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Abstract 

The knowledge about a planned system in engineering design applications is never 

complete. Often, a probabilistic quantification of the uncertainty arising from this missing 

information is warranted in order to efficiently incorporate our partial knowledge about the 

system and its environment into their respective models. In this framework, the design 

objective is typically related to the expected value of a system performance measure, such 

as reliability or expected life-cycle cost. This system design process is called stochastic 

system design and the associated design optimization problem stochastic optimization. In 

this thesis general stochastic system design problems are discussed. Application of this 

design approach to the specific field of structural control is considered for developing a 

robust-to-uncertainties nonlinear controller synthesis methodology. 

Initially problems that involve relatively simple models are discussed. Analytical 

approximations, motivated by the simplicity of the models adopted, are discussed for 

evaluating the system performance and efficiently performing the stochastic optimization.  

Special focus is given in this setting on the design of control laws for linear structural 

systems with probabilistic model uncertainty, under stationary stochastic excitation. The 

analysis then shifts to complex systems, involving nonlinear models with high-dimensional 

uncertainties. To address this complexity in the model description stochastic simulation is 

suggested for evaluating the performance objectives. This simulation-based approach 

addresses adequately all important characteristics of the system but makes the associated 

design optimization challenging. A novel algorithm, called Stochastic Subset Optimization 

(SSO), is developed for efficiently exploring the sensitivity of the objective function to the 

design variables and iteratively identifying a subset of the original design space that has 
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high plausibility of containing the optimal design variables. An efficient two-stage 

framework for the stochastic optimization is then discussed combining SSO with some 

other stochastic search algorithm. Topics related to the combination of the two different 

stages for overall enhanced efficiency of the optimization process are discussed.  

Applications to general structural design problems as well as structural control problems 

are finally considered. The design objectives in these problems are the reliability of the 

system and the life-cycle cost. For the latter case, instead of approximating the damages 

from future earthquakes in terms of the reliability of the structure, as typically performed in 

past research efforts, an accurate methodology is presented for estimating this cost; this 

methodology uses the nonlinear response of the structure under a given excitation to 

estimate the damages in a detailed, component level.  
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CHAPTER  1  

Introduction 

1.1 Stochastic System Design 

In engineering design, the knowledge about a planned system is never complete. First, it is 

not known in advance which design will lead to the best system performance in terms of a 

specified metric; it is therefore desirable to optimize the performance measure over the 

space of design variables that define the set of acceptable designs. Second, modeling 

uncertainty arises because no mathematical model can capture perfectly the behavior of a 

real system and its environment. In practice, the designer chooses a model that he or she 

feels will adequately represent the behavior of the built system as well as its future 

excitation; however, there is always uncertainty about which values of the model 

parameters will give the best representation of the constructed system and its environment, 

so this parameter uncertainty should be quantified. Furthermore, whatever model is chosen, 

there will always be an uncertain prediction error between the model and system responses. 

For an efficient engineering design, all these uncertainties, associated with future excitation 

events, as well as the modeling of the system, must be explicitly accounted for.  

A probability logic approach provides a rational and consistent framework for quantifying 

all aforementioned uncertainties (Cox 1961; Jaynes 2003). In this approach, probability can 

be interpreted as a means of describing the incomplete, i.e., missing, information about the 

system in consideration. This is established by characterizing the relative plausibility of 
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different properties of the system by a probability model which is implicitly conditioned on 

available knowledge. The specific probability model chosen represents the expected 

information gain based on the knowledge we have about the system; this gain is quantified 

in terms of the absolute or relative information entropy (Shannon 1948; Papadimitriou et al. 

2000). In this context, choosing a probability model with the largest entropy is equivalent 

to incorporating the largest possible uncertainty into the system description, subject to the 

available information. For example, subject to specifications of the first and second 

moments (or, equivalently, expected value and variance) for a continuous variable that is 

restricted within some range, the most appropriate, in the aforementioned context, 

probability model selection is a truncated Gaussian probability density function; if no 

specification is made of the moments of the variable, then the most appropriate selection is 

a uniform probability density function. This knowledge-based interpretation of probability 

leads to a logical consideration of all system uncertainties without requiring the 

introduction of the non-rigorous concept of “inherent randomness” and, ultimately, to a 

powerful framework for formulating the design problem and performing the required 

optimization.  In this work, this design process is called stochastic system design.     

Applications of similar design approaches considering uncertainties have been presented in 

many areas, including transportation engineering, e.g., Sakawa et al. (2002); chemical 

engineering, e.g., Acevedo and Pitsikopoulos (1988), Gupta and Maranas (2000); 

telecommunications, e.g., Laguna (1998); energy scheduling, e.g., Morton (1996); control 

design, e.g., Wang and Stengel (2002); and finances, e.g., Kouwenberg and Zenios (2001). 

The state-of-the-art review by Sahinidis (2004) provides details about the optimization 

methods that have been suggested for identifying the optimal design configuration in such 

design applications. Most of these methods take advantage of some special characteristics 

of the class of problems addressed. This feature often limits their applicability to other 

types of robust-to-uncertainties design problems.  
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It should be noted that even though the theoretical ideas for design considering modeling 

uncertainties were introduced many decades ago, the computational cost associated with 

this design methodology—because of the complex coupling between system modeling, 

stochastic analysis, and optimization—has reduced the range of applications considered. 

Often the formulation of stochastic design problems is restricted by the available 

computational resources and the ability to perform the associated design optimization. For 

complex systems this has often dictated (a) use of mathematical models that do not 

adequately consider all characteristics of the true system behavior, or (b) adaptation of 

approximate techniques for evaluating their performance in a probabilistic setting. Recent 

advances in software and hardware computer technology have contributed to overcoming 

many of these restrictions and the general concept of stochastic system design is rapidly 

spreading to new types of applications.    

In the current study the focus is primarily on the design of structural and mechanical 

systems. For these systems, stochastic design problems are usually related to the expected 

life-cycle cost of a system, or to its reliability, quantified in terms of the “failure” 

probability, i.e., the probability given all available information that the system will exhibit 

unacceptable performance. Many variants of such problems have been posed, typically 

expressed in one of the following three forms: (a) optimization of the system reliability 

given deterministic constraints, e.g., May and Beck (1998), Au (2005); (b) optimization of 

the cost of the structure given reliability constraints, e.g., Enevoldsen and Sorensen (1994), 

Vietor (1997); or (c) optimization of the expected life-cycle cost of the structure, e.g., Ang 

and Lee (2001). Approaches have been suggested for transforming the latter problem to 

one of the former two. This is established by approximating the cost related to future 

damages to the structure in terms of its failure probability (see, for example, Kong and 

Frangopol (2003)). In this setting, Reliability-Based Design Optimization (RBDO), i.e., 

design considering reliability measures in the objective function or the design constraints, 

has emerged as one of the standard tools for robust and cost-effective design of engineering 

systems (Moses 1977; Enevoldsen and Sorensen 1994; Sorensen et al. 1994).  
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In RBDO a particular source of difficulty is the high computational cost associated with a 

single reliability analysis. Even though relatively efficient algorithms have been recently 

developed for calculation of failure probabilities for complex systems (Au and Beck 2001a; 

Au and Beck 2001b; Schueller et al. 2004), each evaluation still requires a substantial 

computational effort, particularly for dynamic reliability problems. To reduce this 

computational effort, many specialized approaches have been proposed for reliability-based 

optimizations. These approaches include, for example, use of some proxy for the failure 

probability (e.g., reliability index obtained through first-order or second-order analysis, as, 

for example, in Enevoldsen and Sorensen (1994)), and response surface approximations to 

the limit state function defining the model’s response for each design choice (e.g., Gasser 

and Schueller (1997)). Such specialized approaches may work satisfactorily under certain 

conditions, but are not proved to converge to the solution of the original design problem. 

This is particularly true for optimization problems that involve the reliability of the system 

as the objective function, rather than as constraint as commonly adopted in RBDO, because 

the sensitivity of the objective function to some design variables can be highly complex 

and not accurately described through approximate techniques.  

In this thesis, general stochastic system design problems are discussed that involve as 

objective function the expected value of a system performance measure. Special attention is 

given to problems with reliability objectives, i.e., when the expected value corresponds to a 

failure probability. This class of problems, which belongs to RBDO, will be referred to 

herein as ROP (reliability objective problems). The analysis focuses on methods that are 

applicable to complex systems, involving, for example, nonlinear models with high-

dimensional uncertainties and performance measures that cannot be analytically evaluated. 

These characteristics distinguish the design problems considered here from the typical 

applications of stochastic system design and make the associated optimization highly 

challenging.   
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Special attention is given to design problems involving structural control applications. 

Therefore, before outlining in more detail the goals and the plan of the thesis, the general 

characteristics of structural control design are briefly discussed. 

1.2 Structural Control 

Over the last three decades, there has been a growing interest in the application of control 

technologies for civil structures in order to reduce their dynamic response and to increase 

the system reliability with respect to future dynamic excitations, e.g., wind, earthquakes, 

sea waves. The extensive efforts of many researchers have yielded numerous 

manifestations of this idea, resulting in several distinct actuation strategies and controller 

designs.  Several state-of-the-art reports (Housner et al. 1997; Spencer and Nagarajaiah 

2003; Dyke 2005) provide a detailed survey. 

1.2.1 Types of structural control systems  

The most fundamental distinction between the different control systems in civil engineering 

is based on their energy requirements. The three major classes may be defined as follows: 

Passive systems: do not require an external power source for operation and utilize the 

motion of the structure to develop dissipative local control forces. They represent, today, 

the biggest percentage of full-scale structural control implementations and include various 

types of mechanical devices, for example, viscoelastic dampers, tuned mass dampers, 

liquid column mass dampers, and friction dampers.   

Active systems: require a large power source for operation of actuators which supply 

control force to the structure based on feedback from sensors that measure the excitation 

and/or the response of the structure. These forces may be used to both add and dissipate 

energy in the structure. The full-scale implementations of active systems for structural 

control applications, especially for aseismic design, have been limited.    
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Semi-active systems: also utilize the motion of the structure to develop dissipative control 

forces but they use feedback measurements to alter the characteristics of the dissipative 

mechanism in real time. The external power source requirements are orders of magnitude 

smaller than active systems or their dissipative capabilities. Different types of semi-active 

devices have been proposed for civil engineering structures, such as variable orifice 

dampers, variable friction dampers, variable stiffness devices, and controllable fluid 

dampers. Most of these devices dissipate energy through mechanical means. 

Of these different classes active systems give the greatest improvement of the structural 

response under dynamic excitations. However, they possess great disadvantages in their 

significant power requirement, which for large structures are typically too big to be met 

with local supplies. This raises a question for practicality and also for reliability, since 

control in civil engineering applications aims at the protection of structures from extreme 

events (e.g., strong earthquakes, high winds, tidal waves) during which the electrical power 

grid is susceptible to destabilizations and blackouts. Because of this limitation of active 

systems, the focus of research has shifted to semi-active ones which have power 

requirements that can be satisfied by local supplies and at the same time allow, though in a 

limited range, for real-time force control, making them superior to passive systems 

(Symans and Constantinou 1999).   

A recent promising development in the structural control area has been the application of 

regenerative force actuation (RFA) networks (Scruggs and Iwan 2005). RFA networks are 

an extension of semi-active technology in which mechanical energy is first converted to 

electrical energy, and is then dissipated in a controllable resistive network. They consist of 

an array of electromechanical actuators (Scruggs and Iwan 2003), each of which can be 

operated as a semi-active system, i.e., provide controllable dissipation (Figure 1.1(a)).  

These networks have a unique advantage in that if two or more devices are used to control 

a structure, their associated electronics may be connected so that electrical power can be 

transmitted from one actuator to another. Figure 1.1(b) illustrates these ideas. Thus, in 
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addition to providing local dissipation (as do semi-active devices), it is possible for an RFA 

network to transmit energy between remote locations in a structure. The network, as a 

whole, must always dissipate energy, which imposes a constraint on the system forcing 

capabilities and makes the synthesis of control laws challenging. Thus, like semi-active 

devices, the power required for operation of the electromechanical actuators in the RFA 

network is only that required for the sensing and intelligent controller systems, which, 

contrary to the requirements of fully-active systems, can be provided by a small local 

power supply. This feature makes them appropriate devices for structural control 

applications. 
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Figure 1.1: Illustration of (a) electromechanical actuators and (b) RFA network 

application (taken from Scruggs et al. 2007a) 

It should finally be noted that semi-active devices and RFA network have an important 

physical limitation on the control forces they can achieve, arising from their dissipative 

characteristics. This introduces significant nonlinearities in the behavior of the controlled 

system. Similar physical constraints exist for most active actuators; in this case they 

correspond to a limitation of the maximum attainable control force. For large structures, 

where the required control forces for efficient reduction of unwanted structural vibrations 
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can be big, this limitation can be fairly important for the overall quality of the controlled 

system. 

1.2.2 Controller design 

In considering the application of advanced actuation technologies for structural control, one 

fundamental question is whether the versatility afforded by the technology justifies the 

associated increased cost and maintenance issues, beyond those of simpler passive 

systems? The answer to this question has as much to do with the feedback control law as it 

does with the physical limitations of the device’s hardware. A high-quality control system 

requires that one designs the feedback controller with specific control objectives in mind, 

related to meaningful structural performance measures, while at the same time addressing 

actuator and system nonlinearities and the uncertainties in the system and excitation 

models. Note that because of the physical constraints for the actuators used in typical 

structural control applications, the usual stability-robustness issues in control system design 

do not apply to these problems. Thus, the performance of the controlled system is the only 

metric by which the quality of the control design should be judged. 

Most of the research efforts on control law design for structural applications have been on 

extending linear control methodologies, primarily some variant of H2 control, to structural 

control problems. At the controller design stage potential nonlinearities regarding the 

structural and excitation models are either (a) neglected, for example in the context of the 

well known clipped-optimal control design for semi-active systems, e.g., Dyke et al. 

(1996), or (b) approximately considered through linearization techniques, e.g., Suhardjo 

and Kareem (2001), Erkus and Johnson (2006) (more details about these linearization 

techniques are provided in Section 7). To consider the nonlinearities arising from the 

limitations of the actuators, heuristic feedback controller design techniques have been 

suggested; methods such as hysteretic, dissipation-based, and energy-based approaches, 

e.g., Kim and Wang (1993), Gavin (2001), Zhang and Iwan (2002). These techniques have 

gained acceptance in part because they are natural extensions of passive structural response 
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control techniques. However, they do not lead to controllers which directly optimize 

meaningful global measures of dynamic structural performance, such as drifts, 

accelerations, etc. Ad-hoc methods (the popular "clipped-optimal" control for example) that 

do incorporate such global measures in the controller optimization have also been 

suggested. Typically, such controllers are designed in an iterative fashion, in which 

controller performance is qualitatively assessed for successive design iterations through 

simulation. For structural control applications with few actuators and one dominant mode, 

this approach is often sufficient to arrive at a satisfactory controller but still cannot, in 

general, guarantee any bound on the level of performance actually attained (Scruggs et al. 

2007a). Recently, a simple controller synthesis methodology has been developed  that can 

guarantee easily-computable upper bounds on the stochastic stationary performance for 

semi-active and regenerative systems (Scruggs 2007; Scruggs et al. 2007a; Scruggs et al. 

2007b) as long as the dynamical system and excitation models are linear. Note that most 

aforementioned methodologies primarily focus on the mean square structural response and 

do not explicitly account for uncertainties in the system and excitation models. 

Since the motivation, though, for the implementation of control technology to civil systems 

stems in many applications from the concept of system reliability, it stands to reason that 

the optimal strategy in structural control design should be that which maximizes reliability.  

Theoretical reliability-related control methods, such as HB∞, μ-synthesis (Dullerud and 

Paganini 1999) and the many offshoots of these, have become the standard tools in the 

design of feedback controllers that are robust to model uncertainty, where a compact set of 

possible models for the system is chosen.  Information implying that some of the possible 

values of the model parameters are more probable than others is not explicitly treated.  

However, as discussed earlier, in most engineering applications, there is considerable 

knowledge about the relative plausibility of the parameter values, which can be quantified 

by assigning probability distribution functions to them. This observation has motivated a 

number of studies related to control applications for linear systems. The controller 

synthesis for robust stability and performance of linear controlled systems with parametric 
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probabilistic uncertainty was addressed in Wang and Stengel (2002), and the robust 

performance in Spencer et al. (1994). Monte Carlo simulation and FORM/SORM, 

respectively, have been used in these studies for the reliability evaluations but minor 

attention has been given on the complexity of the associated controller design optimization. 

The first-passage failure probability has also been used as a reliability performance 

objective for structural control applications; an approach originally proposed in May and 

Beck (1998) for systems with probabilistic parameter uncertainty and stochastic excitation, 

and further elaborated in Yuen and Beck (2003) and Scruggs et al. (2006). An upper bound 

for the first-passage failure probability has been used as a reliability measure in all these 

studies, calculated by neglecting the correlation between the different modes of system 

failure. For linear dynamical systems under stationary excitation that do not include 

uncertainty for the model parameters, reliability constraints have been applied in 

performance optimization based on covariance control design in Field and Bergman 

(1998). Note that all research efforts referenced in this paragraph have been restricted to 

linear controlled system models.  

1.3 Overview of the Thesis  

This thesis presents a stochastic system design approach for problems that are related 

mainly to earthquake engineering. Topics involving efficient system modeling, 

performance evaluation, and design optimization are discussed. Initially design problems 

that involve relatively simple models are addressed; analytical approximations are 

considered for the performance evaluation in these cases. Then the focus is shifted to 

design cases which might involve complex models for the system in consideration and its 

environment. The methods developed for studying these systems are intended to be 

general; specialized assumptions are avoided. To address the potential complexity in the 

model description, stochastic simulation is suggested for evaluating the system 

performance. This simulation-based approach allows for explicit consideration at the 

design stage of (a) nonlinearities in the models assumed for the system and its future 

excitation, and (b) complex failure modes. Applications of the general design approach to 
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the specific field of structural control are discussed for deriving a robust-to-uncertainties 

nonlinear controller design methodology. This design approach addresses the challenges 

discussed earlier related to control law synthesis for structural control applications.    

Chapter 2 outlines the stochastic system design problem and discusses the challenges 

involved in the associated optimization process when stochastic simulation is used for 

evaluating the model performance. A probabilistic model for characterizing the system 

excitation in earthquake engineering applications is also developed. This model establishes 

a direct link between the probabilistic seismic hazard description of the structural site and 

future ground motions and can efficiently describe both the far-field and the near-field 

characteristics of the latter.  

In Chapter 3 design problems are addressed that involve relatively simple models. Special 

focus is given on the design of control laws for linear structural systems with probabilistic 

model uncertainty, under stationary stochastic excitation. The focus is primarily on 

reliability-based synthesis. An analytical approach, motivated by the simplicity of the 

models adopted, is discussed for the design problem. This approach gives useful insight 

into the characteristics of the controller synthesis and allows for direct comparison to other 

design methods that have been proposed for such applications. An accurate analytical 

approximation for the first-passage failure probability is presented and questions are 

addressed related to stability, optimality, relationships to minimum variance synthesis, and 

appropriate characterization of robust-reliability for control applications in which model 

uncertainty is included. Τhis chapter also contains an investigation of the influence of 

probabilistic quantification of model uncertainty on classical control approaches, such as 

H2 and multi-objective H2 designs.  

Then the focus is shifted to design problems which might involve complex models. 

Chapters 4 and 5 discuss the design optimization problem when stochastic simulation 

methods are selected for evaluating the performance objective. In particular, Chapter 4 
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presents a novel algorithm, called Stochastic Subset Optimization (SSO), for efficiently 

exploring the sensitivity of the objective function to the design variables and iteratively 

identifying a subset of the original design space that has high plausibility of containing the 

optimal design variables. Statistical properties, appropriate stochastic simulation techniques 

for complex system models, and stopping criteria for the iterative approach are presented. 

An efficient two-stage framework for the stochastic optimization is then discussed in 

Chapter 5 by combining SSO with some other stochastic search algorithm. Topics related 

to these algorithms, as well as to the combination of the two different stages for overall 

enhanced efficiency and accuracy of the optimization process, are discussed.  

Chapter 6 presents two applications for general structural design problems. The first 

considers the design of a base-isolation system for improving the reliability of a three-story 

building against near-field earthquakes. The efficiency of SSO and the suggested combined 

optimization framework are examined in detail in the context of this example. The second 

example discusses the retrofitting of a four-story structure with viscous dampers. The 

expected lifetime cost is adopted as the design objective in this case. Instead of 

approximating the damages from future earthquakes in terms of the reliability of the 

structure, as typically performed in RBDO problems, a comprehensive methodology is 

presented for estimating this cost; this methodology uses the nonlinear response of the 

structure under a given excitation to estimate the damages in a more-detailed, component 

level.  Applications to two structural control problems are discussed in Chapter 7. The first 

considers the Benchmark Base Isolation Control problem proposed by the American 

Society of Civil Engineers (ASCE) and discusses the optimization of an RFA network for 

its protection against near-field ground motions. The second considers an offshore platform 

(Tension Leg Platform) in the North Sea and discusses the design of passive and active 

tuned mass dampers for improvement of its reliability in a random sea environment.   
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CHAPTER  2  

Stochastic System Design: Theoretical Discussion  

This chapter outlines initially the stochastic system design problem and presents the 

challenges involved in the associated optimization process when stochastic simulation is 

used for evaluating the model performance. The details of reliability-based performance 

evaluation are then discussed and the implementation of this general methodology to the 

specific field of structural control is introduced. Since the applications in this thesis focus 

primarily on earthquake engineering, a probabilistic excitation model for describing 

earthquake ground motions is also developed here. This stochastic ground motion model 

can efficiently represent both far-field and near-field characteristics of ground motions. 

This model has also been published in Taflanidis et al. (2007b).   

2.1 General Problem 

2.1.1 Stochastic system model 

Consider a system that includes some controllable parameters that define the system 

design, referred to herein as design variables, φ=[φ1,φ2,...,φnφ]∈Φ⊂ φn , where Φ denotes 

the bounded admissible design space. For simplicity a single model class, M, is chosen to 

represent a system design and its environment (characterizing future excitations), though 

the ideas discussed here can be easily extended to cases where multiple model classes are 

considered (Muto and Beck 2007). In the latter case, the performance simply needs to be 
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averaged over the whole set of model classes using probabilistic weighting factors for each 

one that correspond to its relative plausibility. The model class M in this study represents 

the augmentation of the individual system, excitation, and performance evaluation models 

that the designer has chosen, as shown in Figure 2.1. The whole analysis is conditioned on 

the chosen model class M. For notational simplicity this conditioning is not explicitly noted 

in the subsequent probability models for the system and its environment. Each model in the 

class is specified by a nθ-dimensional vector θ=[θ1,θ2,...,θnθ] lying in Θ⊂ nθ , the set of 

possible values for the model parameters. Because there is uncertainty in which model best 

represents the system behavior, a PDF (probability density function) p(θ|φ), which 

incorporates our available prior knowledge about the system and its environment, is 

assigned to these parameters. The PDF p(θ|φ) should be interpreted as a measure of the 

relative plausibility of the model defined by θ∈Θ (Jaynes 2003); all probabilistic results are 

implicitly conditional on the chosen probability model for p(θ|φ).   

Excitation
Model

q=E(θq)

System
Model

x=F(q,φ;θs) 1
z=G(q,x,φ;θs) 2

Input
(Excitation)

q
Performance 

Evaluation Model
j(z;θw)

Output
(Response)

z

System & Excitation &
Performance Evaluation Model M 

(with model parameters θ)

Performance 
Measure
h(φ,θ)

Augmented 
representation

1 System state evolution equation
2 Output equation

(a)

(b)

 

Figure 2.1: Representation of (a) initial and (b) augmented system model 

The selection of the specific probability model for the model parameters, p(θ|φ), should be 

based on the available prior knowledge about the anticipated behavior of the system and 

should not spuriously reduce the uncertainty corresponding to these parameters that is not 
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supported by this knowledge. Such knowledge may come from observations of similar 

systems. The principle of maximum information entropy (Jaynes 2003) can be used for 

quantifying in a logical manner this knowledge. The probability models that are chosen 

according to this principle express the maximal uncertainty about the values of the model 

parameters, given all prior information. If any other choice is made there should be strong 

grounds for the implied reduction in uncertainty in the modeling. Some examples have 

been discussed in Section 1.1. If data are available from the behavior of the actual system, 

then the additional information contained in them can be used to update the probability 

model p(θ|φ) using a Bayesian statistical framework (Beck and Katafygiotis 1998; Beck 

and Au 2002; Muto and Beck 2007). In the case that more than one model class M is being 

considered as a candidate for the analytical system model, the information in the data can 

be also used to update the relative plausibility of the different model classes and possibly 

perform model class selection (Beck and Yuen 2004; Muto and Beck 2007). 

With regard to the excitation model, the uncertainty in the model description may stem 

from (a) the representation of a sample realization of the system stochastic input, assuming 

that its characteristics (for example, spectral properties) are known, but additionally from 

(b) the incomplete knowledge about these characteristics related to anticipated future 

excitations. Typically, the first type is expressed by using a stochastic sequence, commonly 

a white-noise sequence, as input to the excitation model, and the second by assigning PDFs 

to the parameters defining the properties of this model. The uncertain model parameter 

vector for the excitation model, denoted θq in Figure 2.1, expresses both these sources of 

uncertainty. 

In this stochastic-modeling framework, nonparametric modeling uncertainties may be 

incorporated into the system description as a model prediction error, i.e., an error between 

the response of the actual system and that of the assumed model. The influence of such a 

prediction error can be taken into account at various levels with respect to the system 

model. For example, different prediction errors can be considered for each of the individual 
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components that comprise the augmented system model; that is, for those components that, 

in the modeling context, can be considered as (stochastically) independent. Alternatively, 

one single prediction error can be considered for the performance of the augmented system 

that combines the errors that may exist for all individual components. No matter how the 

influence of the model prediction error is incorporated into the augmented system model, 

the error itself can be modeled probabilistically as a random variable (Beck and 

Katafygiotis 1998) and can be augmented into θ to form an uncertain parameter vector, 

comprised of both the uncertain model parameters and the model prediction error. The 

selection of the probability model for this error follows the same guidelines as discussed 

earlier for the other model parameters; the principle of maximum information entropy can 

be implemented for quantifying the available prior information. In most design problems, 

knowledge of only the mean value and the expected spread (variance) of the error is 

typically available. For such cases, the maximum entropy principle indicates that a 

Gaussian PDF should be selected for probabilistically characterizing the prediction error. In 

applications for which the errors associated with each independent system-model 

component are separately considered, the maximum entropy principle indicates that these 

errors should be modeled as uncorrelated variables.  

2.1.2 Optimal stochastic system design 

The favorability of different system designs, given the values of the system’s model 

parameters, is evaluated by the function h(φ,θ): xφ θn n → , which corresponds to the 

performance measure of the system response. The convention that lower values of h(φ,θ) 

correspond to better performance is adopted herein. In the stochastic setting considered, the 

performance of the system may be expressed in terms of the stochastic integral:  

[ ( , )] ( , ) ( | )
Θ

E h h p d= ∫θ φ θ φ θ θ φ θ  (2.1) 
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where Eθ[.] denotes expectation with respect to the PDF for θ. Through appropriate 

definition of h(φ,θ) this performance objective can correspond to many different 

interpretations—for example, system reliability, as in (2.8) or (2.12), or expected life-cycle 

cost, as in (6.15). Equivalently, h(φ,θ) can be considered as a utility function (see, for 

example, Porter et al. (2004b)) that quantifies the preference for the different outputs of the 

system (response z  in Figure 2.1).  

In many engineering design applications the performance of the system has been 

traditionally interpreted in a deterministic framework, i.e., without quantifying the 

influence of the inherent uncertainty in the model properties. Application of the suggested 

stochastic design framework to these systems requires an extension of the deterministic 

performance quantification to a probabilistic one. This can be established in various ways. 

Two relatively straightforward choices are (a) the average value of the deterministic 

performance measure, or (b) the probability that the performance measure will not exceed 

some acceptable threshold (more details on how this probability is calculated are given in 

the next section). The corresponding designs will be characterized in this work as average 

robustness and reliability robustness, respectively. Which performance quantification is 

more appropriate depends on the nature of the performance measure and the characteristics 

of the design problem. The selection is ultimately related to the question of which is more 

important, regulation of performance on the average or of the performance that exceeds 

some specific threshold? A simple comparison between average and reliability robustness 

design will be presented in Section 3.7, in the context of the example considered there. Of 

course, one can specify different utility functions, for example a function that considers 

only performances that exceeds some acceptable threshold, as in the case of the reliability 

robustness, but additionally incorporates a relative weighing on how large the deviation 

from that threshold is (such a weighing does not exist for the reliability robustness design). 

The details for such a specification depend on the design application considered. All 

aforementioned approaches, simple or more complicated, will ultimately lead to a 

performance measure h(φ,θ) to be used in the proposed stochastic design framework.  
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Τhe function in (2.1) corresponds, then, to the objective for a robust-to-uncertainties 

design. We then have the optimal stochastic system design problem: 

minimize [ ( , )] 
subject to ( ) 0c

E h
≥

θ φ θ
f φ

 (2.2) 

where fc(φ) corresponds to a vector of  constraints, which can be either deterministic or 

correspond to stochastic integrals (like the objective function). Such optimization problems, 

arising in decision making under uncertainty, are typically referred to as stochastic 

optimization or stochastic programming problems, e.g., Ruszczynski and Shapiro (2003), 

Marti (2005). A key difficulty in these problems is in dealing with an uncertainty space that 

is large and it frequently leads to a challenging evaluation of the multi-dimensional integral 

in (2.1). Optimization (2.2) may be further complicated by the presence of (i) design 

constraints that are also expressed as stochastic integrals, or (ii) integer design variables 

that model logical and other discrete design selections. In the current study the focus is 

primarily on problems that involve continuous design variables and deterministic 

constraints. Optimization (2.2) may be then equivalently formulated as the determination 

of:  

arg min [ ( , )]* E h
∈

= θ
φ

φ φ θ
Φ

 (2.3) 

where the deterministic constraints are taken into account by appropriate definition of the 

admissible design space Φ.  

2.1.3 Stochastic optimization 

For optimization (2.3), the stochastic integral in (2.1) must be evaluated. For simple 

systems this integral may be sometimes efficiently calculated or at least analytically 

approximated, e.g., Marti 2005. Such stochastic system design problems will be discussed 
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in detail in Chapter 3. For complex systems, though, this is rarely true, and so the objective 

function can be typically estimated only by stochastic simulation techniques. In this setting, 

an unbiased estimate of the expected value in (2.1) can be obtained, for example, by direct 

Monte Carlo integration using a finite number, N, of random samples of θ, drawn from 

p(θ|φ): 

,
1

1ˆ [ ( , )] ( , )
N

N N i
i

E h h
N =

= ∑θ φ Ω φ θ  (2.4) 

where ΩN=[θ1 ... θΝ] is the sample set of the model parameters with vector θi denoting the 

sample of these parameters used in the ith simulation. In this stochastic simulation-based 

setting, the system response can be evaluated through computer simulation, rather than 

approximated analytically. This allows for efficiently addressing nonlinearities of the 

system models and complex performance metrics.  

The quality of the estimate (2.4) is quantified in terms of its coefficient of variation, 

denoted as c.o.v., which is defined as the ratio of the standard deviation of the estimate over 

its mean value and can be expressed by (Fishman 1996): 

( )2

2

2

,
1

,

( , ) [ ( , )]1c.o.v.
[ ( , )]

1 ˆ( , ) [ ( , )]
1        ˆ [ ( , )]

u

N

i N N
i

N N

E h E hΔ
E hN N

h E h
N

E hN
=

⎡ ⎤−⎣ ⎦= =

⎡ ⎤−⎣ ⎦
≈

∑

θ θ

θ

θ

θ

φ θ φ θ

φ θ

φ θ φ Ω

φ Ω

 (2.5) 

where Δu is the unit coefficient of variation for the estimator in (2.4).  

The estimate of Eθ[h(φ,θ)] in (2.4) involves an unavoidable error eN(φ,ΩΝ) which is a 

function of both the sample set ΩN as well as the current system model configuration, 
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defined by the design variable selection φ. The optimization in (2.3) is then approximated 

by:  

ˆarg min [ ( , )]*
N NE h

∈
= θ

φ
φ φ Ω

Φ
    . (2.6) 

If the stochastic simulation procedure is a consistent one, then as N →∞ , 

,
ˆ [ ( , )] [ ( , )]N NE h E h→θ θφ Ω φ θ  and * *

N →φ φ  under mild regularity conditions for the 

optimization algorithms used (Ruszczynski and Shapiro 2003). The existence of the 

estimation error eN(φ,ΩΝ), which may be considered as noise in the objective function, 

contrasts with classical deterministic optimization where it is assumed that one has perfect 

information. Optimization (2.6) is also closely related to the general field of simulation-

based optimization (see, for example, Gosavi (2003)) since the objective function is 

obtained by means of a simulation-based approach.  

analytical
sim N =1000
sim N =4000

φ

E θ
[(

h(
φ,
θ)

] 

 

Figure 2.2: Comparison between analytical and simulation-based (sim) evaluation of 

an objective function  

Figure 2.2  illustrates the difficulties associated with eN(ΩΝ,φ). The curves corresponding to 

simulation-based evaluation of the objective function have non-smooth characteristics, a 

feature which makes application of gradient-based algorithms challenging. Also, the 
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estimated optimum depends on the exact influence of the estimation error, which is not the 

same for all evaluations; different runs of the algorithm might converge to different 

solutions, which do not necessarily correspond to the true optimum. Another source of 

difficulty, especially when complex system models are considered, is the high 

computational cost associated with the estimation in  (2.4), since N system analyses must 

be performed for each objective function evaluation. Even though recent advanced 

stochastic optimization algorithms (see Chapter 5) can efficiently address the first two 

aforementioned problems, this latter one remains challenging for many engineering design 

applications. Specialized, approximate approaches have been proposed in various 

engineering fields for reduction of the computational cost (for example, for reliability-

based optimal design problems as discussed earlier in Section 1.1). These approaches may 

work satisfactorily for certain applications, but typically cannot be proved to converge to 

the solution of the original design problem. For this reason such approaches are avoided in 

this current study. Optimization problem (2.6) is directly solved so that * *
N ≈φ φ . 

An efficient framework, consisting of two stages, is presented in Chapter 5 for such 

optimizations. The first stage implements a novel approach, called Stochastic Subset 

Optimization (SSO), for efficiently exploring the sensitivity of the objective function to the 

design variables and iteratively identifying a subset of the original design space that has 

high plausibility of containing the optimal design variables. The SSO algorithm is 

discussed in detail in Chapter 4. The second stage of the proposed optimization framework 

adopts some appropriate stochastic optimization algorithm to pinpoint the optimal design 

variables using information from the first stage. Topics related to the combination of the 

two different stages for enhanced overall efficiency are discussed, for example by 

construction of importance sampling densities from the information available from SSO.  
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2.2 Reliability-Based Design 

The reliability of the system reflects the plausibility of occurrence of unacceptable 

performance, based on all available information. Let z zn∈  correspond to the system 

response vector, Ds be the region in z space that defines the acceptable system performance 

and g(φ,θ) be the limit state function that defines the system unacceptable performance, 

referred to as failure, with the convention that g(φ,θ)≥0 denotes the failure region in the θ 

space. Note that the failure region can be determined either in terms of the response vector 

space or the model parameter vector θ, since the latter includes the performance evaluation 

and system input model parameters. The reliability of the system for specified design 

variables φ is quantified by the failure probability: 

( ) ( )( | ) ( , ) 0F sP Θ P D P g= ∉ = ≥φ z φ θ  (2.7) 

where P denotes probability. System model uncertainties can be taken into account in this 

formulation by employing the idea of robust probability of failure (Papadimitriou et al. 

2001). This probability is expressed as: 

( , ) 0

( | ) [ ( , )] ( , ) ( | )

              ( | ) ( | )
f

F F FΘ

g Θ

P Θ E I I p d

p d p d
≥

= =

= =

∫
∫ ∫
θ

φ θ

φ φ θ φ θ θ φ θ

θ φ θ θ φ θ
 (2.8) 

where ΙF(φ,θ) is the indicator function of failure, which is 1 if the system model that 

corresponds to (φ,θ) fails, i.e., its response departs from the acceptable performance set, 

and 0 if it does not, and Θf is the region in the Θ space that leads to unacceptable 

performance for the given design configuration and performance choices (system response 

and safe region definition). In (2.8) θ represents the augmented uncertain parameter vector 

comprised of both the model parameters as well as the model prediction error (if one 

considered). 
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If direct Monte Carlo estimation is used for evaluation of the integral in (2.8) the c.o.v. in 

(2.5) may be further simplified to (Au and Beck 2001a): 

ˆ1 ( | )c.o.v. ˆ ( | )
F

F

P Θ
N P Θ
−

≈
⋅

φ
φ

    . (2.9) 

An equivalent expression can also be derived for the robust failure probability by explicitly 

considering the influence of the model prediction error between the responses of the actual 

system and the assumed model. Let ( , )g φ θ  be the limit state function defining the model’s 

failure, and let the model prediction error, ε(φ,θ), be defined in such a way that the 

relationship 

( , ) ( , ) ( , )g gε = −φ θ φ θ φ θ   (2.10) 

holds. In this context, and noting that g(φ,θ)>0 corresponds to ( , ) ( , )g ε>φ θ φ θ , PF(φ|Θ) is 

transformed into: 

( , ) 0

( , )

( , )

( | ) ( , , ) ( | ) ( ) ( | ) ( )

              = ( | ) ( ) ( | ) ( )

F FΘ g

g

Θ g Θ

P Θ I p p d d p p d d

p p d d p p d d
ε

ε ε ε ε ε

ε ε ε ε

∞

−∞ >

> −∞

= =

⎡ ⎤= ⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
φ θ

φ θ

φ θ

φ φ θ θ φ θ θ φ θ

θ φ θ θ φ θ
 (2.11) 

where in this case the vector θ corresponds solely to the uncertain parameters for the 

system and excitation model, i.e., excluding the model prediction error. The last integral (in 

brackets) in  (2.11) can be analytically solved: it corresponds to ( ( , ))P gε φ θ , where Pε is 

the cumulative distribution function for the model prediction error ε conditioned on (φ,θ). 

The robust failure probability in (2.8) is then expressed by 

( | ) [ ( ( , ))] ( ( , )) ( | )F Θ
P Θ E P g P g p dε ε= = ∫θφ φ θ φ θ θ φ θ     . (2.12) 
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Thus, the performance measure in optimal reliability problems corresponds either to (a) 

h(φ,θ)=ΙF(φ,θ) or (b) h(φ,θ)= ( ( , ))P gε φ θ , depending on which formulation is adopted, 

(2.8) or (2.12). The optimal reliability problem is formulated as 

arg min ( | )*
FP Θ

∈
=

φ
φ φ

Φ
    . (2.13) 

Note that expressions similar to (2.12) may de developed by considering different 

characterizations for the influence of the model prediction error, for example, by taking it 

into account directly with respect to the model response, z, as in Papadimitriou et al. 

(2001). Typically there is some form of equivalence between these different 

characterizations. For example, the definition of the limit state function along with 

relationship (2.10) leads automatically to a specific relationship between the assumed 

model and the actual system responses. Special care is needed so that the first definition 

leads to a realistic relationship in the latter case, in the context of the specific application 

and the probabilistic model considered for the prediction error.  

2.3 Controlled System Design 

A controlled system model is characterized by separate models for the system, excitation, 

sensors, and actuators, along with a control law. The control law is parameterized by some 

finite-dimensional vector. Such a parameterization may refer to explicit characteristics of 

the control law, for example to feedback or feedforward gains, or to the choice of “tuning 

knobs” for the controller design, for example to the weighting matrices in the setting of 

linear quadratic regulator or adaptive control designs (see, for example, Stengel (1994) or 

Krstic et al. (1995), respectively). The design variables, φ, in this setting refer to these 

parameters of the control law, and the design space Φ to the compact set of feasible 

controller parameters. A schematic description is given in Figure 2.3. 
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This system can be easily represented in the augmented form of Figure 2.1. Thus the 

general stochastic system design formulation discussed earlier can be naturally extended to 

control applications to develop a robust-to-uncertainties nonlinear controller design 

methodology. The simulation-based methodology discussed earlier will contribute to 

explicit consideration of all important, linear or nonlinear, characteristics of the system 

model at the design stage, but will lead to a challenging controller optimization problem, 

especially for systems that include higher-order controllers with large dimensional 

parameter vectors. For controlled systems it is interesting to compare how the stochastic 

design approach compares to classical methodologies that have become the standard tools 

for controller synthesis. Some insight to this question will be given in Chapter 3. Because 

of their greater familiarity in the control literature, Chapter 3 will address the design of 

control laws for linear structural systems with probabilistic model uncertainty, under 

stationary stochastic excitation.  An analytical approach, motivated by the simplicity of the 

models, will be discussed for this design problem that gives useful insight in the 

characteristics of the controller synthesis and allows for direct comparison to other 

controller design methods that have been proposed for such applications.  
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Figure 2.3: Representation of controlled system model 
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2.4 Probabilistic Seismic Ground Motion Model 

The focus of the applications that are discussed in this study is on earthquake engineering.  

For this reason a probabilistic model for efficiently describing the stochastic excitation, i.e., 

the ground motion time history, needs to be developed. Contrary to methodologies that are 

based on linear or approximate system design approaches, for which such models have to 

be simple, the simulation-based approach discussed in the current study allows for 

consideration of more complicated descriptions for the ground motion. Two desirable 

characteristics for the models used for this purpose are: (i) parameters with well-defined 

physical meaning which can be treated in a realistic probabilistic framework and can be 

related to the seismic hazard for a specific site, and (ii) small computational effort to 

simulate a sample of the excitation (since a large number of simulations will be typically 

needed for the stochastic optimization). The model developed here is based on the 

methodologies presented by Mavroeidis and Papageorgiou (2003) and Boore (2003). These 

methodologies, which were initially intended for generating synthetic ground motions, are 

reinterpreted here to form a stochastic model for the earthquake excitation. The low-

frequency (long period) and high-frequency components of the ground motion are 

independently modeled, according to these methodologies, and then combined to form the 

acceleration time history. Such an approach for stochastic modeling of ground motion has 

been initially discussed in Au and Beck (2001a). That methodology is extended here to 

address near-field characteristics of earthquake excitations. 

2.4.1 High-frequency component 

The fairly general, point source stochastic method is selected for modeling the higher-

frequency (>0.1–0.2 Hz) component of ground motions. The stochastic method is based on 

a parametric description of the ground motion’s radiation spectrum A(f;M,r), which is 

expressed as a function of the frequency,  f, for specific values of the earthquake 

magnitude, M, and epicentral distance, r. This spectrum consists of many factors which 

account for the spectral effects from the source (source spectrum) as well as propagation 
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through the earth’s crust. The duration of the ground motion is addressed through an 

envelope function e(t;M,r), which again depends on M and r. These frequency and time 

domain functions, A(f;M,r) and e(t;M,r), completely characterize the model. More details 

on them are provided in Appendix 2A. Particularly, the two-corner point-source model by 

Atkinson and Silva (2000) can be selected for the source spectrum because of its 

equivalence to finite fault models. This equivalence is important because of the desire to 

realistically describe near-fault motions and adaptation of a point-source model might not 

efficiently address the proximity of the site to the source (Mavroeidis and Papageorgiou 

2003). The spectrum developed by Atkinson and Silva (2000) has been reported in their 

studies to efficiently address this characteristic. 

The time-history (output) for a specific event magnitude, M, and source distance, r, is 

obtained according to this model by modulating a white-noise sequence Zw (input) through 

the following steps: (i) the sequence Zw is multiplied by the envelope function e(t;M,r); (ii) 

this modified sequence is then transformed to the frequency domain; (iii) it is normalized 

by the square root of the mean square of the amplitude spectrum; (iv) the normalized 

sequence is multiplied by the radiation spectrum A(f;M,r) and finally (v) it is transformed 

back to the time domain to yield the desired acceleration time history. This is the approach 

that was adopted in Au and Beck (2001a) for stochastic modeling of ground motions. 

In the context of the model description discussed in Section 2.1 the model parameter vector 

is θs=[M, r, Zw], composed of the seismological parameters, M and r, and the white-noise 

sequence Zw. The latter may be equivalently considered as the stochastic input to the 

model. The seismological parameters can be characterized by the probabilistic seismic 

hazard of the structural site, based on the location and size of the seismic faults. The 

uncertainty in moment magnitude M is typically modeled by the Gutenberg-Richter 

relationship (Kramer, 2003) truncated on some interval [Mmin, Mmax] leading to a PDF: 

min max

exp( )( )
exp( ) exp( )

m m

m m

b b Mp M
b M b M

− ⋅
=

− ⋅ − − ⋅
 (2.14) 
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with seismological parameter bm chosen according to characteristics for the regional 

seismicity. The geometrical distribution (available knowledge) of the local faults in the 

specific application considered leads to a probabilistic characterization for the epicentral 

distance r (quantification of the missing information).  
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Figure 2.4:  Radiation spectrum, envelope function, and sample excitation according 

to the stochastic ground motion method 
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Figure 2.4 shows functions A( f;M,r) and e(t;M,r) for different values of M  and r. It can be 

seen that as the moment magnitude increases the duration of the envelope function also 

increases and the spectral amplitude becomes larger at all frequencies with a shift of 

dominant frequency content towards the lower-frequency regime. As the epicentral 

distance increases, the spectral amplitude decreases uniformly and the envelope function 

also decreases, but at a relatively smaller amount. Figure 2.4(c), includes the radiation 

spectrum A(f;M,r) with the Fourier amplitude and the time history of a sample ground 

motion generated according to this model. 

2.4.2 Low-frequency component  

For describing the pulse characteristic of near-fault ground motions, the simple analytical 

model developed by Mavroeidis and Papageorgiou (2003) is selected. This model is based 

on an empirical description of near-fault ground motions and has been calibrated using 

actual near-field ground motion records from all over the world. According to it, the pulse 

component (due to forward directivity and permanent offset effects) of near-fault motions 

is described through the following expression for the ground motion velocity pulse: 

2
( ) 1 cos ( ) cos 2 ( )  ,  ,  

2 2 2

        =0  otherwise

p p p p
o p o p o o

p p p

A f
V t t t f t t t t t

f f
π γ γ

π ν
γ

⎡ ⎤⎛ ⎞ ⎡ ⎤
⎡ ⎤= + − − + ∈ − +⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦ (2.15) 

where Ap, fp, νp, γp, and to describe the signal amplitude, prevailing frequency, phase angle, 

oscillatory character (i.e., number of half cycles), and time shift to specify the epoch of the 

envelope’s peak, respectively. Note that all parameters have an unambiguous physical 

meaning. The selection of their values based on regional seismicity characteristics is 

addressed next.  

In response to the recent realization of the importance of near-fault motions to the structural 

performance (Hall et al. 1995), a number of studies have been directed towards developing 
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predictive relationships (Somerville 1998; Alavi and Krawinkler 2000; Mavroeidis and 

Papageorgiou 2003; Bray and Rodriguez-Marek 2004) that may connect the pulse 

characteristics to the seismic hazard of a site. One of the main challenges in this process 

has been the small number of available earthquake records that exhibit near-fault 

characteristics, because of primarily the sparsity of instrumentation to capture near-fault 

motions in large events and secondarily the limitations of accelerometers, until recently, to 

accurately record the low-frequency component of ground motions. This feature has 

prohibited a complete understanding of the characteristics of near-fault motions and the 

implications they have for structural systems, which are still open research topics for both 

seismologists and engineers. Still, the studies referenced earlier establish predictive 

relationships for the period and the amplitude of near-fault pulses for seismological 

parameters that belong to some specific ranges; for example Bray and Rodriguez-Marek 

(2004) suggest that the relationships developed in their study should be used for 

magnitududes M>6. Use of the predictive relationships for different magnitude ranges 

should be avoided.  

Most of these studies include no measure of the uncertainty associated with the predictions, 

and give a deterministic relationship for the pulse frequency and the peak ground velocity 

(PGV). For example the study by Somerville (1998) has suggested: 

10 p

10 10

log 3 0.5   

log PGV 0.5 1 0.5log     .
w

w

f M

M R

= −

= − −
        (2.16) 

In these expressions Mw is the seismic moment and R the closest distance from the fault. 

Both of these parameters can be calculated based on the values for the moment magnitude 

and the distance from the source (see Appendix 2A). A more recent study by Bray and 

Rodriguez-Marek (2004) takes into account the influence of local site conditions as well as 

the uncertainty in the predictions; this leads to a more appropriate characterization for 

probabilistic seismic hazard assessment. According to this recent study the mean values for 

the logarithms of the pulse period and the peak ground velocity of the ground motion are: 
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p

2 2

ln(1/ )  

lnPGV ln( )
p p f

p p p p v

f a b M

c e M g r d

ε

ε

= + +

= + + + +
 (2.17) 

with parameter values that are given in Table 2.1 (obtained through regression analysis) 

and prediction errors, εf and εp, respectively, which follow a Gaussian distribution with zero 

mean and standard deviation that are also presented Table 2.1.  

  Table 2.1 Parameters for predictive relationships for near-fault pulse characteristics 

Soil 
Conditions ap bp - - Standard 

deviation for εf 

Rock -8.60 1.32 - - 0.40 

Soil -5.60 0.93 - - 0.58 

Pulse 
Period 

All motions -6.37 1.03 - - 0.57 

Soil 
Conditions cp dp ep gp 

Standard 
deviation for εv 

Rock 4.46 7.00 0.34 -0.58 0.39 

Soil 4.58 7.00 0.34 -0.57 0.49 

PGV 

All motions 4.51 7.00 0.34 -0.57 0.49 
 

It should be noted that significant differences exist between the predictive relationships 

suggested by different researchers (a more detailed comparison is discussed in Bray and 

Rodriguez-Marek (2004)), and that the uncertainty level reported in Bray and Rodriguez-

Marek (2004) should be considered as high. These remarks indicate that our knowledge 

about the characteristics of near-fault motions is still limited.  Since the description 

suggested in Bray and Rodriguez-Marek (2004) accounts for such limited knowledge, 

through a probabilistic characterization, it should be considered, at least at the current time, 

as the more appropriate one to use. According to that study, the logarithm of the pulse 
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period and the logarithm of the PGV are modeled as Gaussian random variables with 

conditional mean values as given in (2.17) and standard deviations as given in Table 2.1. 

Regarding the rest of the parameters in (2.15): selection of to will be discussed in the next 

section; the phase angle and the number of half cycles cannot be associated with any fault 

characteristics that are known a priori (Mavroeidis and Papageorgiou 2003; Bray and 

Rodriguez-Marek 2004), but a probabilistic model for them can be chosen based on the 

values reported by Mavroeidis and Papageorgiou (2003) when calibrating their model to a 

database of near-fault ground motions. A uniform distribution on [-π/2, π/2] for νp, and a 

Gaussian with mean 1.8 and standard deviation 0.3 for γp seem to be appropriate selections 

based on the results of the aforementioned study. 

Finally, in the context of the model description discussed in Section 2.1 the model 

parameter vector for the near-fault pulse model in (2.15) is θs=[M, r, γp, vp, εf, εv], composed 

of the seismological parameters, M and r, and the pulse characteristics γp , vp, εf, and εv.  If 

instead of the scaling of the pulse characteristics suggested by Bray and Rodriguez-Marek 

(2004), the study by Somerville (1998) is selected, then θs=[M, r, γp, vp]. 

2.4.3 Model of near-fault ground motions 

The stochastic model for near-fault ground motions is finally established by combining the 

above two components. The model parameters consist of the seismological parameters M 

and r, the additional parameters for the velocity pulse, vp, γp, and possibly εf and εv, and the 

white noise sequence Zw. The following procedure, which is equivalent to the methodology 

in Mavroeidis and Papageorgiou (2003), describes the model:  

(1) Apply the stochastic method to generate an acceleration time history. 

(2) Generate a velocity time history for the near-field pulse using equation (2.15). The 

pulse is shifted in time to coincide with the peak of the envelope e(t;M,r). This 
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defines the value of the time shift parameter to. Differentiate the velocity time series 

to obtain an acceleration time series.  

(3) Calculate the Fourier transform of the acceleration time histories generated in steps 1 

and 2.  

(4) Subtract the Fourier amplitude of the time series generated in step 2 from the 

spectrum of the series generated in 1.  

(5) Construct a synthetic acceleration time history so that its Fourier amplitude is the one 

calculated in step 4 and its Fourier phase coincides with the phase of the time history 

generated in step 2.  

(6) Finally superimpose the time histories generated in steps 2 and step 5.  

Figure 2.5 illustrate a synthetic near-fault ground motion sample for values M=6.7, r=5 km, 

γp=1.7, and νp=π/6. Both the acceleration and velocity time histories of the synthetic 

ground-motion are presented. The difference between the ground motions generated by the 

stochastic method and the final time history are evident in this figure when looking at the 

velocity time history. This difference is attributed to the existence of the near-field pulse.  

The model presented here provides a powerful tool for stochastic representation of ground 

motions that can characterize adequately both far-field and near-field characteristics of 

potential future earthquake excitations. The importance of this property has been illustrated 

clearly for stochastic design problems in Taflanidis et al. (2007b). In that study the 

stochastic design based on a ground motion model that addressed only far-field 

characteristics of ground motions (the model presented in Section 2.4.1) yielded 

significantly worse performance when evaluated over a suite of near-field earthquake 

records, compared to a design that was based on the probabilistic model discussed in this 

section. Also, the ground motion model suggested here can address the variability of future 

excitations by appropriate probabilistic description of the model parameters. As long as the 



 

 34

uncertainty about these model parameters is adequately described, the model can efficiently 

characterize future earthquake excitations. Still, one should acknowledge that the 

understanding we have of the near-field characteristics of earthquake ground motions is 

limited, especially when trying to predict them. Future research in improving this 

knowledge would greatly improve the efficiency of the modeling approach presented here. 
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Figure 2.5: Sample near-fault ground motion: acceleration and velocity time histories 
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Appendix 2Α: Characteristics of Amplitude Spectrum and Envelope 

Function for the Stochastic Method 

A thorough review of the stochastic method for generation of synthetic ground motions is 

presented by Boore (2003). The characteristics for the functions A( f;M,r) and e(t;M,r) are 

briefly summarized here. The total spectrum A( f;M,r) for the acceleration time history may 

be expressed as a product of the source, E( f;M),  path, P( f ; r), and site, G( f ), contributions: 

2( ; , ) (2 ) ( ; ) ( ; ) ( )A f M r f E f M P f r G fπ=     . (A2.1) 

The source spectrum is given by: 

( ) ( )2 2
1( ; ) ( ; ) with ( ; )

1 / 1 /w
a b

e eE f M CM S f M S f M
f f f f

⎡ ⎤−
= = +⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 (A2.2) 

where the displacement source spectrum S( f;M) described above is the two-corner point-

source model developed by Atkinson and Silva (2000) for ground motions in California 

(see Boore (2003) for other choices for S( f;M)). For this spectrum the lower and upper 

frequencies and the weighing parameter are given, respectively, by 

10 

10 

10 

log 2.181 0.496
log 2.41 0.408
log 0.605 0.255      .

a

b

f M
f M
e M

= −
= −
= −

 (A2.3) 

In equation (A2.1) Mw is the seismic moment (in dyn-cm) which is connected to the 

moment magnitude by the relationship log10 Mw=1.5(M+10.7). The constant C is given by 

C=RΦVF/(4πRoρsβs), where RΦ is the radiation pattern, usually averaged over a suitable 

range of azimuths and take off angles, V=1/ 2  represents the partition of total shear-wave 

velocity into horizontal components, F=2 is the free surface amplification, ρs and βs are the 
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density and shear-wave velocity in the vicinity of the source, and Ro is a reference distance, 

set to 1 km. 

The path effect, P( f;r), is given by the multiplication of the geometrical spreading and 

anelastic attenuation:  

( ) ( ) ( )( ); exp /   QP f r Z r fּR Q f ּcπ⎡ ⎤= −⎣ ⎦  (A2.4) 

where Q( f ) is a regional attenuation function, cQ is the seismic velocity used in the 

determination of Q( f ), Z(r) is the geometrical spreading function, and R=[h2+r2]1/2 is the 

radial distance from the earthquake source to the site, with log10h=0.15M-0.05 (Atkinson 

and Silva 2000) representing a moment-dependent, nominal “pseudo-depth”. The site 

effect, G( f ), is given by the multiplication of a high-frequency diminution D( f ) and an 

amplification factor Am( f ), G( f )=Am( f )D( f ). The diminution may be expressed by the ko 

filter or the fmax filter, expressed respectively as: 

( ) ( ) ( )
1/28

1   2 exp( ),   1  /  o maxD f f D f f fπκ
−

⎡ ⎤= − = +⎣ ⎦  (A2.5) 

or as a combination of both (Boore 2003). The amplification factor may be described 

through the empirical curves given in Boore and Joyner (1997). 

Finally, the envelope function for the earthquake excitation is represented by 

( ) ( )( ; , ) / exp ( / )tb
t n t ne t M r a t t c t t= −  (A2.6) 

where at, bt and ct are chosen so that e(t;M,r) has a peak equal to unity when t=λttn, and 

e(t;M,r)=η when t=tn. The equations for these parameters are 

( )ln( ) / [1 (ln( ) 1)],  / ,  [exp 1 / ] . tb
t t t t t t t t t tb c b aλ η λ λ λ λ= − + − = =  (A2.7) 
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The time tn is given by tn=2Tw where Tw is the duration of the ground motion, expressed as 

a sum of a path dependent (typically chosen as 0.05R) and a source dependent component 

(typically chosen as a fraction of 1/fa). 

The parameters adopted in the applications considered in the current study for the A(f;M,r) 

and e(t;M,r) functions are: radiation pattern RΦ=0.55, rock density ρs=2.8 g/cm3, and shear-

wave velocity βs=cQ=3.5 km/sec; anelastic attenuation factor Q( f )=180f 0.45 (selected for 

the region of California according to Atkinson and Silva (2000) and geometrical spreading 

function Z(R)=1/R for distances R<40 km and Z(R)=1/40 for distances R>40 km. The 

diminution is expressed through combination of both fmax and ko filters with values fmax=10 

rad/sec and κo=0.03. The latter selection is a compromise between regional estimates for 

California that typically range from about 0.02 to 0.04 (Atkinson and Silva 2000). Site 

amplification is chosen for generic rock sites (Boore and Joyner 1997). The parameters for 

the envelope function e(t;M,r) are λt=0.2, ηt=0.05 (as suggested in Boore (2003)), and the 

duration is selected as Tw =0.05R+0.5fa. 
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CHAPTER  3  

Stochastic System Design: Linear Controlled Systems  

This chapter discusses the design of control laws for time invariant, linear systems with 

probabilistic model uncertainty, under stationary stochastic excitation. The specific model 

and excitation choices are motivated by their familiarity in the control literature and the 

desire to compare the proposed stochastically-robust-to-uncertainties methodology to other 

standard controller synthesis approaches. Because of the linearity and stationarity 

assumptions, the system performance can be analytically evaluated. Contrary to simulation 

methods, this approach allows for efficient optimization and gives valuable insight into the 

theoretical characteristics of the problem. In terms of actuator characteristics, the linearity 

requirement restricts the design to control applications that are passive or active, or may be 

modeled as such for design purposes.  

Initially the evaluation of stochastic integrals is discussed where the performance measure 

can be analytically calculated and corresponds to a smooth function, and the uncertain 

parameter vector is lower-dimensional; then an analytical approach is presented for 

approximation of the reliability of dynamical systems. Based on this theory the reliability-

based design of linear controlled systems is discussed. Finally the extension of standard 

controller synthesis methods, such as H2 and multi-objective H2 designs, to account for 

probabilistic model uncertainty is discussed. The materials presented in this chapter have 

also been published in Taflanidis et al. (2006), Taflanidis, Scruggs et al. (2008), and 

Taflanidis et al. (2007a). 
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Note that the theoretical ideas discussed here can be extended to the design of any linear 

system under stationary excitation, i.e., not necessarily involving control implementation.  

Also, the evaluation of the stochastic integrals and the stochastic design methodology 

discussed in Section 3.2 can also be extended to any system, not necessarily corresponding 

to a linear model, which satisfies the relevant properties, that is, a smooth performance 

measure and lower-dimensional uncertain parameter vector. To avoid a lengthy 

presentation, the theory is developed in the context of controlled system design, since that 

corresponds to the primary motivation of the study. 

The stochastic design methodology discussed in this chapter involves various types of 

optimization problems for which the objective corresponds to a nonlinear, non-convex, 

smooth function. The optimization in these problems is expressed with respect either to the 

uncertain model parameters or the design variables. The highly efficient optimization 

toolbox TOMLAB (Holmstrom et al. 2007) has been used for solving the optimization 

problems encountered in the current chapter. TOMLAB integrates many well-known 

optimization routines and has recently emerged as one of the most powerful computational 

packages for nonlinear optimizations. It also includes an efficient approach for multi-stage 

global nonlinear optimization (see algorithm “glccluster” in Holmstrom et al. (2007)) 

which has been preferred for the problems considered here.      

3.1 Linear Time Invariant System Model  

A linear, time-invariant, dynamic system in state-space subjected to stationary Gaussian 

excitation is considered to model the system behavior:  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) 

t t t t
t t t
t t

= + +
= +
=

x Ax Bu Ew
z Cx Du
y Lx

 (3.1) 
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where ( ) xnt ∈x  is the system state vector, composed of the structural states together with 

any ancillary states used to model sensor and actuator dynamics, spectral characteristics of 

the external excitation and so forth. Vector ( ) unt ∈u  is composed of control forces that 

are assumed to be formulated based on a feedback vector ( ) ynt ∈y , which is linearly 

related to x(t) through the matrix L. The performance of the controlled system is assessed 

through the favorability of the output response quantities ( ) znt ∈z , which are assumed to 

be a linear combination of the state and control vectors. To simplify the performance 

evaluation a normalized output vector is assumed, given by:  

( )1( ) ( ) ( ) ; = , n n n n nt t t
γ

= + =z C x D u C NC D ND  (3.2) 

where N is a diagonal matrix with elements the normalization factors for each response 

quantity and γ is a factor that uniformly scales the system response vector. The elements of 

this normalized vector correspond to the performance variables for the system. Disturbance 

input ( ) ant ∈w  is a zero-mean Gaussian white-noise vector process with spectral 

intensity matrix Φa.  It is used to model both input disturbances to the system as well as 

sensor and actuator noise. Control input u(t) is assumed to be a linear feedback function of 

the response measurements; i.e., 

( ) ( ) ( )t t=u φ yK  (3.3) 

where the free parameters in the feedback controller gain matrix x( ) u yn n∈φK constitute 

the design variables, which are chosen so as to yield favorable behavior for the 

performance variables zn(t). For establishing the same terminology that is commonly 

adopted in feedback control design methodologies the feedback control gain will be 

represented in this, chapter as 
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( ) : Φ= ∈K φ φK     . (3.4) 

The subset of admissible gain matrices is denoted K.  For systems with active control 

devices, the admissible values of K are constrained by the requirement that they result in a 

stabilized closed-loop system. For systems with passive control devices (e.g.,, linear 

viscous dampers and springs), the “feedback data” y(t) consists of relative velocities (for 

dampers) and relative displacements (for springs), and K is constrained to be a diagonal, 

negative-semi-definite matrix. Controllers of the form (3.3) establish an instantaneous 

relationship between the feedback measurements at time t, and the resultant control forces 

u(t). However, the assumptions above implicitly allow for the consideration of dynamic 

controllers as well.  This can be done by augmenting the state vector x(t) to include a 

desired number of controller states, and the augmentation of y(t) to include all these 

augmented states. 

Under the stated conditions, the normalized output (3.2) of the closed loop system in (3.1) 

and (3.3) has a Gaussian distribution with zero mean and covariance matrix: 

[ ] [ ]2

1( ) ( ) TT
zz n n n n n nE t t

γ
⎡ ⎤= = + +⎣ ⎦Σ z z C D KL P C D KL   (3.5) 

where the state covariance matrix, P=E[x(t)xT(t)], under stationary response is determined 

by the solution of the Lyapunov matrix equation:  

[ ] [ ]T T
a+ + + + =A BKL P P A BKL EΦ E 0     . (3.6) 

Thus, the uncertainty stemming from the stochastic input can be straightforwardly 

analytically propagated to the system output, in terms of the stationary performance. In 

Section 3.3 it will be demonstrated how this can also be established for the system 

reliability. Two measures commonly used for assessing this stationary performance of the 
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closed-loop system, which will be involved in the discussions in this chapter, are the H2 and 

generalized H2 metrics, defined respectively as:   

( ) ( )
2

2
2 ,1 1

( ) ( ) ( )

max ( ) max ( , )
z z

T
n n zz

g n i zzi n i n

J E t t trace

J E z t i i
≤ ≤ ≤ ≤

⎡ ⎤= = Σ⎣ ⎦

⎡ ⎤= = Σ⎣ ⎦

z z
 (3.7) 

where []E  in these equations denotes expectation with respect to the stochastic disturbance  

input w(t). The controller synthesis approaches that adopt these measures as performance 

objectives are typically referred to as H2 and multi-objective H2 designs, respectively.   

3.2 Estimation of Stochastic Integrals and Stochastic Optimization for 

Simple System Models 

Frequent use is made in this chapter of stochastic integrals of the form: 

[ ( , )] ( , ) ( )
Θ

E h h p d= ∫θ K θ K θ θ θ  (3.8) 

where (i) the performance measure h(K,θ) can be analytically evaluated, rather than 

obtained through computer simulation, (ii) the dimension of the uncertain parameter vector, 

θ, is relatively small, and (iii) the integrand corresponds to a smooth function. The 

estimation of such integrals can be performed efficiently if all local maxima, or at least the 

global maximum, of the integrand can be identified, since it is expected that the bigger 

contribution to the integral will come from the region in Θ close to those maxima. Thus, 

evaluation of the integral in these regions leads to estimation of (3.8). Two different 

methods are presented next for this estimation; one based on an asymptotic approximation, 

and the other based on stochastic simulation. The requirements about the analytical form, 

the smoothness of the function h(K,θ) and the dimension of the uncertain parameter vector 

are related to efficient numerical optimization for identification of the maxima of the 
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integrand. For problems for which these requirements do not hold, the methods discussed 

here, though theoretically correct, involve large computational cost and should be avoided. 

Instead, the general methodology discussed in the next two chapters should be preferred.    

3.2.1 Asymptotic approximation 

For the estimation of stochastic integrals like the one in (3.8), Papadimitriou et al. (1997) 

derived an analytical approximation, which is based on Laplace’s asymptotic method and 

which entails fitting a Gaussian distribution to the integrand at its global maximum 

denoted, θ*. The integral is approximately: 

{ }
* *

/2 ( , ) ( )( , ) ( ) (2 )
det ( , )

n

Θ
s

h ph p d θπ
∗

≅∫
K θ θK θ θ θ

H Κ θ
 (3.9) 

where *( )s s∗
=

= −∇ ∇θ θ θ θ
H θ  is the negative of the Hessian matrix of s(θ), evaluated at θ*, 

where s is the log of the integrand: 

( )( ) log log ( , )s p h= +θ θ K θ     . (3.10) 

The expression in (3.9) is a reasonable approximation for the case where the integrand is 

concentrated in a single region in Θ, with one maximum. However, in many cases there 

may be many prominent local maxima, called design points. In such cases, a better 

approximation can be obtained by conducting asymptotic expansions like (3.9) at each 

design point, with the integral in (3.8) then approximated as the summation of these 

expansions (Au et al. 1999). The identification, though, of all design points and the 

calculation of all second-order derivative information can be a time consuming task when 

the space of the uncertain parameters is large.  



 

 44

The accuracy of the estimation in (3.9) depends on the (a) estimation error related to the 

asymptotic characteristic of the approximation, and (b) the error in identifying the exact 

location of the local minima and evaluating the Hessian matrix at these points. The latter 

error can be important when analytical forms are not available for the first- and second-

order derivatives of the integrand with respect to θ. In such cases numerical differentiation 

is needed for obtaining the relevant information, a task which is often numerically unstable 

and typically computationally expensive. This characteristic can reduce the accuracy of the 

asymptotic approximation in (3.9).   

3.2.2 Stochastic simulation   

Stochastic simulation using Importance Sampling techniques may be used as an alternative 

to evaluate integrals like the one in (3.8), when at least one design point is known (Au and 

Beck 1999). For such an implementation, N samples, , 1,..., ,k k N=θ  are randomly drawn 

from a user-prescribed distribution pis(θ), called the importance sampling distribution.  

Then, the integral in (3.8) is simplified using the Law of Large Numbers as follows: 

( )
1

( ) 1( , ) ( ) ( , ) ( ) ( , )
( ) ( )

N
k

is k
kis is k

pph p d h p d h
p N pΘ Θ

=

= ≈ ∑∫ ∫
θθK θ θ θ K θ θ θ K θ

θ θ
    . (3.11) 

It was shown in Au et al. (1999) that even for cases where multiple design points exist, 

(3.11) yields a good approximation of (3.8) if pis(θ) is chosen such that its peak is near the 

design point corresponding to the global maximum of the integrand, and has a spread larger 

than that of p(θ). High accuracy in identification of the location of the design points is not 

required in this methodology. The computational effort for evaluation of the stochastic 

integral using this stochastic simulation approach will be typically larger than the 

asymptotic approximation (3.9) but this method gives a more robust estimate of the 

stochastic integral, independent of the existence of multiple design points, the accuracy of 

the identification of these points, and of the second-order derivative information.  
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3.2.3 Stochastic optimization 

The two methods discussed previously for evaluation of stochastic integrals can be 

implemented for estimating the performance objective and efficiently performing the 

associated design optimization for stochastic design problems.  

If the asymptotic approximation is used, then the stochastic programming problem is 

solved by the simultaneous optimization for all the design points and the optimal design 

variables. The efficiency of this approach depends on the accuracy of the asymptotic 

approximation, particularly close to the optimal solution. If the accuracy is high or the 

approximation yields a consistent estimation error, then the identification of the optimal 

design configuration will be accurate. Unfortunately, though, the accuracy of the 

asymptotic approximation cannot be typically known a priori. On the other hand the 

stochastic simulation approach is characterized by greater robustness and can lead to more 

reliable identification of the optimal solution, though at a greater computational cost. This 

approach suffers additionally from the existence of an estimation error as discussed in 

Section 2.1. The technique of selecting Common Random Numbers (Spall 2003) for the 

random samples in (3.11) may be implemented for reducing the variance of different 

estimates and thus increasing the computational efficiency of the optimization algorithm 

used. Sections 5.1 and 5.2 provide more details on this topic. Alternatively a two-stage 

approach can be applied for the stochastic optimization, where the asymptotic 

approximation is used initially to converge to an approximate optimal solution, and then 

the stochastic simulation approach is adopted in order to verify the optimality of the 

candidate solution and, if needed, identify the truly optimal design configuration   

Note, finally, that both the methods considered here for evaluation of the stochastic integral 

require the identification of the design points of the integrand. In the context of a stochastic 

optimization algorithm, the location of the design points at the current iteration of the 

optimization algorithm can be used as initial guesses for subsequent iterations. If the design 
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configurations compared between the different iterations are not far away from each other 

this approach is expected to yield a significant improvement in computational efficiency.   

3.3 Reliability Calculation for Linear Dynamic Systems 

The reliability performance of the system described in Section 3.1 is related to the 

probability that the trajectory for zn(t) will remain inside a hyper-cubic safe region Ds 
zn⊂ defined as: 

{ }( ) : ( ) 1, 1,...,zn
s n ni zD t z t i n= ∈ < ∀ =z  (3.12) 

over some time duration t∈[0,T] chosen to correspond to the duration of the event causing 

the dynamic excitation of the system. Note that matrices Cn and Dn in (3.2), and 

consequently vector zn, can be scaled (normalized) arbitrarily so that the above hypercube 

can be used to represent failures with arbitrary thresholds. The scalar parameter γ is used to 

uniformly vary the relationship of zn to the failure thresholds. The normalization of the 

system response was chosen so that the failure region is defined as a hyper-cube.  Figure 

3.1(a) shows an example of Ds for a three-dimensional space.  

zn3

Ds

B2

zn1

zn2

B1

Δ1

 

Figure 3.1: Three-dimensional example of failure surfaces  
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The probability of failure PF(K|T) associated with design configuration corresponding to K 

is defined as: 

( )( | ) ( )  for some [ ]F n sP T P t D t 0,T= ∉ ∈K z     . (3.13) 

For a given problem, the evaluation of PF is conditioned on prior knowledge or 

assumptions of the system model in (3.1).  In particular, if a nominal model is used for a 

system, i.e., all parameters in the state space representation are treated as known, then the 

only uncertainty in the system model stems from the random input w(t). As discussed in 

Section 3.1, this uncertainty can be analytically propagated for the stationary system 

response. It will be illustrated next how this leads to a relatively simple approximation for 

the system reliability. On the other hand, if there is uncertainty in some or all of the model 

parameters in (3.1), then this introduces additional uncertainty regarding the statistics of the 

system response, and consequently affects PF.  

3.3.1 Systems with known parameters  

Let SD be the boundary of the safe region Ds.  Then the probability of failure, calculated as 

the probability of first passage across SD, equals: 

( )( | )  1 exp ( , )d
T +

F 0
P T n t t= − −∫ zK K  (3.14) 

where the hazard function ( , )+n tz K  is the mean out-crossing rate of the boundary SD, 

conditioned on no previous out-crossing having occurred (Taflanidis and Beck 2005); i.e., 

0

[number of out-crossings in [ ] | no out-crossings in [ ]]( ,t)= lim+

t

E t,t + t 0,tn
tΔ →

Δ
Δz K  . (3.15) 
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In this analysis, it will be assumed that the time duration T is large enough, compared to the 

system’s dynamics, so that the system response statistics can be assumed to be stationary 

throughout the interval t∈[0,T].  Under stationarity, the conditional mean out-crossing rate 

may be approximated to have a constant value (Taflanidis and Beck 2006a), which will be 

denoted by ( ) lim ( , )
t

n tν + +

→∞
=z zK K . Thus, the probability of failure is given by: 

( )( | )  1 exp ( )FP T Tν += − − zK K     . (3.16) 

For a vector process the mean out-crossing rate in (3.16) may be calculated by considering 

out-crossings perpendicular to the boundary as discussed in Belyaev (1968). Let Bi denote 

the pair of hyper-planes corresponding to failure mode i, as shown in Figure 3.1(a). Let Δi 

be the hyper-polygon corresponding to the (nz-1)-dimensional intersection of SBDB and Bi.  

Then ν +
z  may be expressed as a sum of the out-crossing rates corresponding to each failure 

mode i. Let nBiB be the unit outward normal vector at the boundary, such that T
ni i nz = n z , and 

let oi be the orthogonal component of zn, such that oi B= zn- zBniB nBiB. The out-crossing rate may 

then be approximated as (Taflanidis and Beck 2005): 

1
( )

z

i i i

n
+ +

z z z
i

ν ν θ λ
=

≈∑z K     . (3.17) 

This out-crossing rate is a multiplication for each failure mode of three factors: Rice’s 

unconditional out-crossing rate 
izν
+ , a correlation weighting factor 

izθ , and a correction 

factor 
izλ , which are each described below.  

Unconditional mean out-crossing rate: In (3.17), the product 
i i

+
z zv θ  is an approximation to 

the unconditional mean out-crossing rate perpendicular to the boundary Bi. First, consider 
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izν
+ , which corresponds to Rice’s unconditional out-crossing rate for the scalar process zi for 

the double barrier |zi| = 1 (Rice 1944; Rice 1945): 

1expi

i

i i

z+
z 2

z z

-
2

σ
ν

πσ σ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (3.18) 

where 2
izσ  and 2

izσ are the stationary variances for zni and niz .  This component accounts for 

out-crossing over the entire pair of hyper planes Bi.  The calculation of the variances in 

(3.18) is straightforward.  According to the discussion in Section 3.1 the variance 2
izσ  is:  

[ ] [ ]2
2

1
i

TT
z i n n n n iσ

γ
= + +n C D KL Φ C D KL n     . (3.19) 

A restriction must be imposed in order for 2
izσ  to be finite. Note that: 

( )( ) ( )1 1( ) ( ) ( )n n n n nt t t
γ γ

= + + + +z C D KL A BKL x C D KL Ew  (3.20) 

and that w(t) is white noise (and so has infinite variance). It follows that for the problem to 

be well-posed: 

( ) ( )0 0,n n+ = ⇒ + = ∀ ∈C D KL E C DKL E K K     . (3.21) 

This restriction is equivalent to the requirement that the response vector zn(t) be 

differentiable.  Given that (3.21) holds: 

[ ][ ] [ ] [ ]2
2

1
i

T TT
z i n n n n iσ

γ
= + + + +n C D KL A BKL Φ A BKL C D KL n     . (3.22) 
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If performance variables need to be used that do not satisfy (3.21), the problem may be 

circumvented by using filtered estimates of the variables instead of the actual variables. A 

low-pass filter, with bandwidth higher than the frequency range for which the dynamics of 

the system are important, should be chosen. This way (3.21) can be satisfied and the 

introduction of the filter does not alter the important dynamic characteristics of the 

performance variables. Such a filter can be augmented in the state-space representation, as 

discussed earlier. 

Next, consider the correlation weighting factor 
izθ , which is equal to 

[ ] ( )| | 1 | | 1
i

i
z i i ni i ni iP z = p z = d| |θ

Δ
= ∈Δ = ∫ο ο ο     . (3.23) 

This (nz−1)-dimensional integral takes into account the correlation between failure events 

on different planar surfaces of SD.  For nz=2, Figure 3.2 illustrates this concept.  Both 

trajectories in the figure correspond to “failure” for zn1(t), but for the gray trajectory, failure 

of zn2 precedes failure of zn1 and so its failure is already accounted for as an out-crossing of 

zn2=1.  Rice’s out-crossing rate does not distinguish between these two instances of out-

crossing on the zn1=1 hyper plane, and the correlation weighting factors 
izθ are introduced 

in (3.17) to account for this. 

For the evaluation of this multi-dimensional integral, note first that the probability density 

( ) | | 1|i nip z =o  is Gaussian with mean and covariance matrix which are algebraically 

related to Σzz  (Johnson and Wichern 2002):   

[ ] ( )
( )

12

12

| 1

[ | ]

i ni i

i i i ni i i ni

i ni z z

T
i ni z z z

E z

Var z

σ

σ

−

−

= =

= −

o

ο ο o o

o Σ

o Σ K K
 (3.24) 
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where 
i i

T
i iE ⎡ ⎤= ⎣ ⎦ο οΣ o ο  and [ ]

i niz i niE z=oΣ o  are simply block elements of matrix Σzz. 

Straightforward numerical integration of (3.23) is only efficient when 3zn ≤ , since the 

time required for such numerical integration increases exponentially with the dimension of 

the integral. For larger nz, stochastic simulation can be used to evaluate. For jointly 

Gaussian processes and hyper-cubic regions, Genz (1992) has introduced a series of three 

transformations that reduce significantly the computational effort needed for Monte Carlo 

integration. The algorithm proposed in Genz (1992) is used in this study for the calculation 

of this integral. Note that we are mainly interested in larger values for this probability 

integral. It is expected that if the correlation weighting factor is small on some hyper plane 

Bi, then the corresponding failure rate will also be small which implies that the dominant 

failure rates will be weighted by large values of the multivariate integral. This feature 

enables us to obtain good absolute accuracy without too much computational effort in the 

Monte Carlo integration according to Genz’s procedure. 

 

zn1

zn1=1

zn2=1

zn2

 

Figure 3.2: Spatial correlation between failures of performance variables z1 and z2  

Correction for conditional out-crossing rate: Last, consider
izλ . This temporal correction 

factor 
izλ  is an adjustment to account for the conditioning of the out-crossing rate ν +

z  on 

the absence of prior out-crossings, as in (3.15). Neglecting this correction factor is 

equivalent to assuming a Poisson process approximation for the out-crossing events (i.e., 
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independence between out-crossings) and this assumption may not be justified for narrow-

band systems, or for small failure thresholds (Lutes and Sarkani 1997), as illustrated on 

Figure 3.3.  For the narrowband response in Figure 3.3(a), the occurrence of an out-

crossing failure event establishes a high probability for a subsequent out-crossing, one 

period later.  For the response in Figure 3.3(b), the failure threshold is so small that the 

system fails with a frequency on the same order as the dominant time constants of the 

system response, thus establishing high temporal correlation between one failure and the 

next. 

1

-1

z(t)

-1

1z(t)

t t(a) (b)

 

Figure 3.3: Cases for which the Poisson approximation to out-crossing times is not a 

good model 

In general, it is impossible to calculate 
izλ  analytically. Many semi-empirical 

approximations exist for this correction factor (Vanmarcke 1975; Winterstein and Cornell 

1985; Taflanidis and Beck 2005). The report by Taflanidis and Beck (2005) provides a 

thorough presentation. It is demonstrated in that study that the selection should be based on 

the bandwidth characteristics of the dynamical system.  For brevity, only the approximation 

by Taflanidis and Beck (2005) is presented here, which has been shown to exhibit a great 

deal of flexibility with respect to the dynamic system bandwidth characteristics: 

( )( )

0.1
0.6

5

2

2 21 exp

,    
4π1 exp 1 2

i i

i

i

z z
z

ce cvz

q

q
I I

σπ σ
λ

σ

⎧ ⎫⎛ ⎞⎪ ⎪− −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭≈ =

− −
 (3.25) 
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where for a process with spectral density 
i iz zS : 

2= ( ) ,  ( )
i i i icv z z ce z zI S d I S dω ω ω ω ω

∞ ∞

−∞ −∞
=∫ ∫     . (3.26) 

These two integrals may be numerically evaluated by substituting the spectral density 

i iz zS for the equivalent expression *( ) ( )
i iz zω ωH ΦH where ( )

iz ωH  is the transfer function 

matrix for zni. The frequency range over which the dynamics of the structural system are 

important is partitioned at desired points and the frequency response is obtained (using for 

example the Control System Toolbox of MATLAB). The one-dimensional integrals in 

(3.26) are numerically calculated using the trapezoidal rule. Good accuracy may be 

obtained with a relatively small number of points.  

3.3.2 System including model uncertainty 

For systems that involve probabilistic model uncertainty the robust probability of failure 

may be evaluated using the total probability theorem: 

( ) ( )

( )( ) ( )( )
| , | , ( )

1 ( )exp | 1 exp |

F F

Θ

P T Θ P T p d

p T d E Tν ν
Θ

+ +

=

⎡ ⎤= − − = − −⎣ ⎦

∫
∫ z θ z

K K θ θ θ

θ K θ θ K θ
 (3.27) 

where PF(K|T,θ) corresponds to the probability of failure given the values of the model 

parameters and is calculated as described in the previous section. The evaluation of the 

integral in (3.27) must in general be performed numerically; this is nontrivial if the 

dimension of θ is not small (say, more than 3).  The two methods presented in Section 3.2 

may be used for this purpose. Numerical issues pertaining to such an evaluation are 

discussed next.  
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The asymptotic approximation for the integral in (3.27) requires an optimization for the 

maxima of the log of the integrand which in this case corresponds to 

( )( ) log ( ) |s p Tν += − zθ θ K θ  (3.28) 

and it also requires the calculation of the Hessian matrix of s(θ) at those points. The 

importance sampling method requires an optimization for finding the design points of the 

integrand. The expression for the objective function in both cases involves the out-crossing 

rate which included two factors that may only be evaluated numerically: the out-crossing 

correction factor 
izλ , and the correlation weighting factor 

izθ . Analytical expressions for 

the gradient vector, needed for any efficient optimization algorithm, and the Hessian 

matrix, needed by some optimization algorithms and always for the asymptotic 

approximation to the reliability integral, cannot be derived, so numerical differentiation is 

the only possibility. Moreover, the calculation of the correlation weighting factor is 

performed in a computationally efficient manner through an algorithm based on Monte 

Carlo simulation. Because of the latter feature, even though satisfactory accuracy may be 

obtained with a relatively small number of samples, the computational cost for the accuracy 

needed in order to estimate the gradient vector and the Hessian matrix of s(θ) is high. The 

required one or two steps of numerical differentiation for the calculation of the gradient and 

especially the Hessian is a potentially unstable numerical process and requires high 

accuracy—or at least a consistent estimation error—for the calculation of s(θ). The 

required number of Monte Carlo samples in Genz’s procedure for obtaining the desired 

accuracy for the estimation of s(θ) is prohibitive for applications to systems in higher 

dimensions. Instead, an approach using the same random numbers in the Monte Carlo 

algorithm when evaluating s(θ) to calculate the first- and second-order derivatives of s(θ) is 

adopted.  This selection, provided that the number of samples is sufficient, yields a result 

with consistent estimation error which allows for an accurate calculation of the gradient 

and Hessian. A detailed theoretical discussion about use of common random numbers is 

provided in Chapter 5. It is understandable that the influence of numerical errors is going to 
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be larger for larger dimensions of the uncertain parameters and the number of samples for 

the Monte Carlo integration should be chosen accordingly.  

For the calculation of the reliability integral by stochastic simulation with the use of 

importance sampling, the accuracy needed for Genz’s procedure for the estimation of the 

out-crossing rate ( )| kν +
z K θ  at each sample θk is not high. We are interested in the value of 

the integral and not for the value of the out-crossing rate ( )| kν +
z K θ , and thus calculating 

the latter with high accuracy is unnecessary. The estimation error induced by the smaller 

accuracy should average to a small number for the calculation over the whole sample space 

of the θks. Also the design point for the importance sampling distribution need not be 

calculated to high accuracy. 

3.3.3 Accuracy and efficiency of the analytical approximation 

The accuracy and efficiency of the analytical approximation presented in the previous two 

sections has been examined in detail in Taflanidis and Beck (2005) and Taflanidis and 

Beck (2006a) for dynamical systems with a range of different characteristics. The examples 

considered there show that the accuracy of the approximation is high and that the error 

introduced by the approximation, though it cannot be analytically estimated, does not 

influence the efficiency of the reliability evaluation in most applications because (i) either it 

is small or (ii) it produces consistent estimation errors in the calculated failure probabilities. 

The latter is especially important for reliability-based optimization applications. For 

evaluation of the reliability assuming a nominal model, the computational efficiency was 

reported to depend strongly on the dimension of the output because the correlation between 

failure events at different parts of the boundary is accounted for by a multivariate integral 

with dimension one less than that of the output. For medium or high level of accuracy, the 

relationship to the output dimension was demonstrated to be almost linear, but for higher 

levels, exponential. However accuracy requirements that correspond to the latter case do 

not typically appear in the context of stochastic system design applications.  
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For systems with model uncertainty the asymptotic approximation around the design points 

of the integrand has been shown to have computational cost and estimation error that 

increase with the size of the uncertain parameters and the output of the system (Taflanidis 

and Beck 2006a). When both are high, this cost is significant and the estimation error can 

be large. For cases where at least one dimension is kept low, the asymptotic approximation 

has been shown to give a computationally efficient estimation. The computational effort for 

evaluation of the reliability integral using stochastic simulation with importance sampling 

was shown to be larger but this method was proven to give robust estimation independent 

of the level of uncertainty, the existence of multiple design points, the level of failure 

probability, and the dimension of the space of uncertain parameters. Thus, it should be 

preferred when the accuracy of the asymptotic approximation cannot be guaranteed to be 

small.    

3.4 Nominal Reliability-Based Controller Design 

The computationally-efficient methodology discussed in the previous chapter for 

approximating the first-passage failure probability of a linear system, is applied now for 

investigating the design of controllers that maximize system reliability. The reliability-

optimal controller K* for a given T is the one which minimizes PF; i.e., 

* arg min ( | , )FP T Θ
∈

=
K

K K
K

 (3.29)  

where PF under stationary conditions is calculated as described in the previous section.  

As discussed earlier the evaluation of PF depends on prior knowledge for the model 

parameters. The design methodology that considers a probabilistic description for these 

parameters is defined as the robust reliability-based design. In this context, the design 

adopting a nominal system description, i.e., assuming the model parameters are known, 

will be mentioned as nominal design. The robust design is going to be discussed in the 
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following two sections. In the current section the design adopting a nominal system 

description is addressed. In this case the probability of failure is given by (3.16) with out-

crossing rate calculated using (3.17). The optimization described by (3.29) is equivalent to 

the minimization of the stationary out-crossing rate ν +
z , and the dependence on the time 

duration T vanishes, 

( )( ) ( )* arg min 1 exp ( ) arg min ( )Tν ν+ +

∈ ∈
= − − =z z

Κ Κ
Κ Κ Κ

K K
    . (3.30) 

3.4.1 Sensitivity of optimal controllers to the out-crossing rate components  

From a control optimization point of view, Rice’s out-crossing rate, 
izν , is the principal 

component of ν +
z  since it is directly related to the “failure events,” i.e., the out-crossing of 

each barrier Bi. This rate is a product of 2exp{ 1 (2 )}
izσ− , which increases with 

izσ  (i.e., 

with the probability mass in the tails of the distribution), and /
i iz zσ σ , which increases with 

the bandwidth of zi (Lutes and Sarkani 1997). These two components signify competing 

objectives of variance and bandwidth reduction for zi. However, the sensitivity of ν +
z  to 

changes in 
izσ  is much greater than to the bandwidth, because the variance enters into the 

equation as an exponential. Thus, the influence of the bandwidth component on the overall 

objective is only a primary influence if there are controller gains K∈K which drastically 

alter the bandwidth without also resulting in frequent failures. In practice, the limitations in 

actuator capabilities that are typical of many civil engineering problems yield only a 

limited ability of the control gain K to modify the bandwidth of the system, without also 

resulting in high failure rates for force-related failure modes, such as shear forces, 

accelerations, and actuator force saturations. Thus, the exponential-weighted variance is 

typically the component of ν +
z  most relevant to the control optimization; a feature which 

indicates a relationship of reliability-based design to minimum-variance design methods 

(such as H2 and multi-objective H2 designs). Note that the exponential weighting gives 
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greater importance for control optimization to performance variables with larger variances; 

characteristic which indicates a closer connection to multi-objective H2 design rather than 

H2 design.   

Next, consider the correlation weighting factor 
izθ . The importance of this factor in finding 

the optimum gain is potentially significant because it accounts for correlation between 

different failure modes. For example, if failure mode 1 is only likely to occur if failure 

mode 2 has already occurred, then the statistics of failure mode 1 do not significantly affect 

PF. Consequently, the assumption of uncorrelated failure events (equivalent to assuming 

1
izθ = , ∀i), may lead to departure from the true optimum. The degree to which 

izθ  is 

relevant depends very much on the dynamic characteristics of the system, the chosen 

response quantities zi, and their corresponding failure thresholds. In Taflanidis and Beck  

(2005), it has been demonstrated to be of significance in a number of examples.  

The influence of 
izλ  is generally less significant for control optimization. As discussed, this 

factor is important for problems involving narrow-band systems, or cases where even the 

optimal K* results in frequent failures.  In most civil engineering applications the latter is 

not a major concern because of the way in which “failure” is typically interpreted, i.e., it 

corresponds to rare events. As noted in Taflanidis and Beck (2005), 
izλ  mainly adjusts for 

very low damping in the system and, as the application of control tends to greatly increase 

the damping, this has the effect of greatly reducing the overall influence of this factor in the 

neighborhood of K*.   

3.4.2 Optimization considerations  

The optimization problem (3.30) involves a non-linear objective function which has 

components, the correlation weighting factors ,  
iz iγ ∀ , that are estimated through an 

algorithm based on Monte Carlo integration. The technique of selecting Common Random 
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Numbers (Spall 2003) for the random samples in the Monte Carlo integration that is used in 

successive evaluations of the out-crossing rate, may be implemented for reducing the 

variance of the estimate and improving the efficiency of the optimization algorithm used.  

Identification of the global minimum of this non-convex optimization problem may be 

performed by any appropriate algorithm selected for this purpose. As discussed earlier, the 

time required for accurate evaluation of the objective function in this optimization increases 

exponentially with the dimension of the output vector primarily because of the need to 

calculate the correlation weighting factors through Monte Carlo integration for each 

component of that vector. For improving the computational efficiency of the controller 

optimization, performance variables that, based on engineering judgment, will not have 

influential statistics for any K in the admissible controller space should not be included in 

the output.  

Based on the discussion of the previous section, the out-crossing rate may be treated, for 

control optimization purposes, as a weighted sum of exponentials involving the reciprocal 

of the variances of each performance variable. Uniform scaling of these variances, i.e., 

change of γ, alters the sensitivity of the out-crossing rate to each one of them.  It was shown 

in Taflanidis and Beck (2005) that such a scaling does not influence significantly any other 

factors of the out-crossing rate, i.e., does not influence the weighting coefficients of the 

sum.  It is obvious then, that the optimum gain depends on the exact values of the failure 

thresholds and not simply their ratio and that this dependence is primarily governed by the 

sensitivity to the reciprocal of the variances 2
izσ . It is interesting to note that for γ →∞ , 

which means 2 0,  
iz iσ → ∀ , the largest variance dominates the sensitivity of the out-

crossing rate to each of the performance variables and K* converges to the gain that 

minimizes this variance. As the thresholds uniformly increase, there is a reduction in the 

importance of the less frequent “failure” events, i.e., the events that have smaller variances.  

Ultimately, the selection for the exact values of the failure thresholds should be based on 

engineering judgment for the acceptable safety or serviceability limit states of the 

dynamical system. 
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3.4.3 Stability of reliability-optimal controllers 

Reliability-optimal controllers do not inherently guarantee stability of a system. For 

example if the entire system state space is not detectable from the output vector z for a 

given K, then it is possible that a controller which optimizes reliability for these outputs 

may destabilize the system. However, the stability of the controlled system may be 

enforced by appropriately constraining the space of admissible controllers K to the set of 

stabilizing controllers. Of course, for passive control systems this constraint arises naturally 

from the requirement that the control forces be dissipative. For active systems the 

constraint must be enforced explicitly. 

3.4.4 Relationship to optimal minimum variance controllers  

The optimization (3.30) requires a computationally-efficient means of evaluating PF, which 

must be evaluated repeatedly in the optimization process as the domain K is searched for 

the optimal K*. Because of this complexity, it is important that this problem be motivated 

by placing it in contrast with other, more straight-forward optimal control problems 

discussed in the literature. As discussed earlier a relationship between reliability-based 

design and minimum-variance synthesis methods is expected, primarily with multi-

objective H2 design, which is described by the optimization:  

{ }{ }* 2

1
arg min max

i
z

zi n
σ

≤ ≤∈
=

K
K

K
    . (3.31) 

While in general a nonconvex optimization, this problem has received significant attention 

over several decades, and very efficient “convexifying” methods have been developed for 

its solution with the use of Linear Matrix Inequalities (Boyd et al. 1994). Because the 

probability distributions for zi in stationary response are zero-mean Gaussian distributions, 

optimization of the second moment implies the optimization of all higher-order moments.  

It follows that the above optimization also yields the K∈K with the optimal lower bound on 
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the uniform rate of exponential decay for these probability distributions.  In other words, it 

yields the controller which produces the distributions with the least “probability mass in the 

tails.” On the surface, it might appear that this optimization would yield a controller which 

is reliability-optimal.  After all, if the distributions for the components of z are optimized to 

minimize their tail mass, then so long as 1
izσ << , ∀i,  the probability of |zi(t)| > 1 is also 

minimized. However, a simple example illustrates that significant differences may exist 

between the two synthesis methods.    

y=v1, absolute velocity

K

m3 =200t

k3=2.1MN/m

Earthquake acceleration

m2 =200t

m1 =200t
k2=3.3MN/m

k1=4.6MN/m

u=Kv1

 

Figure 3.4: Structural model 

As an example, consider an ideal 3-story shear building as shown in Figure 3.4. Modal 

damping of 2% is assumed.  An ideal active actuator between the ground and first floor 

implements the familiar skyhook control law 1( ) ( )u t Kv t= , where v1(t) is the absolute 

velocity of the ground floor, and K is the control gain.  The performance variables zn(t) are 

taken as the vector d(t) of inter-story drifts, and the vector a(t) of absolute story 

accelerations.  Their failure thresholds are chosen as 0.03 m and 2.65 g, respectively.  Thus,  

1 1 1
0.03 2.65( ) ( ) ( )

TT T
n m gt t tγ ⎡ ⎤= ⎣ ⎦z d a     . (3.32) 
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The earthquake excitation model chosen is the stationary response of a modified Kanai-

Tajimi filter (Clough and Penzien 1993). Note that since the applications considered here 

are restricted to linear augmented system models, the ground-motion model presented in 

Section 2.4 would be inappropriate. The simpler Kanai-Tajimi filter is preferred for this 

purpose. The transfer function for this filter is 

2

2 2

2 1( )
( 2 ) ( )

g g g

g g g v

s
H s

s s s
ζ ω ω
ζ ω ω ω

+
=

+ + +
 (3.33) 

with ωg=2 Hz, ζg=0.5, and ωv=15 Hz.  In order to satisfy (3.21) for the absolute 

acceleration responses, a high-frequency pole ωv has been introduced compared to the 

traditional form of the Kanai-Tajimi filter. The RMS intensity of the input is selected as 

0.2g. Formulating the system and excitation models in state space form and developing the 

augmented linear system model as in (3.1) is relatively straightforward and omitted here. 

Taflanidis and Beck (2005) provide a detailed discussion in augmentation characteristics 

for dynamical systems.   

The reliability-optimal and multi-objective H2-optimal controllers are denoted *
FPK  and 

2

*KmH , respectively, and their respective out-crossing rates are denoted 
FPν and 

2
νmH , 

respectively.  Ratios 
2

* *
FPK KmH  and 

2 FPν νmH are shown in Figure 3.5(a) for different 

values of γ. Values of 
2 FPν νmH  are shown for both the analytical approximation discussed 

above, as well as the actual values obtained through stochastic simulation. The highly-

efficient algorithm Importance Sampling Efficient Estimation (Au and Beck, 2001b) has 

been used for the simulation data. Figure 3.5(b) shows 
FPν , and Figure 3.5(c) the 

associated PF for T=10s, which is roughly 30 natural periods of the structure. As γ→∞, 
*

FPK  and 
2

*KmH  converge, as do 
FPν  and 

2
νmH . This result agrees with the discussion 

presented earlier. However, the corresponding values of PF at which this convergence 

becomes apparent represent extremely rare events that are typically of no engineering 
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interest, with failure probabilities below 10-8. For ranges of γ that correspond to more 

interesting threshold definitions for reliability purposes, there is a significant difference 

between *
FPK  and 

2

*KmH , as well as their associated reliabilities. For the value of γ=1, which 

corresponds to the nominal definition of the failure thresholds, the ratio of performance is 

1.25 and the corresponding probability of failure 0.01.  
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Figure 3.5: Comparison between optimal multi-objective H2 and reliability designs 

The differences between optimal multi-objective H2 and reliability controllers reported here 

stem from the fact that optimizing the upper bound on the variances of the components of 

the response vector does not necessarily correspond to optimal reliability design with 

respect to the joint distribution of the whole vector. Multi-objective H2 design ultimately 

fails to take into account any correlation between the performance variables. How 
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important the difference between the two designs is depends on the behavior of the 

dynamical system around the regions of *
FPK  and 

2

*KmH  gains. If the outputs are highly 

correlated, which corresponds to 0
izθ ≈  for all response quantities apart from the dominant 

one (meaning the one that corresponds to the largest variance 2
izσ ), optimal reliability and 

multi-objective H2 controllers will be close. This will also be true if there is a significant 

difference in the variances between the dominant performance variable and all others that 

are uncorrelated from it, i.e., correspond to non-negligible 
izθ , in the neighborhoods near 

the optimal *
FPK  and 

2

*KmH  gains. On the other hand, the difference between the above two 

designs may be significant when there are response quantities that have only a small degree 

of correlation and comparable stationary characteristics, i.e., comparable variances, in the 

neighborhoods of interest. The discussion motivates the further development of reliability-

based structural control design.  

A similar comparison between reliability controllers and H2 controllers is illustrated in 

Figure 3.6. Note that H2 optimal controllers minimize the mean variance of the response 

vector contrary to multi-objective H2 optimal controllers that minimize the maximum 

variance. The H2 design which is described by the optimization:  

* 2

1
arg min

z

i

n

z
i
σ

∈ =

= ∑
K

K
K

    . (3.34) 

For full-order controllers the HB2B synthesis method may be implemented either by solving 

two Ricatti equations or by using Linear Matrix Inequalities (Dullerud and Paganini 1999). 

For reduced-order controllers, the problem may be approached by the use of LMIs  

(Iwasaki et al. 1994; Iwasaki and Skelton 1995).  

The results in Figure 3.6 illustrate a bigger difference, as expected, between optimal HB2B and 

reliability controllers, compared to the difference the latter and optimal multi-objective HB2B 
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controllers. H2 design does not take into account any correlation between the performance 

variables and does not emphasize the importance of the tails of the distribution for each 

performance variable; rather, it looks at the stationary performance of the response vector 

on the average. Thus, the departure from reliability objectives is expected to be larger for 

this synthesis method. As the scaling parameter γ increases, that is as the performance 

evaluation focuses more on rare events, the difference between the two design methods 

compared here becomes larger. This discussion brings forward an important topic: that H2 

design, which is the approach selected in most civil engineering control applications, yields 

a significantly sub-optimal reliability performance, especially when this performance is 

related to large acceptable bounds.  If the control implementation’s purpose is to increase 

the system reliability then this popular design approach should be avoided!  

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100

101

102

103

γ

Pe
rf

or
m

an
ce

 ra
tio

 
H

2/ 
R

el
ia

bi
lit

y 
D

es
ig

n

0.6 0.8 1 1.2
10-3

10-2

10-1

100

γ
1 2 3 4

1.4

1.6

1.8

2

2.2

2.4

γ

O
pt

im
al

 H
2/R

el
ia

ib
lit

y 
ga

in
s

failure rates analytical
failure rates simulation

P F

Reliab.
Design
H2

 

Figure 3.6: Comparison between optimal H2 and reliability designs 
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The example considered here also illustrates the importance of the exact selection of the 

failure threshold, i.e., the influence of the scaling factor γ. Note that the optimal gain for 

multi-objective H2 control is independent of the scaling of these thresholds (it is a 

homogenous problem). Thus, the ratio of the optimal gains corresponding to reliability and 

multi-objective H2 designs, as presented in Figure 3.5(a), is indicative of the sensitivity of 

the optimal gain for reliability-based design to the scaling of the failure thresholds.  It is 

obvious that this sensitivity is significant.   

3.5 Robust-Reliability Design with Fixed Time Duration 

In the presence of parametric model uncertainty and using expression (3.27) for the robust 

failure probability, the robust reliability optimal controller in (3.29) may be expressed as  

( )( ) ( )( )( )* arg min | , arg max ( )exp |F Θ
P T Θ p T dν +

∈ ∈
= = −∫ z

K Κ
K K θ Κ θ θ

K K
    . (3.35) 

Assume that the asymptotic approximation, with only one design point, is a justifiable 

approximation for the reliability integral.  Then the solution to the optimization above may 

be approximately solved by the simultaneous optimization of the optimal control gain K* 

and the design point θ*. To characterize this approximate solution, first define 2
iθ

σ , i =1,…h  

as the eigenvalues of the Hessian matrix Hs(K,θ*); i.e., the principal variances of the fitted 

Gaussian distribution for s(K,θ). Then the approximate solution to the optimal control 

problem can be expressed as the following simultaneous optimization of K and θ: 

{ }

* *

1

*

arg min ( | ) log ( ) log ( , )

arg min ( | ) log ( )                                    .

i

h

i

Θ

T p

T p

θν σ

ν

∗ + ∗

∈ =

∗ +

∈

⎧ ⎫
= − +⎨ ⎬

⎩ ⎭

= −

∑z
K

z
θ

K Κ θ θ K θ

θ Κ θ θ

K  (3.36) 
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The agreement between the optimization problems described by (3.35) and (3.36) depends 

on the accuracy and consistency of the asymptotic approximation in the neighborhood of 

the optimal solution. If the asymptotic approximation describes sufficiently the main 

features of the reliability integral and yields a result with a consistent estimation error, then 

the optimal solutions will be close. In any case this approximation is useful for theoretical 

comparisons and can serve as an initial approach to a potentially suboptimal gain, which 

can later be improved by using more accurate, but also more computationally, expensive 

methods to calculate the reliability integral, for example, stochastic simulation with 

importance sampling. Most other comments made earlier for the case with no model 

uncertainty apply also here. In particular, stability conditions must be enforced for all 

model parameters θ in the uncertain parameter space.   

Contrary to the certain parameter case, the choice of the time duration, T, influences the 

design optimization. Note that this duration can be interpreted as the time horizon 

considered in the optimal reliability control problem. To further characterize this influence, 

a Taylor series expansion is implemented for (3.27), giving: 

( ) ( ) ( )( )
1

| , |
!

j
j

F
j

T
P T Θ E

j
ν

∞
+

=

− ⎡ ⎤= − ⎢ ⎥⎣ ⎦∑ θ zK K θ      . (3.37) 

The robust-reliability optimal controller is therefore: 

( ) ( )( )*

1

arg min |
!

j
j

j

T
E

j
ν

∞
+

∈ =

⎛ ⎞− ⎡ ⎤= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ θ z

Κ
K K θ

K
    . (3.38) 

Thus, robust reliability design weighs the mean value of zν
+  (obtained for j=1 in the last 

infinite sum) against its higher-order moments over the uncertain parameter space, Θ.  

Time duration T enters the problem as a sensitivity parameter which defines the relative 

importance of the higher-order statistics.  
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3.5.1 Short time durations 

For 0T → , the reliability optimal controller in (3.38) may be approximated by retaining 

only the first element of the infinite series in (3.38): 

( )( )( )*
0| arg min |T E ν +

→ Θ
∈

⎡ ⎤≈ ⎣ ⎦z
Κ

K K θ
K

    . (3.39) 

Thus, for small time durations, the optimal robust-reliability controller is the one that 

minimizes the expected value of the out-crossing rate, evaluated over the uncertain 

parameter space, without considering the higher-order statistics. As Tν +
z  increases the 

higher-order moments become important. The size of T for which the higher-order 

moments becomes significant depends on the value of the out-crossing rate ν +
z . Smaller 

values of ν +
z  correspond to bigger differences between the moments of different order, and 

thus to larger values of T for which the higher-order statistics become important in the 

controller optimization. For time durations for which ( )| 1Tν + <<z K θ , the reliability 

optimal controller may be approximated by truncating only the first few elements of the 

Taylor series in (3.38). 

3.5.2 Infinite time durations 

For duration T →∞ , every controller inevitably fails with probability 1. But for civil 

engineering applications focusing on dynamic response due to earthquakes or wind 

response, infinite duration is not a realistic case.  It is nonetheless instructive to ascertain 

the nature of *K  obtained by this limiting case, because it gives some intuition to the 

consequence of assigning an excessively large time horizon in the optimal control problem. 

Expression (3.38) provides no insight into the characteristics of reliability controllers in this 

case.  Instead, the expression (3.36) can be used. To simplify the discussion, assume here 

that for all θ∈Θ and all K ∈ K, ( | ) εν δ+ >z K θ , for δε finite. In other words, assume that 
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there is no combination of uncertain parameters and control gain which yields 

infinitesimally small out-crossing rates.  In this case, optimization (3.36) is equivalent to: 

{ }

{ }

*

*

arg min ( | )

arg min ( | )     .

T

T Θ

ν

ν

∗ +

→∞ ∈

∗ +

→∞ ∈

=

=

z
K

z
θ

K Κ θ

θ Κ θ
K  (3.40) 

Thus, the controller optimization seeks to improve the dynamic performance in regions of 

the model parameters for which the out-crossing rate is small. This design goal is in 

contrast to the usual objectives of robust design, as it focuses on regions of the uncertain 

parameter space for which regulation of the response is not so important, i.e., the out-

crossing rate is small, without regard to the plausibility of the models that these regions 

represent.  One could, perhaps, view this outcome as occurring because failure is so likely 

for all θ∈Θ that the optimization concentrates on the value of θ that provides the “last, best 

hope” of preventing failure, irrespective of the likelihood of this parameter vector. 

The above reasoning does bring to the fore an important point. One does not make a 

controller design more robust to modeling uncertainty by increasing the time duration over 

which performance is evaluated. However, a time duration which is too small effectively 

ignores higher moments in the distribution of ν +
z  which arise due to parameter uncertainty.  

The choice of T must therefore be made with some care. The next section illustrates one 

way to do this, by treating T  itself as an uncertain parameter. 

3.6 Robust-Reliability Design with Uncertain Time Durations 

The time duration T should be taken as the duration of the dynamic excitation, such as that 

due to a seismic event or wind storm (depending on the purpose of the control system), 

suggesting that it be treated as an uncertain parameter. A reasonable probability distribution 

for T is the exponential distribution; i.e., 
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1 exp    >0
( )

0                      0

T  T
p T T T

T

⎧ ⎛ ⎞−⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ ≤⎩

 (3.41) 

where its expected value [ ]E T T= . The robust probability of failure is then  

( ) ( ) ( )0

( )| , | , ( ) ( ) 1
| 1F FΘ Θ

pP T Θ P T p p T dTd d
Tν

∞

+= = −
+∫ ∫ ∫

z

θK K θ θ θ θ
K θ

    . (3.42) 

Using the asymptotic approximation and following similar steps as previously, the 

reliability-optimal controller may be found by the simultaneous optimization: 

( ) ( ){ }
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*

*

*

1 |
arg min det ,
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1 |
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 (3.43) 

where matrix M is 

( ) ( )
( ), log

1 |
T p

Tν +

⎧ ⎫⎪ ⎪= −∇ ∇ ⎨ ⎬+⎪ ⎪⎩ ⎭
θ θ

z

θM K θ
Κ θ

    . (3.44) 

With this probabilistic treatment of T, we can still consider small- and large-time-duration 

cases, as was done for deterministic T in the previous section. However, now, it is with 

respect to the expected time duration T  that these asymptotic cases are investigated.  In the 

short-time-duration case, the conclusions are similar. However the infinite-time-duration 

case turns out to be quite different. 
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3.6.1 Short mean time durations    

For small T , a Taylor series expansion can be used in the same manner as in the previous 

section, to arrive at a simpler optimization. Consider that if 1 T Θν + < ∀ ∈z θ , 

( )
0

1
1

j

j
T

T
ν

ν

∞
+

+
=

= −
+ ∑ z

z

. Thus,(3.42) can be expanded as: 

( ) ( ) ( )( )
1

| , |
jj

F
j

P T Θ T E ν
∞

+

=

⎡ ⎤= − − ⎢ ⎥⎣ ⎦∑ θ zK K θ     . (3.45) 

If we further assume that 0T → , only the first moment of the out-crossing rate is 

important and the optimal robust-reliability controller is the one that minimizes the mean 

out-crossing rate over the uncertain parameters space. 

( )( ){ }*
0| arg min |T E ν +

Θ→
∈

⎡ ⎤= ⎣ ⎦z
Κ

K K θ
K

    . (3.46) 

This optimization is identical to (3.39) for deterministic short-time durations. This is not 

surprising, because T is being treated as probabilistic with an arbitrarily-narrow 

distribution, thus converging to the case of deterministic 0T → .  

3.6.2 Infinite mean time durations 

A more interesting case is where T →∞ . Consider that if 1 Tν + > ∀ ∈Θz θ , 

( )
1

1
1

j

j

T
T

ν
ν

∞ −+
+

=

= − −
+ ∑ z

z

. Thus, (3.42)  can be expanded as 

( ) ( ) ( )( )
1

| , 1 |
jj

F
j

P T Θ T E ν
∞ −− +

=

⎡ ⎤= + − ⎢ ⎥⎣ ⎦∑ θ zK K θ     . (3.47)  
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The robust reliability-optimal controller can then be approximated by retaining only the 

first two terms of the infinite series: 

( ) ( )( )

( ) ( ){ }

*

1

1 21

arg max |

     arg max | |     .

jj

j

T E

E T E

ν

ν ν

∞ −− +

∈ =

− −+ − +

∈
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⎡ ⎤ ⎡ ⎤≈ −⎣ ⎦ ⎣ ⎦
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Κ

θ z θ z
Κ

K K θ

K θ K θ

K
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 (3.48) 

Also, if 1Tν + >>z , it becomes a justifiable approximation to retain only the first term of the 

Taylor expansion in (3.47).  In this case (3.48), becomes 

( ){ }1* arg max |
T

E ν −+
Θ→∞ ∈

⎡ ⎤= ⎣ ⎦z
Κ

K K θ
K

    . (3.49) 

This expression has a very intuitive interpretation.  It is straight-forward to show that, for a 

given θ∈Θ, the quantity 1( | )ν + −
z K θ  is the expected (i.e., average) time duration between 

out-crossings in stationary response. Unlike the interpretation of the previous section, this 

interpretation of “infinite-duration” reliability-optimal control yields a useful result. The 

idea of maximizing the expected time between out-crossings is a very sensible design 

strategy. The above development illustrates that this idea does indeed have a connection to 

reliability-based control problem.    

3.6.3 Illustrative example for robust reliability design 

The extension of the structural control example discussed earlier for the case that there is 

some uncertainty in the model parameters is considered here. In most civil engineering 

applications, significant uncertainty is associated with the excitation model. The bandwidth 

ωg and the RMS intensity of the acceleration input aRMS are parameterized in this study as 

ωg=θf ּ2Hz and aRMS=θR ּ0.2g, respectively, with the parameters θf and θR modeled to be 

independent Gaussian variables with mean value one and coefficient of variation 20% and 
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10%, respectively. The case considering uncertainties only for the stochastic excitation 

model is referred to as uncertain case 1 (UC1). We also consider uncertain case 2 (UC2) 

that additionally includes uncertainty in the values of the inter-story stiffnesses ,
ˆ

i i s ik kθ= , 

i=1,2,3, where the îk  are the most probable values, given in Figure 3.4, and {θs,i} are 

correlated Gaussian random variables with mean value one and covariance matrix with 

elements:   

( )( ) ( ) ( )2 2 2
, , , ,

ˆ ˆ exp / 2s i s i s j s jE j iθθ θ θ θ σ⎡ ⎤ ⎡ ⎤− − = − −⎣ ⎦⎣ ⎦  (3.50) 

where  σθ=0.2 is the standard deviation for each component θs,i.  

The probability of failure is presented for two different assumptions related to the duration 

of the excitation: (a) using a fixed value of T, denoted “Deterministic T ”, and (b) treating T 

as an uncertain parameter with exponential PDF and mean value T , denoted “Uncertain    

T ”. The sensitivity of the design to the selection of the time duration and the benefits of 

including model uncertainty in the control system design are investigated here. For 

notational convenience, T  is denoted simply by Τ to give a common label for cases (a) and 

(b) on the horizontal axis in the following figures. In Figure 3.7, the probability of failure 

under optimal robust designs and the optimal gain normalized with respect to the nominal 

reliability optimal gain is plotted for increasing values of T. Figure 3.8 presents the 

statistics for the out-crossing rate over the uncertain parameter space under optimal design 

for the “Deterministic T’ assumption.  

 It should be noted, first, that UC2 involves larger uncertainty in the model description.  

This is expected to decrease the overall efficiency of the control application since it is more 

difficult to regulate the response of the system in the whole uncertain space, Θ. That is why 

the probability of failure and the statistics of the out-crossing rate under optimal design are 
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significantly larger for UC2.  As the time duration, T, increases, the probability of failure 

increases at an exponential rate, as expected. 
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Figure 3.7: (a) Probability of failure under optimal robust-reliability design and (b) 

normalized optimal gain for UC1(black curves)  and UC2 (grey curves) 

The variation of T influences additionally the optimal gain and the relative importance of 

the statistics of the out-crossing rate under optimal design. Except for small time durations, 

there is some sensitivity of the optimal gain to the value of T. For small T, the probability 

of failure equals the expected value of the out-crossing rate over the uncertain parameter 

space and the optimal reliability controller is the one that minimizes this expected value, 

independent of the value of T. No sensitivity of the design to the value of T exists for this 

range. As the time duration increases, the higher moments of the out-crossing rate 

contribute more to the objective function and the reliability design exhibits sensitivity to the 

value of T. The expected value of the out-crossing rate no longer corresponds to a 

minimum under optimal design and the characteristics of the other statistics of this out-

crossing rate also change.  Since the out-crossing rate for UC2 is larger, the value of T for 

which this change in the design sensitivity occurs is smaller. The difference in the 

magnitude of the out-crossing rate also influences the relative importance of its statistics in 

the optimization. For UC1, the second moment is more important in the controller 
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optimization for either medium or large values of T. The same pattern does not apply to 

UC2. For large values of T, the second moment is no longer dominant in the controller 

design. Of course, it should be noted that the trade-off, under optimal design, between the 

higher order statistics of the out-crossing rate is in general complex and not simply 

determined by the first three moments for large values of T. The information presented 

here, though, is sufficient for a general understanding of the trend.   
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Figure 3.8: Statistics of the out-crossing rate over the uncertain parameter space for 

optimal robust reliability controller assuming deterministic time duration T for (a) 

UC1 and (b) UC2  

Comparing now the “Deterministic T” and “Uncertain T” cases, it is evident, based on 

either the calculated reliability or the optimal controller gain in Figure 3.7, that only a small 

difference exists between them. This verifies the close relationship of the two objective 

functions in (3.35) and (3.42), discussed previously. This close relationship and the small 

sensitivity of the control system optimal gain to the exact value of T show that the expected 

duration of the excitation is an appropriate value to select for the time duration. 

Figure 3.7(b) may also be used to obtain information on the difference between the robust 

and nominal reliability designs since the normalization of the optimal gain for the robust 
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design has been performed with respect to the nominal optimal gain, which is not affected 

by the value of T. Such a comparison is better depicted in Figure 3.9, which presents the 

percentile improvement in reliability performance of the robust design over the nominal 

one for increasing values of T. The performance improvement in this figure (y-axis) is 

defined as the ratio of the difference of the failure probabilities corresponding to the 

nominal and robust designs respectively (performance difference), over the performance 

(failure probability) of the robust design. Based on this figure, it is evident that there is a 

considerable improvement in the performance, in the context of the example considered, 

when the model uncertainty is included in the control system design. For UC2, this 

improvement is in general smaller because of the smaller overall efficiency of the control 

application, as discussed earlier.  
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Figure 3.9: Percentile improvement in reliability performance under robust design 

compared to the nominal design for UC1(black curves) and UC2 (grey curves) 

3.7 Probabilistic Robustness for Minimum Variance Control Design  

The concept of probabilistically robust controller design is extended in this section to 

different performance characterizations. Let J(K,θ) denote the deterministic performance 

measure used to evaluate the behavior of the controlled system, given the values of the 

model parameters, with the convention again that smaller values for J(K,θ) correspond to 
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more favorable response. As discussed in Section 2.1, application of the stochastic design 

framework requires extension of the deterministic performance quantification to a 

probabilistic one. The two concepts for stochastic system design considered here are (a) the 

average robustness (AR) and the reliability robustness (RR). The probabilistic performance 

is expressed, respectively, as the expected value of J(K,θ) over the uncertain parameters, 

Eθ[J(K,θ)], and the probability that the behavior of the system will exceed some acceptable 

bound b, PJ>b(K). These performance objectives are given by: 

(a)AR :  [ ( , )] ( , ) ( )

(b)RR: ( ) [ ( , )] ( , ) ( )
Θ

J b b bΘ

E J J p d

P E I I p d

θ

θ>

Κ =

= =

∫
∫

θ Κ θ θ

K Κ θ Κ θ θ
 (3.51) 

where the indicator function Ib=1 if the system behavior is unacceptable, i.e., J(K,θ)>b, and 

Ib=0 if not. The control design approach that uses the latter probabilistic quantification is 

also referred to as stochastic robustness; see, for example, Wang and Stengel (2002). This 

approach is directly related to the general notion of system reliability; that is why we have 

selected the term reliability robustness to characterize it. Finally, the robust controller is 

given by the optimization  

* arg min ( , ) ( )h p d
∈

= ∫θK
K Κ θ θ θ

K
 (3.52) 

with the performance measure, h(Κ,θ), selected either as J(Κ,θ) or Ib(Κ,θ) depending on 

the probabilistic formulation adopted. The evaluation of the first stochastic integral in 

(3.51) can be performed by the methods described in Section 3.2. The second one, though, 

cannot be evaluated by those methods because the performance measure is a non-smooth 

function. This stochastic integral, and the associated optimization problem, can be solved 

by the methodologies discussed in the following two chapters.  

Which of the two probabilistic performance quantifications in (3.51) is more appropriate 

for control design is directly related to the nature of the metric J(K,θ) and the criteria 
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adopted in the design, i.e., which objective is more important, regulation of the average 

performance or the performance that exceeds acceptable bounds? The two different 

quadratic metrics given by (3.7), the H2 and the multi-objective H2 (mH2) performance, are 

considered here for the controlled system with specified model parameters. In a 

probabilistic setting, the most appropriate quantification for the H2 performance is AR, 

since the H2 metric is related to the average response of the system. Such quantification has 

been discussed also in Boers et al. (1997) and Boers (2002). The first study presented a 

theoretical investigation and showed that the associated design problem is well-posed. The 

second discussed necessary and sufficient conditions for the optimal feedback gain but did 

not address issues related to the estimation of the associated stochastic integrals; it was 

rather restricted to simple applications for the characterization of the parametric model 

uncertainty, for which the calculation of these integrals is trivial. For the mH2 performance 

both probabilistic quantifications could be appropriate depending on the application, but 

RR seems in general to be a better choice since the mH2 metric describes better the extreme 

response, rather than the mean one. The probabilistic characterization of the mH2 

performance does not seem to have received any special attention in the control literature.  

Apart from the probabilistically robust-to-model uncertainty approaches, the worst-case 

scenario design (denoted WC), a notion closer to the classical interpretation of robust 

feedback design, is also considered. In this case the optimal controller is designed by 

minimizing the maximum of the response metric for model parameters θ belonging in a 

compact set Θc: 

( )* arg min max ( , )
cΘ

J
∈∈

=
θK

K Κ θ
K

    . (3.53) 

For some special cases of performance measures and characterizations of Θc this controller 

synthesis problem can be solved using LMIs, see, for example, Friedman et al. (1995). In 
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the current study this problem is approached by means of a nonlinear min-max 

optimization using, as stated earlier, the TOMLAB optimization toolbox.    

The structural control example considered in Sections 3.4 and 3.6 is revisited here to 

illustrate some basic principles related to the concept of probabilistically robust controller 

synthesis. For the nominal system and for γ=1 the optimal performance for the two 

quadratic metrics considered is: for H2 0.179 and for mH2 0.0571. The model parameters 

that are assumed to have some level of uncertainty are the excitation characteristics θf and 

θR and the structural parameters {θs,i}. Two different levels of uncertainty and two different 

distributions (Gaussian and Uniform) for the model parameters are assumed, leading to the 

following four cases with respect to the probabilistic models adopted: 

Case 1, denoted as G1: all parameters follow Gaussian distributions. θf and θR follow 

independent distributions with mean value one and standard deviation 0.1 and 0.05, 

respectively. {θs,i} are assumed to be correlated Gaussian random variables with mean 

value one and covariance matrix elements as given in (3.50), with σθ=0.1.  

Case 2, denoted as G2: same as Case 1 but with double the standard deviation for all model 

parameters. This case corresponds to greater variation of the model parameters with respect 

to their mean value, that is, to a higher level of uncertainty.  

Case 3, denoted U1: all parameters follow a uniform distribution inside a compact set Θc,1, 

which is defined as θf∈[0.9, 1.1], θR∈[0.9, 1.1], θs,i∈[0.9, 1.1]. This selection corresponds 

to the same mean value and a half-spread equal to one standard deviation with respect to 

the uncertainty in Case 1. The uncertainty level is, thus, comparable to G1.  

 Case 4, denoted U2: same as Case 2 but with double the half-spread. The uncertainty level 

for this case is comparable to G2. 
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These four cases correspond, ultimately, to different prior knowledge for the model 

parameter values in terms of both the quality and the level of uncertainty. The worst case 

design is considered for sets Θc,1 and Θc,2; the corresponding performance metrics are 

denoted by WC1 and WC2, respectively. For the RR performance objective the threshold b 

is considered as a scaling of the optimal nominal performance b=0.0571γb, where 0.0571 is 

the optimal mH2 performance for the nominal system and γb is the scaling factor that 

defines the acceptable performance bound relative to that optimal performance. For better 

comparison when presenting the results the control gain is normalized with respect to the 

optimal mH2 gain for the nominal system. Also to better guide the discussion only the 

results that were deemed interesting are presented. 

3.7.1 Average robustness for H2 performance 

The variation of AR, WC, and nominal H2 performance with respect to the feedback gain is 

presented in Figure 3.10. Each curve in the figure represents different performance 

quantification. The minimum of each curve corresponds to the optimal design according to 

that performance quantification, i.e., metric. The efficiency of other control synthesis 

methods with respect to that metric should be judged by comparison to the optimal 

performance attained at that point.  The curves related for AR and WC performance also 

differentiate between the various cases considered for the parametric model uncertainty.  

The difference in the optimal gains as well as in the established performance between the 

various feedback selections is clearly illustrated in Figure 3.10. The results indicate the 

importance of adopting a probabilistic characterization for model uncertainty compared to 

the nominal design (Figure 3.10(a)); this importance is bigger for the cases that correspond 

to greater uncertainty level. Very small differences exist between cases G1 and U1 (which 

correspond to the same level of uncertainty but different distributions for the model 

parameters); this shows that the AR H2 performance, and therefore design, are relatively 

insensitive to the specific probability distributions of the parametric model uncertainty. The 
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comparison in Figure 3.10(b) shows potential differences in attainable performance and 

optimal gains between AR and WC designs. These differences are bigger when the set Θc 

considered for the possible values for the model parameters is bigger and indicates that the 

worst-case design approach is not appropriate when additional information about these 

values is available (quantified here by assigning PDFs to them) and the metric used is 

related to the average performance of the system.      
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Figure 3.10: Nominal, average, and worst case H2 performance for variations of the 

feedback gain 

3.7.2 Average and reliability robustness for mH2 performance 

The variation of AR, WC, and nominal mH2 performance with respect to the feedback gain 

is presented in Figure 3.11. The presentation is similar to that in Figure 3.10. The results in 
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this figure verify most of the earlier comments made for the AR performance and design 

with respect to the H2 metric.  

The results for the RR design are illustrated in Figure 3.12, Figure 3.13, and Figure 3.14. 

Figure 3.12 includes the optimal gain and the corresponding optimal performance for 

variation of the threshold γb. Increase of the threshold is equivalent to defining the 

unacceptable performance as corresponding to rare events (it leads to reduction of the 

probability of failure). Note that the WC approach in the setting considered here (worst 

case performance considering variations of the model parameters away from their nominal 

values) can be also interpreted as corresponding to design focusing on rare events.  
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Figure 3.11: Nominal, average, and worst case mH2 performance for variations of the 

feedback gain 
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Figure 3.13 shows the variation of the RR performance with respect to the feedback gain 

for U1 and four different selections of the acceptable performance threshold for RR. The 

RR performance is shown in terms of both the failure probability (left plot) as well as of the 

normalized performance (right plot). The normalization in the latter case is performed with 

respect to the probability of failure corresponding to the optimal design. The optimal 

controller selection for Nominal, AR, WC1, and WC2 designs are also included in these 

plots for direct comparison (correspond to vertical lines). Figure 3.14 presents similar 

results, but for the model uncertainty corresponding to case G1. 
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Figure 3.12: (a) Probability of failure under optimal design and (b) corresponding 

optimal gain for RR design for variation of the acceptable performance threshold. 

Horizontal lines in plot (b) correspond to optimal gain for WC design methods 
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Figure 3.13: RR performance for variation of the feedback gain for U1 case for model 

uncertainty. Vertical lines correspond to optimal controller for other synthesis 

methods 
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Figure 3.14: RR performance for variation of the feedback gain for G1 case for model 

uncertainty. Vertical lines correspond to optimal controller for other synthesis 

methods 
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The results in Figure 3.11, Figure 3.12, Figure 3.13, and Figure 3.14 indicate, again, the 

importance of adopting a probabilistic characterization for model uncertainty compared to 

the nominal design. This importance is greater for reliability-based quantification of the 

probabilistic performance, especially when the focus is on rare events. The comparison to 

the robust WC design shows also differences in attainable performance. These differences 

are, as expected, smaller for the performance quantification that focuses on rare events, that 

is, RR performance, and larger thresholds for the acceptable response. 

With respect to the RR design (Figure 3.12, Figure 3.13, and Figure 3.14), it is evident that 

as the threshold for acceptable performance increases, the optimal design configuration 

moves further away from the nominal and the AR designs and it gets closer to a worst-case 

scenario design approach. Also the sensitivity of the normalized performance objective 

around that optimal configuration becomes larger. This latter characteristic is obvious when 

comparing the normalized performances (right plot in Figure 3.13 and Figure 3.14) and 

leads to an important implication: for designs problems for which the focus is on rare 

events, i.e., larger thresholds that determine acceptable system performance, the benefits 

from using an explicit reliability-based design approach are greater, compared to the 

designs that consider  the nominal or the average performance. The explanation is simple: 

as the threshold increases, the regions in the model parameter space, Θ, that (a) lead to 

unacceptable performance and (b) have non-negligible probability for the model 

parameters p(θ), become smaller. Since in reliability context it is only important to regulate 

the performance in these small regions, the optimal controller can be quite different than 

the AR one, which focuses on the performance on the average inside Θ, or the nominal one, 

which only considers the nominal model parameter values. This will occur if these regions 

are different than the regions for the model parameter values that are important for the 

other designs, and ultimately depends on the characteristics of the uncertainty model used; 

that is, to the extent of the designers information about the true system. Additionally, as the 

threshold increases the comparative effectiveness of the optimal controller becomes 

greater, because it is easier to regulate the performance in the smaller regions in the model 
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parameter space that are important for the system reliability. This leads to the greater 

sensitivity, as mentioned earlier. All these patterns discussed here agree also with the 

behavior identified in Subsection 3.4.4. In that case the uncertainty referred solely to the 

stochastic input.  

Note that for the U1 and U2 cases the space for the values of the model parameters, Θ, is, 

respectively, equivalent to the sets, Θc,1 and Θc,2, that are considered in the WC1 and WC2 

designs. That is why as the threshold for the RR design becomes larger: the optimal design 

configuration converges asymptotically to the corresponding one for the worst-case design. 

For G1 and G2 this is not true since the model parameters can, with non-zero probability, 

have values that lay outside Θc,1 or Θc,2. 

Another interesting discussion of these results is associated to the comparison between the 

different probability models for the uncertainty quantification. Comparing cases G1 and 

U1, or G2 and U2, (which correspond to a similar level of uncertainty but different 

distributions for the model parameters, that is, to different information entropies), it is 

evident that small differences exist between the AR performances, but they are larger 

between the RR performances. Additionally the differences between the AR mH2 

performances, though small, are bigger than the differences when discussing in terms of the 

AR H2 performance (Section 3.7.1). This indicates that some small sensitivity exists to the 

specific probability distributions of the parametric model uncertainty for the mH2 

performance for average robustness quantification. For the reliability robustness 

quantification a significant sensitivity exists. The level of uncertainty has some influence 

on the design, especially for the reliability-based performance quantification. For larger 

uncertainty levels, it is more difficult to regulate the performance in the whole model 

parameter space; this leads to larger failure probabilities (compare for example the 

performance between G1 and G2). Differences in optimal gain are reported only for large 

thresholds. It is interesting to note that for γb equal to 1, that is, a threshold for the 

acceptable performance equal to the optimal nominal performance, there are minimal 
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differences between the 4 different designs in terms of either the optimal gain or the 

corresponding performance level (failure probability).  Also the optimal gains in this case 

are close to the nominal optimal gain and the optimal AR gain; this means that there is an 

equivalence of the performance quantification between all these design methods.  

One final comparison is warranted between the two different probabilistic performance 

quantifications, the AR and the RR: The connection between them, in this example, 

depends strongly on the definition of acceptable performance. If the focus is on rare events 

then these design objectives have significantly different characteristics and corresponding 

optimal design configurations. These remarks illustrate that important differences may exist 

between the two objectives. Thus, the designer needs to exercise some level of caution 

when defining the performance measure in the stochastic design framework. 

3.8 Concluding Remarks 

The robust-to-model-uncertainty controller design for linear systems was addressed in this 

chapter. Both (i) reliability-based design and (ii) incorporation of measures of probabilistic 

robustness to classical linear control methodologies were discussed. For a system under 

stationary stochastic excitation it was demonstrated that the difference in the optimal design 

configuration between reliability-based design and minimum variance design, even for a 

model with simple dynamics and control law, can be important. Even though the reliability-

based controller design involves a challenging, non-convex, nonlinear optimization, the 

potential improvement of the system’s reliability over other synthesis methods may justify 

the extra computational effort. Additionally, controllers optimized by explicitly considering 

modeling uncertainties were demonstrated to yield considerable improvement in 

performance compared to controllers optimized using only a nominal model, or the usual 

control robustness notion of worst-case scenario design. This, again, justifies the additional 

computational cost that is involved in the design process when including probabilistic 

descriptions for model uncertainty. Also, significant differences were shown in the design 

characteristics between the concepts of average robustness and reliability robustness for 
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quantifying the stochastic performance, particularly when the focus of the latter is on rare 

events. The reliability robustness was shown to have a strong sensitivity to the level of 

uncertainty considered and a small sensitivity to the specific probability distribution 

functions used to quantify the missing information about the system. The average 

robustness was reported to be insensitive to both of these characteristics.   

It should be noted that the research presented here for extending the ideas of probabilistic 

robustness to classical control methodologies represents only a first step towards systematic 

stochastic design of feedback controllers. The analysis was based on solving nonlinear 

optimization problems, which can be a quite challenging task when higher-order dynamic 

controllers are considered. A more thorough analytical approach is warranted, if possible, 

to allow for in-depth theoretical comparisons and for extension of the design methodology 

to complex controller structures. Certain simplifications with respect to the probability 

models for the parametric uncertainty could be employed as a first step for developing 

these approaches.  

In terms of the suggested stochastic system design approach, the methodologies considered 

in this chapter exploit the characteristics of the design problem to simplify the calculation 

of the performance objective and solve the stochastic programming problem. For systems 

that do not fulfill the necessary properties for applying these design approaches, 

approximation techniques may be adopted. The study by Taflanidis, Beck and Angelides 

(2007) provides an interesting example related to the reliability-based design of Liquid 

Column Mass Dampers (LCMDs). The response of LCMDs involves a nonlinear damping 

term. Statistical linearization was suggested in that study for framing an equivalent linear 

system and implementing the reliability-based design methodology considered in Sections 

3.3 and 3.4. It was shown in that paper that this approach is sufficient when the focus is 

only on the response of the structural system, but cannot be extended to design problems 

for which the reliability of the damper response needs to be also considered. This is 

attributed to the limitation of traditional statistical linearization techniques to describe 
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reliability-based characteristics (Roberts and Spanos 2003). This discussion illustrates that 

special attention is always needed for extending specialized techniques to systems for 

which all desired properties do not explicitly hold.   

In the following chapters a direct approach is discussed for complex stochastic design 

problems. This approach is not based on adaptation of any approximation technique.  

Rather, a simulation-based methodology is suggested for the evaluation of the system 

performance.     
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CHAPTER  4  

Stochastic Subset Optimization 

In Chapter 3 a computationally efficient approach to stochastic design was discussed for 

problems for which the system performance can be analytically evaluated, the uncertain 

parameter vector is low dimensional, and the integrand in the stochastic integral 

corresponds to a smooth function. These characteristics allow for efficient approximation 

of the stochastic integrals and make the associated design optimization less challenging. At 

the same time they impose restrictions on the applicability of the proposed design 

methodology. At this point the focus is turned to stochastic design for complex systems. 

For such systems the aforementioned properties cannot be guaranteed, unless specialized 

approximate approaches are adopted for modeling the physical system or evaluating its 

response. But when such approaches are involved there is typically no guarantee that the 

design optimization leads to a favorable design configuration in terms of the actual system. 

Contrary, a simulation-based approach for evaluating the system model response and the 

associated stochastic integrals allow for efficient analysis of complex systems, with no 

need to implement specialized or approximate techniques. 

Chapters 4 and 5 address the design optimization problem when stochastic simulation is 

used for evaluating the performance objective. The current chapter presents a novel 

algorithm, called Stochastic Subset Optimization (SSO), for efficiently exploring the 

sensitivity of the optimization objective to the design variables, and iteratively identifying a 

subset of the original design space that has high plausibility of containing the optimal 
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design variables. Statistical properties, appropriate stochastic simulation techniques for 

complex system models, and stopping criteria for the iterative approach are presented. An 

efficient two-stage framework for the stochastic optimization is then discussed in the next 

chapter, in which SSO is combined with some other stochastic search algorithm. In 

Chapters 4 and 5 only theoretical characteristics are presented. Numerical examples related 

to the suggested framework are discussed in detail in  Chapter 6. 

The development of SSO has been also published in Taflanidis and Beck (2006b, 2007a, 

2007b). 

4.1 Stochastic Subset Optimization 

Consider, initially, the modified positive function, ( , ) : xφ θn n
sh +→φ θ , as: 

,
( , ) ( , )   where   min ( , )sh h s s h= − <

φ θ
φ θ φ θ φ θ  (4.1) 

and note that Eθ[hs(φ,θ)]= Eθ[h(φ,θ)]-s. Since the two expected values differ only by a 

constant, optimization of the expected value of h(.) is equivalent, in terms of the optimal 

design choice, to optimization for the expected value for hs(.). In the SSO setting we focus 

on the latter optimization. 

4.1.1 Augmented problem  

The basic idea in SSO is the formulation of an augmented problem, a general concept 

initially discussed in Au (2005) for reliability-based design problems, where the design 

variables are artificially considered as uncertain with distribution p(φ) over the design 

space Φ. In the setting of this augmented stochastic design problem, define the auxiliary 

PDF: 
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,

( , ) ( , )( , ) ( , ) ( , )
[ ( , )]

s
s

s

h p h p
E h

π = ∝
φ θ

φ θ φ θφ θ φ θ φ θ
φ θ

 (4.2) 

where p(φ,θ)=p(φ)p(θ|φ). The normalizing constant in the denominator is defined as: 

, [ ( , )] ( , ) ( , )s sΦ Θ
E h h p d d= ∫ ∫φ θ φ θ φ θ φ θ θ φ  (4.3) 

and corresponds to the expected value of the performance measure in the augmented 

uncertain space. This expected value is not explicitly needed, but it can be obtained though 

stochastic simulation, which leads to an expression similar to (2.4) but with the pair [φ, θ] 

defining the uncertain parameters. The transformation of the performance measure in (4.1) 

may be necessary to ensure that π(φ,θ)≥0. For many stochastic design problems h(φ,θ)≥0 

and the transformation in (4.1) is unnecessary. 

In terms of the auxiliary PDF, the objective function, Eθ[hs(φ,θ)], can be expressed as:  

,
( )[ ( , )] [ ( , )]
( )s sE h E h

p
π

=θ φ θ
φφ θ φ θ
φ

 (4.4) 

where the marginal PDF π(φ) is equal to: 

( ) ( , )
Θ

dπ π= ∫φ φ θ θ     . (4.5) 

Define, now: 

,

[ ( , )] ( )( )
[ ( , )] ( )

s

s

E hJ
E h p

π
= =θ

φ θ

φ θ φφ
φ θ φ

    . (4.6) 

Since Eφ,θ[hs(φ,θ)] can be viewed simply as a normalizing constant, minimization of 

Eθ[hs(φ,θ)] is equivalent to the minimization of J(φ). For this purpose the marginal PDF 
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π(φ) in the numerator of J(φ) must be evaluated. Samples of this PDF can be obtained 

through stochastic simulation techniques. Appendix 4A briefly discusses two appropriate 

sampling algorithms, one using a direct approach to Monte Carlo (MC) simulation and one 

using Markov Chain Monte Carlo (MCMC) simulation. These algorithms will give sample 

pairs [φ,θ] that are distributed according to the joint distribution π(φ,θ). Their φ component 

corresponds to samples from the marginal distribution π(φ). SSO is based on exploiting the 

information in these samples  

4.1.2 Subset analysis 

Analytical approximations of π(φ) based on the samples for φ, was performed efficiently in 

Ching and Hsieh (2007), using the maximum entropy method for optimizations with 

reliability constraints, where the relationship of the probability of failure to the design 

variables was almost linear. Extension to optimization problems involving a stochastic 

integral as the objective function may be more challenging. The maximum entropy method 

corresponds, ultimately, to a polynomial approximation to log(π(φ)). Experience indicates 

that for challenging problems, including, for example, cases where the dimension nφ is not 

small or the sensitivity for a design variable is complex, such approximations may be 

problematic. Alternative methods for estimating π(φ) are kernel density estimators and 

histograms, as discussed in Au (2005). The first choice, though, may lead to spurious noise 

in the PDF that is difficult to interpret and the second can only be efficiently implemented 

if the dimension of the design parameter vector is small (e.g., not larger than two). In the 

SSO framework, such approximation of π(φ) is avoided. The sensitivity analysis is 

performed by looking at the average value of J(φ) over any subset of the design space 

I⊂Φ, denoted by H(I):  

( ) [ ( , )]
( )

sI I

I I

J d E h d
H I

V V
∝∫ ∫ θφ φ φ θ φ

    . (4.7) 
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This term is also proportional, ignoring normalization constants, to the average value of the 

objective function in set I. Το simplify the evaluation of H(I), a uniform distribution is 

chosen for p(φ). Note that p(φ) does not reflect the uncertainty in φ but is simply a device 

for formulating the augmented problem, and thus can be selected according to convenience. 

Finally, H(I) and an estimate of it based on the samples from π(φ) obtained as described 

previously, are given, respectively, by:  

( ) ( )  Φ
I

I

VH I d  
V

π= ∫ φ φ  (4.8) 

/ˆ ( )
/

I I

Φ Φ

N VH I
N V

=  (4.9) 

where NI and NΦ denote the number of samples from π(φ) belonging to the sets I and Φ, 

respectively, and VI and VΦ the volume of sets I and Φ, respectively. The estimate for H(I) 

is equal to the ratio of the volume density of samples from π(φ) in sets I and Φ. The 

coefficient of variation (c.o.v.) for this estimate depends on the simulation technique used 

for obtaining the samples from π(φ). For a broad class of sampling algorithms this c.o.v. 

may be expressed as: 

1 /1 ( )ˆc.o.v. ( )  
( ) /

I Φ

I Φ

N NP IH I
Ν P I Ν N N

−− ∈
= ≈

⋅ ∈ ⋅
φ
φ

 (4.10) 

where  

( ) ( ) /I ΦI
P I d N Nπ∈ ≈∫φ φ φ  (4.11) 

and N=NΦ/(1+γs), γs≥ 0, is the effective number of independent samples. If direct Monte 

Carlo techniques are used then γs=0, but if Markov Chain Monte Carlo (MCMC) sampling 
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is selected then γs>0, because of the correlation of the generated samples. Ultimately, the 

value of γs depends on the characteristics of the algorithm used. For example Au and Beck, 

(2003) provide for a formula for γs when the Metropolis-Hasting algorithm is used.   

For the uniform PDF for p(φ), note that H(Φ)=1, the integral in (4.3) is equal to the average 

value in Φ of the objective function, Eθ[hs(φ,θ)], and H(I) is equal to the ratio:  

[ ( , )]
( )

[ ( , )]
s II

s ΦΦ

E h d V
H I

E h d V
= ∫
∫

θ

θ

φ θ φ /

φ θ φ /
 (4.12) 

where the integrals in the numerator and denominator correspond to the average value of 

the objective function in sets I and Φ, respectively. Thus H(I) expresses the average relative 

sensitivity of Eθ[hs(φ,θ)] to φ within the set I⊂Φ. Greater sensitivity, i.e., bigger contrast 

in the average value (volume density) of the objective function, corresponds to smaller 

values for H(I).  

A similar ratio, that will be used later on, is the ratio of the integrals for the objective 

function: 

[ ( , )] ( )
( )

[ ( , )] ( )
sI I

sΦ Φ

E h d J d
R I

E h d J d
= =∫ ∫
∫ ∫

θ

θ

φ θ φ φ φ

φ θ φ φ φ
    . (4.13) 

An estimate for this ratio, using the samples from π(φ) is: 

ˆ ( ) I

Φ

NR I
N

=     . (4.14) 
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4.1.3 Deterministic subset optimization  

Consider a set of admissible subsets A in Φ that have some predetermined shape and some 

size constraint, for example, related to the set volume, and define the deterministic subset 

optimization: 

* arg min ( )
I A

I H I
∈

=      . (4.15) 

Optimization (4.15) identifies the set that gives the smallest average value of J(φ) (or 

equivalently Eθ[hs(φ,θ)]) within the class of admissible subsets A. If set A is properly 

chosen, for example, if its shape is “close” to the contours of Eθ[hs(φ,θ)]  in the vicinity of 

φ*, then φ*∈Ι* for the optimization in (4.15). The following argument illustrates this point.  

Let the admissible subsets be defined as A={I⊂Φ:VI=Vo} and let Iε be the region bounded 

by the level surface: 

*{ : (1 ) ( ) ( )}lI Φ J Jε ε= ∈ + =φ φ φD     . (4.16) 

In some neighborhood of φ*, i.e., for some εl∈(0,εm), the level surfaces DIε will be closed 

sets confining a simply connected subset Iε. If J(φ) is convex in the neighborhood of Iε, 

then the volume IV
ε
 will be a monotonically increasing function of ε, so if Vo is sufficiently 

small,  (0, )me ε∃ ∈  such that 
eI oV V= . If, additionally, Vo→0 then Ιe→φ*. As Vo increases 

it is expected, since IV
ε
 is monotonically increasing, that: 

* arg min ( )e I A
I I H I

∈
= =     . (4.17) 

Since φ*∈Ιe this means that φ*∈I*.  
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4.1.4 Stochastic subset optimization 

In the setting of the augmented stochastic problem and based on the estimate in (4.8), 

optimization (4.15) is approximately equal to the following stochastic subset optimization: 

ˆ ˆarg min ( ) arg min I

I A I A
I

NI H I
V∈ ∈

= =  (4.18) 

which involves identification of the set I∈A that contains the smallest volume density NI/VI 

of samples. Note that the computational cost for obtaining the samples needed for this 

optimization is comparable to the cost required for a single evaluation of the objective 

function in (2.4), depending on how many samples are simulated and the details of the 

algorithm used.  

It was argued before that if A is properly chosen, then, with respect to the optimization in 

(4.15) for I*, the optimum design variables φ*∈Ι*. This argument is not necessarily true for 

the optimization in (4.18) because only estimates of H(I) are used. Î is simply the set, 

within the admissible subsets A, that has the largest likelihood, in terms of the information 

available through the obtained samples, of including φ*. Τhis likelihood defines the quality 

of the identification and ultimately depends on H(I); taking into account the fact that the 

average value of Eθ[hs(φ,θ)] in the neighborhood of the optimal solution is the smallest in 

Φ, it is evident (see equation (4.12)) that smaller values of ˆ( )H I  correspond to greater 

plausibility for the set Î to include φ*. Since only estimates of ˆ( )H I  are available in the 

stochastic identification, the quality depends, ultimately, on both (a) the estimate ˆ ˆ( )H I  and 

(b) its coefficient of variation (defining the accuracy of that estimate). Large values for 

ˆ ˆ( )H I , i.e., close to 1, correspond to a density for the failed samples that approximates a 

uniform distribution in Φ and indicate that the identified set Î  has lower likelihood of  

containing φ*. The c.o.v. for ˆ ˆ( )H I  defines its accuracy. Smaller values for the c.o.v. 
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correspond to higher accuracy and, in the end, to greater plausibility for the set Î  to 

include φ*. Both the value for ˆ ˆ( )H I  and its c.o.v. should be taken into account when 

evaluating the quality of the identification. 
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Figure 4.1: Example for the quality of identification for two cases 

Figure 4.1 illustrates these concepts for a one-dimensional design-space problem. Part (a) 

includes the objective function and Part (b) the histograms of the samples for φ from π(φ,θ) 

using a direct Monte Carlo sampling approach with NΦ=1000. The identified subsets 

according to (4.18)  are shown in Figure 4.1(a) along with the corresponding estimate 

ˆ ˆ( )H I . A characterization of admissible subsets is selected for this example that guarantees 

a specific level of the c.o.v. for ˆ ( )H I  (see (4.10)): { }: /r I ΦA I N N ρ= ⊂ =Φ . Two classes 

are considered for the admissible subsets, corresponding to two different values for the 

constraint ρ: (i) ρ=0.1 and (ii) ρ=0.2. The first choice leads to a greater restriction for the 
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size of admissible sets, since a smaller number of samples are required within the identified 

set. The c.o.v. for the first class is 0.095 and for the second 0.063 for standard MCS. Two 

different cases are presented. For all cases, the optimal design choice corresponds to 

φ*=15. Case 1 has larger sensitivity with respect to the average value for the objective 

function compared to the second case. For this reason better quality of identification is 

established for this case: the value of the estimate ˆ ˆ( )H I  is smaller when comparing the 

same classes of admissible subsets between the different cases. The distribution of the 

failed samples in the histograms in Figure 4.1(b) provides a visual verification of this 

characteristic: a region for φ*
 can be identified more clearly for Case 1, whereas the 

distribution Case 2 approaches uniform near φ*. Comparing, now, the two classes of 

admissible subsets (i) and (ii), we see that the first class leads, as expected, to identification 

of a smaller size subset; this subset is characterized by a smaller ˆ ˆ( )H I  but at the same time 

higher c.o.v. (smaller accuracy) for that estimate. These two features represent opposite 

characteristics for the quality of identification. More detailed discussion on the influence of 

the size of the admissible subsets to the SSO efficiency is provided in the next section.  

4.1.5 Iterative approach 

The relative size of the admissible subsets I define (a) the resolution of φ* and (b) the 

accuracy information about ˆ ( )H I  that is extracted from the samples from π(φ). Selecting 

smaller size for the admissible sets leads to better resolution for φ*.  At the same time, 

though, this selection leads to smaller values for the ratio NI /NΦ (since smaller number of 

samples are included in smaller sets) and thus it increases the c.o.v. (reduces accuracy) of 

the estimation, as seen from (4.10). In order to maintain the same quality for the estimate, 

the effective number of independent samples must be increased, which means that more 

simulations must be performed. Since we are interested in subsets in Φ with small average 

value, the required number of simulations to gather accurate information for subsets with 

small size is large, i.e., a small percentage of the simulated samples fall in these subsets. 

These characteristics are clearly illustrated in Figure 4.1. In the examples presented in the 
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figure, the number of simulation samples must be 2.25 times larger for class (i) in order to 

get same accuracy of estimation for both classes of admissible subsets.  

To account for this characteristic and to increase the efficiency of the identification process, 

an iterative approach can be adopted. At iteration k, additional samples in 1k̂I −  (where 

0̂I =Φ ) that are distributed according to π(φ) are obtained. A region 1
ˆ ˆ
k kI I −⊂  for the 

optimal design parameters is then identified as above. The quality of the identification is 

improved by applying such an iterative scheme, since the ratio of the samples in 1k̂I −  to the 

one in k̂I  is larger than the equivalent ratio when comparing k̂I  and the original design 

space Φ. The samples [φ,θ] available from the previous iteration, whose φ component lies 

inside set 1k̂I − , can be exploited for improving the efficiency of the sampling process. In 

terms of the algorithms described in Appendix 4A this may be established, for example, by 

(a) forming better proposal PDFs or (b) using the samples already available as seeds for 

MCMC simulation.  

4.1.6 Influence of dimension of design variables 

This iterative approach of SSO leads to a favorable feature for the computational cost of the 

algorithm with respect to the dimension of the search space (number of design variables, 

nφ). For a specific reduction δk of the size (volume) of the search space in some step of the 

set identification: 

1

ˆ

ˆ

k

k

I
k

I

V

V
δ

−

=  (4.19) 

the corresponding average size reduction per design variable is φn
kδ . This means that if the 

identification was performed in one step, the logarithmic average size reduction per 

variable would be inversely proportional to the dimension of the search space nφ (assuming 
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δk remains the same). In the suggested iterative approach though, in niter iterations the 

average size reduction per design variables, is: 

( ) ( ) /

1
iter iter φφφ iter

n n nnn n
k mean meank
δ δ δ

=
= =∏  (4.20) 

where  

1
iteriter

nn
mean kk

δ δ
=

= ∏  (4.21) 

is the geometric mean of the volume reductions over all of the iterations (note that if δk=δ, 

then δmean=δ). Thus, for the same average total size reduction over all design variables (left-

hand side of equation (4.20)), the number of required iterations is proportional to the 

dimension of the design space (look at the exponent in the right-hand side of equation 

(4.20)), assuming that the mean reduction of the volume over all iterations, δmean, is 

comparable. This argument shows that the efficiency of SSO decreases linearly with the 

dimension of the design space, so SSO should be considered appropriate for problems that 

involve a large number of design variables.  

4.1.7 Sensitivity to the model parameters 

The SSO setting can be also used to obtain information about the sensitivity of the 

performance of the system to the model parameters. The concept is similar to the sensitivity 

analysis for the design variables as was described in Section 4.1.1; the samples from π(φ,θ) 

are projected in this case to the space of the model parameters Θ. The distribution of these 

samples compared to the prior distribution p(θ) expresses the sensitivity of the performance 

measure to the  specific model parameters; bigger discrepancies between the distributions 

indicate greater importance of the corresponding model parameters in affecting the system 

performance. This can be also performed for each model parameter separately or for some 

selected group of the model parameters. This analysis will also illustrate the correlation 
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between the model parameters with respect to the system response. Such information is 

important for understanding the influence of the model parameters on the system model 

performance and can be exploited in various ways, for example for establishing importance 

sampling densities as will be discussed in Section 5.2.  

4.1.8 Details for reliability objective problem 

When SSO is implemented for ROP, selection of IF(φ,θ) as the performance measure is 

beneficial because it simplifies the task of simulating samples from π(φ,θ). In this case 

these samples correspond simply to failed samples, i.e., samples that lead to failure of the 

system (IF(φ,θ)=1), and the auxiliary PDF π(φ,θ) is simply the PDF for the augmented 

uncertain parameter vector conditioned on failure of the system, i.e., p(φ,θ|F). Similarly, 

the marginal π(φ) corresponds to p(φ|F). The equation (4.4) for the objective function 

(probability of failure) in the context of the augmented design problem is simply an 

expression of Bayes’ theorem:  

( | )( | ) ( )
( )

p FP F P F
p

=
φφ
φ

 (4.22) 

where ( | ) ( | )FP F P Θφ φ  and ( )P F  is the failure probability in the augmented design 

problem, defined, similarly to (4.3), as: 

( ) ( , ) ( , )
Φ Θ

P F I p d d= ∫ ∫ φ θ φ θ θ θφ     . (4.23) 

Monte Carlo simulation can be used for simulating samples from p(φ|F) at the first stage of 

the SSO algorithm. For design problems that involve small failure probabilities this 

approach may be inefficient because 1/P(F) trials are needed on the average in order to 

simulate one failed sample. Other stochastic simulation methods, such as Subset Simulation 

(Au and Beck 2001b) should be preferred in such cases. For subsequent iterations of SSO, 
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MCMC simulation should be chosen, preferably using the modified Metropolis-Hastings 

algorithm (see discussion in Appendix 4A) which is appropriate for problems with high-

dimensional uncertainties. This approach is more efficient than restarting the sampling 

process after the identification of each new subset, i.e., using MCS. Since subsets are 

identified that are progressively closer to the optimal solution, and thus are characterized by 

smaller P(F), the latter approach would involve an increasing computational cost for 

simulating the same number of samples from  the  target  distribution  p(φ,θ|F)  in set 1k̂I − . 

In the MCMC approach, all samples simulated follow the distribution p(φ,θ|F). Note that in 

the proposed iterative identification, the conditional samples populate gradually from a 

region with high probability content towards a region of low probability content in the 

design space, a concept similar to Subset Simulation (Au and Beck 2001a).   

The θ component of the simulated failed samples correspond to the conditional PDFs 

p(θ|F) and ultimately answer the question: what is expected to happen when the system 

fails? Application of Bayes’s theorem leads to an expression similar to (4.22), but with the 

design variables φ substituted by the model parameters θ. This shows that the marginal pdf 

p(θi|F) for the uncertain parameter θi,  when compared to the marginal PDF p(θi),  indicates 

how important the corresponding uncertain parameter is in affecting the system failure. 

This is similar to the ideas discussed in Au and Beck (2003) in the context of Subset 

Simulation.  

4.2 Implementation Issues and Guidelines 

In this section implementation topics related to the stochastic sampling from π(φ,θ) and the 

subset identification described by (4.18) are discussed for the SSO algorithm.  

4.2.1 Characterization and normalization of search space 

For notational simplicity, the updated search space for the design variables at the current 

stage of SSO is denotes as S. For the first iteration of SSO, Φ=S, and for the kth iteration 
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S=Îk-1. The volume of this space is denoted by Vs and the number of samples in it Ns. Two 

different cases are discussed in detail for S: (i) a hyper-rectangle with no rotation relative to 

the Cartesian space, corresponding to a box-bounded search space on each design variable 

separately, and (ii) a hyper-ellipse, defined respectively as: 

 
( )

( ) ( )
1

2

:  1

:  1

d

T
d

S

S

ο

ο ο

∞
− =

− − =

R φ φ

φ φ A φ φ
 (4.24) 

where nϕ
ο ∈φ  is the center of search space, xn n

d
ϕ ϕ∈R  is a diagonal matrix with 

elements the reciprocals of the half-length of the search space for each design variable, .
∞

 

corresponds to the infinity vector norm, and xn n
d

ϕ ϕΑ ∈  is a positive-definite symmetric 

matrix. Another possible case not investigated here is the extension of the definition of 

hyper-rectangles to take into account possible rotations; this can be established by 

introduction of a rotational transformation with respect to each pair of hyper-planes.  

Cases for which the initial design space Φ has a different shape than these two candidates 

can be addressed by selecting S1 (or S2) as a superset of Φ. A penalty term can then be used 

to describe the objective function for the region S1-Φ, so that: 

,

( , )          if 
( , )  where max ( , )

( , )     if 
S

S s sΦ Θ
s s

h Φ
h h

h Φ
λ

λ ∈ ∈

∈⎧
= ≥⎨ + ∉⎩ φ θ

φ θ φ
φ θ φ θ

φ θ φ
    . (4.25) 

Figure 4.2 illustrates this idea. Such penalty techniques may be also used to take into 

account complex constraints in formulation (2.2), when this cannot be easily established by 

appropriate selection of Φ.  
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Figure 4.2: Adjustment of initial search space   

The volumes of sets S1 and S2 in (4.24) which are needed in the SSO setting are, 

respectively: 

( )1 2

/2
1 12 det( ),  det( )

/ 2 1

n
n

S S dV A V
n

ϕ
ϕ

ϕ

π− −= =
Γ +

A  (4.26) 

where Γ(.) corresponds to the Gamma-function. 

A normalization of the search space S is also considered. This normalization can increase 

(see discussion later) the efficiency of the subset optimization within S, needed for SSO, 

and can be established using a simple linear coordinate transformation: 

( )d ο= −x C φ φ     . (4.27) 

For S1 Cd=Rd and for S2 Cd is an upper triangular matrix corresponding to the Cholesky 

decomposition of Ad, that is, Cd
TCd=Ad. The normalized search space will be denoted by X. 

The two sets in (4.24) are then transformed to a hyper-cube with half-length 1 and a unit 

radius hyper-sphere, respectively: 
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1
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:  1     .T
∞
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=

x

x x

X

X
 (4.28) 

In spherical coordinates, set X2 is described simply by rc=1, where rc corresponds to the 

radial coordinate. Since this description is simpler than the quadratic expression in (4.28) it 

is expected that use of a spherical coordinate system, instead of a Cartesian one, will be 

sometimes advantageous when the search space is X2 (or equivalently S2). Some details 

pertaining to the transformations between spherical and Cartesian coordinates are given in 

Appendix 4B. Note, finally, that since the probability distribution of φ is uniform in S the 

same applies for the probability distribution for x in X (because the coordinate 

transformation is linear). 

4.2.2 Selection of admissible subsets  

Proper selection of the geometrical shape and size of the admissible sets is important for 

the efficiency of SSO. The geometrical shape should be chosen so that the challenging, 

non-smooth (see discussion later) optimization (4.18) can be efficiently solved while the 

sensitivity of the objective function to each design variable is fully explored. For example, 

the suggested hyper-rectangle or hyper-ellipse are appropriate choices for the shape of 

admissible subsets, depending also on the shape of the initial design space Φ. Note that the 

difference in size (volume) between Φ and the largest possible subset I Φ⊂  should not be 

large. If this property does not hold, then the size reduction in the first iteration of SSO will 

necessarily have to be at least as big as this volume difference, feature which might reduce 

the quality of the SSO identification in the first iteration. This problem may be 

circumvented by appropriate adjustment of the design space, Φ, based on the desired 

shapes for the class of admissible subsets. For example, a superset Φsup that has shape 

similar to one of the admissible subsets, and circumscribes the desired design set Φ can be 

selected as initial search space for the optimal system configuration. As mentioned above, 

two choices for shapes or admissible subsets are considered herein: hyper-rectangles 
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without any rotation relative to the canonical Cartesian space and hyper-ellipses. For 

notational convenience the first class is simply referred to as hyper-rectangles.   

The size of admissible subsets, now, is related to the quality of identification as discussed 

earlier. Selection of this size can be determined, for example, by incorporating a constraint 

for either (i) the volume ratio δ=VI/VS or (ii) the number of samples ratio ρ=ΝI/ΝS . The first 

choice cannot be directly related to any of the measures of quality of identification; thus 

proper selection of δ is not straightforward, though personal experience indicates that δ 

close to 0.25 is, in general, an appropriate option. The second choice allows for directly 

controlling the coefficient of variation and thus one of the parameters influencing the 

quality of identification. This selection was used for the subset identifications in Figure 4.1 

and is discussed in more detail here.  

The optimization in (4.18) adopting the latter characterization of admissible subsets 

corresponds to identification of the subset that has the smallest estimated ˆ ˆ( )H I  within this 

class of subsets that guarantee a specific level of accuracy for that estimate: 

{ }

ˆ arg min /

: /     .

I II A

I S

I N V

A I S N N
ρ

ρ ρ
∈

=

= ⊂ =
 (4.29) 

Note that according to (4.13) and (4.14), the ratio ΝI/ΝS  is equal to an estimate for the ratio 

of the integral of objective function in sets I and S, respectively. Thus, another 

interpretation of the optimization in (4.29) is that it is equivalent to identification of the set 

that has the smallest estimated average value within the class of subsets that have a specific 

estimated integral:   

{ }

ˆ ˆarg min ( )

ˆ: ( )     .

I A
I H I

A I S R I
ρ

ρ ρ

∈
=

= ⊂ =
 (4.30) 
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This interpretation indicates that for cases with smaller sensitivity around φ*
, smaller size 

subsets I are identified since the admissible sets that satisfy the constraint for the ˆ( )R I  ratio 

will be smaller. This characteristic is also evident in Figure 4.1 when comparing the two 

different cases (left and right plot). Let δk  defined in (4.19) denote the size reduction at 

each step of the algorithm in the SSO iterative approach suggested. As the SSO iterative 

algorithm evolves, regions with smaller sensitivity, i.e., closer to the optimal value, are 

approached. According to the previous argument, this leads to identification of smaller size 

subsets; thus δk is a decreasing sequence. Since ˆ ˆ( )H I  is equal to the ration ρ/δk the 

discussion here verifies that for cases with larger sensitivity to the objective function the 

value of ˆ ˆ( )H I  is smaller, and indicates that { ˆ ˆ( )kH I } is expected to be an increasing 

sequence.  

Τhe volume (size) of the admissible subsets in the identification scheme (4.29) is 

adaptively chosen so that the ratio of samples in the identified set is equal to ρ. The choice 

of the value for ρ affects the efficiency of the identification. If ρ is large, a fewer number of 

samples is required for the same level of accuracy (c.o.v. in (4.10)). However, a large value 

of ρ means that the size of the identified subsets will decrease slowly (larger size sets are 

identified), requiring more steps to converge to the optimal solution. The choice of the 

constraint ρ is a trade-off between the number of samples required in each step and the 

number of steps required to converge to the optimal design choice. In the applications we 

have investigated so far it was found that choosing ρ=0.1–0.2 yields good efficiency. An 

adaptive scheme can also be applied: smaller values of ρ may be selected in the first 

iterations of SSO when the sensitivity of the design problem is large and so the values of 
ˆ ˆ( )H I  small. As the algorithm converges to the optimal design configuration, ˆ ˆ( )H I  

increases and larger values of ρ can be chosen to decrease the c.o.v. of ˆ ˆ( )H I  and thus 

improve the identification quality.  
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4.2.3 Identification of the optimal subsets  

Another important issue for the efficiency of SSO is the identification of the optimal sets 

within the class of admissible subsets selected, i.e., optimization (4.18). Typically the cost 

associated with this optimization is significantly smaller than the cost of the stochastic 

simulation needed for generating the samples from π(φ). Thus the computational efficiency 

of SSO is primarily determined by the efficiency of the stochastic simulation stage, not 

optimization (4.18). Still, the correct identification of the optimal subset within the search 

space has elementary importance for SSO; if the optimization cannot be accurately 

performed then the whole algorithm is inefficient.        

A fundamental remark regarding this optimization is that the position in the search space of 

a set I∈A and the number of sample points in it is non-continuous. Thus, only methods 

appropriate for non-smooth optimization problems, such as genetic algorithms or direct 

search methods (see Pardalos and Resende (2002) for more details), can be applied for the 

identification in consideration. The computational cost associated with these methods 

depends on (a) the number of parameters, nA, needed to characterize the subsets and (b) the 

description of the admissible values for these parameters. The number of parameters is 

determined by the dimension of the design variables, nφ, and the shape selected for the 

admissible subsets; for example, for hyper-rectangles (with no rotation) it is nA=2nφ and for 

hyper-ellipses nA=2nφ+nφ(nφ-1)/2. Increase of nA typically leads to an exponential increase 

of the computational cost associated with genetic algorithms or direct search methods. The 

characterization of the admissible values for the parameters that define the subsets depends 

on the analytical formula that has been selected for the mathematical representation of the 

subsets, as well as on the shape of the space X. To illustrate this principle, consider the 

characterization of the center xο of a hyper-ellipse inside X  that corresponds to one of the 

two classes described by (4.28). If X is a hyper-cube with length two (X 1) then φο should be 

described in Cartesian coordinates with the simple linear constraint |xo,i|<1 ∀ i, defining the 

admissible values for xo. If instead X is a hyper-rectangle (X 2), then xο should be described 
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in spherical coordinates, because this selection leads to a simple linear constraint for the 

admissible values for xo, that is, rc<1. If a Cartesian coordinate system were selected in the 

latter case, then a nonlinear constraint would be involved, that is, xo
Txo<1, and the 

characterization of the admissible values for xo would be inefficient for large nφ. The 

inefficiency here means that many candidate selections for xo will not satisfy the desired 

nonlinear constraint. This argument illustrates also the merits of establishing a 

normalization of the search space S, as discussed easier; this normalization allows for a 

more efficient parametric characterization of sets within this space.  

Related to optimization problem (4.18), note additionally that the evaluation of the 

objective function and the constraint involve typically small computational effort; they 

simply consist of counting the number of samples within the subset, calculating the volume 

of the set, and checking that Ι⊂ S. For choice of admissible subsets as hyper-rectangles 

these tasks are relatively straightforward. Appendix 4C discusses some relevant topics 

associated with these tasks for selection of the admissible subsets as hyper-ellipses.  

This whole discussion shows that optimization (4.18) can be efficiently solved if an 

appropriate algorithm is available and, additionally, the admissible subsets are 

appropriately parameterized. Because of the significance of the optimization in the 

efficiency of SSO, special attention is warranted to guarantee that the identification is 

accurate. A simpler characterization of the admissible subsets should be preferred (for 

example, hyper-rectangles) when there is doubt about the reliability of the optimization 

process if more complex characterizations were chosen.     

4.2.4 Characteristics for MCMC simulation 

As discussed earlier, the cost of the stochastic simulation stage, needed for generating the 

samples from π(φ), determines the effectiveness of SSO. This is particularly true for design 

problems involving complex system models for which the computational burden for a 

single evaluation of the model response, typically through computer simulation, is 
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significant. The cost associated with this sampling stage of SSO may be decreased by 

efficient application of MCMC simulation. This efficiency depends significantly on the 

quality of the selected proposal PDFs for the generated Markov Chains. Various studies 

exist that discuss appropriate selections for these PDFs depending on the characteristics of 

the problem; see for example Roberts et al. (1997), Roberts and Rosenthal (2001), Au and 

Beck (2003), Robert and Casella (2004). The proposal PDFs for the design variables φ, 

whose prior distribution p(φ) is uniform in Φ, are only addressed here. The discussion here 

is also applicable if the normalized coordinate system is used.  

For local random walk a PDF centered at the current sample, with spread 70% of the 

dimension of the current subset S at each direction, is suggested for the proposal PDF for φ. 

This is a proposal PDF that is easy to sample from and still approximates the form of π(φ), 

which is expected to look like a convex function with small sensitivity as the identification 

converges to a set near the optimal design variables. A global uniform proposal PDF could 

also be chosen for φ. Such a global proposal PDF avoids rejecting samples due to their φ 

component, in the candidate sampling step, falling outside the given search space S, which 

can occur with a local uniform PDF and which increases the correlation in the generated 

Markov Chain. As the SSO algorithm evolves and regions with small sensitivity are 

approached, this global proposal converges to the target distribution, π(φ); this 

characteristic is expected to lead to increase of the efficiency of the MCMC at these later 

stages. This increase of efficiency is directly related to increase of the number of effective 

samples for the same number of total simulated samples and thus to a decrease of the c.o.v. 

(4.10). Since ˆ ˆ( )H I  is expected to increase in these later stages, this decrease of the c.o.v. 

contributes significantly in maintaining a good level of quality for the optimal subset 

identification, i.e., partially counterbalances the quality deterioration generated by the 

larger values of ˆ ˆ( )H I . 

A final question related to these suggestions for proposal PDFs for φ that should be 

answered is how they can be effectively applied when the normalized search space is a 
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hyper-sphere (X2). In this case it is easier to perform the sampling in spherical coordinates. 

Using the Jacobian transformation in (B4.3), a uniform probability distribution for φ, and 

thus for x, corresponds to the following distributions for the spherical coordinates: 

( )
( )

11

11

0

sin 1( ) ,  ( )  1: 2,   ( )
2sin

n in
ic

c i nn i
i i

ψrp r p ψ i n p ψ
n ψ dψ

ϕ

ϕ
ϕ

ϕπ π

− −−

−− −
= = = − =

∫
    . (4.31) 

Generation of samples according to these distributions is straightforward (see, for example, 

Katafygiotis and Cheung (2002)). 

4.2.5 Updating function hs  

Another way to improve the efficiency of the SSO is to continually update hs(φ,θ) in  (4.1) 

by re-defining s: 

, ˆ ,
( , ) ( , )   where   min ( , )

k
s k k k I

h h s s h
∈

= − =
φ θ

φ θ φ θ φ θ     . (4.32) 

Figure 4.3 illustrates this concept. For choice hs,2(φ,θ), which corresponds to a larger value 

of s, the sensitivity of the objective function, in the SSO setting, is larger and a candidate 

region for the optimal choice is more easily discernible (better quality is established) based 

on samples from π(φ). If hs(φ,θ) is reformulated, though, the ancillary density π(φ,θ) 

changes and the samples from the previous iteration cannot provide useful information for 

the next iteration unless the previous and the next loss functions hs(φ,θ) are similar. For 

cases where the sensitivity of the objective function is small, our experience indicates that 

the re-formulation of the loss function can be beneficial (assuming that s can be set to a 

larger value). When the sensitivity is quite high, though, it is preferable to keep the same 

function and use the samples available to improve the efficiency when generating new 

ones. 
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(a) Objective function

(b) Histograms of samples from π(φ) obtained through MC simulation
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Figure 4.3: Influence of selection of s in SSO 

4.3 Stochastic Subset Optimization Algorithm 

The SSO algorithm is summarized as follows (Figure 4.4 and Figure 4.5 illustrate some 

important steps for selection of admissible subsets either as hyper-rectangles or hyper-

ellipses): 

Initialization: Define the bounded design space Φ, and the desired geometrical shape for 

the subsets I. Decide on the desired number of samples N and on the value for the 

constraint ρ. 

Step k: Use some sampling procedure, such as MC simulation for the 1st step and MCMC 

simulation for subsequent steps, in order to simulate N samples (or effective samples) from 

π(φ,θ) inside the subset Îk-1. Identify subset Îk as: 
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{ }
,

, 1
ˆ ˆarg min / ,    : /

k
k I I k k II A
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ρ

ρ ρ−∈
= = ⊂ =     . (4.33) 

Keep only the 
k̂I

N  samples whose φ component belongs to the subset Îk (exploit these 

samples in the next step). 

Stopping criteria: At each step, estimate ratio: 

1

1

ˆ ˆ

ˆ ˆ

ˆ ˆ( ) k k

k k

I I
k

I I

N V
H I

N V
−

−

=  (4.34) 

and its coefficient of variation according to the simulation algorithm used.  Based on these 

two quantities and the desired quality of the identification (see next chapter), decide on 

whether to (a) stop (or even increase N to obtain better accuracy information about ˆ ˆ( )kH I ) 

or (b) proceed to step k+1.   

Figure 4.4 also demonstrates the dependence of the quality of the identification on ˆ ˆ( )kH I  

for a two-dimensional example. This ratio expresses the difference in volume density of the 

samples inside and outside the identified set k̂I . In the first iteration, this difference is 

clearly visible. As SSO evolves and converges to subsets with smaller sensitivity to the 

objective function, the difference becomes smaller, and by the last iteration (Figure 4.4(f)), 

it is difficult to visually discriminate which region in the set has smaller volume density of 

failed samples. This corresponds to a decrease in the quality of the identification. It is also 

clear that as the identification process in SSO evolves, the reduction in the size of the 

identified subsets becomes larger, and that the value of ˆ ˆ( )kH I  constantly increases. These 

patterns verify the theoretical discussion presented in Section 4.2.2, assuming that as the 

SSO identification progresses, regions of the design space with smaller sensitivity to the 

objective function are approached. 
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(f) Last step, stopping criteria are satisfied; Ĥ(Î3)= 0.82
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Figure 4.4: An illustrative example for the SSO algorithm for selection of admissible 

subsets as hyper-ellipses (left) or hyper-rectangles (right) 
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Figure 4.5: Some important steps for the SSO algorithm for selection of admissible 

subsets as hyper-ellipses (left) or hyper-rectangles (right)  
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4.4 Convergence Properties of Stochastic Subset Optimization 

The SSO algorithm described in this chapter, will adaptively converge to a relatively small 

sub-region for the optimal design variables φ* within the original design space. The size of 

this sub-region depends on the sensitivity of the objective function around the optimal 

point. If that sensitivity is large then SSO will ultimately converge to a “small” set Ιsso, 

satisfying at the same time the accuracy requirements that make it highly likely that φ* is in 

Isso. The center point of this set, denoted herein as φSSO, gives the estimate for the optimal 

design variables. Additionally SSO gives information about the local behavior of the 

objective function. As long as the shape of the admissible subsets is close to the contours of 

the objective function near the optimal design point, the subset identified in the last stage of 

SSO provides a good estimate for these contours. For improving the accuracy of this 

estimate, it might be desirable to increase the number of samples N, in the last iteration of 

SSO, in order to obtain more information for π(φ). Also, selection of the shape of 

admissible subsets as hyper-ellipses should be more appropriate for this purpose, since the 

contours of the objective function are expected to fit better to hyper-elliptical shapes near 

the optimal design point. The comparison in Figure 4.5 between the two different classes of 

admissible subsets makes this remark obvious. 

In cases, though, that the sensitivity of the objective function around the optimal point is 

not large enough, convergence to a small subset might be problematic and will require 

increasing the number of samples in order to satisfy the requirement for the quality of 

identification. Another important issue related to the identification in such cases is that 

there is no measure of the quality of the identified solution (i.e., how close φSSO is to φ*) 

that can be directly established through the SSO results. If the identification is performed 

multiple times, the c.o.v. of { ,
ˆ [ ( , )]SSO iE hθ φ θ } could be considered a good candidate for 

characterizing this quality. This might not be always a good measure though. For example, 

if the choice for admissible subsets is inappropriate for the problem considered, it could be 

the case that consistent results are obtained for φSSO (small c.o.v.) that are far from the 
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optimal design choice φ*. Also, this approach involves higher computational cost because 

of the need to perform the identification multiple times. For such cases, it could be more 

computationally efficient (instead of increasing N in SSO and performing the identification 

multiple times) and more accurate (in terms of identifying the true optimum), to combine 

SSO with some other optimization algorithm for pinpointing φ*. A discussion of topics 

related to such algorithms as well as a complete framework for stochastic optimization will 

be presented in the next chapter. Numerical examples pertaining to the efficiency of SSO, 

as well as the combined optimization framework are presented in Chapter 6. 

Appendix 4A: Sampling Techniques 

Two algorithms that can be used for simulating samples from π(φ,θ) are discussed here: 

Algorithm 1: accept-reject method, which can be considered a direct Monte Carlo 

approach. First, choose an appropriate proposal PDF f(φ,θ) and then generate a sequence of 

independent samples as follows: 

(1) Randomly simulate candidate sample [φc, θc] from f(φ,θ) and u from uniform (0,1). 

(2) Accept [φ,θ]=[φc,θc] if  

,

( , ) ( , )( , ) , where max ( , )
( , ) ( , )

c c
s c c s

c c

p ph u M h
Mf f

> >
φ θ

φ θ φ θφ θ φ θ
φ θ φ θ

    . (A4.1) 

(3) Return to (1) otherwise. 

Algorithm 2: Metropolis-Hastings algorithm, which belongs to Markov Chain Monte Carlo 

methods (MCMC) and is expressed through the iterative form: 

(1)  Randomly simulate a candidate sample [ ˜ φk+1,˜ θk+1] from a proposal PDF q( ˜ φk+1,˜ θk+1||φk,θk). 



 

 119

(2) Compute acceptance ratio: 
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(3) Simulate u from uniform (0,1) and set 
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In this case the samples are correlated (the next sample depends on the previous one) but 

follow the target distribution after a burn-in period, i.e., after the Markov chain reaches 

stationarity. The algorithm is particularly efficient when samples that follow the target 

distribution are already available, since then no burn-in period is needed. Assume, in this 

setting, that there are Na samples [φ,θ] and a total N>Na are desired. Starting from each of 

the Na original samples, [N/Na] samples are generated by the above process. Since the 

initial samples are distributed according to π(φ,θ), the Markov Chain generated in this way 

is always in its stationary state and all samples simulated follow the target distribution. 

Note that knowledge of the normalizing constant in the denominator of π(φ,θ) is not 

needed for any of the two algorithms.  

The efficiency of both these sampling algorithms depends on the proposal PDFs f(φ,θ) and 

q(φ,θ). These PDFs should be chosen to closely resemble hs(φ,θ)p(φ,θ) and still be easy to 

sample from. If the first feature is established then the efficiency of the algorithm is high. 

For Metropolis-Hastings, the proposal PDFs can either be global (independent), i.e., 

q(.)=q( ˜ φk+1,˜ θk+1), or establish a local random walk, i.e., q=q( ˜ φk+1,˜ θk+1|φk,θk) (see Roberts 

and Rosenthal (2004) for more detailed discussion). In the latter case, the spread of the 

proposal PDFs is particularly important because it affects the size of the region covered by 

the Markov Chain samples (Roberts and Rosenthal 2001). Excessively large spread may 
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reduce the acceptance rate, increasing the number of repeated samples and thus slowing 

down convergence and create correlation between samples. On the other hand, small spread 

does not allow for efficient investigation of the whole region of the uncertain parameters 

and creates correlation between samples because of their proximity.  

If the dimension of the uncertain parameter vector is high, a typical characteristic for 

dynamic problems where the excitation is modeled using a white-noise sequence Zw, the 

efficiency of the MCMC simulation process might be reduced (Au and Beck 2001a) 

because high correlation might exist between the current and the next chain state. For ROP 

the modified Metropolis-Hastings algorithm, discussed in detail in Au and Beck (2003), 

can be used in these cases (assuming that the performance measure is described by the 

indicator function). The modified algorithm differs from the original in the way that the 

candidate state is generated in steps 1 and 2. In the modified version the parameters in the 

uncertain parameter vector are divided into groups and steps 1 and 2 are applied for each 

group separately. A detailed discussion on grouping of uncertain parameters, choice of 

proposal PDFs, along with some other key issues for efficient MCMC simulation is 

presented in Au and Beck (2003). For general stochastic design problems the modified 

version of the Metropolis Hastings algorithm cannot be used; a global PDF should be 

chosen in this case for parameters that individually do not significantly influence the 

objective function, but have significant influence only when viewed as a group. The white-

noise sequence in dynamic problems typically belongs to this category. 

Appendix 4B: Relationship between Cartesian and Spherical 

Coordinates 

The position of a point in the Euclidean nϕ  space using a Cartesian coordinate system is 

determined by vector nϕ∈x . Using a spherical coordinate system this position is 

determined by the radial coordinate cr ∈  and the angular coordinates ψi, i=1,…,nφ-1. The 
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last angular coordinate has range 2π and all the others have range π. The transformation 

from the spherical coordinate system to the Cartesian is: 
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while the inverse transformation is: 
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The Jacobian of the latter transformation is given by: 
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Appendix 4C: Details for Characterization of Admissible Subsets as 

Hyper-Ellipses 

In this appendix, some details are discussed pertaining to the selection of hyper-ellipses as 

admissible subsets I⊂X . The analytical representation of such ellipses is:  

( ) ( ) 1T
o d o− − =x x M x x  (C4.1) 
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where xn n
d

ϕ ϕ∈M  is a positive-definite symmetric matrix, and n
o

ϕ∈x  is the center of 

the ellipse. If X is a hyper-rectangle (X1) then xο should be described in Cartesian 

coordinates with admissible values given by |xo,i|<1 ∀ i.  If X is a hyper-ellipse (X 2), then xο 

should be described in spherical coordinates with admissible values given by r<1. The 

matrix Mn can be efficiently parameterized as 

1 1/2 1/2
d d d d
− =M D B D  (C4.2) 

where Dd is a diagonal matrix and Bd is a positive definite, symmetric matrix with unit 

values in the diagonal and off-diagonal terms that are less than 1. The values of the 

elements of Dd are related to the half-length of the ellipse in each principal orthogonal 

direction, thus these elements should be smaller than 1. The positive definite property for 

Bd must be incorporated into the characterization as an explicit nonlinear constraint; it 

corresponds to a requirement that all eigenvalues of Bd are positive. Another such nonlinear 

constraint must be used for the property I⊂X. The equivalent analytical characterization for 

this requirement depends on the shape of the search space. It is discussed next for both the 

hyper-cubes and hyper-ellipses described in (4.28).    

4.1C Subset relationship for hyper-ellipses within hyper-cube 

An analytical expression for checking I⊂X1 is derived next when I  is given by (C4.1) and 

X1 by 1
∞
=x . Let Cn denote the upper triangular, invertible, matrix corresponding to the 

Cholesky decomposition for Md, then the coordinate transformation: 

( )n ο= −y C x x  (C4.3) 

transforms the ellipse in (C4.1)  to a unit radius hyper-sphere yTy=1. The boundary surface 

of the hyper-cube in the transformed space is given by the intersection of the pair of hyper-

planes: 
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11 nC ο
−± = +y x     . (C4.4) 

 If 1
n
− =C T then the minimum distance of these pair of hyper-planes from the origin of the 

transformed space is: 

2 2

1 1

1 1min min ,o o
n ni

ij ij
j j

T T
ϕ ϕ

= =

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪− +⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭
∑ ∑

x x     . (C4.5) 

If that distance is greater than 1 then in the transformed space the hyper-sphere is within the 

intersection of the hyper-planes, which means I⊂X1. 

4.2C Subset relationship for hyper-ellipses within hyper-sphere 

Next, the analytical expression for checking I⊂X2 is investigated, where X2 is characterized 

as rc<1. This will be satisfied if the maximum distance of the ellipse (C4.1) from the origin 

is smaller than 1. This maximum distance is given by the optimization problem: 

( ) ( )
max  ( )=

subject to 1    .

T

T
o d o

g

− − =

x x x

x x M x x
 (C4.6) 

Introducing lagrange multiplier λ, consider the augmented problem: 

( ) ( )( , ) TT
o d of λ λ= − − −x x x x x M x x     . (C4.7) 

The first-order optimality conditions for all of the local extrema, give: 

( ) ( )( , ) 0 d o d d of λ λ λ λ∇ = ⇒ − = ⇒ − =x x Μ x x x M I x M x  (C4.8) 
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( ) ( )( , ) 0 1T
o d o

df
d

λ
λ

= ⇒ − − =
x x x M x x     . (C4.9) 

The positive-definite matrix Md can be decomposed as: 

T
n n n d=Τ D T M  (C4.10) 

where Dn=diag( 1d , …, nd
ϕ

) is a diagonal matrix of eigenvalues of Md, and Tn is a matrix 

of orthonormal eigenvectors of Md. Define now 

,  T T
n o n o= =y T x y T x     . (C4.11) 

The first-order optimality conditions are then transformed: 

( )n n oλ λ− =D I y D y  (C4.12) 

1 2 2 2

1

1n
T

n i
i i

y
d

λ λ−

=

= ⇒ =∑y D y      (C4.13) 

and the objective function is transformed: 

2

1
( )

n

i
i

g y
=

=∑y     . (C4.14) 

Two cases need to be considered next, depending on whether λDn-I is invertible or not. 

Case (1): Assume 1/  id iλ ≠ ∀ , then (λDn-I) is invertible and the solution for λ will be 

converted to an eigenvalue problem. Equation (C4.12) is transformed to: 
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( ) 1
n n oλ λ −= −y D I D y     . (C4.15) 

Plugging this value into (C4.13)  leads to: 

( ) 1 1  T T
o n n n oλ λ λ− −− = ⇒ =y D D I D y y w  (C4.16) 

where: 

( ) ( )1 1 1 1 1 1
n n n n n n n nλ λ λ− − − − − −= − ⇒ − = ⇒ = +w D D I D y D I D w D y w D w D y     . (C4.17) 

Then (C4.12) is transformed: 

( ) 1T T
n n o o o o nλ λ −− = ⇒ = +D I y D y y w y y y w D y  (C4.18) 

and we end up with the eigenvalue problem 

1

1 1

T
n o o

n n

λ
−

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

y yD y y
w wD D

    . (C4.19) 

This problem has at most 2n real solutions, corresponding to potential 2n local extrema 

given by: 

,1
i j

j o j
i j

d
d
λ

λ
=

−
y y     . (C4.20) 

 The distance from the origin for each one of them is then: 
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( )
( )

( )
2

22
,2

1 1
( )  

1

n n
i j

i o j
i i i j

d
g y

d

λ

λ= =

= =
−

∑ ∑y y     . (C4.21) 

Case (2): Assume λ=1/di. Let the multiplicity of eigenvalue di be nk, {k} corresponding to 

the index for all eigenvalues of Md that are equal to di and {j} to the index of the rest n-nk 

eigenvalues.  Equation (C4.12) leads to  

( ) ,  if j
j o j j i

j i

d
d d

d d
= ≠

−
y y  (C4.22) 

also  

, 0 if o k k iy d d= =  (C4.23) 

has to hold. Then (C4.13) leads to: 

2 21 1
k i j

k ji j

y d y
d d

= −∑ ∑  (C4.24) 

and thus the distance from the origin will be  

2 2 2 2 2
,

1 1 1

1 1( )
( )

n
j i j

i j k j o j
i j k j jj i j i i

d d d
g y y y y y

d d d d d= = =

−
= = + = + = +

−∑ ∑ ∑ ∑ ∑y     . (C4.25) 

Note that calculation of the exact coordinates for y was not necessary. The necessary and 

sufficient conditions for the case (2) to be true are that equations (C4.23)  and (C4.24) have 

a solution which is equivalent to: 
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( )
2 2

, ,22 2

1 1 10 and j
o k j o j

j ji j i j i

d
y y

d d d d d
= ≥ ⇒ >

−
∑ ∑ y     . (C4.26) 

The potential extremal distances are finally given by equations (C4.21) (2nφ potential 

solutions) or (C4.25) (nφ potential solutions) with Lagrange multipliers for the first case 

given by the real eigenvalues of (C4.19) and additional constraints for the second case by 

(C4.26).  If the maximum of these distances is smaller than 1 then we have that I⊂X2.  
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CHAPTER  5  

Stochastic System Design: Stochastic Optimization 

Framework 

Chapter 4 presented SSO, a novel algorithm for efficiently exploring the sensitivity with 

respect to the design variables in stochastic optimization problems and iteratively 

identifying a subset of the original design space that has high plausibility of containing the 

optimal design variables. This chapter initially discusses topics related to stochastic 

optimization algorithms that are appropriate for the design problems considered in this 

study. An efficient two-stage framework is then suggested combining SSO with such 

algorithms. Topics related to the combination of the two different stages for overall 

enhanced efficiency and accuracy of the optimization process are discussed. 

5.1 Stochastic Optimization 

The original formulation of the stochastic objective function, i.e., (2.1), is used herein. In 

principle, though, the techniques discussed here are applicable to the case that the loss 

function h(θ,φ) is replaced by hs(θ,φ) used in the SSO setting (given by (4.1)).  

5.1.1 Common random numbers 

The efficiency of stochastic optimizations such as (2.6) can be enhanced by the reduction 

of the absolute and/or relative importance of the estimation error eN(φ,ΩΝ). The absolute 
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importance may be reduced by obtaining more accurate estimates of the objective function, 

i.e., by reducing the variance of the estimates. This can be established in various ways, for 

example, by using importance sampling (see Section 5.2.2) or by selecting a larger sample 

size N in (2.4); but these methods typically involve extra computational effort. It is more 

efficient to seek a reduction in the relative importance of the estimation error. This means 

reducing the variance of the difference of the estimates 1 1
,

ˆ [ ( , )]N NE hθ φ Ω  and 

2 2
,

ˆ [ ( , )]N NE hθ φ Ω  that correspond to two different design choices φ1 and φ2. This variance 

can be decomposed as: 

( ) ( )
( ) ( )

1 1 2 2 1 1
, , ,

2 2 1 1 2 2
, , ,

ˆ ˆ ˆvar [ ( , )] [ ( , )] var [ ( , )]

ˆ ˆ ˆ                 var [ ( , )] 2cov [ ( , )], [ ( , )]    .

N N N N N N

N N N N N N

E h E h E h

E h E h E h

− =

+ −

θ θ θ

θ θ θ

φ Ω φ Ω φ Ω

φ Ω φ Ω φ Ω
 (5.1) 

If 1 1
,

ˆ [ ( , )]N NE hθ φ Ω  and 2 2
,

ˆ [ ( , )]N NE hθ φ Ω  are evaluated independently, their covariance is 

zero; deliberately introducing dependence, increases the covariance (i.e., increases their 

correlation) and thus decreases their variability (the variance on the left). This decrease in 

the variance improves the efficiency of the comparison of the two estimates; it may be 

considered as creating a consistent estimation error. In the stochastic simulation-based 

context this task is achieved by adopting common random number streams (CRN), i.e.,   
1
NΩ = 2

NΩ , in the simulations generating the two different estimates.  Figure 5.1 shows the 

influence of such a selection: the curves that correspond to CRN are characterized by 

consistent estimation error and are smoother. Also note that the absolute influence of the 

estimation error for the case that corresponds to larger N (curve (iii)) is, as expected, 

smaller. 
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(i) Analytical evaluation
(ii) Stochastic Simulation (sim) N=4000
(iii) CRN sim N=4000
(iv) CRN sim N=1000

φ

E θ
[(

h(
φ,
θ)

] 

 

Figure 5.1: Evaluation of objective function using common random numbers (CRN) 

Two important questions regarding the use of CRN are: Will the variance be reduced 

(efficiency)? Is this the best one can do (optimality)? The answer to both these questions 

depends on the way the random sample θ (input) influences the sample value of the loss 

function h(φ,θ) (output) in each simulation. Optimality can be proved only in special cases, 

but efficiency can be guaranteed under mild conditions (Glasserman and Yao, 1992). 

Continuity and monotonicity of the output with respect to the random number input are key 

issues for establishing efficiency. If h(φ,θ) is sufficiently smooth then the two 

aforementioned requirements for CRN-based comparisons can be guaranteed, as long as 

the design choices compared are not too far apart in the design variable space. In such cases 

it is expected that use of CRN will at least be advantageous (if not optimal). If the systems 

compared are significantly different, i.e., correspond to φ that are not close, then CRN does 

not necessarily guarantee a consistent estimation error. This might occur if the regions of Θ 

that contribute most to the integral of the expected value for the two systems are drastically 

different and the CRN streams selected do not efficiently represent both of these regions. 

This feature is also indicated in curve (iv) in Figure 5.1; the estimation error is not 

consistent along the whole range of φ for the CRN curves (compare the objective function 



 

 131

for curve (iv) for large and small values of φ), but for local comparisons it appears to be 

consistent.    

For ROP, CRN does not necessarily have a similar effect on the calculated output if 

formulation (2.8)  is adopted, since the indicator function IF(φ,θ) is discontinuous. Thus the 

aforementioned requirements for establishing efficiency of CRN application cannot be 

guaranteed. It is, thus, beneficial to use the formulation (2.12) for the probability of failure 

in CRN-based optimizations. For design problems where no prediction error in the model 

response is actually assumed, a small fictitious error should be chosen so that the 

optimization problems with and without the model prediction error are practically 

equivalent, i.e., correspond to the same optimum. Figure 5.2 illustrates this concept. In 

Figure 5.2(a) the two performance measures for ROP are compared when ε is modeled as a 

Gaussian variable with mean 0 and standard deviation 0.01.  In Figure 5.2(b) the influence 

on PF of these two different choices and the advantage of selecting Pε( ( , )g φ θ ) for 

establishing a consistent prediction error is clearly demonstrated. 

h(
φ,
θ)
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Figure 5.2: Illustration of CRN application in ROP: (a) the two possible performance 

measures and (b) comparison between the estimated objective functions using these 

two choices  
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5.1.2 Exterior sampling approximation 

Solution approaches to optimization problems using stochastic simulation are based on 

either interior or exterior sampling techniques (Ruszczynski and Shapiro, 2003). Interior 

sampling methods resample ΩN at each iteration of the optimization algorithm. On the 

other hand, exterior sampling approximation (ESA) adopts the same stream of random 

numbers throughout all iterations in the optimization process, thus transforming problem 

(2.6) into a deterministic one, which can be solved by any appropriate routine. These 

methods are also commonly referred to as sample average approximations (Royset and 

Polak 2004) and they are closely related to CRN. The CRN cases in Figure 5.1 correspond 

actually to ESA. Several asymptotic results are available for ESA and their rate of 

convergence under weak assumptions. For finite sample sizes, the optimal solution depends 

on the sample ΩN selected. Figure 5.1 clearly demonstrates this issue (compare the 

optimum values in the CRN curves (iii) and (iv)). Usually ESA is implemented by 

selecting N “large enough”, typically much higher than it would be for interior sampling 

methods, in order to get better quality estimates for the objective function and thus more 

accurate solutions to the optimization problem. See Ruszczynski and Shapiro (2003) for 

more details and Royset and Polak (2007) for a computationally efficient iterative approach 

that adaptively implements higher accuracy estimates as the algorithm converges to the 

optimal solution. The quality of the solution obtained through ESA is commonly assessed 

by solving the optimization problem multiple times, for different independent random 

sample streams. Even though the computational cost for the ESA deterministic 

optimization is typically smaller than that of the original stochastic search problem, the 

overall efficiency may be worse because of the requirement to perform the optimization 

multiple times. 

5.1.3 Appropriate stochastic optimization algorithms 

Both gradient-based and gradient-free algorithms can be used in conjunction with CRN or 

ESA and can be appropriate for stochastic optimizations.  
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Gradient-based algorithms: they use derivative information to iterate in the direction of 

steepest descent for the objective function. Only local designs are compared in each 

iteration, which makes the implementation of CRN efficient and allows for application of 

stochastic approximation, which can significantly improve the computational efficiency of 

stochastic search methods (Kushner and Yin 2003). The latter approximation is performed 

by establishing through proper recursive formulas an equivalent averaging across the 

iterations of the optimization algorithm, instead of getting higher accuracy estimates for the 

objective function at each iteration (that is, averaging over one single iteration). In simple 

examples, the performance measure h(φ,θ) (or even the limit state function ( , )g φ θ  in 

ROP) are such that the gradient of the objective function with respect to φ can be obtained 

through a single stochastic simulation analysis (Spall 2003; Royset and Polak 2004). In 

many structural design problems, though, the models used are generally complex and it is 

difficult, or impractical, to develop an analytical relationship between the design variables 

and the objective function. Finite difference numerical differentiation is often the only 

possibility for obtaining information about the gradient vector but this involves a 

computational cost which increases linearly with the dimension of the design parameters. 

Simultaneous-perturbation stochastic approximation (SPSA) (Spall 1992; Spall 2003) is an 

efficient alternative search method. It is based on the observation that one properly chosen 

simultaneous random perturbation in all components of φ provides as much information for 

optimization purposes in the long run as a full set of one at a time changes of each 

component. Thus, it uses only two evaluations of the objective function, in a direction 

randomly chosen at each iteration, to form an approximation to the gradient vector.  

Gradient-free optimization methods: include approaches, such as evolutionary algorithms, 

direct search and objective function approximation methods (OAM). They are based on 

comparisons of design choices that are distributed in large regions of the design space. 

They require information only for the objective function, which makes them highly 

appropriate for stochastic optimizations (Au and Beck 1999; Lagaros et al. 2002; Jensen 

and Catalan 2007) because they avoid the difficulty of obtaining derivative information. 
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They involve, though, significant computational effort if the dimension of the design 

variables is high. Use of CRN in these algorithms may only improve the efficiency of the 

comparisons in special cases; for example, if the size (volume) of the design space is 

“relatively small” and thus the design variables being compared are always close to each 

other. 

More detailed discussion of algorithms for stochastic optimization can be found in Spall 

(2003) and Ruszczynski and Shapiro (2003). Also algorithms suggested for simulation-

based optimizations (see, for example, Gosavi (2003)) can be appropriate for the class of 

problems considered here.  Two approaches, SPSA and OAM, are briefly summarized 

here. 

5.1.4 Simultaneous-perturbation stochastic approximation using common 

random numbers 

The implementation of SPSA using CRN for stochastic design problems take the iterative 

form (Kleinmann et al. 1999): 

( )1

1

, k
k k k k k N

k Φ

α+

+

= −

∈

φ φ g φ Ω

φ
 (5.2) 

where φ1 corresponds to the chosen point to initiate the algorithm, and the jth component 

for the CRN simultaneous perturbation approximation to the gradient vector in the kth 

iteration, ( , )k
k k Ng φ Ω , is given by: 

( ) ( ), ,
,

,

ˆ ˆ, ,
2

k k
N k k k N N k k k N

k j
k j

E c E c  
g

c Δκ

+ − −
= θ θφ Δ Ω φ ΩΔ

 (5.3) 
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where Δk φn∈  is a vector of mutually independent random variables that defines the 

random direction of simultaneous perturbation for φk and that satisfies the statistical 

properties given in (Spall, 2003). A symmetric Bernoulli ±1 distribution is typically chosen 

for the components of Δk. A detailed discussion about other possible distributions is 

provided in Hutchison (2002). The selection for the sequences {ck} and {αk} is discussed in 

detail in Spall (1998) and Kleinmann et al. (1999). A choice that guarantees asymptotic 

convergence to φ* is αk=α/(k+w)β and ck=c1/kζ, where 4ζ-β>0, 2β-2ζ>1, with w,ζ>0 and 

0<β<1. This selection leads to a rate of convergence that asymptotically approaches k-β/2 

when CRN is used (Kleinmann et al. 1999). The asymptotically optimal choice for β is, 

thus, 1. In applications where efficiency using a small number of iterations is sought after, 

use of smaller values for β are suggested in Spall (2003). For complex structural design 

optimizations, where the computational cost for each iteration of the algorithm is high, the 

latter suggestion should be adopted. Implementation of CRN contributes to reducing the 

variance of the gradient approximation in (5.3) and thus the variability in estimating φκ; for 

example, the rate of convergence is k-β/3 when CRN is not used.  

Regarding the rest of the parameters for the sequences {ck} and {αk}: w is typically set to 

10% of the number of iterations selected for the algorithm and the initial step c1 is chosen 

“close” to the standard deviation of the measurement error eN(ΩΝ,φ1). This last selection 

prevents the finite difference gradient from getting excessively large in magnitude but 

might be inefficient if the standard deviation of the error changes dramatically with φ. The 

value of α can be determined based on the estimate of g1 and the desired step size for the 

first iteration. Some initial trials are generally needed in order to make a good selection for 

α, especially when little prior insight is available for the sensitivity of the objective function 

to each of the design variables. Typically SPSA is implemented adopting interior sampling 

techniques. Convergence of the iterative process is judged based on the value ||φk+1-φk|| in 

the last few steps for an appropriate selected vector norm. Note that since the progress of 

the algorithm at each step depends on the sample k
NΩ  and the randomly chosen 

perturbation direction, convergence cannot be judged based on the value of 
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( ) ( )1
, 1 ,

ˆ ˆ| , , |k k
N k N N k NE E+

+ −θ θφ Ω φ Ω  (because the two estimates are evaluated using different 

steams of random samples and thus include different estimation error) or the value of  

||φk+1-φk|| at the last step only (because this value depends on the random search direction 

chosen). This notion of convergence, though, depends on the selection of the sequence 

{αk}; for example, selection of small step sizes might in some cases give a false impression 

that convergence has been established, even though this is not true. Such problems can be 

avoided by restarting the SPSA algorithm at the converged optimal solution to monitor the 

behavior for some small number of iterations. Additionally, iterate averaging can be 

applied for selecting the optimal solution (Maryak 1997); instead of selecting the optimal 

design configuration to correspond to the solution identified at the last iteration of the 

algorithm, a weighted average is chosen over the last few iterations. Blocking rules can also 

be applied in order to avoid potential divergence of the algorithm, especially in the first 

iterations (Spall 2003).  

5.1.5 Objective function approximation methods 

Objective function approximation methods (OAM) sequentially approximate the 

optimization objective using interpolating functions dependent on the design variables.  

They belong to the larger class of response surface methods that are commonly used for 

global approximations of functions that are costly to evaluate, particularly in terms of 

simulation-based analyses. Since response surface methodologies are not limited to 

optimization problems, the terminology OAM is preferred here to describe this 

optimization approach.    

Various applications of OAM have been presented in the optimization literature, 

implementing different kinds of interpolating functions, for example, radial basis functions 

or polynomials (Husain et al. 2002), and rules for convergence to the optimal solution, see, 

for example, Neddermeijer et al. (2000). The basic idea is to first perform several 

evaluations of the objective function at some interpolating points in a region aΦ Φ⊂  and 
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then build an “approximation surface” describing the local behavior of it. This surface is 

used to move toward a better candidate for the optimal design variables.  

There are two main approaches for creating the approximation surface in OAM. The first 

approach uses radial basis functions; at each iteration the objective function is evaluated at 

the location identified at the previous step as potential optimal solution, and this 

information is used in order to sequentially establish a more accurate approximation and 

progress to the next step (Jones et al. 1998). The second approach uses polynomial 

interpolation functions to approximate the objective function at each point, with 

coefficients that are determined by means of a regression analysis. Most commonly the 

number of interpolation points is selected larger than the number of the polynomial 

coefficients. The minimization of a weighted least-squares norm is then implemented for 

choosing the coefficients; this norm is typically related to the approximation error at the 

interpolation points. The weighting functions can be selected according to the location of 

the interpolation points relative to the point at which the objective function is 

approximated. This methodology aims at reducing the approximation error at each point by 

performing a weighted local averaging of the information obtained by the interpolation 

points that are closer to it. It is typically referred to as moving least-squares method, e.g., 

Choi et al. (2001), and leads to coefficients for the polynomial approximation that are 

functions of the design variables. Global methodologies have also been proposed; in this 

case the polynomial coefficients are set to constant values, i.e., they are assumed 

independent of the design variables, e.g., Gasser and Schueller (1997). These 

methodologies are referred to as global least-squares method. After establishing the 

approximate surfaces for the objective function, a secondary optimization problem is 

solved to locate the potential local minima. The process progresses then to the next 

iteration.  

For stochastic design problems these two approaches can be implemented by adopting 

either exterior or interior sampling. For exterior sampling the optimization problem is 
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equivalent to deterministic optimization using OAM. For interior sampling the existence of 

estimation error, because of the evaluation of the objective function using stochastic 

simulation, must be additionally taken into account. The importance of this error can be 

reduced by establishing a local averaging; this idea is similar to the reduction of the 

approximation error discussed earlier. For this purpose the weights in the least-squares 

minimization problem can be scaled according to the c.o.v. of the estimate of the objective 

function, given by (2.5). Estimates that have smaller c.o.v. should be given higher weight. 

For converging to the optimal solution a moving iterative approach has also been 

suggested; in this case the set Φα is adjusted within the search space Φ , e.g., Jensen (2005); 

this way a better local approximation for the objective function around the optimal point 

can be established. Typically Φα is centered on the location identified as the optimal 

solution in the previous step.  

Similar convergence criteria, as in SPSA, can be adopted. The efficiency of this 

methodology for stochastic optimization problems depends, ultimately, on the insight 

available for the characteristics of the optimization objective inside the search space Φ; for 

example, in terms of selecting the form of interpolating functions. 

5.2 Framework for Stochastic Optimization Using Stochastic Simulation 

5.2.1 Outline of the framework 

As already mentioned, a two-stage framework for stochastic system design may be 

established by combining some stochastic optimization algorithm, like the ones presented 

in the previous section, with the SSO algorithm developed in Chapter 4. In the first stage, 

SSO is implemented in order to efficiently explore the sensitivity of the objective function 

and adaptively identify a subset ISSO⊂Φ containing the optimal design variables. In the 

second stage, any appropriate stochastic optimization algorithm is implemented in order to 

pinpoint the optimal solution within ISSO. The specific algorithm selected for the second 

stage determines the level of quality that should be established in the SSO identification. If 
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a method is chosen that is restricted to search only within ISSO (typically characteristic of 

gradient-free methods), then better quality is needed. The iterations of SSO should stop at a 

larger size set, and establish greater plausibility that the identified set includes the optimal 

design point. If, on the other hand, a method is selected that allows for convergence to 

points outside the identified set, lower quality may be acceptable in the identification. A 

value 0.75–0.80 for Ĥ(Îk) with a c.o.v. of 4% for that estimate, indicates high certainty, in 

the applications examined so far, that k̂I  includes the optimal solution. Of course, this 

depends on the characteristics of the problem too, and particularly on the selection of the 

shape of admissible subsets, but this guideline has proved to be robust in the applications 

considered so far.   

The efficiency of the stochastic optimization considered in the second stage is influenced 

by (a) the size of the design space Φ defined by its volume VΦ, and, depending on the 

characteristics of the algorithm chosen, by (b) the initial point φ1 at which the algorithm is 

initiated, and (c) the knowledge about the local behavior of the objective function in Φ. For 

example, topic (b) is important for gradient-based algorithms whereas topic (c) is relevant 

for iterative algorithms that require user insight for selecting appropriate step sizes (like 

SPSA). The SSO stage gives valuable insight for all these topics and can, therefore, 

contribute to increasing the efficiency of convergence to the optimal solution φ*. The set 

ISSO has smaller size (volume) than the original design space Φ. Also, it is established that 

the sensitivity of the objective function with respect to all components of φ is small. This 

allows, for example, for efficient normalization of the design space (in selecting step sizes) 

and choice of interpolating functions (for OAM). With respect to the two algorithms 

discussed in detail in Section 5.1.5 the following guidelines are suggested for fine-tuning 

their parameters using information from SSO: 

 

For SPSA: φ1 should be selected as the center of the set ISSO. Parameter α can be chosen so 

that the initial step for each component of φ is smaller than a certain fraction (chosen as 

1/10) of the respective size of ΙSSO, based on the estimate for g1 from (5.3). This estimate 
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should be averaged over ng (chosen as 6) evaluations because of its importance in the 

efficiency of the algorithm. Also no movement in any direction should be allowed that is 

greater than a quarter of the size of the respective dimension of ISSO (blocking rule). For 

greater efficiency the optimization can be performed in the normalized search space, as 

discussed in Section 4.2.1.  

For OAM: since set ISSO corresponds to a region close to the optimal solution that is 

characterized by small sensitivity with respect to all design variables, a global least-squares 

second-order polynomial approximation to the objective function should be efficient. Thus 

Eθ[h(φ,θ)] can be approximated as:  

[ ( , )] a a aE h c Τ≈ + +θ φ θ Β φ φ M φ  (5.4) 

where ca∈ , Bα
nϕ∈ , and Ma

xn nϕ ϕ∈  are the polynomial coefficients to be estimated. In 

reliability optimizations, such polynomial approximations are typically applied with respect 

to the log of the probability of failure (Gasser and Schueller 1997; Jensen 2005).  The 

candidate stationary point for the approximation in (5.4) is finally: 

11
2 a a

−=φ Μ Β     . (5.5) 

If this point does not satisfy the optimization constraints, then the candidate stationary point 

can be identified by solving a constrained optimization problem with objective function 

that has the analytical form in (5.4). The computational effort for solving the latter problem 

is minimal.  

This OAM approach has the relative disadvantage that it cannot benefit from usage of 

CRN, unless exterior sampling is chosen. That is why SPSA is preferred in the applications 

considered in the current study. Still, the formulation suggested here for OAM, in particular 

combined with a local averaging scheme for reducing the influence of the estimation error, 
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as discussed earlier, seems a promising idea for stochastic optimization problems and 

deserves further consideration in future research.     

Additionally, the information from the SSO stage can be exploited in order to reduce the 

variance of the estimate Εθ[h(φ,ΩΝ)] in the second stage of the framework by using 

importance sampling. This choice is discussed next.  

5.2.2 Importance sampling 

Importance sampling (IS) is an efficient variance reduction technique. It is based on 

choosing an importance sampling density pis(θ|φ) to generate samples in regions of Θ that 

contribute more to the integral of Εθ[h(φ,θ)]. An alternative representation of this integral is 

utilized:  

[ ] [ ],
( | )( , ) ( , ) ( | ) ( , ) ( | )
( | ) is is

is

pE h h p d E h R
p

= =∫θ θΘ

θ φφ θ φ θ θ φ θ φ θ θ φ
θ φ

 (5.6) 

where Eθ,is[.] denotes expectation under distribution pis(.) and  

( | )( | )
( | )is

pR
p

=
θ φθ φ
θ φ

 (5.7)  

is the importance sampling quotient. The estimate for Εθ[h(φ,θ)] is given in this case by: 

,
1

1ˆ [ ( , )] ( , ) ( | )
N

N N i i
i

E h h R
N =

= ∑θ φ Ω φ θ θ φ  (5.8) 

where the samples θi are simulated according to ( | )isp θ φ .  
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The main problem is how to choose a good IS density. The optimal density is simply the 

PDF that is proportional to the absolute value of the integrand of Εθ[h(φ,θ)],  |h(φ,θ)|p(θ|φ) 

(Robert and Casella 2004) leading to a selection: 

,

( , ) ( | )
( | )

[ ( , ) ]is opt

h p
p

E h
=

θ

φ θ θ φ
θ φ

φ θ
    . (5.9) 

Use of this IS density is infeasible (it requires information that is not available a priori) or 

impractical (too difficult to sample from). Still this discussion shows that an efficient IS 

scheme should generate conditional samples from an IS density similar to |h(φ,θ)|p(θ|φ). 

Samples for θ that are distributed proportional to hs(φ,θ)p(θ|φ) when φ∈ΙSSO are available 

from the last iteration of the SSO stage. They simply correspond to the θ component of the 

available sample pairs [φ,θ]. Re-sampling can be performed within these samples, using 

weighting factors |h(φi,θi)|/ hs(φi,θi) for each sample, in order to approximately simulate 

samples proportional to |h(φ,θ)|p(θ|φ)  when φ∈ΙSSO. The efficiency of this re-sampling 

procedure depends on how different hs(φi,θi) and h(φi,θi) are. In most cases the difference 

will not be significant and good efficiency can be established. Alternatively, hs(φi,θi)  can 

be used as loss function in the second stage of the optimization. In this case there is no need 

to modify the samples from SSO. This choice would be inappropriate if s was negative 

because it makes the loss function less sensitive to the uncertain parameters θ, thus possibly 

reducing the efficiency of IS. In such design problems it is better to use the original loss 

function h(φ,θ). 

The samples simulated from the density proportional to |h(φ,θ)|p(θ|φ)  can be finally used 

to create an importance sampling density pis(θ|φ) to use in (5.7), since the set ISSO is small. 

Various strategies have been discussed in the literature for such an adaptive importance 

sampling (see for example Au and Beck (1999)).  
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For problems with high-dimensional vector θ, the efficiency of IS can be guaranteed only 

under strict conditions (Au and Beck 2003). An alternative approach can be applied for 

such cases: the uncertain parameter vector is partitioned into two sets, Θ1 and Θ2.  Θ1 is 

comprised of parameters that individually do not significantly influence the loss function 

(they have significant influence only when viewed as a group)–for example, the white 

noise sequence modeling the stochastic excitation in dynamic reliability problems–while 

Θ2 is comprised of parameters that have individually a strong influence on h(φ,θ). The 

latter set typically corresponds to a low-dimensional vector. IS is applied for the elements 

of Θ2 only. This approach is similar to the one discussed in Pradlwater et al. (2007) and 

circumvents the problems that may appear when applying IS to design problems involving 

a large number of uncertain parameters. 
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CHAPTER  6  

Stochastic System Design: Structural Engineering 

Applications 

In the preceding chapters a stochastic design methodology was developed for problems that 

might involve complex system models. Chapter 2 presented the general characteristics of 

the design problem formulation. Then an efficient optimization framework was presented 

in Chapters 4 and 5. This methodology is illustrated in this chapter in the context of two 

structural engineering applications. The first considers the design of a base-isolation system 

for improving the reliability of a three-story structure against near-field earthquakes. The 

efficiency of SSO and the suggested combined optimization framework, discussed in the 

previous two chapters, are examined in detail in the context of this example. The second 

example discusses the retrofitting of a four-story structure with viscous dampers. The 

expected lifetime cost is adopted as the design objective in this case. Instead of 

approximating the damages from future earthquakes in terms of the reliability of the 

structure, as typically performed in RBDO problems, an accurate methodology is presented 

for estimating this cost; this methodology uses the nonlinear response of the structure under 

a given time-history (generated according to some stochastic excitation model) to estimate 

the damages in a more-detailed, component level. 

The intention of the studies presented here is to illustrate the efficiency of the suggested 

stochastic optimization framework and to bring forward some issues pertaining to 
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stochastic system design. Some idealizations are made in terms of the non-linear structural 

behavior in order to avoid unnecessary complexities and to strike a balance between 

computational tractability and realism. Additionally, specific structural sites are not 

considered for determining the probabilistic characteristics of the seismic hazard. The 

seismological parameters that define this hazard are set to typical values that should be 

considered, in general, reasonable in terms of the applications considered. These 

characteristics do not reduce the validity of the conclusions drawn in the examples, at least 

with respect to the topics intended to be examined (which were outlined above).  

6.1 Optimal Reliability Design of a Base Isolation Protection System 

This example considers the design of a base-isolation system, with lead-rubber bilinear 

isolators and supplemental viscous dampers at the base level, for the protection of a three-

story symmetric building. The pre-yield, Kpr, and post-yield, Kp, stiffness and the yield 

force, Fy, are the design variables φ for the isolators, along with the damping coefficient, cd, 

for the dampers. A simplified problem with only two design variables is also formulated by 

setting the post-yield stiffness equal to 15% of the pre-yield stiffness and the viscous 

dampers to 5% critical damping, assuming a nominal period of 2.25 sec for the isolated 

structure (thus only Kpr and Fy are design variables in this case). The simplified problem is 

denoted by D1 and the full one by D2. Note that the simplified problem has been simply 

formulated as a means of investigating the influence of the number of design variables to 

the stochastic optimization framework. In actual design applications, the simultaneous 

optimization of all characteristics of the isolation system should be performed. The design 

objective is the reliability of the base-isolated system given that a seismic event occurs 

(with characteristics as described by the seismicity of the structural site).   

6.1.1 Probabilistic system  and excitation models 

The three-story superstructure is modeled (Figure 6.1) as a planar (because of the 

symmetry) shear building with uncertain inter-story stiffness and uncertain classical modal 
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damping. The lumped mass of the top story is 636 ton while it is 817 ton for the bottom 

two. The mass of the base is mb=999 ton. The inter-story stiffnesses ki of all the stories are 

parameterized by ki= ,
ˆ

k i ikθ , i=1,2,3, where [ k̂ι ]=[633.9, 443.7, 253.6] MN/m are the most 

probable values for the inter-story stiffness, and θk,i are nondimensional uncertain 

parameters, assumed to be correlated Gaussian variables with mean value one and 

covariance matrix with elements  

( )( ) ( ) ( )2 2 2
, ,1 1 0.1 exp / 2

T

k i k j i j⎡ ⎤ ⎡ ⎤Ε − − = − −⎢ ⎥ ⎣ ⎦⎣ ⎦
θ θ  (6.1) 

that roughly imply significant correlation between inter-story stiffness’ within two stories 

apart and c.o.v. of 10%. The damping ratios for the modes are modeled as independent 

Gaussian variables with mean value 5% and coefficient of variation 10%.  
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Figure 6.1: Base-Isolated structure  
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Under these assumptions, the superstructure is a linear system with mass, damping, and 

stiffness matrices Ms, Cs, and Ks. The differential equation for structural the model is: 

3 1 3 1

1 3 1 3

3 1

( ) ( ) ( )
( ) ( ) 0 ( )

                                                ( )
1

s s s s s
T T
s s s s s b b b b b

s s
is T

s s s b

t t t
m t c t t

t
m

δ δ δ
× ×

× ×

×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡⎡ ⎤
+ + ⎢⎢ ⎥ +⎣ ⎦ ⎣

M M R p C 0 p K 0 p
R M R M R 0 0

M R0
F

R M R
( )gx t

⎤
⎥
⎦

 (6.2) 

where p(t) 3∈  is the vector of floor displacements relative to the base, δb(t) is the base 

displacement, Fis(t) ∈  is the isolator bilinear restoring force, Rs
3∈  is the vector of 

earthquake influence coefficients, and ( )gx t  is the acceleration of the ground. 

In order to estimate the structural system reliability, a probability model needs to be 

established for the seismicity of the structural site, which corresponds to potentially 

damaging future near-fault ground motions. The model discussed in detail in Section 2.4 is 

adopted.  The uncertainty in moment magnitude for seismic events, M, is modeled by the 

Gutenberg-Richter relationship (2.14) truncated on the interval [Mmin, Mmax]=[6, 8], with 

the regional seismicity factor selected as b=0.7loge(10). For the uncertainty in the event 

location, the logarithm of the epicentral distance, r, for the earthquake events is assumed to 

follow a Gaussian distribution with mean log(20) km and standard deviation 0.5. Figure 

6.2(a) illustrates the PDFs for M and r. The magnitude and the frequency of the pulse are 

chosen according to the probabilistic models for near-field pulses at rock sites given by 

(2.17) and Table 2.1. The probability models for the near-field pulse parameters are chosen 

as: Gaussian with mean 1.8 and standard deviation 0.3 for γp, uniform in the range              

[-π/2, π/2] for vp, and Gaussian with mean zero and standard deviation as shown in  Table 

2.1 for εf and εv. 

The uncertain parameter vector in this design problem consists of the structural model 

parameters, θs, the seismological parameter θg=[M, r], the additional parameters for the 
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near-fault pulse θp=[γp, vp, εf, εv], and  the white-noise sequence, Zw, so θ=[θs, θg, θp, Zw]. 

Note that Zw corresponds to a 5001-dimensional vector in this case (partitioning of a 50 sec 

time window into intervals of 0.01sec).  

The reliability of the system given that an earthquake occurs is the design objective. Failure 

is defined to be that any of the inter-story drifts, base displacement, or shear force at the 

first story exceeds the thresholds 0.0105m, 0.25 m, and 0.24 of the superstructure weight, 

respectively. The limit state function ( , )g φ θ  is defined as the logarithm of the maximum 

over the excitation duration of these performance variables (normalized by their respective 

threshold): 

{ }( )

3

1

( ) ( ) 1  story shear( )( ; , ) 1, 2,3  
0.0105 0.25 0.24

( , ) log max ( ; , )

st
i b

i
i

t T

t t tt i
g m

g t

δ δ

Τ

=

∞∈

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥⋅⎢ ⎥⎣ ⎦

=

∑
z φ θ

φ θ z φ θ

 (6.3) 

where z(t;φ,θ) corresponds to the (normalized) response vector for the system, .
∞

 to the 

largest magnitude component, and T to the duration of the excitation event defined by θg. A 

small prediction-error ε is assumed and is modeled as a Gaussian random variable with 

mean 0 and standard deviation 0.05. This selection for the limit state function and the 

prediction error agrees with the usual choice of probability models in performance-based 

engineering, i.e., that the engineering demand parameters, such as maximum drifts, are 

modeled as log-normally distributed variables. Note that the relationship between the 

model response z(t;φ,θ) and the actual system response zs(t;φ,θ) is: 

( ; , ) ( ; , ) exp( )s t t ε=z φ θ z φ θ     . (6.4) 



 

 149

Thus a multiplicative relationship exists between the two responses with scaling parameter 

exp(ε) that follows a log-normal distribution with median value 1 and coefficient of 

variation 0.05. This connection between (a) the definition of the limit state function along 

with the probabilistic model assumed for the prediction error, and (b) the relationship 

between the assumed model and the actual system responses is important and requires 

some special attention. Special care is always needed so that the first definition leads to a 

reasonable relationship for the latter, in the context of the specific application. The relevant 

probability models chosen in this study seem reasonable.    

6.1.2 Optimization algorithm characteristics 

The two-stage framework discussed in Chapter 5 is used, combining SSO with SPSA. For 

the SSO algorithm (Section 4.4), the parameter selections are: ρ=0.2, N=3000. The shape 

for the admissible sets I is selected as a hyper-ellipse and the adaptive identification is 

stopped when ˆ ˆ( )kH I  becomes larger than 0.8. For the non-smooth optimization of (4.33) 

an algorithm based on direct-search is chosen (Holmstrom et al. 2007). 

SPSA with CRN (Section 5.3) is adopted for the second stage of the optimization, with 

parameter selection: β=0.71, ζ=0.25, N=1500. Convergence is judged by looking at the 

norm 1k k+ ∞
−φ φ  for each of the five last iterations. If that norm is less than 0.2% 

(normalized by the dimension of the initial design space), then we assume that convergence 

to the optimal solution has been established. Formulation (2.12) is used for the probability 

of failure in the SPSA optimization in order to improve the efficiency of CRN 

comparisons, as discussed earlier. The guidelines discussed in Section 5.2 are adopted for 

selection of step sizes and blocking rules for SPSA. To implement these guidelines, 

normalization of the search space is performed so that the hyper-ellipse ISSO is transformed 

into a unit radius hyper-sphere.  
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Figure 6.2: Details about importance sampling densities formulation  

For the second optimization stage (SPSA), following the discussion in Section 5.2, 

importance sampling densities are established for the structural, near-field pulse model 

parameters and the seismological parameters, but not for the high-dimensional white-noise 

sequence Zw. Apart from the phase of the near-field pulse, vp, for which the samples from 

π(vp) were found to be distributed similar to p(vp) (indicating that this model parameter has 

small influence on the response of the model), for the rest of the parameters, the IS PDFs 

were approximated by Gaussian distributions, like the prior distributions p(θi), but with a 

shifted mean value and variance, selected as the mean and variance of the samples from the 

SSO stage that are distributed according to π(φ). Figure 6.2(b) illustrates this concept for M 

and r for problem D1. Note that the IS PDF for M and r are significantly different from 

their initial distribution; since these seismological parameters are expected to have a strong 

influence on the model response, the difference between the distributions is expected to 

have a big effect on the accuracy of the estimation. The same remark holds for the near-
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field pulse model parameter εf and εv and only to a small degree for all other parameters. 

This behavior according to the discussion in Section 4.1.8 yields information to address the 

question: what is expected to happen when the system fails? It ultimately indicates that the 

influence on the system failure of the structural model parameters and the number of half-

cycles of the near-field pulse is relatively small compared to the influence of the other 

parameters for the excitation model (moment magnitude, epicentral distance, uncertainty 

about the pulse frequency and amplitude).  

For problem D1 the c.o.v. for ˆ ( )FP Θφ |  for a sample size N=1500 is 12.5% without using 

IS and 4.4% when IS is used. This c.o.v. is of the same level for all values of φ∈ΙSSO (since 

the ISSO set is relatively small). Note that the c.o.v. varies according to 1/ N  (Robert and 

Casella 2004); thus, the sample size for direct estimation (i.e., without use of IS) of 

ˆ ( )FP Θφ |  with the same level of accuracy as in the case when IS is applied would be 

approximately 8 times larger. This illustrates the efficiency increase that can be established 

by the IS scheme discussed earlier. Similarly, for problem D2 the c.o.v. is 4.9% when IS 

was used and 16.2% when not. In this case a sample size that is 11 times larger is needed 

for direct estimation of ˆ ( )FP Θφ |  for establishing the same accuracy as with the IS scheme.  

6.1.3 Results and discussion for a sample optimization run 

Results for a sample run are presented in Table 6.2 for the SSO, and in Table 6.3, Figure 

6.3 and Figure 6.4 for the combined optimization framework using SPSA in the second 

stage. The SSO algorithm converged in 3 iterations for problem D1, and in 6 iterations for 

problem D2 to sets that are characterized by small sensitivity to the objective function (Isso 

in Figure 6.3 and Figure 6.4 with center φSSO). SPSA was then used to pinpoint the optimal 

solution, φ*, within these sets (point X in the aforementioned figures). The results of this 

sample optimization run are discussed in greater detail next, focusing on the aspects related 

to the novel SSO algorithm.  



 

 152

Table 6.1 Results from a sample run of the SSO algorithm for two design problems 

Iteration of SSO  Iteration of SSO Problem D1 
nφ=2, ÎSSO=Î3  1 2 3  

Problem D2 
nφ=4, ÎSSO=Î6 1 2 3 4 5 6 

1
ˆ ˆ/
k kI I

V V
−

 0.381 0.265 0.241  
1

ˆ ˆ/
k kI I

V V
−

 0.286 0.345 0.305 0.271 0.259 0.230

1
ˆ ˆ/φ

k k

n
I I

V V
−

 0.617 0.514 0.491  
1

ˆ ˆ/φ

k k

n
I I

V V
−

0.731 0.7676 0.743 0.722 0.713 0.693

Ĥ(Îk) 0.525 0.754 0.830  Ĥ(Îk) 0.698 0.580 0.657 0.738 0.772 0.865

ˆ /
SSO ΦI

V V  0.0243  ˆ /
SSO ΦI

V V  4.85 10-4 

ˆ /φ

SSO

n
ΦI

V V  0.156  ˆ /φ

SSO

n
ΦI

V V 0.149 

Table 6.2 Cumulative results from a sample run of the optimization framework  

  ˆ ( )FP Φ∈φ  φSSO ˆ ( )F SSOP I∈φ ˆ ( )F SSOP Θφ | φ* *ˆ ( )FP Θφ |

Kpr 98.05 92.75 
D1 Fy 

0.0896 
2.35 

0.0371 0.0366 
2.44 

0.0361 

Kpr 68.2 53.2 
Fy 1.76 1.92 
Kp 15.56 13.93 

D2 

cd 

0.1186 

4.21 

0.0250 0.0241 

4.24 

0.0228 
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Figure 6.3: Sets ISSO  (ellipse) and Φ (rectangle) for problem D1 
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Figure 6.4: Projections of sets ISSO (ellipse) and Φ (rectangle) onto the planes of all 

pairs for the design parameters for problem D2 

SSO leads to a significant reduction of the size (volume) of the search space for both design 

problems; this is evident in both Table 6.3 (last two rows) as well as Figure 6.3 and Figure 

6.4. These two figures and Table 6.2 also illustrate that SSO efficiently identifies a subset 

for the optimal design variables; the converged optimal solution in the second stage, φ*, is 

close to the center of the set that is identified by SSO, φSSO; also the objective function at 

that center point ˆ ( )F SSOP Θφ |  is not significantly different than the optimal value 

*ˆ ( )FP Θφ |  (Table 6.2). Thus, selection of φSSO as the design choice leads to a sub-optimal 

design but close to the true optimum in terms of both the design vector selection and its 

corresponding performance. The comparison between the average value of the objective 

function in sets Φ and I is also important. ˆ ( )F SSOP I∈φ  and ˆ ( )FP Φ∈φ  are significantly 

different, but ˆ ( )F SSOP I∈φ  and *ˆ ( )FP Θφ |  are very close for both design problems (Table 

6.2). These comparisons illustrate the efficiency of SSO for identifying subsets that are 
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characterized by small sensitivity for the probability of failure: the design choices in set ISSO 

correspond to reliability that is not far away from the optimal one, especially when 

compared to the reliability of other choices in the admissible space.  

All these characteristics illustrate the effectiveness and quality of the set identification in 

SSO. Note that as the algorithm evolves, this quality, expressed by Ĥ(Îk), decreases (Table 

6.2). Within ISSO, the small sensitivity of the objective function to φ cannot be easily 

captured by samples obtained by stochastic simulation, unless a large number of them are 

available. Instead, SPSA is chosen here for pinpointing the optimal design variables.  

For the design problem D2 the difference of the shapes of the initial design space and the 

admissible subsets is considerable (difference in volumes of four-dimensional hyper-

rectangles and the inscribed hyper-ellipses). As discussed earlier, this leads to some small 

loss of quality for the first stage of the identification; Ĥ(Îk) in the first iteration is larger than 

the second one, though typically, as discussed in detail in Section 4.2.2, it is expected to be 

a decreasing function of the iteration number. This feature does not influence, though, the 

overall quality of the SSO identification, as evident by the rest of the results.  

The ability of SSO to estimate contours of the objective function and capture the 

correlation between the design variables is illustrated in Figure 6.3 and Figure 6.4. This 

correlation can be demonstrated also by looking at the normalized positive definite matrix, 

Mn, that defines the ellipses:  

( ) ( )1/2 1 1/2 1T
SSO e n e SSO

−− − =φ φ D M D φ φ  (6.5) 

where normalization is used in order to make all diagonal elements of Mn be unity. The off-

diagonal elements of Mn show the correlation between the different design variables 

(similar to the concept of correlation for a Gaussian PDF); the larger the absolute values of 
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these elements the more important the correlation between the design variables. For the 

sample run of SSO discussed in this section, these matrices are respectively: 

1

                             

1 0.74
D :

0.74 1

pr y

pr
n

y

K F

K
F

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

M
 (6.6)  

2

                                          

1 0.71 0.19 0.45
0.71 1 0.66 0.43

D :      .
0.19 0.66 1 0.09
0.45 0.43 0.09 1

pr y p d

pr

y
n

p

d

K F K c

K
F
K
c

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

M
  (6.7) 

The correlation between pairs of design variables indicated by these matrices can be 

visually verified in Figure 6.3 and Figure 6.4; the highly-correlated variables are Kpr and Fy 

in design problem D1 and pairs of variables Kpr-Fy , Kpr-cd, Fy-Kp, and Fy-cd  in problem D2. 

These higher correlations mean that these pairs of design variables can be traded off (in the 

normalized space) without significantly changing the objective function. Note, also, that the 

correlation relationship between Kpr and Fy  is the same in both design problems.  

The influence of the number of the design variables in the efficiency of SSO,  is now 

evident when comparing the results in Table 6.2 between the two design cases. For D2 the 

average reduction of the size for each design variable (second row of Table 6.2) is much 

smaller, which leads to more iterations, until a set with small sensitivity to the objective 

function is identified. The proportionality dependence on the number of design variables 

with regard to the computational cost of SSO that was argued in Section 4.1.6 is also 

verified in the context of the example discussed here: the mean total length reduction over 

all iterations for D1 and D2, corresponding to the quantity in (4.21), is similar (look at 
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/φ
SSO

n
I ΦV V  in Table 1) but the number of required iterations for convergence to the Isso set 

for D2 (which has twice as many design variables) is only double. 

The small average probability ˆ ( )F SSOP I∈φ  of the sets that the SSO algorithm gradually 

converges to shows also the efficiency of the MCMC approach suggested for simulating 

failed samples within each identified subset. For example, for design case D2, 

1/ ˆ ( )F SSOP I∈φ =1/0.025=40 simulations are needed on the average in order to obtain one 

failed sample inside set ISSO if direct MCS is used. This means that about 120,000 

simulations would be needed in order to obtain 3000 failed samples if the SSO algorithm 

was to be warm-started at this level. In the suggested MCMC simulation approach, only 

[3000(1+γs)-600] additional simulations would be needed (since already 600 samples are 

retained from previous step of the algorithm) in order to obtain the same effective number 

of failed samples inside this set. The efficiency of this approach depends, of course, on the 

efficiency of the MCMC simulation, which defines the value of γs. A value close to 2 is 

common for this parameter. Additionally note that since ˆ ( )FP Φ∈φ  is larger, at least in the 

examples considered in this study, failed samples can be obtained more efficiently in Φ 

using MCS. These failed samples populate towards regions with lower probability content 

in the iterative identification process. 

6.1.4 Efficiency of optimization framework 

The efficiency of the suggested optimization framework is judged by performing the same 

optimization by applying only SPSA. No information from the SSO stage is used. The 

optimization in this case is performed with respect to the initial design space, Φ, by 

randomly selecting the starting point for the algorithm. In this case IS is not implemented; 

since a search inside the whole design space Φ is considered, it is unclear how samples of θ 

can be obtained to form the IS densities, and separately establishing an IS density for each 

design choice φ is computationally too expensive. Larger values for the sample size, N,  are 
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chosen in order to establish a similar c.o.v. near the optimal solution, as in the case that IS 

is implemented; according to previous discussion the selection for N  is 8 times larger than 

in the two-stage approach for problem D1 and 11 for D2. In 10 runs of the optimization 

algorithm, the average number of iterations (and its standard deviation) for convergence to 

the optimal solution was (a) for D1: with SSO 20.42 (4.5) and without 59.5 (21.4), and (b) 

for D2: with SSO 30.5 (9.4) and without 98.4 (36.9). In order to evaluate the effectiveness 

of the two-stage framework discussed, note that the computational cost of one iteration of 

SSO, in terms of system simulations needed, is equal to the computational cost of one 

iteration of SPSA; thus, one can simply add three and six additional iterations to the means 

for problems D1 and D2 in (a) and (b), respectively, when SSO is used.  

This discussion illustrates the effectiveness of the proposed two-stage optimization 

framework to enhance the efficiency of stochastic optimization. It should also be noted that 

use of SSO leads to greater consistency in the optimization efficiency (smaller variation). 

The better starting point of the algorithm, as well as the smaller size of the search space 

which allows for better normalization, that SSO can provide, are the features that contribute 

to this improvement in efficiency. If we consider the added efficiency because of the use of 

IS when the combined framework is chosen, then the computational advantages from using 

this framework are even higher: in this example the computational cost of each iteration of 

SPSA is 8 and 11 times smaller for problems D1 and D2, respectively,  in the setting of the 

combined framework.  

Similar increase in efficiency has been reported in Taflanidis and Beck (2007a) when 

combining SSO with gradient-based (SPSA) or gradient-free algorithms. An OAM was 

selected in that study as the gradient-free algorithm in the second stage of the optimization 

framework. The approach adopted there used radial basis functions for approximating the 

objective function and exterior sampling techniques for handling the estimation error, not 

the quadratic global approximation suggested in Section 5.2.        
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6.1.5 Accuracy of design identified by SSO 

 A second study is also performed in order to investigate the quality of the identification 

established by SSO. Only the first stage for the optimization framework is considered in 

this study, thus φSSO is considered as the optimal design choice. Similar characteristics are 

assumed for SSO as previously, but 3 different cases are considered for the number of 

samples, N=2000, N=4000, and N=8000. The c.o.v. of the set probability for these three 

cases (assuming direct Monte Carlo simulation) is 4.5%, 3.1%, and 2.2%, respectively (for 

r=0.2), decreasing as 1/ N . Also the iterative identification stops in this case when 

ˆ ˆ( )kH I  becomes larger than 0.9. This was selected in order to further reduce the size of the 

subset identified by SSO by performing more iterations. It was found that on the average 

1–2 more steps were needed in order to establish this stopping criteria (compared to the 

previous study where ˆ ˆ( )kH I  > 0.80 was selected). 

Table 6.3 Efficiency for identification of optimal design using SSO only 

D1 D2 

ˆ ( )F SSOP Θφ |  ˆ ( )F SSOP Θφ |  
Shape of 

admissible 
subsets 

N 

Mean c.o.v. 
*

ˆ ( )
ˆ ( )
F SSO

F

P Θ
P Θ
φ |
φ | mean c.o.v. 

*

ˆ ( )
ˆ ( )
F SSO

F

P Θ
P Θ
φ |
φ |

2000 0.0384 4.4% 1.065 0.0252 5.8% 1.095 
4000 0.0373 2.4% 1.032 0.0243 3.1% 1.061 Hyper-ellipse 

8000 0.0367 1.7% 1.021 0.0236 1.9% 1.032 
2000 0.0388 4.7% 1.076 0.0258 6.3% 1.111 
4000 0.0380 3% 1.054 0.025 4.8% 1.085 

Hyper-rectangle 

(no rotations) 
8000 0.0373 1.9% 1.033 0.023 3.2% 1.051 

 

The identification was performed 10 times and the average results are reported in Table 6.3.  

A comparison between selection of admissible subsets as hyper-ellipses and hyper-

rectangles is also performed. The results show that the reliability of the design choice 
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identified by SSO is close to the true optimal. Increase of the number of simulated samples 

from π(φ) improves, as expected, the quality of the estimate: both the average ˆ ( )F SSOP Θφ |  

and its c.o.v. decrease; this means that design choices closer to the optimum one are 

identified and there is better consistency in the identification process. For design case D2, 

the associated greater challenges (optimal choice close to the boundary, larger number of 

design variables) contribute so that the identification is less efficient. Still the design φSSO 

can be considered quite efficient if the number of samples is sufficiently large. Comparison 

between the two different shapes of subsets illustrates that selection of hyper-ellipses 

improves the efficiency of the SSO identification. This is again an anticipated result since 

this choice is associated with greater versatility for selection of the optimal subset I and 

thus can provide a better fit to the contours of the optimization objective.  This feature leads 

to better quality in the SSO identification. 

Note that in this study we were able to directly characterize the quality of the identified 

solution because *ˆ ( )FP Θφ |  was a priori known. As discussed in Section 4.4, for problems 

where knowledge of the true optimum is important and no insight is available for the 

objective function value that corresponds to the optimal choice, the two-stage approach 

presented earlier is more reliable.   

6.1.6 Efficiency of stochastic design 

A comment with respect to the effectiveness of the base isolation protection system in this 

example is warranted. Design D2 involves much larger versatility in the selection of the 

characteristics of the isolation system, and thus leads to smaller failure probability, as 

expected. The period of the base isolated structures for a displacement of base displacement 

of 25 cm is 2.40 sec for D1 and 2.47 sec for D2. These selections seem reasonable based on 

common design practice for base isolation systems, and verify the validity of the stochastic 

framework chosen (system and excitation models, modeling uncertainty, and objective 

function formulation). 
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6.1.7 Sensitivity of design to model prediction error 

The concept of the existence of a prediction error between the responses of the actual 

system and the assumed system model has been considered in numerous reliability 

analyses, see for example Papadimitriou et al. (2001). No studies though exist that examine 

the influence of this error within an optimal stochastic system design framework. Such an 

analysis is presented here in the context of example D1. In particular, the influence of the 

standard deviation of the model prediction error, σε, is investigated. Figure 6.5 presents the 

location of the optimal solution and the reliability performance under optimal design for 

different values for σε. Note that larger values for σε are equivalent to greater potential 

differences between the model and the system responses.  
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Figure 6.5: Optimal design variables and performance for various instances of the 

model prediction error for design problem D1 
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The results illustrate that there is indeed an influence on the optimal design configuration 

by the selection of σε. The path of the optimal design variables, as a function of σε, does not 

correspond to a simple pattern, which indicates a complex relationship between the model 

prediction error and the model performance. Also, as σε becomes larger the reliability 

performance, under optimal design, decreases. This is attributed to the fact that the 

uncertainty in the model description increases, which creates greater difficulties in 

regulating the performance in the whole region of the Θ space that is important (the region 

that leads to unacceptable performance and has non-negligible probability of occurrence).  

This discussion reveals, more generally, an important sensitivity of the optimal system 

design to (a) our available knowledge about the system and excitation properties and (b) the 

utility function selected to quantify the model performance. The model prediction error can 

be equivalently considered to represent either of the latter two characteristics. This remark 

brings forward the importance of all details of the system modeling for the efficient 

stochastic design.  

6.1.8 Objective function approximation application 

A simple example is finally presented about the implementation of the OAM approach 

discussed in Section 5.2. The example is merely intended to illustrate the potential 

capabilities of the method in the context of design problem D2, not to investigate in depth 

the efficiency and robustness properties of it. Thirty interpolation points have been used for 

developing the approximation surface but no relative weighting has been chosen between 

them. The evaluation of the objective function at these points follows the same guidelines 

as for the SPSA algorithm discussed earlier. Figure 6.6 shows the interpolation points along 

with the contours of the objective function, the set ISSO identified at the SSO stage and the 

optimal design variables. The design configuration corresponding to the minimum of the 

approximation surface (center of the contours) is close to the optimal solution identified 

earlier.  Note, additionally, that the contours of the objective function have similar shape to 

the ISSO. This latter agreement verifies (a) the capabilities of SSO for capturing the 
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sensitivity of the objective function as well as (b) the efficiency of the approximation of 

that function established by OAM. 

This discussion shows the potential of the proposed OAM methodology. Still, further 

research is needed in order to explore the robustness properties of this optimization 

approach and improve its efficiency by providing guidelines for iterative convergence to 

the optimal solution. The reduction of the influence of the model prediction error when 

interior sampling is used also needs to be explicitly addressed. Note that even though 

similar techniques have been considered before for stochastic optimization problems, e.g., 

Bailey et al. (1999), no special attention has been given on reducing the influence of the 

estimation error in the evaluation of the performance objective. The importance of this 

error can be quite significant though when the approximation of the objective function is 

established in regions close to the true optimal solution, that is, in regions that are 

characterized by small sensitivity.   
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Figure 6.6: Illustration of OAM application for design problem D1 
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6.2 Optimal Life-Cycle Cost-Based Retrofitting of a Four-Story Structure 

The retrofitting of a symmetric, four-story, office building with linear viscous dampers is 

considered. The building is a non-ductile reinforced concrete, perimeter moment-frame 

structure, similar to the one discussed in Mitrani (2007) . The dimension of the building is 

45 m x 45 m and the height of each story is 3.9 m. The perimeter frames in the two 

building directions are separated from each other, which allows structural analysis in each 

direction to be done separately. Because of the symmetry of the building, analysis of only 

one of the directions is necessary. The objective function in the stochastic design problem 

in this case is the expected life-cycle cost of the structure.  

A methodology for a detailed estimation of the life-cycle cost is adopted. In traditional 

RBDO problems this cost is typically approximated in terms of the reliability of the 

structure, see, for example, Sorensen et al. (1994), Kong and Frangopol (2003). Recent 

advances in performance-based engineering (most recently the ATC-58 project developed 

by the Applied Technology Council) quantify, more accurately, economical losses, 

casualties, and downtime in relation to the structural response, using fragility curves to 

develop such a relationship. Although currently fragility curves are available only for a 

limited number of elements, it is expected that in the future more general standard fragility 

curves will be developed.  

In this context, many approaches have been suggested, the most popular being the well 

known HAZUS model (see, for example, Kircher et al. (2006)) that use pushover methods 

to analyze the structural performance and a categorization of buildings into different groups 

to estimate earthquake losses. Other researchers (e.g., Porter et al. (2001)) have developed 

analytical tools to evaluate seismic vulnerability using non-linear time-history analyses, 

characterizing the structure as a unique building and estimating damage on a more-detailed 

level. The reference by Mitrani (2007) includes a more detailed discussion on recent 

advances in earthquake loss estimation. In this study, the earthquake losses are estimated 

adopting the methodology described in Porter et al. (2004a) and Goulet et al. (2007) which 
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belongs in the latter category; the nonlinear response of the structure under seismic 

excitation is used to calculate the damages in a component level.  

6.2.1 Probabilistic structural model 

A class of shear-building frame models with hysteretic behavior and deteriorating stiffness 

and strength is assumed. Figure 6.7 illustrates some of the characteristics of the model.  The 

hysteretic behavior is assumed to have bilinear characteristics with a maximum strength 

capacity. A distributed element model assumption is used for the deteriorating part of the 

restoring force for each story, as discussed in Iwan and Cifuentes (1986). According to this 

assumption the reduction of the strength during the loading of a story is attributed to the 

failure of a fraction of the structural elements of the story (that fraction is proportional to 

the fractional strength reduction). These failed elements no longer contribute to the 

stiffness and strength of the story for future unloading and loading cycles. Additionally, a 

residual strength is assumed equal to 10% of the maximum strength.  
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Figure 6.7: Structural model assumed in the study 



 

 165

In this study, the parameters that define the backbone curve for the restoring force of the ith 

story are: the elastic inter-story stiffness ki, the strain-hardening coefficient αi, the over-

strength factor γi, the yield displacement δy,i, the displacement coefficient ηi and the 

stiffness deterioration coefficient βi (see also Figure 6.7). Based on these parameters, the 

following resultant characteristics can be defined: yielding force Fy,i, ultimate force Fu,i, 

displacement when restoring force reaches maximum strength δp,i, capping displacement 

δu,i, which is defined as the maximum ductility at peak strength, strain-hardening stiffness 

kh,i, and the initial post-capping stiffness kp,i. These characteristics are given, respectively, 

by the following relationships: 
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 The lumped mass of the top story is 935 ton while it is 1215 ton for the bottom three. The 

initial inter-story stiffnesses ki of all the stories are parameterized by ki= îk θk,i, i=1,2,3, 

where [ îk ]=[700.0, 616.1, 463.6, 281.8] MN/m are the most probable values and θk,i are 

nondimensional uncertain parameters, modeled as correlated Gaussian variables with mean 

value one and covariance matrix with elements given by (6.1). For each story, the post-

yield stiffness coefficient αi, stiffness deterioration coefficient βi, over-strength factor γi, 

yield displacement δy,i, and displacement coefficient ηi have mean values 0.1, 0.2, 0.3, 

0.22% of story height and 2, respectively. All these parameters are treated as independent 

Gaussian variables with coefficient of variation (c.o.v.) 10%. The structure is assumed to 

be modally damped. The damping ratios for all modes are treated similarly as Gaussian 

variables with mean values 5% and c.o.v. 10%. Note that the main variables identified in 

Porter et al. (2002) to influence the earthquake loss estimation are probabilistically taken 

into account here.  
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Under these assumptions the differential equation for the structural model is: 

( ) ( ) ( ) ( )s s s s gt t t x t+ + =M p C p F M R  (6.9) 

where Ms and Cs are mass and damping matrices, F(t) is the vector or restoring forces for 

each story, p(t) 3∈  is the vector of floor displacements relative to the ground, Rs
3∈  is 

the vector of earthquake influence coefficients and ( )gx t  is the acceleration of the ground. 

The nominal, i.e., most probable, fundamental period for the linear structural model is 

calculated as 0.76 sec. 

6.2.2 Probabilistic site seismic hazard and ground motion model 

In order to estimate the earthquake losses, probability models are established for the 

seismic hazard at the structural site and for the ground motion. Seismic events are assumed 

to occur following a Poisson distribution and so are independent of previous occurrences. 

The uncertainty in moment magnitude M is modeled by the Gutenberg-Richter relationship 

truncated on the interval [Mmin, Mmax]=[5.5, 8],  leading to the PDF in (2.14) and expected 

number of events per year (Kramer 2003): 

min maxexp( ) exp( )v a bM a bM= − − −     . (6.10) 

The regional seismicity factors are selected as b=0.9loge(10) and a=4.35loge(10), leading to 

v=0.25. For the uncertainty in the event location, the logarithm of the epicentral distance, r, 

for the earthquake events is assumed to follow a normal distribution with mean log(20) km 

and standard deviation 0.4.  Figure 6.13(a) illustrates the PDFs for M and r.  

For modeling the ground motion, the methodology described in detail in Section 2.3 is 

adopted. Near-fault effects are not expected to be important for this structure and site 

combination; the building has a relatively small fundamental period, 0.76 sec, based on the 
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nominal model and the ground motions (M>6, r<15 Km) that might have near-field 

characteristics consist of only a small portion of the set of potential future excitations. 

Additionally it is unclear how the relationships suggested for modeling the characteristics 

of near-fault pulses can be extended to the whole range of moment magnitudes considered 

here. For these reasons near-fault characteristics are not included in the stochastic 

excitation model. The ground motion time history is modeled simply by the methodology 

presented in Section 2.4.1.   

According to these seismicity and ground motion models, the mean total rate of seismic 

events corresponding to some intensity measure IM that exceeds some threshold im, 

IM≥im,  is: 

[ ]( ) | , ( ) ( )IMv im v P IM im M r p M p r dMdr= ≥∫ ∫  (6.11) 

and the probability that at least one seismic event of interest will occur over time tdur which 

has IM≥im is (because of the Poisson model for earthquake occurrences); 

[ ] ( )| 1 IM durv im t
durP IM im t e≥ = −     . (6.12) 

Figure 6.8 shows the mean rate for IM≥im (Figure 6.8(a)) and the probability of occurrence 

for tdur=1 year (Figure 6.8(b))  and tdur=60 years (Figure 6.8(c)) for two families of intensity 

measures. The first family corresponds to the peak ground acceleration and the second to 

the peak spectral acceleration for a SDOF oscillator with damping ratio 5% and four 

different periods, 1 sec, 0.76 sec (which equals to the period of the linear structural model), 

0.5 sec, and 0.25 sec. These plots constitute a representation in civil engineering 

terminology, rather than the abstract PDF and ground motion model characterization, of the 

mean seismic hazard considered for the structural site. Stochastic simulation has been used 

for evaluating the integral in (6.11).  



 

 168

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.510-5

10-4

10-3

10-2

10-1

100

0 0.5 1 1.510 -5

10 -4

10 -3

10 -2

10 -1

10 0

PGA
T=1sec
T=0.76sec
T=0.5sec
T=0.25sec

PSA

(b) Probability of occurrence for tdur=1 year 

im=acceleration (g) im=acceleration (g)

im=acceleration (g)
(c) Probability of occurrence for tdur=60 years 

P[
IM
≥i

m
|t du

r] 

P[
IM
≥i

m
|t du

r] 

v IM
(im

) 
(a) Rate of occurrence of IM=im

IM=

 

Figure 6.8: (a) Mean occurrence rate, and probability of occurrence for (b) tdur=1 

year and (c) tdur=60 years, for PGA (peak ground acceleration) and PSA ( peak 

spectral acceleration) 

6.2.3 Expected life-cycle cost 

The uncertain parameter vector in this design problem consists of the structural model 

parameters, θs, the seismological parameter θg=[M, r], and the white noise sequence, Zw, so 

θ=[θs, θg, Zw]. The objective function in the stochastic design problem is the expected life-

cycle cost of the structure for a life-time of tlife=60 years after the retrofit. This cost, C(φ), 

as a function of the design variables is given by (Porter et al. 2004a): 
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1( ) ( ) ( , ) ( )
d lifer t

d lifeΘ
d life

eC C L vt p d
r t

−⎡ ⎤−
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
∫φ φ φ θ θ θ  (6.13) 

where Cd(φ) is the cost of the viscous dampers, rd equals the discount rate (taken here as 

2.5%), and L(φ,θ) is the expected cost given the earthquake event and the system specified 

by the pair [φ,θ]. The term in the brackets in (6.13) is the present worth factor, which is 

used in order to calculate the present value of the expected future earthquake losses (Porter 

et al. 2004a). The earthquake damage and loss are calculated assuming that after each event 

the building is quickly restored to its undamaged state. The cost of the dampers at each 

floor is estimated based on their maximum force capacity Fud,i as Cd,i(φ)=$80(Fud,i)0.8. This 

simplified relationship comes from fitting a curve to the cost of some commercially-

available dampers. The viscosity of the dampers is selected assuming that the maximum 

force capacity is established at a velocity of 0.2 m/sec.  

The earthquake losses are estimated adopting the methodology described in Porter et al. 

(2004a) and Goulet et al. (2007). The components of the structure are grouped into nas 

damageable assemblies. For each assembly j, nd,j different damage states are designated and 

a fragility function is established for each damage state dk,j. These functions quantify the 

probability that the component has reached or exceeded that damage state, conditional on 

some engineering demand parameter (EDPj). Damage state 0 always corresponds to an 

undamaged condition. Each fragility function is a conditional cumulative log-normal 

distribution with median xm and logarithm standard deviation bm, as presented in Table 6.4. 

Indirect losses because of (a) fatalities and (b) building downtime, i.e., loss of revenue 

while the building is being repaired, are ignored in this study. The expected losses in the 

event of the earthquake are given by:     

,

, ,
1 1

( , ) [ | , ]
d jas nn

k j k j
j k

L P d C
= =

= ∑∑φ θ φ θ  (6.14) 
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where P[dk,j|φ,θ] is the probability that the assembly j will be in its kth damage state and Ck,j 

is the corresponding expected repair cost.  

Table 6.4 Characteristics of fragility functions and expected repair cost for each story 

Structural Components Partitions dk,j xm bm nel $/nel 
dk,j xm bm nel $/nel 

1 (light) 1.4δy,i 0.2 22 2000 1 (patch) 0.33% 0.2 500 180 

2 (moderate) (δy,i+δp,i)/2 0.35 22 9625 2 (replace) 0.7% 0.25 500 800 

3 (significant) δp,i 0.4 22 18200 Acoustical Ceiling 

4 (severe) δu,i 0.4 22 21600 
dk,j 

xm bm nel $/nel 

5 (collapse) 3% 0.5 22 34300 1 (damage) 1g 0.7 103m2 25 
Contents Paint dk,j xm bm nel $/nel 

dk,j xm bm nel $/nel 

1 (damage) 0.6g 0.3 100 3000 1 (damage) 0.33% 0.2 3500m2 25 
 

Table 6.4 summarizes the characteristics for the fragility functions (xm, βm) and the 

expected cost per element $/nel. The nel  in this table corresponds to the number of elements 

that belong to each damageable assembly in each direction of each floor. For the structural 

contents and the acoustical ceiling, the maximum story absolute acceleration is used as 

EDP and for all other assemblies the maximum inter-story drift ratio is used. For estimating 

the total wall area requiring a fresh coat of paint, the simplified formula developed in 

(Goulet et al. 2007) is adopted. According to this formula a percentage of the undamaged 

wall area is also repainted, considering the desire of the owner to achieve a uniform 

appearance. This percentage depends on the extent of the damaged area and is chosen here 

based on a lognormal distribution with median 0.25 and logarithmic standard deviation 0.5.  

The fragility curves adopted are similar to the ones selected in Mitrani (2007) and Goulet et 

al. (2007) for all damageable assemblies apart from the structural components. For the 

latter, the fragility curves have been chosen in the current study according to the 

characteristics of the backbone curve for the restoring force in each story. In this setting, a 
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direct link is established between the fragility curves and the stiffness and strength 

characteristics of the corresponding structural model, considering their associated 

uncertainties. Figure 6.9 illustrates this concept for the nominal values of the structural 

model parameters.  

(b) Restoring force-drift relationship
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Figure 6.9: (a) Fragility functions for structural components and (b) restoring force-

drift relationship 

Figure 6.9(a) shows the fragility curves for each damaged state of the structural 

components, with characteristics the ones reported in Table 6.4. Figure 6.9(b) indicates the 

location of the median for each damaged state in the backbone curve for the restoring force 

at each story. The comparison between the two curves reveals the connection between the 
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fragility of the structural components and the strength/stiffness characteristics of each story. 

Such a link of the damaged states of the structural components to strength and stiffness 

model characteristics has not been established in most other studies that use similar 

methodologies for estimating repair damages from earthquakes (for example, in Goulet et 

al. (2007)). 

The expected repair cost for all damageable assemblies is selected based on the repair-cost 

characteristics reported in Mitrani (2007) and Beck, Porter et al. (2002). In particular, for 

the “structural components” damageable assembly the frame at each story is assumed to 

consist of beams and column that have possible repair methods [epoxy injection, jacketed 

repair, replacement] (depending on the extend of the damage) and associated repair cost    

[$ 8000, $ 22500, $ 34300], as discussed in detail in Beck, Porter et al. (2002). For each of 

the damage states of the “structural components” damageable assembly that are reported in 

Table 6.4, the expected repair cost has been estimated assuming that a specific portion 

(chosen based on engineering judgment) of the beams and columns will need one of the 

three aforementioned repair methods. The chosen relationship between the damaged state 

for the structural components and the percentage of the beams and columns that need some 

repair method is shown in Table 6.5.  

Table 6.5 Relationship between damage states for “structural components” 

damageable assembly and type of repair needed for the beams and columns  

Percentage of beams and columns of the frame  

that needs each type of repair 

Damaged states 
for “structural 
components” 

assembly  no repair epoxy injection jacketed repair replacement 

1 (light) 80% 20% 0% 0% 

2 (moderate) 25% 50% 25% 0% 

3 (significant) 0% 50% 25% 25% 

4 (severe) 0% 33.3% 33.3% 33.3% 

5 (collapse) 0% 0% 0% 100 % 
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Figure 6.10 illustrates the fragility curves adopted in this study for the partitions and the 

damaged state probabilities P[dk,j|φ,θ] estimated according to these curves. Then Figure 

6.11 shows the mean cost for the drift sensitive (Figure 6.11(a)) and acceleration sensitive 

(Figure 6.11(b)) components of the structure. These two plots in Figure 6.11 correspond 

ultimately to the utility functions (performance measure) that are used to evaluate the 

favorability of the dynamic response of the structure, either maximum inter-story drift or 

absolute acceleration, under the given ground motion excitation.  
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Figure 6.10: (a) Fragility function and (b) damage state probabilities for partitions 
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Figure 6.11: Total expected repair cost for the (a) drift and (b) acceleration sensitive 

components (per story)  
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Finally in Figure 6.12 the expected repair cost for each of the different drift-sensitive 

damageable assemblies is plotted. The acceleration-sensitive assemblies have much smaller 

contribution to the total cost, as will be demonstrated later, and thus presentation of a 

similar plot for them was deemed unnecessary. Figure 6.12 shows that the repair cost for 

the paint is more important for smaller drifts but converges to a plateau fast. On the 

contrary, the repair cost for the structural components is small for lower drifts but 

monotonically increases and becomes dominant for large drifts. For medium drifts the 

repair cost for the partitions is relatively more important. Also the maximum expected 

repair cost for the paint is significantly smaller that the repair cost for the other drift-

sensitive components. These remarks illustrate that under smaller excitations the cost of 

repainting the damaged rooms will be the major contributor to the total expected cost, 

possibly because of the assumption used that the owner will desire to achieve a uniform 

appearance and repaint greater wall area than the one actually damaged. For moderate 

excitations the total repair cost increases considerably, due to the cost of primarily 

replacing the damaged partitions and secondarily repairing the structural components. The 

cost of the structural components dramatically contributes to the total repair cost for large 

excitations which lead to nonlinear structural behavior and thus to large inter-story drifts.  
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Figure 6.12: Expected repair cost for the drift sensitive damageable assemblies (per 

story)   
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6.2.4 Optimal damper design 

The maximum force capacities of the dampers in each floor are the four design variables 

φ=[Fud,i: i=1,…,4]. The initial design space for each variable is set to [0, 13000] kN for 

Fud,1 and Fud,2 and [0, 8000] kN for Fud,3 and Fud,4. Results for a sample run of the 

optimization algorithm are presented in Table 6.6. For the SSO stage only the sets I3 (after 

three iterations of the algorithm) and ISSO (at the final stage of the algorithm, which in this 

case corresponded to the sixth iteration) are reported here. Also i
Il  denotes the length of set 

I in the direction of the ith design variable. 

Table 6.6 Optimization results 

Φ I3 (kN) ISSO (kN) φSSO 
(kN) 

φ* 
(kN) 

Êθ [h(φ*,θ)] 

Êθ[h(φSSO,θ)] /i i
SSOl lΦ  /φ

SSO

n
I ΦV V

Fud,1 [3610, 7657] [5857, 6980] 6418 6420 0.094 
Fud,2 [3557, 7756] [4539, 6045] 5292 5195 0.126 
Fud,3 [4034, 7095] [4085, 5517] 4801 4481 0.179 
Fud,4 [1566, 4751] [1841, 2959] 2400 2060 

0.430x106 $ 
 

0.438x106 $ 
0.139 

0.131 

6.2.5 Details for stochastic subset optimization 

The objective function (6.13) can be written as: 

1( ) [ ( , )] ( ) ( , ) ( )
d lifer t

s d lifeΘ
d life

eC E h C L vt p d
r t

−⎛ ⎞⎡ ⎤−
= = +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∫θφ φ θ φ φ θ θ θ     . (6.15) 

Thus, the loss function used in the SSO stage of the optimization is: 

1( , ) ( ) ( , )
d lifer t

s d life
d life

eh C L vt
r t

−⎡ ⎤−
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
φ θ φ φ θ     . (6.16) 
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The parameter selections for SSO are: ρ=0.2, N=2000, s=0. The shape for the sets I is 

selected as a hyper-rectangle and the adaptive identification is stopped when Ĥ(Îk)  

becomes larger than 0.80. In total, 6 iterations of the SSO algorithm are performed. After 3 

iterations the loss functions hs(φ,θ) is reformulated by choosing s=$200,000 . Algorithm 1 

(Appendix 4A) is used for sampling in the 1st and 4th  iterations, and Algorithm 2 in all 

others. For the MCMC simulation a global proposal PDF equal to p(Zw) is chosen for the 

white noise sequence, to avoid the problems with the high-dimensionality of the uncertain 

parameter vector, and local random walk proposal PDFs are chosen for all other 

parameters.    

The results in Table 6.6 show that SSO efficiently identifies a smaller subset for the 

optimal design variables that leads to a significant reduction of the size (volume) of the 

search space (look at the last two columns of Table 6.6). The converged optimal solution in 

the second stage, φ*, is close to the center φSSO of the set that is identified by SSO; also the 

objective function at that center point Eθ[h(φSSO,θ)] is not significantly different from the 

optimal value Eθ[h(φ*,θ)]. Thus, selection of φSSO as the design choice leads to a sub-

optimal design that is, however, close to the true optimum in terms of both the design 

vector selection and its corresponding performance. This agrees with the findings of the 

previous study in this chapter and indicates that sole use of SSO might be adequate for 

many problems.    

6.2.6 Details for simultaneous-perturbation stochastic approximation with 

common random numbers 

For the second stage of the optimization framework the formulation of the objective 

function in (6.13) is adopted. Stochastic simulation is used in order to estimate only the 

second part, since the cost of the dampers can be deterministically evaluated, so: 
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1( , ) ( , )
d lifer t

life
d life

eh L vt
r t

−⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
φ θ φ θ     . (6.17) 

Following the discussion in Section 5.2, importance sampling densities are established for 

the structural model parameters and the seismological parameters, M and r, but not for the 

high-dimensional white-noise sequence. Figure 6.13(b) illustrates this concept for M and r. 

A truncated lognormal distribution is selected for the IS PDF for M (with median 7 and 

logarithmic standard deviation 0.1) and a lognormal for r (with median 15 and logarithmic 

standard deviation 0.4). Note that the IS PDF for M is significantly different from its initial 

distribution; since M is expected to have a strong influence on h(θ,φ), the difference 

between the distributions is expected to have a big effect on the accuracy of the estimation. 

The respective difference between the PDFs for r is much smaller.  For the structural model 

parameters this difference is negligible, and the IS PDFs were approximated to be Normal 

distributions, like p(θs), with a slightly shifted mean value but the same variance. 

According to the discussion in section 4.1.7, these remarks show that the sensitivity of the 

loss estimation to the seismological parameters, that is, to the stochastic excitation 

characteristics, is much more important than to the structural model characteristics.  

The c.o.v. for Êθ,Ν[h(φ,ΩΝ)] for a sample size N=1000 is 16% without using IS and 4% 

when IS is used. Since this c.o.v. varies according to 1/ N , the sample size for direct 

estimation ( i.e., without use of IS) of the objective function with the same level of 

accuracy as in the case when IS is applied would be approximately 16 times larger. This 

illustrates again the efficiency increase that can be established by the IS scheme discussed 

earlier. The converged optimal solution in the second stage is included in Table 6.6. Forty 

iterations were needed in the second stage of the framework using a sample size of 

N=1000. This computational cost can be characterized as small.  Convergence is judged by 

looking at the norm ||φk+1-φk||∞ for each of the last five iterations. If that norm is less than 

0.2% (normalized by the dimension of the initial design space), then we assume that 

convergence to the optimal solution has been established. 
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Figure 6.13: Details about importance sampling densities formulation  

6.2.7 Efficiency of the two-stage optimization framework 

To evaluate the efficiency of the optimization framework, the same optimization was 

performed without the use of SSO in the first stage. In this case the starting point for SPSA 

was selected as the center of the design space Φ, and α was chosen so that in the first 

iteration the movement for any design variable is not larger than 5% of the respective 

dimension of the design space. In this case IS is not implemented; since search inside the 

whole design space Φ is considered, it is unclear how samples of θ can be obtained to form 

the IS densities and separately establishing an IS density for each design choice φ is too 

computationally expensive. The larger variability of the estimates caused the gradient-

based algorithm diverge in the first couple of iterations. Thus a larger value for the sample 

size (N=3000) was used. The required number of iterations for convergence of the 

algorithm in a sample run and the total number of system simulations was 102 and 
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612,000, respectively. When the combined framework was used, the corresponding 

numbers were 40 and 80,000, respectively. This comparison illustrates the efficiency of the 

proposed two-stage optimization framework. The better starting point of the algorithm, as 

well as the smaller size of the search space, which allows for better normalization, that the 

SSO subset identification can provide are the features that contribute to this improvement 

of efficiency. 

6.2.8 Efficiency of seismic protection system 

The expected lifetime cost for the structure in each direction without the dampers is 

estimated as $1.1 million. The expected lifetime cost of the retrofitted system is $430,000, 

so the addition of the viscous dampers improves significantly the performance of the 

structural system. Of this amount, $267,000 corresponds to the cost for the installation of 

the viscous dampers and $163,000 to the present worth of the expected repair cost for 

damage from future earthquakes. The maximum force capacities for the dampers at each 

story under optimal design have been reported in Table 6.6. They are also illustrated later 

in Figure 6.16. These values seem reasonable compared to current commercial applications 

of viscous dampers.    

Figure 6.14 shows the decomposition of the expected lifetime repair cost into its different 

components for both the initial structure (Figure 6.14(a)) and the retrofitted structure 

(Figure 6.14(c)). Only minor changes occur in the distribution of the total cost over its 

different components. Note that the relative importance of the repair cost for acceleration-

sensitive assemblies (for example the building contents) increases by the addition of the 

dampers, as expected, but still the importance of this cost remains small and it is practically 

negligible. Figure 6.14(b) shows the expected lifetime cost for the structure with dampers. 

The improvement of the performance of the structure is clearly evident in these charts. Also 

the comparison between the plots in Figure 6.14(a) and Figure 6.14(c), taking additionally 

into account the distribution of the repair cost in Figure 6.12, clearly show that for the 

retrofitted structure the larger drift response accounts for the smaller amount of the total 
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repair cost, since the relative importance of the repair cost for the paint becomes larger and 

for the structural components smaller.  

(b) Life-cycle cost: structure with dampers

structural:11.7%

paint:11.7%

contents:1.1%

partitions:10.7%

ceiling:0.4%

dampers:62.1%

Cost of whole pie: $430,000

structural:36%

paint:29%
contents:2%

partitions:32%

ceiling:1%

(a) Life-cycle cost: structure without retrofitting

Cost of whole pie: $1,100,000

structural:33%

paint:33%

contents:3%

partitions:30%

ceiling:1%

(c) Repair cost: structure with dampers

Cost of whole pie: $163,000  

Figure 6.14: Details about expected life-cycle cost 

Finally Figure 6.15 and Figure 6.16 show the decomposition of the repair cost into the four 

different stories for both the initial structure (Figure 6.16(a), Figure 6.15(a)) and the 

retrofitted structure (Figure 6.16(b), Figure 6.15(c)) as well as the life-cycle cost for the 

retrofitted structure (Figure 6.16(b), Figure 6.15(b)). For the initial structure the earthquake 

damages are slightly larger in the first story but in general are characterized by an almost 
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uniform distribution along the height of the building. This is not the case for the retrofitted 

structure, where the earthquake damages are concentrated in the lower part of the structure, 

primarily the first story. If the additional cost of the dampers is considered, then the 

distribution along the height gets more regular but is still higher for the lower parts of the 

building. This may be attributed, ultimately, to the fact that the earthquake forces at the 

higher floors are smaller (smaller shear force), thus smaller size dampers are able to 

alleviate the undesirable performance easier and prevent yielding at these floors without 

reaching their ultimate forcing capacity, which would reduce their efficiency. Of course, 

this behavior is also connected to the distribution of nonlinear phenomena along the height 

of the building. Apparently, nonlinear phenomena appear much stronger at the lower 

floors; the energy dissipation that is provided by this hysteretic behavior reduces the forces 

acting on the higher floors for the retrofitted structure. 
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Figure 6.15: Distribution of repair and life-cycle cost between different stories 
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Figure 6.16: Distribution of repair, damper and life-cycle cost between different 

stories. Maximum force capacity of the dampers for each story is also illustrated  
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CHAPTER  7  

Stochastic System Design: Structural Control 

Applications 

This chapter presents applications of the general stochastic system design framework to the 

specific field of structural control. It can also be considered as an extension of the 

controller design discussed in Chapter 3 for linear systems, to design problems that involve 

nonlinear system and excitation models. The general model formulation illustrated in 

Figure 2.3 is adopted and the robust-to-uncertainties nonlinear controller design that was 

discussed in Section 2.3 is implemented, using simulation techniques to evaluate the model 

performance. In this simulation-based framework, all nonlinear characteristics of the 

controlled system can be potentially incorporated into the assumed system model at the 

design stage. Additionally, of course, uncertainty about the model parameters can be 

treated using a probabilistic description. Compared to the approach presented in Chapter 3, 

this more general controller design methodology has the potential to be more effective, i.e., 

lead to a control system that accomplishes more favorably the designated performance 

objectives, because it does not impose hard restrictions on the models selected to represent 

the true system. Ultimately, the efficiency of this design methodology depends on the 

ability of the adopted model to represent (a) the structural system, and (b) future 

excitations. If the representation is accurate and the uncertainty about the model parameters 

is quantified properly, the proposed methodology provides a powerful tool for designing 

the controlled system by taking into account all of its important (linear or nonlinear) 
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characteristics and their uncertainties, and this can provide significant improvement in the 

system performance. The only consideration for the complexity in the system description is 

the available computational power for efficiently performing multiple simulation analyses. 

The stochastic optimization framework, based on SSO, developed earlier provides a 

powerful tool for performing the associated controller optimization, as long as the 

controller structure is not overly complex and, thus, the number of design variables is 

relatively small. For structural control applications, which involve systems whose dynamic 

response is dominated by frequencies in a few narrow bands, the latter requirement can be 

easily satisfied in most applications by careful consideration of the characteristic of the 

control application. Such characteristics involve, for example, the dynamics of the facility 

to be controlled, the type of motion that needs to be regulated, the type of actuators used, 

the available measurements for designing the control law and so forth.    

Two applications are considered for illustrating the efficiency of the controller nonlinear 

stochastic design methodology. The first involves the Base-Isolated ASCE Benchmark 

structure under near-fault earthquake excitation and the second a Tension Leg Platform 

under random sea excitation. The system reliability is adopted in both cases as the design 

objective. This selection was dictated by the fact that little information is currently 

available for developing different utility functions for evaluating the dynamic performance 

of the facilities considered in the studies, particularly with respect to monetary 

quantification of the performance. Still, the reliability-based design suggested is adequate 

for developing robust-to-uncertainties controllers. The following studies will demonstrate, 

though, that this is not always sufficient for evaluating the efficiency of the control system 

in structural applications and that there is a need for comparing, or even designing, such 

systems using socio-economic criteria to establish a direct cost-benefit quantification of the 

control implementation merits.    

The TLP application has been also published in Taflanidis, Angelides, and Beck (2007). 
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7.1 Protection of Base-Isolated ASCE Benchmark Structure 

The increasing attention that structural control applications have received in the last couple 

of  decades has motivated the recent proposal by the ASCE Structural Control Committee 

of the Base-Isolation Benchmark Control Problem (Nagarajaiah and Narasimhan 2006; 

Narasimhan et al. 2006; Narasimhan et al. 2008). It consists of an eight-story irregular 

structure, as illustrated in Figure 7.1, equipped with a passive isolation system, which may 

be fitted with different actuators (both active and semi-active devices may be considered) 

and controlled through various feedback laws, to further reduce seismic response beyond 

that of the passive isolation system alone. In addition to a specified structural dynamic 

model, the problem statement imposes specific constraints on the actuators, sensors, and 

control laws that may be used, and requires that different approaches be compared under a 

single set of performance measures. As such, comparisons of different base-isolation 

strategies becomes more straight-forward.  

One of the main challenges in controlling base-isolated buildings has been the explicit 

consideration of the nonlinear behavior of the isolators in the controller design stage.  

Another challenge has been the development of forcing systems which yield effective 

control of the dynamic response under near-fault ground motions. Such motions frequently 

include a strong longer-period pulse that has important implications for flexible structures, 

such as base-isolated systems (Hall et al. 1995). A third challenge, which is relevant to all 

structural control seismic applications, concerns the characterization and inclusion of the 

variability of future ground motions in the feedback controller design process. Typically a 

nominal model is assumed for stochastic representation of the ground motion and iterative 

procedures are applied for fine tuning the selected controller structure (such as weighting 

matrices in LQR design or linearization parameters for nonlinear models (Erkus and 

Johnson 2006)) based on the response of the system to a few recorded ground motions.  

What would be desirable is an approach which more systematically incorporates all 

available probabilistic knowledge of the character of future ground motions into the 

controller design.  
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The stochastic system design methodology proposed in this study addresses all these 

challenges.  Uncertainty in the model parameters and future excitations is treated through 

the incorporation of a probabilistic description for them. Since stochastic simulation 

techniques are used for evaluation of the structural response, the controller can be 

optimized based on the non-linear characteristics of the base isolation system. Additionally, 

the probabilistic model for the realistic description of near-fault ground motions presented 

in Section 2.4 can be incorporated into the system model in the design stage to adequately 

characterize future excitations.   

This methodology is illustrated in the context of the base-isolated benchmark structure 

equipped with linear and nonlinear (friction pendulum) bearings. A Regenerative Force 

Actuation (RFA) network with eight actuators in each direction operating in tandem with 

the passive isolation system is considered. The feedback controller designed for this 

application accepts noisy measurements of the absolute base accelerations, and implements 

a three-degree-of-freedom “skyhook” control law using estimates of the absolute velocities 

of the center of mass of the base. An efficient approach is presented for clipping the control 

forces to satisfy the RFA network actuator constraints. Comparison to the performance of 

an array of passive viscous dampers with the same characteristics (position, actuator 

capacities) is also presented. 

7.1.1 Benchmark structure 

The Base-Isolation Benchmark Problem (Narasimhan et al. 2006; Narasimhan et al. 2008) 

concerns a base-isolated structure with nf =8 floors.  The base and floor slabs are assumed 

to be infinitely rigid in plane, and are modelled by three master degrees of freedom located 

at the centres of mass of each floor. The superstructure is assumed to be a linear system 

with mass, damping, and stiffness matrices Ms, Cs, and Ks. The natural periods and 

participation factors for the first couple of modes are shown in Table 7.1. Modal damping 

equal to 5% is assumed for all modes for determining Cs. 
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Table 7.1 Periods and participation factors for superstructure 

Participation Factors Mode  Period North-South East-West Torsion 
1st 0.89 0.0 % 72.9 % 5.7 % 
2nd  0.77 74.9 % 0.0 % 0.2 % 
3rd  0.66 0.2 % 0.0 % 67.9 % 
4th 0.28 17.2 % 0.0 % 0.0 % 
5th 0.27 0.0 % 17.3 % 0.1 % 
6th  0.21 0.0 % 0.2 % 16.72 % 
7th 0.15 4.3 % 0.0 % 0.0 % 
8th 0.15 0.0 % 5.3 % 0.3 % 
9th  0.12 0.0 % 0.1 % 4.68 % 

 

Below the base, the isolation system consists of a variety of 92 isolation bearings.  In this 

study, the isolators are selected as 31 linear elastomeric rubber bearings and 61 nonlinear 

friction pendulum bearings (Figure 7.1). The properties of all isolators are set to the 

nominal parameters considered for the benchmark problem. The linear bearings are 

modelled as a spring-dashpot system with stiffness 919.42 kN/m2 and viscous damping 

27.17 kN/m/sec. For the frictional bearings the biaxial hysteretic behaviour is modelled 

using the biaxial interaction equations of the Bouc-Wen model proposed by Park et al. 

(1986) as follows: 
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 (7.1) 

where zx and zy are dimensionless hysteretic variables that are bounded by values ±1, Ux, 

Uy; xU , yU  represent the displacements and velocities in the x and y directions, 

respectively, at the isolation bearing; and Uy is the yield displacement, selected as 0.3 cm. 

Also αis, βis, and γis are dimensionless quantities that characterize the properties of the 
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biaxial hysteretic behavior. The values suggested in Gavin (2002) are adopted in this study: 

αis=1, βis=0.1, and γis=0.9. The force of the bearing is finally given by: 

,

,

x is p x v x x

y is p y v y y

f K U c U z

f K U c U z

μ

μ

= + + Ν

= + + Ν
 (7.2) 

where Kp is the post yield stiffness, cv the viscous damping coefficient, N the average 

normal force at the bearing (normal force variation is neglected), and μ is the coefficient of 

friction. The first two quantities are chosen equal to the respective values of the linear 

isolators, N is calculated as 3137.8 kN and the coefficient of friction is selected as 6%. 

Figure 7.8 later presents the displacement-force relationship, in both x and y directions, for 

a sample earthquake ground motion in terms of the specific control implementation 

considered in this study.  
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Figure 7.1: (a) Base plan of the benchmark structure and (b) side view  
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Let Mb, Cb, and Kb denote the mass and damping matrices for the base and the stiffness 

matrix οf the linear isolators, respectively. The differential equation for the coordinate 

vector p (consisting of lateral and rotational displacements for each floor relative to the 

base and the lateral and rotational displacements for the base relative to the ground) can be 

expressed as: 

3 3 3 3

3 3 3 3

3 3 3 3
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where ( )g tx ∈ 2 is the acceleration of the ground in the x and y directions and R is the 

3nf×3 matrix of earthquake influence coefficients. Vector fc(t) contains the total control on 

the base in the x and y directions and the total control torque about the base center of mass. 

This vector and the vector of forces produced by each individual device, f, are related by: 

1=  where ... ,  

1 0 (actuator in the -direction)
with 

0 1 (actuator in the -direction)     . 

cn
c c c c c

Ti
ci

c Ti
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f R f R r r

r
 (7.4) 

Vector Fis(t) in (6.2) contains the total forces produced by the nonlinear hysteretic isolators 

at the base center of mass. A relationship similar to (7.4) holds between Fis(t) and the force 

provided by each individual isolator in each direction given by (7.2). 

7.1.2 Control implementation details  

Noisy acceleration measurements are available at the center of mass of each floor level and 

the base for control applications. According to the definition of the Benchmark problem, 
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the A/D and D/A converters for the digitally implemented controller have a 16-bit precision 

and a span of ±10 Volts. Small RMS noise (0.05 Volts) is added to all measured outputs 

and the sampling time should be between 0.001 and 0.01 sec (the latter is chosen here). 

7.1.3 RFA Network 

In this study a Regenerative Force Actuation (RFA) network, similar to the one in Figure 

1.1(b), but with more actuators, is implemented at the base level for the protection of the 

benchmark structure.    

f2

v

-½Ccv

f1

Regenerative 
boundary

Semiactive boundary  

Figure 7.2: Feasible force region for regenerative and semi-active two actuator system  

Consider a network of m actuators and define f=[f1 ...fm]T as the vector of actuator forces.  

Define v = [v1 ... vm]T as the corresponding vector of actuator velocities. Let cci be the 

maximum effective viscous damping of each device (related to electrical characteristics) 

and define the matrix Cc=diag[cc1…ccm]. The velocity-dependent force constraints for the 

device system operating in regenerative mode or semi-active mode (i.e, with or without, 

respectively, connecting the electrical networks of different actuators) are (Scruggs et al., 

2007a): 
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1Regenerative : 0T T
c
− + ≤f C f f v     . (7.5) 

[ ] 1 2Semiactive:  ,0 0i ci i ci i i if c v c f f v−∈ − ⇔ + ≤     . (7.6) 

These feasible force regions are illustrated in Figure 7.2 for a two-device system. The 

regenerative constraint is less restrictive than the semi-active constraint because a single 

constraint is imposed on the entire network, whereas for semi-active systems the same 

constraint is imposed on each device separately. 

In practice, if an RFA network is commanded to realize a force which lies outside its 

feasible force region, (i.e., a force for which constraint (7.5) is violated), this will result in a 

kind of saturation which is coupled in all the forces.  In Scruggs and Iwan (2005) it was 

shown that the manner in which this saturation, or “clipping” occurs, can be controlled 

through proper design of the power-electronic control system.  

7.1.4 Control law selection 

An array of eight regenerative force actuators is considered in each direction, working in 

tandem with the isolation system (Figure 7.1). In this configuration, energy is transmitted 

between the actuators at different locations in the base, as well as between the two 

translational directions of motion. The maximum viscosity of all actuators is set to 2.0×106 

kg/s. The control law is assumed to be of a “skyhook” form; i.e., the total control forces at 

the center of mass of the base are determined as a static feedback function of the absolute 

velocities of the respective degrees of freedom. Because the only feedback measurements 

are from accelerometer data, the absolute velocities must be estimated by filtering the 

accelerometer measurements through a second-order bandpass filter, with transfer function: 

2 2 ,    2 / 2,   0.15 rad/sec
2f f f

f f f

sH
s s

ζ ω
ζ ω ω

= = =
+ +

    . (7.7) 
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For frequencies significantly above ωf, this filter resembles pure integration.   

The control law designates the optimal force vector fc at the center of mass of the base.  

Since more than three actuators, not aligned with each other, are used, Rc in (7.4) has a 

nontrivial null space. Thus, there are an infinite number of choices for f which will produce 

a desired fc. These solutions can be expressed as: 

c= +f Tf a  (7.8) 

where ( ) 1T
c c c c c

−
=T C R R C R  and a belongs in the nullspace of Rc.  As such, the particular 

choice of a does not affect fc. This constitutes a redundancy in the actuator configuration. 

The selection for a should be related to constraint (7.5) and how it is transformed for the 

resultant control forces at the center of mass. Let vc denote the relative velocities at the 

center of mass of the base, satisfying: 

c c=v R v  (7.9) 

Substituting (7.8) and (7.9) in (7.5) and using Rca=0 we end up with a constraint in terms 

of the control forces and the relative velocities at the center of mass of the base: 

( ) 1 1 0T T T
c c c c c c c c

− −+ + ≤f R C R f a C a f v     . (7.10) 

Thus, for any a≠0, the feasible region for fc is unnecessarily restricted. As such, the most 

efficient control is achieved with a=0.  This choice produces the minimum-Euclidean-norm 

for f given fc (i.e., produces minimal control effort in a mean square sense).  

In the example discussed in this work, the control system formulates a desired force for fc, 

which will be denoted by fd and is given by the “skyhook” control law:   
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, , ,d i s i c iK v=f  (7.11) 

where vc,i is the absolute velocity at the center of mass of the base along the ith degree of 

freedom, where i=x, y, θ, and Ks,i is the corresponding element of the gain vector Ks
3⊂  

for the skyhook control law.   

The control intelligence which produces this force does not explicitly impose constraint 

(7.10) on fd.  If an fd is formulated which does not adhere to this constraint, then the vector 

fd must somehow be adjusted, or “clipped” to accommodate the constraint. There are a 

number of ad-hoc ways in which this adjustment might be accomplished. The approach 

taken here is to find an fc which gets “as close as possible” to fd under some norm; i.e., the 

idea is to make fc track fd as closely as possible, given the physical constraints on the 

actuation system.  Here, we define “closeness” in the Euclidean sense; i.e.,  

 feasible
= argmin   c d−

Rf
f f f  (7.12) 

where ||.||R is a Euclidean vector norm using a weighting matrix R. Thus fc tracks the 

feedback signal fd if it is feasible, and if not is “clipped” to the feasible region in such a 

way that the tracking error is instantaneously minimized. This is similar to a problem 

investigated in Scruggs et al. (2007a). Figure 7.9 later presents the time histories for fd and 

fc in the context of the example considered. 

It remains to determine the weighting matrix R, which prioritizes how closely the control 

system will try to match the various components of fc to those of fd.  In Scruggs et al. 

(2007a) the performance objective was the optimization of the mean-square stationary 

performance. In that case the optimal weighting matrix R in (7.12) was derived to be time 

invariant and related to the correlation between the actuators and the selected performance 

variables. Contrary to the performance objectives of the Scruggs et al. (2007a) study, for 

earthquake excitation we are concerned with optimizing the maximum response; this can 
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be established by trying to regulate the instantaneous performance, rather than the average 

performance. This implies a selection for the weighting matrix R that should be time-

varying, as the relative importance of tracking each force changes from one instance to the 

other, depending on which performance quantity is larger, i.e., closer to its failure 

threshold.  Denoting the components of fd as [fd,x fd,y fd,θ]T, the nonlinear weighting matrix is 

adopted: 

1 1 1
, 2 , 3 ,

k k k
d x d y ddiag f k f k f θ⎡ ⎤= ⎣ ⎦R  (7.13) 

where the parameters k1, k2, and k3 are to be optimized. This weighting prioritizes larger 

force signals at the center of mass of the base, assuming that they have greater importance 

in regulating the instantaneous response. A nonlinear dependence is introduced by the 

parameter k1. A scaling is also introduced for the relative importance between the different 

forces by parameters k2 and k3. A more detailed analysis of the influence of the specific 

parameterization of R is left for future work. 

Given R, optimization (7.12) can be accomplished analytically, through the solution of an 

associated polynomial root equation (degree of polynomial equal to six), which can be 

performed computationally efficiently. Details regarding this solution can be found in 

Scruggs (2004). 

In summary, the nonlinear control law Kc implemented in this study consists of (a) a three-

dimensional linear feedback gain vector Ks
3⊂  for the skyhook control law, (b) the 

weighting matrix R parameterized by the vector  Kr=[k1 k2 k3]T as in (7.13), and (c) the 

filter for obtaining estimates of the absolute base velocities. The controller parameters to be 

optimized consist of the six dimensional vector K={Ks, Kr}. 

To facilitate a more straightforward comparison to studies that use different types of 

control devices, a maximum force capacity for each electromechanical actuator equal to 
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2200 kN is assumed. This additional constraint could, in principle, be incorporated in the 

tracking problem (7.13) (Scruggs 2004). For simplicity of the controller design and since 

the actuators typically operate far away from the maximum force threshold, this constraint 

is ignored in (7.12); it is simply enforced as force saturation on each actuator.       

7.1.5 Controller design 

The reliability of the base isolated structure given that a seismic event has occurred is 

adopted as the design objective. The vector of performance variables for the controller 

design consists of the next four groups of response quantities: 

(a) The inter-story drifts of all floors measured at the outermost corners, δi,j, i=1, …, 8, 

j=x,y.  

(b) The base displacement, again measured at the outermost corners δb,j. 

(c) The absolute accelerations at the center of mass of all floors and the base in x and y 

directions, ai,j, i=1, …, 8,b, where b denotes the structure’s base. 

(d) The structural shear force at the first-story level in x and y directions. 

Failure is defined for the system if any of these quantities exceeds its respective threshold.  

The failure thresholds are chosen to be, respectively, (a) 0.3% of the story height (4.04 m), 

(b) 0.45 m, which is comparable to the clearance adopted in many base-isolated buildings 

(Hall et al. 1995), (c) 0.6g, and (d) 0.2 of the structural weight (202,000 kN). The limit state 

function ( , )g φ θ  is defined as: 
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where z(t;φ,θ) corresponds to the (normalized) response vector for the system, .
∞

 to the 

largest magnitude component, and T to the duration of the seismic event in consideration. 

The controller design framework discussed here requires a probabilistic model for 

describing the stochastic input, i.e., the earthquake excitation. The model discussed in 

Section 2.4 is used. The suggestions by Somerville in (2.16) are used here to scale the 

characteristics of the near-fault pulse. The excitation model parameter vector θs consists of 

the seismological parameters (moment magnitude, M, and epicentral distance, r), the 

additional parameters for the near-fault pulse (phase angle, νp, and oscillatory character, γp), 

as well as two parameters that address the bi-directional characteristics of the ground 

motion. These parameters are (a) a reduction factor, An, for the fault-parallel component of 

the ground motion, and (b) the angle, δ, at which the ground motion shakes the structure. 

Note that the base isolated-structure is a torsionally asymmetric building and thus its 

dynamic performance needs to be evaluated under bi-directional loading. Since there is no 

well-defined method for modeling the characteristics of the fault-parallel component of 

near-fault ground motions using the stochastic method, an approximation based on 

engineering judgment is adopted. The same model is used for both fault parallel and fault 

normal components but a reduction factor is introduced for the fault parallel component. 

Also, the white-noise sequences that are used to generate the time histories for the two 

components are chosen to be different. This agrees with the observation in Jangid and 

Kelly (2001) that the two orthogonal components of near-fault motions have incoherent 

characteristics. 
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The structural properties in this study are set to their nominal values, i.e., no uncertainty is 

taken into account in the structural model.  The variability of future excitations is addressed 

by assigning a PDF to the uncertain seismological and ground motion model parameters.  

We consider only severe seismic events, so the uncertainty in M is modeled by the 

Gutenberg-Richter relationship in (2.14) truncated on the interval [Mmin, Mmax]=[6.5, 8], 

with seismicity factor b=loge(10), which is a typical value.  For the uncertainty in the event 

location, earthquakes are assumed to be equally likely to occur in a circular area of radius 

rmax=15 km centered at the structural site, leading to a triangular distribution for r on [0, 15] 

km and a uniform distribution for δ on [-π, π]. Figure 7.3 illustrates the seismological 

model for the site along with the resultant probability models for M, r and δ. The selection 

for rmax and Mmin was based on the observation that events at larger distances or smaller 

magnitude could rarely lead to failure of the system and thus have no significance for the 

controller design.   
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Figure 7.3: Seismological model for the site of the structure and resultant probability 

models 

The probability distribution for the velocity pulse characteristics are selected as uniform on    

[-π/2, π/2] for νp, and Gaussian with mean 1.8 and standard deviation 0.4 for γ.  The 
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uncertainty in the reduction factor for the fault parallel component of the ground motion is 

modeled by a uniform distribution on the range [0.6, 0.9], selected according to engineering 

judgment. Finally, a model prediction-error ε is assumed.  This error is taken to be 

Gaussian with mean zero and standard deviation 0.05.   

7.1.6 Controller design optimization 

The response of the base-isolated structure is evaluated through a computer-based 

simulation using the SIMULINK toolbox of MATLAB. Figure 7.4 presents a simple 

schematic. It was found that by modeling each nonlinear isolator separately the 

computational cost for evaluating the response of the structure was significant (because 

biaxial interaction through the dynamical model in Park et al. (1986) needs to be taken into 

account). In order to reduce the computational effort in the design stage, since many 

simulations of the structural performance are needed, a simplification of the model for the 

base isolators is assumed by grouping the 61 nonlinear bearings into 3 groups. Figure 

7.1(a) illustrates these three groups (dotted lines) and the location of the equivalent isolator 

for each of the groups. It was that found the response of this simplified model does not 

significantly differ from the response of the actual model because the rotational motion of 

the base, especially for the controlled structure, is not large; differences smaller than 1% for 

the base corner displacement for the uncontrolled structure were estimated. As such the 

simplified representation is considered adequate for the controller design stage. The model 

prediction error ε might be considered to partially address the discrepancies in response 

caused by the simplified model representation. The computer model used for the controller 

design incorporates additionally all control implementation characteristics discussed in 

Section 7.1.2  and the clipping action described in Section 7.1.4. 

Note that the simplified model is assumed only for the design stage; for the performance 

evaluation, the nonlinear isolators are distributed according to the benchmark problem 

definition.   
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Figure 7.4: Block diagram of simulated controlled system at design stage 

The optimization is finally performed using the SSO framework discussed earlier. Of 

particular interest are the optimal parameters for the weighting matrix R. The optimal 

values for these parameters were found to be  k1=3.16, k2=1.3, k3=2.2 10-4, leading to: 

3.16 3.16 4 3.16
, , ,1.3 2.2 10d x d y ddiag f f f θ

−⎡ ⎤= ⋅⎣ ⎦R     . (7.15) 

Thus the desired signals are prioritized according to a nonlinear, almost cubic, law. The 

importance of the forces on the two lateral directions is almost the same. A smaller 

weighting is given to the moments, but that is typically compensated for by the fact that the 

desirable moment is at least an order of magnitude larger than the desirable forces in the 

lateral directions. 

Passive network: An equivalent network is considered in which the electromechanical 

actuators are replaced by viscous dampers. In this case the actuators function as passive 

devices, i.e., no sensors and no control intelligence is needed. The viscosity of each of the 

dampers is optimized using the same reliability and performance setting as for the RFA 

network, assuming a maximum capacity that is the same as for the electromechanical 



 

 201

actuators, 2.0×106 kg/s.  For all of the dampers the optimal viscosity was found to be close 

to the maximum capacity. The maximum force for the dampers is set equal to that of the 

electromechanical actuators (2200 kN). This network of viscous dampers may be 

equivalently considered to correspond to the RFA network operating in passive mode. 

7.1.7 Performance evaluation  

Reliability performance: In the probabilistic setting considered in this study, the probability 

of failure of the base-isolated structure, given a severe seismic event, is 0.378 without the 

control system, 0.119 under the optimal design with the RFA network, and 0.125 under the 

optimal passive configuration. Table 7.2 shows additionally the individual probabilities of 

failure for each of the four groups of performance variables discussed in Section 7.1.5.    

  Table 7.2 Reliability-related statistics for various controller designs 

Failure probabilities for each group of response quantities 

Case PF(K*) Base 
displacement

Inter-story 
drift 

Absolute 
acceleration 

Structural 
shear at 1st 

story 
Uncontrolled 0.378 0.372 0.09 0.001 0.18 

RFA 0.119 0.104 0.034 0.009 0.072 
Passive 0.125 0.090 0.071 0.035 0.077 

 

The results indicate that the RFA network contributes significantly to increasing structural 

reliability under the criteria considered. The passive application provides an overall 

comparable performance, i.e., reliability level similar to the one of the RFA network, but 

this is established with a different balance between the various groups of performance 

variables. For both the uncontrolled structure and the structure equipped with an RFA 

network, the probability of failure of the base displacement is much greater, compared to 

the other response quantities. The RFA network application provides an overall balanced 

reduction of the relative failure probabilities for all performance variables, apart from 

absolute accelerations. This is not the case for the passive application though, for which the 
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performance enhancement is achieved by prioritization of the reduction of the base 

deformation. It is interesting to note that even though PF(K*) is smaller for the RFA 

network application, the probability of failure for the base displacement, which is the larger 

among the performance variables considered here, is smaller for the passive application.  

This trend is further examined in the next section. 

Performance under recorded earthquake excitations: The control design is further 

evaluated through the seven near-fault earthquake sample ground motions suggested in the 

benchmark problem statement. These ground motions are assumed to represent future 

earthquakes. The acceleration time-histories for all off them are shown in Figure 7.5.   

Table 7.3 and Table 7.4 show ten performance criteria for the seven earthquake records 

under consideration for either a regenerative network of actuators (RFA) or an equivalent 

network of passive viscous dampers (PAS). For each of these records, separate results are 

shown for the cases with the fault parallel to the x-axis (i.e., FP-x) and parallel to the y axis 

(i.e., FP-y). Nine evaluation criteria which represent measures of different RMS and 

maximum responses of the buildings are part of the Benchmark problem definition: 

evaluation criteria J1 and J2 represent the peak base shear at the isolation level and the 

structure shear force at the first story level; J3 is the peak base displacement, J4 is the peak 

inter-story drift, and J5 is the peak absolute floor acceleration; J7 and J8 are the RMS values 

of base displacement and interstory drift. In all of the above cases, the performance 

measures are normalized by the corresponding quantities in the uncontrolled structure. In 

contrast, J6 represents the force generated by all control devices normalized by the peak 

base shear in the controlled structure, and J9 is the total energy absorbed by all control 

devices normalized by the energy input to the controlled structure. In addition to these nine 

criteria, a tenth criterion J10 is included in the results for this study. This additional criterion 

is equal to the maximum corner drift for the controlled structure, normalized by the 

maximum for the uncontrolled case. Comparisons with J4 give an indication of the total 

reduction in the twisting of the building.  
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Figure 7.5: Time-histories for recorded earthquake records used in this study 
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Table 7.3 Performance evaluation criteria for recorded excitations; FX-x case 

Simulation case J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 
RFA 0.999 0.999 0.925 0.904 1.043 0.296 0.783 1.046 0.186 0.902
PAS 1.012 1.017 0.840 1.200 1.088 0.362 0.749 1.139 0.303 1.242Newhall 

           

RFA 0.879 0.906 0.762 0.911 1.098 0.314 0.647 0.996 0.295 0.817
PAS 0.930 0.909 0.733 0.965 1.212 0.371 0.625 1.062 0.393 0.972Sylmar 
           

RFA 0.973 1.047 0.683 1.049 1.054 0.168 0.861 1.026 0.077 1.013
PAS 1.062 1.052 0.792 1.125 1.107 0.234 0.869 1.041 0.133 1.108

El 
Centro 

           

RFA 1.009 0.987 0.942 0.983 1.265 0.271 0.811 1.144 0.256 1.000
PAS 1.152 1.118 0.866 1.142 1.508 0.407 0.786 1.223 0.398 1.272Rinaldi 

           

RFA 0.919 0.951 0.727 0.942 1.123 0.248 0.720 1.057 0.147 0.945
PAS 0.990 1.245 0.740 1.477 1.262 0.433 0.709 1.203 0.311 1.473Kobe 

           

RFA 0.786 0.787 0.667 0.800 0.799 0.220 0.675 0.861 0.296 0.789
PAS 0.747 0.769 0.686 0.806 0.869 0.261 0.620 0.844 0.332 0.784Jiji 

           

RFA 0.952 0.987 0.726 1.076 1.113 0.306 0.628 0.947 0.289 0.993
PAS 0.939 0.944 0.688 1.023 0.972 0.310 0.622 0.953 0.378 1.032Erzikan 

           

Table 7.4 Performance evaluation criteria for recorded excitations; FP-y case 

Simulation case J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 
RFA 0.970 0.903 0.950 0.919 1.102 0.289 0.857 1.035 0.183 0.887
PAS 0.998 0.997 0.862 1.250 1.282 0.305 0.739 1.153 0.294 1.214Newhall 

           

RFA 0.808 0.814 0.753 0.834 1.111 0.302 0.615 0.911 0.287 0.817
PAS 0.920 0.963 0.785 0.961 1.302 0.373 0.635 0.991 0.394 1.044Sylmar 

           

RFA 1.033 1.051 0.821 1.033 1.037 0.168 0.831 1.002 0.075 1.020
PAS 1.062 1.052 0.792 1.125 1.107 0.234 0.869 1.041 0.133 1.108

El 
Centro 

           

RFA 0.980 0.961 0.967 0.949 1.005 0.253 0.820 1.095 0.251 0.949
PAS 1.140 1.105 0.833 1.149 1.108 0.395 0.777 1.202 0.395 1.329Rinaldi 

           

RFA 0.886 0.906 0.635 1.008 1.026 0.215 0.727 1.049 0.140 1.025
PAS 0.997 1.127 0.668 1.275 1.185 0.427 0.748 1.190 0.309 1.338Kobe 

           

RFA 0.747 0.739 0.603 0.723 0.770 0.266 0.620 0.809 0.309 0.727
PAS 0.753 0.738 0.632 0.757 0.871 0.247 0.588 0.797 0.335 0.776Jiji 

           

RFA 0.942 0.908 0.672 0.907 1.099 0.303 0.578 0.874 0.287 0.906
PAS 0.936 0.901 0.596 0.944 0.955 0.314 0.516 0.919 0.386 0.961Erzikan 
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Before discussing these results in Table 7.3 and Table 7.4 in more detail, a comment about 

the characteristics and the anticipated efficiency of the implemented control scheme is 

warranted. In this study, the objective is the regulation of the performance of a base-

isolated structure by using a network of actuators that (i) has globally strictly dissipative 

capability and (ii) is placed at the base level. Engineering judgment and experience 

(Nagarajaiah and Narasimhan 2006; Nagarajaiah et al. 2006; Taflanidis et al. 2007b) 

indicate that it is easier to control the motion of the base rather than the vibration of the 

superstructure and that displacement response quantities can be more efficiently regulated 

compared to absolute accelerations. In particular, efficient suppression of both 

displacement and acceleration quantities in such a setting is recognized as a challenging 

task. The degree to which the different performance quantities are reduced depends, 

ultimately, on the characteristics of the control system (capabilities of actuators and control 

law) and the objectives set at the controller design stage. In the context of the design 

framework suggested in this study, the latter corresponds to dependence on the specific 

performance variables selected and, more importantly, on the failure threshold that is 

assigned to each of them, since these thresholds ultimately designate the relative 

importance of the different response quantities. 

For this reason, and to further distill the extensive amount of data in Table 7.3 and Table 

7.4  to a few general observations, it is instructive to examine the failure data for each 

earthquake; i.e., the normalized-by-the-failure-thresholds response for each group of 

performance variables. Because the performance metrics Ji in the Table 7.3 and Table 7.4 

are all normalized by the uncontrolled values for the structure, these performance variable 

ratios are difficult to determine from the information in these tables. Trends for these ratios 

are illustrated in Figure 7.6 which includes scatter plots for the failure data for the 

uncontrolled and controlled structure. For the uncontrolled structure, accelerations and base 

shear stay below their failure thresholds, apart from a couple of cases for the base shear 

(corresponding to the Jiji earthquake). Base-displacement and inter-story drifts are 

characterized by larger performance variable ratios, with the first one exhibiting greater 
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departure from the acceptable threshold. This pattern agrees with the behavior of the 

uncontrolled system reported in Table 7.2 and indicates that reduction of the displacement-

based performance quantities should have greater importance. 
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Figure 7.6: Scatter plots of threshold-normalized response for the four groups of 

performance variables for the 14 ground motion cases 
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Now the discussion returns to the data in the tables and focus on the RFA network 

performance. The maximum base deformation (J3) is characterized by the biggest reduction 

for all cases. This feature can be attributed to the goals set at the design stage and the 

characteristics of the control application. The improvement in performance for the inter-

story drift, base or structural shear is smaller but in only a few cases is there a degradation 

of performance, compared to the uncontrolled structure, reported (for example, for El 

Centro). A small increase of the accelerations of the structure occurs (J5), but this behavior 

is expected because of the characteristics of the control application (regenerative actuators 

and skyhook control). These trends are also depicted in the scatter diagrams of Figure 7.6. 

The RMS performance quantities (J7 and J8) follow similar patterns as their maximum 

response counterparts (J3 and J5, respectively). Comparison between J10 (corner drift) and 

J4 (drift at center of mass) gives some indication of the degree to which twisting of the 

superstructure has been suppressed by the control. The results are mixed but the underlying 

observation is that J10 is usually a bit smaller than J4, implying that the controller aims at 

suppressing the twisting of the superstructure more than the lateral drift.  

Overall, the performance obtained seems to be in good agreement with the objectives set at 

the design stage, taking into account the capabilities of the actuator network. This illustrates 

the efficiency of the simulation-based controller design scheme suggested. It also indicates 

that the probabilistic model adopted for the ground motion at the design stage can 

appropriately characterize future ground motions.  

Now comparison to the passive control case verifies the trend discussed previously.  The 

passive application provides similar reduction for the peak isolator deformation but at the 

same time it leads to significant performance deterioration for all other metrics. It is 

interesting to note that the average energy dissipated by the viscous dampers (J9) and the 

maximum control force (J6) is much larger in the passive application. The RFA network 

with skyhook control manages to establish more efficient regulation of the structural 

response with smaller control forces.         
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A further assessment of the overall performance can be established by considering the 

special characteristics of base-isolated buildings. These structures are constructed with a 

clearance gap at the base level, separating them from the surrounding environment. Under 

current design practice this gap is typically close to 40 cm and rarely exceeds 60 cm.  Base 

deformations that are larger than these thresholds have severe implications for the response 

of the superstructure (Hall et al. 1995), due to the impact of the base against the 

surrounding walls. Thus, regulation of the base deformation should be considered of 

greater importance. For the earthquakes considered here, apart from Jiji, the peak base 

displacement of the controlled structure is kept below 45 cm. For Jiji, the peak 

displacement was 71 cm for the RFA network and 75 cm for the passive application. The 

passive control application efficiently regulates the base deformation. Still, it leads to 

significant increase in peak inter-story drifts and peak absolute accelerations which can 

cause, respectively, (a) nonlinear deformations of the superstructure and (b) failure of the 

contents of the building.  It is a matter of debate as to whether these characteristics justify 

the extra cost associated with sensor and control intelligence for application of an RFA 

network. This discussion illustrates that comparisons of control systems based on socio-

economic criteria is warranted. In such a setting, the characteristics of the controlled 

system, in terms of number of actuators, sensor cost, force capacities and control law 

synthesis should be optimized using a cost-benefit analysis, as demonstrated in Section 6.2 

for viscous dampers. This, of course, requires appropriate quantification of fragility and 

cost information for the building considered, which is not available for the base-isolated 

benchmark structure.     

The design presented here can also be compared to the results by Nagarajaiah et al. (2006) 

who considered a network of eight semi-active actuators (MR-dampers) and used a 

Lyapunov-based nonlinear controller. Direct comparison is difficult because actuators with 

different characteristics are used here. Still, some interesting comments can be made: the 

total energy absorbed by the devices (J9) in this study is significantly smaller than the 

quantities reported in Nagarajaiah et al. (2006) and the maximum force (J6) is at 
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comparable levels; this indicates that the capabilities of the actuator network used here 

should be considered equivalent (or somewhat smaller) to the ones considered in 

Nagarajaiah et al. (2006). The performance established here is considerably improved for 

all criteria, apart from J3. For the maximum base deformation the performance here is 

better for some earthquakes (for example, Jiji and Sylmar) and worse for others (for 

example, El Centro). Thus, the control implementation in Nagarajaiah et al. (2006) simply 

strikes a different balance between the different performance quantities, prioritizing the 

reduction of the isolator deformations. Note, though, that, contrary to the design 

methodology discussed here, the approach adopted in Nagarajaiah et al (2006) cannot 

explicitly specify the importance of the different performance goals. Also, it is interesting 

to note that in Nagarajaiah et al. (2006) an increase of structural drifts was reported for 

almost all cases for the controlled structure. Such a degradation of performance was 

avoided here. This comparison further verifies the efficiency of the RFA network and the 

control design methodology. 

Finally some indicative time histories are included in Figure 7.7, Figure 7.8, and Figure 7.9. 

These time histories are presented only for illustrative purposes. They cover only a minimal 

portion of the earthquake excitations and structural responses considered in this study. 

Figure 7.7 shows the base displacement at the southeast corner for the uncontrolled 

structure and RFA-equipped structure. The performance improvement is obvious. Figure 

7.8 includes the displacement-force plot for the friction pendulum bearing at the same 

corner. The energy dissipation by the nonlinear isolator is evident. This dissipation is 

proportional to the area inscribed by the force-displacement relationship. Note that for the 

RFA-equipped structure the additional energy dissipation provided by the control 

application leads to reduction of the requirements for the passive protection system. The 

energy dissipation contributed by the nonlinear isolators is obviously smaller in this case. 

Finally, Figure 7.9 shows the desired and applied resultant control forces at the center of 

mass of the base. The inability of the RFA network to track the desired control forces at all 
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times is evident in this plot; the applied forces can be different from the desired ones. Thus 

the control implementation remains far from an ideal skyhook law.      

In general, the results discussed in this section illustrate significant reduction in important 

response quantities that shows the efficiency of both the controller design methodology and 

the capabilities of the regenerative force actuators. More detailed quantification of the 

uncertainty for the ground motion model parameters, which will be possible when a 

specific site is considered, can further improve this efficiency. The comparison to the 

performance of a passive viscous damping system showed that the RFA network yielded 

superior performance, in the sense that it reduced the overall probability of failure of the 

uncertain system and provides better trade-offs in the reductions of failure probabilities of 

the various individual failure modes. The response of the base-isolated structure under 

recorded near-fault ground motions verified these trends.  
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Figure 7.7: Base displacement at southeast corner for (a) Sylmar and (b) Jiji 

earthquakes acting in FP-y direction 
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Figure 7.8: Displacement-force plot for the friction pendulum isolator at southeast 

corner for (a) uncontrolled and (b) RFA equipped structure for the Sylmar 

earthquake acting in FP-y direction 
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Figure 7.9: Desired and feasible resultant forces at the center of mass of the base for 

the Sylmar earthquake acting in FP-y direction 

7.2 Controller Design for Offshore Platforms  

Under severe sea and wind conditions, offshore structures, such as jacket-type or tension 

leg platforms, may experience large response amplitudes that affect their serviceability and 

structural integrity. Active and passive control techniques have been considered for 
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reduction of the effects of such dynamic loadings (Nakamura et al. 1997; Ahmad and 

Ahmad 1999; Alves and Batista 1999; Suhardjo and Kareem 2001). Most of the studies in 

offshore structure control have adopted linear methodologies for the controller design, 

typically H2 control. The models, though, that are used for the prediction of the behavior of 

offshore structures typically involve various types of nonlinearities. In particular, 

nonlinearities may come from (a) modeling the dynamic response of the structure (for 

example, in the case of Tension Leg Platforms, as discussed in Angelides et al. (1982)) and 

also from (b) characterizing the excitation forces acting on the structure (for example, the 

spectrum for random sea environment or the wave particle kinematics (Goda 2000)). One 

of the main challenges in controller design for offshore applications has been the explicit 

consideration of these nonlinearities.  

Enhanced linearization techniques have been suggested for addressing the excitation 

nonlinearity when applying linear control methodologies (Suhardjo and Kareem 2001). 

This approach has the potential to adequately capture important nonlinear characteristics of 

the response; but for complex systems the application is usually not straightforward. The 

structural response nonlinearity, which is more important, is commonly ignored. The 

controlled system is usually designed based on a linear model that does not take into 

account nonlinear characteristics (Ahmad and Ahmad 1999; Alves and Batista 1999). Only 

the performance of the system is evaluated using, at a later stage, a nonlinear model 

(Ahmad and Ahmad 1999). This approach leads to a sub-optimal design in terms of the 

actual system performance.           

Another challenge related to offshore structure control has been the efficient description of 

the uncertainties involved in the system model. In maritime applications, like most other 

engineering applications, there are model properties that involve some level of uncertainty 

(for example the characteristics of the sea environment). This uncertainty can be quantified 

by a probabilistic description of the model parameters (Mathisen and Bitner-Gregersen 

1990). Such an approach logically incorporates the available knowledge about the system 
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into the model and allows for a robust-to-uncertainty design. Typically, though, a nominal 

model is adopted when designing the controlled system, using the most probable values for 

the model parameters. No uncertainty for these values is taken into account. 

The stochastic system design methodology proposed earlier addresses all these challenges.  

Simulation is used for evaluation of the model response at the controller design stage, 

which allows for explicitly taking into account nonlinear characteristics of the system. 

Uncertainty about the model parameters is treated by assigning probability density 

functions to them. The methodology is illustrated in an example involving the control of a 

Tension Leg Platform (TLP) in an uncertain sea environment. The control force is provided 

by tuned mass dampers placed inside the columns of the platform’s hull. Both passive and 

active applications are discussed. A realistic setting is considered for the latter, with 

actuator saturation, availability of only noisy acceleration measurements, and time delays 

in the control loop being assumed. Multiple nonlinearities are taken into account for the 

platform’s response and a probabilistic description is adopted for the system model. 

7.2.1 Model for Tension Leg Platform  

TLPs (Figure 7.10) are floating structures of semi-submersible type, moored by vertical 

tendons under initial pretension, To, imposed by excess buoyancy. Several TLPs have been 

used for oil exploration and drilling operations in deep waters. They can be modeled as a 

rigid body having six degrees of freedom, which includes three translations (surge, x, sway, 

y, and heave, z) and three rotations (roll, φ, pitch, θ, and yaw, ψ). The natural period in 

surge, sway and yaw are in the range 80–120 sec, and well above the range of dominant 

waves, which typically have periods 6–18 sec. On the other hand the heave, pitch, and roll 

periods are in the range 2–4 sec, and below the period of the exciting waves. Thus, forces at 

the dominant wave frequencies do not excite the TLP at its natural frequencies. Still, 

higher-order nonlinear forces at the sum and difference of the wave frequencies can 

produce significant resonant excitations at the TLP natural frequencies because of the small 

amount of damping available at these frequencies (Mekha et al. 1996). Passive and active 
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control techniques have been investigated for reducing the effects of these excitations 

(Ahmad and Ahmad 1999; Alves and Batista 1999).  
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Figure 7.10: Tension Leg Platform with degrees of freedom  

In this study, we assume that the direction of wave propagation coincides with one of the 

axes of symmetry of the platform (Figure 7.11). Thus, only 3 degrees of freedom are 

excited (surge, heave, pitch). Additionally, wave diffraction effects are neglected. 

Structural damping is also neglected because it can be considered small compared to the 

hydrodynamic damping (Mekha et al. 1996) and the damping provided by the control 

application. 

Various types of nonlinearities are present in the analysis of a TLP (Zeng et al. 2006). The 

influence of the change in the submerged TLP surface because of the wave passage and the 

coupling between the different degrees of freedom in evaluating the tendon stiffness are 

two of the more important ones. The TLP model assumed here incorporates the most 
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important nonlinearities. The formulation follows closely the one presented in Angelides et 

al. (1982) which considers large translations and large rotations for the TLP response. The 

main characteristics are briefly summarized next.   
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Figure 7.11: Tension Leg Platform model considered in the study  

Hydrodynamic and hydrostatic Forces: The hydrodynamic force of the submerged TLP 

portion is calculated using the Morrison equation. For a cylinder with diameter D, the force 

in the normal direction, per unit length dl, is given by:  

( )

( )

2

2

1 1( )
2 4

1           1    
4

w D wn sn wn sn w M wn

w M sn

df t DC U U U U dl D C U dl

D C U dl

ρ ρ π

ρ π

= − − +

− −
 (7.16) 

where ρw is the density of the sea water, wnU and wnU are the wave particle acceleration and 

velocity normal to the cylinder, snU  and snU  are the structural element normal acceleration 

and velocity,  CD is the drag coefficient, and CM is the inertia coefficient. Both coefficients 
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are assumed here to be same for columns and pontoons, constant along the water depth and 

frequency independent. The last term in (7.16) is referred to as the added-mass. For 

evaluation of the total hydrodynamic forces, the total length of the structural elements 

(columns and pontoons) is divided into equal length segments. The structural and wave 

kinematics are then calculated at the centroid of each segment. Based on these values, the 

hydrodynamic forces are calculated and then multiplied by the segment length to yield the 

forces at the center of the segment. These forces are then transferred to the center of gravity 

of the hull to obtain the resultant forces and moments. For the TLP columns the 

instantaneous submerged depth, accounting for wave passage and structural motion, is 

considered in the evaluation of the hydrodynamic forces. In addition, the hydrostatic 

pressures acting on the submerged part of the TLP geometry are integrated at each time 

instant up to the instantaneous free surface sea level to yield a vertical buoyancy force and 

moment at the center of gravity of the TLP. 

Tendon restoring forces: The tendon stiffness is derived with reference to the instantaneous 

position of the platform, i.e., displacements in all degrees of freedom are simultaneously 

considered. The tension on each tendon is:  

o
EAT ΔL T
L

= +  (7.17) 

where E is Young’s modulus, A is the cross-sectional area of the tendon, L is the initial 

length of the tendon, and ΔL is the instantaneous change in length. This force is applied 

along the instantaneous axial direction of the tendon and transformed into the center of 

gravity of the hull to obtain resultant forces and moments. This formulation introduces a 

nonlinear coupling between the different degrees of freedom.   
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7.2.2 Stochastic sea model 

Water particle kinematics are modeled according to Airy wave theory. The sea is modeled 

as a Gaussian process following a modified Pierson-Moskowitz (PM)-type spectrum for the 

free-surface elevation (Goda 2000): 

5 42

2

1( ) exp
8 2 2

s z
z z

H TS T Tω ωω
π π π π

− −⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (7.18) 

where ω is the frequency, Hs the significant wave height, and Tz the zero up-crossing 

period. To implement this spectrum, the free-surface wave elevation is represented in the 

time domain by a superposition of a large number of harmonic waves corresponding to 

different frequencies ωi: 

( ) cos( )
k

i i i i
i=1

η t A κ x ω t φ= − +∑  (7.19) 

( ) ( )2 2 ( )  atan /i i i i i i i iA α S ω ω , φ αδ δ= + =Δ  (7.20) 

where αi and δi are standard Gaussian variables and Δωi is the bandwidth that each 

harmonic represents. The number of component waves, k, in (7.19) is a compromise 

between realizing the Gaussian distribution for the surface elevation and establishing 

computational efficiency for the simulation of the model response. For determining the 

sequence {ωi}, the frequency range of interest is divided into sub-ranges and ωi is chosen 

as the middle of each one. The bandwidth Δωi equals the width of the respective sub-range. 

The frequencies ωi should be chosen so that (a) they do not constitute harmonics with each 

other, and (b) describe adequately the whole frequency range of significant excitation. The 

procedure described in Chandrasekaran and Jain (2002) is adopted here. Let [ωmin, ωmax] 
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denote the frequency range that is important and consider the division into k-1 sub-ranges 

by:   

1
2

' ' 'max min max
1 1 '

1

,  
1

i
k

ik
ω ω ωω ω ω

ω

−
−⎛ ⎞−

= = ⎜ ⎟− ⎝ ⎠
 (7.21) 

then select at random (following a uniform distribution), the dividing frequencies 
'' ''
1 1,..., κω ω − in each of these sub-ranges and set ''

0 minω ω=  and ''
maxκω ω= . This new sequence 

''{ }ω defines finally the sub-ranges for the selection of ωi : 

( )'' '' '' ''
1 1

1 ,   
2i i i i i iω ω ω ω ω ω− −= + = −Δ     . (7.22) 

This methodology leads to selection of uncorrelated frequencies ωi. Also, it efficiently 

describes, in a stochastic simulation setting, the energy content in the whole range of the 

spectrum that is considered important for the response, even for small number of 

component waves, k. This is established by the randomness in the selection of the 

frequencies ''
iω  in the different simulation runs. Note that alternative methods have been 

suggested for cases where k is large (for example, partitioning the spectrum into equal areas 

without employing any randomness, as discussed in Goda (2000)). In this application, the 

above methodology was preferred because k was selected “relatively” small. 

In (7.19), κi is the wave number, related to the frequency and the water depth, d, through 

the well-known dispersion relationship: 

2 tanh( )i i ig dω κ κ=  (7.23) 

The water particle kinematics are computed according to Airy linear wave theory with the 

modification discussed by Chakrabarti (1971) in order to incorporate the effect of variable 
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free surface sea level. The velocity of the water particles in the horizontal and vertical 

direction is given respectively by: 

( )
( )( )

cosh ( )
( ) cos( ( ) )

sinh ( )

k
i

i i d i i
i=1 i

s t
u t A x t t φ

d t
κ

ω κ ω
κ η

= − +
+∑  (7.24) 

( )
( )( )
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( ) cos( ( ) )

sinh ( )

k
i

i i d i i
i=1 i

s t
v t A x t t φ

d t
κ

ω κ ω
κ η

= − +
+∑  (7.25) 

where s(t) and xd(t) are the vertical and horizontal distance, respectively, at which the wave 

kinematics are evaluated (see Figure 7.11). The acceleration may be obtained by 

differentiation of these relationships.  

This model fully characterizes the excitation vector. In the context of Figure 2.3, the 

excitation model parameters are represented by the vector θs=[Hs, Tz, {αi}, {δi}, {ωi}]. The 

excitation vector q(t) is composed of the free surface elevation and the orthogonal 

components (horizontal and vertical) of the wave particles’ velocity and acceleration. The 

latter quantities are resolved to give wnU  and  wnU  in (7.16) according to the instantaneous 

rotation of the TLP. The free surface elevation is used for estimation of the submerged 

portion of the TLP hull.    

7.2.3 Control implementation for Tension Leg Platform 

Various devices have been proposed for control of offshore structures (for example, passive 

or active tuned mass dampers (TMD), active thrusters, active tendons, and pneumatic 

actuators) depending on the application characteristics (for example, properties of the 

motion that is controlled). For TLPs, of particular interest is the control of the coupled 

heave/pitch motion, since large displacements in the vertical direction may lead to 

unacceptable strain for both pre-stressed tendons and production risers. This can be 
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established by TMDs placed in all columns of the hull, as suggested in Alves and Batista 

(1999) and illustrated in Figure 7.11. Both passive and active application of TMDs is 

considered in this study. A simplified schematic is given in Figure 7.12.  We assume that 

the TMDs are allowed to vibrate in the vertical only direction. This control implementation 

allows for directly controlling the heave and pitch response of the structure. The surge 

response may only indirectly be influenced (through the coupling with the other two 

degrees of freedom).  
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Figure 7.12: Schematic of passive and active TMD implementation  

Passive TMD: A TMD consists of a mass attached to the primary structure through a spring 

and a dashpot. The motion of this mass counteracts the motion of the platform, thereby 

providing energy dissipation to the platform’s vibration (inertia force of the damper acting 

on the structure). The controller parameters K in this case consist of the spring and dashpot 

coefficient or, equivalently, the frequency ωd,i and the damping ratio ζd,i for each damper i, 

assuming that the mass md,i of the damper has been already selected (based on 

consideration about the maximum feasible or allowable additional mass). Excessive 

vibrations of the TMD can be prevented (due to space limitations) by appropriately placed 

stoppers.        
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Active TMD: The effectiveness of TMDs can be enhanced by application of active control 

forces through hydraulic actuators (Figure 7.12). In this study, only noisy acceleration 

measurements are assumed to be available for the active control implementation. Because 

of the nonlinear characteristics and the complexity of the system model, estimating its 

states (velocities and displacements) based on the acceleration measurements cannot be 

performed accurately (Anderson and Moore 2005) and is avoided here. Also, because of 

the presence of noise, double integration of the accelerations to obtain displacement 

measurements might be unstable and unreliable. Velocity or acceleration feedback are 

practically the only feasible choices for feedback control design. The latter is selected here, 

and the control force on each damper, ui, is designated as a feedback function of the heave 

and pitch filtered accelerations; the acceleration measurements are filtered by a low-pass 

filter in order to reduce the influence of the noise in the signal (May and Beck 1998; Chu et 

al. 2006).  The transfer function of the filter is: 

2

2 2( )
2

f
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f f f

H s
s s

ω
ζ ω ω

=
+ +
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where ζf = 2 / 2 and ωf should be selected higher than the natural frequencies of the 

system. If fz and fθ are the filtered accelerations, Ki the feedback gain for the ith damper, 

and i
kK its kth  element, then 

1 2

T Ti i i
i f f f fu z K K zθ θ⎡ ⎤ ⎡ ⎤⎡ ⎤= = ⎣ ⎦⎣ ⎦ ⎣ ⎦Κ     . (7.27) 

7.2.4 Equation of motion for controlled system 

The model for the dynamic response of the controlled system is finally: 
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where xd,i is the relative displacement of the ith mass damper, m is the total mass of the 

platform (including the TMDs), Iθ is the mass moment of inertia at the center of gravity of 

the hull (again including the TMDs),  Fr,j is the resultant restoring force (or moment in the 

center of mass of the hull) generated by the tendon system in degree of freedom j (j=x,y,θ), 

Fd,j is the similar quantity for the hydrodynamic forces, w is the weight of the structure, Fb 

is the buoyancy force, Mb is the moment created by that force (again calculated at the 

center of mass of the TLP), and li is the instantaneous horizontal position of damper i with 

respect to the center of gravity of the hull. In (7.28), the coupling between the TMD motion 

and the rotation of the platform is directly taken into account. This coupling was neglected 

in previous investigations (for example in Alves and Batista (1999)).  

Table 7.5 Details of TLP 

Column diameter (Dc) 18 m Pontoon diameter  (Dp) 12 m 

Radius of gyration (pitching  motion) 39 m Mass 40 kton 

Total pre-tension (To) 165 103 kN Structural damping 0% 

E of tendons 200  kN/cm2 Tendon diameter 0.3 m 

Water depth 640 m Draft (Dr) 33.5 m 

CD 1 CM 2 

Distance between columns (so) 77 m Column height (hc) 75 m 

Position of center of mass (hG) 38 m above keel Tendons per leg 3 
 

The characteristics of the platform considered in this study are shown in Table 7.5. The 

natural frequencies of the platform are: heave 3.16 sec, pitch 3.13 sec, and surge 117 sec. 
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Four mass dampers with individual mass equal to 0.5% of the hull mass are considered, 

one on each hull column. When considering the total apparent mass of the platform 

(structural mass+added mass up to mean sea level), this ratio drops to 0.3%. For the active 

control application, the actuators are modeled as ideal forcing systems (no dynamics) with 

maximum force capability of 500 kN (saturation of actuator forces). A time delay equal to 

5 ms is also assumed in the control loop. The maximum allowable displacement for the 

damper is set to 2 m and ωf  in (7.26) is equal to 8 rad/sec. 
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Figure 7.13: (a) PM spectrum and eigenfrequencies of TLP (arrows) and (b) a sample 

realization of η(t) 

7.2.5 Controller Design 

Model Uncertainty: The biggest sources of uncertainty in the TLP and excitation models 

are the characteristics of the PM spectrum, Hs and Tz. The joint distribution of Hs  and Tz 

has been discussed in numerous studies (for example, in Mathisen and Bitner-Gregersen 
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(1990)) and a variety of statistical descriptions have been suggested. In this study, we adopt 

a three-parameter marginal Weibull distribution for Hs: 

1

( ) exp
w w
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β β

β γ γ
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 (7.29) 

and a conditional log-normal for the zero up-crossing period, Tz. The parameters selected 

for the Weibull distribution are αw=1.41, βw=1.2, and γw=1, whereas the median, eμ, and 

logarithmic standard deviation, σ, for the log-normal are (Mathisen and Bitner-Gregersen 

1990): 

( )3
1 2 1 2 3exp( ) exp( ),  expa

s sa a H b b b Hμ σ= + +=  (7.30) 

where a1=1.22, a2=0.32, a3=0.52, b1=0.075, b2=0.04, and b3=-0.6. Figure 7.13(a) shows the 

PM spectrum for various Hs and Figure 7.13(b) shows a sample realization of the free 

surface elevation for Hs=9 m. In these figures, Tz is set to its conditional mean value.  

The uncertain model parameters, finally, correspond to the PM spectrum characteristics, Tz 

and Hs, and the stochastic sequences {αi}, {δi}, and {ωi}] used to a realize a sample time 

history for the sea state, so θ=[Hs, Tz, {αi}, {δi}, {ωi}]. 

Controller design: The platform reliability is adopted as the design objective. The 

controller optimization is performed under the framework described earlier, using nonlinear 

simulations. The time duration for each simulation run is set to Tt=10 min. The number of 

component waves, k, is set to 60 in order to reduce the computational time needed for each 

simulation run.  

The performance criteria considered for the controller design are the structural integrity of 

the risers, the yielding and snapping of the tendons, and the comfort of the crew. The 
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corresponding performance variables used are the maximum heave displacement, 

maximum and minimum dynamic stress of the tendons, and the root mean square 

acceleration in vertical and horizontal directions at the deck of the platform. The thresholds 

for each one are 0.25 m, 450 MPa (assumed yielding stress of steel), 0 (no compressive 

stress allowed), 0.15 g, and 0.07 g. The latter two quantities are adopted based on the 

survey by Stevens and Parson (2002). Note that under the initial pretension, the stress on 

the tendons is 195 MPa.  

Applying SSO, the design yielded the optimal passive damper parameters: period 3.1 sec 

and damping ratio 0.08 (same for all dampers because of symmetry). For the active case, 

the damper parameters for the active application were set fixed to the corresponding values 

from the passive case.  

7.2.6 Performance evaluation 

The evaluation of the controlled system is performed with respect to (a) reliability criteria 

(similar to the ones considered in the design stage) and (b) the response characteristics for 

12 different sea states. These sea states ultimately represent potential future excitations. 

They are simulated, here, according to the model presented earlier for four different 

significant wave heights selections; (i) Hs=12 m, (ii) Hs=9 m, (iii) Hs=6 m, and (iv) Hs=3 

m. For each Hs three different up-crossing periods are considered, corresponding to (a) the 

mean value and to values that are one standard deviation (b) higher or (c) lower than the 

mean value. These values are calculated according to the probabilistic model presented 

earlier, conditioned on the selection of Hs. 

The reliability is evaluated for three different cases, in terms of the minimum significant 

wave height considered, (i) Hs>1 m, (ii) Hs>4 m, and (iii) Hs>6 m. The first case 

corresponds to the nominal probabilistic description for the site (the one assumed in the 

controller design stage), but the latter two cases correspond to conditioning on moderate or 

significant excitation events (Hs is set higher than some threshold). The efficient Subset 
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Simulation algorithm (Au and Beck 2001b) was used for the reliability evaluations. The 

results are reported in Table 7.6. The control application significantly increases the 

reliability of the platform. Implementation of active control provides a considerable margin 

of improvement over the passive application. These comments are true for all excitation 

cases. Even for significant excitation events (Hs>6 m), the probability of failure of the 

controlled system is kept small.  

Table 7.6 Evaluation of control implementation under reliability criteria 

Estimated probability of failure 
Case 

No control Passive TMD Active TMD 

Hs>1 m 0.038 0.0017 0.0006 

Hs>4 m 0.121 0.0071 0.0024 

Hs>6 m 0.201 0.0188 0.0093 
 

Table 7.7 Evaluation of control implementation for simulated sea states  

  No control Passive  Active 

Max( |z| ) 0.35 m 0.27 m 0.23 m 

Max(|θ|) 0.0091 rad 0.0074 rad 0.0061 rad 

Max( stress ) 381 MPa 327 MPa 291 MPa 

Min( stress ) -1.18 MPa 50 MPa 82 MPa 

aRMSv 0.032 g 0.019 g 0.011 g (i)
H

s=
9,

  T
z=

9.
3 

aRMSh 0.054 g 0.035 g 0.028g 

Max( |z| ) 0.39 m 0.31 m 0.30 m 

Max(|θ|) 0.0101 rad 0.0083 rad 0.0079 rad 

Max( stress ) 404 MPa 336 MPa 312 MPa 

Min( stress ) -3.18 Mpa 47 MPa 43 MPa 

aRMSv 0.032 g 0.021 g 0.012 g (ii
)H

s=
9,

  T
z=

8.
5 

aRMSh 0.054 g 0.039 g 0.031 g 
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The results for the sea states are discussed next. The simulation of the response is 

performed over 10 min. The response quantities reported are the ones used for evaluation 

of the reliability performance in the controller design stage, plus the maximum pitch 

rotation. In Figure 7.8 some results are reported for two cases. For both of them the 

significant height is equal to Hs=9 m, but Tz is set (i) for the first case to its conditional 

mean value, Tz=9.3 sec, and (ii) for the second to a value one standard deviation lower, 

Tz=8.5 sec (this corresponds to excitation closer to resonance). aRMSv and aRMSh denote 

the RMS deck acceleration in the vertical and horizontal directions, respectively. Figure 

7.15 shows some comparative scatter diagrams of the response for all cases. Some 

indicative time histories are illustrated in Figure 7.14.  
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Figure 7.14: Sample time histories for heave displacement and tendon stress for 

simulated sea state with properties Hs=9 m, Tz=10.6 sec   
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Figure 7.15: Scatter diagrams of response for 12 simulated sea states 

The results further verify the effectiveness of the control application.  It is important to note 

that the dynamic strain of the uncontrolled system in some of the excitations cases becomes 

negative (Figure 7.15(b)).Under most quantifications of acceptable performance, i.e. even 

if one did not use the thresholds assumed in the controller design stage, such response may 

cause failure because it leads to snapping of the tendons. This unacceptable performance is 

eliminated in the TMD-equipped platform. This shows the effectiveness of the control 

application in protecting the integrity of the platform under severe weather conditions. 

Overall the response of the controlled system, as indicated in the scatter diagrams of Figure 

7.15, illustrates a significant improvement over the uncontrolled one. This holds for both 

the pitch and heave responses separately, as indicated in Figure 7.15(a), as well as for their 

coupled effect, which is represented by the tendon stress in Figure 7.15(b). Since the 
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average performance is easier to regulate than the extreme one, the improvement in terms 

of the RMS acceleration is even greater (compare Figure 7.15(c) to Figure 7.15(b) or 

Figure 7.15(a)).   

Finally, a comparison between the passive and active control implementations is warranted. 

In terms of both the reliability evaluation (Table 7.6) and the simulated sea states (Table 

7.7 and Figure 7.15), the active control application provides an improvement over the 

passive one. For the simulated sea states, this improvement is more evident for the RMS 

response (Figure 7.15(c)), for similar reasons to these explained above. The margin of 

improvement over the passive control application is of course smaller when compared to 

the margin between the “passive control” and “no control” cases. This is expected since the 

passively controlled system represents a system that is considerably enhanced over the 

uncontrolled one. Thus further improvement of its performance is more challenging. Note, 

also, that the setting for the active control application assumed here incorporates many 

practical constraints that reduce the control effectiveness. This is apparent from the results 

of Table 7.7. Recall that case (ii) represents excitation conditions closer to resonance. This 

leads to operation of the actively controlled system closer to its constraints in terms of both 

(a) actuator saturation and (b) allowable damper displacement, and consequently to some 

degradation of performance (the constraints are actually violated in this case). This is why a 

smaller improvement over the passive control applications appears for the extreme 

response quantities, when compared to case (i) of Table 7.7. Overall, the improvement in 

performance, in particular with respect to the system reliability, shows that the application 

of active control techniques should be considered as an attractive extension in control of 

Tension Leg Platforms when Tuned Mass Dampers are used. The fact that the setting 

considered for the active control implementation in this study takes into account most 

practical constraints and may be considered feasible, based on current actuator, sensor, and 

software capabilities, further supports this conclusion. 
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Ultimately, the results illustrate significant reduction in important response quantities for 

both (a) the integrity of the oil risers and the tendons of the platform, as well as (b) the 

comfort of the crew. This shows the efficiency of both the controller design methodology 

and the capabilities of the suggested control implementation for TLPs, especially if one 

considers that the total mass of the damper was kept to a feasible level. Both passive and 

active TMD implementations were considered. A realistic setting was considered for the 

control application: actuator saturation, availability of only noisy acceleration 

measurements, constraints in the maximum damper displacements, and time delay in the 

control loop were taken into account. For the active application, acceleration feedback was 

chosen, which is easy to implement and corresponds to a reliable controller structure 

selection. The active control case illustrated improvement over the passive one, which 

justifies further exploration of such techniques when considering control applications to 

TLPs. In future work, evaluation of the performance of the passively and actively 

controlled TLP based on socio-economic criteria—that is, life-cycle cost—is desirable to 

establish a direct cost-benefit comparison between the two types of control application.  
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CHAPTER  8  

Conclusions 

8.1 Summary and Main Contributions 

This thesis discusses the robust-to-uncertainties design of engineering systems when a 

probability logic approach is adopted for quantifying the partial knowledge about the 

characteristics of the system under consideration and its environment. This design 

methodology is called stochastic system design. This section summarizes all the chapters of 

the current study and emphasizes the main contributions. The latter are presented in bullet 

form. 

8.1.1 Chapter 2 

Chapter 2 outlined the stochastic system design problem. The system modeling in a 

stochastic setting was initially addressed; a probability-logic approach was demonstrated 

for incorporating the available knowledge about the system into its model. The 

performance quantification in this stochastic framework was then discussed; the design 

objective was expressed as a stochastic integral over the possible values for the model 

parameters. Some special attention was given to design problems that involve the system 

reliability as performance objective. Topics related to the application of the general 

stochastic system design methodology to the specific field of structural control were also 

addressed. The following topics constitute novel contributions in this chapter:  
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• For systems whose design has been traditionally interpreted in a deterministic framework, 

the potential extension of the deterministic performance quantifications to account for a 

probabilistic modeling characterization was discussed. Various approaches were 

suggested for such an extension. 

• For reliability-based design problems attention was given to the influence of the model 

prediction error when quantifying the system model performance. An equivalent 

formulation of the objective function (probability of failure) was derived that clearly 

illustrates this influence.  

•  A probabilistic model for characterizing the system excitation in earthquake engineering 

applications was developed. In contrast to previous research efforts the model discussed 

here efficiently describes both far-fault and near-fault characteristics of earthquake 

ground motions, and also establishes a direct link between the probabilistic seismic 

hazard of a site and future excitations. 

8.1.2 Chapter 3 

In Chapter 3, design problems were addressed that involve models for which the system 

performance can be analytically evaluated and the uncertain parameter vector is low 

dimensional. An efficient approximation for the stochastic integrals and the associated 

design optimization was presented.  

The focus was initially on the reliability-based design of linear controlled systems under 

stochastic stationary excitation. The novel contributions are: 

• Accurate analytical approximations were presented for all reliability performance 

measures. These approximations allowed for theoretical discussions on topics related to 

the characteristics of optimal reliability controllers and to the associated controller 

optimization procedure.  
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 •  For system with certain model parameters, the relationship of reliability-based design to 

minimum variance controller synthesis was examined in detail. The theoretical 

discussions and the examples presented showed that significant differences are expected 

between optimal reliability and optimal H2 controllers. Smaller differences were shown to 

exist between optimal reliability and optimal multi-objective H2 controllers. Still, it was 

demonstrated that these differences can be quite important, even for a system with simple 

dynamics and a scalar control law.  

•   For systems that involve model uncertainty, the influence of the time duration T on the 

optimal robust controller design was considered, and a probabilistic treatment for T was 

investigated. It was demonstrated that there is some sensitivity of the control system 

optimization to the time duration, but only small differences in controller design and 

respective performance were observed between deterministic and probabilistic treatments 

of the time duration.  

The influence of probabilistic model uncertainty on classical controller synthesis methods, 

such as H2 and multi-objective H2 designs, was also considered in this chapter. Two 

different approaches were presented for the extension of the deterministic performance 

quantification to a probabilistic one, the average robustness, and the reliability robustness. 

The novel contributions are:  

• The sensitivity of the performance objective around the optimal solution was examined in 

detail for the various design approaches and it was illustrated that it is particularly high 

when the design objective is the reliability robustness and the focus is on rare events, that 

is, where there are large thresholds for the acceptable system performance.  

• Controllers optimized by explicitly considering modeling uncertainties were 

demonstrated to yield considerable improvement in performance compared to controllers 

optimized using only a nominal model or the usual control robustness notion of worst-

case scenario.  
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• The examples considered in this chapter also examined the connection between the 

reliability and average robustness quantifications for the stochastic performance, as well 

as the influence on the design of the specific probability models adopted for quantifying 

the available knowledge. The results illustrated that if the focus of the design is on rare 

events, then there are important differences between the designs based on the reliability 

and the average robustness performance, and that a significant influence exists on the 

design characteristics of (a) the level of the uncertainty and (b) the specific PDFs selected 

for quantifying the missing information about the system model.  

Even though the methods discussed in Chapter 3 involve a challenging nonlinear 

optimization, the potential performance improvement, either in a reliability or general 

stochastic design setting, demonstrated in this study justify the additional computational 

cost that is involved in the design process and motivate further theoretical studies of this 

topic.  

8.1.3 Chapter 4  

The focus in Chapters 4, 5, 6 and 7 was shifted to design problems which might involve 

complex models for the system under consideration and its environment. The methods 

developed for studying these systems are general; specialized assumptions were avoided. 

To address the potential complexity in the model description, stochastic simulation was 

used for evaluating the system performance. In this context, the response of the system 

model can be also calculated using computer simulation. This simulation-based approach 

allows for explicit consideration of (a) nonlinearities in the models assumed for the system 

and its future excitation, and (b) complex failure modes. Chapters 4 and 5 addressed the 

challenging design optimization problem involved in such cases.  

• Chapter 4 presented a novel algorithm called Stochastic Subset Optimization (SSO), for 

efficiently exploring the sensitivity of the objective function to the design variables and 

iteratively identifying a subset of the original design space that has high plausibility of 
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containing the optimal design variables. Implementation issues for the algorithm were 

discussed in detail, including: appropriate advanced stochastic simulation algorithms for 

complex system models, essential normalization and coordinate transformation 

techniques for computational efficiency, as well as statistical properties along with 

stopping criteria for the iterative approach.  

SSO leads, ultimately, to an adaptive exploration of the design space for the optimal design 

configuration. A single stochastic analysis is used at each iteration; thus, the whole process 

is highly efficient. Also, the computational cost of SSO increases linearly with the 

dimension of the design variables, which makes it appropriate candidate for problems 

involving a large number of design variables. This algorithm represents one of the most 

important contributions of this work. 

The efficiency of SSO in accurately converging to the optimal solution depends on the 

sensitivity of the design problem. For problems that are characterized by small sensitivity 

around the optimal design choice, a combination of SSO with other stochastic optimization 

algorithms may be chosen for enhanced overall efficiency. 

8.1.4 Chapter 5  

Chapter 5 further discussed topics in stochastic optimization.  

• An efficient two-stage framework for the simulation-based stochastic optimization 

problem was discussed by combining SSO with another appropriate stochastic 

optimization algorithm. Characteristics of these algorithms, as well as to the combination 

of the two different stages for overall improved computational efficiency and accuracy of 

the optimization process, were discussed.  

Special attention was given to the following issues which represent significant new 

contributions to the field of stochastic optimization: 
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• Guidelines for the combination of SSO with the highly efficient Simultaneous 

Perturbation Stochastic Approximation (SPSA) algorithm were presented. These 

guidelines allow for better normalization of the search space and for automatic selection 

of step sizes, blocking rules and stopping criteria for SPSA.   

• Topics related to the adaptation of common random numbers in reliability-based design 

problems were discussed. A necessary transformation of the performance measure was 

suggested for establishing computational efficiency. This transformation is based on the 

equivalent formulation of the probability of failure when a model prediction error is 

assumed. 

• The implementation of importance sampling for the second stage of the optimization 

framework was also discussed. Guidelines for the development of importance sampling 

densities based on the information directly available from the SSO stage were presented. 

Special focus was given on cases that involve system models with uncertain parameter 

vectors of large dimension. 

8.1.5 Chapter 6 

Chapter 6 presented applications of the stochastic system design methodology to structural 

engineering applications. The first application considered the design of a base-isolation 

system for improving the reliability of a three-story shear structure against near-fault 

earthquakes. The efficiency of SSO and the suggested combined optimization framework 

was examined in detail in the context of this example.  

• It was demonstrated that SSO can efficiently identify a set that contains the optimal 

design variables, and also can improve the efficiency of SPSA when combined as in the 

suggested optimization framework. The implementation of importance sampling using 

the information for SSO was shown to be highly efficient. Use of SSO on its own was 

shown to lead to a design that is sub-optimal but close to the optimal one. Additionally, 

SSO was demonstrated to be able to describe the correlation between the design variables 

in terms of the contours for the objective function.  
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• The influence on the design of the model prediction error was also examined. This last 

study revealed an important sensitivity of the optimal system design to (a) our available 

knowledge about the system and excitation properties and (b) the utility function selected 

to quantify the model performance.  

The second application discussed the retrofitting of a four-story structure with viscous 

dampers. The expected lifetime cost was adopted as the design objective in this case.  

• Instead of approximating the damages from future earthquakes in terms of the reliability 

of the structure, as typically performed in previous design optimization studies, an 

accurate loss-estimation methodology was adopted for estimating this cost, using the 

nonlinear response of the structure under seismic excitation to estimate the damage at a 

more-detailed, component level. For the structural components a direct link was 

established between their fragility (in terms of damage states) and their strength and 

stiffness characteristics. 

• All important sources of uncertainty were considered in the formulation of the structural 

and excitation models, and a significant reduction of the expected life-cycle cost was 

demonstrated by the suggested retrofitting scheme. The decomposition of the total cost 

with respect to the various building components, as well as the distribution of this cost 

along the height of the structure, were presented. This analysis was then used to draw 

conclusions about the level of nonlinear behavior of the initial and retrofitted structure.  

Both base-isolation and retrofitted-structure examples show the following: If the 

representation for the system and excitation models is adequate and the uncertainty about 

the model properties is quantified properly, the proposed methodology leads to an efficient 

design that takes into account all of the important characteristics and can yield significant 

improvement in the system performance.  

• Additionally, the sensitivity of the stochastic performance to the various model 

parameters was examined. It was demonstrated that the excitation characteristics have 
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bigger influence on the system performance, compared to the structural model 

parameters. 

8.1.6 Chapter 7  

Finally, Chapter 7 discussed structural control applications of the suggested stochastic 

system design framework. This approach can be considered as an extension of the 

controller design discussed in Chapter 3 for linear systems, to applications that involve 

nonlinear system and excitation models. The first application discussed the Base-Isolated 

ASCE Structural Control Benchmark problem. The design of the controlled system for 

improvement of the structural reliability against near-fault earthquakes was adopted as the 

design objective. A Regenerative Force Actuation (RFA) network with eight actuators in 

each direction was suggested for this purpose. The novel contributions are: 

• Two important issues were addressed for the RFA network: (a) the redundancy of the 

actuator configuration with respect to the resultant control forces, and (b) the clipping of 

the control forces for optimal reliability performance when trying to satisfy the RFA 

network constraints.  

• Comparison to the performance of a passive viscous damping system was also discussed. 

It was also shown that the design with the RFA network yielded better overall 

performance and better trade-offs in the reductions of failure probabilities of the various 

individual failure modes. The marginal improvement was small, however. The response 

of the base-isolated structure under recorded near-fault ground motions verified these 

trends and the overall design efficiency.  

The second application discussed the protection of an off-shore Tension Leg Platform in an 

uncertain sea environment. Implementation of both passive and active tuned mass dampers 

was considered for realization of the control force on the structure. Significant performance 

improvement was established with respect to (a) the integrity of the oil risers and the 

tendons of the platform, as well as (b) the comfort of the crew.  
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• In both applications, all important nonlinearities of the system, excitation, and actuator 

models were explicitly accounted for when designing the controller. Most other popular  

structural control design approaches either (a) neglect these characteristics or (b) try to 

approximately consider them by designing the controller using linear methodologies and 

an iterative approach, that is by trial and error, to try to establish adequate performance 

for the nonlinear model.  

• The studies considered here also brought forward an important topic: that ultimately 

socio-economic criteria need to be implemented for evaluating the efficiency of structural 

control systems. The stochastic design framework discussed here has the potential to 

address this need, as long as proper monetary-oriented utility functions are developed for 

evaluating the model performance for each specific application. 

8.1.7 Conclusions 

In general, the suggested simulation-based stochastic system design approach developed in 

this study provides a powerful tool for robust-to-modeling uncertainty design while, at the 

same time, explicitly accounting for all important system characteristics, linear or 

nonlinear. The stochastic optimization framework developed for solving the associated 

design optimization problem was shown to be highly efficient. Especially the SSO 

algorithm was demonstrated to provide a computationally-efficient method for performing 

a global sensitivity analysis with respect to the design variables as well as the model 

parameters.   

8.2 Future Work 

There are a couple of avenues that constitute the next logical developments for the 

stochastic design approach discussed here. 

First of all, the stochastic optimization framework can be further improved. The criteria for 

quality of the SSO identification needs to be examined in more detail. The guidelines 
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suggested in this study, in terms of stopping criteria relevant to this quality, stem from 

personal experience. The development of a thorough theoretical basis for this aspect of 

SSO is warranted. Also the application of objective function approximation methods 

should be examined in more detail. The example presented in this study illustrated that the 

combination of SSO with objective function approximation methods has a lot of potential. 

Still, further research is needed in order to explore the robustness properties of this 

optimization approach and to improve its efficiency by providing guidelines for iterative 

convergence to the optimal solution.   

For linear controlled systems the analysis presented here for extending the ideas of 

probabilistic robustness to classical control methodologies was based on solving nonlinear 

optimization problems, which can be a challenging task when higher-order controllers are 

considered. A more thorough analytical approach is warranted, if possible, to allow for in-

depth theoretical comparisons and for extension of the design methodology to complex 

controller structures. Certain simplifications with respect to the probability models for the 

parametric uncertainty could be employed as a first step towards developing these 

approaches. 

In terms of structural engineering applications, more realistic models can be considered. 

For example, three-dimensional effects in the structural response and in the performance of 

the structural and non-structural building components can be taken into account. 

Additionally, more accurate methodologies can be used to evaluate the dynamic nonlinear 

response of the models adopted. Also, since the studies here illustrated that there is a higher 

sensitivity of the stochastic performance to the excitation characteristics than to the 

structural model properties, further attention is warranted for the probabilistic modeling of 

earthquake ground motions, especially near-fault ones. Additionally, a similar improved 

probabilistic modeling could be considered for other dynamic excitations, such as sea 

waves.     
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Also, in the structural control applications discussed in this study, the focus was on the 

reliability performance. In order to fully evaluate the benefits from control application and 

compare the different actuator configurations, a cost-benefit analysis needs to be 

developed. This analysis will lead to a clear characterization of the benefits coming from 

control implementation and will help to justify future control applications to civil 

engineering structures. 
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