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With the exponential improvement in integrated circuit
technology comes the problem of how to design systems
containing millions of devices., This thesis presents a new
look «at hierarchical design based on the Caltech structured

design methodology.

The hierarchy is separated into twoe parts: leaf cells,
containing no instances of other cells, and composition
cells, containing only instances of other cells., & leaf
cell can be implemented in many different representations.
A representation consists of a set of leaf cells and a

composition rule that builds correct higher level cells,

The gseparated hierarchy 18 svitable for wmathemotical
analysis by the vse of Curry’s theory of combinators, In
this form, o hierarchy 1i$ represented by a mathematicnl
operator that produces a digital system from the leaf
cells, The question of hierarchical equivalence is

examined,

Threws sumple composition rules, or algorithms, are
presented as examples., The SLAP system provides o geometry
composition rule that produces the mosk description of n
systam given the geometries of the leaf cells, Im analogy
te TYPEing in a programming language, two representations
that enforce a certain design style are discussed. The
first TYPE system guarantees signal inteqgrity., The second
TYPE system guarantees mutual exclusion between the sources

on a bus.,
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Chapter i

A Overview

4.4 The Problem --— 107 Transistors

VLL.SI technologies will be fabricoating chips contoining
100,000 +transistors by 4982 [Lattin 49791. With today’s
design technigques, it would toke around 60 man years 1o
design, and another 60 to debug, such a chip, In the
theoretical limits, VLSBT chips will contain near 40 wmillion
transistors, Without some method for reducing the
complexity of design, a 40 wmillion “transistor chip would

take somewhere near 6000 man years to design,

These numbefs clearly point out that there is o widening
gap between what VLSI technologies c¢an produce and what
system designers can design., As it is, the only chips that
approach the available complexity are memory chips, and
those only because of their extremely regulor poatterns.
With less regular systems, like microprocessors, designers

are having real difficulty just completing complex designs,

An analogy  to help visualize the complexity available from
VLSI technology has been proposed by Charles L. Seitz of



Caltech [8eitz 4197%9al. His analegy relates the basic
separation of features on silicon with the size of a
typical city block, Wires and buses in an integrated
circulit correspond to streets and highways of a city, Just
examining this analogy with scaling in mind produces some

astounding conclusions,

As  illustrated in Figure 1.1, the separation sizes of the
mid-1960%s, a typicol chip was about as complex as  the
street network of San Jose or Pasadena., Most people can
deal with a city of that size from wmemory. The technology
circa 1978 allowed chips whose complexity was near that of
the entire San Fransiscoe Ray Area or  that of the lLos
Angeles PBosin, With a {-micron technology, say arocund 198%,
chips will have the complexity comparable +to that of a
street network of urban density covering all of California
and Nevada! The vitimate physlical limits allow chips whose
complexity rivals a street network covering the entire
North American Continent, Some new approaches are clearly
needed in design methodology and design aids to attack this

serious design problem.
1.2 Finding a Solution

The Caltech "structured" design methodology [Mead 19791 is
an  approach to VST system design that directly attacks the
problems of complex designs, By introducing regularity
into a system, the design problem is reduced in complexity.
Even traditionally irregular controel structures have their

regular counterparts in ROM and PLA.

Hierarchical techniques have been the major toel used to

design complex sSYStems [Sivon 19621 Koestlaer 19671,
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HMierarchies nre vuvsed to help partition designs among the
design team, As in programming languages, common parts of

n design can be factored out and specified only once,

This thesis introduces a new look at hierarchical design in
the light of the structured design methodology. Ry
completely separating the "leaves" of the hierarchy frows
the rest of the tree, mothematical analysis of hierarchies

is possible,

When a design is completely separated into its two
constituents, the leaves and the hierarchical description,
then the role of "Composition rules” becomes more important
and  general, A composition rule is similar to the second
step to an inductive proof. Given a correct first case, a
theorem is truve if, assuming it is true for N, it can be
shown true for N+i. Composition rules are o wmethod Ffor
guaranteeing some  property at  the next level in .the
hierarchy, given that the hierarchy is bullt from parts

that satisfy the same property.

The separated  hierarchy becomes I} Yrepresentation
independent” language for specifying a design. Once the
hierarchy is extracted, it can be looked at as an  oeperator
that composes systems from primitives., In this sense, the
hierarchy is completely representation independent, - Given
that each primitive is described for thot representation,
and that there i a composition rule for the
representation, then the hierarchy can be "implemented”
using that representation. Since the hierarchy is
representation independent, consistency checking need only
be done on the leaves and the composition rules, This

approach I much less complex than the traditional



approaches to consistency checking,

In the context of this separated hierarchy, several
composition algorithms have been implemented., A method of
composing cells geometrically is developed that enhances
the adaptability and regularity of designs, The geometric
composition algorithm supports the structured design
methodology idea of butting cells and "floor plans®™, Two
typing systems to check for legal compositions have also
been implemented, with the types proepagating up the

hierarchy automatically,
1.3 In This Thesis,..

The new hierarchical structure is introduced in  Chapter 2,
In this chapter, the traditional gools of hierorchies are
examined in the light of +the Caltech structured design
methodology. The seporated hierarchy is developed as o . woy

of dealing with the hierarchy in a mathematical way.,

i mathematical wmodel for o hierarchically described system
e developed in Chapter 3. Using Curry’s  theory of
combinators, the hierarchy is completely separated from the
functions in  the leaves, Using this technique, the
hierarchy coan be examined in much the same way as

mathematical operators like the differentiation operator,

Chapters 4 and S present some algorithms consistent with
the separated hierarchy. Chapter 4 discusses an  algorithm
that combines geometrically defined leaves. The geometry
algorithm is consistent with the hierarchy in that the
"composition" cells introduce no extra geometpic

information, specifying only logical structure, Chapter 5



presents  two typing systems that are vsed to restrict the
legal compositions, The typing systems support the
assumptions used in Chapter 3 to develop the mathemotics of

hierarchies,

Chapter & states some of the conclusions from this research
and also discusses some of the unanswered questions and

fertile areas for further work.



Chapter 2

The Separated Hierarchy

Fefore we can do much analysis of hierarchles, Wwe need 1o
have a clean, simple model to analyze, Thisg chapter
attempts to present and justify the wmodel vused throughout

this thesis,

The hierarchy presented here is a fusion of twoe separate
ideas; the ciu%%lcul divide~and—-conguer type of
hierarchical design and the ‘“structured design” style as
developed at Caltech for V.81 system design. The classical
hierarchical design methodology merely proposes o kind of
MACT 0 expansion to toake advantage of similarities or
commonnlities in "o particular deslgn. The ‘“structured
design” -style From Caltech 1is an attempt to adapt to ths

pecvliar constraints of VLSI systems,

The resultant model turns out to be non—-VLBT specific, and
may have applications in  other areans where hileraorchical
design might be effective,

2.4 Goals of the Hierarchy

Hierarchical design is certainly not a new concept. With

the advent of assemblers and compilers that allow macros



and proecedures, programming has long been a discipline that
encourages the progressive breakdown of large, complex
problems, Similarly, almost all designers of complex
electronics systems have dealt with the "block diagram™ of
i system, each block of which represents a 1less complex

subsyatem,

(ne reason for the power of hierarchical design may be that
it is the syntheglis analeg to the inductive proof. An
inductive proof is a proof in two steps. An initial  case
of the theorem is identified and shown correct. Then the

theorem is assumed true for some general case, and  shown

true for the next cose, Many times this second step
results in assuming the theorem true for some  "n' and
proving it true for Mol Hierarchies resemble the

inductive proof when every two adjacent levels of  the
hierarchy are related by o simple rule, This rule is often

called o composition rule. A complete design system will

consist of many composition rules that cover the whole
range of design tasks. Each composition rule deals with
one specific property of the cell that is propagated up the

hierarchy,

During +the synthesis of o large system, the designer(s)
need to make abstractions at various "levels" of the design
in order to deal with a manageably small amount  of
information. Whether designing "top down" or "bottom up",
a system is usually broken into pleces whose atomlic units
are the subsystems, The designer will deal with an

abstraction of the subsystems he is vusing to design the

next larger system, not with the complete description of
the subsystem, In a "top down" fashion, the designer will

gspec ify an abstraction of what the subsystems will do  when



he designs then, The incomplete specification of
subsystems is the key that allews the designer to work
within one piece of a lorge system without worrying about

teo many other pieces,
The next few sections will enumerate some of the attributes
of o Tgood" design system, The effectiveness of

hierarchies will be examined in this light.

Hancdling Complexity

With +the number of features per chip doubling every two
years, complexity handling is clearly necessary in a  design
sYSTam, Any system that purports to aid in the design of
VL.L8T chips has to provide some method of orgoanizing and

specifying an enormously complex design,

The preblem with handling complexity is the well knouwn
Limitation of the human short—term memory., Most people
have o difficult time dealing with more than around 7  short
term  ideas [Miller 19%61. The design of a VLEI chip in one
fell swoop, i.e, with no levels of abstroction, requires
the consideration of well over 7 ideas at any time., The
constraints on a particular part of the layout can  come
from any other place on  the chip., Without superhuman
foresight or an almost incredible memory Ffor details and
interrelationships, no smoll group of people could
successfully complete a design much more complex than those

of today,

In hlerarchical design, each level of the design is as
complicated, or simple, as¢ the designer wants, With the

proper self-discipline, and knowledge of how to really use
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the hierarchy, the designer can keep the complexity of each
level down to o manageable level., The complexity is kept
down because the only design data needed are completely
local: what the local design problem is, what the available
building blocks are and an abstraction of how the building
blocks work., OFf course, reducing the complexity doesn’?t
come Ffor free. The designer has to be constantly on guard
against the natural urge to "patch"” in a fix that violaotes

the locality inherent in a hierarchy,

Partitioning

Even though o design system helps to handle the complexity
of the design problem, there is still a lot of work to be

done, The urge to pile mountalinsg of peocple on o project is
veunlly an irresistible one, especially with the "first
product” economics at Wwork now. However, it’s clear that
at  some point adding more people 1o a design ia

non—-productive and may, in fact, deloy the project IBrooks
19751,

Key to effectively uvtilizing many people to design one chip
is to limit their intercommunication reqguirements, In  this
way, eoch person is free to get on with his pilece of the

design without spending too much time mis-communicating.

With the proper exploitation of hierarchies, the interfaces
between separate design groups can be specifically and
carefully designed to reduce the amount of added
communication, Hierarchies are inherently full of places

where interfaces must be specified,.



Understanding

Hand in hand with the complexity arguments Comesy
understandability. After all, not only is it difficult  to
keep wmore than 7 things in your head during the design, it

is even more difficult to understand them later.

With the proper abstraoctions, or specifications, available
for each subsystem in a hierarchical design, “"reading”" a
design shovld be easier. The inclusion of some "redundant”
descriptions, the abstractions, may help ar ocutsider
understand the original intent behind a subsystem,

Sharing

Being able 1o design using a libropry of useful subsystems
hos always seemed like an jdyllic situation, The designer
need only sit at his desk with a "part catalog" from which
he picks the exact pieces he needs to implement "]
particular Ffunction, Indeed, this approach worked fairly
well in  the digital hordware world with the TTL part

catalogs,

(ne problem with libraries is that changes in  technology
tend to make a particular library obselete, requiring a
large effort to relimplement it. Making the libraries
technology independent has not been successful in the past

through various efficiency and generality problems.

Another limitation with libraries is the lack of complaete
characterization of the parts, No specification language
exists that is adequate 1o describe the guirks that tend to

be in any particular implementation, The effort involved



in understanding how to successfully use o subsystem must

be less than designing it from scratch,

The third limitation is that of generality or adaptability,
No designer will uvse a library full of huge numbers of wvery
specific parts. The effort invelved in searching for a
needed part would soon become more than the effort needed
to design it, Not only must a library function be general,
ite implementation must be adaptable, Adaptability  of a
part wmeans, for example, that the part must be able to
"Fit" independent of iLts environment., The more adoaptable o
part is, the easier it will be to wuse it since less

pre-preparation will need to be done,

In order for o hilerarchical design system to support
libraries, the specification/abstraction of a particulor
subsystem has to be complete enough to characterize without

being so0 complex as to be incomprehensible.

2.2 Structured Dasign Philasophy

The Caltech "structured design” methoedology was developed
to formalize the interaction between designing o digital
systam and laying out a VLET chip. Digital system design
has  been based on o coest function that minimized active
components, since the component cost wWwas the economic
limit, When designing o VLSBT system, one that is
inplemented on one or a few chips, o wWwhole new cost
function warises based on the limitations and advantoges of

the technology,

The nMDS technology was used as an example while developing

the structured daesign methodology. Whern designing  with
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nM0S, +the number and length of the intercoennection wires
are the limiting factor, and not the number of transistoers
involved. Generally speaking, the cost, whether area or
speed, of communicating s0Me piece of data is more than the
cost of any particular operation on the data, In fact, o
reasonable size estimate for o function is just the aren it
Wwill take to rovte the wires needed for dota and control

[Mead 1979 —-— Chapter 81,

The length of a wire generally determines how much energy
or how much time is needed to transmit a pilece of datn
along its length, Thus, designs with lots of long wires
will either be high power or slow, depending on what is
optimized, Since a design is  limited to the two
diméngions, the important optimization is the placement in
the plane based on the amount of intercommunication

[Sutherland 19771 [Mend 19791,

The recognition of these cost constraints in the technology
has led to o design style +that is commonly called the
Caltech structured design methodology. Chips designed in o
"grructured” way tend to be very regular, with many  similar
cells and very little "random” wiring., The classic example
is the OM chip set designed by Dave Johannsen and Coarver

Mend [Mead 19791,

Some of the relevant aspects of the structured design style
will be discussed in the next few sections, These hiecas
include floor planning with abutting cells, pileced buses,

nnd perpendicular wiring,
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Floor Plans

Floor plans are a major tooel used in the planning stoage of
many  chips, In the standard usage, areas for various
functions ore estimated by people with vast experience, and
these areas are laid down on  the chip in an ottempt to
‘minimize the random interconnection betwsen them, The
floor plan is used 1to get estimates on  the size nand

performance of the chip. The chip sizes can be uvsed to
‘help partition multi~chip systems., Floor plans are also
used to control the interactions Dbetween independent
designers, A example Floor plan, of the microcode

controller from the OM chip set, is shown in Figure 2.1,

In the structured design philosophy, floor planning 1is
carried further into the design. In particular, the random
interconnect is largely eliminagted by designing the cells
so that they Tabut® perfectly, i.e. the signals that need
to interconnect come out on the edges of the cells at the
same place on both cells. By designing the cells with the
same geometric interface, just placing instances of  the
cells next to each other will also wire them together

correctly,

This philosophy tends to make chips in which large numbers
of cells hove the same "pitch", 1i.e., +the same wWwidth or
height, These cells alse have certain interface signals ot
the same places so that they "plug" together with no extra
interconnect. Dato paths, as in the OM, begin to look more

like memory: very reqular patterns,

In addition to data paths, some control structures hnove

been developed +that have the Sme butting, regular
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structure: PLAs ROMs and RAMs all have this property,

Occasionally, some extro wiring is needed to  Interconnect
parts of a design, Often, VDD and GND froem variocus parts
need to be interconnected, or instances of cells need to  be
connected that are not matched geometrically. When that is

the case, o wWwiring cell is vsuvally vsed, The needed wires

make uwp the definition of a separate wiring cell, By
packaging them separately, the designer coan localize qgroups
of random wiring, making them relatively independent and

easy to modify,

Included Busey

When drawing the logical block diagram of a system, one
tends  to draw boxes labeled REGISTER and ADDER and hook
them up by drawing lines representing a whole bus between
them, This simple drawing device represented very nicely
what was going on with wire~wrap, stitch weld, and printed
circuit technologies. In particular, the emphasis was on
the boxes and pot on the Wwires. They were intentionally

de—-emphasized in the notation,

In some design styles, the logical drowing notation seems
to have been embraced whole hog. These design styles tend
to hove functional blocks interconnected by buses, using
quite o bit of area for interconnect. Examples are the
8680 [Intel 19741, the Z8000 [Zileg 49781, and Standard
Cells [Persky 19761,

Often, the functional blocks tap signals off the bus  and
then wmust communicate thoese signals within themselves,  The

gtructured design style recognizes this and proposes  that
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the buses be run throvah rather than aroeynd the Functional

blocks, The difference between these two styles is
illustrated in Figure 2.2. Notice that iF the thres
functions are designed to aobut, there is no random

interconnect at all. Including the buses in the functiong
is even likely to save area, since the bus is no longaer

tapped and extended.,

Incidental Compulation

One effect of expensive communication is the phenomenon of
incidental computation. Most of the effort in structured
design is spent on  the communication flow, Once the
communication plan of an algorithm is designed, Filling in
the operations is mostly a matter of throwing in a few
troansistors between passing wires., The real trick Ls  in
designing an algorithm that proevides all the data in the

same location ready to be combined.

The classic example is  the barrel shifter in the O0M data
path, This Ffunction requires 32 input bits, a shift
censtant, and p%ﬁducaﬁ i6 output bits. The convenient way
to bring in the shift constant is a 1 of N code on ib
wires, When all of these wWires are brought into
cenjunction, with the 32 input linesg brought in
herizontally and over sections of 46 verticol wires, the 16
shift lines brought in vertically and run diagonally, and
the 46 output lines running horizontally, it is simply o
matter of putting in a transistor between a vertical input
wire and a horizontal output wire controlled by a diagonal
shift wire, The entire array has NE3 transistors in  it,
which fit completely underneath the wires needed 1o nmove

the data and contrel. A transistor diagram of a 4-by-4
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version of this barrel shifter is shown in Figure 2.3,
A key observation of structured design is  that efficient
vse of the silicon comes Ffrom proper analysis  of the

communication of an algorithm,

2.3 Separating Qut the Hierarchy

This section describes an extreme form of hilerarchy thot
will be used throughout this thesis, The structured design
style suggests, through the wiring cell “technique, that o
chip design is a wmosaic of instances of cells, with no

extra Wwires or extraneocus deometric information invoelwved,

The extreme form of this technigue is to complaetely
separate the cell instance  level  of design  from the
Wwire/polygon level of design. This results  in  the

gepoaraoted hierarchy.

The extreme hierarchy will separate completely the leaf

cells of the hlierarchy from the composition cells, A leaf

cell e  the atomic wuwnit, having no further internal
structure, Composition cells contain only instoances of
cells interconnected, or composed, in some manner. Leaf
cells can be instanced at any level in the hierarchy, even
from the topmost cell, Only leaf cells have any "real” dotn

in them,

Leat Cells

A leaf cell might be as simple as a single transister or
even a section of wire, or it may be as complex as an
entire PLA or multiplier. Leaf cells dre only isportant

for their function, not For their implementation. The
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design of ledf cells is much better understood than is  the

design of large systems,

Leaf cells represent the busic semantic units of a design,
They are the vocabulary the designer uses to express the
function of the whole system, Alternatively, the leaf
cells can be looked on as the initial cases of an inductive
preof, Being the basic elements that make up the design,
how the leaf cells are implemented is somewhat flexible,
As will be discussed later, the ability +to bhave multiple
implementations of the leaves of a design has repercussions

in consistency checking.

A leaf cell in o mask layout syvstem that adhered to this
hierarchicol structure might contaln any combination of
rectangles, polygons, wires, or- any  other geometric
structure, However, 11 may not contain instances of  other
cells,

Compasition Cells

Composition cells specify how instances of other cells are
interconnected. Any kind of cell tun be instanced, whather
leaf or tcompoesition, and both kinds of cell can be
intermixed within one composition cell, Interconnections
hetween instances are heavily restricted, Specifically,
the interconnection mechonism must not, itself, introeduce

any new functionality to the composition cell,

Composition cells are inherently implementation
independent., By allowing only instances of cells and their
(Ffunctionless) interconnection, the composition cell c¢onnot

specify anything that depends on the implementation of the



leaves . If the leaf cells are the initial case of an
inductive proof, then compoesition cells represent the

general case,

In contrast, the wmechanism that interconnects instances
without introducing new Ffunctlionality igs implementation
dependent, While the mechanism is not allowed to introduce
any implementation “Mﬂterial", polygons for example, the
concept of "connection" wvaries from implementoation to
implementation,. For geometry, L.e, sk layout,
interconnection between instances is accomplished by the
intersection of two layout fentures (see Chapter % for wmore
details on geometry interconnection), The interconnegtion
mechanism 1w the annlog of the induction step in  an
inductive proof. The intercoennection mechaniss will be

termed a composition rule or composition aldorithm.

an Ohgservation

Composition cells are actually a representation independent
design notation. Independent of how the leaf cells are
implemented, if ‘they are composed as specified in the
composition cells in a hierarchy, they will perform the
same  function, Representation iIndependence hinges on

composition rules introducing no new fupctionality,

Given a description of a hierarchy, implementations for the
leaf cells, and a composition rule, one could, in
principle, produce a working system in that implementation
domain, Given the hlerarchical description for a system,
many functionally identical implementations of it could be
produced gliven only two things: an implementation of each

leaf cell function and the composition rule for that type
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of implementation,. an illustration eof the uvse of this
organization is the production of +the chip layvout and
simulator input From the same description. The functions
of these two representations would be guaranteed ldentical
IF the leaf cells were described consistently for each AND

the twoe composition rules were correct,

A pleasing conclusion is that consistency checking reduces
te the problem of checking the leaf c¢ells, wWwhich can  be
amortized over all designs, and verifying only ane rule,
the composition rule. Notice that, with a reasonably large
set of predefined cells and a compoesition rule for each

implementation, o design that behaves identically in all

It shoulcd be noted that an assumption has been made  thot
nll implementations will fit in  the same hierarchy,
Classic design automation tools hove generdally oassumed  the
opposite, that different representatlons of a design will
haove different hierarchical breakdowns, Allowing thess
different hierarchies makes consistency checking o knotty
problem. Not only are there o large number of different
representations to  keep consistent, but each has its own

hierarchical breakdown.

s an example, consider the difference betwaen the
"logical” and "physical” hierarchies, Many people would
like to have the logical description of thelr chip be in a
register transfer notation, The physical implementation of
this same function might be a bit slice, The two
hierarchies are just plain different, since the logical
hierdarchy is split by function first, then by bit while the

physical one is by bit first, then by function,



—2 3

If the leaves of the two hierarchies end up being the same,
s in the shove example, then consistency between the two
implementations reduces to proving the two hierarchies
identical and then using our original consistency checks,
With some mathematics and cleverness, we may even be able
to do the hierarchy equality check easily. However, if the
leaves are different, and one implementation ends uwp with
logic gates and the other with transistors, then
consistency checking hinges on being able to describe the

semantics of the leaves, a problem that is still unsolved,

Relating Back

The separated hierarchy certainly has the potential  for
satisfying all of +the goals from section 2.4, PReing o
apecial case of the hilerarchy, where cells above the laaves
only compose, the separated hierarchy has the same benefits
as hierarchies in genaeral: complexity reduction,

partitioning, sharability, and understandability.

Complexity reduction in each c¢ell in  the hierorchy is
enhanced with the separated hierarchy., In the leaf cells,
only the functien that is being implemented neead be
considered since composition with other Ffunctions is
handled by the composition rules, Composition cells can
contain as wmuch or a4 little complexity as desired. The
data abstraction properties that are gssantinl for
composition rules alsoe reduce the amount of informatioen
needaed from other cells, This reduces the degree of

interdependence between cells,



The other three properties, partitioning,
vnderstandability, and sharability, describe the separated
hierarchy os well, Partitioning is enhanced by the
functional abstractioen properties that come along with the
composition rules, Similarly, understandability is
enhanced because there ls less information required within
a level of the hierarchy, L.ibraries depend on several
properties, The functional abstraction enhances the
ability of o designer to plck the appropriate library
funcition, However, cells wmust be adaptable 1o be really
sharable., #As will be shown later, the generality that is
needed to wmake composition rules work alsoe enhances the

adaptability of cells,

The separated hierarchy gupports the key concept of the
Cnltech structured design methodology in  that it stresses
the communication betwean cells, rother than the
coMputations. Composition cells really define the

communicotion regquirements between instances,

The geometric aspects of the structured design methodology
are nlso well supported by the separated hierarchy., The
concept of butting cells and floor plans is almost directly
represented in  the hierarchy through the lack of physical
interconnection between instances of @ composition cell,
Since the logical interconnections cannoet be represented by
anything thot adds some function, the superposition of
connectors is o good wWway to implement that constraint,
More detail on a geometry composition rule is developed in

Chapter 4.



Chapter 3

The Mathematics of Hierarchies

The separated hierarchy developed in Chapter 2 lends itself
te wmathematical analysis, The ability to reason precisely
mbout hierarchical designg Wwill become wmore IMmportant os
complexity increases, For that reason, this chapter is

cdevoted to discussing ways of modeling hierarchies,

In the first section, a Ffunctional wmethod for moedeling
digital systems will be discussed and related 1o the leaf
cells of a hierarchy, By staying with a functional
netation, the theory of Combinatory Logic [Curry 419581 is

available to help in analysis,

Using Combinatory Logic, composition cells are wmodeled and
separated from the leaf cells, After separation, the
hWierarchy i4s seen to behnave like a wmathematical operator.
Some egxamples are given to help clarify the use of

combinators,

The important question of eqguivalence between hierarchies
is examined in some detail in Section 3.3, Establishing
equivalence between two hierarchies will allow important

censistency checking to be daone,
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The multiple-writer bus is a particularly +troublesome
strvcture for any functional wmodel of o digital systew,
Section 3.4 discusses a possible wmodel for buses that

allows the "pieced" buses common in structured designs,
3.4 Functions, State, and Combinators

This section discusses a functional method for describing
sYPstems with internal stote, Since this functional
netation deals with digital systems having internal state,
it can be wuvsed to describe any node in a hierarchy. The
functional notation used is based on a precise mathematical
base that inherits a large body of theory, One particular
branch of functionnl analysis is presented that will be

used to describe hierarchies.

Throughout thig section, the lambda calculus [Church 1944
will be uvsed as a functional notation, The lambdn calculus
is o convenient notation for expressing funcrional lideas

because Lt is based on a notion of functional abstraction

[Curry 4998 -- Chapter 31, éAlso, lambda calcvlus is the
basis for the theory of combinaters that will be uvsed to

model hierarchies.

The lambda calculus provides o method for modeling systems
having no internal state, The result of a functioen can
only depend on constants and input arguments, In  order to
model the behavior of a wmemory cell, for instance, Soms
modification is required, A system containing internal
state can be represented as a function that is history

dependent, i.e., the output of a memory cell depends on when



it wis last written,

One method for dealing with history dependent functions,
like wmemory cells, is to make the inputs include their
whole history. By defining functions that operate on slate
sequences, rather than single valvued inputs, memory cells

and other systems wWwith internal state can be modeled,

A state sequence is g possibly infinlte sequence of values
that represent the entire history of that input or output,
A sequence represents an  event sequence, The "sequence
step” could represent the basic clock cycle of a
synchronous systam, where succeeding elements in  the
sequence represent the valuve during syccessive clock
periods, In a similar way, the elements in a sequence
might represent successive states in o self-timed system
[Seitz 19791 +that had no basic clock., Whether there is a
constant length of time represented by each element in 0
sequence or not, the important characteristic is that a

state history is representad, not a time history,

Two examples of functionsg over state sequences are
1llustrated in Figure 3.1, The top figure represents a
2-input  AND gate, Having no internal state, the expression

for its output sequence need refer only to the "current”
inputs, The output sequence elements can be generated by

the following sequence generator:

0. = da. AND b.
i i

Shown in the lower half of Figure 3.4 1is one bit of o
typicnal storage register., The output of +the storage
register should be the same as the input when w was lost a

e, The time bistory of the register might look something
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like the following sequence.

X ={ ,., 08100141 500414580 ... 3
W = ,,., 00014 006001400 ...
o = ,,.. 4441 £ 0000©O015% 4% .., 1}
In the absence of a Twrite command”, a "i" in the w

sequence, the output sequence remalins unchanged in time,
The ocutput sequence value changes to the previous value of
the input sequence during the sequence step after w is o §.

A sequence generator for the storage register ig:

=4

0 IF Wi

i

THEN x.
-4

_—
ELSE 0y
Again, the sequence steps could represent the clock cycle
in o asynchronous system, as in the OM processoer, or they
could directly represent the sequencing of a self timed

systaem,

Sequences are not a terribly natural notation, In
particvlar it wobuld seem more natural to have the internal
state of the cell be explicitly called out and brought in
as an extra input, However, bringing out the internal
state as a feedback term introduces some unnecessary
information, namely the exact form of the internal state,
in the notation, With state sequences, nothing need be

known about the internal structure. [Nerode 19581

Leaf functions in the separated hierarchy represent the
primitive functions for a given system. As such, they need
net be described wmore Ffully., In order to analyze what o
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particular digital system does, the semantics of its leaf,
or primitive, functions must be precisely defined,
However, this thesis is concerned more with modeling the

composition, rather than the system,

For the purposes of analyzing the hierarchy, the functions
of the leaf cells need not be precisely defined., As will
be seen later, the separation of leaves and composition
implies that analysis eof the composition cells does not
depend on the leaf functions, S8Since no knowledge of the
leaf cell functions will be required, expressing them
precisely will not be needed. All that need be goid ig
that leaf Ffunctions that map state sequences into state
sequences dre sufficiently powerful to represent the lenf
cells wused in VLST design, by virtue of their ability to

model internal state,

Combinntors

Combinatory logic [Curry 49581 deals with operators that
perforn wmappings on  the Ffunction space, i.e. opernators
whose result is o function, The theoery is  based on  the
lambda calculus and is equally powerful, The operators
that map from function space to function space can all  be

expressed in terms of two primitive operators.,

In this section combinators will be introduced and related
to wseveral common functional notations. Starting with a
garden variety functional notation, the lambda calculus
will be introduced. The same function will alse be written
in ALGOL to illustrate different types of "ywariable
binding." Finally, combinaters will be introduced and

contrasted with the lambdn calculus,
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Combinatery 1logic is a notation that is equivalent te the
lambda calculus., The two notations are equal in power,
differing only in how "variables” are "bound." The lambda
calculus is a formal notation that deals with the "binding"
of wvariables into expressions, Take, for example, the

guadratic function:
. 2
Fix) = x +2x+4

The lambda calculus version of this function could be

Written as

()
F = AL xTHRxHE

This notation makes explicit the declarations of variables
veed to define the function, The variables are declared
between the lambda and the dot, with the expression
defining the function following the dot, (This syntax is
net the only one vsed for lambda calculus expressions, but
it is the one that will be uvsed uniformly throughout this
thesis,) The general form for a lambdo calcuvlus function

might be written as follows,
{functiony 1= ") " Avarjiables? "." {expression’

Within the expression, further occurances of a declared
variable, like "x", are bound to the same value. Thus,
invoking the function F with wvalue x=-3 wWwill c¢ouse the

following bindings to be made:

”
CAX . x“42x44) (-3
el
(=317 +2(~3)+4
4

F(-3)

it

Variables are not restricted to numerical values and can

even represent o lambda calculus function, The LISP



programming lanquage is based on a notation of this kind

[McCarthy 19651, The binding schemes in a programming
language like ALGOL [Naur 19631 are very similar te the
lambda calculus schemes, Aan ALGOL procedure 1o calgulate

the function F might be written as:

renl procedure F(x)3; real x;
Fi= xX¥2 + 2%x + 4,

When this procedure is invoked, the actual wvalue of the
parameter % i% substitued wherever the formal variable x is

used,

Combinatory 1logic takes a different approach to variable
binding, In particular, the use of combinaters eliminates
the concept of variables altegether, The implicit binding
process represented by the declaration of wvarlables in «a
lambda expression is reploced by an explicit functional
description of the binding in combinatory logic.
Combinators rely on the concept of currying and on Some

simple primitive functions te perform the binding function,

Currying is a wmethod of expressing functions of several
variables in terms of o gseries of functions of ong
varinble, each of which returns o new function as its
value., To illustrate this concept, consider the addition
function, ADD(x,y), As it stands, the additien function
requires twWwo numeric arguments and returns  a numer ic

result. Equivalently, the addition could be defined as

[

plus x vy X+y

The plus operator is defined to take an argument, say X,

and return another function that adds "x“ to its argument,

y in this case. Thus the plece of equation "plus 2" has a



perfectly wvalid medaning: it is the function that adds 2 to
things, (Expressions in c¢ombinatory logic are left
associative, l.e, they are read from left to right, Thus
the expression "plus x y" is actually read as  "((plus x)
Tyt The function "plus" is a curried version of the

addition operator.

By  the introduction of +two operators, the full power of
lambdea aalmulus variable binding is gvailable in n
combinatory loglc expression, These two operators are §
and K, and can be described in lambda calculus as follows,

Sxyz i)xyz.xz(yz)
Keg = Axy.x

Several things need to be said about these two equations,
Firat, this seems to be a rather mixed notation with
curried functions, or combinators, on the left side and a
lambda  notation on the right side, It turns out that since
the two notations, lambda calculus and combinatory logic,
are equivalent, they can be expressed in terms of egach
other, In fact, the two notations can be combined in  the
same expression,’ The examples discussed in this thesis
will be introduced in a lambda calculus form, and then
gradually transformed into a combinatory legic form. The
transformation, as illustrated in section 3.2, congists of
introducing combinators inte a lambda calculus expression
until all of the varigbles are moved to  the right end in
the same order as in the declaration. The residve, that
between the dot and the variables plled wup at the right

end, can be removed and dealt with as a combinator,

The two primitive combinators defined above are enough to

provide +the full power of lambda calculus binding. By
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judicious use of the & operater, arguments can be copled
and  functions can  be composed. The K operator is used to

rfemMmove d&pendence on an argument,

In o sense, these two operators can be viewed as merely
massaging the text description of the arguments. Ne lther
the & nor  the K operator actually performs any arithmetic
function, it merely rearranges the order and composition of
other functions, 8 and K represent the essence of

combination and composition,

While all combinators can be expressed in terms of & and K,

there are some other convenient operators, as defined

helow,
1 = lx.x
= HKK
& = 1 xyz,x(yz)
= GKEK
¢ = ) XYz, %7y

= S(EBES) (KK
= GLCBCKEIKI(SCKBIKIS)Y (KK

The T operator is the identity. The B operator is useful
for moving wvariables and functions out of parenthesis. It

.

s a form of primitive association, The £ operater

performs a primitive permutation on its arguments,

As you can see, combinators can be wvery long and tedious
when expressed in § and K operators. This is alleviated
very little by the addition of I, B, and C. The combinator
nmetation is not meant to be a programming language for

expressing composition, It is instead a Fformol tool  thet
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can be uvsed to put composition on a more precise footing,

3.2 Modeling Hierarchy

The hierarchy as described in Chapter 2 wmatches with the
combinator notation rather nicely., Combinaters were meant
to compose functions into other functlions, As  such, they
should be a convenient notation for use in describing the
essence of a hierarchy, composition, Some exnamples
illustrate the process of separating the hierarchy from the

leaf functions,

The Hierarchy as Combinator

A digital system designed consistently with the separated
hierarchy of Chapter 2 haos twoe kinds of cells: leaf cells
and  composition cells, As  discussed in the previous
section, characterizing composition cells can proceed quite
independently from the functions performed in the leaves,
The sgeparation between leaf and composition cells is what

allows this characterization,

The combinatory logic discussed in the previous section
seems to describe nicely what happens In a composition
cell, Remember that composition cells are not allowed
functional interconnects; the act of composition is puraly
that  of ddentifying which outputs plug into which inputs,
Since combinators are very good at rearranging arguments
and functions, some  way shovld be wmade to model a
hierarchy, which i just a composition of leaves, into a

combinator,
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By equating combinator and hierarchy, a very simple view of
o digital system is reached, The hierarchy combinator
expects as inputs a list of leaf Ffunctions, When these
leaves are composed as specified in the combinator, the
result is the specified digital system. Therefore, digital

systems can be represented, where H is the hierarchy, as:

H{leaves) =) {(systems’
(systams>{inputs? =) {outputs>

H provides no function but to compose the leatf cells, now
arguments to  this hierarchy operator, intoe interesting

systems, Thus, the hierarchy H, which is composed only of

combinator primitives like & and K, takes the leaf
fenctions as drguments and produces a  "system", This

system maps from state sequences to state sequences.

As the examples will illustrate, in order to separate the
hierarchy Ffrom the leaves, the leaf Ffunctions must be
"moved out as arquments.” Ry appropriate introduction of
combinators, the inputs and leaf functions can be slowly
shifted to the right end of the expression describing the
sysTem, This will result in an  expression with only
combinator primitives, on the left, then a group of leaf
functions, and finally the inputs and outputs on the right,
Since the expressions are left associative, the combinator
primitives can be considered separately as the operator

that represents the hierarchy,

Combinators, and hence hierarchies, map from the function
space back into the function space. The first level of
compositions map from the set of leaf functions, F, into
the set of hierarchical functions, H. Every level higher

than the lowest maps from the set of hierarchical functions
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into itself.
H & IH - HI + [F -y HI
Foer mMathematical solutions to such recursive domain

equations see [Scott 19751,

An Example

As  a simple example, we will write down the combinator for
the 3-input AND gate example shown in Figure 3.2, The
circuit contains  twe 2-input  ANDs, whose function can be

written as

A, = ‘hab.,ANDah

There are three inputs and one output, A lambdao  calculus
version of the 3~input AND gate function is as follows,

Ay = “habc.a,(ALab)c

Developing a combinater to represent this composition is
like a gome whose object is to move all the arguments to
the right end of _the expression, The function at the
beginning can then be removed and dealt with separately,
Doing that with the 3-input AND gate might be as follows.
4 o & b I
ﬁz Az(ﬁga )
= BH., (Aoa) b
E 2( o c

it

E(RA,) A, abc

So far, we have removed the state sequences to the right,
These can  then be removed Ffrom consideration while we
attempt to remove the 2 input AND gates and get down to  the

real hierarchy combinator,
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Figure 3.7 3-input AND gate



A. = B(Bﬁz)ﬁz

EEEA,A.,

#

BEEA, (IA,)

SCREE)T A,

Thus, the compoesition of two 2 input AND gates into a 3
input AND gate is represented by the combinator S(RREII.
This combinator also represents the composition of any
other 2 input, one ovutput function into a 3 input, single
output function, The combinator describing this hierarchy

Jjust represents the composition, not the function,

Another example, illustrating the uvse of combinators to
model feedback, is a synchronous toqgle Flipflop. This
function, illustrated in Figure 3.3, takes one input, 1,
and produces one output, f. As long as the input sequence

is inactive, i.e, ti:U, the output sequence remiailng

unchanged from its last valuve, If the input sequence is

active, Tjﬁi) then the pext output state will be inverted

from iLts previous value, This action is shown by the state

sequaences below,

... 0004001448 400 ...72
£ = .., £ £ 41000141044 .., 3

The toggle flipflop will be built using two leaf Ffunctions,
a delay leaf with Ffunction D, and an exclusive-or leaf
referred to as E, The delay function, D, is characterized
by having its output sequence delayed one sequence step
from its input., The output sequence from E is o "i" if
exactly one of its inputs is a "4&" and "0" otherwise. In
terms of these primitives, the function F, for Flipflop,

can olmost be written as below,
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Figure 3.3 Togale FLip4lop

\'%
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F = At.DCEtF)

Unfortunately, this is a recursive function definition,
The Function F is used to define itself., This really means
that there is a feedback loop in the circuit, as is obvious
in Figure 3.3, luckily, there is o body of theory that
denls with just this sort of equation: fixpoint thaory,
The solution to the recursive equation describing F is
called the fixed point of the function D(ET). There is a
fixed point operator that represents that solution: the

fixed point combinator, Y.

The operator Yx represents o possibly infinite string of
recursive "calls" on the function x. The operator Yx is a
function that remains unchanged by the function x. Thus

the fFollowing egualities nll hold,
Yx = x(Yx) = x{x{¥Yx)¥) = .,,

The Y operator is the combinater analeg of recursion in
standard programming languages, The Y operator can be
written in terms of S and K, the basic combinators. The &
and K definition, along with a slightly more understandable

lambda calculus definition, is!

Y = GET(SRK(SSI)I )
= GH(SKK)Y (S{SKEIKY (K{SG(EKKY ) ))
= (‘Auu.uu(uv))(')yz.y(zz))

For more detail about the Y operator, see [Curry 419581 and
LRurge 197%1.
Using the Y operator, we get the following solution for F,

o= ALYC(DCET))
= At.BY(EDE) t

dropping the argumant, t
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B(BY)(RD) E
E(B(EY))R DE
B(R(RY))E

i

i
1

Thus, the hierarchy that represents the basic feedback loop
as  diagrammed in Figure 3.3 is B(B(RY))B. The properties
of the Y operater will become more important when hierarchy

equivalence is discussed in Sectioen 3,3,

A CounterExample

To illustrate more completely how to express the hierarchy
via combinators let’s examine a slightly wmore compllicated
example: o  two-bit ripple carry counter, The counter,
represented as a one level hierarchy, is composed of tTwo
toggle flipflops and two 2Z-input AND gates, as in Figure

3.4,

A convenient sequence step Ffor this system matches the
transitions on the counter input, t, Since the entire
counter is ruyn by the input transitions, and nothing
interesting happens between transitions, thot sequence step
will model everything interesting about the counter,
(Notice that the input sequence, t, reduces to an  infinite

sequence of alternating £7s and 07s.)

The leaf functions for this hierarchy are A and F, the AND
and Flipflop functions, The sequence generator for the AND
gate, A, was presented in the Firgt section of this
chapter, The flipflop sequence generator is similar to
that of the register presented in the first section, A
toggle flipflop should invert its value after every zero to
oneg transition of its input, A sequence generator that

models this activity is as follows,
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Figure 3.4 A 7-bit Counten




i C Xy =h

THEN NOT .
i-4

ELSE £, ,

This sequence generator presults in the stote sequences

helow:
X = { .., 04 0480 410401410141 ... 132
f = { ,,, 1 4 004451 0044500 ..,

A lambda calculus description of the counter in  terms  of

the AND gates and Flipflops might be

C2 =<1T.A(AT(FT))(F(AT(FT)))

Separating the hierarchy for this implemantation of the
counter can be done Iin  twoe steps, The flrst step is to
separate out the variable "t", After that is moved to the
right, the rest of the expression can be grouped, because
of the left association, and worked with as an  operator,
The second step separates out the leaf Ffunctions, A and F.
After these are moved to the right, what is left on  the
left is the combinator representing this hierarchy,

In the equations that follow, the first step, that of
removing the wvariable "t", is done. The added combinators

are underlined.

C At ACBAFTY (F(BAF 1))

i

xx

il

™
b

5
>

F (SAF 1)
At BISAF) (SAF) t

Hi

Now that the input has been moved to the right, the raest of
the expression c¢an be treated separately as an operator
that will work oen any single input, To Further distill

thig eperatoer, the leaf functions A and F can be removed,
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C., = B(SAF)(SAF)

= B(SAF) (I(SAF))
= SET (SAF)

= GRI(SAF) = (SEI)(SAF)
= E(SEI)(SA) F

= B(R(SRING AF

Removing the leaf functions leaves o combinater built from
the primitive combinaters only. This combinator represents
that “hierarchy" for the two bit counter.

HF = B{B(BEI)IS

Another way of building this two~-bit counter is to build it
out of twoe one~bit counters. Each one-bit counter in the
Figure 3.5 is represented by the cell with function €, In
the following mathematical representation of this

implementation, the combinators are underlined as before,

C = As.As(Fs)
= Qs .BHAFs

C, = ZAt.C(Ct?
= At . ECCY

In order to derive the actual hierarchy from this palr  of
functions, it is necessary to substitute in C and solve for
a combinater that does not include +the leaf functions, A
and  F. We will solve for HC again, the combinator that

represents the full hierarchy of this 2-bit countar,

€, = KCC

[

#

B(SAF) (SAF)
B(SAF) (I(5AF))
B(SEI) (BA) F
E(B(SERI))S AF

i

H

H
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Figune 3.5 A Dif4enent 2-bit Counter
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H.. = B(B(SEI)S

Notice that the combinator representing tﬁa firzt
implementation of this counter is exactly identical to the
second, OFf course that was no accident. This example was
used to illustrate the manipulative properties of
combinators, The fact that twoe different hierarchical
descriptions of the same functions could be shown to be
identical through “algebraic“ manipulations is one of the

reasons why combinators are a powerful representation tool.

The ability to manipulate hierarchies nlgebraically to  show
two hierarchies iddentical was shown to be important for
coensistency checking, as indicated in Chapter 2, especially
between different representations, PBeing able to design in
different representations vusing a different hierarchical
breakdown, but to still be able to prove the two designs
identical, is a powerful tool for the designer. A more
complete treatment of hierarchical equivalence is  the

sub ject of the next section,
3.3 Equivalence Between Hierarchies

There is no single, best hierarchical breakdown Ffor o

coemplex system, No  two people will produce the same
hierarchy., In fact, the same person 1s apt to want
different hierarchical decompositions for different
purposes, The chip layout might be Most easily
accomplished as a bit slice, while the functional

simulation would be more efficient and understandable in a

register transfer representation,

As was mentioned in Chapter 2, given two hierarchies that
are built on the same leaf cells, consistency checking
reduces to showing the two hierarchies equivalent. This

section is dedicated to exploring the concept of
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equivalence between hierarchies.

Tvpes of Hierarchicnl Equivalence

Many different criteria can be used 1o judge two systems
equivalent, Different criteriao result in different classes
of systems being equivalent, The difficulty here is to
pick an appropriate wmethod for judging two hierarchies
equivalent that will Ffit nicely with the separated
hierarchy. All of these methods for determining
equivalence will assume that the hierarchies under gquestion

build from the same pool of lenf cells, as was discussed in

section 2.3,

Three equivalence coriterio will be discussed. Named

identical, topelegical, and functional equivalence, the

criteria can be ordered by "strictness." Criterion A is
more strict than B if A implies B but not B implies A. In
other wWwords, systems that are A-equivalent are also always
B-equivalent, but not vice versa. The  criteriao discussed
here are ordered in this way: identical is more strict than
topological which is more strict than functional. The
discussion will move from identical, through functional and

on to topological equivalence.

A odefinition for identical equivalence reads as follows:

Identical: Twe systems are equivalent onlg if
every cell in every level of the hierarchical
tree composes the same instances - of the same
cells with the same interconnection,

This is the strictest definition of equivalence because an
exaet mateh is required, Checking for identical
gquivalence reduces to verifying that the corresponding

composition cells are described by “egual" combinotors,
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The issue of equality between combinators is discussed

below, The consistency checking of Chapter 2 would be
restricted to representations that wmap  into identical
hierarchies, however, The restriction of a single

hierarchy prevents potentianlly useful representations, such
s 4} functional slice representation for simulation
illustrated in Figure 3.6, Unless nothing better comes up,

this is an unsatisfactory equivalence criterion.

Functional equivalence s  the least strilct criterion
requiring only that the two systems haove the same function,
Functional: Two systems are equivalent if, given

the “dame input sequences, they produce identical
output sequences,

Using functional equivalence would allow the functional
slice representation of Figure 3.6 since the two systems
pertformed the same transformation from input sequences fto
output seguences, However, this criterion may be too
unrestrictive: Lt attempts to quarantee equivalence between
systems thot the philoesophy inherent +to the separated
hierarchy disallows, An example of two systems thot are
functionally equivalent 1s  shown in Figure 3.7, The two
systems are equivalent becuase of the properties of the
instance labeled A, This instance performs no vseful
function and so removing it, as was done in  the leftmost
system, does not effect the functional equivalence of the
two systems. However, the functional equivalence of these
two systems depends on the semantics of the leaves. This
theslis is based on o system description that is independent
of the semantics of the leaves. To base equivalence on a
criterion that includes the properties of the leaves is

inconsistent,
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Figure 3.7 Functionally Equivalent Systems



The last method for determining equivalence between systewms

is topological,

Toepological: Two systems are equivalent if the

RTerdyrchies that “define them resuvlt in identical

compositions of the identical leaves,
This definition maoy warrant some explanation, Topological
equivalence betwesn two systems implies that, if the two
hierarchies that describe them are "flattened out", i.e.
all  instances of composition cells are replaced by copies
of their definitions, the result will be the S0 M
interconnections of the same leaf cells, In a sense, this

proposes a normal form for a hierarchical description thot

has  only one composition cell that describes how the leaf
cells are interconnected., Hierarchies are then equivalent
if  they reduce to the same normal Fform, Figure 3.8
illustrates the “"flattening" process and the resulting
egquivalence test, This equivalence criterion is termed
"topological" because the final test for equivalence is one
of comparing the topologies of two graphs. The topological
equivalence criterion would call the two systems of Figure

3.6 equivalent but not the two systems of Figure 3.7,

Tepological equivalence would be the Ffirst choice for an
equivalence criterion. Its feasibility rests on  some
combinatory logic resuvlts since wusing the topolegical
equivalence criterion is the same as requiring that the two
combinaters representing the systems be "equal®, This can
easily be shown by noticing that "running” a combinator,
il.e, applying it to a set of leaves, results in a
composition of leaf cells, This composition of lenf cells
is the normal Fform discussed above. The notion of

combinator equality will be discussed in the next section.
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The Y Operater and Turing Machines

Unfortunately, equnlity between combinators is not an
easily decided issve, Results from combinator theory show
combinators equal in power to Turing machines [Curry 19581,
One of the basic results from the study of Turing wmuachines
is that +the problem of showing twe programs equal is
undecidable [Rogers 419671, Thus, since the combinatoer
notation wused to describe digital systems is as powerful as
Turing machines, equality between digital systems is  an
undecidable lissue, Notice that this applies to both

identical equivalence and topological equivalence,

The redason for equality being an undecidable issuve is the Y
operatoeor, Being a recursive operator, there 18 no  way to
decide whether a hierarchy described using the Y operatop
will terminate when run to find the normal form, (Note that
preventing the use of the Y operator does not eliminate the
problem since the Y operator can be defined in  terms of §
and K operators, and they are the necessary primitives.)
The Y operator not terminating would imply that an  infinite
hierarchy had been defined, a meaningless concept in terms
of an implementable VLSBT system, However, results from
Blum [Blum 419671 suggest that the ability to express
infinite objects, while not wuseful in itself, is an
egssential quality for any  useful notation, Blum’s
coenclusion is that, by restricting the notation +to prevent
infinite recursion, i.e, by limiting the use of the Y
operater, the notation wmay be much less suited for

describing finite problems,



The Horns of a Dilemma

The conclusion reached from this discussion of hierarchy
equivalence is that it is an undecidable question, That g
an  unsatisfying conclusion, In retrospect it seems like an
obvious conclusion, however. It is c¢lear that at some
point, a system will be developed that allows the full
powar of a programming language (read Turing machine) for
describing composition cells, In fact, the geometry
composition algorithm presented in this thesis is such o
systam, Once the desirability of that step is granted,
then it is clear that the algorithmic definition of a
composition cell will automatically moke equivolence an

undecidable issue,

Howaver, even though a chip is described through the use of
a general purpese programming language, it is still a
finite object, Being finite, it can be described without
the full power of a programming language, i.e. wWwithout
recurslions and WHILE loops, The finite description of a
chip is the ovutput of the programming language description,
it is the result of "running” a program. While there i no
way to guarantee that the program describing the chip will
stop, If it does stop the finite description can be
checked, In this way, two algorithmic descriptions of a
chip can be checked for equivalence: by  generating

specific, finite descriptions and checking those.

Combinators are clearly as powerful as  any proegramming
language and can be wuwsed to notate an algorithmically
descr ibed chip. However, combinators can also describe
chips in a finite way., A combinator that is in its "normal

form" is one that can be compared to other normal form
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combinaters. The normal form for 0 cembinator is defined
to be in a state where no "reductions" are possible. A
reduction can be performed whenever a primitive combinator
has enough drguments to be performed, L.e. whenever the K
operator has two arguments, the operator and its operators
can  be replaced by the first argument. When a combinator
has been reduced to normal form, it La « finite
cdescription: it can be compoared with other normal form
cembinators for equivalence. The comparison step is
strictly syntax: twe combinators that reduce 1o normal
form are equal if and only if they reduce to the same
normal form I[Curry 19%9 ~- The Church~Rosser Theoreml,
Thus, given twoe combinaters in normal foerm, equivalence

checking is a simple text stiring comparison for equality.
3.4 tiodeling Buses

In this section, some of the subtleties of buses spread
throughout a hierarchy are examined, Buses are to VLSI
what shared MeEMory and critical sections ore to
multiprogramming, with similar problems of synchronization,
Te emphasize the similarity between buses and clossic

synchronization problems, T have choesen to call o bus

cdriver a wri and a bus receiver a r. The bus is a

resource shored between wmany contending processes and so

relntes closely to the classic synchronization problem,

Huses alse pose a problem for any functional notation
hecavse of wmultiple readers and writers, Functional
netations do not naturally express constructs that connect
together outbuts of Ffunctions., Some wmethod 1w needed 1to
map buses inte  the functional domain so that they con be

analyzed,



The Probhlem

To this point, interconnections between instances of cells
have been strictly directed, one instance output values to
an input of another instance. This has led to a Ffunctional
notation that seems to describe falrly well what s
happening in the hierarchy, The problem is that most chips
are not designed this way, Rus structures are rampant in
computer design; whole companies are formed to build

devices compatible with one type of bus,

Buses are still common in VLET, due to the ease with which
many  technologies form buses, The OM processor designed at
Caltech has two independent buses running completely across
and off the chip. PBus drivers tend to be simple in terms
of number of transistors, two or three transistors in  the

OM, if not ensy to design from an electrical point of view,

In the structured design style, and in the separated
hierarchy, buses tend to be cut intoe pieces, o short plece
running right through any cell having access, The cells
that include a piece of the bus may do nothing but poss it
on to a neighbor, or they may compute o new value to  be
conditionally written ontoe the bus., Control of who writes
on the bus generally comes from above in the hierarchy,
from a PLA or some other central control, A collision on
the bus, two sources trying to write on the bus at the same
time, can cause o major disaster. The collisions can be

datn dependent and therefore difficult to debug,

With their prevalence and potential for hard to find bugs,

some way of notating and of guaranteeing goeod behavier for
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buses needs to be found, Included buses pose a special
problem in a hierarchy since the control tends to be spread
between levels of the hierarchy, Some way has to be found
to gquarantee good bus behavior without needing 1o examine

the entire hierarchy,

Kefore examining o general bus, the least complex bus,

having enly two potential writers, will be examined,

Two Writers

A physically inaccurate, although wmathematically and
logically correct, mathod for illustrating a twe writer bus
ie  through the use of multiplexors., If write enabled, ench
writer selects his own new value, and i not write enabled
the writer selects the output of his neighbor. In this
way, when not writing, the bus writer Le actively
reinforcing what should be on the bus, (This reinforcement
is actually never done, physically.) A schematic drawing

of this multiplexor model is shown in Figure 3.9,

The two bus wires are physically the same piece of wire in
the real layout as illustrated in Figure 3,40, but they
will be kept separate here for purposes of discussion, By

keeping them separate, the outputs of the multiplexors are

net interconnected, and functional assumptions remain
intact, Examining the functions that represent each bus we
get
o s, |
By = MsgiyFy

Bg = Ms?iEBi

Breaking the feedback by introducing the intermediate value

0, as in Figure 3,141, we get
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E = Hﬁiii(ﬁsgigo)

i

B(Msiii)(ﬁsaia) 0

Since Bi must be equal to o, it iw o {fixed point of the

right hand side. The fixed point operator, Y, computes

Just that, giving this result for 31:

Bi = Y(B(Msili)(ﬂsgig))
= R(BY)R (Hsili)(ﬁsﬁiﬂ)
and, by symmetiry,
B, = E(BY)R (Mmgiﬁ)(ﬁﬁjii)

Since the two buses will be physically the same piece  of
wire, the functions describing them must be equal or our

model fails, The equallity between Bi and B, is wmaintained
o Yo
if the functions operated on by the B(BY)E combinators are
eoual,
Mﬁili(ﬁﬁzlg) = ﬁﬁﬁlg(MSiLib
From the definition of M, as o selector, it is c¢leor that
i %y does not equal s., then these two functions are equal
o [
independent of the wvalues of ii and  i,. If the two
[

selectors are not guaranteed 1o be unequal, then the two

input values must be equal when the selectors are not,

This mutual exclusion ensures that +the two multiplexors
will have the same output wvalue, It also wmodels the
obvicus conclusion that wmultiple writers on o bus should

not write on the bus at the same time,



-6]-

LI /(,2
S, —>f M M
B, A,

Figure 3.11 Breaking the Feedback



~bet-

When both multiplexors are selecting the bus, the bus value
is undefined. This state is not allowed and can be fixed
by having anether source on the bus that drives it to a

known state when neither selector is enabled,.

YOS SR NN A S R . A

We extend the bus notation to N writers on the bus by
connecting the writers in a ring as shown in Figure 3.42,
This ring Fformation is a dual of the actual physical

formation in Figure 3.43,

The conclusions drawn from the study of the 2 writer case
can  be generalized for N writers very easily. Each
equation from the 2 writer case is generalized by replacing
the 2 and 1 with 1 and i-4, wunless i=1 when 2 and 4§
represent 4 and N respectively., Each bus output must be
equal to keep the model consistent with reality which leads
to the conclusion that exactly one wmultiplexor must be

selecting its input rather than the previous bus valuve.

By including an "éxtra" bus writer that is enabled by the
NOR  of all the other select inputs, as shown in Figure
3.44, the value of the bus is always defined, The extra
writer allows this model +to handle precharged buses, A
precharged bus is set to a known state during an idle  time.
A bus writer need only modify the bus if it needs to
transmit a value different than the precharged value, This
type of bus is common in nMOS because of the asymmetric
speeds of transmitting a i versus transmitting a 0. If no
writers are selected to transmit over a precharged bus, the
value is the known state, The extra writer can model this

behavior.



Figure 3.12

N-lritern Bus
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Figure 3.13 Physical Dual



Capping the Bus

The N writer bus model has a pecuvliar property, it doesn®t
work at _all unless the entire bus is present., The model s
incomplete wunless the first bus writer has a connection to
the last bus writer., The formation of the ring is the
method by which the bus values are propagated around the

mathematical model,

This peculiar property hag some nice philosophical
implications., It implies that a bus is not “complete", in
somMe  sense, until its Full extent is known. The closing of
the ring might be termed a "capping off" of the bus, After
the bus is capped off, then 1t can be examined for
cerrectness. Equivalently, a bus can be extended provided
some assurances can  be made about mutual exclusion. Two
huses can be connected IF  the enables are mutually

exclusive,

The formalism developed here will be the basis for o system
for guaranteeing "safe" pieced buses in a hierarchy. This

system is developed in Chapter %.
3.9 Conclusions

Hierarchical systems can be successfully wmodeled through
the wse of a Ffunctional notation for the leaf cells and
combinators for the composition cells, State within leaf
cells is wmodeled through the use of state sequences. The
combinator notation allows the hierarchy to be

mathematically separated from the leaf functions,
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Identity transformations on hierarchies were shown fo be
possible provided the combinators describing the
hierarchies "terminate", Determining whether a combinator
terminates is, unfortunately, an undecidable problem. Work
needs to be done to determine a decidable subset of
combinators that is sufficient for the description of VLSI

HEYETEMS,

A model Ffor buses was presented that allowed multiple
writers, This model was used to verify the rather obvious
conclusion that only one writer could be enabled at a time.
Two buses can be concatenated with the restriction that
thelir twoe sets  of enables are shown to be mutually

exclusive,
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Chapter 4

Geometry Composition

In this chapter, a composition algorithm for the geometry
portion of a VILSI design system will be presented,
Composition algorithms, as discussed in Chapter 2, must not
add  any functienallty when interconnecting instances., This
poses special problems with the geometric implementation of
a  design since traditional approoches have used wires as

the interconnect mechanism,

When looking through the history of software development,
symbolic addresses were available in some of the very Ffirst
assemblers, The introduction of symbolic addresses
relieved the programmer from the onerocus and errvoer prone
process of cleaning up all the absolute addresses when
adding or deleting code. Symbolic addresses were the first,
and probably moest basic, feature that made hierarchical
design realistically possible because they helped to

decouple independent parts of the system.

The VLSI analogs to symbolic addresses and their modern
counterparts are the cell size and connector (externally
availaoble signal) positions, Ad justing to Glre and
connector position changes iw probably the single most

important hierarchical feature needed in today’s  design



spstems.

A look at some existing mask layout aids is presented as a
precursor to developing the geometry composition algorithm,
This examination is conducted Ffrom +the structured design
point of wview, i.e, wWwhich existing systems encourage the

designer to bulild structured designs.

A proposed structure, called SLAP, is presented that will
provide the enviroenment Ffor geometry composition, The
structure 1s  embedded in  an  ob ject oriented programming

language allowing the cells to be parameterized.

The composition algorithm is described in the next section.
By judicious restrictions, the algorithm is decomposed into
two identical one dimensional problems. The olgorithm
places one instance at o time, recursively re-placing
instnnces where the interconnection constraints cannot be

satiaflied.

Some examples, including o programmable PLA, are given
along with some conclusions and proposed extensions to  the

algorithm, Included are the run times for the PLA example.
4.4 Existing Systems

Existing mask layout systems separate easily intoe three
categories: mask editors, symbolic layout systems, and
avtomatic layout systems., The systems in  the mask editor
category . generally provide an interactive graphics
envirenment that allows the user to massage mask artwork
directly, Symbolic layout systems represent the mask

layout symbolically to reduce the complexity of the design
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task, By imposing a regular structure on the chip layout,
automatic layout systems provide wvery fast wmask loayouts
directly from some sort of netlist input., Each of thege
areas will be examined in the light of the structured
design style to try and discover where the good and bad

ideas lie,

At the end of this section, a "silicon compiler" [Johannsen

19791 developed at Caltech will be briefly discussed,.

Mask Editors

Following in the footsteps of rubylith cutting and pencil
and  paper, mask editors provide a graphical medium in which
to crente ond modify the shapes that make up a mask layout,
Most commercially available mask design aids fall into this
category, including the Calma [Calma 49791 and Applicon
[Applicon 49791 systems., Mask editors generally allow the
veer to credte and modify geometry shapes with the aid of a
graphics display, o pointing device, and a keyboard. Some
systems also interface with digitizers allowing hand drawn
layouts to be digitized, The ICARUS [Fairbairn 1979)
systes developed at XEROX PARC is another example of o  mask

editor,

Mask editors do not generally presume to support i
particuvlar design philosophy., The three systems mentioned
above all provide a form of hierarchy, some with a limited
number of hierarchical levels, The hierarchy provided is a
mixed one, as opposed to the separated hierarchy used here,
Geometric shapes can be intermixed with instances of cells
in any level of the hierdrchy. Mask editors can be used to

design in a structured way, but the design discipline is
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not enforced by the system. Experience has shown that very

few designs produced uvsing these systems are structured.

Svmbholic Lavout

The designer of a complex chip is often overwhelmed by the
number of details involved with representing even a simple
circult, In an attempt to reduce this "can’t see the
forest for the trees" syndrome, symbolic design introduces
a notation that removes detail better bandled by the
computer, Specifically, wmost symbolic layout systems
introduce o graphic representation of the layout that is an
abstract view of the layeut, This symbolic representation
allows the designer to get a more global view which often

results in better designs.

One of the Ffirst symbolic layout systems was the SLIC
systen [Gibson 49761 developed at AMI. Systems of this type
restrict all features to lie on grid points. The grid
tteself is vsually rather coarse, i.e. the distance between
ad jacent gqrid points is approximately the same size as the
smallest allowed mask feature., Eoch grid point represents
the local mask geometry with a single symbol, usually a
normal letter or punctuation mark, The nmoask geomelries

represented by  these single symbols can be arbitrarily

complex, i.e, o transistor or contact, The systems
provide an algorithm for transforming the symbolic
representation inte actual mask layouts, The analysis of

this symbolic representation is much less complex than the

corresponding analysis of a full geometric representation,

The latest rage in symbolic layout are variations of the

STICKS system developed by John Williams ot MIT and
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Hewlett-Packard [Williams 19771, These systems use stick
diagramming as their symbolic representation of the layout,
A stick diagram represents the mask layout in  a very
general way, indicating the general relationships between
circulit features but not their absolute positions,
Generally, a stick system will represent a circuit with
symboalic components, like transistors and  coentacts,
connected together by skeletal wires, il.e. wires with no
width, An auvtomatic, or semiwnutdmatic, algorithm can then
convert this stick diagram into the Ffull geometric mask
lavout, The actual positions of geometric features are
resolved by this "compaction” algorithm in such a way that
all design rules are satisfled. Other stick systems have
been developed at Fell Labs [Dunlop 419781 and Berkeley
[Hesuveh 19791,

The hierarchy provided by symbolic systems has been vepry
similar  toe thoese of the mask layout systems., The ability
to compose systems is somewhat enhanced with a stick system
since the compaction algorithm adjusts for positional
variations between instances being composed, S5LIC  type
systems provide no composition aid being just a symbolic
mask editor., None of the symbolic aystems support the
structured design style, In fact, it can be argued that
symbolic layout systems tend to produce less structured
chips since they wallow much wmore bigger, more complex,
cells to be designed. Since the designer can more easily
produce random logic, the structure of o design becomes
less of a factor. However, when chips begin +to approach
the 10 million transistor level, some method for
structuring designs will be needed. Sticks and SLIC may be
a cost effective method Ffor designing unstructured chips

with today’s technology, but they are only a short term
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solution to a much larger problem,

Adutomatic Laveout

The LTX system [Persky 19761 from Bell Laboratories and the
Master Slice system from IEM [Chen 49771 are two examples
of autematic layout systems., These systems represent two
inplementations of the same basic idea: an  overall chip

plan is used to implement all designs,

The LTX system, o "standard cell" system, builds chips that
have parallel rows of cells alternating with Twiring
channels." The intercoennections between the cells in a
standard cell layout is accomplished by routing wires in
the wiring channels. The cells that are wired together are
generally o silicoen wversion of small and medium scale
integrated circuits, such as TTL., By expressing the design
in  terms  of NAND gates and storage registers, the designer
ils able to completely disregard the geometric problems of
mMask design, The system Wwill produce all of that
avtomatically, The cells are generally a fixed size in  one
dimension, wvariable in the other and can have connectors

anyuhere on a grid facing the wiring channels,

The Master 8Slice automotic layout system uses a different
chip plan, the "chip image.” This image is a fixed array
of cells with wiring between cells placed in fixed sized
wiring channels run parallel to both axes,. Again, the
design is expressed in terms of familiar components and the

designer is free to disregard the layout process.

These systems both represent methodologies that are in some

sense opposite from the struvctured design style, Automatic
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layout systems attempt to hide the fact that VLSI chips are
fabricated in a planar medium, The designer is shielded as
much as  possible from the wmessy details of mask layout,
However, these automatic techniques do not scale well with
VLET technelogies, The wire lengths, and corresponding
delays, increase faster than the number of components  in
the design [Sutherland 19731, The structured design style

directly attacks this problem.

Silicon Compilers

A new type of avtomatic layout system has been daeveloped at
Caltech by Dave Johannsen, the EBristle Blocks "silicon
compiler" [Johannsen 49791, Like the other automatic
layout asystems discussed, bristle blocks presumes a basic
chip plan, The plan vuvsed here is consistent with the
structured design philosephy in  thot it is  bullt from
groups of abutting cells with included buses, The basic
chip plan has three parts: a “"data path® consisting of
abutting cells containing two included buses, a structured
centrol PLA  that decodes the chip wmicrocode, and the
intercoennections to the pads., The specification of a chip
ie done in o very high level, compact code that describes
the data path and Lts associated microcode. The rest of
the system avtomatically generates the precise geometry for
the data path, adds drivers for the control lines,
generates an optimized controel PLA, and routes wires to the

bonding pads.

One of the wunique aspects of this work is the method used
to build the geometry in the data path, Dota path cells
are described in a way that allows them to conform to other

cells in the path. The key observation that drives this ig
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that the data path will be as wide as the widest cell.
This means that no chip area will be lost Lf the other
cells are adjusted to be the same "plitch", or height. Each
cell’s internal geometry 1ls described with respect 1o
important interface features, such as the position of a bus
wire. The system can interrogate each cell, Ffind the
minimum position of that bus wire thaot satisfies the design

rules, and the cells automatically adjust to fit,

By cdhering to the structured design philosophy, the
Bristle Rlocks compiler actually manages to bre mare
efficient than o hand layout, Relayout of a previously
designed chip in Bristle Blocks proved to save area since
the program Wwas  tuned to be very efficient for that class
of chips, The chip plan used for Bristle Blocks will not
generate area efficient layouts for any design, but It does

do a remarkably good job for o wide class of chips.
4,2 The SLAP System

In this sectien, the data structures, parameters, and other
properties of a geometric system will be described thaot
Wwill provide o hospitable environment for the geometry
composition rule, The system must allow the gpecification
of o separated hierarchy and must also support structured
design style, Also described is  the interface to the
geometry composition algorithm and its general properties,

The actunl algorithm is described in the next section,

This geometry algorithm is predicated on a two dimensional
parameterization for cells, The parameterization is
particularly simple-minded in an attempt to make the

attendant system simple, This algorithm is not intended to
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be the optimal one, but rather an example of a geometric

composition algorithm,

The system has been implemented in SIMULA [Rirtwistle 19731
and runs  on a DECsystem—20. It has been designed to be an
embhedded language to nllow the designer the full power of a
programming language . The system is called SLAP  in
acknowledgemaent of LAP  LlLecanthi 49781, the +First such
imbedded artwork language ot  Caltech, SLAP stands for
"Stretchable LAP", but alse has the advantage that the

designer can use Lt to "SLAP chips together.,”

Qverall Strateqy

In order to be consistent with the simple hierarchy
described in Chapter 2, the geometry system will deal with
Ctwo distinct  types of cells. The leaf cells contain the
wires, transistoers, oand polygons to define the masks, ALl
of these shapes are parameterized in such a way that an
ingtonce of the c¢ell can be deformed for o particular
anvironment, The parameterization is described in the next
section, The other type of cell contains only instances of
other cells, In particular, the bierarchy cells do nox
coentain any shapes that appear on a mask, All of thosge

data are in the leaf cells.

All  cells in this system are rectangular and have
connectors only on  the boundary, These twoe restrictions
are essential to the composition algorithm described later
bhut may not be needed with a moere general algorithm., The
structured design style does not preclude the wuse of odd
shaped cells, However, experience with the ICARUS

[Fairbairn 19791 design system has shown that rectangular



oG

cells are not a restriction, Similarly, connectors
constralned to lie on the cell boundary have not turned out

to be o severe restriction,

The geometry system, given a description of a non-leat or
hierarchy cell, solves for the instance parameters to
produce a valid geometric layout, The description of a
hierarchy cell is just a "netlist" that indicates what
connectors on what instances should be iInterconnected.
Interconnection 1is defined as superposition: two connectors
that should be connected must physically lie on top of each
other, The instances of lower level cells are
parameterized so that they can be deformed to accomplish

the connector superposition,

Notice that the geometry system never adds any mosk data as
it solves for the parameters in a cell. This is consistent
with not odding any function during composition, Routing
wires between instances to perform geometry composition
could introduce appreciable function: delays from wire
capacitance and other effects, The cell functions must
depend, not only of the inputs to the cell, but alse on  the
parameters used to effect cell customization. The delays
introduced by stretching the cells are equivalent to those
introduced by wiring. These delays are not dealt with
here, although they are represent an important problem that

needs examination,

otaTiasesarsasemmtrrie s sre Soman

In analogy to the Bristle Rlocks system, all cells in our
hierarchy will be parameterized in suvch a way that they

can, in a design rule correct way, stretch to match a
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neighbor, The parameterization is o simple one, all
internal geomatry features are drawn relative to  the
connector locations., The connectors have a fixed wminimum
distance from their neighbors, but the distances are free
to increase any amount, The geometry solution computes the
amount that these distances need to be increased to satisfy

the logical constraints,

In the SIMULA implementation, each leaf cell is written as
a CLASS definition, The geometry for the cell 1s written
as o precedure that must be called PROCEDURE GEOM. Any
legal language constructs can be used to produce that

geometry, although there oare quite a few vuseful procedures

defined in the 8BLAP systenm. In addition to the GEOM
preocedure, the designer must specify the names and
locations of the available connectors. These data are

specified in the dinitialization code for the cell, There
s no restriction preventing connector positions from
changing, although the composition algorithm must be run
again on any cell thoat contains an instance of the changed
cell, The SIMULA code defining an nMOS shift register is
showrt in Figqure 4.4, A graphic rendering of that shift
register is  shown in Figure 4.2 with no parameterization,
il.e, with minimum separations between adjacent connectors,
Figure 4.3 shows the same shift register with non—zero
parameters., Note how the variocus elements in the cell have

shifted to adjust for the nmovement of the connectors,

Although only geometry descriptions have been discussed,
any number of different, interrelated representations could
be included in the SLAP system, Each new representation
must include leaf cell descriptions and an appropriate

composition rule, An example might be a representation to
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cell CLASS sreg;
BEGIN

PROCEDURE geom(g); REF{(geomout)g;

INGPECT g DO REGIN
REAL invx;
invx:=%5; g
gh(g,invx;cy{"gndl™)),
gh({g,invx,cy("uddl"));
grN(g,invx,cy("in")+4);
grsig,cx{Mout")~3,cyp("out")+%)
wire{metal,4,npt(2,cy(gndl ™). x(cx("gndr")-2) ,wend;
wire(metal,4,npt(2,cy(Mvddl ")) . x(cx("vddr")-2) . wend;
wiretpoly,2,nptlex("clkb™), 40y pley("clkrI-4) . wend}
wireddiff,4,nptdinvx,cy{"gndl™)I ). vl ("in")+4) . wend;
wire(diff,2,nptdinvx,cy("in™)+4)) , vy (cy("uddl ")), wend;
Wireddiff,2,nptlinvx,cy(Min")+32) . x{invx+S) . ylcy(Tout")+b)
x{ex(Mout™)~3) i wend;
wirel(poly,2,nptli,cy("in"))) . xlinvx+4) , wend; _
wirelpoly,Z,nptlox{out")~4,cy{Mout") ), x(ex("out")~3) . wand;
wire(poly,é,nptlinvx,cy("in"1+82).dy{(i).wend;

END of geom; '

nam:~copy{"sreg”);
zero_level:=TRUE;
size(2i,26);
cle{"gnd",2}),
cliin", 6% cr(Mout®, 8
cle{tvdd”, 240
cht("clk",13);

END of sreq;

Figuwre 4.1 Code for Shift Registern Leaf Cell
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Figurne 4.2 Plot o4 Minimum Size Shift Registen

Figune 4.3 Shift Registen Strnetched
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generate files for the SPICE circuit simulator. The leof
cell descriptions would be in terms of the transistors and
their characteristics, resistors, capacitoers and the
interconnecting electrical nodes. The composition rule
would be an algorithm that generates unique node names for
each instance of a leaf cell, and makes sure that the
logical interconnection between nodes implies that sharing
of that node. Notice that the composition rule would not
generate any more extra nodes than it does extra geometry

on the mask,

Composition Cells

Cells that are not leaf cells are restricted to specifying
only logical interconnections between instances of other
cells. Other than that, the organization in SLaP  is very
similar, The connectors for the outside world are declared
in the initializing code of the class, as they were for
leat cells, and the description of the implementation of

this cell is done in a procedure,

A composition cell must be described in terms of instances
and their interconnections, This description is provided
algorithmically by PROCEDURE HIER, Again, the user gets
the full power of the programming language aleng with the
built in procedures of the SLAP system., The combinator
representing this composition cell couvld be derived from a
suitable notation, if not SIMULA, then LISP [Turner 19791,

An example of the use of the power of the host language in
the design of a composition cell is a programmable PLA
cell. The PLA cell that will be described later as an

example of the composition algorithm is characterized by
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data in o parameter file. These data include the number of

inputs, feedback terms, outputs, and minterms. In
addition, the code for each c¢ell in the logic array is
described, The PLA cell reads +this information and
generates the dappropriate instance and interconnection

description wusing wmany SIMULA constructs such as WHILE

loops, FOR loops, procedure calls and so on.
4,3 The Composition Algorithm

In this section, a geometry composition algoerithm will be
presented, some successfully run examples will be shown,
and the limitations and needed extensions te the algoerithm
will be discussed, This algoerithm 1is based on an idea

originally suggested by Sally Browning,

The Inputs and Outputs

The SLAP geometry composition algerithm is invoked with a
set of data describing a composition cell that needs to be
correctly composed, The input and output needs of this

algorithm are discussed in this section.

This algorithm works with a data bose that describes  the
interfaces of cells., A cell’s interface includes its name
and the connectors split up inte those on the horizontal
and verticaol edges. Ench connector is named and lies at a
specified position along one of the edges of the cell
beundary, Along with the connectors declared by the
designer are the avtomatically declared connectors used by
the system to cause edges to abut. These four connecters

are shewn in Figure 4.4 along with the code declaring thew.
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Cell Foo

ALy

LElx

Cell Class Foo;

Begin ----

o@(".(’,@y",o);
eb(". 2ex",0);

cen(".uny", ymax);
ct (" unx", xmax);

END;

Figure 4.4 Automatically Genenated Connectons
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The SL.AP algorithm expects das dinput two lists: the
instances to be parameterized and (1 list of
interconnections between connectors on  instances. These
two lists are generated by calling the HIER procedure of «a

composition cell.

The instances input to the SLAP algorithm contain, along
with normal instance data including o pointer to its
definition and a transforaation, the «atretching parameters
that define how much each connector has been displaced from
minimum, In addition to the instances defined by the user,
each cell generates instances of fake cells for the left,
bottom, right, aond top boundaries, These ore used to
ensure that the connectors of this composition cell lie on

its boundary,

Each interconnection represents a constraint in either the
herilzontal or vertical direction, The interconnection
constrainsg  two connectors to have a common coordinagte,
either an x or a ¢ coeordinate, A statement in the imbedded

language that produces interconnections looks Like:
; ; p
net("insti","conni","insgt2","conna "),

This would produce two interconnections constraints for  the
SLAP  algorithm, Figure 4.5 illustrates this pgt statement

and the constraints produced, The most obviovs constraint

is that the vertical positions, in  this case, dre
constrained toe be the same, Less obviocus 1w that the
edges, each represented by an auvtomatically declared

connector, must be constrained to have the same horizontal
position, With this decomposition of logical constraint
into two orthogonnl physical constraints, the algorithm is

separable into a horizontal part and a vertical part, each
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of which is completely independent of +the other. The
independence of the two dimensions is made possible by the
cells being rectangular. 8Since the connectors lie on  the
edges  of o rectangle, the auvtomatically declared connector
that constrains instance edges to abut need not be
connector specific, In this wuay, the set of horizontal
connectors and constraints are completely separate from the

vertical connectors and constraints,

Az set-up for the algorithm described below, each instance
gets a pointer to all of its constraints., These are then

sorted by increasing connector position,

As sutput, the SLAP algorithm produces a list of
parameterized instances, There are two sets of parameters,
one  for the horizontal and one for the vertical connectors.
The parameters are in the form of the amount o  connector
needs to be moved, along its edge away from the origin, in

order to satisfy all its physical constraints,

Overall Strateqy

The algorithm is basically axis independent: the horizontal
constraints can be handled completely separately from the
vertical, However, for purposes of discussion and ease of
understanding, the 1wo axes will be treated together., I
they are treated together, then there i a nice image that
describes exactly what happens d4s 4 new instance i% placed,

The instances are placed, one at a time, into the plape.
Te place an instance, each constraint invoelving an instance
nlready placed, an active constraint, 1s examined and an

attempt 1o satisfy the constraint is made., Satisfaction is
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Anst 1 Anst 2

Conn T.y=Conn 2.y
Conn 1.x= Conn 2.x

Figune 4.5 Constraints Generated by
net{"inst 1","conn 1","inst 2","conn 2");
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achieved by setting the parameter for the constrained
connaecter so  that it moves to the right place. The cases
where this cannot be done are discussed below, Since the
instances need to be transloated as well as stretched, the
first active constraint is used to Ffind the <tronslation
along the appropriate axis, rather than causing a parameter

to be set,

Trying to stretch a connector by a negative distance medns
that the constraint is unsatisfiable. When this happens,
the placement procedure is called recursively to re-place
the other instance beginning at the offending connector,
Trying to stretch a connector by a negative distoance on one
ceide of a4 constraint means  that the other side of the
constraint could be stretched a positive amount to achieve
satisfaction, O0Ff course, recursively re-placing the other
instance invelved wmay then cause other constraints toe be

unsatisfiable, and so on.

Each  instance is placed by the top level of the algorithm
once. Unsatisfiable constraints moy cause an instance to  be
re—placed. The complexity of the algorithm is, at best,
O(F of instances). AT worst the instances are placed in
Just  the buackwards order, giving a worset case complexity of
U(nd), Presorting the instances to discover as  much
ordering ns possible in  each dimension can  reduce the

expected time cost to near the best case.

Recursive Placement

The discovery of an unsatisfiable constraint may cause the
placement algoerithm to recurse, moving or stretching a

previously placed instance. This section discusses the
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conditions that cause recursive calls to  the placement

routine,

The example of recursive placement in  Figure 4.6 shows
that, as instance 12 is being placed, the constraint from

i, ed 10 ii.c® is  unsatisfiable becavse the needed

parameter, o, is npegative, To satisfy the constraint, o
recursive call is made on the placement routine, having it
place if starting with connector ¢, After re-plocement,
all the constraints are satisfied,. OFf couvrse, the
placement routine can recurse to  an arbitrary depth
depending on how far the constraints have to propagate.
Figure 4.7 illustrates this propagation of constraints, A
ingtance A is being placed, it recurses to stretch instance

E, which has to move instance {, and so on down to instance
E..

Another case that requires the recursive call  of  the
placement routine ig  more  than one constraoint on o
connector., The user is not allowed to connect wmore than
two connectors; however The syatam generated  edge
connectors can be constrained to abut  an  arbitrary nusmber
of other edge connectors, Figure 4.8 illustrates the three
instance case, Instances A and B have been placed and
instance  is in  the process of being placed vertically,

After processing the constraint between the top edge  of C

and  the bottom edge of A, we get the situation in Figure

4.8-B. The constraint between § and B causes a recursive

call to re-ploce instance A, producing the finol results

showr in Figure 4,8-0,

Lf  the instances can be sorted so that there are never ony

unsatisfied constraints, then the recursive re-placement
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Figure 4.6 Recursive Constraint Propagation
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needn’t be includec. Doing that sort alse reduces the time
complexity of the algoriths to its minimum, However,
finding the ordering that minimizes recursive re-placement
is a not an easy thing to do, and was the basis of the
first few cuts ot the 8SLAP algorithm, The present
algorithm is very straightforward and easy to code, wmaking

it clean and attractive,

Extensions to the Algorithm

The present nlgorithm has TWao major deficiencies!
uncoenstrained instance edges wmay overlap other instances
and  instances do not automatically wmirror or rotate to

satisfy constraints,

Aany  ingtance  Wwith  any interconnection to another instance

has both horizontal and vertical constraints; however, any

particular edge wmay not be constrained, This lack of
constraint might result in one instance sverlapping
another, The illegal overlap is easily found, but not so

easily fixed., The solution +to this problem is not as
straightforward as it might first seem, since there may be
many different ways to guarantee non—overlap. The trick is

to Find the "best" one,

Mirroring and rotating instances to satisfy the constraints
is, 1 believe, a fairly trivial extension to the overall
system, Mirroring requires logic to notice that, when
trying to satisfy the second constraint, the twe connectors
involved are on opposite sides of the already satisfied
constraint, Rotating can be discovered from the
examination of the intercoennections: if it involves «

connector on a horizontal edge and one on a vertical edge
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then a rotation is required,
4.4 Examples and Conclusions

In this section, some small examples are discussed to
illustrate features of the SLAP system, A fairly complex
example is presented as some evidence that the sysatem is
usable 10 design VLSBT, Some conclusions about the

algorithm and future extensions are also discussed,

Small Examples

Three views of o very simple, three instance cell are shown
in Figure 4.9, Tihhe top wview shows a bounding box
representation of each of the three instances showing thelir
relative sizes, connactor locations, and logical
interconnections., The center view shows a bounding box
representation that is produced by the SLAP syvstem. This
is 10 view of the solved cell, with the connectors shown
abutting, The red boxes indicate how much the different
connectors hove had to be sgtretched to satisfy the
constraints, The bottom view shows how the instantiated
layout has the internal geometries stretched along with  the

connectors,

To illustrate what happens with a multi-level hierarchy,
two  instances of the cell solved in Figure 4.9 are made
into another cell, as shown in Figure 4,40, The bounding
box representation of the solved cell is shown at the top,
one level deeper in the hierarchy is shown in  the center,

The bottom view is the instantiated layout.
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Figune 4,10 Muwlti-level Hienanchy Example
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In a wmultilevel hierarchy, a compoesition cell can be
instanced in another composition cell, When the
coemposition algorithm is run, the composition cell instance
is parameterized, Ingside that instanced composition cell
are other instances with their own parameterization, When
instantiating the hierarchy tree, the parameters mMmust be

propagated down the hierarchy by a reverse composition

rule, Composing the parameters is a straightforward
process, As  illustrated in Figure 4.4%, sowme of ‘the

parameters passed inte the parent cell need to be added
into the parameter for a particuvlar instance, Bousically
the algorithm adds up all the parameters from connectors on
the parent cell that are to the left of, or below, the
instance’s connector under consideration, Not all of the
parent connectors count however, because some of  them Were
already used for connectors to the left or below on this
instance., In effect, all of the parameters for the
connectors in the range shown in Figure 4,11 are added into
the parameter for that instance’s connector, This
algorithm is recursively applied down to the leaves of the
hierarchy, where the parameters are used to generate

geometry,

f Programmaoble PLA

To try and lend credence to this whole algorithm, a fairly
complex cell was designed: a programmable PLA, This PLA s
characterized by a simple Ffile Fformat that containg the
number of inputs, outputs, feedback state terwms, and
minterms, The file also contains the code for the AND and
OR planes for the PLA. The layouts for the cells were
stolen directly from Mead and Conway, ulthuugh‘they had to

be puarameterized for the SLAP system,
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The total number of instances in the cell, whose layout is
shown in Figure 4.12, was 7%, with S2%9% constraints, The
system produced the twoe graphic representations shown in
Figure 4,12, the top view being the bounding box with
visible stretch-marks, and the bottom view being the mask

layout. The file that generated this PLA is the following:

22 4 4 = ¥in #feedback #Fout Fminterms
100104 444444 =~ and-plane code/or-plane code
044040 000000
1040X0 104404
0XiX44 040010

The SIMULA implementation that produced these drawings took

slightly over 2 cpu-minutes on o DECsystem—20,

Conclusions and Extensions

The current algorithe does not automatically rotate and
mirror instance to satisfy the logical constraints of  the
composition cells, This is a major lack in a practical
design system, but should be a straightforward addition to

the algorithm presented,

An improvement suggested by Martin Newell would allow the
cennectors to move a certain distance before they affected
thelir neighbor. In +this way, wminor mismotches In on
interface could be adjusted without the need to increase

the size of the cell,

Probably the biggest deficiency of the geometry algorithm
is its inability to handle incompletely specified systems,
Each  instance must have o specified relationship with any
instunce that might interfere. Not only does this put a

brurden on the designer, but it precludes wusing the
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algorithm on a wvery interesting class of cells, fAn
intriguing application of the geometry algorithm is in the
aren of wiring cells. The automatic generation of wWwiring
cells could be a Fairly straightforward adaptation of
classic roeuting techniques. Wiring cells could be
generated using a small set of basic wiring cells: cross
overs, contacts, corners and so on, These primitives could
then be just logically interconnected to satisfy the
logical constraints, The geometry composition algorithm
would then place and stretch the bosic wiring cells to fit

together.
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Chapter %

Functional Abstraction

The previous chapter looked into guaranteeing the geometrlic
correctness of a design, In this chapter, the major
sub ject is that of guaranteeing some sort of Ffunctional

correctness or at least consistency throughout the design.

suaranteeing geometric correctness is a  large step  toward
guaranteeing the Ffunctional correctness, Having a layout
that is inconsistent with the logical interconnections does
not wuwsually help to improve the functionality, However,
there need to be more aids to help the designer be sure

that he is building a logically consistent hierarchy,
5.4 What Is "Functional Abstraction"?

Functional abstraction is a buzzwoerd vused to describe
TYPELng in a hierarchical design system, It is an attempt
te capture the inherently recursive noture of hierarchies
by abstracting the semantics of a design, Abstracting o
function means to plick out exactly those features, L.e., the
drive capability of a particuvlar output, which are
important to someone trying to deal with the function,
Thus, Ffunctional abstraction in a hierarchy is accomplished

through an abstraction of what is bhappening ot  the level
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below, Functional abstraction presupposes that details of
the implementation are not necessary when dealing with a

system, resuvlting in o reduction of information.

Functional abstraction allows uwg to  interact with o ¢ell
without having 10 delve into the guts of its

implementation,

Ideons from TYPEing in Software

TYPEiIng is a fairly widespread software technique that
attempts to eliminate certain classes of common programming
errors, Some of the errors caught by typical TYPE systems
include misspellings, missing parameters, parameters of the
wrong TYPE, and sometimes even array bound errors, These
errors  can be identified merely by fofcing the programmer

to assoeciate every variable with a TYPE.

In HBoMe languages, TYPEing is alsoe used to cause
coemputation, i.e. coercions between equivalent TYPEs, Some
coercions are almost always implicitly included in a TYPEd
language The "most common examples are the compiler
coercions between INTEGER and REAL. Some  languaaes,
notably ICL [Ayres 19781, allow the wuser to declare an

algorithmic way to coerce one TYPE into another,

Coercions are basically a method uvsed to "relax" a TYPEing
system o little, As an example, let’s consider writing a
soert program. The logic, and 90 percent of the program, is
completely independent of what TYPE of objects are being
sorted. The only TYPE dependent operation is an order
relation between the objects, With coercions, the entire

sort program can be written in terms of a TYPE optimized
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for sorting. When the program is called to sort o group of
some  other TYPE, a coercion can provide auvtomatic
translation to the sorting TYPE. In a typical fixed
TYPEing system, either a different sort program must be
written for each TYPE of data, or the TYPE system has to be
breanched in some way, (As a sidelight, this particular
example works very waell in an object oriented enviroenment:

each object that can be sorted is declared a subclass of

SORTARLE . The new subclass provides o procedure to defineg
its peculiar oerdering relation, CLASS  SUORTARBLE would

contain the code to do the actual sorting.)

TYPEs in o Hierarchy

In common with all preperties in our  hierarchy, TYPEs

originate at the leaves and are propagated up the hierarchy

according teo some composition rule, This is somewhnt
different than the vsual kind of TYPEiIng in programming
languages . TYPEing in a hierarchy specifically governs the

set of legal compositions,

TYPEs will be wused in our hierarchy +to cateh illegal
compositions, those where the connectors on  two instances
are  interconnected but are not compatible. Two connectors
that can be legally connected are said to conform,
Checking Ffor connector conformance is not as simple as a
simple equality test between their TYPEs. As  an  example,
consider a TYPE system that has inputs and outputs,
Connecting an input to an input is allowed, as is an  output
to an input, but connecting twoe cutputs is illegal. As the
number of TYPEs increases, these conformance rules get more

complex,
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Each TYPE must have a propagation ryle to guarantee that

the functional constraints i1 represents are carried up the
hierarchy. As  has been wmentioned before, all good
hierarchical algorithms consist of leaf definitions and a
composition rule., Part of +the composition rule is the
generation of the data needed by that composition rule at
the next level in the hierarchy. This generation of data,
or abstraction of Ffunction, is handled by o propagation
rule for TYPEs,

Satisfyving the Mathematics

When discussing the mathematics of hierarchical systems in

chapter 4, we assumed o strict separation between inputs

and  outputs, In particular, outputs could not be
connected, A simple fixed typing svstem would allow vs to
enforce such strict separations, In addition, the

separation of VDD from GND could be maintained.

Remember that buses, or shared variobles, imply that some
constraints on  the inputs and outputs of o wmodule be
propogoted up the hierarchy, Not only do these constraints
have a fixed aspect, 1.e., that an input must be mutually
exclusive, they also have connector specific aspects, 1l.e,
that an  input is mutually exclusive with respect to a

particular bus.

The addition of a simple typing system to check for these
kinds of rules allows the assumptions Necessary for
mathematical analysis to be enforced during design. This
enforcement makes the mathematics a bit more realistic
because the designer is Fforced to rigidly adhere to his

original assumptions,



-10%~

5.2 Example Type Systems

This section will present two hierarchical TYPEs: the Rem
and Mead restored logic types [Rem 419801 and types to
guarantee mutual exclusion between bus writers, The
objective of the restored logic, RL, type svatem i to
guarantee that all signals in a CMOS VLSI system are
restored at some peoint, i.e. that there is a short path
between a signal and one of the "ralls", either power or
ground, The RL  system alse happens to  support the
separation of inputs and outputs that is needed for the
Mathematics of hierarchies from Chapter 3., The other type
system that will be discussed s one that ottempts to
guarantee that multiple writers on o bus will be mutually
gxclusive, i.e. only one will write on the bus at a time,
The wmutual exclusion type system enforces the constraints

discovered in section 3.4,

Restoring Logic

The original formulation of the Restored Logic rules dealt
with a slightly different hierarchy than the one vsed in
this thesis, The restoring logic hierarchy is bullt out of
RLM?’s, or restoring logic wmodules, Each RLM can  be
composed of instances of other RLM’s hooked together with a
network of switches, The switches are, in general, built
out of two parallel CMOS transistors, although one of the
transistors can be removed in many cases by o0 simple

optimizer,

The connectors on an RLM are split into inputs and outpuls,

Bidirectional buses are handled by making the entire bug,
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including drivers, receivers, and the bus-writer selection
circuitry an RLM., The designer must wverify that the bus
RLM satisfies the restored logic requirements, detailed

bhelow,

All RLM’s must obey two rules, a "no-fighting"” rule and a
"close~to-an-output” rule, The no-fighting rule guorantees
that no two outputs will be connected together, The
close~to-an-output rule guarantees that all inputs are
driven by restored outputs, Since an  input cuan  be
connected to some output through a network of switches, the
sWwitch network must be examined to make sure the input is
properly connected independent of the state of the wmodule’s
inputs, With the additional definition that an RLM’g
cutputs to the outside world look like inputs inside, and
similarly  with the inputs from outside, these two rules
guarantee that all strings of switches will be no  longer

than a constant multiple of the depth of the hierarchy,

One of the most important facts to notice is that the rules
can  be completely verified within § level of the hierarchy,
This Fact in conjuction with the "closed" nature of RLM’s,
i.e. that any proper composition of RLM’s makes another
RLM, means the restoring logic type system will make a

proper composition rule,

Gince the hierarchy used in this thesis does not have any
interconnection through switches, the RL rules simplify to
the "no~fighting"” rule and a “"no-floeating-input" rule.
Since there are no switch networks interconnecting RLM’s,
the rule requiring inputs to be driven by outputs reduces
te o rule requiring that all inputs be connected to an

output.



A  complication presented by the nature of the hierarchy is
that of wiring cells, In oerder to eliminate the necessity
of defining a new wiring cell Ffor every combination of
inputs and outputs that are hooked together, some way of
representing the untyped nature of wires is needed. & wire
by itself has no type, it merely represents the electrical

equivalence of the connectors it touches,

A type system that will check that a composition is a legal
RLM has been implemented wusing three basic types. The
input fype represents a connector that expected information

to be passed inte the c¢ell, The oultpul represents

restored logic signal leaving the cell., & wireThry fType
represents  the uncommitted noture of the wWwiring cells.
Connectors of type input are allowed to connect to other
inputs and outputs, They propagate up the hierarchy just
as an input with no changes. Quputs can connect only  to
inputs  and propagate unchanged up the hierarchy. The
wireThry type has the wmost interesting conformance and
propagation rules. These rules will be described in detail

in the next two major sections,

Mutunl Exclusion

In a design style that allows multiple writer bus
cCommunication, a formal way of guaranteeing exclusive use
of the bus is needed, The problem is amplified in «a
hierarchical system, where the bus will tend to be split
into little independent pieces. The guarantee of mutual
exclusion between bus writers is the aim of the MEX type

spstem,
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The system discussed in this chapter has three types: type
bus, type MexIn (mutual exclusive input), and type MexQut

(mutual exclusive output), Type bus is vsed to identify
those connectors that represent a shared bus, Connectors
of type MexlIn represent signals that can enable o write on

a bus, MexOut connectors are guaranteed to be mutually

exclusive and suitable for enabling a bus write,.

The conformance rules for these types are all simple. Type
bus can  confoerm only with other connectors of type bus,
MexOuts can conform only with MexIns, and MexIns only with
MexQuts, The propogation rules are more complex and will

be described in the next major section,

Equivalence Classes

A common property between the more inTefasting of the types
discussed above is that connectors Wwith a given type ore
somehow grouped., The wireThru type in the RL typing system
has  te have some way of grouping all of those connectors
that are electrically equivalent, The bus From the MEX
scheme  should be grouped with all of the other connectors
That alse represent that bus, Similarly, the MexOuts have
to be grouped with the other connectors that are mutually

exclusive,

These groupings will be called equivalence classes, An

equivalence class is a set of objects that share a  common
property, For example, the connectors of type wireThru
grouped in the same equivalence class are all electrically

equivalent,
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For these two typing systems, several equivalence classes
will be defined, Each class will relate some of the
connectors in a cell, but the property that relates these
connectors will wvary with the type. The equivalence clasg
will be part of the data that is needed at the leaves or

abstracted for each cell,

5.3 Propagation

The rules that abstract the appropriate functional aspects
for RLMs and mutual exclusion cells are the subject of this

section,

Restoring Logic

As mentioned when presenting the RL types, the propogation

rule  that is of interest is the rule for type wi

Types input and output just trivially propagate themselves
up the hierarchy. The interesting feature of type wireThruy

is that it requires the use of an equivalence class,

Type wireThru 1i& meant to represent the behavior of wiring
tells in oan RL type system, As such, all of the connectors
that are wired together in a leaf cell must be declared to
be o part of an equivalence class to represent their

electrical equivalence,

Given that the leaf cells are correctly specified, the
connectors for a composition cell containing wiring cells
must be correctly typed, The Equivalence classes relating
those composition cell connectors that are wired together
through instances of wiring cells must be constructed,

Once these equivalence classes exist, the composition cell
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connectors must be typed appropriately.

Figure 5.4 shows some pidgin Simula code describing an
algorithm that abstracts the equivalence classes from an RL
composition cell, The algorithm visits each connector of
the composition cell once. If the connector is already in
an equivalence class, then it has olready been typed
correctly. The connector is  interconnected with only one
internal connector, one that is on an instance contained by
this composition cell. Thus there are three cases depending
on  the internal connector type. Two of the coases are easy:
if the internal connector is of type input or output, then
the composition cell connector wmerely copies that type.
The third cose is interesting. When the internal connector
is  of type wireThru, a recursive algorithm is called to
build the equivalence class and return the correct type for

the composition cell connector,

The recursive algorithm that builds the equivalence class
My noet end up specifying that the composition cell
connector be a wireThru., In the process of building the
equivalence class, it also touches all of the "ends" of the
wiring network, i.e. all of the coennectors in the
cemposition that are not of type wireThru, While doing
that it  keeps track of the kinds of connectors wired
together, The rule for determining the type of the
externally available connector has three cases, I¥  there
are  no inputs or outputs, then the external connector is of
type wireThru., If there are inputs and no outputs, then
the rexternal connecter is of type input. I there are
ouvtputs, then the external connector is an ocutput. Hoving
more  than one output wired together is a composition error,

which will be identified during the conformance check.
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After the recursive algorithm builds up the equivalence
class and determines what type those equivalent connectors
will  have, it assigns a type to each external connector in

the get,

Figure 5.2 shows an example of how type wireThru propagates
up the hierarchy. The composition cell, GRID, is made up
of % cells lald out in a grid, The four corner instances
are of another composition cell called ELEN because of the
cells it composes, The other five instances, of cell TEE,
have four connectors, all of which are wired together in a
tee, ELEN is wmade up of four instances, twoe of which
instance a DASH cell containing a single horizontal wire,
apother instances a cell containing an EL shaped wire, and
the last instances o cell with an EN  shaped wire, Cell
GRID is shown in Flgure 5.2, and its equivalence classes
are shown in Figure 9.3, A plot of the GRID cell is shown

in Figure S.,4,

Mutunl Exclusion

Similar to the wireThruv type, the MEX types will be grouped
in  equivalence classes, However, the MEX eqguivalence
classes are o bit different since the connectors in the
class can be of different types, The equivalence that
holds together a set of MEX connectors is that they all
deal with a particular bus, the bus whose access 1w  being

controlled,

Leaf cells are declared in a similar way to RL  leaf cells,
any coennector that is to be  typed as a bus, MexIn, or
MexOut is made a part of an equivalence class, All  of the

MEX type connectors that have any connection at all are
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made a part of the gsame class, "Any connection at  all®
means  all connectors representing a particular bus, any
MexIns that enable drivers to write on  that bus, and any
MexOuts representing enables that couvld drive that bus. If
there are no buses in the cell, then the equivalence closs

include those MexDuts enabled by specific MexIngs,

As an example of a leaf cell, consider a two output
de-multiplexor, or selector. This leaf cell could be the
basis for mutually exclusive bus control, The ovtputs of
the cell, the connectors named 0 and 4, are mutually
exclusive independent of the inputs to the cell,
Independent of the state of the selector, s, only one of
the two ovtputs can be high, The two outputs will not be
high at all unless the enable, e, is high. This means that
for the outputs to be mutually exclusive with other outputs
that might drive the suame bus, the enable must be mutually
exclusive with those other outputs as well. In shoert, the
MEX equivalence c¢lass for this leaf cell consists of 0, i,
and e¢. The selector, s, is not included becavse the MEX
property is completely independent of its state. Figure
5.5 illustrates the schematic of the selector and indicates

the appropriate equivalence class,

Another sample leaf cell is the bus writer itself, Figure
5.6 shows its schematic along with the MEX equivalence
class, Except for power and ground, most of the connectors

of this cell are MEX equivalent,

The composition rule for propagating equivalence classes up
the hierarchy is very similar to that of type wireThru. In
fact, with minor modifications the algorithm in Figure .1

could be wused to find the composition cell equivalence
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closses., A more elegant view of the composition algorithm

ls suqggested by a graph theory model.

Consider the graph formed by the logical interconnections
between equivalence classes on instances of a composition
cell, As illustrated in Figure 5.7, this is an undirected,
possibly wunconnected graph, The transitive closure of a
graph is formed by adding an edge between two nodes if
there is any other path connecting them. In the transitive
closure of the graph of Figure 5.7, an edge would be added
between the nodes A and B, The composition algorithm for
the MEX typing system builds the equivalence claosses that
contain the externally wvisible nodes of the result of the

transitive closure of the equivalence class interconnection

graph, (Building the equivalence classes in the RL type
system can be described in exactly the same way, The
algorithm given there illustrates how this wmight be

implemented in a typical programming languoge.)

Not only do the connectors in a composition cell belong to
an equivalence class, but they have to have a type as  well,
Ingtead of the funny way the types abstract in the wireThru
cell, the type of a composition cell connector is just
copied directly from the level below. The only thing that

changes 1s its equivalence class,

An  example of a MEX composition cell is o 4 output selector
built out of three 2 output selectors., The cell is simply
built by hooking the 0 and 4 outputs froem one selector into
the enables of the other two selectors. This isg
Lllustrated in Figure 9.8, All of the other connectors are
available externally, The four outputs, labeled 00, 01,

10, and 441 and the enable are all part of the composition
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Figure 5.7 Equivalence Graph



cell’s equivalence class. Again, the selectors aren’t
involved, Notice that if the instance A, the selector that
enables the other two selectors, is not  included in  the
cell and instead the enables from the remaining two
instances oare externally available, then the connectors
ferm two equivalence classes. These two classes reflect

the independent nature of the internal structure,

To illustrate what happens when a bus is introduced, the
second composition example will hook together the 4 output
selector and 4 bus drivers., The interconnections of the
instances is shown in Figure %.9. Notice how, despite the
large number  of MEX equivalent connectors inside the
composition cell, only three of the externally available
cennectors are MEX equivalent, This illustrotes the

gimplifications that functional abstractions can  provide,

even at higher levels in the hierarchy,
5.4 Conformance and Coercion

In this section, the “"horizontal" aspects of typing are
discussed, Those algorithms that work entirely within one
level of the hierarchy wmight be termed “horizontal", as
opposed to these that proepagate information vertically in
the tree. The horizontal algorithm in a typing system is

the one that verifies that a composition cell represents a

legal composition of lower level cells. A illegal
composition is one that tries to  interconnect
non—confaorming connectors. The check for conformance

between connectors is  the central part of this horizontal

algor ithm.
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Figure 5.9 Bus and Sefecton



Restoring Loegic

As was mentioned when the RL typing system was presented,
two of the three types are easy to check for conformance.
Inputs conform to outputs or other inputs, but outputs do
net conform to other outputs. The trick with restoring

logic iIs handling the type wireThru,

Fertunately, the transitive closure wmetaphor is directly
applicable here, To check that a wiring cell doesn’t

violate any of the RL rules is simply a matter of building

an  internal equivalence class and examining it The
equivalence class  should contain all of the internal
connectors  that transitively connect, This transitive

property can  be found vsing a classical transitive closure
algorithm [Warshall 49621, or a recursive one ns described
hefore, The legality of the interconnection can be checked
by simply counting the number of outputs included in that
equivalence class, If there is more than one, then it is

an illegal composition,

Mutunl Excluysion

The MEX typing system is edsy to check for legal
composition as it stands, since nothing need be done except
local checks., Bus type connectors conform only to others
of type bus., MEXinputs conform only to MEXoutputs and vice

versa,

Te swimplify this discussion, wiring cells, and thus type
wireThru, were not included in the MEX type system, The
addition of a MexWireThru type would impact both the

vertical propagation and the horizontal checking algorithms



in a way very similar to the way the RL type system handles

type wireThru,

The topic of coercions is an appropriate one for a section
about type conformance since type mismatches are the reason
to coerce, Coercions are used to automatically Fix up a
minor type mismatch, The classic example from programming
languages is INTEGER versus REAL. Most progaramming
languages wWwill coerce between these two virtually at will,
Some lanquage designers consider this a virtuve, some do

not.,

In a hierarchical system, coercions are used to incredase
the number of legal compositions by fixing an illegal one,
Coercions can often help to make predesigned cells “fit"
easily into a  larger design, perhaps with different
coercions in different places, Coercions in effect make
the specification of interfaces a less exacting process,
Small, easily fixed misunderstandings between designers on
different sides " of an interface can be auvtomatically swept
under the proverbial rug and allow the larger problems to

hhe attacked,

Just by adding coercions, the locality of a design system
can be increased, Even if the design system restricts all
propagation effects to a straight line path te the root of
the hierarchy, coercions can help by stoepping the
propogation prematurely, Take a type change at a leaf, for
example, In a typical system, the user might have to
manually touch all of the composition cells that wuse that

leaf cell, even indirectly, Ry intreducing a coercion thaot
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ad justs for the type change, rippling a c¢hange up the
hierarchy can be stopped well before the root, perhaps even

at the first level above the leaf,
“.5 Some Conclusions

The example typing systems that were presented in  this
chapter are by no means o complete set of VLST types,
Rather, the abundance of ways of wusing o type system in
VLSBT presents o problem of which to do next. Some of the
obvious candidates are power, ground, clock phases, various
types  of control lines, and dynamic versus static stoerage

nodes ,

With the realization that there are a lot of different
types comes the fedr that a type system with wmany  types
Might become unmanageable., How, with 100 different 5igna}
types, do you write the rules for conformance? Do all na

possible cases have to be addressed?

Perhaps the type system can be managed through some kind of

orthogonalizotion, Many of the different types of
connectors that were mentioned are representative of
independent properties, A particular connector might

represent a control line that is active on phase 2 of the
clock, The foct that it is a control line has little to do
with its timing information., The ability to orthogoenalize
a  glven type system is going to be important, especially if
user defined types are allowed., It may be that types fall
into a natural hierarchy, or that they group naturally the
wiay layout geometry orthogonalizes +to circuit diagrams,
Whatever the method, this seems like a fruitful area for

more work.,
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Chapter 6

The Future Wwith Hierarchies

Previouvs chapters have presented a separated hierarchy, a
mathematic model, and several composition algorithms., The
adoption of a separated hierarchy led to o precise
mathematical notation of the hierarchy. A geometry
composition algorithm was presented that automatically
produces the mask descriptions of a system given the mosk
descriptions of the leaf cells. Two TYPEing systems, and
their ossociated compoesition algorithms, were presented

that identify illegal compositions,

This chapter will draw some conclusions from the preceding
chapters and will try to suggest some areas +for future

research.,
6.1 Some Conclusions

Perhaps the most innovative part of this dissertation is
the organization of the hierarchy, By  separating the
composition from the implementation, whole problem areas
are  eliminated, and simple algorithms exist for at least
some of the problems that remalin. Since the separated
hierarchy lends itself to mathematical analysis, there is

some  hope that design may become « Mmore formallzed



procedure,

The simplification of consistency checks in the separated
hierarchy My be its biggest advantage ., Fach
representation of a leaf cell wmust still be checked For
consistency with the others, but analysis of small cells
has never been a problem. The problem with consistency
checks has always been the sheer amount of computation time
required to check an entire chip. With the complexity of
VLST systems rising as it is, no full chip algorithms will
be able to survive., Simple computations show that programs
like design rule checkers would end up running for years on

what will soon be rouvtine designs.

Mathematically Speaking

The mathematical analysis of hierarchies vsing combinators
lends one immediote result: equality between hierarchies
is, in general, an undecidable question, Because of the
recursive nature of the Y operator, a combinator may

represent an infinite system,

However, by reducing the combinatoer to its "normoal form,"
if any, hierarchical equivalence reduces to a trivial
syntoctic check., A combinator in normal form can be used
to describe finite objects, such as any realizable chip,
and yet is easily checked for equivalence to another normal

form combinator.

Geometry Algorithms

The conclusions drawn from the geomatry compoes.ition

algorithm presented in Chapter 4 suggest many improvements



needed for its practical application. These improvements
include some necessary additions such as rotation and
mirroring, One of the "luxury" improvements suggested was
to allow connectors to move a certain distance without
affecting their neighbors., This freedom of movement will
produce smaller layouts without too much effect on the
algorithm, Another luxury would be wunordered connectors,
allowing for "pin swapping"” and other automatic

optimizations,

Functionnl Abstraction

The area of functional abstractions seems +to be the narea

needing the most work., An  unbiased language For
abstracting functional constraints is neaded for a
generally wuseful hierarchical design system. No  such

language is available although specific cases have been

analyzed,

It may be that there is no general method Ffor abstracting
functions, Each  hierarchical algoerithm needs something
slightly different abstracted from the level below. I+
there is no general method of abstraction, then that needs
to be shown, and an easy way of adding new abstractions
needs  to be developed, The system described in this thesis
does not provide any wmethod for adding new hierarchical

algorithms, It should,

Compilation

The ideal symbolized by the term "silicon compilation® is
to automatically implement a system, represented in  some

programming language, in silicon, As discussed in Chapter



4, the Bristle Rlocks system does just that for o
particular chip architecture, A key question is: What is
the relationship between the work presented here and

"silicon compilation?”

There are some encouraging signs that suggest that the
separated hierarchy approach nmay lead to a more general
silicon compiler, The close relationship between the
combinater notation and the lambda calculus suggests a
close relationship between combinators and LISP [McCarthy
19651, A LISP system consists of two types of ohjects: a
peinter palir, and the primitive objects called ‘“atoms."
This is wvery suggestive of the separated hierarchy in that
there is o strict separation between ob jects theat
"compose,” the pointer pair and the composition cell, and
objects that just "are,” the atoms and leaf cells. A
potentially rewarding research area might be to push on
this analogy by trying to Tcompile" LISP programs into

silicon,

&.2 Other Problems —— testability, speed, power, etc,
The hierarchical algorithms presented in this thesis

repregent a  very small subset of the algorithms needed for
1 design  system, The geometry and typing algorithms
discussed might be the most basic, but may not be the most

important to producing a functionally correct design.

One badly needed class of algoerithm would produce output
compatible with simulators, A wide range of algorithms
would be wuseful, Ouput for a functional simulator would be
very useful in the early portions of +the design cycle,

With a behavioral description included in each leaf cell, a
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hierarchical algorithm could produce code that would rurn  in
SoMe functional simulator, The oalgorithm wmight even
generate code in your favoerite language which, when
compiled and executed, simulated the chip. Another output
form might be a switch level simulator like MOSSIM from MIT
or a similar simulator developed at Caltech by John Wipfli.
These simulators provide the designer with a way to quickly
check the logical functional of a small design, No timing
or electrical characteristics are inveolved. Output to
SPICE or MSINC type of circult simulator would be another

vseful output for checking out critical paths in a design,

The hierarchical algorithms and structure presented in this
thesis have no provisions to increase design testability,
By the same token, there is certainly nothing to prevent
producing testable designs. Some research on  testability
in hierarchical designs could well be fruitful. Having a
formualism for discussing hierarchies may be an aid to this

research,

There is a whole raft of performance measures that are
needed in o useful design svstem, These measures include
timing and delay information, power dissipation, and so on.
Nene of these are terribly interesting technical problems,

but they are essentinl to effective desiqgn,

The whole issue of performance was ignored in this thesis,
The struvctured design wmethodology includes a method For
struocturing the wuse of time In o system, The use of
"semi-static" logic [Mead 419791 or ‘self-timed" logic
[Seitz 19791 separates considerations of system timing from
system function., KBy disallowing time-dependent clircuitry,

. system can be guaranteed to give the correct resuvlt,
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albeit somewhat slowly., The time performance of the system
can then be optimized independently, goining 10 to 20
percent, Conversely, a whole new architecture can be

explored thaot may give 10 times the performance,

An  interesting research area would be developing ]
representation, and associated composition rule, that would

help designers to guarantee a certain level of performance,
.3 Optimizing Correct Designs

One of the implications of trve hierarchical design as
preached in this thesis is a slightly different way of
optimization. Independent of the performance
characteristic being optimized (speed, power, darea, or
whatever), traditional design schemes have tended to moke
the process of optimizing a chip be a long one., In fact,
many times the process of optimization is one of complete
redesign. When that is the cqse,\the eptimizing cycle Moy
be on the order of years with little quarantee that the new

version is functionally the same as the old,

With the hierarchy developed in Chapter 2, and the dgeometry
algorithm from Chapter 4, a different optimization strategy
presents ftself. First of all, the chip is designed in a
rather 1traditional method: o floor plan is made of the top
level and the design is partitioned among the design team,
Fach portion of +the c¢hip hos a guestimate nos to slze and
pesition of coennectors, Immediately, the geametry
algorithm can be run to estimate chip size. Any other
hierarchical algorithms can be run to estimate speed,
power , and whatever other performance characteristics are

needed., As the first cut at each portion of the chip is
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finished, it is plugged into the high level description and
better performance figures are obtained, When all the
first cuts are done, o finished chip is available. That
first cut at a chip will usually be terrible, since none of
the designers have consulted their neighbors as to cells
pitches or connector locations., However, the chip will be

functionally correct,

From this point on, the process of chip design will be one
of optimization. The design can be checked, automatically,
for the worst physical mismatches: those instances that
haye been stretched the most. Select cells can  be

redefined to reduce the wmismatches, At _any noint, the

design __can_  be declored to  be finished., This allows the

chip to be released to the wmarketplace at the earliest
possible moment, As  the designers continue to optimize,

smaoller, faster versions can be released,

One of +the optimizations that should be available to the
designer is the ability to insert an automatically rouvted
wiring cell between instances in o composition cell., As an
example of the uvsefulness of this optimization technique
consider o composition cell containing two instances. The
cells that are instances each have a number of connectors
spaced irregularly along one edge. When the stretching
parameters for the two cells are computed by the SLAP
algorithm  from chapter &, the top level composition cell
could be as much as twice the area it should be. Ry
inserting a cell that does a "river route" between the two
instances, all of the parameters revert to zero. Oof
course, that savings only happens in one dimension, while

the other dimension is increased in length,
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Key to this whole process is the observation that each
optimization can be a foirly quick procedure., Locating the
next thing to optimize will be a simple process, whether
manual or automatic, Making local redesigns  that do not
affect functionnality but do improve either area or

performance are generally simple provided the redesigns  are

truly local, Making changes that require people to crawl
@1ll over the hierarchy are only cost effective if they

produce either huge aren savings onr large speed
improvements, Percentage improvements can probably be
obtained quickly through 1local eptimizations that require

little designer time with a true hierarchical system.

6.4 Gmall Today, Fast Tomorrow

An option that becomes available in a true hierarchicol
system allows the designer to “tune” his designs in a nice,
intuitive way, Any  design ils a delicate trade-off
invoelving o number of different cost functions., In VLSI,
the cost functions include speed, power, and chip area, A
trve hierarchical design system would allow changes that

affect the trode-offs to be made easily,

An  interesting method of designing chips would be to enable
each cell to adjust to different trade-off strategies,
Then, when the designer decides that the chip is just too
big, and that to compensate for it, he is willing to lower
the speed, he just changes the trade—-off and gets a new

chip.

One way of implementing this wmight be to have each cell

parameterized based on a wvector of priorities, The
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priorities represent a vector in the N-—space represented by
the N different cost functions. Any design is at a  point
in  this N-space that represents the trade-offs made. Fach
leaf cell is designed to conform as best it can  to the
vector, Thus an inverter cell, when given a vector slanted
toward performance, would beef up its transistors. The
same  inverter, given a vector slanted toward low power,
might raise the resistance of itse pullup, A agiven cell’s
ability to conform to the priority vector might be poor,
but being able to conform at oll will help to customize o

design,

The composition cells would also be parameterized with the
samMe priorities, and might pick between several

implementations or just pass the vector down the tree.

The ability to investigate different points in  tha
trade~off space would enable designs better tuned to their
requirements as well as a single design to be competitive

in different marketplaces,

With design aids like this, designing chips might even turn

out to be fun!
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