve process, that process is stable (that is, no other Sieve process is ever created by

the creating Sieve process), while Theorem 4.13 tells us the same for the Generator process.

Therefore, all we need to show is that every time a Sieve process is created, it is created using a

sequence number that has not been used before. This follows directly from the program text of

the Sieve program, since transition (3) of Sieve increments the sequence number when creating

a new Sieve process. 2

Lemma 4.18 (Sieve Sequence)

The sequence numbers of the Sieve processes in the system accurately reflect their position in the

chain of Sieve processes.

invariant.(〈∀s, p, v,n | s ∈ P ∧ s = Sieve(p,v,n) �

p.sequenceNumber = n− 1∧

(s.next = ⊥∨ (s.next 6= ⊥ ∧ s.next .sequenceNumber = n+ 1))〉)

Proof

The Generator, which is the first process to be created in the system, always has sequenceNum-

ber = 0, by Theorem 4.14. As part of the Generator’s initialization, it creates a Sieve process with

sequenceNumber = 1, with itself as the Sieve’s previous process. Therefore, after creation of the

first Sieve process s, the invariant holds: s.sequenceNumber = 1, s.previous.sequenceNumber

= 0, and s.next = ⊥.

We now show, by induction, that all subsequent Sieve process creations maintain the in-

variant. Assume we have n Sieve processes numbered k, k + 1, …, k + n − 1 in the system,

and denote the nth Sieve process by S(n) (so we have the relation S(n).sequenceNumber =
k + n − 1). The invariant, if it holds, must hold with S(n).next = ⊥ (if it doesn’t, there is

an (n + 1)st Sieve process we are not accounting for). If transition (3) of S(n) is not exe-

cuted, the invariant is maintained because no new Sieve process is created and S(n).next is

not changed. If transition (3) is executed, a new Sieve process S(n + 1) is created such that

S(n+ 1).sequenceNumber = S(n).sequenceNumber+ 1 and S(n+ 1).next = ⊥. This preserves

the invariant, since S(n).next = S(n+1) and S(n+1).previous = S(n), and we have now proven

the invariant for n+1 Sieve processes. As the validity of our base case, n = 1, has been shown

above, this completes the induction. 2

82

Corollary 4.19 (Sieve Connections)

Every Sieve process’s previous process has that Sieve as a next process.

invariant.(〈∀s, p, v,n | s ∈ P ∧ s = Sieve(p,v,n)� p.next = s〉)

Proof

Combining Lemmas 4.17 and 4.18 immediately gives us this corollary - together, they show

that there is a single chain of Sieve processes in the system, in which each Sieve is connected

exactly to its predecessor and, if one exists, its successor. 2

Lemma 4.20 (Messaging Connections)

For every Sieve process S, the message sequence of inbox S.numberIn follows the sequence of

messages sent on OS.previous to inboxes named “numberIn,” and the message sequence of inbox

S.previous.primeIn follows the sequence of messages sent on OS to inboxes named “primeIn.”

〈∀s, p, v,n | s ∈ P ∧ s = Sieve(p,v,n) �

s.numberIn.msg follows (Op ↓m m.mbox = “numberIn”).msg∧

p.primeIn.msg follows (Os ↓m m.mbox = “primeIn”).msg〉

Proof

By inspection, all messages sent by any process, Generator or Sieve, to an inbox named “num-

berIn” are sent to the inbox with that name belonging to the next process. Because of Lemmas

4.17 and 4.18, we can also tell by inspection that no messages are sent to that inbox from any

other outbox belonging to any process in the system, and that the “numberIn” inbox of a Sieve

process is always the variable numberIn. Therefore, by the channel theorem (Theorem 3.11),

the sequence of messages in the numberIn inbox of a Sieve process follows the sequence of

messages in the outbox of its predecessor which are addressed to inboxes named “numberIn.”

An analogous proof applies to the sequence of messages in the outbox of a Sieve process which

are addressed to inboxes named “primeIn” and its predecessor’s primeIn inbox. 2

Corollary 4.21 (Sieve Process Outgoing Number Sequences)

For every Sieve process S, the sequence of messages sent on OS to inboxes named “numberIn”

follows the sequence of messages sent on OS.previous, with all integers divisible by S.sieveValue

removed.

83

〈∀s, p, v,n | s ∈ P ∧ s = Sieve(p,v,n) �

(Os ↓m m.mbox = “numberIn”).msg follows

SIEVE((Op ↓m m.mbox = “numberIn”).msg, v)〉

Proof

This corollary follows immediately from Lemma 4.20 and Theorem 4.2. 2

Hereafter, we will denote (Ok ↓m m.mbox = “numberIn”) by k.numberOut, and (Ok ↓m
m.mbox = “primeIn”) by k.primeOut, for brevity.

Lemma 4.22 (Prime Sieve Values)

The sieveValue of the Sieve process with sequence number n is the nth prime number.

Proof

We prove this by induction on the sequence numbers of the Sieve processes, using our knowl-

edge of the initial Sieve’s parameters, the output sequence of the Generator, and the rules

governing prime numbers. For sequence number 1, the lemma holds because the Sieve initial-

ized with sequence number 1 is initialized with sieve value 2, and 2 is the first prime number.

This is our base case.

Now, assume we have n Sieve processes S1, S2, . . . , Sn, with sequence numbers 1, 2, …, n

and sieve values p1, p2, …, pn, such that for all i, pi is the ith prime number. We need to

show that when Sieve process Sn+1 is created (with sequence number n + 1), its sieve value

pn+1 is the (n + 1)st prime number. From Corollary 4.21, we know that Sn.numberOut.msg

follows SIEVE(Sn−1.numberOut.msg, pn). This relation also applies to the numberOut.msg se-

quence of every other Sieve process. Therefore, all elements of Sn−1.numberOut.msg are not

divisible by any of p1, p2, . . . , pn−1. Additionally, we know from Theorem 4.9 that the number-

Out.msg sequence of the Generator, which is the previous process to S1, is exactly the sequence

2, 3, …. Therefore, the numberOut.msg sequence of Sn is exactly the sequence which results

when all elements divisible by p1 are removed from the initial sequence, then all elements di-

visible by p2 are removed from the resulting sequence, etcetera, all the way up to all elements

divisible by pn being removed from Sn.numberIn.msg. This is exactly the Eratosthenes’ prime

number sieve algorithm.

Since pn is prime, the first element of Sn.numberOut.msg—that is, the first element of

Sn−1.numberOut.msg not divisible by pn—must be prime as well, because a number that is not

divisible by any prime number less than itself is prime. Moreover, it is the first prime number

greater than pn, because of the particular integer sequence being fed into the system by the

84

Generator. This element becomes pn+1, the sieveValue for process Sn+1, as shown in Theorem

4.6. Since p1, p2, . . . , pn are the 1st, 2nd, …, nth prime numbers, pn+1 is the (n + 1)st prime

number. 2

Corollary 4.23 (Sieve Process Prime Sequences)

For every Sieve process S, the message sequence of S.primeOut follows the message sequence of

S.next.primeOut with S.sieveValue prepended.

〈∀s, p, v,n | s ∈ P ∧ s = Sieve(p,v,n) �

s.primeOut .msg follows (v 1 s.next .primeOut .msg)〉

Proof

This corollary follows immediately from Lemma 4.20 and Theorem 4.3.

Proof of Theorem 4.16 (Global Safety)

The primes sequence in the Generator process follows primeOut of the Sieve process with

sequenceNumber 1, by Lemma 4.20 and Theorems 4.12 and 4.14. This sequence, by Lemma

4.22 and repeated application of Corollary 4.23, is exactly the sequence of prime numbers

starting from 2. 2

Theorem 4.24 (Global Progress)

The primes sequence never remains the same length forever.

〈∀n | n ≥ 0 � (primes.length = n); (primes.length > n)〉

Proof

Global progress follows immediately from Theorems 4.11, 4.12 and 4.3 and Corollaries 4.21

and 4.23. 2

85

Chapter 5

Nondeterministic Example: Single
Resource Mutual Exclusion

Our second example Dynamic UNITY system is a simple mutual exclusion algorithm, where

clients request a single resource from a central server and are served in the order of their

requests. We demonstrate the ability of Dynamic UNITY processes to leave the system, by

allowing clients to leave the system at any time during their execution. We also make use of

unfair transitions, another feature of Dynamic UNITY, in this example.

5.1 Problem Statement

The problem statement for this example is as follows: “Given a shared resource and a changing

set of clients that require access to the resource, ensure that only one client at a time has access

to the resource and that no client that requests access to the resource is forced to wait forever

for that access.” The most straightforward way of accomplishing this is to have a request queue,

so that requests for the resource are processed in the order in which they are received. Dynamic

UNITY gives us such a queuing mechanism, the inbox, as part of its messaging framework.

We implement the resource (more accurately, the process that manages access to the re-

source) as a single Dynamic UNITY process, and each client as a Dynamic UNITY process. Ac-

cess to the resource is controlled by a token, which is reflected in the states of the resource

and the clients: the resource is holding a token when its idle definition holds, and the client is

holding a token when its busy definition holds. Every message passed in the system contains

either one token or no tokens; there are no multiple-token messages.

In addition to the basic mutual exclusion algorithm, we give the clients the ability to leave

the system at any time during their execution to better simulate a real resource allocation

system (in which a consumer may decide to abandon a request for a resource if that request is

not serviced within a reasonable time).

86

We specify the components of our system individually, describe and prove properties of

their behavior in isolation, and then compose them to solve the problem.

5.2 The Resource Program

program Resource

declare
requestIn, releaseIn: inbox
releases: multiset {process}
current: process

always
idle , current = ⊥;
busy , ¬idle

initially
current = ⊥ ∧ releases = ∅

fair-transition
(1) idle ∧ requestIn.probe −→

requestIn.advance ∧ current′ = requestIn.current.proc ∧
send(requestIn.current.proc, “tokenIn”, ∅)

(2) [] busy ∧ current ∈ releases −→ current′ = ⊥ ∧ releases′ = releases \ {current}
(3) [] releaseIn.probe −→

releaseIn.advance ∧ releases′ = releases ∪ {releaseIn.current.proc}

end

Specification 5.1: The Resource program, part of the single resource mutual exclusion system

The Resource program is responsible for ensuring mutually exclusive access to a resource,

by handling requests and releases sent to appropriately-named inboxes and sending tokens to

appropriate destinations. In isolation, we can prove that the Resource program is well-formed,

that it always gets a token back before sending another token, and that its message histories

and other state variables fulfill certain other restrictions that will be important to the proof of

the composed system.

Theorem 5.1 (Resource Well-Formedness)

The Resource program is well-formed.

Proof

We prove that the Resource program is well-formed by showing that its always-section, initially-

section, and transition-sections are well-formed:

87

always-section The always-section of the Resource program contains two definitions. The

first is a simple Boolean function of a variable and a constant, and the second is the negation

of the first. These definitions are not circular, and no undefined variables are referenced.

Therefore, the always-section is well-formed.

initially-section The initially-section of the Resource program initializes a set to the empty

set, and a process to ⊥. There is no recursion, and both conjuncts of the initially predicate are

satisfiable. Therefore, the initially-section is well formed.

transition-sections For each transition, we must demonstrate that its postcondition is always

satisfiable if its precondition holds. We do this individually for the three transitions:

• The postcondition of transition (1) is the conjunction of an inbox advance, an assignment

to a variable and a message send. All of these are always satisfiable. Therefore, transition

(1)’s postcondition as a whole is always satisfiable.

• The postcondition of transition (2) is the conjunction of an assignment to a variable and

a set difference operation, both of which are always satisfiable. Therefore, transition (2)’s

postcondition is always satisfiable.

• The postcondition of transition (3) is the conjunction of an inbox advance and a set union

operation, both of which are always satisfiable. Therefore, transition (3)’s postcondition

is always satisfiable.

Since all sections of the Resource program are well-formed, the entire program is well-

formed. 2

Theorem 5.2 (Resource Process Serving Safety)

A Resource only serves one process at a time. That is, if current refers to a process, then current

always changes to ⊥ before changing to refer to a different process.

〈∀c | c 6= ⊥� current = c next (current = c ∨ current = ⊥)〉

Proof

When current = c 6= ⊥, the only enabled transitions are (2) and (3). Transition (2) changes

current to ⊥, so it satisfies the next properties. Transition (3) does not change current, so it

also satisfies the next properties. Additionally, changes in inbox states due to arriving messages

do not change current. Therefore, the next properties hold. 2

88

Theorem 5.3 (Resource Per-process Message Histories)

For every process in the system that is not the process referred to by current, the difference

between the number of releases a Resource has received from that process and the number of

tokens it has sent to that process is exactly the number of times that process appears in the

releases multiset. For the process referred to by current when a Resource is busy, the difference

between the number of releases the Resource has received from that process and the number

of tokens it has sent to that process is exactly the number of times that process appears in the

releases multiset minus 1.

invariant.(〈∀p | p ∈ P ∧ p ≠ current �

(releaseIn ↓m m.proc = p).cnt− (O ↓m m.proc = p).len =

〈#q | q ∈ releases � q = p〉〉) (a)

invariant.(busy ⇒

(releaseIn ↓m m.proc = current).cnt− (O ↓m m.proc = current).len =

〈#p | p ∈ releases � p = current〉 − 1〉) (b)

Proof

Initially, both invariants hold because current is initialized to ⊥ and all mailbox histories are

empty, giving 0 − 0 = 0, a tautology, for all instances of (a) and false ⇒ 0 − 0 = −1, which

simplifies to true, for (b). We now show that each transition maintains both invariants.

Transition (1) is enabled only when current = ⊥, so for all processes p in the system (⊥
can never be an actual process), an instance of invariant (a) holds as a precondition. Transition

(1) sends a single message to a particular process and sets current to refer to that process

(falsifying idle and establishing busy); it does not change the releases multiset or the releaseIn

mailbox state. By inspection, it maintains (b) by establishing both its left and right sides while

maintaining (a) for all processes other than the new current.

Transition (2) is enabled only when busy holds, so it executes with the right side of invariant

(b) as a precondition. It decreases the number of instances of current in the releases multiset by

1, and establishes idle (falsifying busy). Invariant (a) is maintained, because the former current

now satisfies (a) (by substitution), and invariant (b) is maintained because busy is falsified.

Transition (3) advances releaseIn, receiving a message from a process p, and also increases

the number of instances of p in the releases multiset by 1. It therefore maintains both invari-

ants, by simple arithmetic. 2

89

Theorem 5.4 (Resource Per-process Request/Token Safety)

For every process in the system, the number of token messages sent by a Resource to that process

is exactly the number of requests the Resource has read from that process.

invariant.(〈∀p | p ∈ P � (O ↓m m.proc = p).len = (requestIn ↓m m.proc = p).cnt〉)

Proof

Initially, the invariant holds because the Resource’s mailboxes are all empty. There is only one

transition, (1), which sends messages, and it also is the only transition that receives messages

on requestIn. Every time it executes, it receives a single message on requestIn and sends a single

message to the process that sent the message it received on requestIn. Therefore, both sides of

the invariant’s equality are incremented by 1 every time transition (1) executes. Since no other

transition changes either side of the equality, the invariant is maintained. 2

Theorem 5.5 (Resource Request Handling Progress)

If a Resource is idle and there is a request waiting in its requestIn inbox, the process that sent

the request will be served.

〈∀p | p ∈ P � idle∧ requestIn.probe∧ requestIn.current.proc = p ; current = p〉

Proof

Transition (1) is the only transition that reads from requestIn, and it is guarded by idle and

requestIn.probe. It is a fair transition, so it must execute at some point if its precondition is

stable. By inspection, we can see that no other transition falsifies idle, so the precondition

must be stable. Therefore, transition (1) executes at some point after the left side of any one of

our set of leads-to conditions holds. The postcondition of transition (1) for any given message

source is exactly the right side of our leads-to condition for that message source. Therefore,

the entire set of leads-to conditions holds. 2

Theorem 5.6 (Resource Release Handling Progress)

If a Resource has received more releases from its current client than it has sent tokens to that

client, the Resource will eventually become idle.

busy ∧ (releaseIn ↓m m.proc = current).cnt > (O ↓m m.proc = current).len ; idle

Proof

From Theorem 5.3, we know that if the left side of our leads-to holds, there is at least one

instance of current in the releases multiset. This means that the precondition for transition (2)

90

holds, and continues to hold until transition (2) is executed (because transition (2) is the only

transition that removes an element from the multiset or negates busy). Transition (2) is a fair

transition, and weak fairness tells us that it will execute eventually if its precondition holds

and is stable. Its postcondition includes idle, which proves our leads-to. 2

We have now shown all the behavior of the Resource in isolation that we will need to use in

our proof of correctness for the composed system.

5.3 The Client Program

program Client(resource: process)

declare
idle, waiting, busy: boolean
tokenIn: inbox

always
gone , ¬idle ∧ ¬waiting ∧ ¬busy

initially
idle = true ∧ waiting = false ∧ busy = false

fair-transition
(1) waiting ∧ tokenIn.probe −→ waiting′ = false ∧ busy′ = true ∧ tokenIn.advance
(2) [] busy −→ busy′ = false ∧ idle′ = true ∧ send(resource, “releaseIn”, ∅)

unfair-transition
(3) [] idle −→ idle′ = false ∧ waiting′ = true ∧ send(resource, “requestIn”, ∅)
(4) [] idle −→ idle′ = false ∧ stop
(5) [] waiting −→ waiting′ = false ∧ send(resource, “releaseIn”, ∅) ∧ stop
(6) [] busy −→ busy′ = false ∧ send(resource, “releaseIn”, ∅) ∧ stop

end

Specification 5.2: The Client program, part of the single resource mutual exclusion system

The Client program sends requests and releases, and receives tokens; it is considered to

have access to whatever resource it needs when it holds a token. We can prove in isolation that

the Client program is well-formed, that it never sends two requests without receiving a token

in between, and that its message histories and other state variables fulfill certain restrictions

that will be useful later in proving the correctness of the composed system.

Theorem 5.7 (Client Well-Formedness)

The Client program is well-formed.

91

Proof

We prove that the Client program is well-formed by showing that its always-section, initially-

section, and transition-sections are well-formed:

always-section The always-section of the Client program contains one definition, which is a

simple Boolean function of three variables. There are no circular definitions, and no undefined

variables are referenced. Therefore, the always-section is well-formed.

initially-section The initially-section of the Client program initializes three Boolean variables.

There is no recursion, and all three conjuncts of the initially predicate are satisfiable. Therefore,

the initially-section is well formed.

transition-sections For each transition, we must demonstrate that its postcondition is always

satisfiable if its precondition holds. We do this individually for the six transitions:

• The postcondition of transition (1) is the conjunction of an inbox advance and two assign-

ments to variables, all of which are always satisfiable. Therefore, transition (1)’s postcon-

dition is always satisfiable.

• The postcondition of transition (2) is the conjunction of two assignments to variables and

a message send, all of which are always satisfiable. Therefore, transition (2)’s postcondi-

tion is always satisfiable.

• The postcondition of transition (3) is the conjunction of two assignments to variables and

a message send, all of which are always satisfiable. Therefore, transition (3)’s postcondi-

tion is always satisfiable.

• The postcondition of transition (4) is the conjunction of an assignment to a variable and

stop, both of which are always satisfiable. Therefore, transition (4)’s postcondition is

always satisfiable.

• The postcondition of transition (5) is the conjunction of an assignment to a variable, a

message send and stop, all of which are always satisfiable. Therefore, transition (5)’s

postcondition is always satisfiable.

• The postcondition of transition (6) is the conjunction of an assignment to a variable, a

message send, and stop, all of which are always satisfiable. Therefore, transition (6)’s

postcondition is always satisfiable.

Since all sections of the Client program are well-formed, the entire program is well-formed.

2

92

Theorem 5.8 (Client State Transitions Safety)

Only one of idle, waiting, busy and gone holds for a Client at any given point during its execution.

All Client transitions are either from idle to waiting, from waiting to busy, from busy to idle, or

from any of these to gone. The gone state is stable.

invariant.((idle ⇒ ¬waiting ∧¬busy ∧¬gone)∧ (waiting ⇒ ¬busy ∧¬gone∧¬idle)

∧ (busy ⇒ ¬gone∧¬idle∧¬waiting)∧ (gone ⇒ ¬idle∧¬waiting ∧¬busy))
(1)

idle next (idle∨waiting ∨ gone) (2)

waiting next (waiting ∨ busy ∨ gone) (3)

busy next (busy ∨ idle∨ gone) (4)

stable.gone (5)

Proof

We prove each of the 5 equations individually:

1. We can eliminate the (gone ⇒ ¬idle ∧ ¬waiting ∧ ¬busy) conjunct immediately; gone

is defined as ¬idle ∧ ¬waiting ∧ ¬busy , so the implication is a tautology. For the same

reason, we can replace ¬gone with true in the antecedents of the other three conjuncts.

What we have left to prove is that only one of idle, waiting and busy ever holds at any

given time. Initially, this is the case, because idle is initialized to true and waiting and

busy are both initialized to false. Transitions (3) and (4), the only transitions enabled

when idle is true and waiting and busy are false, both set idle to false; transition (3) also

sets waiting to true. Transitions (1) and (5), the only transitions enabled when waiting is

true and busy and idle are false, both set waiting to false; transition (1) also sets busy to

true. Transitions (2) and (6), the only transitions enabled when busy is true and idle and

waiting are false, both set busy to false; transition (2) also sets idle to true. Therefore,

only one of idle, waiting and busy ever holds at any given time. This, combined with our

elimination of gone, proves the invariant.

2. Only two transitions, (3) and (4), are enabled when idle holds. Transition (3) sets idle to

false, and waiting to true. Transition (4) sets idle to false, establishing gone (because idle,

waiting and busy are all false).

3. Only two transitions, (1) and (5), are enabled when waiting holds. Transition (1) sets

waiting to false, and busy to true. Transition (5) sets waiting to false, establishing gone

(because idle, waiting and busy are all false).

4. Only two transitions, (2) and (6), are enabled when busy holds. Transition (2) sets busy to

93

false, and idle to true. Transition (6) sets busy to false, establishing gone (because idle,

waiting and busy are all false).

5. No transitions are enabled when gone holds (in addition to the guards all being false, all

transitions that cause gone to hold also contain a stop). Therefore, gone is stable, since

there is no way for the system to change its value.

Theorem 5.9 (Client State Transitions Progress)

A Client never stays in the busy state forever.

transient.busy

Proof

Only two transitions, (2) and (6), are enabled when busy holds. If transition (6) executes at any

point, busy is falsified. If transition (6) does not execute, weak fairness ensures that transition

(2) will execute at some point, since transition (2) is the only fair transition enabled when busy

holds. Therefore, busy is transient. 2

Corollary 5.10 (Client Busy State Progression)

A Client that is in the busy state will at some point in the future be in the idle or gone state.

busy ; idle∨ gone

Proof

This corollary follows immediately from Theorem 5.9 and equation (5) of Theorem 5.8. 2

We now prove that specific relationships between Client states and message histories exist

in all executions of the Client program. For brevity, we refer to (O ↓m m.mbox = “requestIn”),

the sequence of messages sent to mailboxes named “requestIn,” as requestOut, and (O ↓m
m.mbox = “releaseIn”), the sequence of messages sent to mailboxes named “releaseIn,” as

releaseOut. We also define the following predicates that will be used in the proofs of these

relationships:

Pidle ≡ idle∧ requestOut .len = tokenIn.cnt = releaseOut .len

Pwaiting ≡ waiting ∧ requestOut .len− 1 = tokenIn.cnt = releaseOut .len

Pbusy ≡ requestOut .len = tokenIn.cnt = releaseOut .len+ 1

Pgone ≡ requestOut .len = releaseOut .len

94

Lemma 5.11 (Client Message Histories—Idle/Waiting/Gone)

Assume a Client in the idle state has received exactly as many tokens as it has sent requests and

has sent exactly as many releases as it has sent requests. When that Client makes a transition

to the waiting state from the idle state, it will have received exactly one fewer token than it has

sent requests and sent exactly as many releases as it has received tokens. In addition, when that

Client makes a transition to the gone state from the idle state, it will have sent exactly as many

releases as it has sent requests.

Pidle next Pidle ∨ Pwaiting ∨ Pgone

Proof

Assume Pidle, and therefore idle, holds in the current state. From Theorem 5.8, we know that if

idle holds, then exactly one of idle, waiting or gone will hold in the next state.

If idle holds in the next state, we know that Pidle holds in the next state, because there are

no transitions that preserve idle while changing the length of an outbox history or the received

message index of an inbox.

If waiting holds in the next state, we know that the transition that brings about the next

state is transition (3), because by inspection it is the only transition enabled when idle holds

that causes waiting to hold as part of its postcondition. Pidle tells us that requestOut.len =
tokenIn.len = releaseOut.len in the current state. Transition (3) sends a message to an inbox

named “requestIn,” increasing requestOut.len by 1, and does not change any other mailbox

states. Therefore, requestOut.len − 1 = tokenIn.cnt = releaseOut.len must hold in the next

state. The conjunction of this and waiting is exactly Pwaiting .

If gone holds in the next state, we know that the transition that brings about the next state is

transition (4), because by inspection it is the only transition enabled when idle holds that causes

gone to hold as part of its postcondition. Pidle tells us that requestOut.len = releaseOut.len in

the current state. Transition (4) does not change any mailbox states. Therefore, requestOut.len

= releaseOut.len must hold in the next state. The conjunction of this and gone is exactly Pgone.

2

Lemma 5.12 (Client Message Histories—Waiting/Busy/Gone)

Assume a Client in the waiting state has received exactly one fewer token than it has sent requests

and sent exactly as many releases as it has received tokens. When that Client makes a transition

to the busy state from the waiting state, it will have received exactly as many tokens as it has

sent requests and sent exactly one fewer release than it has received tokens. In addition, when

that Client makes a transition to the gone state from the waiting state, it will have sent exactly

95

as many releases as it has sent requests.

Pwaiting next Pwaiting ∨ Pbusy ∨ Pgone

Proof

Assume Pwaiting , and therefore waiting, holds in the current state. From Theorem 5.8, we know

that if waiting holds, then exactly one of waiting, busy or gone will hold in the next state.

If waiting holds in the next state, we know that Pwaiting holds in the next state, because there

are no transitions that preserve waiting while changing the length of an outbox history or the

received message index of an inbox.

If busy holds in the next state, we know that the transition that brings about the next state

is transition (1), because by inspection it is the only transition enabled when waiting holds that

causes busy to hold as part of its postcondition. Pwaiting tells us that requestOut.len − 1 =
tokenIn.cnt = releaseOut.len in the current state. Transition (1) advances tokenIn, increasing

tokenIn.cnt by 1, and does not change any other mailbox states. Therefore, requestOut.len =
tokenIn.cnt = releaseOut.len + 1 must hold in the next state. The conjunction of this and busy

is exactly Pbusy .

If gone holds in the next state, we know that the transition that brings about the next state

is transition (5), because by inspection it is the only transition enabled when waiting holds

that causes gone to hold as part of its postcondition. Pwaiting tells us that requestOut.len −
1 = tokenIn.cnt = releaseOut.len in the current state. Transition (5) sends a message to an

inbox named “releaseIn,” increasing releaseOut.len by 1, and does not change any other mailbox

states. Therefore, requestOut.len= releaseOut.len must hold in the next state. The conjunction

of this and gone is exactly Pgone. 2

Lemma 5.13 (Client Message Histories—Busy/Idle/Gone)

Assume a Client in the busy state has received exactly as many tokens as it has sent requests and

sent exactly one fewer release than it has received tokens. When that Client makes a transition

to the idle state from the busy state, it will have received exactly as many tokens as it has sent

requests and sent exactly as many releases as it has received tokens. In addition, when that

Client makes a transition to the gone state from the busy state, it will have sent exactly as many

releases as it has sent requests.

Pbusy next Pbusy ∨ Pwaiting ∨ Pgone

96

Proof

Assume Pbusy , and therefore busy, holds in the current state. From Theorem 5.8, we know that

if busy holds, then exactly one of busy, idle or gone will hold in the next state.

If busy holds in the next state, we know that Pbusy holds in the next state, because there

are no transitions that preserve busy while changing the length of an outbox history or the

received message index of an inbox.

If idle holds in the next state, we know that the transition that brings about the next state

is transition (2), because by inspection it is the only transition enabled when busy holds that

causes idle to hold as part of its postcondition. Pbusy tells us that requestOut.len= tokenIn.cnt =

releaseOut.len+ 1 in the current state. Transition (2) sends a message to an inbox named “relea-

seIn,” increasing releaseOut.len by 1, and does not change any other mailbox states. Therefore,

requestOut.len = tokenIn.cnt = releaseOut.len must hold in the next state. The conjunction of

this and idle is exactly Pidle.

If gone holds in the next state, we know that the transition that brings about the next

state is transition (6), because by inspection it is the only transition enabled when busy holds

that causes gone to hold as part of its postcondition. Pbusy tells us that requestOut.len =
tokenIn.cnt = releaseOut.len + 1 in the current state. Transition (6) sends a message to an

inbox named “releaseIn,” increasing releaseOut.len by 1, and does not change any other mailbox

states. Therefore, requestOut.len= releaseOut.len must hold in the next state. The conjunction

of this and gone is exactly Pgone. 2

Theorem 5.14 (Client States and Message Histories)

A Client in the idle state has received exactly as many tokens as it has sent requests and has

sent exactly as many releases as it has received tokens. A Client in the waiting state has received

exactly one fewer token than it has sent requests and sent exactly as many releases as it has

received tokens. A Client in the busy state has received exactly as many tokens as it has sent

requests and sent exactly one fewer release than it has received tokens. A Client in the gone state

has sent exactly as many releases as it has sent requests.

invariant.((idle ⇒ Pidle)∧ (waiting ⇒ Pwaiting)∧ (busy ⇒ Pbusy)∧ (gone ⇒ Pgone))

Proof

Initially, the Client is in a state where Pidle holds: idle is initialized to true, and all mailboxes are

initially empty. By induction, Lemmas 5.11, 5.12 and 5.13 tell us that this invariant holds for

all states if it holds for the initial state, since the combination of those theorems shows that

all transitions from state X where PX holds are to state Y where PY holds, where X and Y can

each be one of idle, busy, waiting or gone, subject to the permissible state transitions shown

97

in Theorem 5.8. 2

Corollary 5.15 (Client Tokens/Releases Safety)

The difference between the number of tokens a Client has received and the number of releases

it has sent is always between -1 and 1, inclusive.

invariant.(−1 ≤ tokenIn.cnt− releaseOut .len ≤ 1)

Proof

This corollary follows immediately from Theorem 5.14. 2

Corollary 5.16 (Client Tokens/Releases Progress)

If a Client has received more tokens than it has sent releases, at some point it will have sent

exactly as many releases as it has received tokens.

tokenIn.cnt > releaseOut .len ; tokenIn.cnt = releaseOut .len

Proof

This corollary follows immediately from Corollary 5.10 and Theorem 5.14. 2

We have now shown all the behavior of the Client in isolation that we will need to use in our

proof of correctness for the composed system.

5.4 The Composed System

The composed system contains the Resource program (Specification 5.1), the Client program

(Specification 5.2), and a small initial program called Generator that takes care of creating the

Resource and the Clients. We first prove some properties about this Generator program, and

then prove the correctness of the composed system.

5.4.1 The Generator Program

The Generator program is responsible for creating a Resource process in the system, as well

as for creating Client processes for that Resource. We prove that the Generator is well-formed,

and that its reference to the Resource is stable (that is, that its resource state variable always

refers to the same process in the system).

Theorem 5.17 (Generator Well-Formedness)

The Generator program is well-formed.

98

system SingleResourceMutualExclusion

initial-program Generator

declare
resource: process

initially
resource = new Resource

fair-transition
(1) p: p′ = new Client(resource)

end

program Resource

program Client(resource: process)

end

Specification 5.3: The SingleResourceMutualExclusion system

Proof

We prove that the Generator program is well-formed by showing that its always-section, initially-

section, and transition-sections are well-formed:

always-section The Generator program has no always-section, so we need not show that its

always-section is well-formed.

initially-section The initially-section of the Generator program instantiates a Resource pro-

cess. This is not an infinitely recursive instantiation, since the Resource process is well-formed

(as shown in Theorem 5.1). Moreover, it is satisfiable. Therefore, the Generator program’s

initially-section is well-formed.

transition-sections For each transition, we must demonstrate that its postcondition is always

satisfiable if its precondition holds. There is only one transition in the Generator program,

which is an instantiation of a Client process. This is always satisfiable (since the Client process is

well-formed, as shown in Theorem 5.7). Therefore, the Generator program’s transition-sections

are well-formed.

Since all sections of the Generator program are well-formed, the entire program is well-

formed. 2

99

Theorem 5.18 (Generator Resource Reference Stability)

Once a process is instantiated and a reference to that process is assigned to resource in a Gen-

erator process, resource refers to that process forever:

〈∀p � stable.(resource = p)〉

Proof

Initially, resource is assigned to be a reference to a new instance of the Resource program. No

transition in the Resource program modifies the resource reference. Therefore, resource refers

to the same instance of the Resource program forever. 2

We have now shown all the behavior of the Generator program in isolation that we will need

to use in our proof of correctness for the composed system.

5.4.2 Proof of Correctness

We now show that the entire system implements a single resource mutual exclusion algorithm,

by proving several theorems about the system using the properties we have already proven

about the Generator, Resource and Client programs in isolation.

Theorem 5.19 (Generator And Resource Uniqueness/Stability)

There is exactly one Generator process and exactly one Resource process in the SingleResource-

MutualExclusion system, and these processes never stop.

Proof

We need to prove that a single Generator process is created in every possible execution of the

system, that a single Resource process is created in every possible execution of the system, that

it is impossible for any other Generator or Resource processes to be created, and that these

processes never stop.

Generator is the initial program of the system, so a single instance of Generator is created

at system initialization time. Theorem 5.17 shows that the Generator program is well-formed,

and by inspection it does not contain a stop statement. Therefore, in accordance with Dy-

namic UNITY execution semantics, it runs forever. Also by inspection, no program contains a

statement that instantiates a Generator process. Therefore, no other Generator process is ever

instantiated during the execution of the system.

A single Resource process is instantiated by the initially-section of the Generator program.

By inspection, there are no other statements in any program that instantiate a Resource pro-

cess. We have already shown that exactly one Generator process is created. Therefore, exactly

one Resource process is created during the Generator process’s construction. Theorem 5.1

100

shows that the Resource program is well-formed, and by inspection it does not contain a stop

statement. Therefore, in accordance with Dynamic UNITY execution semantics, it runs forever.

2

Theorem 5.20 (Client Resource Reference Uniqueness)

All Client processes in the SingleResourceMutualExclusion system have references to the same

Resource process.

invariant.(〈∀r | r ∈ P ∧ r = resource � 〈∀c, q | c ∈ P ∧ c = Client(q)� q = r〉〉)

Proof

By inspection, the only statement in any program that instantiates a Client process is part

of transition (1) of the Generator program. Theorem 5.19 shows that there is exactly one

Resource process in the system, so the quantification always ranges over exactly one Resource

process, and also shows that the Resource process is created by the one Generator process in

the system. Theorem 5.18 shows that the Generator’s resource variable always refers to this

Resource process. Therefore, all Client processes created by the Generator program have a

reference to the same Resource process as their resource parameter. 2

In the following theorems, we refer to the single Resource process in the SingleResource-

MutualExclusion system as R. For brevity, we refer to (Op ↓m m.mbox = “requestIn”), the

sequence of messages sent to mailboxes named “requestIn” by process p, as p.requestOut, and

(Op ↓m m.mbox = “releaseIn”), the sequence of messages sent to mailboxes named “releaseIn”

by process p, as p.releaseOut.

Theorem 5.21 (Messaging Connections)

For every Client process c, the message histories of R.requestIn filtered by proc= c and R.release-

In filtered by proc= c follow the message histories of c.requestOut and c.releaseOut respectively.

For every Client process c, the message history of c.tokenIn follows the message history of OR

filtered by proc = c.

invariant.(〈∀c |c ∈ P ∧ c = Client(R) �

(R.requestIn ↓m m.proc = c).msg follows c.requestOut .msg ∧

(R.releaseIn ↓m m.proc = c).msg follows c.releaseOut .msg ∧

c.tokenIn.msg follows (OR ↓m m.proc = c).msg)

Proof

By inspection, all messages sent by a Client are sent to the inbox named “requestIn” associated

with the Resource process to which the Client has a reference. Theorem 5.20 says that this

101

Resource process is R, for all Client processes. Also by inspection, the “requestIn” inbox of R is

always R.requestIn. It immediately follows from the Channel Theorem that R.requestIn filtered

by proc = c follows c.requestOut. By symmetry, the same is true for the release outbox/inbox

pair.

By inspection, all messages sent by R are sent to the inbox named “tokenIn” associated with

the destination process. If the destination process is a Client instantiation, the “tokenIn” inbox

is always the tokenIn variable of that process; if the destination process is not a Client instan-

tiation, it has no bearing on this theorem. It immediately follows from the channel theorem

(Theorem 3.11) that, for all Client processes, the tokenIn message history follows R’s outgoing

message sequence filtered by proc = c. 2

We now prove system safety, by showing that there is exactly one live token in the system

at all times. The number of live tokens in the system is defined as the sum of the number of

tokens held by the Resource, the number of tokens held by Clients, the number of live tokens

in transit from Clients to the Resource, and the number of live tokens in transit from the

Resource to Clients. A live token in transit from a Client to a Resource is a release message

whose corresponding request that has been handled by the Resource. If there are two release

messages in transit from a Client to the Resource, there is only one live token in transit from

that Client to the Resource (because, as we will see, message histories dictate that there also

be an unhandled request message in transit from that Client to the Resource). A live token in

transit from a Resource to a Client is a token message whose destination Client is not in the

gone state. Since a Client in the gone state never receives any messages, a token message sent

to such a Client will never be received and therefore does not play a further role in the system.

For use in our safety proof, we define the following quantities (some of which are parameter-

ized by a Client c) that represent the numbers of tokens in transit in the system in accordance

with the above definitions. Rout is the number of live tokens in transit from the Resource that

are still in the Resource’s outbox; Cin(c) is the number of live tokens in transit from the Re-

source that are in Client c’s tokenIn inbox; Rin(c) is the number of tokens in transit from Client

c to the Resource that are either in the Resource’s releaseIn inbox or in its releases multiset;

and Cout(c) is the number of tokens in transit from Client c to the Resource that are still in the

Client’s outbox. For brevity, from this point forward, we denote the set of clients in the system

(that is, the set of all processes of type Client(R)) by CS :

Rout ≡ 〈#i | ORcnt ≤ i < OR.len �¬OR[i].proc.gone〉

Cin(c) ≡ 〈Σd | d = c ∧¬d.gone � d.tokenIn.len− d.tokenIn.cnt〉

102

Rin(c ≠ R.current) ≡

〈#i | R.releaseIn.cnt ≤ i < R.releaseIn.len � R.releaseIn[i].proc = c〉 −

〈#i | R.requestIn.cnt ≤ i < R.requestIn.len � R.requestIn[i].proc = c〉 +

〈#p | p ∈ R.releases � p = c〉

Rin(c = R.current) ≡

〈#i | R.releaseIn.cnt ≤ i < R.releaseIn.len � R.releaseIn[i].proc = c〉 +

〈#p | p ∈ R.releases � p = c〉

Cout(c ≠ R.current) ≡

(c.releaseOut .len− c.releaseOut .cnt)− (c.requestOut .len− c.requestOut .cnt)

Cout(c = R.current) ≡ c.releaseOut .len− c.releaseOut .cnt

The actual numbers of live tokens in the system held by the Resource, the Clients, and in

transit, are defined as follows (note that we do not allow there to be negative live tokens in the

system, and negative tokens in transit are not included in the sums):

LTresource ≡ 〈#r | r = R � R.idle〉

LTclients ≡ 〈#c | c ∈ CS � C.busy〉

LTtransit ≡ Rout + 〈Σc | c ∈ CS ∧ c ≠ R.current � Cin(c)+max(Cout(c)+ Rin(c),0)〉 +

Cin(R.current)+ 〈#c | c = R.current � 1 ≤ Rin(c)+ Cout(c) ≤ 2〉

We now use these equations to define the following predicates, which describe the possible

states of the tokens in the system:

NOTBUSY ≡ 〈∀c | c ∈ CS �¬c.busy〉

BUSY (c) ≡ c.busy ∧ 〈∀d | d ∈ CS ∧ d ≠ c �¬d.busy〉

Presource ≡ 〈∀c | c ∈ CS �−1 ≤ Rin(c)+ Cout(c) ≤ 0〉∧

Rout = 0∧ 〈∀c | c ∈ CS � Cin(c) = 0〉 ∧ R.idle∧NOTBUSY

103

Ptoclient ≡ 〈∀c | c ∈ CS �−1 ≤ Rin(c)+ Cout(c) ≤ 0〉 ∧ Rout + Cin(R.current) = 1 ∧

Rout + 〈Σc | c ∈ CS � Cin(c)〉 = 1∧ R.busy ∧NOTBUSY

Pclient ≡ 〈∀c | c ∈ CS �−1 ≤ Rin(c)+ Cout(c) ≤ 0〉 ∧ Rout = 0 ∧

〈∀c | c ∈ CS � Cin(c) = 0〉 ∧ R.busy ∧ BUSY (R.current)

Ptoresource ≡ 1 ≤ Rin(R.current)+ Cout(R.current) ≤ 2 ∧

〈∀c | c ∈ CS ∧ c ≠ R.current �−1 ≤ Rin(c)+ Cout(c) ≤ 0〉∧

Rout = 0∧ 〈∀c | c ∈ CS � Cin(c) = 0〉 ∧ R.busy ∧NOTBUSY

Lemma 5.22 (System State Transitions—Resource)

If the system is in the state where the Resource holds a live token (Ptoresource), the next state will be

either the same, the state where a live token is in transit to the Resource’s current Client (Ptoclient),

or the state where a live token is in transit to the Resource from the Resource’s current Client

(Ptoresource).

Presource next Presource ∨ Ptoclient ∨ Ptoresource

Proof

Assume Presource holds in the current state. We examine all possible state transitions in the

system to determine the possible next states.

Transition (1) of the Resource program may be enabled, since R.idle holds in the current

state. If transition (1) is enabled, then there is a message waiting on requestIn from a particular

Client c. Execution of the transition reads this message, falsifies R.idle by setting R.current to c,

and sends a message to c’s tokenIn inbox. If c is not in the gone state, this transition establishes

Ptoclient in the next state, as follows: for all clients d, d ≠ c, −1 ≤ Rin(d) + Cout(d) ≤ 0 still

holds because transition (1) hasn’t changed it. −1 ≤ Rin(c) + Cout(c) ≤ 0 holds, because the

definitions of these terms for c = R.current combined with the message histories for a Client

that is not in the gone state (Theorem 5.14), the message histories for the Resource (Theorem

5.3) and the messaging connections (Theorem 5.21) imply that both Rin(c) and Cout(c) are

equal to 0. Rout + Cin(R.current) = 1 holds, because this sum was previously 0, and Rout is

now 1. Rout + 〈Σc | c ∈ CS � Cin(c)〉 = 1 holds, because this sum was previously 0 and Rout

is now 1. R.busy holds because it is part of the postcondition (R.current is assigned a value),

and NOTBUSY holds because the transition does not change any client states. The conjunction

of these is exactly Ptoclient . If c is in the gone state, this transition establishes Ptoresource in

the next state, as follows: Rin(c) + Cout(c) = 1 holds, because the definitions of these terms

for c = R.current combined with the message histories for a Client that is not in the gone

104

state (Theorem 5.14), the message histories for the Resource (Theorem 5.3) and the messaging

connections (Theorem 5.21) imply that exactly one of Rin(c) and Cout(c) is equal to 1. For all

clients d, d ≠ c, −1 ≤ Rin(d) + Cout(d) ≤ 0 holds because transition (1) hasn’t changed it.

Rout = 0 holds because the message that transition (1) sends doesn’t contribute to Rout (its

destination is in the gone state), so Rout is left unchanged. 〈∀c | c ∈ CS � Cin(c) = 0〉 holds

because it held in the previous state and is unchanged by transition (1). R.busy holds because

it is part of the postcondition, and NOTBUSY holds because the transition does not change any

client states. The conjunction of these is exactly Ptoresource.

Transition (2) of the Resource program is not enabled, because R.busy does not hold.

Transition (3) of the Resource program may be enabled. If it is executed, it reads a message

from R.releaseIn and places an entry in R.releases. This does not change Rin(c) for any c,

because it is subtracting 1 from the number of unread messages from c while adding 1 to the

number of appearances of c in the set. Therefore, the system state after transition (3) is still

Presource.

Transition (1) of the Client program is not enabled for any Client c, because Cin(c) = 0 for

all c.

Transitions (2) and (6) of the Client program are not enabled for any Client c, because

NOTBUSY holds.

Transition (3) of the Client program is enabled for Client c only if c.idle holds. It sends a

message to R.requestIn, decrementing Cout(c) by 1. Because c.idle holds, and the Resource is

idle, we know that Rin(c)+Cout(c) = 0. This follows from the message histories for a Client that

is in the idle state state (Theorem 5.14), the message histories for the Resource (Theorem 5.3)

and the messaging connections (Theorem 5.21). Therefore, the system state after transition (3)

is still Presource, but with Rin(c)+ Cout(c) = −1.

Transition (4) of the Client program does not send a message or cause a Client to enter the

busy state, so it does not falsify Presource.

Transition (5) of the Client program is enabled for Client c only if c.waiting holds. It sends a

message to R.releaseIn, incrementing Cout(c) by 1. Because c.waiting holds, and the Resource

is idle, we know that Rin(c)+Cout(c) = −1. This follows from the message histories for a Client

that is in the idle state (Theorem 5.14), the message histories for the Resource (Theorem 5.3)

and the messaging connections (Theorem 5.21). Therefore, the system state after transition (3)

is still Presource, but with Rin(c)+ Cout(c) = 0.

If an outgoing message from c is delivered, Presource is maintained, since delivery of the

message increments or decrementsCout(c) by 1 and correspondingly decrements or increments

Rin(c) by 1.

105

The transitions of the Generator do not affect the next property, since they do not cause

any messages to be sent or received and all Clients created by the Generator are initially idle.

Therefore, all transitions in the system maintain the next property. 2

Lemma 5.23 (System State Transitions—To Client)

If the system is in the state where a live token is in transit to the Resource’s current Client (Ptoclient),

the next state will be either the same, the state where the Resource’s current Client holds a live

token (Pclient), or the state where a live token is in transit to the Resource from the Resource’s

current Client (Ptoresource).

Ptoclient next Ptoclient ∨ Pclient ∨ Ptoresource

Proof

Assume Ptoclient holds in the current state. We examine all possible state transitions in the

system to determine the possible next states.

Transition (1) of the Resource program is not enabled, because R.busy holds.

Transition (2) of the Resource program is not enabled, because we must have Rin(R.current)

= 0 to satisfy the Rin(R.current) + Cout (R.current) ≤ 0 in Ptoclient , and this means that there are

no instances of R.current in the releases multiset.

Transition (3) of the Resource program may be enabled. If it is executed, it reads a message

from R.releaseIn and places an entry in R.releases. This does not change Rin(c) for any c,

because it is subtracting 1 from the number of unread messages from c while adding 1 to the

number of appearances of c in the set. Therefore, the system state after transition (3) is still

Ptoclient .

A message may be delivered from the Resource’s outbox to its destination inbox. Assume

the delivered message is destined for Client c. If c is in the gone state, neither Rout nor Cin(c)

is changed (by definition); if c is not in the gone state, Rout is decremented (to 0) and Cin(c) is

incremented (to 1), maintaining Ptoclient .

Transition (1) of the Client program may be enabled for c = R.current, but will not be

enabled for any other Client because Cin(c ≠ R.current) = 0. This transition reads a message

from tokenIn, which decrements Cin(c) by 1 and makes Rout = 0 and Cin(c) = 0. After the

transition, therefore, we have Rout = 0 and 〈∀c | c ∈ CS � Cin(c) = 0〉. The transition does

not change c.requestOut or c.releaseOut or set the state of c to gone, so after its execution

〈∀c | c ∈ CS �−1 ≤ Rin(c)+Cout(c) ≤ 0〉 still holds. R.busy still holds, because the transition

does not affect it. Client c is in the busy state after the transition, so BUSY (c) holds because

the states of the other Clients, all of which were idle, do not change. The conjunction of these

is exactly Pclient .

106

Transitions (2) and (6) of the Client program are not enabled for any Client c, because

NOTBUSY holds.

Transition (3) of the Client program is enabled for Client c only if c.idle holds. It sends a

message to R.requestIn, decrementing Cout(c) by 1. Because c.idle holds, and the Resource is

busy, we know that Rin(c) + Cout(c) = 0 for all c ≠ R.current. This follows from the message

histories for a Client that is in the idle state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21). We also know, from

the same message histories and connections, that R.current must be in either the waiting or

gone state, so its transition (3) is not enabled. Therefore, the system state after transition (3)

is still Ptoclient , but with Rin(c)+ Cout(c) = −1.

Transition (4) of the Client program does not send a message or cause a Client to enter the

busy state, so it does not falsify Ptoclient .

Transition (5) of the Client program is enabled for Client c only if c.waiting holds. It sends a

message to R.releaseIn, incrementing Cout(c) by 1. Because c.waiting holds, and the Resource is

busy, we know that Rin(c)+Cout(c) = −1 for all c ≠ R.current. This follows from the message

histories for a Client that is in the idle state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21). Therefore, the system

state after transition (5) is still Ptoclient , but with Rin(c) + Cout(c) = 0, if c ≠ R.current. If c =
R.current, we know from the same message histories and connections that Rin(c)+ Cout(c) =
0. The sending of the message to R.releaseOut increases this sum to 1. The transition also

establishes Rout = 0 ∧ 〈∀c | c ∈ CS � Cin(c) = 0〉, because it causes the Client to transition

to the gone state, making that sum equal to 0 for all Clients (it was previously 0 for all Clients

other than R.current). The conjunction of these and the parts of Ptoclient that are not changed

by the transition is exactly Ptoresource.

One or more messages from any Client except R.current to the Resource may be delivered.

This follows from the message histories for a Client that is in the waiting state (Theorem 5.14),

the message histories for the Resource (Theorem 5.3) and the messaging connections (Theo-

rem 5.21). If this occurs message is delivered, Ptoclient is maintained, since it increments or

decrements Cout(c) and correspondingly decrements or increments Rin(c).

The transitions of the Generator do not affect the next property, since they do not cause

any messages to be sent or received and all Clients created by the Generator are initially idle.

Therefore, all transitions in the system maintain the next property. 2

Lemma 5.24 (System State Transitions—Client)

If the system is in a state where the Resource’s current Client holds a live token (Pclient), the next

state will be either the same or the state where a live token is in transit to the Resource from the

107

Resource’s current Client (Ptoresource).

Pclient next Pclient ∨ Ptoresource

Proof

Assume Pclient holds in the current state. We examine all possible state transitions in the system

to determine the possible next states.

Transition (1) of the Resource program is not enabled, because R.busy holds.

Transition (2) of the Resource program is not enabled, because we must have Rin(R.current)

= 0 to satisfy the Rin(R.current) + Cout (R.current) ≤ 0 in Pclient , and this means that there are

no instances of R.current in the releases multiset.

Transition (3) of the Resource program may be enabled. If it is executed, it reads a message

from R.releaseIn and places an entry in R.releases. This does not change Rin(c) for any c. If

c ≠ R.current, it subtracts 1 from the number of unread messages from c while adding 1 to

the number of appearances of c in the set; if c = R.current, it is not possible that there was

a message from c on releaseIn, because c is in the busy state. This follows from the message

histories for a Client that is in the busy state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21). Therefore, the system

state after transition (3) is still Pclient .

Transition (1) of the Client program is not enabled for any Client, because 〈∀c | c ∈ CS �

Cin(c) = 0〉 holds.

Transition (2) of the Client program is enabled for R.current, but not for any other Client,

since BUSY (R.current) holds. Execution of this transition falsifies R.current.busy, established

R.current.idle, and sends a message to from R.current to R.releaseIn. We know, from the mes-

sage histories for a Client that is in the busy state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21), that Rin(R.current)+
Cout(R.current) = 0 holds before execution of the transition; the sending of the message to

R.releaseIn increases this sum to 1. The transition also establishes NOTBUSY , because it puts

R.current into the idle state. The conjunction of these and the parts of Pclient that are unchanged

by execution of transition (2) is exactly Ptoresource.

Transition (3) of the Client program is enabled for Client c only if c.idle holds. It sends a

message to R.requestIn, decrementing Cout(c) by 1. Because c.idle holds, and the Resource is

busy, we know that Rin(c) + Cout(c) = 0 for all c ≠ R.current. This follows from the message

histories for a Client that is in the idle state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21). We also know that

R.current is in the busy state, since BUSY (R.current) holds, so its transition (3) is not enabled.

108

Therefore, the system state after transition (3) is still Pclient , but with Rin(c)+ Cout(c) = −1.

Transition (4) of the Client program is enabled only for Clients in the idle state (and is

therefore disabled for R.current). It does not send a message or cause a Client to enter the

busy state, so it does not falsify Pclient .

Transition (5) of the Client program is enabled for Client c only if c.waiting holds. It sends a

message to R.releaseIn, incrementing Cout(c) by 1. Because c.waiting holds, and the Resource is

busy, we know that Rin(c)+Cout(c) = −1 for all c ≠ R.current. This follows from the message

histories for a Client that is in the idle state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21). Therefore, the system

state after transition (5) is still Pclient , but with Rin(c)+ Cout(c) = 0, if c ≠ R.current. We know

that R.current is in the busy state, since BUSY (R.current) holds. Therefore, its transition (5) is

not enabled.

One or more messages from any Client except R.current to the Resource may be delivered.

This follows from the message histories for a Client that is in the waiting state (Theorem 5.14),

the message histories for the Resource (Theorem 5.3) and the messaging connections (Theo-

rem 5.21). If this occurs message is delivered, Ptoclient is maintained, since it increments or

decrements Cout(c) and correspondingly decrements or increments Rin(c).

The transitions of the Generator do not affect the next property, since they do not cause

any messages to be sent or received and all Clients created by the Generator are initially idle.

Therefore, all transitions in the system maintain the next property. 2

Lemma 5.25 (System State Transitions—To Resource)

If the system is in a state where a live token is in transit to the Resource from the Resource’s

current Client (Ptoresource), the next state will be either the same or the state where the Resource

holds a live token (Presource).

Ptoresource next Ptoresource ∨ Presource

Proof

Assume Ptoresource holds in the current state. We examine all possible state transitions in the

system to determine the possible next states.

Transition (1) of the Resource program is not enabled, because R.busy holds.

Transition (2) of the Resource program is enabled only if 〈#p | p ∈ releases �p = R.current〉
≥ 1. Execution of transition (2) removes an instance of R.current from releases, and sets

R.current′ to ⊥. This establishes 〈∀c | c ∈ CS �−1 ≤ Rin(c)+ Cout(c) ≤ 0〉, as follows: for all

c ≠ R.current, the inequality already held, and for c = R.current we had 1 ≤ Rin(c)+Cout(c) ≤ 2.

This means that there were either 1 or 2 release messages in transit from R.current to the Re-

109

source, and after execution of transition (2) there are 0 or 1 release messages in transit from

that Client. From the message histories for a Client that is not in the busy state (Theorem 5.14),

the message histories for the Resource (Theorem 5.3) and the messaging connections (Theo-

rem 5.21), we know that the maximum number of request messages in transit from a non-busy

Client to the Resource is 1, and that if 2 release messages are in transit from a non-busy Client,

then 1 request message is in transit from that Client as well. The definitions of Rin(c) and

Cout(c) for c = R.current differ from those for c ≠ R.current only in that the former subtract

the number of request messages from the latter. Therefore, we have −1 ≤ Rin(c)+Cout(c) ≤ 0

for all c after execution of transition (2). Transition (2) also establishes R.idle. The conjunction

of these and the parts of Ptoresource that are unchanged by execution of transition (2) is exactly

Presource.

Transition (3) of the Resource program may be enabled. If it is executed, it reads a message

from R.releaseIn and places an entry in R.releases. This does not change Rin(c) for any c. If

c ≠ R.current, it subtracts 1 from the number of unread messages from c while adding 1 to

the number of appearances of c in the set; if c = R.current, it is not possible that there was

a message from c on releaseIn, because c is in the busy state. This follows from the message

histories for a Client that is in the busy state (Theorem 5.14), the message histories for the

Resource (Theorem 5.3) and the messaging connections (Theorem 5.21). Therefore, the system

state after transition (3) is still Ptoresource.

Transition (1) of the Client program is not enabled for any Client, because 〈∀c | c ∈ CS �

Cin(c) = 0〉 holds.

Transitions (2) and (6) of the Client program are not enabled for any Client c, because

NOTBUSY holds.

Transition (3) of the Client program is enabled for Client c only if c.idle holds. It sends a

message to R.requestIn, decrementing Cout(c) by 1. Because c.idle holds, and the Resource is

idle, we know that Rin(c)+Cout(c) = 0. This follows from the message histories for a Client that

is in the idle state state (Theorem 5.14), the message histories for the Resource (Theorem 5.3)

and the messaging connections (Theorem 5.21). Therefore, the system state after transition (3)

is still Ptoresource, but with Rin(c)+ Cout(c) = −1.

Transition (4) of the Client program does not send a message or cause a Client to enter the

busy state, so it does not falsify Presource.

Transition (5) of the Client program is enabled for Client c only if c.waiting holds. It sends a

message to R.releaseIn, incrementing Cout(c) by 1. Because c.waiting holds, and the Resource

is idle, we know that Rin(c)+Cout(c) = −1. This follows from the message histories for a Client

that is in the idle state (Theorem 5.14), the message histories for the Resource (Theorem 5.3)

and the messaging connections (Theorem 5.21). Therefore, the system state after transition (3)

110

is still Ptoresource, but with Rin(c)+ Cout(c) = 0.

One or more messages to the Resource may be delivered. If one is, Ptoresource is maintained,

since the message delivery increments or decrements Cout(c) by 1 and correspondingly decre-

ments or increments Rin(c) by 1.

The transitions of the Generator do not affect the next property, since they do not cause

any messages to be sent or received and all Clients created by the Generator are initially idle.

Therefore, all transitions in the system maintain the next property. 2

Theorem 5.26 (Reachable System States)

The only reachable states for the SingleResourceMutualExclusion system are those where one of

Presource, Ptoclient, Pclient or Ptoresource holds.

invariant.(Presource ∨ Ptoclient ∨ Pclient ∨ Ptoresource)

Proof

Initially, the system is in a state where Presource holds, because all mailboxes are empty, no Client

processes exist, and the Resource process is in the idle state. All possible sequences of state

transitions from states where Presource hold establish only states where one of Presource, Ptoclient ,

Pclient or Ptoresource holds, as demonstrated in Lemmas 5.22 through 5.25. Therefore, the only

reachable states for the system are those where one of Presource, Ptoclient , Pclient or Ptoresource hold.

2

Theorem 5.27 (Global Safety)

There is always exactly one live token in the SingleResourceMutualExclusion system.

invariant.(LTresource + LTclients + LTtransit = 1)

Proof

We show that in every possible system state, the number of live tokens in the system is exactly

1.

In states where Presource holds, LTresource = 1 because the Resource is in the idle state,

LTclients = 0 because NOTBUSY holds, and LTtransit = 0 because Rout = 0, 〈∀c | c ∈ CS �−1 ≤
Rin(c)+Cout(c) ≤ 0〉, and 〈∀c | c ∈ CS �Cin(c) = 0〉 hold. Therefore, the number of live tokens

in the system is exactly 1 in states where Presource holds.

In states where Ptoclient holds, LTresource = 0 because the Resource is in the busy state,

LTclients = 0 because NOTBUSY holds, and LTtransit = 1 because Rout+〈Σc | c ∈ CS �Cin(c)〉 =
1 and 〈∀c | c ∈ CS �−1 ≤ Rin(c)+ Cout(c) ≤ 0〉 hold. Therefore, the number of live tokens in

the system is exactly 1 in states where Ptoclient holds.

111

In states where Pclient holds, LTresource = 0 because the Resource is in the busy state,

LTclients = 1 because BUSY (R.current) holds, and LTtransit = 0 because 〈∀c | c ∈ CS � −1 ≤
Rin(c)+ Cout(c) ≤ 0〉, Rout = 0 and 〈∀c | c ∈ CS � Cin(c) = 0〉 hold. Therefore, the number of

live tokens in the system is exactly 1 in states where Pclient holds.

In states where Ptoresource holds, LTresource = 0 because the Resource is in the busy state,

LTclients = 0 because NOTBUSY holds, and LTtransit = 1 because 〈∀c | c ∈ CS∧ c ≠ R.current�

-1 ≤ Rin(c) + Cout(c) ≤ 0〉, 1 ≤ Rin(R.current) + Cout (R.current) ≤ 2, Rout = 0 and 〈∀c | c ∈
CS � Cin(c) = 0〉 hold. Therefore, the number of live tokens in the system is exactly 1 in stats

where Pclient holds.

Since we know from Theorem 5.26 that one of Presource, Ptoclient , Pclient and Ptoresource holds

in every possible system state, there is always exactly one live token in the SingleResourceMu-

tualExclusion system. 2

We have now shown that the SingleResourceMutualExclusion system fulfills our safety con-

dition—at most one Client is using the Resource at any point during the system’s execution.

We now show that it fulfills our progress condition, by ensuring that all Clients that are in the

waiting state eventually enter the busy state or leave the system.

Lemma 5.28 (Resource Process Serving Progress)

The Resource in the SingleResourceMutualExclusion system always eventually becomes idle.

R.busy ; R.idle

Proof

Assume R is busy, and remains so forever. R.current is a Client process, because only Client

processes send messages to R.requestIn (by inspection). We know from Theorem 5.3 that the

difference between the number of releases received by R from R.current and the number of

tokens sent by R to R.current is exactly the number of instances of R.current in R.releases

minus 1. We know that the number of instances of R.current in R.releases is zero, because if

it were not, R would become idle as shown in Theorem 5.6, contradicting our assumption. So

the number of tokens sent by R to R.current is exactly one greater than the number of releases

received by R from R.current , and no future release is ever received by R from R.current (since

this would lead to R becoming idle).

Because of the messaging connections of Theorem 5.21, this means that the number of

tokens received by R.current must become exactly one greater than the number of releases

sent by R.current and remain that way forever. However, R.current is a Client process, and

Corollary 5.16 tells us that if a Client process has received more tokens than it has sent releases,

it will eventually reach a state where it has received the same number of tokens as it has sent

112

releases. This is a contradiction, because it means that, eventually, R will receive another

release from R.current . R therefore cannot remain busy forever. 2

Theorem 5.29 (Global Progress)

All Client processes that are waiting to access the Resource in the SingleResourceMutualExclusion

system eventually either get access to the Resource or leave the system.

〈∀p | p ∈ P ∧ 〈∃r � p = Client(r)〉� p.waiting ; p.busy ∨ p.gone〉

Proof

Combining Theorems 5.5, 5.28 and 5.26 with the knowledge that request messages cannot be

overtaken once they are delivered to the Resource’s “requestIn” inbox tells us that every Client

that sends a request (that is, every client that enters the waiting state) will eventually be sent

a token. When this happens, the Client will have the opportunity to enter the busy state when

that token reaches its inbox, fulfilling the leads-to condition. Additionally, transition (5) of the

Client is an unfair transition that allows the Client to go from the waiting state to the gone

state. This also fulfills the leads-to condition. Since the busy state will eventually result in all

executions except those where the gone state results, the leads-to condition is always fulfilled.

2

113

Chapter 6

Nondeterministic Example 2: Dynamic
Drinking Philosophers

Our third and final example Dynamic UNITY system is a solution to a particular resource al-

location problem called the dynamic drinking philosophers problem. This example demon-

strates many of Dynamic UNITY’s features, as both clients and resources can enter and leave

the system, and the set of resources required by a particular client can change. It is also far

more complex than the previous example, which demonstrates the applicability of the Dynamic

UNITY formalism to more complex problems.

6.1 Problem Statement

Many systems exist where a single client requires simultaneous exclusive access to multiple

resources. For instance, a process running on a machine with a shared filesystem may need

write access to several files, and may not be able to complete its computation until it gets this

access. If this system is dynamic, both the set of running client processes and the set of files

in the filesystem may change.

The drinking philosophers problem [7], or drinkers problem, is a generalization of the dining

philosophers problem that models multiple resource mutual exclusion in static environments.

For this problem, a system consists of a set of processes (the philosophers), each of which can

be in one of three states: tranquil, thirsty and drinking. The only allowed state transitions are

tranquil → thirsty → drinking → tranquil, and it is guaranteed that no philosopher remains in

the drinking state forever. A nonempty set of resources (the beverages) is associated with each

philosopher that is in the thirsty or drinking state, and this set remains unchanged until that

philosopher becomes tranquil again; when a tranquil philosopher becomes thirsty, its set of

beverages may change. The problem is to ensure that no two philosophers who have a beverage

in common drink at the same time, and that every thirsty philosopher drinks eventually. This

114

is the same as ensuring that every process in a system eventually receives simultaneous access

to all the resources it requires to complete its computation.

The dynamic drinking philosophers problem extends the drinkers problem to model dy-

namic environments in the following way: instead of a static set of philosophers and a static

set of beverages, the system contains dynamic sets of both. Beverages may enter and leave

the system, and so may philosophers. We allow a beverage to leave the system at any time

when it is not being consumed, and we allow a philosopher to leave the system at any time.

The progress condition in this system is different from that of the traditional drinkers prob-

lem: since beverages and philosophers can leave the system at any time, we guarantee that a

thirsty philosopher will eventually drink or leave the system rather than guaranteeing that it

will eventually drink. In addition, we don’t guarantee that a thirsty philosopher receives all the

beverages in its beverage set. Instead, we guarantee that the thirsty philosopher receives all

the beverages in its beverage set that have not left the system. This is the same as ensuring

that every process in a system eventually receives simultaneous access to all of its requested

resources that still exist in the system. An alternative specification is one in which a process’s

request is cancelled when one or more of the resources it requests is no longer in the sys-

tem; our choice of specification is predicated on the assumption that obtaining some required

resources is often better than obtaining none.

We choose to solve this problem with an algorithm that uses tokens (which are also used in

most solutions to the traditional drinkers problem) and monotonically increasing local clocks

to handle mutual exclusion and request prioritization. These local clocks are not systemwide

logical clocks in the sense of Lamport [33] or Jefferson [28]—systemwide logical clocks guar-

antee causality of message ordering, while our clocks only guarantee that requests occur with

monotonically increasing timestamps.

Every beverage has a unique and indivisible token associated with it, and the holder of the

token has exclusive access to that beverage. Every philosopher in the system is implemented

as a separate Dynamic UNITY process with its own independent local clock, and local clock

times are used to prioritize requests for beverages and prevent deadlock. When a philosopher

becomes thirsty, it sends requests to all the beverages in its beverage set. When it receives the

tokens corresponding to all its beverages, it has exclusive access to the beverage set and can

drink.

The dynamic aspects of the system render the traditional drinking philosophers algorithm

insufficient to ensure system progress, even with the addition of logical clocks. Clearly, if a

philosopher were to simply disappear after requesting a set of beverages the system would

deadlock, because the beverage tokens would eventually be sent to the vanished philosopher

and would never be returned. Similarly, if a beverage were to leave the system while still

115

type
Request: record {philosopher: process, timestamp: integer}
Release: process
Token: process
Demand: process
BLeave: process
PLeave: process
BeverageSetRequest: process
BeverageSet: set {process}

Specification 6.1: Message types for the dynamic drinking philosophers system

being in the beverage sets of one or more philosophers the system would deadlock, because

the philosophers would be waiting for tokens that would never arrive. To account for these

situations in the dynamic system, we introduce an additional Dynamic UNITY process called

the coordinator that coordinates the entry and exit of processes to and from the system. Much

of the coordinator’s functionality is analogous to that of a distributed directory service, and

would be implemented as such in an actual distributed system; we choose to implement it as

a single Dynamic UNITY process for simplicity.

Every message passed in the system contains either one token or no tokens; there are no

multiple-token messages. In addition, every request message contains a timestamp that is

used to establish the priority of requests from different philosophers. We assume that time-

stamps from different philosophers are unique (that is, that no two messages from different

philosophers can have the same timestamp). This is a reasonable assumption, since it is always

possible to break timestamp ties using a systemwide unique identifier as a tiebreaker.

We specify the components of our system individually and give a high level description

of their behavior. We then prove a particular progress condition, namely that there exists a

metric that ensures that a thirsty philosopher will eventually reach the drinking state. We do

not carry out a full proof of the dynamic drinking philosophers system, as previous chapters

have already demonstrated our proof method in detail.

We first specify some message types that will be used for communication among the pro-

cesses in our system. This allows us to avoid replicating the same type-section in all three

programs. For the purposes of this discussion, we assume all messages in the system are of

one of these message types. This makes our programs less complicated, eliminating the need

to filter out messages of other unexpected types that may arrive on the inboxes.

116

6.2 Message Types

The message types of Specification 6.1 allow processes in a dynamic drinking philosophers

system to distinguish between messages that carry otherwise identically-typed information (6

of the 8 message types consist solely of a process reference). Request and Release are message

types sent from a philosopher to a beverage, to request a token and release a token; Token

and Demand are message types sent by a beverage to a philosopher, containing a token and a

demand for the return of its token; BLeave is a message type sent by a beverage to the coordina-

tor, and then by the coordinator to all philosophers in the system, announcing the beverage’s

departure from the system; PLeave is a message type sent by a philosopher to the coordinator

and the beverages, informing them of its departure from the system; BeverageSetRequest is a

message type sent by a philosopher to the coordinator requesting a new beverage set; and Bev-

erageSet is a message type sent by the coordinator to a philosopher containing a new beverage

set.

6.3 The Beverage Program

Each beverage (Specification 6.2) starts in a state where it is holding its own token. It continually

receives requests from philosophers, and services them in the following way. The requests are

sorted according to their timestamps, and the earliest timestamp is always serviced if possible.

If a new request comes in with an earlier timestamp than the one that is currently being serviced,

the beverage demands the token back from the philosopher to which it had last sent the token.

In this way, a priority queue of philosophers is established. Since the philosophers always

request their entire set of beverages with the same timestamp, this gives a global priority

to each philosopher and prevents deadlocks that could be caused by priority cycles among

philosophers competing for multiple beverages. A beverage can only leave the system when it

holds its own token (that is, when it is guaranteed to not be in use by a philosopher), and when

it does so, it sends a notification to the coordinator. This allows the coordinator to notify the

philosophers, so they can remove the beverage from their beverage sets.

6.4 The Philosopher Program

Each philosopher (Specifications 6.3–6.5) starts in the tranquil state. On a transition to the

thirsty state, it sends requests to all the beverages in its set and waits for the tokens corre-

sponding to them. These requests are all stamped with the philosopher’s current local time,

called the request time, and this time is also recorded locally in the philosopher’s state. It is pos-

117

program Beverage (coordinator: process)

declare
philosopherIn: inbox
requests: set {Request}
releases: set {Release}
current: Request
demandSent: boolean

always
idle , current = ⊥;
busy , ¬idle

initially
idle ∧ requests = ∅ ∧ releases = ∅ ∧ demandSent = false

fair-transition
(1) philosopherIn.probe ∧ philosopherIn.current.msg.type = Request −→

requests′ = requests ∪ {philosopherIn.current.msg} ∧
philosopherIn.advance

(2) [] philosopherIn.probe ∧ philosopherIn.current.msg.type = Release −→
releases′ = releases ∪ {philosopherIn.current.msg} ∧
philosopherIn.advance

(3) [] idle ∧ requests ≠ ∅ −→
〈∃ r | r ∈ requests ∧ r.timestamp = 〈min s | s ∈ requests � s.timestamp〉 �

current′ = r ∧ requests′ = requests \ {r} ∧
send(r.philosopher, “beverageIn”, Token(this))〉 ∧

demandSent′ = false
(4) [] busy ∧ 〈∃ r | r ∈ requests � r.timestamp < current.timestamp〉 ∧

¬demandSent −→
send(current.philosopher, “beverageIn”, Demand(this)) ∧
demandSent′ = true

(5) [] busy ∧ 〈∃ r | r ∈ releases � r.philosopher = current.philosopher〉 −→
releases′ =

releases \ {r | r ∈ releases � r.philosopher = current.philosopher} ∧
current = ⊥

unfair-transition
(6) idle −→ send(coordinator, “in”, BLeave(this)) ∧ stop

end

Specification 6.2: The Beverage program, part of the dynamic drinking philosophers system

118

program Philosopher (coordinator: process, initialBeverages: set {process},
initialTime: integer)

declare
beverageIn, coordinatorIn: inbox
beverages: set {process}
requests: set {process}
tokens: set {Token}
demands: set {Demand}
requestTime: integer
clock: integer
tranquil, thirsty, drinking: boolean

always
gone , ¬tranquil ∧¬thirsty ∧¬drinking

initially
beverages = initialBeverages ∧ tokens = ∅ ∧ demands = ∅ ∧
clock = initialTime ∧ tranquil = true ∧ thirsty = false ∧ drinking = false

fair-transition
(Specification 6.4)

unfair-transition
(Specification 6.5)

end

Specification 6.3: The Philosopher program, part of the dynamic drinking philosophers system

119

(1) beverageIn.probe ∧ beverageIn.current.msg.type = Token −→
tokens′ = tokens ∪ {beverageIn.current.msg} ∧ beverageIn.advance

(2) [] beverageIn.probe ∧ beverageIn.current.msg.type = Demand ∧
〈∃ t | t ∈ tokens � t.beverage = beverageIn.current.msg.beverage〉 −→

demands′ = demands ∪ {beverageIn.current.msg} ∧ beverageIn.advance
(3) [] beverageIn.probe ∧ beverageIn.current.msg.type = Demand ∧

¬〈∃ t | t ∈ tokens � t.beverage = beverageIn.current.msg.beverage〉 −→
beverageIn.advance

(4) [] coordinatorIn.probe ∧ coordinatorIn.current.type = BLeave −→
beverages′ = beverages \ {coordinatorIn.current.msg.beverage} ∧
coordinatorIn.advance

(5) [] tranquil ∧ coordinatorIn.probe ∧ coordinatorIn.current.type = BeverageSet −→
beverages′ = coordinatorIn.current.msg.beverages ∧ coordinatorIn.advance

(6) [] ¬tranquil ∧ coordinatorIn.probe ∧ coordinatorIn.current.type = BeverageSet −→
coordinatorIn.advance

(7) [] thirsty ∧ 〈∃ r | r ∈ beverages � r 6∈ requests〉 −→
requests′ = beverages ∧
send(〈, r | r ∈ beverages ∧ r 6∈ requests �

r, “philosopherIn”, Request(this, requestTime)〉)
(8) [] thirsty ∧ 〈∀ r | r ∈ beverages � 〈∃ t | t ∈ tokens � t.beverage = r〉〉 −→

thirsty′ = false ∧ drinking′ = true
(9) [] drinking −→

drinking′ = false ∧ tranquil′ = true ∧
send(〈, t | t ∈ tokens � t.beverage, “philosopherIn”, Release(this)〉) ∧
requests′ = ∅ ∧ demands′ = ∅ ∧ tokens′ = ∅

(10) [] ¬drinking ∧ 〈∃ d, t | d ∈ demands ∧ t ∈ tokens � t.beverage = d.beverage〉 −→
send(〈, d | d ∈ demands ∧ 〈∃ t | t ∈ tokens � t.beverage = d.beverage〉 �

d.beverage, “philosopherIn”, Release(this)〉) ∧
demands′ = demands \

{d | d ∈ demands ∧ 〈∃ t | t ∈ tokens � t.beverage = d.beverage〉} ∧
tokens′ = tokens \

{t | t ∈ tokens ∧ 〈∃ d | d ∈ demands � t.beverage = d.beverage〉} ∧
requests′ = requests \

{r | r ∈ requests ∧ 〈∃ d | d ∈ demands � r.beverage = d.beverage〉}
(11) [] clock′ = clock + 1

Specification 6.4: Fair transition section of the Philosopher program

(12) tranquil −→
requests′ = beverages ∧ tranquil′ = false ∧ thirsty′ = true ∧
requestTime′ = clock ∧ clock′ = clock + 1 ∧
send(〈, r | r ∈ beverages � r, “philosopherIn”, Request(this, clock)〉)

(13) [] tranquil ∧ beverages 6= ∅ −→
beverages′ = ∅ ∧ send(coordinator, “in”, BeverageSetRequest(this))

(14) [] tranquil −→ tranquil′ = false ∧ send(coordinator, “in”, PLeave(this)) ∧ stop
(15) [] thirsty ∨ drinking −→

thirsty′ = false ∧ drinking′ = false ∧
requests′ = ∅ ∧ tokens′ = ∅ ∧ demands′ = ∅ ∧
send(〈, r | r ∈ requests � r, “philosopherIn”, Release(this)〉) ∧
send(coordinator, “in”, PLeave(this)) ∧ stop

Specification 6.5: Unfair transition section of the Philosopher program

120

sible for the philosopher to receive a token and then subsequently have that token demanded

back by the beverage associated with it; if the philosopher is not already drinking when this

happens, it returns the token and makes another request with the same request time as it used

originally. In this way, philosophers maintain their global priority relative to the other philoso-

phers. When the philosopher holds the tokens of all its beverages, it enters the drinking state,

and when it leaves the drinking state it sends the tokens back and enters the tranquil state. A

philosopher can leave the system regardless of what state it is in, but it must send releases to

any beverages in its beverage set for which it has outstanding requests (regardless of whether

or not it holds the tokens for them). This prevents deadlock by ensuring that all the beverages

will get their tokens back, or will not send them out in the first place if a release arrives before

the corresponding request is serviced.

6.5 The Coordinator Program

program Coordinator

declare
in: inbox
beverages: set {process}
philosophers: set {process}
clock: integer

initially
beverages = ∅ ∧ philosophers = ∅ ∧ clock = 0

fair-transition
(1) in.probe ∧ in.current.msg.type = BLeave −→

beverages′ = beverages \ {in.current.msg.beverage} ∧
send(〈, p | p ∈ philosophers � p, “coordinatorIn”, in.current.msg〉)

(2) [] in.probe ∧ in.current.msg.type = PLeave −→
philosophers′ = philosophers \ {in.current.msg.philosopher}

(3) [] in.probe ∧ in.current.msg.type = BeverageSetRequest −→
s: s ⊆ beverages ∧

send(in.current.msg.philosopher, “coordinatorIn”, BeverageSet(s))
(4) [] clock′ = clock + 1

unfair-transition
(5) beverages′ = beverages ∪ {new Beverage(this)}
(6) [] s: s ⊆ beverages ∧

philosophers′ = philosophers ∪ {new Philosopher(this, s, clock)} ∧
clock′ = clock + 1

Specification 6.6: The Coordinator program, part of the dynamic drinking philosophers system

121

The function of the coordinator (Specification 6.6) is to model the resource discovery and

failure notification algorithms that would be used in an actual implementation of a dynamic

drinking philosophers system. It is essentially a directory service—it creates and keeps track

of all the system’s beverages and philosophers, and is responsible both for assigning beverage

sets to philosophers and for distributing notifications when a philosopher or beverage leaves

the system. When a beverage leaves the system, all the philosophers in the system are notified

of its departure so that the beverage can be removed from their beverage sets.

The coordinator, like the beverages and philosophers, has a local clock. This clock is used

to initialize the local clocks of newly created beverages and philosophers and is important

in preventing infinite overtaking of thirsty philosophers by new philosophers that enter the

system.

6.6 The Composed System

system DynamicDrinkingPhilosophers

initial-program Coordinator

program Beverage (coordinator: process, initialTime: integer)

program Philosopher (coordinator: process, initialBeverages: set {process},
initialTime: integer)

end

Specification 6.7: The DynamicDrinkingPhilosophers system

The composed system (Specification 6.7) contains a single coordinator, instantiated as the

initial process. We do not present a full proof of correctness for the system because most of the

concepts that would be illustrated by such a proof have already been demonstrated in previous

chapters. Instead, we give a partial proof that establishes the main progress property for the

system.

6.6.1 Partial Proof of Progress

We present a partial proof of system progress by formulating and proving the validity of a

progress metric that guarantees every thirsty philosopher will eventually drink or leave the

system. This is only a partial proof because we use an assumption about the token passing

behavior of the system in order to prove the correctness of our metric. In order to formulate

our metric, we first define and prove properties of the quantities that will be used in the metric.

122

For the remainder of this section, we denote the set of philosophers in a drinking philosophers

system by P, and the coordinator process in the system by c.

We first define a quantity that reflects the difference between a philosopher’s request time

and the coordinator’s local time, and prove that it is monotonically nonincreasing.

Definition 6.1 (Coordinator Difference) The coordinator difference for a thirsty philoso-

pher p, denoted CD(p), is the difference between p’s request time and the coordinator’s local time,

or 0, whichever is greater.

CD(p) , max(p.requestTime− c.clock,0)

Lemma 6.2 (Coordinator Difference Monotonicity)

CD(p) is monotonically nonincreasing.

〈∀k� CD(p) = k next CD(p) ≤ k〉

Proof

We prove this next property by examining the effect of every transition of the system’s programs

on CD(p), given that p is in the thirsty state.

Only two transitions of the Coordinator program, (4) and (6), modify c.clock. Both of these

transitions increment the value of c.clock by 1. Therefore, both of these transitions satisfy the

next property by reducing CD(p) (if it is greater than 0) or leaving it unchanged (if it is less

than or equal to 0). The transitions that do not modify c.clock satisfy the next property by

leaving CD(p) unchanged.

No transition of the Philosopher program modifies p.requestTime when p is in the thirsty

state. The one transition that modifies p.requestTime, (12), is enabled only in the tranquil state.

We have shown that every transition of the Coordinator and Philosopher programs either

leaves CD(p) unchanged or decreases it. No transition of any other program in the system

can modify CD(p), because it is calculated solely from state variables of the Philosopher and

Coordinator programs. Therefore, the next property holds. 2

Next, we define a quantity PD(p) that reflects the maximum number of times a philoso-

pher p can be overtaken by other philosophers currently in the system. We then show that

the lexicographic pair (CD(p),PD(p) is monotonically nondecreasing, and that its value must

eventually decrease if it is greater than (0, 0).

Definition 6.3 (Philosopher Difference) The maximum number of times a thirsty philoso-

pher p can be overtaken by another philosopher q in the system is the difference between p’s

request time and q’s local time, or 0, whichever is greater. The philosopher difference for a

123

thirsty philosopher p, denoted PD(p), is the maximum number of times a philosopher p can be

overtaken by all other philosophers in the system.

PD(p) , 〈Σq | q ∈ P � max(p.requestTime− q.clock,0)〉

Lemma 6.4 ((CD, PD) Monotonicity)

The lexicographic pair (CD(p),PD(p)) is monotonically nonincreasing.

〈∀k, l� (CD(p),PD(p)) = (k, l) next (CD(p),PD(p)) ≤ (k, l)〉

Proof

We prove this next property by examining the effect of every transition of the system’s programs

on (CD(p),PD(p)), given that p is in the thirsty state. We have already shown that CD(p) is

monotonically nonincreasing. Therefore, all we must show is that if PD(p) increases, there is

a corresponding decrease in CD(p).

We begin with the Philosopher program. Since no transition of p that is enabled when p is

in the thirsty state changes the value of p.requestTime, execution of any transition of p leaves

PD(p) unchanged. For every philosopher q in the system, where q 6= p, the transitions have

the following effects:

• Transitions (1) through (10), and (13), do not change q.clock and do not remove q from

the system. Therefore, they do not affect the value of PD(p).

• Transitions (11) and (12) each increase q.clock by 1, and do not remove q from the system.

Therefore, they either decrease PD(p) by 1 (if p.requestTime > q.clock) or leave its value

unchanged (if p.requestTime ≤ q.clock).

• Transitions (14) and (15) remove q from the system. Therefore, they either decrease PD(p)

(if p.requestTime > q.clock) or leave its value unchanged (if p.requestTime ≤ q.clock).

We continue with the Coordinator program. The transitions of the Coordinator program

have the following effects:

• Transitions (1) through (5) do not add new philosophers to the system. Therefore, they

do not affect the value of PD(p).

• Transition (6) increases c.clock by 1 and adds a new philosopher to the system. The new

philosopher’s clock value is initialized to the value of c.clock. Therefore, if p.requestTime

> c.clock, it increases PD(p) by the difference between them and decreases CD(p) by 1,

124

the net effect of which is to decrease (CD(p),PD(p)). If p.requestTime ≤ c.clock, it leaves

the values of both CD(p) and PD(p) unchanged.

We have shown that every transition of the Philosopher and Coordinator programs either

leaves (CD(p),PD(p)) unchanged or decreases it. No transition of any other program in the

system can modify (CD(p),PD(p)), because it is calculated solely from state variables of the

Philosopher and Coordinator programs. Therefore, the next property holds. 2

Lemma 6.5 ((CD, PD) Transience)

If (CD(p),PD(p)) > (0,0), it will eventually decrease.

〈∀k, l | k ≥ 0∧ l ≥ 0∧ (k, l) 6= (0,0)� transient.((CD(p),PD(p)) = (k, l))〉

Proof

We prove this transient property by examining the transitions of the Coordinator and Philoso-

pher programs. Transition (4) of the Coordinator program is a fair transition that is always

enabled, and that increases the value of c.clock by 1. Transition (11) of the Philosopher pro-

gram is a fair transition that is always enabled, and that increases the value of q.clock by 1 for

a philosopher q. Therefore, if (CD(p),PD(p)) > (0,0), execution of one of these transitions

will reduce its value. This is sufficient to prove the transient property. 2

Finally, we define a quantity HP(p) that reflects the number of thirsty philosophers in the

system with higher priority than a particular philosopher p. We then show that the lexico-

graphic triple (CD(p),PD(p),HP(p)) is monotonically nondecreasing.

Definition 6.6 (Higher Priority) A thirsty philosopher q has a higher priority than another

thirsty philosopher p if q’s request time is earlier than p’s request time. We denote the number

of philosophers in the system that have higher priority than p by HP(p).

HP(p) , 〈#q | q ∈ P ∧ (q.thirsty ∨ q.drinking)� q.requestTime < p.requestTime〉

Lemma 6.7 ((CD, PD, HP) Monotonicity)

The lexicographic triple (CD(p),PD(p),HP(p)) is monotonically nonincreasing.

〈∀k, l,m� (CD(p),PD(p),HP(p)) = (k, l,m) next (CD(p),PD(p),HP(p)) ≤ (k, l,m)〉

125

Proof

We prove this next property by examining the effect of every transition of the system’s programs

on (CD(p),PD(p),HP(p)), given that p is in the thirsty state. We have already shown that

(CD(p),PD(p)) is monotonically nonincreasing. Therefore, all we must show is that if HP(p)

increases, there is a corresponding decrease in (CD(p),PD(p)).

We begin with the Philosopher program. Since no transition of p that is enabled when p is

in the thirsty state changes the value of p.requestTime, execution of any transition of p leaves

HP(p) unchanged. For every philosopher q in the system, where q 6= p, the transitions have

the following effects:

• Transitions (1) through (7), (10), (11), and (13) do not change the state of q. Therefore,

they do not affect the value of HP(p).

• Transition (8) changes the state of q from thirsty to drinking. It does not affect the value

of HP(p), because HP(p) counts both thirsty and drinking philosophers.

• Transition (9) changes the state of q from drinking to tranquil. It therefore either de-

creases HP(p) by 1 (if q.requestTime < p.requestTime) or leaves its value unchanged (if

q.requestTime ≥ p.requestTime).

• Transition (12) changes the state of q from tranquil to drinking, and increments q.clock

by 1. Therefore, if q.clock < p.requestTime, it increases HP(p) by 1 and decreases

PD(p) by 1, the net effect of which is to decrease (CD(p),PD(p),HP(p)). If q.clock ≥
p.requestTime, it leaves the values of both HP(p) and PD(p) unchanged.

We have shown that every transition of the Philosopher program either leaves (CD(p),

PD(p), HP(p)) unchanged or decreases it. No transition of any other program in the sys-

tem can modify HP(p), because it is calculated solely from state variables of the Philosopher

program, and we have previously shown that (CD(p),PD(p)) is monotonically nondecreasing.

Therefore, the next property holds. 2

Having defined these quantities and proven monotonicity and transience properties for

them, we can use them to establish a progress metric as follows.

Theorem 6.8 (Progress Metric)

If p is a thirsty philosopher in a dynamic drinking philosophers system, the triple (CD(p), PD(p),

HP(p)) is a lexicographic progress metric for p.

M(p) , (CD(p),PD(p),HP(p))

126

Proof

To prove that M(p) is a progress metric, we need to show that M(p) has a lower bound, that

M(p) never increases, that if p doesn’t drink and doesn’t leave the system M(p) eventually

decreases, and that when M(p) has reached its lower bound p is guaranteed to either drink or

leave the system.

In this proof, we rely on properties of the Beverage and Philosopher programs that have not

been explicitly proven elsewhere; in a complete proof of the system, we would need to prove

these properties as well. In particular, we assume that if a philosopher retains the highest

priority long enough, it eventually receives all its tokens (and therefore eventually drinks).

This is a reasonable assumption, because we know that if a philosopher has the highest priority,

there are no other philosophers in the thirsty or drinking states that have earlier request times.

Therefore, that philosopher (which we call q) is either the current requestor or the head of the

request queue for every beverage in its beverage set. If q is the current requestor for a beverage

b, it either holds b’s token or will hold it when it arrives. If q is the head of b’s request queue

and some other philosopher r is b’s current requestor, b will demand the token back from r (if

necessary; it may receive it before making the demand) and then send it to q, which will then

be b’s current requestor. Finally, if q is the head of b’s request queue and b holds its token, q

will become b’s current requestor (if no other higher priority request arrives first). If no other

philosopher takes the highest priority away from q, eventually q will be the current requestor

for all its beverages and all the tokens for those beverages will reach q. If no demands are sent

in the meantime, which must be the case if q remains the highest priority philosopher, this

means that q will drink.

To show that M(p) has a lower bound, we need only examine its definition. Each field of

M(p) clearly has a lower bound of 0: CD is the maximum of an integer value and 0, PD is a sum

of such maxima, and HP is the number of processes in a system that satisfy certain constraints.

Therefore, M(p) has a lower bound at (0, 0, 0). This completes the first part of the proof.

From Lemma 6.7, we know that M(p) never increases. This completes the second part of

the proof.

Finally, we need to show that if p does not drink and does not leave the system, M(p)

eventually decreases, and that when M(p) has decreased to (0, 0, 0), p is guaranteed to drink

or leave the system.

From Lemma 6.5, we know that if CD(p) > 0 or PD(p) > 0, M(p) eventually decreases

(because (CD(p),PD(p)) eventually decreases). Therefore, if p does not drink or leave the

system, M(p) will eventually become (0, 0, k) for some k ≥ 0.

When this happens, there are k philosophers in the system with higher priority than p

(by definition), and each such philosopher q must have M(q) = (0,0, l), l < k. This is the

127

case because q.requestTime < p.requestTime if q has higher priority than p, and therefore

CD(q) ≤ CD(p) and PD(q) ≤ PD(p) by definition. Therefore, there must be one philosopher

r in the system with M(r) = (0,0,0). This philosopher is guaranteed to retain the highest

priority until it drinks or leaves the system, because if another philosopher obtained higher

priority, M(r) would have to increase, and we have proven that it cannot do so.

We have already assumed that a philosopher that retains the highest priority long enough

eventually receives all its tokens, so philosopher r must eventually drink or leave the system.

When it does either, HP(p) decreases. Therefore, if p does not drink and does not leave the

system, M(p) eventually decreases.

We have therefore shown both thatM(p) eventually decreases if p does not leave the system

and that a philosopher p for whichM(p) = (0,0,0) is guaranteed to drink or leave the system.

This completes the partial proof. 2

128

Chapter 7

Implementation of Dynamic UNITY
Systems

In this chapter, we present some basic techniques that can be used to transform Dynamic

UNITY programs and systems into executable code. While our focus is on the Java programming

language [30], the basic techniques presented are applicable to other programming languages

as well.

We first describe the feasibility of implementing Dynamic UNITY systems. We then describe

a framework of Java classes that provides the functionality of a Dynamic UNITY runtime system;

a full implementation of this framework that runs on a single Java Virtual Machine is found

in Appendix A. As an example of system translation using this framework, we present the

translation of the simple Dynamic UNITY program discussed in Chapter 2. A larger example,

the translation of the single resource mutual exclusion system from Chapter 5, is found in

Appendix B.

7.1 Feasibility

Many systems that can be specified in Dynamic UNITY can also be successfully implemented on

real computers, but there exist two classes of systems that cannot be implemented. One class

is comprised of those systems, such as the prime number sieve described in Chapter 4, that

would exceed any fixed amount of space if allowed to run long enough but that could otherwise

be implemented. The other class is comprised of those systems that have either malformed or

uncomputable transitions and can therefore not be implemented at all. Malformed transitions,

described in Section 2.2.6, either have unsatisfiable postconditions or are quantified over an

uncountable range. Uncomputable transitions, described in the same section, are transitions

whose guard or postcondition is uncomputable. It is clear that we cannot implement either

malformed or uncomputable transitions as executable code, no matter what programming lan-

129

guage or hardware platform we choose.

For systems in the former class, an implementation would (at least potentially) exhibit re-

source usage that grows without bound, and would therefore be of limited use. For systems in

the latter class, we cannot create any implementation at all. Therefore, it is important to deter-

mine whether a Dynamic UNITY system belongs to one of these two classes before attempting

an implementation.

This determination can be made by inspecting the program texts and correctness proofs of

the Dynamic UNITY system in question. From the program texts we can, in most cases, im-

mediately determine whether or not a system will contain an infinite set of processes running

simultaneously, create infinitely large data structures, or require the computation of uncom-

putable predicates during its execution. From the correctness proofs we can determine whether

all the transitions of the system have been proven satisfiable. Once we have made this deter-

mination, we may move on to actually translating the Dynamic UNITY system into a set of Java

classes.

7.2 Translation

In order to successfully translate a Dynamic UNITY system into a set of Java classes, we need

two important pieces of infrastructure. The first is a way of instantiating new processes. For

implementation on a single Java Virtual Machine, we can use a Java thread to represent each

process, but for implementation on a network of Java Virtual Machines we need an underlying

layer that handles process instantiation over a network. The Caltech Infospheres Infrastructure

[5, 6], a preliminary to this work, is an example of such an underlying layer where the network

in question is the Internet. Similar layers can be built using core Java technologies such as RMI

and Object Activation [67] or any of a number of third-party middleware products. We will

use syntax similar to Dynamic UNITY’s syntax for process creation, with the justification that

we can always implement a Java wrapper class that provides Dynamic UNITY process creation

syntax over any underlying process creation infrastructure.

The second required piece of infrastructure is a message passing system that provides se-

mantics equivalent to those of the Dynamic UNITY message passing system. One such system

is info.net, the messaging layer from the Infospheres Infrastructure; another, ÜberNet [68],

was implemented as a preliminary to this work. Both of these message passing systems im-

plement first-in first-out message sequencing between every outbox/inbox pair (in the case

of ÜberNet, other message sequencing semantics are also available). Since the Dynamic UNITY

message passing system does not include the concept of multiple outboxes per process, we will

explicitly use a single outbox for each process in our Java translation. We will otherwise use

130

syntax similar to Dynamic UNITY’s syntax for messaging (assuming again that we can provide

appropriate wrapper classes over any underlying infrastructure).

Once we have the infrastructure necessary for process instantiation and message passing,

we must translate the Dynamic UNITY data types into Java types and classes. Most Dynamic

UNITY data types—all except array, inbox, process, record and multiset—have direct ana-

logues in the standard Java distribution. The Java classes Serializable, Boolean, BigInteger,

BigDecimal, String, List and Set are exactly analogous to Dynamic UNITY types any, boolean,

integer, real, string, sequence and set. We assume the existence of additional classes Inbox

(part of our wrapper over the messaging infrastructure), Process (part of our wrapper over the

process creation infrastructure), and Multiset that are analogous to the Dynamic UNITY types

inbox, process and multiset respectively. We implement each instance of the Dynamic UNITY

record type as a Java class containing data members corresponding to those in the record in-

stance, and each instance of the Dynamic UNITY arraydim type as a nested List with dimension

dim—that is, an array2 would be a List in which every element is a List.

Throughout this chapter, we make the assumption that the Java classes comprising Dynamic

UNITY programs and systems are appropriately packaged; that is, our classes are defined in Java

packages such that their names do not conflict with the names of already-existing Java classes.

We also ignore exception handling, scoping keywords such as private and protected, and

method synchronization primitives. In Appendix A, we provide full, compilable source code

for a complete set of Dynamic UNITY runtime classes. That set of classes implements the

interfaces we describe in the remainder of this chapter, including all exception handling and

other constructs required by the Java language and runtime.

7.2.1 Translation of Transitions

The translation of Dynamic UNITY transitions into Java is straightforward in most cases, be-

cause a typical transition will translate to either an assignment statement or a set of assignment

statements. In cases where nondeterminism is present (disjunction in the postcondition), any

implementation—or a random choice among multiple implementations—that establishes the

postcondition is acceptable. The Dynamic UNITY operations stop and send are implemented

with the stop() and send() methods of Program, the base class for Dynamic UNITY programs

discussed in the next section. The creation of new processes is implemented using a static

method of the Process class called instantiate(), which takes as parameters a class name

(analogous to a program name) and an array of Serializable objects to be passed as parameters

to the new process.

131

Example 7.1 (Java translations of Dynamic UNITY transitions)

The following are some typical Dynamic UNITY transitions, along with one or more translations

of each into Java. Note that there may be more valid translations for each than are listed here.

1. A variable increment:

true −→ x′ = x + 1

x = x.add(BigInteger.ONE);

2. A conditional variable increment:

y > 5 −→ x′ = x + 1

if (y.compareTo(BigInteger.valueOf(5)) > 0)
{

x = x.add(BigInteger.ONE);
}

3. An intertwined variable increment (x and y are integer variables):

true −→ x′ = y + 5 ∧ y′ = x + 5

BigInteger temp = x.add(BigInteger.valueOf(5));
x = y.add(BigInteger.valueOf(5));
y = temp;

4. A nondeterministic variable increment (x is an integer variable):

true −→ x′ > x + 5

x = x.add(BigInteger.valueOf(6));

x = x.add(Math.abs(random.nextInt()) + 5);

5. A message send (dest is a variable of type process):

true −→ send(dest, "Vorlon", "Kosh")

send(dest, "Vorlon", "Kosh");

6. A guarded message receive (box is an inbox, msg is a variable of type any):

box.probe −→ msg′ = box.current.msg ∧ box.advance

132

if (box.probe())
{

msg = box.getCurrent().getMessage();
box.advance();

}

7. A process instantiation (the new process takes 2 parameters of type any, and a and b are

variables of some type):

true −→ p: p′ = new ExampleProcess(a, b)

Serializable[] parameters = new Serializable[2];
parameters[0] = a;
parameters[1] = b;
Process.instantiate("ExampleProcess", parameters);

Process.instantiate("ExampleProcess", new Serializable[2] {a, b});

8. A quantified transition (s is a set of integers, its Java equivalent is a sorted set, and last

is the most recent element of the set selected for execution; the method tailSet(i) on

a sorted set s returns the subset of s containing all members of s that are greater than

i):

〈[] i | i ∈ s � s′ = s \ {i}〉

if (s.isEmpty())
{

return;
}
SortedSet tailSet = s.tailSet(last.plus(BigInteger.ONE));
if (tailSet.isEmpty())
{

last = (BigInteger) s.first();
}
else
{

last = (BigInteger) tailSet.first();
}
s.remove(last);

7.2.2 Translation of Programs

To simplify the process of translating Dynamic UNITY programs, we use a Java base class, Pro-

gram, which includes functionality common to all Dynamic UNITY programs: implementations

133

of stop and send operations and execution of transitions from the fair- and unfair-transitions

sections. All translations of Dynamic UNITY programs will be subclasses of Program. The in-

terface for the Program class is as follows (all methods in this interface are called only by an

instantiation of a Program subclass on itself):

• void send(Process process, String inbox, Serializable message) enqueues a

copy of message for transmission to the destination inbox specified by process and

inbox. This implements the send operation as applied to a single message. Multiple

message sends are performed by calling this method multiple times.

• void stop() stops the process’s execution. This implements the stop operation.

• Process getProcess() returns the process’s reference. This implements the this oper-

ation.

• void initialize() can be overridden by subclasses to perform initialization tasks (im-

plementing the initially-section of the program), if necessary.

• void fairTransition() must be overridden by subclasses to implement the fair transi-

tion set. The implementation should pick one fair transition, in a manner consistent with

weak fairness, and execute it.

• void unfairTransition() can be overridden by subclasses to implement the unfair

transition set, if necessary. The implementation should pick one unfair transition and

execute it.

• boolean unfairCondition() can be overridden by subclasses to implement a schedul-

ing policy for unfair transitions. It is called every time the process is selected for execu-

tion; if it returns true, an unfair transition is executed, and otherwise a fair transition is

executed. In order to satisfy Dynamic UNITY execution semantics, unfairCondition()

must be constructed such that it will return false an infinite number of times when it is

called infinitely often. The default implementation always returns false so that no unfair

transitions are ever executed.

In order to translate a particular Dynamic UNITY program into Java, the Program class must

be subclassed. This subclass must conform to the following restrictions:

1. It has a single constructor, which takes one or two parameters. The first parameter is

always a Process object and the second parameter, present only for Dynamic UNITY pro-

grams that take parameters, is an array of Serializable objects. This constructor must

134

call the superclass constructor with the Process object. The call to the superclass con-

structor allows the Program superclass to initialize itself properly by creating its Outbox

and keeping a record of its associated Process object. If it takes an array of Serializable

objects containing the parameters to the Dynamic UNITY program as a second parameter,

the constructor must store these objects in some fashion so that they are accessible to

the program when it begins execution.

2. If the Dynamic UNITY program being implemented has an initially-section, it must imple-

ment the initialize() method in such a way that it initializes the Dynamic UNITY state

variables appropriately.

3. Its fairTransition() method is implemented such that all the fair transitions of the

Dynamic UNITY program are chosen in a manner consistent with weak fairness. One way

of doing this is to number the transitions and execute them in a round-robin fashion, so

that the first time the method is called it executes transition 0, the next time it executes

transition 1, etc. Another way of scheduling the transitions is to use a pseudorandom

number generator which is known to be periodic and to cover its range, and determine

the sequence of selected transitions from the generated random number sequence. Quan-

tified transitions should generally be treated as a single transition at the fair transition

level; when a quantified transition is selected, its scheduling can be handled either by se-

lecting all the transitions in the quantification in sequence or by selecting one in a weakly

fair manner.

4. Its unfairTransition() and unfairCondition() methods are implemented such that

the unfair transitions of the Dynamic UNITY program are chosen in arbitrary fashion. One

reasonable translation for any Dynamic UNITY program is the translation which leaves

out the unfair transitions entirely, since executions of Dynamic UNITY programs never

have to select unfair transitions. Another reasonable translation is to turn the unfair

transitions into fair transitions and subject them to the same weak fairness constraint as

the fair transition set. For robustness of possible execution sequences, these methods

can be implemented such that unfair transitions are chosen according to various criteria.

Example implementations include making unfairCondition() return true only when

the current time in milliseconds from the epoch is divisible by 100000, or using a random

number generator to determine whether an unfair transition gets executed at each step.

To illustrate the translation of a complete Dynamic UNITY program, we translate the pro-

gram presented in Example 2.12 into Java:

135

Example 7.2 (Translation of a single Dynamic UNITY program to Java)

The original Dynamic UNITY program is as follows:

program ExampleSystemComponent

declare

theSet: set {integer}

initially

theSet = ∅
fair-transition

(1) true −→ 〈∃ i | i 6∈ theSet � theSet′ = theSet ∪ {i}〉
(2) [] true −→ stop

(3) [] 〈[]i | i ∈ theSet � i ≥ 731 −→ p: p′ = new ExampleSystemComponent〉
end

The program translated to Java is seen below. We assume that the necessary packages

for the Java classes we use are properly imported, and that the Random class implements a

pseudorandom number generator which is periodic and covers its range.

Class 7.1 (A translation of an example program)

public class ExampleSystemComponent extends Program
{

// Instance Variables

int transition;
BigInteger last;
Random random;

// Dynamic UNITY Variables

Set theSet;

// Constructor

public ExampleSystemComponent(Process process)
{

super(process);

theSet = new TreeSet();

last = BigInteger.ZERO;
random = new Random();
start();

}

136

// Instance Methods

public void fairTransition()
{

transition = Random.nextInt(3);

switch (transition)
{

case 0:
{

BigInteger temp = new BigInteger(random.nextInt(), random);

while (theSet.contains(temp))
{
temp = new BigInteger(random.nextInt(), random);

}

theSet.add(temp);
break;

}

case 1:
{

stop();
break;

}

case 2:
{

if (theSet.isEmpty())
{
break;

}

SortedSet tailSet = theSet.tailSet(last.plus(BigInteger.ONE));

if (tailSet.isEmpty())
{
last = (BigInteger) theSet.first();

}
else
{
last = (BigInteger) tailSet.first();

}

if (last.compareTo(BigInteger.valueOf(731)) > 0)
{
Process newProcess =

Process.instantiate("ExampleSystemComponent");
}

}
}

}
}

137

We implement the weak fairness in our fair transition section by choosing the transitions

according to the sequence generated by our random number generator. In our handling of

the quantified transition, we use a Java class that implements a sorted set (TreeSet) and keep

track of the most recent value in the set whose corresponding transition was executed. This

allows us to iterate through the set in a fair manner, returning to the lowest value in the set after

executing the transition corresponding to the highest. This technique works well for quantified

transitions in general, provided that they are quantified over data types for which an ordering

relation exists.

7.2.3 Translation of Systems

To simplify the process of translating Dynamic UNITY systems, we use a Java base class, Sys-

tem, which includes functionality common to all Dynamic UNITY systems. Since a Dynamic

UNITY system is comprised of a set of a programs and the labelling of one of those programs

as “initial,” the System class is very small: all it contains is a constructor which instantiates

the initial program of a Dynamic UNITY system (using the Process class). All translations of

Dynamic UNITY systems will be subclasses of System that, in their constructors, call the su-

perclass constructor with the name of the initial program and the initial parameter list (if any).

A Dynamic UNITY system is then started by simply instantiating an object of the appropriate

class. Such subclasses will usually also contain a main() method, allowing them to be started

directly from a command-line environment.

To illustrate the translation of a Dynamic UNITY system, we translate the example system

from Example 2.12, which consists only of the initial program ExampleSystemComponent, into

Java.

Example 7.3 (Translation of a Dynamic UNITY system to Java)

The original Dynamic UNITY system (omitting the definition of the component program) is as

follows:

system ExampleSystem

initial-program ExampleSystemComponent

end

The system translated to Java is as follows:

138

Class 7.2 (A translation of an example system)

public class ExampleSystem extends System
{

// Constructor

public ExampleSystem()
{
super(‘‘ExampleSystemComponent’’, null);

}
}

More complex implementations of Dynamic UNITY systems are possible. For example, it

might be reasonable to construct an implementation of a system which keeps track of all the

processes running within it. However, more complex implementations are not necessary for

correctness.

139

Chapter 8

Related Work

In this chapter, we outline some related work and contrast Dynamic UNITY with some other

specification and proof methods for distributed systems.

8.1 Specification Methods

There are many different approaches to the specification of computer programs, both sequen-

tial and concurrent. Some of these form the basis of our approach to the specification of

dynamic distributed systems.

8.1.1 Axiomatic Specification

An axiomatic specification defines fundamental language constructs by axioms, which are then

used with inference rules to build more complicated language constructs. This approach was

first used by Floyd [19], and has been applied to sequential systems with great success. The

most commonly used forms of axiomatic specification for sequential programs are Hoare triples

[25, 26] and Dijkstra’s weakest preconditions [16, 17].

Axiomatic specification has also been applied to concurrent systems. For instance, Mar-

tin [42] gave an axiomatic definition of synchronization primitives in terms of boundedness,

progress, and fairness, Owicki and Gries [54, 53] extended Hoare triples with the requirement to

establish noninterference between threads of execution, and Lamport [34] extended Dijkstra’s

weakest preconditions with the notion of weakest and strongest invariants. Our assertions

(described in Section 3.1.2) are conceptually similar to Hoare triples.

Another method of specifications for concurrent systems is to define the behavior of a

particular component of the system given that the component’s environment (the rest of the

system) behaves in a specific way. That is, a particular component is required to behave cor-

rectly only if all other components in the system also do so. Various methods for specifying

140

component behavior in this way have been proposed, including rely-guarantee [29], hypothesis-

conclusion [8], assumption-commitment [14], offers-using [32], and assumption-guarantee [1].

Each of these methods imposes different restrictions on the types of behavior which can be

specified; for instance, Abadi and Lamport’s assumption-guarantee approach restricts the as-

sumptions on environment behavior to safety properties only. Chandy and Sanders’s “weakest

guarantee” method [9, 10] considers requirements on the entire system rather than just on

the environment of a particular component. It divides component properties into two types:

“exists-component,” properties that hold for the entire system if they hold for a single compo-

nent, and “all-component,” properties that hold for the entire system only if they hold for all

components. The properties we prove about Dynamic UNITY programs “in isolation” (that is,

in arbitrary environments) are examples of “exists-component” properties.

8.1.2 Temporal Logic

Temporal logic [60, 62] is a branch of modal logic which contains temporal operators in addi-

tion to the standard propositional logic operators (∧, ∨, ¬, ⇒). The use of temporal logic for

reasoning about computer system executions was first proposed by Kröger [31] for sequential

systems, and by Pneuli [58] for concurrent systems. Computations are viewed as sequences of

global states, and properties of the systems to which these sequences correspond are speci-

fied as temporal properties of the sequences. Different versions of temporal logic arise from

different formulations of the sets of sequences to which the temporal operators apply. For ex-

ample, sequences may be linear or branching, and may be finite or infinite. One commonly-used

version, sometimes called Manna-Pneuli theory [41, 40], is based on linear temporal logic.

There are multiple specification methods that incorporate temporal logic, including UNITY,

about which we have already written in detail. Lamport’s Temporal Logic of Actions (TLA) [35]

is a specification logic based on the fundamental temporal logic operators 2 (“always”) and 3

(“eventually”). TLA allows for the specification of both weak and strong fairness requirements

(as well as allowing specifications without fairness requirements), and also allows for stutter-

ing steps (as in UNITY and Dynamic UNITY). TLA+ [36] is a language for the specification of

concurrent systems that uses TLA as its logical foundation.

The fundamental operators of Dynamic UNITY (initially, next , transient) are based on

well-known operators in temporal logic. The derived operators of Dynamic UNITY (stable,

invariant, leads-to) can also be found in many temporal logic-based formalisms, while the

follows operator was originally presented by Sivilotti [66].

141

8.1.2.1 UNITY Variants

The UNITY language and logic has been extended and modified for various purposes since its

publication. One notable such extension is Mobile UNITY [63, 57], which aims to use UNITY-

based reasoning for systems with mobile processes. Mobile UNITY includes the concept, which

we use in Dynamic UNITY, of systems with component programs. It also includes special

operators for specifying component locations and the interactions between components which

share the same location.

Misra has modified UNITY since its original publication, most notably replacing the safety

operator unless with co (which is equivalent to Dynamic UNITY’s next) [47]. Misra has also

introduced a new multiprogramming model, called Seuss [48], which uses UNITY as its logical

foundation.

8.1.3 Other Specification Methods

The actor model of computation, originally proposed by Hewitt [24] and studied extensively

by Agha [2], shares many characteristics with Dynamic UNITY’s execution model. An actor is

a computational agent which communicates with other actors via fair asynchronous message

passing: every actor has a single “mail address” and a set of actions that can be executed in

response to receiving messages directed toward its mail address. These actions can include the

sending of messages to other actors whose addresses are known and the creation of new actors.

In addition, when receiving a message an actor must always specify a “replacement”—an actor

that will accept the next incoming message—that can process the next incoming message even

while the current one is still being processed by the original actor. Concurrency in the actor

model arises from the sending of multiple messages in response to a single incoming message,

and from the simultaneous handling of messages by actors and their replacements.

There are several key differences between actor computations and Dynamic UNITY execu-

tions: communication in Dynamic UNITY is more flexible, allowing multiple inboxes per process

instead of a single mail address; execution in Dynamic UNITY consists of atomic transitions,

which makes it unnecessary to explicitly handle race conditions and similar concurrency issues;

execution of transitions in Dynamic UNITY occurs continually according to a weak fairness re-

quirement, rather than solely in response to incoming messages; and Dynamic UNITY processes

can remove themselves from a running system during execution.

Milner’s Calculus for Communicating Systems (CCS) [43] is an algebraic process calculus

for the specification of systems of communicating processes. The π -calculus [44, 45] is a

generalization of CCS that allows the description of processes whose communication links

change during execution, which makes it well suited to the description of systems with mobile

142

components.

I/O automata [39, 38] model interacting distributed system components by simple state

machines in which the transitions are associated with named actions. These actions can be

input actions, output actions, or internal actions. The first two are used for communication

with an automaton’s environment, while the last is used for state changes within the automaton

itself. I/O automata are similar to Dynamic UNITY programs, in that they contain local state

and transitions. However, the I/O automata model does not allow for the dynamic instantiation

and destruction of automata, nor for changes in the communication patterns of already-existing

automata analogous to inbox creation.

8.2 Communication Models

Various communication models have been used to design and reason about systems of commu-

nicating processes. Hoare’s Communicating Sequential Processes (CSP) [26, 27] is a widely used

model in which processes communicate via synchronous channels (with one channel connect-

ing each pair of processes). A process sending a message to another process blocks until the

other process executes a receive action, and vice versa. Misra and Chandy [49] used a variant of

this model (with communications addressed to channels rather than to processes) to present

a proof method for networks of processes.

Generative communication [21] is the model of communication that underlies the Linda [20]

distributed programming language. In this model, messages are added as named tuples to a

shared “tuple space” where they remain until a process receives them. Among the applications

that have been implemented in Linda since its introduction is Lime [56], a system for developing

mobile applications whose formal semantic definition has been verified using Mobile UNITY.

The follows operator, introduced by Sivilotti [66], is a natural choice for characterizing the

behavior of asynchronous message passing systems upon which we have relied heavily in the

definition of the Dynamic UNITY message passing system. A similar operator, the observation,

is presented by Charpentier [12, 13].

Brock and Ackerman [4] present a proof that history relations (relations from input se-

quences to output sequences for message-passing processes) are insufficient to characterize

the behavior of non-determinate message passing processes; they show that temporal relation-

ships between input messages and output messages must also be considered when character-

izing process behavior. Our proofs use such temporal information, primarily in the form of

follows properties, to characterize the behavior of Dynamic UNITY processes.

143

8.3 “Stop” as a Failure Model

Various models have been proposed to reason about the behavior of computer systems which

exhibit failures. Though we have not explicitly addressed failure models, the stop command in

the Dynamic UNITY language is similar to a particular failure model, Schlicting and Schneider’s

[64] “fail-stop processor.” A fail-stop processor automatically halts execution in the presence

of a failure, before that failure becomes visible to external observers, and allows execution

to be restarted on a working processor. The “volatile” storage of a fail-stop processor is lost

during a failure, while the “stable” storage is unaffected. In contrast, the volatile state of a

Dynamic UNITY process can be changed by the message-passing system after a stop occurs,

while its non-volatile state remains unchanged. There is no way to restart a stopped process

in the current Dynamic UNITY language, so Dynamic UNITY’s stop does not completely model

a fail-stop processor. However, it can be used as a starting point for defining such a model.

144

Chapter 9

Conclusion

9.1 Summary

In this thesis we have described Dynamic UNITY, a new specification language and proof logic

for dynamic distributed systems. Our language and logic are extensions to the established

UNITY formalism, which enables us to apply proof techniques developed for UNITY in our

correctness proofs. In creating Dynamic UNITY, we made the following changes to the UNITY

language and proof logic:

• We introduced modularity, by making programs components of larger systems rather

than complete system specifications. This allows programs to be used as parts of various

distinct systems, without any changes to their specifications or proofs of correctness.

• We added the ability for processes to create new processes, and to destroy themselves,

at execution time. This enables us to design dynamic systems, which adapt to changing

conditions or requirements during their execution, in an intuitive fashion.

• We eliminated shared variables entirely, providing a measure of information hiding for

programs. This makes it possible to prove both safety and progress properties of a pro-

gram that hold for every possible instantiation of that program regardless of the behavior

of external processes. This facilitates the construction of modular correctness proofs for

complex systems.

• We introduced a reliable asynchronous message passing layer, as an integral part of the

new execution model. This eliminates the need for system architects to simulate message

channels with history variables, queues, or other mechanisms, and therefore simplifies

the construction of complex systems.

• We changed the notation for state transitions from guarded parallel assignment state-

ments to guarded binary predicates. This adds some flexibility to the language, and al-

145

lows us to focus on the desired results of transition statements rather than on the precise

set of assignment statements required to bring about those results. It also allows us to

more easily and intuitively incorporate nondeterministic behavior into our designs.

We have demonstrated the utility of Dynamic UNITY by designing and proving the correct-

ness of two example systems based on well-known algorithms—an infinite prime number sieve

and a single resource mutual exclusion system. As an example of a more complex distributed

systems problem, we presented a new, dynamic variant of the drinking philosophers problem;

we then designed and partially proved an example system that solves this problem. All three

of these example systems are dynamic, with component processes that enter and leave the

system at runtime.

We have also presented a method for determining whether a given Dynamic UNITY specifica-

tion can be transformed into an actual implementation in a standard programming language,

and a method for transforming those specifications that can. This makes Dynamic UNITY a

practical language for programming dynamic distributed systems, since a correct implementa-

tion can be guaranteed for any implementable Dynamic UNITY system.

9.2 Future Directions

There are many possible avenues of research to be pursued as extensions to this work. All of

them build on the formalism we have defined, and further our goal of enabling the construction

of correct dynamic distributed systems.

First, we could design and implement a compiler capable of transforming implementable

Dynamic UNITY specifications into either straight executable code or code in another high-

level language (such as Java). This would allow system designers to prototype in Dynamic

UNITY directly, and then later to perform optimizations on the implementations generated

by the compiler. It would also ensure the correctness of the generated implementations by

eliminating the possibility of human error in code transformation.

Another possibility is to implement tools to assist in formulating correctness proofs of

Dynamic UNITY systems. Theorem proving tools and environments, such as HOL [22], Coq

[61], Isabelle [55] and Nuprl [15], might be useful as a basis for such implementation. In fact,

some work on proving the correctness of UNITY systems using these tools has already been

done (such as HOL-UNITY [3]). Such tools would be very helpful, both by assisting in proof

formulation and in checking the validity of previously existing proofs.

There is also the possibility of using Dynamic UNITY to carry out proofs for programs in

other high-level programming languages (such as C++ or Java). We have already demonstrated

146

the translation of Dynamic UNITY programs to code in high-level languages, but translation in

the other direction is potentially even more useful. However, significant difficulties may arise

in performing this translation, such as dealing with complex control structures and exception

handling mechanisms.

Other possibilities arise when we consider potential future modifications to Dynamic UNITY

itself. These can be roughly divided into two categories: modifications which aid the construc-

tion and proof of large systems, and modifications which add capabilities to the Dynamic UNITY

language itself.

In the first category, we could introduce the ability to construct systems hierarchically, by

building “subsystems” comprised of a set of programs and a set of exported mailboxes. Just

as with programs, we could prove safety and progress properties about these subsystems in

arbitrary environments, and then integrate them into larger subsystems or top-level systems.

We could also devise a method for refinement, which would allow us to prove that particular

Dynamic UNITY specifications are refinements of other, higher-level specifications (and vice-

versa).

In the second category, we could introduce the object-oriented notion of inheritance, giving

the ability for programmers to extend existing Dynamic UNITY programs while preserving some

or all of their safety and progress properties. We could also introduce a stronger type system,

including typing of inboxes, which would allow programmers to worry less about receiving

messages of unexpected types from the environment and therefore reduce the work involved

in proving the behavior of programs in arbitrary environments.

147

Appendix A

Java Implementation of a Dynamic
UNITY Runtime Framework

The following Java classes comprise a complete Dynamic UNITY runtime framework that runs

in a single Java Virtual Machine. It implements the interface described in Chapter 7, and can

be used to build the example programs in that chapter and in Appendix B.

This runtime implementation does not use true asynchronous messaging; instead, it sim-

ulates asynchronous messaging by setting explicit arrival times for messages delivered to in-

boxes. This is done primarily for efficiency; since all the messages are staying within the same

Java Virtual Machine, it is more efficient to simulate asynchronous delivery than to actually use

additional Java threads to implement true asynchronous delivery.

The following sections each contain one of the seven classes that comprise the runtime

system, with a brief description of the class functionality. The Javadoc comments for these

classes have, for the most part, been left in the source code. This provides documentation for

the actual implementation choices that have been made.

A.1 System

System is the base class for translations of Dynamic UNITY systems. It implements the func-

tionality described in Section 7.2.3.

Class A.1 (System, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.io.Serializable;

public class System
{

// Constructors

148

public System(String initialProgram, Serializable[] initialParameters)
{

Process.instantiate(initialProgram, initialParameters);
}

public System(String initialProgram)
{

this(initialProgram, null);
}

}

A.2 Process

Process is the class that encapsulates a Dynamic UNITY process identifier. It also includes

utility methods for the creation and destruction of processes.

Class A.2 (Process, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.io.Serializable;
import java.lang.reflect.Constructor;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class Process implements Serializable
{

// Static Variables

/**
* An empty array of Serializable, used when constructing new processes.
**/

public static final Serializable[] EMPTY_SERIALIZABLE_ARRAY =
new Serializable[0];

/**
* A map from the system’s process references to threads.
**/

private static Map processTable =
Collections.synchronizedMap(new HashMap());

/**
* A map from the system’s threads to process references.
**/

149

private static Map threadTable =
Collections.synchronizedMap(new HashMap());

/**
* An integer value used to create unique process names.
**/

private static int processIDUniquenessValue = 0;

// Instance Variables

/**
* The ID string for this Process.
**/

private String id;

// Static Methods

/**
* Creates a new Dynamic UNITY process from the specified Dynamic UNITY
* program with the specified instantiation parameters, and returns a
* Process object identifying it.
*
* @param programName The fully qualified Java class name of the class
* that implements the Dynamic UNITY program to be instantiated.
* @param parameters An array of Serializable values to be used as
* instantiation parameters.
*
* @return a Process object identifying the new process, or null if
* something went wrong during the instantiation of the new process.
*
* @concurrency (GUARDED)
**/

public synchronized static Process
instantiate(String programName, Serializable[] parameters)

{
try
{

Class programClass = Class.forName(programName);
Constructor[] constructors = programClass.getConstructors();
Program newProgram = null;
Process newProcessID = getUniqueProcessID();

Object[] realParameters;

if (parameters == null)
{

realParameters = new Object[1];

150

realParameters[0] = newProcessID;
}
else
{

realParameters = new Object[2];
realParameters[0] = newProcessID;
realParameters[1] = parameters;

}

for (int i = 0; i < constructors.length; i++)
{

// try all the constructors; there really should be only one

try
{

newProgram =
(Program) constructors[i].newInstance(realParameters);

}
catch (Exception ex)
{

ex.printStackTrace();
}

}

if (newProgram != null)
{

// we created a new process, add it to the table and run it

Thread newThread = new Thread(newProgram);
processTable.put(newProcessID, newThread);
threadTable.put(newThread, newProcessID);
newThread.start();
return newProcessID;

}
else
{

return null;
}

}
catch (Exception e)
{

e.printStackTrace();
return null;

}
}

/**
* Creates a new Dynamic UNITY process from the specified Dynamic UNITY
* program with no instantiation parameters, and returns a Process
* object identifying it.
*
* @param programName The fully qualified Java class name of the class
* that implements the Dynamic UNITY program to be instantiated.

151

* @return a Process object identifying the new process, or null if
* something went wrong during the instantiation of the new process.
*
* @concurrency (GUARDED)
**/

public synchronized static Process instantiate(String programName)
{

return instantiate(programName, null);
}

/**
* Destroys a Dynamic UNITY process by removing it from the process table
* and notifies the Inbox class of the process’s destruction. If the
* specified process has already been destroyed, this method has no
* effect.
*
* @param The Process object identifying the process to be destroyed.
**/

static void destroy(Process process)
{

threadTable.remove(processTable.get(process));
processTable.remove(process);
Inbox.removeProcess(process);

}

/**
* @return an unmodifiable view of the process table. This is for use
* primarily by the Inbox class.
**/

static Map getProcessTable()
{

return Collections.unmodifiableMap(processTable);
}

/**
* @return an unmodifiable view of the thread table. This is for use
* primarily by the Inbox class.
**/

static Map getThreadTable()
{

return Collections.unmodifiableMap(threadTable);
}

/**
* @return a new unique process ID.
**/

152

private static Process getUniqueProcessID()
{

Process processID =
new Process(java.lang.System.currentTimeMillis() +

"-" + processIDUniquenessValue);

if (processIDUniquenessValue < Integer.MAX_VALUE - 1)
{

processIDUniquenessValue = processIDUniquenessValue + 1;
}
else
{

processIDUniquenessValue = 0;
}

return processID;
}

// Constructor

/**
* Constructs a new Process object with the specified process identifier.
*
* @param id The process identifier.
**/

private Process(String id)
{

this.id = id;
}

// Inherited Instance Methods

/**
* @return a hash code for this object.
**/

public int hashCode()
{

return id.hashCode();
}

/**
* @return true if this object is equivalent to the specified object,
* false otherwise.
**/

public boolean equals(Object object)
{

if ((object != null) && (object.getClass().equals(this.getClass())))

153

{
Process otherProcess = (Process) object;

if (id == null)
{

return (otherProcess.id == null);
}
else
{

return (id.equals(otherProcess.id));
}

}
else
{

return false;
}

}

// No Instance Methods
}

A.3 Program

Program is the base class for translations of Dynamic UNITY programs, implementing the

interface described in Section 7.2.2. This implementation relies on certain features of Java and

the message passing system, and on the implementor of its subclasses, to ensure that weak

fairness is maintained in the translation of a Dynamic UNITY program. Specifically, it relies on

the fact that Java chooses threads for execution from a run queue and so, if all threads contain

appropriately-placed yield() statements, no thread will ever be starved for execution time. It

also relies on the fairness of the message passing system—all sent messages must be delivered

to their destinations in finite time assuming that the destinations exist.

Class A.3 (Program, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.io.Serializable;

public abstract class Program implements Runnable
{

// Instance Variables

/**
* A flag indicating whether or not this instantiation of the Program
* is running.
**/

154

private boolean running;

/**
* The Outbox used by this instantiation of the Program.
**/

private Outbox outbox;

/**
* The Process reference corresponding to this instantiation of the
* Program.
**/

private Process process;

// Constructor

public Program(Process process)
{

this.process = process;
outbox = new Outbox(process);
running = true;

}

// Inherited Instance Methods

/**
* The main run loop of a Dynamic UNITY process.
**/

public void run()
{

initialize();

while (running)
{

if (unfairCondition())
{

unfairTransition();
}
else
{

fairTransition();
}

Thread.yield();
}

}

155

// Instance Methods

/**
* Sends a message on the outbox. This implements the Dynamic UNITY
* send operation.
**/

protected void send(Process process, String inbox, Serializable message)
{

outbox.send(process, inbox, message);
}

/**
* Stops the execution of this instantiation of the Program.
**/

protected void stop()
{

running = false;
Process.destroy(process);

}

/**
* @return true if this instantiation of the Program is running,
* and false if it has been stopped.
**/

public boolean isRunning()
{

return running;
}

/**
* @return the Process object associated with this instantiation of the
* Program.
**/

public Process getProcess()
{

return process;
}

/**
* An abstract method that must be overridden by subclasses to implement
* initialization. This method should assign initial values to variables,
* as appropriate.
**/

protected abstract void initialize();

156

/**
* An abstract method that must be overridden by subclasses to implement
* the fair transition set. This method should pick one fair transition
* in a manner consistent with weak fairness and execute it.
**/

protected abstract void fairTransition();

/**
* A method with no body that can be overridden by subclasses to
* implement the selection of unfair transitions. If overridden, this
* method should select a single unfair transition and execute it.
**/

protected void unfairTransition() {}

/**
* A method that can be overridden by subclasses to determine the
* scheduling policy for unfair transitions. This method is called every
* time through the main run loop. If it returns true, an unfair
* transition is executed; otherwise, a fair transition is executed. It
* should therefore return false most of the time. By default, it always
* returns false (meaning that no unfair transitions are ever executed).
**/

protected boolean unfairCondition()
{

return false;
}

}

A.4 Outbox

Outbox is the class that handles sending messages within a Dynamic UNITY system. As men-

tioned previously, we simulate asynchronous message delivery by explicitly placing timestamps

on messages. The Outbox implementation is responsible for adding these timestamps, and en-

sures that messages sent from the same Outbox instance have monotonically increasing time-

stamps.

Class A.4 (Outbox, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.io.Serializable;
import java.util.Random;

157

class Outbox
{

// Static Variables

/**
* The maximum message delivery delay, in milliseconds.
**/

static final int MAX_DELAY = 10000;

/**
* The minimum delay between message deliveries, in milliseconds.
**/

static final int MIN_DELAY = 10;

// Instance Variables

/**
* The process to which this Outbox belongs.
**/

private Process process = null;

/**
* The last timestamp that was attached to a message sent by this
* Outbox.
**/

private long lastTimestamp = 0;

/**
* The random number generator used by this Outbox.
**/

private Random random = new Random();

// Constructor

/**
* Constructs a new Outbox belonging to the specified process.
*
* @param process The process.
**/

Outbox(Process process)
{

this.process = process;
}

158

// Instance Methods

/**
* Sends a message with the specified contents to the specified inbox
* of the specified process.
*
* @param process The destination process.
* @param inbox The name of the destination inbox.
* @param message The message contents.
*
* @concurrency (GUARDED)
**/

synchronized void send
(Process destination, String inbox, Serializable message)

{
int delay = random.nextInt(MAX_DELAY);
long timestamp =

Math.max(java.lang.System.currentTimeMillis() + delay,
lastTimestamp + MIN_DELAY);

lastTimestamp = timestamp;

Message packagedMessage = new Message(process, message, timestamp);

Inbox.deliver(destination, inbox, packagedMessage);
}

}

A.5 Inbox

Inbox is the class that handles message delivery queues in a Dynamic UNITY system. The Inbox

implementation guarantees that messages are received roughly in order of their timestamps.

More precisely, it guarantees that the current message is always the delivered message with the

earliest timestamp, but not that there are no undelivered messages with earlier timestamps.

This satisfies the first-in first-out requirement for all outbox-inbox pairs, since no outbox ever

sends messages with out-of-order timestamps.

Class A.5 (Inbox, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

159

public class Inbox
{

// Static Variables

/**
* A map from process references to maps from inbox names to Inbox
* objects.
**/

private static Map inboxMapTable =
Collections.synchronizedMap(new HashMap());

// Instance Variables

/**
* The List of messages in this Inbox.
**/

private List messageList = new ArrayList();

/**
* The message pointer of this Inbox.
**/

private int messagePointer = 0;

// Static Methods

/**
* Delivers a message to the Inbox with the specified name belonging to
* the specified process. If the specified process exists but does not
* have an Inbox with the specified name, one is created. If the
* specified process does not exist in the system, the message is
* discarded.
*
* @param destination The destination process.
* @param inboxName The destination inbox name.
* @param message The message.
**/

static void deliver
(Process destination, String inboxName, Message message)

{
if (Process.getProcessTable().containsKey(destination))
{

Map inboxMap;
Inbox inbox;

synchronized (inboxMapTable)
{
inboxMap = (Map) inboxMapTable.get(destination);

160

if (inboxMap == null)
{

inboxMap = Collections.synchronizedMap(new HashMap());
inboxMapTable.put(destination, inboxMap);

}
}

synchronized (inboxMap)
{

inbox = (Inbox) inboxMap.get(inboxName);

if (inbox == null)
{

inbox = new Inbox(destination, inboxName);
}

}

inbox.enqueue(message);
}

}

/**
* Removes a process’s inboxes from the system.
*
* @param process The process.
**/

static void removeProcess(Process process)
{

inboxMapTable.remove(process);
}

// Constructors

/**
* Constructs a new Inbox with the specified name belonging to the
* process whose thread calls the constructor. If an Inbox with the
* specified name already exists for this process, the constructed Inbox
* is an exact duplicate of it.
*
* @param name The inbox name.
* @exception SecurityException if the thread calling this constructor
* is not known to the Dynamic UNITY runtime.
**/

public Inbox(String name)
throws IllegalArgumentException

{
Map threadTable = (Map) Process.getThreadTable();
Process process = (Process) threadTable.get(Thread.currentThread());

161

if (process == null)
{

throw new SecurityException
("Inbox constructor called from unknown thread.");

}

synchronized (inboxMapTable)
{

Map inboxMap = (Map) inboxMapTable.get(process);

if (inboxMap != null)
{

synchronized (inboxMap)
{

Inbox oldInbox = (Inbox) inboxMap.get(name);

if (oldInbox != null)
{
this.messageList = oldInbox.messageList;

}

inboxMap.put(name, this);
}

}
else
{

inboxMap = Collections.synchronizedMap(new HashMap());
inboxMap.put(name, this);
inboxMapTable.put(process, inboxMap);

}
}

}

/**
* Constructs a new Inbox with the specified name belonging to the
* specified process. It is assumed that the process already exists,
* that no Inbox with the specified name exists for the process, and
* that the calling thread holds locks for both the inbox map table and
* the process’s inbox map.
*
* This method is only called by the Inbox class.
*
* @param process The process.
* @param name The inbox name.
**/

private Inbox(Process process, String name)
{

inboxMapTable.put(name, this);
}

162

// Instance Methods

/**
* Enqueues a message in this Inbox. This method is only called by
* the Inbox class.
*
* @param message The message.
*
* @concurrency (GUARDED)
**/

private synchronized void enqueue(Message message)
{

messageList.add(message);
Collections.sort(messageList);

}

/**
* @return true if there is at least one message waiting to be
* read from this Inbox.
*
* @concurrency (GUARDED)
**/

public synchronized boolean probe()
{

while ((messagePointer > 0) && (messageList.size() > 0))
{

messageList.remove(0);
messagePointer = messagePointer - 1;

}

return ((messageList.size() > 0) &&
(((Message) messageList.get(0)).timestamp() <=
java.lang.System.currentTimeMillis()));

}

/**
* @return the current message from this Inbox. If there is no
* current message (i.e. if probe() returns false), this method
* returns null.
*
* @concurrency (GUARDED)
**/

public synchronized Message current()
{

if (probe())
{

return (Message) messageList.get(0);
}
else

163

{
return null;

}
}

/**
* Advances this Inbox’s message pointer.
*
* @concurrency (GUARDED)
**/

public synchronized void advance()
{

if (messageList.size() > 0)
{

messageList.remove(0);
}
else
{

messagePointer = messagePointer + 1;
}

}
}

A.6 Message

Message is the class that encapsulates a Dynamic UNITY message. It includes methods that

allow Dynamic UNITY programs to retrieve a reference to the sender of a message, and to

retrieve the contents of the message (as a Serializable). The implementation also includes a

timestamp, to enable the simulation of asynchronous message delivery within a single virtual

machine.

Class A.6 (Message, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.io.Serializable;

public class Message implements Serializable, Comparable
{

// Instance Variables

/**
* The Process that sent this message.
**/

private Process process;

164

/**
* The contents of this message.
**/

private Serializable message;

/**
* The timestamp of this message.
**/

private long timestamp;

// Constructor

/**
* Constructs a new Message with the specified sending process, message
* contents and timestamp.
*
* @param process The sending process.
* @param message The message contents.
* @param timestamp The timestamp.
**/

public Message(Process process, Serializable message, long timestamp)
{

this.process = process;
this.message = message;
this.timestamp = timestamp;

}

// Inherited Instance Methods

/**
* Compares this object with the specified object for order. Messages are
* ordered strictly according to their timestamps (their sending
* processes and contents are not used for ordering).
*
* @param object The other object.
*
* @exception ClassCastException if the specified object cannot be
* compared to this object.
**/

public int compareTo(Object object)
{

Message otherMessage = (Message) object;

if ((timestamp - otherMessage.timestamp) < 0)

165

{
return -1;

}
else if (timestamp == otherMessage.timestamp)
{

return 0;
}
else
{

return 1;
}

}

// Instance Methods

/**
* @return the Process object identifying the sender of this Message.
**/

public Process process()
{

return process;
}

/**
* @return the contents of this Message.
**/

public Serializable message()
{

return message;
}

/**
* @return the timestamp of this Message.
**/

long timestamp()
{

return timestamp;
}

}

166

A.7 Multiset

Multiset is the class that implements the Dynamic UNITY multiset data type. It uses the stan-

dard Java Collections class HashMap to store a mapping from each element of the multiset to

the number of instances of that element in the multiset.

Class A.7 (Multiset, part of a Dynamic UNITY runtime framework)

package dynamicunity;

import java.io.Serializable;
import java.util.HashMap;

public class Multiset implements Serializable
{

// Instance Variables

/**
* A HashMap containing the data members of this Multiset. The keys
* are the data members, and the values are the number of occurrences
* of each in the Multiset.
**/

private HashMap setMap = new HashMap();

/**
* The size of the Multiset. This is cached for performance reasons.
**/

private int size = 0;

// No Constructor

// Instance Methods

/**
* Adds the specified element to the Multiset.
*
* @param element The element to add.
*
* @concurrency (GUARDED)
**/

public synchronized void add(Object element)
{

Integer numberInSet = (Integer) setMap.get(element);

if (numberInSet == null)

167

{
setMap.put(element, new Integer(1));

}
else
{

setMap.put(element, new Integer(numberInSet.intValue() + 1));
}

size = size + 1;
}

/**
* Removes one occurrence of the specified element from the Multiset.
*
* @param element The element to remove.
* @return true if an element was removed from the Multiset,
* false otherwise.
*
* @concurrency (GUARDED)
**/

public synchronized boolean remove(Object element)
{

Integer numberInSet = (Integer) setMap.get(element);

if (numberInSet == null)
{

return false;
}
else if (numberInSet.intValue() == 1)
{

setMap.remove(element);
return true;

}
else
{

setMap.put(element, new Integer(numberInSet.intValue() + 1));
return true;

}
}

/**
* Removes all occurences of the specified element from the Multiset.
*
* @param element The element to remove.
* @return the number of occurences removed from the Multiset.
**/

public synchronized int removeAll(Object element)
{

Integer numberInSet = (Integer) setMap.get(element);

168

if (numberInSet == null)
{

return 0;
}
else
{

setMap.remove(element);
size = size - numberInSet.intValue();
return numberInSet.intValue();

}
}

/**
* @return true if the Multiset contains the specified element,
* false otherwise.
**/

public boolean contains(Object element)
{

return setMap.containsKey(element);
}

/**
* @return the number of elements in the Multiset.
**/

public synchronized int size()
{

return size;
}

/**
* @return the number of occurrences of the specified element in the
* Multiset.
**/

public synchronized int numberOf(Object element)
{

Integer numberInSet = (Integer) setMap.get(element);

if (numberInSet == null)
{

return 0;
}
else
{

return numberInSet.intValue();
}

}
}

169

Appendix B

Java Implementation of the Mutual
Exclusion Example

The following Java classes implement a translation of the mutual exclusion example from Chap-

ter 5:

B.1 The Resource Program

The Resource program contains only fair, unquantified transitions. Therefore, it is reasonable

to implement it using a simple round-robin scheduling approach.

Class B.1 (A translation of the Resource program)

package dynamicunity.srme;

import dynamicunity.Inbox;
import dynamicunity.Multiset;
import dynamicunity.Process;
import dynamicunity.Program;

public class Resource extends Program
{

// Instance Variables

/**
* A counter used for iterating through the transitions.
**/

private int transitionCounter;

// Dynamic UNITY Variables

/**
* The "requestIn" inbox.
**/

170

protected Inbox requestIn;

/**
* The "releaseIn" inbox.
**/

protected Inbox releaseIn;

/**
* A multiset that holds releases for processing.
**/

protected Multiset releases;

/**
* The Process that currently holds the Resource.
**/

protected Process current;

// Constructor

/**
* Constructs a new Resource with the specified Process reference.
*
* @param process The process reference.
**/

public Resource(Process process)
{

super(process);
}

// Instance Methods

/**
* Initializes the state of the Dynamic UNITY variables.
**/

public void initialize()
{

requestIn = new Inbox("requestIn");
releaseIn = new Inbox("releaseIn");

releases = new Multiset();
current = null;

171

transitionCounter = 0;
}

/**
* Implements the fair transition set. This implementation executes
* the 3 fair transitions in a round-robin fashion.
**/

public void fairTransition()
{

switch (transitionCounter)
{

case 0:
{

if ((current == null) && requestIn.probe())
{

current = requestIn.current().process();
requestIn.advance();
send(current, "tokenIn", null);

}

break;
}

case 1:
{

if ((current != null) && releases.contains(current))
{

releases.remove(current);
current = null;

}

break;
}

case 2:
{

if (releaseIn.probe())
{

releases.add(releaseIn.current().process());
releaseIn.advance();

}
}

}

transitionCounter = (transitionCounter + 1) % 3;
}

}

172

B.2 The Client Program

The Client program contains both fair and unfair transitions. While an implementation which

simply omits the unfair transitions would be correct, it would not be interesting because it

would never request the use of the resource. We therefore want to ensure that the unfair

transitions at least have a chance to run. Moreover, we want to ensure that the client holds on

to the resource for a variable amount of time, rather than instantly sending it back due to round-

robin scheduling of its fair transitions. To accomplish this, we introduce some randomness to

the scheduling of transitions. Unfair transitions are scheduled randomly (amongst themselves),

with an unfair transition being selected with increasing probability after a random amount of

time has passed since the last unfair transition was selected. There are only two fair transitions,

so we repeatedly select one a random number of times, and then repeatedly select the other

a random number of times, and repeat this cycle. Of course, unfair transitions can execute in

between the repeated fair transitions.

Class B.2 (A translation of the Client program)

package dynamicunity.srme;

import java.io.Serializable;
import java.util.Random;

import dynamicunity.Inbox;
import dynamicunity.Process;
import dynamicunity.Program;

public class Client extends Program
{

// Instance Variables

/**
* The time, in milliseconds past the epoch, at which the Client will
* release the token if it currently holds one.
**/

private long fairTransitionSwitchTime;

/**
* The time, in milliseconds past the epoch, before which the Client
* will not execute an unfair transition.
**/

private long unfairTransitionThresholdTime;

173

/**
* The random number generator used to select unfair transitions.
**/

Random random;

// Dynamic UNITY Variables

/**
* The Resource process with which this Client communicates.
**/

protected final Process resource;

/**
* A flag indicating that this Client is idle.
**/

protected boolean idle;

/**
* A flag indicating that this Client is waiting.
**/

protected boolean waiting;

/**
* A flag indicating that this Client is busy.
**/

protected boolean busy;

/**
* The "tokenIn" inbox.
**/

protected Inbox tokenIn;

// Constructor

/**
* Constructs a new Client with the specified Process reference and
* initialization parameters.
*
* @param process The process reference.
* @param parameters The parameters.
**/

174

public Client(Process process, Serializable[] parameters)
{

super(process);

// store parameters

resource = (Process) parameters[0];
}

// Instance Methods

/**
* Initializes the state of the Dynamic UNITY variables.
**/

public void initialize()
{

tokenIn = new Inbox("tokenIn");

idle = true;
waiting = false;
busy = false;

random = new Random();
fairTransitionSwitchTime =

System.currentTimeMillis() + 1000 + random.nextInt(1190000);
unfairTransitionNumber = 0;
unfairTransitionThresholdTime =

System.currentTimeMillis() + random.nextInt(60000);
}

/**
* Implements the fair transition set. This implementation uses a time
* threshold to determine when to execute each transition.
**/

public void fairTransition()
{

if (System.currentTimeMillis() < fairTransitionSwitchTime)
{

// transition 0

if (waiting && tokenIn.probe())
{

waiting = false;
busy = true;
tokenIn.advance();
System.out.println(getProcess() + " received token, now busy");

// keep the token at least one second, and at most 2 minutes

175

fairTransitionSwitchTime =
System.currentTimeMillis() + 1000 + random.nextInt(119000);

}
}
else
{

// transition 1

if (busy)
{

busy = false;
idle = true;
send(resource, "releaseIn", null);
System.out.println(getProcess() + " sent token, now idle");

}

fairTransitionSwitchTime =
System.currentTimeMillis() + random.nextInt(60000);

}
}

/**
* Implements the unfair transition set. This implementation randomly
* selects an unfair transition.
**/

public void unfairTransition()
{

int unfairTransitionNumber = random.nextInt(4);

switch (unfairTransitionNumber)
{

case 0:
{

if (idle)
{

idle = false;
waiting = true;
send(resource, "requestIn", null);
System.out.println(getProcess() + " sent request, now waiting");

}

break;
}

case 1:
{

if (idle)
{

idle = false;
System.out.println(getProcess() + " leaving system from idle");
stop();

}

176

break;
}

case 2:
{

if (waiting)
{

waiting = false;
send(resource, "releaseIn", null);

System.out.println
(getProcess() + " leaving system from waiting");

stop();
}

break;
}

case 3:
{

if (busy)
{

busy = false;
send(resource, "releaseIn", null);
System.out.println(getProcess() + " leaving system from busy");
stop();

}
}

}

unfairTransitionThresholdTime =
System.currentTimeMillis() + random.nextInt(60000);

}

/**
* Imposes the restriction that unfair transitions can not be executed
* more often than once per minute.
**/

public boolean unfairCondition()
{

// execute an unfair transition with a probability based on the
// amount of time by which we’ve exceeded the threshold time;
// if we’re 100 seconds past the threshold time, we’ll execute
// an unfair transition

long currentTime = System.currentTimeMillis();

if (currentTime < unfairTransitionThresholdTime)
{

return false;
}

177

long probability =
(currentTime - unfairTransitionThresholdTime) / 1000;

if (probability > random.nextInt(100))
{

return true;
}
else
{

return false;
}

}
}

B.3 The Generator Program

The Generator program contains a single fair transition that creates a new Client process. We

use a randomly generated “sleep” period between 10 seconds and 2 minutes to simulate the

execution of skip transitions so that the Generator doesn’t create new Client processes too

rapidly. We also keep a parameter list consisting of a single parameter, the resource, as an

instance variable. This prevents us from having to construct a new 1-element array every time

the fair transition executes.

Class B.3 (A translation of the Generator program)

package dynamicunity.srme;

import java.io.Serializable;
import java.util.Random;

import dynamicunity.Inbox;
import dynamicunity.Process;
import dynamicunity.Program;

public class Generator extends Program
{

// Instance Variables

/**
* The random number generator used for determining the sleep
* period between transitions.
**/

Random random;

/**
* The initialization parameters to be passed to Clients created
* by this Generator.
**/

178

Serializable[] parameter = new Serializable[1];

// Dynamic UNITY Variables

/**
* The Resource process created by this Generator.
**/

protected Process resource;

// Constructor

/**
* Constructs a new Generator with the specified Process reference.
**/

public Generator(Process process)
{

super(process);
}

// Instance Methods

/**
* Initializes the state of the Dynamic UNITY variables.
**/

public void initialize()
{

resource = Process.instantiate("dynamicunity.srme.Resource");
parameter[0] = resource;
random = new Random();

}

/**
* Implements the fair transition set. This implementation repeatedly
* executes a fair transition and then sleeps for a random period
* of time.
**/

public void fairTransition()
{

Process.instantiate("dynamicunity.srme.Client", parameter);

try
{

Thread.sleep(10000 + random.nextInt(50000));
}

179

catch (InterruptedException e)
{
}

}
}

B.4 The System

The system’s initial program is the Generator program. Therefore, the system is translated as

follows:

Class B.4 (A translation of the SingleResourceMutualExclusion system)

package dynamicunity.srme;

import dynamicunity.System;

public class SingleResourceMutualExclusion extends System
{

// Constructor

/**
* Constructs a SingleResourceMutualExclusion system.
**/

public SingleResourceMutualExclusion()
{

super("Generator", null);
}

// main() method

/**
* The main() method for SingleResourceMutualExclusion, instantiates
* a SingleResourceMutualExclusion system.
**/

public static void main(String[] argv)
{

SingleResourceMutualExclusion srme =
new SingleResourceMutualExclusion();

}
}

180

Bibliography

[1] Martin Abadi and Leslie Lamport. Composing specifications. ACM Transactions on Pro-

gramming Languages and Systems, 15:73–132, January 1993. 140

[2] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. The MIT

Press, Cambridge, MA, USA, 1986. 141

[3] Flemming Andersen. A Theorem Prover for UNITY in Higher Order Logic. PhD thesis,

Technical University of Denmark, 1992. 145

[4] J. Dean Brock and William B. Ackerman. Scenarios: A model of non-determinate computa-

tion. In Formalization of Programming Concepts, volume 107 of Lecture Notes in Computer

Science, pages 252–259. Springer–Verlag, Heidelberg, Germany, April 1981. 142

[5] K. Mani Chandy, Joseph R. Kiniry, Adam Rifkin, and Daniel M. Zimmerman. Webs of

archived distributed computations for asynchronous collaboration. Journal of Supercom-

puting, 11(2):101–118, 1997. 129

[6] K. Mani Chandy, Joseph R. Kiniry, Adam Rifkin, Daniel M. Zimmerman, Wesley Tanaka,

and Luke Weisman. A framework for structured distributed object computing. Center

for Reserach in Parallel Computing Technical Report CRPC–97–2, California Institute of

Technology, February 1997. 129

[7] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM Transactions

on Programming Languages and Systems, 6(4):632–646, October 1984. 113

[8] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison–

Wesley Publishing Company, Reading, MA, USA, 1988. 2, 29, 140

[9] K. Mani Chandy and Beverly A. Sanders. Predicate transformers for reasoning about con-

current computation. Science of Computer Programming, 24(2):129–148, April 1995. 42,

140

181

[10] K. Mani Chandy and Beverly A. Sanders. Predicate transformers for reasoning about con-

current computation (vol 24, pg 129, 1995). Science of Computer Programming, 29(3):335,

September 1997. Correction. 42, 140

[11] Michel Charpentier and K. Mani Chandy. Towards a compositional approach to the design

and verification of distributed systems. In World Congress on Formal Methods in the Devel-

opment of Computing Systems (FM’99), volume 1708 of Lecture Notes in Computer Science,

pages 570–589. Springer–Verlag, September 1999. 3

[12] Michel Charpentier, Mamoun Filali, Philippe Mauran, Gérard Padiou, and Philippe Quéin-

nec. Tailoring UNITY to distributed program design. In International Workshop on Formal

Methods for Parallel Programming: Theory and Applications (FMPPTA’98), volume 1388 of

Lecture Notes in Computer Science, pages 820–832. Springer–Verlag, April 1998. 142

[13] Michel Charpentier, Mamoun Filali, Philippe Mauran, Gérard Padiou, and Philippe Quéin-

nec. The observation: an abstract communication mechanism. Parallel Processing Letters,

9(3):437–450, 1999. 142

[14] Pierre Collette. Composition of assumption–commitment specification in a UNITY style.

Science of Computer Programming, 23(2–3):107–125, 1994. 140

[15] Robert L. Constable et al. Implementing Mathematics with the Nuprl Development System.

Prentice–Hall, Inc., Upper Saddle River, NJ, USA, 1986. 145

[16] Edsger W. Dijkstra. A Discipline of Programming. Prentice–Hall, Inc., Upper Saddle River,

NJ, USA, 1976. 139

[17] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics.

Springer–Verlag, Heidelberg, Germany, 1990. 30, 139

[18] distributed.net. http://www.distributed.net/, 1997. 1

[19] Robert W. Floyd. Assigning meanings to programs. In Proceedings of the Symposium on

Applied Mathematics, volume 19, pages 19–31, 1967. 139

[20] David Gelertner. Generative communication in Linda. ACM Transactions on Programming

Languages and Systems, 7:80–112, January 1985. 142

[21] David Gelertner and A. Bernstein. Distributed communications via global buffer. In ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 10–18, Ottawa,

Canada, August 1982. 142

http://www.distributed.net/

182

[22] M. J. C. Gordon and T. F. Melham. Introduction to HOL—A theorem proving environment

for higher order logic. Cambridge University Press, Cambridge, England, 1993. 145

[23] Eric C. R. Hehner. A Practical Theory of Programming. Springer–Verlag, Heidelberg, Ger-

many, 1993. 3, 10

[24] C. E. Hewitt. Viewing control structures as patterns of passing messages. Journal of

Artificial Intelligence, 8(3):323–364, June 1977. 141

[25] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–583, October 1969. 30, 139

[26] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666–677, August 1978. 14, 30, 139, 142

[27] C. A. R. Hoare. Communicating Sequential Processes. Prentice–Hall, Inc., Upper Saddle

River, NJ, USA, 1984. 142

[28] D.R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems,

7(3):404–425, 1985. 114

[29] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM

Transactions on Programming Languages and Systems, 5(4):596–619, 1983. 140

[30] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language Specification:

Second Edition. Addison–Wesley Publishing Company, Reading, MA, USA, 2000. 128

[31] Fred Kröger. Temporal Logic of Programs, volume 8 of EATCS Monographs on Theoretical

Computer Science. Springer–Verlag, Heidelberg, Germany, 1987. 140

[32] S. S. Lam and A. U. Shankar. A theory of interfaces and modules 1: Composition theorem.

IEEE Transactions on Software Engineering, 20:55–71, January 1994. 140

[33] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-

nications of the ACM, 21(7):558–565, 1978. 114

[34] Leslie Lamport. win and sin: Predicate transformers for concurrency. Technical Report

SRC-017, Digital Systems Research Center, Palo Alto, California, May 1987. Revised De-

cember 1989. 139

[35] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-

guages and Systems, 16:872–923, May 1994. 3, 10, 140

[36] Leslie Lamport. Specifying concurrent systems with TLA+. In Calculational System Design.

IOS Press, Amsterdam, The Netherlands, 1999. 140

183

[37] K. Rustan M. Leino. Toward reliable modular programs. PhD thesis, Department of Com-

puter Science, California Institute of Technology, 1995. 29

[38] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, CA,

USA, 1996. 142

[39] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-

Quarterly, 2:219–246, September 1989. 142

[40] Zohar Manna and Amir Pneuli. Temporal Verification of Reactive Systems. Springer–Verlag,

Heidelberg, Germany, 1995. 140

[41] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer–Verlag, Heidelberg, Germany, 1992. 140

[42] Alain J. Martin. An axiomatic definition of synchronization primitives. Acta Informatica,

16:219–235, October 1981. 139

[43] Robin Milner. Communication and Concurrency. Prentice–Hall, Inc., Upper Saddle River,

NJ, USA, 1989. 141

[44] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. I. Infor-

mation and Computation, 100(1):1–40, September 1992. 141

[45] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. II. In-

formation and Computation, 100(1):41–77, September 1992. 141

[46] Jayadev Misra. A logic for concurrent programming: Progress. Journal of Computer &

Software Engineering, 3(2):273–300, 1995. 43, 44, 47, 48

[47] Jayadev Misra. A logic for concurrent programming: Safety. Journal of Computer & Soft-

ware Engineering, 3(2):239–272, 1995. 42, 47, 141

[48] Jayadev Misra. A discipline of multiprogramming. ACM Computing Surveys, 28, December

1996. 141

[49] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Transactions on

Software Engineering, SE-7(4):417–426, July 1981. 142

[50] P. Mockapetris. RFC 1034: Domain Names—Concepts and Facilities. http://www.ietf.

org/rfs/rfc1034.txt. 1

[51] P. Mockapetris. RFC 1034: Domain Names—Implementation and Specification. http:

//www.ietf.org/rfs/rfc1035.txt. 1

http://www.ietf.org/rfs/rfc1034.txt
http://www.ietf.org/rfs/rfc1034.txt
http://www.ietf.org/rfs/rfc1035.txt
http://www.ietf.org/rfs/rfc1035.txt

184

[52] Carroll Morgan. Programming from Specifications. Prentice–Hall, Inc., Upper Saddle River,

NJ, USA, 2nd edition, 1994. 30

[53] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. I. Acta Infor-

matica, 6:319–340, 1976. 139

[54] S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach.

Communications of the ACM, 19:279–285, May 1976. 139

[55] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in Lecture Notes

in Computer Science. Springer–Verlag, Heidelberg, Germany, 1994. 145

[56] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. Lime: Linda meets mobility.

In Proceedings of the 21st International Conference on Software Engineering (ICSE 1999).

ACM Press, May 1999. 142

[57] Gian Pietro Picco, Gruia-Catalin Roman, and Peter J. McCann. Reasoning about code mobil-

ity with Mobile UNITY. Technical Report WUCS–97–43, Department of Computer Science,

Washington University, December 1997. 141

[58] Amir Pneuli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium

on the Foundations of Computer Science, pages 46–57. IEEE Press, 1977. 140

[59] Jonathan B. Postel. RFC 821: Simple Mail Transport Protocol. http://www.ietf.org/

rfc/rfc821.txt. 1

[60] Arthur N. Prior. Time and Modality. In John Locke Lectures, 1955-6. Clarendon Press,

Oxford, 1957. 140

[61] The LogiCal Project. The Coq Proof Assistant. http://coq.inria.fr/. 145

[62] Nicholas Rescher and Alasdair Urquhart. Temporal Logic, volume 3 of Library of Exact

Philosophy. Springer–Verlag, Heidelberg, Germany, 1971. 42, 140

[63] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun. Mobile UNITY: Reasoning and

specification in mobile computing. ACM Transactions on Software Engineering and Method-

ology, 6(3):250–282, July 1997. 141

[64] Richard D. Schlicting and Fred B. Schneider. Fail-stop processors: An approach to designing

fault-tolerant computing systems. ACM Transactions on Computer Systems, 1(3):222–238,

August 1983. 143

[65] SETI@Home: The Search for Extraterrestrial Intelligence. http://setiathome.ssl.

berkeley.edu/, 1999. 1

http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc821.txt
http://coq.inria.fr/
http://setiathome.ssl.berkeley.edu/
http://setiathome.ssl.berkeley.edu/

185

[66] Paolo A. G. Sivilotti. A Method for the Specification, Composition, and Testing of Distributed

Object Systems. PhD thesis, Department of Computer Science, California Institute of Tech-

nology, 1997. 42, 43, 44, 49, 140, 142

[67] Sun Microsystems, Inc. Java Remote Method Invocation Specification. Sun Microsystems,

Inc., 1.7 edition, December 1999. 129

[68] Daniel M. Zimmerman. A preliminary investigation into dynamic distributed workflow.

Master’s thesis, Department of Computer Science, California Institute of Technology, 1998.

129

186

Index

1, see operator, concatenation

Λ (empty sequence), 9

⊥, see process, null

↓, see operator, filtering

∅ (empty set), 9

;, see operator, leads-to

I , see state, inbox

O, see state, outbox

T +, see transition set, maximal

T −, see transition set, minimal

U, see state, uninitialized

X, see execution, set of all

[], see operator, everywhere

V , see state, non-volatile

V , see state, volatile

advance, see operation, advance

always-section, 11

assertion, 30

alternative notation for, 31

Channel Theorem, 45

current, see operation, current

declaration

type, see type-section

examples of, 9

variable, see declare-section

examples of, 10

declare-section, 10

definition, see always-section

execution

program, 32

progress constraints on, 36

safety constraints on, 35

set of all, 32, 37

subsystem, 40

mapping from system execution, 40

system, 37

progress constraints on, 39

safety constraints on, 37

execution model

description of, 22

formal specification of, 32

follows, see operator, follows

Hoare triple, 30

if…fi, 30

implementation, feasibility of, 128

inbox

state, see state, inbox

structure of, 17

initialization, see initially-section

initially, see operator, initially

initially-section, 12

implementation of, 133–134

malformed, examples of, 13

well-formed, examples of, 12

well-formedness of, 12

introspection, see operation, type

invariant, see operator, invariant

187

leads-to, see operator, leads-to

length, see operation, length

messaging system, 17

existing implementations of, 129

formal specification of, 35, 36, 39

operations, 19, 26

semantics of, 18, 26

name, inbox, see operation, name

new, see operation, new

next, see operator, next

operation

advance, 20

semantics of, 27

current, 20

semantics of, 27

length, 21

name, 20

new, 16

probe, 20

semantics of, 27

send, 19

examples of, 19, 27

implementation of, 133

quantified, 19

semantics of, 26

stop, 17

implementation of, 133

this, 21

implementation of, 133

type, 20

examples of, 21

operator

concatenation, 32

everywhere, 30

filtering, 32

follows, 44, 45

theorems about, 49

initially, 41

proof rule for, 41

invariant, 44

leads-to, 44

theorems about, 48

next, 41

proof rule for, 41

theorems about, 47

stable, 43

transient, 42

proof rule for, 42

theorems about, 47

operator precedence, 31

outbox

state, see state, outbox

structure of, 18

probe, see operation, probe

process, see execution, program

null, 9

program, see program-section

execution of, see execution, program

initial, 8

translation of, 132

program-section, 8

quantification, 29

examples of, 30

of a send, see operation, send, quanti-

fied

of a transition, see transition, quanti-

fied

send, see operation, send

188

stable, see operator, stable

state

inbox, 33

non-volatile, 34

outbox, 33

uninitialized, 32

volatile, 34

stop, see operation, stop

subsystem, 40

execution of, see execution, subsystem

system, 16

execution of, see execution, system

translation of, 137

this, see operation, this

transient, see operator, transient

transition, see transition-section

computability of, 15

formal semantics of, 31

malformed, examples of, 15

quantified

examples of, 15

well-formedness of, 14

satisfiability of, 14

translation of, 130

weakly fair, 22

well-formed, examples of, 15

transition set

example of changing, 23

maximal, 33

minimal, 33

transition-section, 13

implementation of, 133–134

translation, infrastructure needed for, 129

type, see operation, type

type declaration, see declaration, type

type-section, 8

UNITY

extension to dynamic systems, 6

overview of, 2

variable declaration, see declaration, vari-

able

weak fairness, 22

formal specification of, 36, 39

implementation of, 133–134, 137

weakest precondition, 31

	Acknowledgements
	Abstract
	List of Definitions
	List of Examples
	List of Specifications
	List of Java Classes
	1 Introduction
	1.1 Motivation
	1.2 The UNITY Formalism
	1.3 Dynamic UNITY
	1.4 Contributions
	1.5 Thesis Structure

	2 Dynamic UNITY
	2.1 Extending UNITY to Dynamic Systems
	2.2 Dynamic UNITY Notation
	2.2.1 Program Structure
	2.2.2 Type Section
	2.2.3 Declare Section
	2.2.4 Always Section
	2.2.5 Initially Section
	2.2.6 Transition Section
	2.2.7 System Structure
	2.2.8 Operations
	2.2.8.1 Process Instantiation
	2.2.8.2 Process Destruction
	2.2.8.3 Messaging
	2.2.8.4 Introspection

	2.3 Dynamic UNITY Semantics
	2.3.1 Execution Model
	2.3.2 Messaging
	2.3.2.1 Messaging Operations

	3 Verification of Dynamic UNITY Specifications
	3.1 Basic Concepts and Conventions
	3.1.1 Quantification
	3.1.2 Assertions
	3.1.3 Functions and Operators

	3.2 Formal Execution Model
	3.2.1 Program Executions
	3.2.1.1 Safety Constraints
	3.2.1.2 Progress Constraints

	3.2.2 System Executions
	3.2.2.1 Safety Constraints
	3.2.2.2 Progress Constraints

	3.2.3 Subsystem Executions

	3.3 Fundamental Operators
	3.3.1 Initially
	3.3.2 Next
	3.3.3 Transient

	3.4 Derived Operators
	3.4.1 Stable
	3.4.2 Invariant
	3.4.3 Leads-To
	3.4.4 Follows

	3.5 The Channel Theorem
	3.6 Other Useful Theorems
	3.6.1 Theorems about Next
	3.6.2 Theorems about Transient
	3.6.3 Theorems about Leads-to
	3.6.4 Theorems about Follows

	3.7 Verification of an Example Program

	4 Deterministic Example: The Prime Number Sieve
	4.1 Problem Statement
	4.2 The Sieve Program
	4.3 The Generator Program
	4.4 The Composed System

	5 Nondeterministic Example: Single Resource Mutual Exclusion
	5.1 Problem Statement
	5.2 The Resource Program
	5.3 The Client Program
	5.4 The Composed System
	5.4.1 The Generator Program
	5.4.2 Proof of Correctness

	6 Nondeterministic Example 2: Dynamic Drinking Philosophers
	6.1 Problem Statement
	6.2 Message Types
	6.3 The Beverage Program
	6.4 The Philosopher Program
	6.5 The Coordinator Program
	6.6 The Composed System
	6.6.1 Partial Proof of Progress

	7 Implementation of Dynamic UNITY Systems
	7.1 Feasibility
	7.2 Translation
	7.2.1 Translation of Transitions
	7.2.2 Translation of Programs
	7.2.3 Translation of Systems

	8 Related Work
	8.1 Specification Methods
	8.1.1 Axiomatic Specification
	8.1.2 Temporal Logic
	8.1.2.1 UNITY Variants

	8.1.3 Other Specification Methods

	8.2 Communication Models
	8.3 ``Stop'' as a Failure Model

	9 Conclusion
	9.1 Summary
	9.2 Future Directions

	A Java Implementation of a Dynamic UNITY Runtime Framework
	A.1 System
	A.2 Process
	A.3 Program
	A.4 Outbox
	A.5 Inbox
	A.6 Message
	A.7 Multiset

	B Java Implementation of the Mutual Exclusion Example
	B.1 The Resource Program
	B.2 The Client Program
	B.3 The Generator Program
	B.4 The System

	Bibliography
	Index

