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ABSTRACT 

In this thesis an attempt is made to clarify the connection 

between two physically different SU(6)W algebras. The one SU(6)W is 

an approximate symmetry group, and leads to the idea that hadrons are 

composed of just a few 11 constituent 11 quarks. The other SU(6)W is an 

algebra of physically observable operators, integrals over various 

components of vector, axial, and tensor currents. These currents 

behave, algebraically, as if they were simple bilinear combinations 

of 11 current" quark fields. 

We propose that these two physically different algebras 

are related by a unitary transformation. This transformation is 

necessarily very different from the identity. We ider~ify several 

properties of this transformation, and then go on to construct it 

explicitly in the free quark model, where it yields an exactly con­

served SU(6)W symmetry of constituent quarks. 

We then show how this transformation may be constructed in 

models with interacting quarks. In general, ·t;he algebraic structure 

of the transformation depends upon the dynamical details of the 

interaction. We discuss the effect of interactions in more detail, 

distinguishing two cases. In one case the structure of the trans­

formation in the interacting model need not have any relation to that 

of the free quark model. In the other case, the algebraic structure 

of the two transformations are the same. We cannot distinguish these 

two cases at present. However, as found in the last section, the 
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algebraic structure of the transformed currents in nature seems to be 

roughly that given by the free quark model transformation. The 

mechanism by which this occurs is obscure at present, and we can 

make no clearcut distinction between the two cases. 

As we have indicated, the last section is devoted to the 

application of the algebraic structure of the free quark model trans­

formation to the matrix elements of physical currents. We are thus 

led to many successful approximate relations among matrix elements, 

not the least of which is the recovery of the famous ratio 

~ (proton)/t-lir (neutron)= - 3/2. 
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* I. INTRODUCTION 

Two Algebras Named SU( 6 )W 

The name SU(6)W first appeared in particle physics during 

the year 1965. Since that time, it has been used to denote the 

algebra of two physically different sets of operators. 

One of these SU(6)w's, which we shall hereafter call 

SU(6) was discovered by H.J. Linkin and S. Meshkov.(l) These w,strong' /;!'· 

authors sought to explain the approximate spin independence of the 

strong interactions by postulating that the strong interaction 

Hamiltonian, Hst' approximately commutes with a set of 35 operators 

a 
Wi • These operators are taken to have the same commutation relations, 

charge conjugation, and parity as the quark model expressions 

Jd3
x </(x) 

Ai 
(I-la) w. ~ 2 q(x) 

l 

W.l ~ 
l 

J 3 d X q+(x) 
1 

~cr J\i () (I-lb) - -qx 
2 2 

w.2 ~ fd
3

x + ~cr2 Ai (I-le) q (x) 2 q(x) 
l 2 

W3~ Ja
3

x + 3 Ai q (x) (J 2 q(x) (I-ld) i 2 

* This chapter is essentially a review, for the purpose of making the 
distinction between the two SU(6)w's as clear as possible. It 
contains nothing which cannot be found i~ references 5 and 11. 
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where A. is the usual 3x3 matrix representation of SU(3), and i runs 
i 

from Oto 8. The~ and rri are 4~4 Dirac matrices. Note that W is 
0 

excluded from SU(6)W; its inclusion simply enlarges the algebra 

slightly to U(6)w• One must be careful about interpreting expressions 

(I-la)--0:-ld). They are ~ equations. The tilde here means simply 

"has the same algebra a.s." a 
As we shall see later, the W. cannot even 

1 

be w.ritten as integrals over local operators; nevertheless, their 

algebra is the same. It is important not to become confused here. 

The expressions on the right-hand sides of (I-la) - (I-ld) are often 

used in quark models to denote an SU(6)W algebra of local currents. 

We do not wish to imply any such thing here. We only w.rite these 

e:>.--pressions as a shorthand for the assumed algebraic structure of the 

a 
wi • 

Now it should be iw.mediately clear -- from the hadron mass 

spectrum, for example -- that SU(6)W t symmetry, insofar as it ,s rang 

exists, must be badly broken. Nevertheless, the general hope is that 

there is some ideal limit, not 11 too 11 far removed from reality, in 

which the symmetry becomes exact. For example, we might hope that Hst 

can be broken up into the form H + a H. t' where . o in = 0 so 

that only H. t breaks the symmetry. If the matrix elements of H 
ill 0 

are 4rge in comparison to those of H. t' then we have broken symmetry, in 

which becomes exact in the "ideal limit II a ➔ 0. 

If we simply assume that such a-n ideal limit exists for 

SU(6)W t , and proceed to test the predictions of this hypothetical ,s rong 

symmetry, we find quite good agreement with experiment in many cases. 
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In making these predictions, the lowest lying negative parity mesons 

(the pseudoscalar and vector octets and singletaj are assumed to belong 

to the 35 and! representations, and the lowest lying positive parity 
1+ 3+ 

baryons (the 2 octet and 2 decimet) to the 56. 

Perhaps the most interesting feature of SU(6)W t is the ,s rong 

* fact that the W-charge of a particle seems to be independent of its 

momentum in the~ direction, Although this property is suggested by 

the quark model expressions (I-la)-(I-ld), (which are, moreover, only 

I\ 
invariant under boosts in the z direction in the ideal limit where 

they commute exactly with Hst), there is really no compelling reason 

to believe that the postulated W.a have the same Lorentz properties as 
1 

a 
these expressions. That the W. actually do commute with boosts in the 

1 

~ direction, [w.a, A
3

] = o, seems to be demonstrated by the validity 
1 

of the Johnson-Treiman relations( 2
) for a wide range of particle 

momenta. Th.is peculiar fea-l;u1·e ina.h.es s;yuu11et17 predictions particularly 

easy to evaluate for collinear processes. The fact that these pre-
,. 

dictions hold equally well for states with any momentum in the z 

direction has earned SU(6)W t the name of "relativistic spin ,s rong 

symmetry. 11 

In summary, there seems to be a fair amount of purely 

empirica.l evidence supporting the existence of a badly broken 

SU(6)W t symmetry. At present, we know very little about the ,s rang 

* Note that we shall use the term "charge" in a generic sense. Thus, 
we shall refer to any set of integrated operators forming a closed. 
algebra as 11 charges 11 regardless of whether or not they can be 
expressed as the spatial integral of the timelike component of a 
4-vector density, 
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charges which generate this symmetry. We l:now definitely only their 

coJillilutation relations, charge conjugation, and parity. We suspect 

I\ 
that the charges are invariant under boosts in the z direction (that 

is, in the ideal limit in which the symmetry is exact). Further than 

this, we cannot go at the moment. 

The second SU(6)W was introduced in the same year by 

R. Dashen and M. Gell-Mann.( 3) These authors considered extensions 

of the -well-known chiral SU(3) x SU(3) algebra of the vector and axial 

vector charges, F. and F. 5, respectively. These charges are the space 
::L ::L 

th integrals of the O components of the vector and axial vector current 

densities t::Y(x) and f Y5
(x). Both densities are directly measurable U 1 l 

in -weak and electromagnetic processes, and hence are -well-defined 

physical operators. Dashen and Gell-Mann proposed adding a new density, 

that of a -world scalar, to the system and commuting operators at equal 

times until the algebra is complete. If the P.CJ.11aJ time connnutation 

relations are those of the quark model, the algebra closes on a U(12) 

of 144 operators • .Among this set of operators one finds an anti­

symmetric tensor current, J=. µv (x), which behaves like the quark model 
1 

expression q (x) oµv ~i q(x). Although nothing seems to be directly 

coupled to this current in nature, unlike fiµ(x) and fiµ.5(x), it may 

nevertheless appear on the right-hand side of commutators of directly 

observable operators, eg. in We may thus 

assume that it makes physicaJ. sense to tall: about operators in which 

these tensor currents appear. 

The tensor currents J'iµv(x) are -particularly interesting 

for us because they can be used in conjunction with the vector and 
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axial vector currents to define an SU(6)W subgroup of U(l2) whose 

operators have the same commutation relations, charge conjugation, 

and parity as the W.a of SU(6)W st • Let us be careful not to 
1 , rang 

identify the two sets of operators too quickly, however, and instead 

call the new algebra by the name SU( 6 )W t • This algebra con­, curren s 

sists of 35 opera.tors F.a which are defined as 
J. 

F. = fd
3

x f. 0 (x) 
1 1 

(I-2a) 

F.l = l fd3 x f i 23(x) 
J. 2 (I-2b) 

F 2 
i = l fd3x 

2 
fi3l(x) (I-2c) 

3 l /d3x f_35(x) Fi = 2 1 
(I-2d) 

Tl'" c:rrr/~) algebra of th:ts set of operators -was ...... ....,v 'V 'W, currents 

suggested by the quark model, where the local currents are bilinear 

in quark fields, q+(x) r i q(x). The similarity in algebraic 

a: a: structure between the W. in (I-la) - (I-ld) and the F. above becomes 
1 1 

clearly evident with this identification. It is vital to distinguish 

similarity in structure from equality, however. In various quark 

models we find that the above charges are equal to integrals over the 

+ ) Ai ( ) bilinear expressions q (x r 2 q x, whereas in these same models 

a: the W. only have the same algebraic structure (indicated by the 
1 

a tilde). The W. in these models are not even integrals over local 
1 

operators. 
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In the case of the algebra (I-2a) - (I-2d) above, the 

operators may be completely defined, in principle, in a context other 

than that of the presumed symmetry itself. In particular, the Lorentz 

transformation properties are known, and ire clearly see the property 

= O if the F.a are conserved. 
J. 

In fact, the forms(I-2a)-

[-2d)show us how to sharpen our expression of this property: -we need 

only note that the F.a are "good11 operators, in the sense that their 
J. 

matrix elements don't vanish when taken between finite mass states with 

infinite momentum in the ~ direction. The "goodnessn of the F.a auto­
J. 

t [Fia, A3] ma ically implies = 0 in the limit of conservation, and 

a, 
gives an unambiguous statement of what we mean when the F. are not 

J. 

conserved. In a like manner, ire can summarize the idea that the 

SU(6} charges are independent of momentum in the ~ direction 
W,strong 

by making the W.o: 11 good11 operators. 
J. 

Equations (I-28. )- (I-?n.) demonstrate the existence of a set of 

35 operators F.a which are physically well defined, and 'Which seem in 
J. 

a 
all respects similar to the 35 operators W .• The fundamental question 

l 

is, are these two sets of operators really the same? There seem to be 

several good reasons for identifying the Wia with the Fia. In 

particular, it seems that the W., the generators of the ordinary SU(3) 
l 

of strong interactions, are the same as the F., the integrals of the 
J. 

timelike components of the vector currents, by the success of CVC in 

weak interactions. Since the two sets of operators behave alike in 

algebraic respects, it would be quite natural to use the hint f'rom CVC 

and set them all equal. There are, however, several formidable 

objections to such a procedure. 
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The first objection is that no sensible ideaJ. limit 

(wherein the charges of SU(6)W t commute with II t) is known to ,c~rren s s 

exist. SU(6)W t is not even a symmetry of the free quark model, ,curren s 

where the F.a fail to commute with the quark kinetic energy term. The 
J. 

only limit in -which SU(6)W t can become a symmetry is one where ,curren s 

the quark mass tends to infinity -- i.e., the nonrelativistic limit 

but such a limit can be of no value for the manifestly relativtstic 

processes which we wish to consider. One can argue that (as we find in 

the free q_uark mo a.el) the connnutator a 
[ F. , H tj 

J. s 
has a zero expectation 

value when taken between collinear states moving in the i direction. 

However, if one takes this idea seriously, one faces the difficulty of 

how to propagate the symmetry through the non-collinear intermediate 

states which presumably make large contributions to many low-energy 

strong interaction processes where SU(6) is known to work W,strong 
- - - , ..... " . ., fairJ.y weJ.J. lIOr nigne.r eaergy p1:ocesses, one might, ho...,,'C·:c:r, argue 

that the cutoff in transverse momentum at 300 MeV/c would be effective 

in suppressing the non-collinear intermediate states). 

Another -possibility is to couple the quarks to fields which 

transform according to non-trivial SU(6)W t representations, ,curren s 

hoping to arrange the interaction in such a W8,Y that the interacting 

Hamiltonian is SU(6)W t invariant. ,curren s Such an approach, somewhat 

in the spirit of the non-linear chiral Lagrangians, has actually been 

.. ( 4) 
proposed by P. Chang and F. Gursey. As we shall f'ind, however, 

the identification of SU(6)W t as an approximate symmetry group · , curren s 

leads to results which are quite unsatisfactory. In the present 
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approach, we shall assume that the generators of SU(6)W t are ,curren s 

far from being conserved. 

There is direct objection to the use of SU(6)W t ,curren s as 

M. Gell-Mann(s) have an approximate symmetry group. 
l+ 

attempted to classify the 2 

R. Dashen and 
3+ 

octet and 
2 

decimet baryons in a 56 

of SU(6)W t in the infinite momentum frame. They have shown ,curren s 

that such a classification would imply that the anomalous magnetic 
1+ 

moments of all 
2 

octet baryons must vanish, along with the octet-

decimet magnetic transition amplitudes. Since these results are far 

from being true in nature, one arrives at the necessity of describing 

the physical baryons as complex mixtures of many SU(6)W t · ,~rrens 

irreducible representations. This impurity of physical states under 

the transfonnations generated by SU(6)W ~ (or its subgroup ,currenus 

SU(3) x SU(3), t) is, in fact, the raison d'~tre of the many curren s 

1r1ixi;:ig scl1emes wi.1ich have been l}ro:pcced to obtain information a.bout 

the matrix elements of currents between states of infinite momentmn. (B) 

While these different schemes vary in detail, they all seem to agree 

on the need for very appreciable mixing between a variety of irrea.u.cible 

representations. 

We can thus contrast the SU(6)W t, whose charges aTe ,curren s 

far from being conserved, and under which physical states appear to be 

complicated mixtures of irreducible representations, to the 

SU(6)W t , whose empiricaJ. success presents the quite different ,s rong 

aspect of nearly conserved charges with physical states lying in 

simple irreducible representations. 
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In more picturesque terms, we can say that the image of a 

baryon we develop using the SU(6)W t is one of just three ,s rong 

"constituent" quarks sitting in an S state, whereas the SU(6) W,currents 

baryon is a complex object with many "current" quarks and quark pairs, 

all moving in states with various orbital angular momenta. This 

picture is reinforced by the results on deep inelastic electron 

scattering from SLAC. The infinite numbers of 11partonsu required to 

explain the observed neutron and proton structure functions are pre­

sumably nothing other than these current quarks and current quark pairs 

along with some kind of neutral glue. 
1 

Thus, we are forced to conclude that the two SU(6)W s are 

quite different. We might expect, however, that there is some relation 

between them. Their close similarity should not be dismissed as purely 

accidental. Since we can't set them equal, let us suppose instead 

t11at they are related by some unitary trans:forrnation, 1--rhich ·we shall 

call V. (2l) 

Since the quantum numbers of either SU(6)W do not uniquely 

define a state, it is not necessary that a unitary V exists. V will 

exist only if the structure of representations of either SU(6)W on 

the physical states is the~• For example, if we find a 70 of 

SU(6)W t in the spectrum, there must be a corresponding 70 of ,s rong 

SU(6)W t in the Hilbert space of physical states. We postulate ,curren s 

this to be the case, writing 

(I-3) 

where Vis unitary. 
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Some of the properties of V are inn:nediately evident: It 

must have parity P = +, charge conjugation C =+(since these 

properties are identical for both sets of charges, and we wish V to 

be continuously connected to the unit transformation). It must be 

invariant under spatial rotations about the i axis, [V,J3] = o, and 

it must be an SU( 3) singlet, [ V, F. J = o, at least to a very good 
1 

approximation, in order for eve generalized to SU(3) to remain valid. 

Other properties will be discussed in the next chapter. 

Before going on, a few words about the classification of 

states would seem appropriate. Simple classification of states in 

SU(6)W multiplets is not enough to uniq_uely specify a state. It has 

been found many other quantum number are required. One of these 

quantum numbers can be ta.ken to be the spin in the i direction (i.e., 

the helicity for collinear processes), and the group denoted 

SU(6)W x 0(2) (l'u1· elLher SU(6)W). A more useful classification, 

however, is derived by noting that W 
3 

and F 
3 

act like quark spin 
0 0 

operators for "constituent" and "current" quarks respectively. Since 

both operators connnute with J
3

, it makes sense to define "quark orbital 

angular momenta" by L 
3 (w) = J

3 
- W 

3 and L 
3 (F) = J

3 
- F 

3 
• Although 

0 0 

these identifications are suggested by the quark model, the procedure 

is perfectly general. We may now classify states in terms of their 

SU(6)W quantum numbers, and "angular momenta. 11 For example, the 

SU(6)W t classification for the low-l;fing baryons -would be ~ ,s rong 

L 3(w) = O. The next highest set of baryow, seems to be a 1Q, 

L
3 (w) -- -1 o 1 ' ' . 

Such a classification can be used to make the nalve quark 
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picture of hadrons more precise. Let us suppose that [V, F 3) 1 o, 
0 

3 3 so that F and W are different operators. Then in general, where 
0 0 

the SU(6)W t picture indicates, say, three quarks 'With a simple ,s rong 

spin structure, the SU(6)W t classification of the same state ,curren s 

will indicate a large mixture of different spins. Correspondingly, 

the values of L 
3(vr) will be simple, while those of L 3 (~) will indicate 

a mixture of "orbital angular momenta. 11 L 3 (F) must be complicated in 

3 3 order that L (F) + F add up to the 
0 

[ 3 ] 3 J, V = o, so that the value of J 

fications). 

3 3 3 
same J as L (W) + W (remember 

0 

is the same for both classi-

The transformation V thus expresses the general idea of 

the phenomenological mixing schemes in a compact way. It allows one 

to describe the hadrons as simple objects, "containing" just three 

quarks 'Where strong interactions are involved, and at the same time 

giving them the necessary ~rnnpli.cated structure where current matrix 

elements are concerDed. 

The usefulness and structure of such a transformation have 

been dem.onstratea. phenomenologically by F. Buccella, H. Kleinert, 

C. A. Savoy et al. ( 7) in the infinite momentum frame. These authors 

have succeeded in fitting many coupling constants by means of this 

approach. 'The present work w.i.ll be more theoretical in nature, and 

will concentrate more on showing how such a transformation arises 

physically. Our result will be seen to have transformation properties 

similar to that of Buccella, Kleinert, and Savoy. 

The major problem is to actually say something about V. 

Assuming that such an operator actually exists in nature, 'What can we 
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find out about its properties? In the next chapter we shall define 

V in an unambiguous way and make a list of what we know about V from 

physics. We will show how such a V can be explicitly constructed in 

the free quark model (to give an exact SU(6)W t ). We then go on --- ,s rong 

to show how V may be constructed in any model based on interacting 

quarks. 

A mystery then arises. The problem is that the algebraic 

structure of transformed charges and currents in nature seems to be 

roughly that of the free quark model. The evidence for this is that 

blind use of the free quark model transformation properties yields many 

successful relations between physical matrix elements. 

We propose a solution to this mystery, arguing that the free 

quark algebraic structure may persist in interacting models if the 

spectrum of the interacting model shows an SU(6)W t symmetry of ,s rong 

the appropriate kind. The two miracles, that of an SU(6)W t ,s rong 

symmetry apparent in the spectrum and that of a free quark-like 

algebraic structure may be related, leaving only one miracle to 

explain. 

Since the hadron spectrum does show an approximate 

SU(6)W t symmetry, it is therefore possible to suppose that ,s rong 

relations between physical matrix elements derived via the algebraic 

structure of the free quark transformation Vf will be accurate to ree 

the order of SU(6) s~mrrnet=r breaking in the spectrum, that W, strong .,~. ~., 

is, to 2a{o or 30~. 

This expectation is verified in the last chapter where many 
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successful relations among the matrix elements of the axial vector 

charge and the electromagnetic current are found. Nevertheless, 

one should not regard this solution as anything more than a possibility. 

The actual mechanism by which the structure of Vis determined is 

obscure, and it would be premature to try to guess the mechanism from 

the present work. In this respect we have only just begun to approach 

the problem, and there is a great deal yet to be learned. 
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II. PROPERTIES OF THE TRANSFORMATION 

Thus far, we have not stated precisely what job this 

transformation V performs. Ambiguities occur because SU(6)W t is ,s rang 

not an exact symmetry. If SU(6)W t were exact, there would be ,s rong 

no difficulty: There would exist a well-defined set of generators 

W.a which could be related to the F.a. However, the generators of an 
l l 

approximate symmetry are not particularly well defined: We can always 

add other small operators, operators 'Which may either better or worsen 

the appearance of symmetry without changing the "approximately con­

served" nature of the generators. Thus, when there is no exact 

SU(6)W t we need yet another unitary transformation: a unitary ,s rong 

transformation which takes us from the actuaJ. energy eigenstates to 

states transforming irreducibly under SU(6)W t • This transfor-,s rong 

mation, too, is poorly defined. However, the combined transformation, 

the one 'Which takes us from energy eigenstates to irreducible repre-

sentations of SU(6)W t and thence to irreducible representations ,s rong 

of SU(6)W t is well defined, since the generators of ,cu.rren s -

SU(6)W t are integrals over (in principle) observable operators. ,curren s 

This is the transformation which we shall study. Note that it reduces 

to our na1ve idea of a relation between SU(6)W t and SU(6)W ,s rang , cur-

-when SU(6) is exactly conserved, since in that case rents w,strong 

energy eigenstates coincide with irreducible representations of' 

SU(6) • w,strong 

Before proceeding, we need some sort of notation f'or 

labeling states. Let us label a state as the p member of the R 
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representation of an SU(6)W. Which SU(6)W is meant will be denoted 

by a subscript 11strong 11 or 11 currents. 11 Let us denote any other quantum 

numbers which may be needed to uniquely specify a state by "a". The 

operators connected with the "a" are assumed to commute with the 

generators of the appropriate SU(6)W, and hence are included within 

the subscript. This is unnecessary only if the operators in question 

commute with V, which will generally not be the case. Note that V 

does not change momentum, so that momentum is always a good quantum 

number, although energy may not be. (This unpleasant tie to a 

particular Lorentz frame will be dissolved later, when we switch to 

charges integrated over a light-like plane. For now, we feel that 

there is some pedagogic value in remaining fixed in a particular 

frame.) 

Using this notation, we designate a state as 

I:::' In ' 1 I:' ,i,, P, a, currents > when we wish to work 'With Rta.teR which are 

irreducible representations of SU(6)W, currents, and as 

➔ 

Ip (R, p, a) t > when irreducible representations of SU(6) s rong w,strong 

are more convenient. In many cases we shall not need the full list 

of quantum numbers, and so shall write R, or some other letter, in 

place of the list. Thus, we shall often use the notation IR > currents 

or /Rt > to denote a state which transforms irreducibly under 
s rong 

SU(6)W,currents or SU(6)W,strong' respectively. When SU(6)W,strong 

is an exact synnnetry, V specifies the relationship between the two 

labeling schemes, by definition. In general, a state labeled by one 

scheme will have a projection upon many states labeled by the other 

scheme. 



16 

Finally, we shall designate "physical states" -- that is, 

states which are eigenstates of the Hamiltonian -- by the traditional 

P . / ➔ 01ncare group quantum numbers: momentum p, energy E, spin j, and the 
,.. 

spin component along z, m. Furthermore, we may have to designate the 

channel we are interested in by other conserved quantum numbers such 

as charge, isotopic spin, and strangeness (which a.re conserved by the 

hadronic part of the Hamiltonian). We shall use the symbol Q to 

collectively designate these quantum numbers (note that Q is a subset 

of p, since both SU(6)w's include SU(3)). Thus, we designate a 

''physical state" by IP, E j m; Q > or, for brevity, simply by IE> 

when we do not need to specify the other indices in more detail. 

Armed with these notational devices, we can expand a physical 

state in terms of states which transform irreducibly under 

SU(G)W, currents : 

IP, Ejm; Q) =nJ,a (p (R, p,a) currents IP, Ejm; Q} I P (R, p,a\urrents) 

or simply 

(II-1) 

the specific values of the indices being understood. In operator form 

this becomes 

IR ) 
currents (II-2) 

where 

(II-3) 
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Vis not fully defined until we specify an association 

(R p ~) ~ (E j m; Q). In principle, we can choose any association 

we wish without changing the physical content of the transformation, 

but in practice we shall find a "natural" one. 

The transformation Vin eq. (II-3) relates physical states 

to states which transform irreducibly under SU( 6 )W t • As such, , curren s 

it is the appropriate generalization of the transformation between 

SU(6)W t and SU(6)W t discussed in the introduction. ,curren s ,s rong 

In the following work we shall retain eq. (I-3), although 

it is now more a definition of W.a than of v. In this way we avoid 
l 

the complication of considering some transformation 'Which takes us 

from physical states to states which transform irreducibly under a 

poorly defined SU(6)W t • The SU(6)W t classification of a ,s rong ,s rong 

given state is thus completely determined by the association 

(n, PJ a) B- (E j m; Q.). From this point of view; broken 81J(R)W,strong 

is a very subordinate kind of symmetry -- as it should be since its 

operators are not physically well determined. The actual algebraic 

framework of the theory derives from SU(6)W t, 'Whose operators ,curren s 

are well determined. The reason that we even consider SU(6)W t ,s rong 

as a separate entity is due to a dynamical accident: physical states 

do seem to lie in approximately degenerate SU(6)W t multiplets. ,s rang 

The SU(6)W t algebra, however, is far from being a symmetry, ,curren s 

so we need some transformation V to take us over to the physical states. 

Once among the physical states, the approximate degeneracy of multi­

plets implies that we are only a small step away from some 

SU(6) • In view of this situation, -we have defined the W,strong 
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irreducible representations of SU(6)W t to coincide with these ,s rong 

multiplets. Moreover, this is how we establish our "natural" associ-

ation of physical states with SU(6)W t states: We first group ,curren s 

a set of' states [ jp Ejm; Q)} into a multiplet { IP (R,p,o:)
8

trong}} (an 

empirical process), then we associate (R,p,cx) t ++ (R, P, ex) t . s rang cu.rren s 

This process is unique to the extent that we can find all the states 

in a given multiplet, but is only possible in practice because of the 

approximate degeneracy of multiplets. It should be clear from the 

definitions that [w1a, Hst] = O when the multiplets are exactly 

degenerate, and [Wia' Hst] ~ O when the splitting is small. 

So much for the general structure. In order to actually 

learn something about V we must construct it somehow. We shall attempt 

to do this in the next two chapters. 

To aid this construction, we can derive some constraints 

f1~om 11ature, requirements w·hich can be imposed ,_rpon ma.jor porlions of 

v. Several properties were mentioned in the introduction. Beside 

these, a further property follows directly from definition (II-2) 

a and the fact that the F. are 11 good 11 operators. This requires that 
l 

V must be constructed only from "good" operators itself or, at least, 

that it can only take good operators into good operators. For the 

present, we shall assume the stronger form, viz. that V contains only 

"good" operators, We shall see how this must be modified in Chapter IV. 

As a result of the "goodness" requirement, we expect that V 

contains no world scalar densities, no transverse components of vector 

densities, and no spatial or longitudinal components of tensor density 

operators. V should be expressible as a spatial integral (to preserve 
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translation invariance) over operators having one and only one time or 

z index among their Lorentz indices. All other indices must be 

transverse, x or y. 

An immediate consequence of these restrictions is that V 

cannot be invariant under the complete 0(3) of spatial rotations. We 

must thus define a new V (i.e., a new SU(6)W t ) for each direction ,s rong 

in space. This should come as no surprise: by defining a "collinear 

group" like SU(6)W, we have picked out a privileged direction in space, 

and it is only natural that operators connected with the group should 

depend upon that direction. 

V: 

Let us now surmnarize our knowledge about the transformation 

(a) V transforms states lying in irreducible representations of 

SU(6) into states with definite energy and spin W,currents 

(b) a a -l 
V transforms the Fi in such a way that the VF i V are 

conserved in some sensible limit not "too" far removed 

from reality. In other words, physical states fall into 

nearly degenerate SU(6)W t multiplets. ,s rong 

(c) V contains only "good11 operators or, at least, takes "good" 

opera.tors only into 11 good11 operators. This ensures that 

finite mass states at infinite momentum are mixed only 

among themselves. 



(d) 

20 

Vis an SU(3) singlet, [F., V] = o, in the limit where all 
1 

physical processes are SU(3) invariant. 

(e) V has P = +, C = + and is invariant under 0(2), [J3, V] = o. 

(f) Vis unitary. 

In order to get further insight into the structure of V, it seems 

necessary to resort to explicitly constructing it in a simple model. 



21 

III. EXPLICIT CONSTRUCTION OF VIN THE FREE QUARK MODEL 

In the free quark model the fundamental operator of the 

theory is q(x), a local relativistic field obeying the equal time 

anticormnutation relations, 

3 
60:/3 5 (x - y) (III-1) 

{ ~(x), q13 (y)} et = o, etc. 

Local current densities can be constructed from bilinear combinations 

of these fields, being of the form q+(x) r ;i q(x), where f' is a 4x4 

Dirac matrix. 
a: 

In terms of these densities, the generators Fi of 

SU( 6) are definable in this model. Note that these operators W,currents 

exist~~ in the model, and that there is no reason to believe that 

the co1Tes:p,:mding operators in nature can be wTitten in such a 

bilinear form. Ho-wever, since the F.o: in nearly any quark model are 
l 

the same as the F.a in the free quark model (so long as whatever 
l 

gluons which may be present are SU(6)W,currents singlets), -we shall 

adopt the form below without special subscripts in the work that 

follows. Nevertheless, one must keep in mind that such F.o: are model 
l 

operators, and that the generators (I-2a) - (I-2d) of the physical 

SU(6)W t need not have the same form. ,curren s 

With these reservations -we can define 



22 

I 3 + r-: 
F. = d X q_ (x) ; g_(x) 

J. 

F.l 1 /d3x + t3al 
Ai 

g_(x) = 2 g_ (x) 2 J. 

Model 
A. 

F.2 1 fd3x + t3a2 1 
q_(x) = 2 g_ (x) 2 J. 

F.3 1 fd3
x 3 "· g_+(x) 1 

g_(x) = 2 a 
J. 2 

The SU(6) generators appear in this model as W,strong 

wa 
i, free = V F a; 

free i 
-1 

Vfree 

Finally, the Hamiltonian of the theory is 

➔ ➔ 

Hfree = f d3
x c,/(x) { -ia • c + m t3] g_(x) 

(III-2a) 

(III-2b) 

(III-2c) 

(III-2d) 

(III-3) 

(III-4) 

It ic easy to check that this model contains all the difficulties vrlth 

SU(6)W t previously mentioned. [F.a, Hf ] IO in any limit ,curren s 1 ree 

except the non-relativistic one where m ➔ 00 , with the kinetic energy 

becoming a negligibly small portion of the total energy. 

In the following, -we shall find it convenient to work in 

a a representation where the W. f have a simple form. We thus define 
i, ree 

-1 the "W-representation" whose operators OW = V OV. In this represen-

tation, the operators (W.af )W have the forms (III-2a) - (III-2d), 
i, ree 

h ·1 (F a) v-1 F.a: w 1 e i W = free J. Vfree and hence contain whatever complex-

ities Vf may contain. The advantage of this representation is that ree 
a; 

we can tell at a glance whether or not the wi,f'ree cOIIID1ute with 
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Hf ; if (Hf )W contains any other Dirac matrices than 1, ~, a 3, ree ree 

~
3

, then the (W.af )W will not conmmte with it (tha.t is, so long as 
1, ree 

(Hfree)W is bilinear in quark fields. Consideration of more compli-

cated forms is not necessary at present). 

Let us write the unitary operator Vf as ree 

vfree = exp(i Yf ) ree (III-5) 

where Yf is an Hermitian operator. ree Then we can readily check that 

if we choose 

= 

then 

1 
2 

-1 
V free 

which manifestly commutes with (W.af )W, since 
1, ree 

(III-6) 

(III-7) 

(y.L . 1 )2 = - tJ. . tJ. = -cl;.. 
2 

In equations (III-6) - (III-7), 

the operator functions of are defined by their power series 

expansions; that is, in terms of the string of operators of decreasing 

physical dimension i - - 2 q(x) q(x) P, = -3, q(x) cl J. q(x) £ = -5, 

- 2 2 ) q(x) cl.L cl..L q(x £ = -7, etc. Note that Vfree becomes the identity 

transformation only in the limit m ➔ 00 , as expected. 

Thus, at least within this model, we can define an exactly 

conserved set of operators forrn:ing an SU(G)W t • The transfor-,s rong 
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mation Vf explicitly possesses the properties (a) - (f) of 
ree 

Chapter II. 

terms of the 

w. f 1., ree 

Wl 
i,free 

w 2 
i,free 

w 3 
i,free 

= 

= 

= 

= 

One can easily check that the W.af 
1., ree 

, written below in 

local quark fields q(x), co:rrnnute with H : free 

F. 
J.. 

➔ ➔ 1 

F 1 fd3 +( ) 1 { 1 l .J.: clJ. /} 5 d . + X q X - -- - ,. "/ -
1. )t l+~ m m 

➔ ➔ 

(III-Ba) 

7'· 
~ q(x) 

(III-Sb) 

f 1 Y.L.
0 

OJ. -J 5 d
2 

Ai 
- ' '/ m- -2 q(x) l+~ m 

(III-Be) 

A' 
; q(x) 

(III-Bd) 

(III-9) 

hence )t contains only operators of even dimension,£= o, -2, -4, 

The additional terms in (III-Sb) - (III-8d) vanish if m ➔ 00 , or if 

the quarks have no transverse motion; however, these terms must be 

a present for the W. to be generally conserved. 
J.. 

These transformed operators look quite complex as written 

above. Is there any way to see why such complexity is necessary? In 

fact, there is. Let us write the ~(x) in terms of creation and 

annihilation operators. Using a non-relativistic box normalization, 

we write 
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(III-10) 

where the notation is standard, except that r runs over both Dirac 

~ SU(3) indices. In terms of these 8,t(r) and bI!_(r) operators, 

a 
the W. f take on a simple form: 

i, ree 

Wl 
i,free 

w 3 = I: 
i,free ➔ 

k;r,s 

(III-lla) 
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where the u ( r) ( 0) and v ( r) ( 0) are rest spinors. The ma.tr ix R repre -

sents a rotation of the Dirac indices, given by the 4x4 matrix 

R = 
(w + k

0 )(w + m) 

2 w (k
0 + m) 

(III-12) 

r I 

{
:...... 2 2 o 

here, w is the "transverse energy,lf l!i.1..I + m , and k is the 

ordinary energy, 
2' 

+m The significance of R is readily 

determined by means of a simple example. First, note that R is unity 

3 ~ 
fork = o, i.e., for a quark moving in a direction transverse to z. 

+(1,s) 
A single quark state moving in this way would be created by a., , 

t;;J_ 

for example. Under SU(6)W t, it would be classified as a .§., spin ,s rong 

up, strange quark. Now consider what happens if we boost this state 

and examine it in a frame of reference 'Where k
3 "!' O. What we see is 

no longer a spin up state, if it..1..~ o. In general, there is a rotation 

of the spin, 

a mixture of spin up and spin down components. Now if R were unity, 

it is clear that the SU(6)W t classification of the state would ,s rang 

change; however, R is just the inverse of the Wigner rotation in this 

case. Thus, the mixture of spin component's produced by the boost is 

precisely the eigenstate of Wi~free for that momentum k
3

• This is 

the detailed mechanism by 'Which the W.a remain invariant under boosts: 
l 

as already stated, the SU(6)W,strong classification of a state is 

A 
independent of its momentum in the z direction. Note in particular 

that R does not approach unity as 3 k ➔ oo: thus, we can already see 

that a state with infinite momentum, classified in an irreducible 
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representation of SU(6)W t , will contain a mixture of represen-,s rong 

tations of SU(6)W t (this is clear from the fact that F 3 simply ,curren s o 

counts the number of spin up and spin dow.n quarks, regardless of their 

transverse momenta -- but an eigenstate of W 3 contains a mixture of 
0 

up and dow.n quarks, as specified by R). 

We see by this example whence the coreplexi ty of (III-Bb) -

(III-Bd) arises: it is from the need for invariance of the 

SU(6)W t charges under boosts in the~ direction. Also note that ,s rong 

equations (III-lla) - (III-lld) do not contain a+b+ - type cross terms: 

i.e., the W a annihilate the vacuum, as required. i,free 

Let us now analyze the structure of Vf in more detail. ree 

The first striking property we observe is that it is non-local in the 

transverse directions. This property can be readily demonstrated by 

examining the behavior of the quark field q(x) when it is transformed 

h~r iT • ~.; 'free· 

-1 
Vfree q(x) V free = 

where the kernel Kf (x) is given by ree 

➔ [ ➔ ➔ } ~ w + ID + PJ.. y .l. 

Y2w(w + m) 

(III-13a) 

(III-l3b) 

(III-14) 

in which w is again the "transverse energy." Since the integrand of 

(III-14) approaches unity only for IP, I << m, we expect Kf (x) to ...... ree 
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receive contributions from l x.L I ;5 ¼ , i.e., from a distance comparable 

to the Compton wavelength of a quark. 

In order to further analyze the.• structure of V free' we 

introduce the quark spin ~if and orbital' angular momentum Li f , ree , ree 

operators of this model. The sum of these two operators is the total 

i i i 3 
angular momentum, J = L f + I: f • Note that L f and , ree , ree , ree 

E
3 correspond to the previously introduced operators L3(F) and ,free 

F
0

3, respectively. Li and :Ei f are defined in the usual way: ,free , ree 

i 
L = ,free 

3 k + j 
i Eijk fd XX q (x) d q(x) 

= J 3 + d x q (x) 
i T g_(x) 

We may now employ these operators, and the F. 0
, to discuss the 

J. 

(IIl-15a) 

(III-15b) 

properties of Yf under the group oU(G)W t x 0(2). We see ree . , curren s 
3 3 that Yi' is the uncharged, 6.J = o, D. I: f = ±1 member of a 35 ree , ree 

(transforming like an w, helicity + and -) , or the corresponding member 

of a (3,3) + (3,3) under the chiral SU(3) x SU(3) t subgroup. curren s 

'While only changing L 3 f by ±1, the presence of the power series 
➔ ➔ , ree ➔ :::7 

in r J,.° 'ojm implicit in the arctan ( 7J.~ 
0 ..L.) implies a very complex 

tensor structure, involving strings of operators with 6 j = 0,1,2, ••• 

Hence Yf can effect the mixing of essentially all total angular ree 

momenta, and also leads to states of different quark spin E3 f • , ree 

The cutoff in these expansions, hence the maximum range of angular 

momenta mixed, is regulated by the rate of convergence of the expansions 
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in y"L. q/m. Inasmuch as there is reason to think that convergence 

may be very slow, we can expect very complete mixing. (Such slow 

convergence is suggested by the identification of jp~I in this model 

with the transverse momentum cutoff of ca. 300MeV/c observed in strong 

interactions. Taking m ~ 300MeV also, as suggested by magnetic moment 

calcuJ.ations, we find Ip .L I /m ;:,,, 1. Thus in coordinate space, we 

expect 1 .i: tJ. 
( Ill)~1.) 

Thus, we see that Vf in this model possesses many of the ree 

qualitative features expected for the actual. transformation V (i.e., it 

possesses features which show up in the phenomenological mixing schemes 

for states at infinite momentum). In particular, Vf can connect ree 

states which lie in nonexotic representations (e~, positive parity 

baryons lying in a 56. Lf3 (F) = o) to states lying in exotic-con­_, ree 
',: 

taining representations (such as 700, Lfv (F) = ±1). Note that, - -- ree 

* insofar as Vf is an SU(3) singlet, it will take SU(3) 1 1 s, 8 1 s, 
ree - -

and 10 1 s only into ~'s, ~'sand lO's, respectively. These latter SU(3) 

multiplets, however, lie in SU(6)W representations (like .?.2Q) which may 

contain exotic SU(3) multiplets (27 1 s, say). Vf can also lead ree 

* If the analysis by M. Gell-Mann, R. J. Oakes, and B. Renner (9) is 
correct, and the bare mass of the strange quark is actually much 
larger than that of the non-strange quarks, Vfree may contain an 
enormous SU(3) violation (assuming that the ~~le for constructing 
Vfree in this case is to replace m by the bare mass of each quark 
it acts on). Since this seems to conflict with generalized eve, it 

may rule out Vfree as an approximation to v. It could nevertheless 
happen that V has an algebraic structure similar to that of a Vfree 
with equal. quark masses, although the mechanism is presently unkno'Wrl.. 



30 

directly to states with the "exotic" quantum numbers JD= 0 
' 

(odd)-+ , 

( )+- -even by creating qq pairs. 

The structure of Yf in ree equation (III-6) is very similar 

to that of the Foldy-Wouthusen transformation. In fact, they are 

identical, except for one important omission: Yfree is a function of 

rJ.• i , not -;. J. It is the additional term r 3 ;,3 (which makes 

the F-W transformation invariant under the full rotation group 0(3)) 

that distinguishes these two transformations. This difference is 

·1 i 'Y
3 "). 3 1·snot crucia, s nee , a a "good" operator: Its inclusion would 

lead to an SU(6)W t whose charges depend upon the momentum in the ,s rang 
... 
z direction, directly contradicting the experimental evidence. 

Thus, we have found that, so far as the free quark model 

is concerned, we can construct an exact SU(6)W t which explicitly ,s rong 

satisfies all our requirements. We have constructed a set of non-local 

operators W a which exactly annihilate the vacuum. The problem 
i,free 

wnich now arises is the relevance of the model to physics. Before 

going on, however, it may be worthwhile to say a few words about this 

kind of non-local transformation in general. 

Since we have made our non-loca1·su(6)W t an exact ,s rang 

symmetry, it is no longer restricted to purely collinear processes. 

/\ 
As is obvious, however, the z direction still plays a very special 

role in theory, and we can expect that when states do not have momenta 
,. 

parallel to z, their charges will have some special properties. In 

fact, since the W.af e do not commute with boosts perpendicular to 
1, re 

~, we see that the SU(6)W t charges, while exactly conserved in ,s rong 
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this model, depend upon the value of the transverse momentum. Only 

for sta.tes 'With momenta parallel to~ are the charges independent of 

momentum.. Thus, between collinear states the SU(6) will appear W,strong 

as a conventional syrrnnetry where states have fixed charges. For non-

collinear states, the SU(6)W t symmetry may still hold, but the ,s rong 

charges will depend upon the energy and angle, resulting in predictions 

'Which may be less obvious than those of the convention!tl type of 

syrmnetry. Moreover, these results sho"Jld be correspondingly more 

difficult to see when large symmetry breaking combines mth rapidly 

changing differential cross sections. 

The non-local transformation Vf presented here is only ree 

one member of a wide class of such transformations, all of which lead 

to charges depending upon momentum. For example, the close resemblance 

of Vf to the Foldy-Wouthusen transformation, VFW' may induce us to ree 

investigate the properties of some of the non-local F-W transformed 

operators. We would find, for example, that the model contains a set 
3 + ak Ai -1 

of non-local operators VFW fd x q (x) 2 -2 q(x) VFW which generate 

an SU( 6) (The tdea that the F-W transformation may be usef;;u f'or 

generating such a symmetry group has been independently suggested(lO) by 

several authors). In th:is case, altbough VFW possesses full O (3) invariance, 

it does not commute with boosts in any direction, so that the charges 

are al-ways momentum dependent. We have here a static SU(6) which is a 

~ invariance of the theory, its operators being exactly conserved, 

but which only appears as a conventional symmetry between states at 

rest. Use of these types of non-local transformations may thus provide 



32 

us with a bridge which will allow us to circumvent the difficulties 

of combining internal and spacetime symmetries in a consistent and 

useful manner. 

There has never been any real reason to believe that the 

symmetries observed in strong interaction physics are generated by 

the integrals of local current densities: all that we have ever been 

able to observe in the case of SU( 6 )W, for example, is the algebra of 

the integrated charges. Hopefully, the present discussion provides 

some evidence that these charges may, :tn fad, be j_ntegrals of' non­

local operators. 
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IV. CONSTRUCTION OF VIN INTERACTING QUARK MODELS 

In the previous chapter we saw how to construct a trans-

formation Vf in the free quark model. This transformation takes ree 

us from a set of local operators Fia which do not commute with Hfree 

a to a set of nonlocal operators W. f which exactly commute ~ith 
1, ree 

H • The problem is to extend these free quark results to more free 

general models, models in which an exact SU(6)W t symmetry may ,s rong 

not exist. 

We shall approac.:h this problem through the free quark model: 

That is, we shall assurne that the Hilbert space of the interacting 

problem can be spanned by free particle states. Note that this is 

a highly non-trivial assumption: in particular, it is certainly~ 

true in ordinary q_uantum fi.eld theories, as is demonstrated by Jtaag' s 

theorem. However, as emphasized by H. Fritzsch and M, Gell-Mann; (ll) 

experience with the behavior of matrix elements in the Bjerken limit 

of deep inelastic scattering suggests that the strong interactions 

are "softer" than the conventional, barely renormalizable, theories 

we know of at present. It therefore may make sern;e to follow a na'ive 

approach to the problem. 

If the Hilbert space of the interacting model can be spanned 

by free particle states (that is, states of free ~uarks plus free 

gluons of some sort), then we can expand any given eigenstate of the 

full Hamiltonian into a. sum over a large number (perhaps infinite) of 

free particle states. The matrix which is formed from the projection 

coefficients is unitary, and can be considered to be an operator 

acting upon states within the Hilbert space. Calling this operatorU, 
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we see that when it acts upon a free particle state it transforms this 

state into the "corresponding" eigenstate of the full Hamiltonian, 

U JEfree) = IE (Ef ) ) ree (IV-1) 

What -we mean by the "corresponding" eigenstate has to be clarified. 

For most purposes it will be sufficient to say that an eigenstate 

/Ef ) of the free Hamiltonian "corresponds" to an eigenstate ree 

jE(Ef )) of the full Hamiltonian if IE (Ef )) develops out of ree ree 

jEf ) as the interaction is adiabatically switched on. ree That is, if 

we write the full Hamiltonian H t = Hf + AH. t t· , then the s ree in erac ion 

eigerrvalue E(A) of the state in question is a continuous function of 

/\ such that E(O) = Ef and E(l) == E. U will therefore be uniquely ree 

defined so long as we are not troubled by level crossing or some such 

pathology, Note that we shall always quantize in a large but finite 

box, so that the spectrum of Hf is discrete. In this way we shall - ree 

a.void a.ny counting difficulties due to comparing discrete Spectra of' 

bound states to continuous spectra of free states. 

The operator U. should be familiar from elementary quantum 

mechanics. It has a simple implicit definJtj_on, 

" iHstt -iH t e free 
e U lim 

=t ➔ -oo (IV-2) 

" where Hst is the full strong interaction Hamiltonian and Hfree is a 

"renormalized" free Hamiltonian which is diagonal in the basis of 

free particle states, but whose eigenvalues are those of the corre-

" sponding eigenstates of Hst· That is, Hf IEf } = E(Ef e )IEf e). ree ree re re 

The operator U should not be at all mysterious. Although 
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the implicit definition (IV-2) may be somewhat infamiliar, it actually 

expresses nothing more than the Rayleigh-Schroedinger perturbation 

series (when that series converges) in operator form. Thus, when 

perturbation expansions are valid, we can explicitly evaluate the 

matrix elements of U by this familiar technique. In principle, U 
exists even when perturbation expansions fail, but in this case it 

may be hard to compute. 

Note that (IV-2) shows how U is related to the M~ller wave 

matrix n(+) of scattering theory. U and n(+) are identical if there 

are no bound states in the theory, but if bound states are present 

U is still unitary, although r/+) is not. 

This operator U can now help us to determine the 

SU(6) structure o~ a given interacting state, and thus allow W,currents 

us to compute Vin any given model. The procedure is simple: we use 

U to project the interacting state onto free states, and then use 

Vf to describe the SU(G)W t content of each free state. W~ ree ,curren s 

can use precisely the operator Vfree developed in Chapter III as iong 

as whatever gluons that may be present in the model are singlets of 

SU(G) • In this case the generators of SU(6) in W,currents W,cnrrents 

the model will be the same as for the free quark model, and the gluon 

content of a given free state will not change its SU(G)W t ,cQrren s 

structure. These conditions are automatically fulfilled in any model 

with a neutral gluon whose field commutes with the quark field. 

Thus, we can easily write an explicit form for V, one which 

may be used to evaluate it, in principle, in any given interacting 

model. 
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Since SU(6)W t is exact in the free quark model, we ,s rong 

can label states either according to Poincar~ quantum nwnbers or 

SU(6)W t representation. Thus, ,s rang 

] Efree (R)) = IR ) strong = Vfree IRcurrents) 

by definition of Vf • Recalling (IV-1), ree 

IE (R)) = U I Efree (R)) = U V free I Rcurrents) 

Comparing this with (II -3), we see that 

V = U Vfree 

and thus 

a u-l 
= U wi, free 

(IV-3) 

(IV-5) 

(IV-6) 

The above definition (IV-5) of V will be employed for the 

remainder of this work. It is not the only possible form, however, 

due to our neglect of gluon degrees of freedom. In fact, (IV-5) could 

be multiplied on the right by any arbitrary function of the gluon 

fields without changing its SU(6)W t algebraic structure. , curren s 

Moreover, U is somewhat arbitrary also, in that we could have chosen 

some other way to associate interacting states and free states. It 

just happens that the form (IV-5) is most convenient for our p'l.rposes 

at present, so there is no reason to consider other possible forms. 

Note that Vin (IV-5) satisfies the requirements (a) - (f) 

of' Chapter II. The only reservation we must make is that t{ need not 

be a good operator. However, it can only take good operators to good 
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operators, since in any Lorentz invariant theory dressed operators 

must have the same Lorentz structure as bare operators. Th~s, the 

definition (IV-5) satisfies our intuition about this property of v. 

The structure of the SU(6)W t operators W.a in inter-,s rong 1 

acting models is also clarified by this form of V. As can be seen 

from (IV-6), W.a takes us from one physical state IE) (eigenstate 
1 

of Hst) to another by referring back to the free eigenstate /Efree) , 

from which the physical state developed as the interaction was turned 

on. Once back in the realrr. of free states, W.a is applied, and i,free 

the resulting free state is finally related to the corresponding 

eigenstate I E' ) 

those of H free 

of Hst· The changes from eigenstates of Hst to 

are accomplished by the operator U :in (IV-6). 
a The W. 

1 
are conserved when this process always leads from 

a given eigenstate of Hst to another with the ~ energy, Thus, if' 

a [W. , Ht]= O, -we expect to find an SU(6)W t multiplet structure 
1 s ,s rong 

3l'.l'.long the A; gA,.,s:!b,t:Ps:! 1"1-f' H st p.:1:ral le l i ng thnt of the eigenstates of' 

H • free 

Exact conservation of W.a is an extremely strong condition, 
1 

ho-wever. Nevertheless, we do see approximately degenerate SU(6)W t ,s rong 

multiplets in nature, and it is often an interest:Lng approximation to 

consider them exactly degenerate. Does this circumstance compel us 

to consider the case where the W a are completely conserved? For-
i 

tunately, the answer is no. 

One of' the principal reasons that we consider an 

SU(6)W t approximate symmetry at all is because the observed ,s rong 

particle and resonance states seem to fall i:'.lto multiplets of states 
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with different spin. Thus, the most we can ·oe certain of is that 

[w.a, Ht]~ O within the subspace of these states. That is, there 
J. s 

exists a particular set of states, which we shall call IP(M)) , for 

which 

(P(M) I [w.a, H t] 
l S 

IP(M')) ,~ 0 (IV-7) 

The notation jP(M)) is meant to convey that these are what we na1vely 

call "single particle" states with various masses M. In the light of 

our present knowledge we have no right to extend (IV-7) to any of the 

other states in Hilbert space. In particular, we need not assume that 

a 
the W. are conserved when states containing several stable particles 

l 

are involved (eg. a 1!P collision state). Thus, there is no reason to 

believe that the existence of approximately degenerate multiplets 

necessarily implies a general synrrnetry of Hst· Experimentally, the 

situation is unclear at the present time, and it is not known -whether 

a rough.SU(6)W t symmetry exists for collisions or not. 
:s rong There 

is even some question about whether there is an SU(6)W t ,s rong vertex 

synn:netry, as we shall see in Chapter VI. 

How shall we interpret (IV-7) in these circumstances? On 

one hand, we can regard the existence of degenerate multiplets in the 

spectrum as being the result of' a dynamical conspiracy among states 

with dif'ferent spin and parity, In this case there need be no relation-

ship between the SU(6)W t multiplet to which a physical state JE) ,s rong 

belongs and the (free)SU(6)W t multiplet to which the corresponding ,s rong 

state !Ef ) belongs. On the other hand, we may find it more rea.son­ree 

able to attribute the observed degeneracies to a kind of "spectrum sym-

metry.'' fuat is, -we p:reSLm1e that the states IE) in a gi. ven SU( 6) tro I!Ultiplet . 'W,s ~ 
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correspond to states IEfree) which lie in the~ multiplet of the 

free SU(6)W t • In other words, -we presume that the matrix ,s rang 

elements of the operator U in, say, the basis of free states, 
I 

( Ef I U I Ef ) , are such that they are large only between states ree I ree 

IE ) and IE 1 
) which have the same classification under the free free 

free SU(6) •. w,strong 

Putting these alternatives into mathematical language, we 

can interpret (IV-7) as being due to either: 

(a) Detuilcd dynamical cancellations, in which case 

(P(M)I [w.cx,UJ IP(M 1 )) =I o 
1 

(IV-8) 

or 

(b) A "spectrum symmetry," 

(IV-Sb) 

If nature has actually chosen alternative (a), then the structure of 

V is obscure. In order to relate matrix elements of currents taken 

between different members of an SU(6)W t multiplet, vre must know ,s rong 

U. Algebraic predictions become a matter of the detailed dynamics of 

the strong interactions. This is the case, for example, if a real 

neutral vector gluon theory underlies the strong interactions. In 

this example, the inevitable spin-orbit interactions break up the free 

SU(6)W t multiplets. Even if SU(6)W ~• multiplets somehow ,s rong ,svrong 

reappear for large coupling strengths, theu- wj_ll probably not bear 

any relation to the original multiplets of the free fields. 

Case (b) is more clearcut. Admittedly, there is no known 
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theory in -which (IV-Bb) is true when couplings are large, However, 

there are equally few theories which show SU(6)W t multiplets ,s rong 

in their spectra. 

In these circumstances, we could simply assume that whatever 

the real forces underlying the strong interaction are, they yield an 

approximate SU(6)W t symmetry by means of alternative (b). ,s rong 

The advantage of this assumption is that it allows us to 

use Vf to compute the algebraic structure of physicaJ. currents. ree 

This proposition is easily proved. If -we assume that (IV-8b) is true, 

(IV-6) tells us that 

(IV-10) 

That is, the states jP(M)) have nearly the same classifications under 

the free SU(6)u t as under the SU(6)11 t for physical states. n,s rong 1 ,s rong 

However, we already know the algebraic structure of currents"'t".~(x) 
-- JJ 

with respect to the free SU(6)W t , since the f .~(x) are just ,s rong J 

bilinear operators like g_ +(x) r~ "2
1 q_(x) in any quark model in 

which the glue (whatever it is) is an SU(6)W t singlet. , curren s 

Knowing roughly the classification of both states and 

operators under the free SU(6) we can find many approximate W,strong' 

relations between matrix elements. 

In Chapter VI we shall find it convenient to consider the 

SU(6)W t algebraic structure of operators like v-1
"C: .~(x) v ,curren s J-J 

taken between states classified as irreducible representations of 

SU(6) , That is, we consider W,currents 
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(R' I [1<1 a v-1 -r: 13 (x) v] IR ) currents ,. i ' J- ,j currents (IV-lla) 

rather than 

(R' I [W a ~ 13 (x)] jR ) 
strong i 'J j strong (IV-llb) 

These expressions are actually equal, since IR t) = v-1 [R t ). curren s s rong 

Thus, the assumption that the algebraic structure of f. 13 (x) with 
. J 

respect to SU(6)W t is given by W.af in (IV-llb) is equivalent ,s rong 1, ree · 

to the assumption that the algebraic structure of v-l f jf3(x) V with 

respect to SU(6)W t in (IV-lla) is given by ,curren s 
-1 y· /3( ) V X V • free j free This ·fact will be of great utility in the 

evaluation of matrix elements. 

Although the symmetry may be realized by (b), so that W.a 
1 

a 
and wi,free have the smne matrix elements $!long the "single particle" 

- R •• states, note that this does not imply that the .., _,.. (x) have the same 
- J J 

matrix elements as in the free quark model, since we never assume that 

[ U, f . f3 (x)] or [ 2£, Vf ] even approximately vanish. The only 
J ree 

thing that V has in common with Vf is its algebraic structure ree 

the values of its matrix elements may be much different. 

In su.mrnary, we have attempted to supply a rationale for 

the fact that the algebraic structure of the V that is used by nature 

is roughly that of Vf • ree It may be that this is e:itplained by the 

realization of SU(6)W t via mechanism (b). ,s rong 
Nevertheless, it is 

possible that mechanism (a) is actually used, and some complicated 
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(but obscure) cancellation allows V and Vf to be roughly the same ree 

algebraically. Since -we are ignorant of the Hamiltonian -which governs 

the strong interactions, this point cannot be readily settled. Perhaps 

the safest point of view is a purely pragl'.ll.a.tic one: -we shall sirn.ply 

apply the algebraic structure of Vf to physical currents, and note ree 

'Whether or not the results seem to approximate the physical. world. 

Before evaluating the consequences of Vf , -we shall ree 

introduce the language of light-like charges and moments. This 

language avoids some of' the clumsiness of the infinite-momentum 

frame, and will permit a rapid and elegant evaluation of the conse­

quences of the free q_uark algebraic structure for the matrix elements 

of physical currents. 



V. LIGHT-LIKE CHARGES AND MOMENTS 

The first step in performing any calculations with non­

conserved operators is to work exclusively with charges and moments 

integrated over a n:111 surface x0 + x3 
= const., or a. 11light-like 

plane. 11 Such charges have many advanta~es over equivalent for1_.-rmla.t ions 

at infinite mo:tnentum, as has been emphasized by f[. Leu.t-wyler, (l2
) 

Their principal advantage is tb.at they annihilate the vacuwn, whether 

or not they are conserved. This allows such charges the possibility 

of having finite dimensional representations, and may even invalidate 

Coleman's Theorem in their case, 

As a result, these light-like ·tharges are certainly to be 

preferred over other formulations for discussing the representations 

of algebras of nonconserved operators, and our first care will be to 

re-express the transformation obtained in the free quark model in terms 

,......p .J.."hn....,,, 
U..L. Ul.J.'-'UJ. • 

In order to make the structure of these charges clear, we 

write down the form of the light-like charges of SU(6) . 'W,currents' 

since they are known in terrr..s of jntegrals of local currents. Thus 
. ' 

" 4 + [ 'f .o(x) + f. 3(x)] / ,I2 F. = fax 5(x) 
J. J. J. 

(V-la) 

A. 1 !, fd 4x 5(x+) [ F.; 23(x) + F. 20Cx)J I .J2 F. = 
J. 2 J. 

(V-lb) 

... 2 ! fd4x + F 31 f. Ol(x)J / J2 Fi = 5 (x ) [ . (x) + 
2 J. l 

(V-lc) 

,. 3 1 4 + 'f 05 f. 35(x)] / J2 F. = ri f d x 5 (x ) [ . (x) + 
l ~ l J. 

(V•ld) 
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where x + = (xo + x3) / J2 and the caret over the charges denotes that 

+ they are integrated over the light-like plane x ~ o. 

Let us briefly examine some of the P.roperties of these 

charges. The most striking property is evidently their momentum 

µ " a transfer: when applied to a state of momentu.rr. p the F. do not change 
l 

➔ 0 3 
p J.. , nor p + p • They can o 3 "a alter only p - p. Thus, the Fi carry 

2 
zero mass, (bp) = o. Since there are no zero mass hadrons, this 

" a implies that the F. cannot produce anything out of the vacuum 
l 

F.a Io) = o 
l 

so long as they are decoupled from infinite momentwn states with 

(V-2) 

0 3 " 0: p - p = O. Of course, if the F. act on a state at rest with mass m, 
l 

-)(-

they~ lead to a state of different mass m / m, provided that the 

3 = (m2 _ m*2)/2m. final state has tnomentu.'ll p 
I\ a: 

Only if the F. are con-
1 

3 " a: 
i=:PMrArl. r H-'P . F. 1 = 0. will they not lead to states of different mass. - - - .. -- ~ ~ -- -- ., l - , . 

A a 
What condition (V-2) does guarantee, however, is that the F. cannot 

l 

produce any disconnected pairs. " a Thus, application of' various F:i 's to 

a state an arbj_trary number of tirr::es does not lead to the creation ul' 

an arbitrary number of pairs: there exists a possibility that we shall 

return to the original state after a finite nwnber of steps, and thus 

obtain a finite dimensi-:mal representation of the algebra. 

"' ex The Lorentz properties of the F. are not simple. It is 
l 

A clear that they commute with finite boosts along z, 

but they do not commute with transverse boosts. In particular, a state 

with given helic:i.ty and transverse rnomentll1ll p J.. /, 0 does not have the 
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same SU(6)W t classification as a state with the same helicity , curren s 

but different transverse momentum. To remedy this defect, we must 

introduce special transverse boost operators which leave the ; __ ex in­

variant. Thus, defining 

= (V-3a) 

(V-3b) 

1 2 A(J, 
we can easily check that E and E commute with all F .. States with 

l 

transverse momenta 
➔ ➔ 
p J. generated by means of the E .J.. can thus be 

classified in the sarne SU(6)W t representation, whatever ·P.J.. may , curren s 

be: 

(V-4) 

where R signifies the particular representation. The transverse boost­

rotation in (V-4) can be decomposed into a pure Lorentz boost preceeded 

and followed by rotations. We find that an E-boosted state like that 

in (V-4) can be related to a certain mixture of helicity states with 

the same momenta. 

As to other properties of the light-like charges (V-la) -

(V-ld), we merely note that they have the same charge con,juga.tion C as 

their spacelike x
0 

= O counterparts, but do not have definite parity. 
. J2 

Instead of parity, we can define the operation R= e-l ~ p under 

. " a -1" "n ,., n~l'\ 3 " 3 vthich the F. are eigenvectors. Thus, lR. F. 11\. = + F., "' 7'. Xl = •F. , 
1- l l ill\ 1 

/1. 
etc. Hence, instead of requiring that V have parity P =+,we allow 

J\ 
the light-like version V to be a parity mixture, but require that it 



have R = + instead. 

We are interested in matrix elements of various moments 

of currents as well as their charges. That is, objects like 

(V-5) 

where the states al.ways have the normalization (A,p1 r B,p) ::::: oAB 5p'p' 
If the transverse momenta of IA,p') and jB,p) have been generated by 

E boosts, the matrix element (V-5) depends only upon the difference 

➔ ➔ 
(p~- Pi) of transverse momenta. (There is no dependence, of course, 

on the longitudinal. momentum -- the difference p13 - p3 is fixed by 

the requirement that (po+ p3) is the same for both states.) This 

property is easily demonstrated: If the transverse momenta are generated 

by E boosts, we can write (V-5) as 

(V-6) 

where we have defined 

(V-7) 

The matrix element (V-6) obviously depends only upon p~ - it, as required. 

The operators ~ia(~) have many nice properties -- for example, they 

commute with the translation operator F..L, so that moments of ,F /l:(x) can 

be expressed in terms of forward matrix elements. This is a useful 
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property for SU(6)W t calculations, since we only know how to ,s rang 

classify states with collinear momenta. Other properties of these 

operators will be discussed as needed. 

In a similar way, we can define light-like SU(6)W t ,s rong 
I\ a 

operators, W. , which have the same property of annihilating the 
1 

A Ct > physical vacuum, W. lo = o. 
1 

"'a The relation between these W. operators 
1 

I\ a " and the Fi is given by the light-like transformation V 

= 
/\/\N 11.1 V F.V, v-

1 
(V-8) 

A 3 A(t 
where Vis such that [H-P, W. ] ~ O. 

1 
" a The W. , then, lead to states 

1 

of nearly the same mass, while the 

different mass. 

" a Fi can lead to states of quite 

-'a "a " As before, we can construct the operators Wi, Fi, and V 

in the free quark model, obtaining essentially the same results as in 

Chapter III. This generalization is quite simple, and we only record 

(13) 
the form of the result. Following J.B. Kogut and D. E. Soper, 

+ we quantize on the x = 0 plane, using the anticornmutation relations 

+ + = 
X = y 

0, etc. (V-9) 

where the "independent fields" q (x) 
+ 

jection operator P : q+(x) = P q(x) = 
+ + 

are obtained from q(x) by the pro-

1 3 
2(1+a )q(x). The light-like 

SU(6)W t generators for the quark model are ,curren s 
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A. 
,[2 f d4x 5()/)q_+ (x) 

/\i 
(V-lOa) Fi = 2 q+(x) + 

,. 1 
~12 Jd4x o(x+)q_t (x) 

13a l Ai 
(V-lOb) F. = 2 2 q_+(x) l + 

Model 
13cr

2 
Ai ( ) A 2 ✓2 Jd4x o(x+)q_-t- (x) (V-lOc) F. = - -q_ X 

l + 2 2 + 

" 3 ,/2 Ja4x o(x+)q+ (x) o3 rd 
(V-lOd) F. = - -- q_ (x) 

l + 2 2 + 

The 11good1t classification of the SU(6)W t operators is reflected ,curren s 

by the f'act that they contain only q (x) fields. "Bad" operators 
+ 

contain one q/x) and one q_(x)=P _ (x)q(x)=½(i-<:x3)q(x) "dependent" field 

(which does not have canonical commutation relations). Those operators 

containing only q_ (x) fields (like 't:'.
0 (x) - C'. 3(x)) are called - J l J 1 

"terrible. 11 

,\ 

The transfonnation Vf' is a "good11 operator. ·It is there-ree 

:fore well-defined, and. ho..s a, cimple oJ..gebra:.t.c stru.cture. V7ritin.g 
,.. A 
V = exp iYf , the old free quark re8ult becomes free ree 

➔ ➔ 

(V-11) 

I\ 
The algebraic structure of Yfree is the same as before: it belongs to 

a (3,3) + (3,3), L
3(i) = ±1 of SU(3) x SU(3) x 0(2)currents, etc. As 

A a 3 A a 
before, the W. f are conserved, [Hf - P , W. f ] = o. Note, 

1, ree ree 1, ree 

ho-wever, that for free quarks the light-like SU(6)W t is also - ,curren s 

conserved, [Hf - P3, F.a] = o. Several authors(l4) have recently ree i 
A 

taken this to mean that a unique Vf cannot be defined on the light-ree 

like plane. It is true that the simple criterion by which Vf was ree 
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A. 
derived can no longer be used; however, Vfree probably does more than 

just ensure the existence of a conserved SU(6)W,strong• 

Experience "With the way Vfree acts on quark states in the in­
,. 

finite momentum frame suggests that the rotations perfonned by Vf ree 

are necessary to ensure that the multiquark states may have definite 

total spin. The definition (a) in Chapter II may still be useful -­

only now we must emphasize spin rather than merely energy. 

That the F.a and the spin generators are not automatically 
J. 

compatible is the upshot of Dashen and Gell-Mann's(lS) "angular 

condition" on the matrix elements of the F _a. The fact that Gell--Mann (l6) 
1 

has found that the angular condition forces mixing of SU(6) w,currents 

representations even in the free quark model seems to support this idea. 
I\ 

Much more work remains to be done on this subject. Can V 

be uniquely defined by means of some spin criterion? If the answer is 

yes, Ruch a criterion may be more useful in the case of broken synn:netry 

than the Uvf prescription. The understanding of this question may ree 

thus be of very great importance. 
A 

The above form (V-11) for Yf is particularly significant ree 

in the light of a proposal by H. Fritzsch and M. Gell-Mann. (l7) The 

large algebra of good light-like plane operators which they postulate 
A. 

include the operators of which Yf is composed. Moreover, they hope ree 

to be able to construct the relevant components of the energy-momentum 

tensor "Within this large algebra, formulating a complete theory of 

strong interactions in terms of physical functions of quark and gluon 

fields on the light-like plane. Within the context of this theory 
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A. 
Yfree may be found to be a useful approximation to the more complicated 
,. 
Y. In any event, this algebra may :provide us with a way in which 

Yfree may be defined in terms of observable operators. 
,. 

In the next chapter Yf will be used to transform various ree 

good light-like charges and moments, extracting the algebraic structure 

from the model and applying it to physical operators. 
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VI. AP.PLICATION 'ID CURRENT MATRIX ELEMENTS 

We have now come to the point -where some calculations can 

be made. The form of the transformation between SU(6)W t and ,curren s 

SU(6) for the free quark model has been discussed in Chapter III. w,strong 

In Chapter IV we discussed the form of the transformation in interacting 

models. We saw that in at least one case, that ut· an SU(6)W t ,s rang 

multiplet structure realized by a "spectrum symrnetry, 11 we may expect the 

algebraic structure of the free quark model to persist even in interact­

ing models. Whether this actually occurs in nature, we do not know. It 

is, nevertheless, interesting to compute the consequences of the id.ea 

A A 
that V may have the same algebraic structur,~ as Vf • We shall see ree 

that we get reasonable results from this assumption. 

Using the formalism of light-like charges and moments, we 

are interested in matrix elements like (Al~ia (P_t.)IB) -where IA) and 

transverse momentum and finite longitudinal momentum. We assume that 

these states have simple transformation properties under SU(6)W t • ,s rong 

For actual computation however, it will be convenient to use the 

SU(3) x SU(3), t subgroup of SU(6)W t, since the trans-curren s ,curren s 

formation properties of operators are more easily discussed in these 

terms. 

Using this trick, we can throw all of the complexity of 

the mixing onto the operators. Thus, the matrix element 
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(VI-1) 

""-l!\ a ➔ A 
The problem now reduces to one of the structure of V ffi (pL) V under 

SU(3) x SU(3) x 0(2), t. We shall abstract this structure (but curren s 

not the numerical values of matrix elements, of course!) from the 

free quark model. 

We shall consider the matrix elements of the electromagnetic 

current, 
A ➔ A 3 ➔ 
F (pJ.), and the axial vector current, F. (pJ.), since many em i 

of the matrix elements of these currents have been measured. 

The truly remarkable thing about the transformation 

properties derived from the free quark model is their simplicity: 

since Vf is bilinear in quark fields, bilinear operators are trans-ree 

formed only into bilinear operators. Thus, the resulting transformed 

current can contain the irreducible representations (1,8) + (8,1) and 

(3,3) + (3,3) and nothi~ else. This property of rapid termination is 

unique to the free quark model, and unless we have some special reason 

to think that the free quark algebra should be preserved, we would 

not expect it to show up in an interacting model. 

In general, the U in V will introduce products of these 

simple irreducible representations, spoiling the termination property 

and invalidating the free quark results. However, due to the argument 

made in Chapter IV, it is conceivable that these extra terms do not 

contribute very greatly to matrix elements of physical currents 
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between hadron states. The results below are all based upon this 

assumption. We must, of course, expect~ deviations of the pre-
,. 

dictions from the experimental values, since the validity of the Vf ree 

structure can o:niy be approximate. 

A. The Axial Vector Current. 

A 3 A 3 ➔ 
The axial vector charge, Fi = Fi (p J. = O), yields the 

first interesting results. Referring 

A-l" 3 A 
of V ~- Vis explicitly written out 

J. 

to the Appendix, where the form 

for the free quark model, we see 

that the structure of the transformed operator is: 

(VI-2) 

The first term transforms like ( , 5 /\i), 
2 

and the second term like 

➔ ~ /\i 
(Ber, • o, -;::-) • 
~· .. - c::.. 

" 3 The first term transforms like the original charge F
4 .... 

(Although there is no reason whatsoever to think that it is It 
;.. 3 

is not equal to F. even in the free quark model.). The second term is 
1 

3 A. 
new, and can lead from L (W) = 0 representations (like the baryon 56, 

3A 3/\ 3A 
L (W) = 0) to higher ones (like 7..2.J L (W) = ±l, or 56, L (W) = ±1). 

" 3 This is the kind of behavior we expect of the physical F. -- such 
J. 

behavior is actually seen in, for example, the Adler-Weisberger sum 

ruJ.e, where we find many resonances contributing to the empirical sum 

over states. 

More detailed results are obtained by sandwiching the 

transformed charge (VI -2) between wellknown states, like the baryons, 
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classified as~ L3(*) = 0 under SU(6)W t • We see that only ,s rong 
3 I\ 

the first, L (F) = 0 term can contribute to the matrix element 

"-1 I\ 3 II. 3 A 
(Remember that V F. V is taken between L (F) = 0 states, which 

J. 

7: " correspond to the L0 (W) = 0 classification of the physical states. 

This jumping back and forth between L3(F) and L3('~) may seem confusing 

" at first, but, by enabling us to put Von the operator, it actually 

results in a great simplification.). Since the first term of (VI-2) 

A 3 
has precisely the same SU(3) x SU(3), t structure as F. itself, curren s 1 

we see that we simply get back all the old SU(6)W results for these 

matrix elements -- with one important proviso. The difference is that 

the first term of (VI-2) is not a generator of SU(3) x SU(3), t. -- curren s 

The values of its matrix elements are not determined by the symmetry; 

there is always some reduced matrix element Tl, which is in general 

different from 1 (we have defined~ so that Tl= 1 if there is no 

transformation). Thus, we find the traditional SU(6)W results modified 

·by factors : 

5 
-T) 

3 
* G = (D/F) . l == 32 ax1a (VI-3) 

The D/F ratio is the same as before, since T\ cancels out. Whether or 

not Tl = 1/ ✓2 is a question of dynamics which the present work cannot 

decide (It is nevertheless interesting, although probably not too 

significant, that the free q_uark model gives T) == ( ~ 2- 2) 
l+pJ.. /m 

one can argue should be about 1/ ✓2 • ) • 

which 

The structure (VI-2) which we have proposed for the trans­

formed axial vector charge has been applied to the decays of 
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L3(*) = -1,0,+l mesons by F. J. Gil.man and M. Kugler, (l
3

) who use 

PCAC to relate the axial vector charge to pion decay amplitudes. 

These authors have also introduced the simplifying assumption that 

3 A A 3 
the (1,8) + (8,1) L (F) = 0 term in (VI-2) is the generator F. times 

1 

a constant. Although this assumption is not true even in the free 

quark model, Gil.man and Kugler have found it useful for some phenom­

enologicaJ. purposes. Ho-wever, as a consequence of this drastic 

restriction, Gil.man and Kugler find that the Roper N'(1470) cannot 

decay into a nucleon and pion. This decay is fully allowed by our 

structure in (VI-2), since the first term is not a generator. 

Gilman and Kugler nevertheless find generally satisfactory 

3 A 3 A 
results for the decays of L {W) = -1,0, +l mesons to L (W) = 0 mesons. 

In particular, they find that the decay B ➔ w,r is purely transverse 

and that g.Bv/gA P = .[2 for the J
3 = 1 {transverse) part. Both of 

2 
these results seem to be in good agreement with recent experiments. 

If we were to be more general, however, and admit a (1,8) + (8,1) 

L3(f) = 0 term in the transformed charge which is~ a generator, 

certain results of theirs would be altered. The longitudinal decay 

B ➔ W1! would be allowed, for example. In general -we would have two 

reduced matrix elements to characterize the decays rather than one. 

It is something of a mystery that this second reduced 

matrix element should vanish, but perhaps further investigation will 

clarify the issue. 

The use of PCAC raises an interesting problem since, as 

Gilman and Kugler have found, when PCAC is combined with the trans­

formation properties (VI-2) one sometimes finds results which conflict 
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with the predictions of SU(6\r,strong vertex synnnetry. The B ➔ w,r decay 

is a good example of this conflict, since SU(6)W t synnnetry forbids ,s rong 

the transverse decay, whereas the structure of the transformed axial 

charge, via PCAC, allows it. SU(6) is thus not even a good w,strong 

vertex symmetry -when non-zero q_uark orbital angular momenta are in-

valved. SU(6)W t must be restricted solely to the classification 
,s rong 

of states, and some new prescription adopted for the discussion o:f 

strong interaction vertices. (l9
) 

,., 3 
The aJ.gebraic structure of the transformed F. thus seems 

1 

to give adequate results for forward matrix elements. The area where 

the old results first broke down, however, was in the first moments 

of the electromagnetic current. We must therefore turn to these to 

these to see that the proposed algebraic structure really does make 

the corrections we intended it to make. 

B. Moments of the Electric Current 

A. 
The matrix elements of the electromagnetic charge, Fem= Q, 

I\ /\ 
are, of course, trivial since [ V,Fem] = O. The moments are more 

interesting, however. In particular, the first moment, 

C ~ (k ) I dk em x k = O 
is nothing less than the anomalous magnetic moment 

X X 
operator. For spin-½ particles, the anomalous magnetic moment µA, is 

given by 

/\ 
d (A, t ;rest;-½IF (k )IA, t ;rest;+½ )lk __ 0 dk s rang em x s rong 
kx x 

(VI-4:) 

This identification can be readily checked by expanding out the matrix 

element in terms of the traditional invariants, being careful to 



57 

remember the spin rotations induced by the E boosts. One then sees 

that only the Pauli form factor F2(o) is projected out. 
I\ 

We can also differentiate Fem(kx) directly, finding 

(VI-5) 

The second term is just kinematic: Q is the net charge of the state 

IA ) , while E
1 

= J
2 + A

1 
• But (restjE11rest)=M~ (rest!J2!rest). 'strong M 

A1 has negative parity, and therefore has no diagonal matrix elements 

between states at rest. Since {rest,-½lJ2 1 rest,+½)= i/2, we find 

2M
µA= +i (A, t ;rest;-JIJd4x o(x+)x'l:+ (x)! A, t ;rest;+½)- Q 

s rang J em s rang · 2M 

(VI-6) 

The second term is just the Dirac Momentl Note that this identification 

1 is a bit more subtle than it seems, since E and 

➔ 
individually can change PJ., and their forward matrix elements may not 

be well defined.. However, if the evaluations are done in terms of 

symmetric vra.ve packets, rather than plane wave states, no ambiguities 

arise and the matrix elements are perfectly -well defined. The upshot 

of' this argument is that we can write 

~ = +i (A, t ;rest;-½! Ja4
x o (x +)x't"..+ (x) I A, t ;rest;+½ ) 2M s rong I-em s rong 

= +i(A, t ;rest;-½1◊-1 Ja4
xo (x+)x~+ (x)v! A, t ;rest;+½) curren s · Tem curren s 
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where 1-'T is the total magnetic moment of the particle. The algebraic 

structure of this operator is readily determined (see Appendix): 

A-1 4 + + A 3 A 
V f d x o(x )x't: (x)V ~ (1,8) + (8,1), L (F) = ±1 J. em 

+ (3,3) + (3,3), L
3(F) = o, ±2 

(VI-8) 

where the (3,3) + (3,3), L3(¾) = 0 term transforms like ( r1 ~i). 

With the 

nucleon, 

assignment of the nucleon, spin-up to (6,3)L3(a) = 0 and the 

3 A 
spin-down to (3,6)L (W) = o, we find that the(l,8) + (8,1) 

.,. I\ 
parts give no contribution, the (3,3) + (3,3), L0 (F) = O term alone 

connecting the two states. It is easy to verif'y that this yields 

~ (proton) 

1-'T (neutron)= (VI-9) 

We have thus recovered this famous ratio. The fact that one obtains 

the result µA = O when the transformation V ➔ 1 is, alone, a striking 

proof of how badly such a transformation is needed, since an 

1 
SU(6)W t 11 syrmnetry11 would predict that (rest;-½!E I rest;+½} =0 ,curren s 

-- in clear contradiction to the Lorentz algebra! One must conclude 

that states belonging to irreducible representations of SU(6)W t ,curren s 

cannot even have definite spin! 

We can also computeµ*, the :Ml. transition moment for 

p ➔ ~+, assigning the 6+, spin+½ to (6,3), L3(w) = O. fIB before, we 

can verify that 

(VI-10) 
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- - 3 A .Again, only the (3,3) + (3,3), L (F) = 0 term contributes, yielding 

the traditional 

2 ✓2 

3 
~(proton) (V1-11) 

which is within about 30o/o of the measured value. Finally, we can work 

out the E2 transition moment for p ➔ 6.+, 

2 2 

E2 = -2
1 

-::,. k ~ (6. +t ,-2
1

, rest IF (k ) I w P ) o { 1 "' 1 m"' - m 
o x " 2 s rong - em x Pstrong'-2 ' P3 = 2rn

6 

(VI-12) 

With the assignment of 6. + , spin +% , to (10,l)L 3(t) = o, this yields 

E2 = o, in good agreement with experiment. This moment has a very 

special. importance for our work, since neither (1,8) + (8,1) terms nor 

(3,3) + (3,3) can give any contributions to E2. Products of these 

representations,however, ~ contribute, so that the vanishing of E2 

provides a test for the absence of such terms. Experimentally, ( 2o) 

E2/Ml = .02 ± .02, which seems to indicate that any terms transforming 

like products of currents (i.e., terms not bilinear in quark fields) 

3 I\ 
are absent, or at least contribute very little to Mi (F) = o transitions. 

We can now go on to higher moments, finding, for example, 

charge radii of spin½ particles, 
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2 
GE( g_ ) I 2 . 

g_ = 0 

1( 1 lf4 + 2+ I 1 ) = -2 A, t ;+2 ,rest d xo(x )x f (x) A, t ;+2 ,rest s rong em s rong 

(VI-13) 

2 where GE(g_) is the Electric Sachs form factor. From the Appendix 

we :find that the transformed operator has the structure, 

(VI-14) 

I\ 
'Where the first term has pieces transforming like ( ~) and 

I\ 
(L3(F) ,,.3 e

2
m). ,.. This second piece can be shown to vanish by means 

of ~ parity and a spin flip operator 
/\ 

(L3(F) ,.,.3 e
2
m) )C ,.. is even under<R, but 

"' 2 exp (i:rr F ). Note that 
0 

II 2 
odd under exp (i:rr F ). 

0 

We thus conclude that the charge radii are proportional 

to the charge for the entire 56 (i.e., pure F coupling for the nucleon 

~). In particular, this means R2 (neutron) = o, which is to be compared 

2 vd.th the experimental value of • 027 ± • 001 fm , or -1/5 of the proton 

charge radius. Although this violation of 2CJ{o is acceptable when we 

remember the approximations that led to the prediction, its size is 

still a bit surprising in comparison m.th the accuracy of our other 

results. Perhaps this is a warning that as we increase the complexity 

by going to higher moments we may also be increasing the sensitivity 

of the predictions to terms not present in the free ciuark model. 
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T'ne evaluation of these higher moments becomes extremely 

laborious, as can be seen from the transformation properties of the 

charge radius in the Appendix. Furthermore, the exp ik (x+E1) 
X 

operator alone complicates the eA-traction of form factors. 

What we need is a cleaner method for deriving these higher 

moments, so that we can get a better idea about exactly what is going 

wrong (if anything). The most fruitful approach to this problem 

seems to be the application of Dashen and Gell-Mann's angular condi­

tion, (l5 ) which relates higher moments to lower moments. Perhaps in 

this way the problem of the higher moments can be clarified. TM.s 

work remains to be done. 



62 

VII. CONCLUSION 

The results of the last chapter make it apparent that the 

algebraic structure of the transformation between SU(6)W t ,curren s 

and SU(6)W,strong in the free quark model may be close to that of the 

transformation in the real world. 
,... 

Although we expect that the actual transformation V mil 

yield more than just operators belonging to (3, 3) + (3, 3) and 

" (1,8) + (8,1) when Vis used to transform charges and moments like 

" B F.· (k ), such terms seem to be nearly absent, at least for matrix 
J 

elements of F.~(k) between baryon states in the 56, L3(t) = o. The 
J 

mechanism which produces the similarity of the algebraic properties of 
,. ,.. 
V and Vfree is presently unknown. The problem -was discussed in 

Chapter DT, but the issue has yet to be completely clarified. 

We have found what seems like a reasonable definition of 

the transformation between the two SU(6)w's, one -which can be applied 

(in principle, at least) to study a wide range of models. Such a 

study would be one aven~e of learning more abo~t the structure of this 

trans format ion. 

Another means of learning more about the structure of the 
;\ 

transformation would be to investigate the impact of, say, Vf on ree 

the problem of saturating the local SU(3) x SU(3) at infinite momentum. 

This work remains to be done. In the meantime, ho-wever, we 

have made some progress in understanding how to use the SU(6)W t , curren s 

algebra to predict relations between matrix elements. An extremely 
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simple (aJ.though somewhat unreaJ.istic) exa.m~le of the transformation 

between the two SU(6)w's has been found. Hopefully, the existence of 

this concrete example of the relation between the two SU(6)w's will 

make the wide difference between the "current quark" and "constituent 

quark" points of view clear. 

Lastly, we have found some rational basis for understanding 

where the "naive quark model" results come from -- we have recovered 

all the successes of these schemes, and tempered the failures. 
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APPENDIX 

Transformation of Light-like Charges and Mo~ents in the Free Quark Model 

Q u. The 

Mo.~1'1etic Mo111-?el'l1-

V,-1 Jdi'\ S (}t) x F.+ (x) 
f-~e em 

r,,i,-.,...,.,;i+ 
'-'Vfl\.,flr.. 
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each of which has definite SU(6)w strong properties, after the 
manner of Sakita and Wali (B. Sak.ha ana K. c. Wali, Phys. 
Rev. 139, B1355, (1965)). In this scheme mesons and baryons 
are described as objects with appropriate sets of SU(12) 
indices. Vertices are described by means of invariant terms 
consisting of the various possible contractions of these 
indices with the external momenta and with each other. 

" We ce,n see what the struct~re of V free implj_es for these 
invariants in processes where Vfree can be applied. The next 
step of generalization would be to assume this struct~e 
applies for all strong interaction processes, whether Vfree can 
be applied or not. 

It seems likely that this procedure will result in the 
Rosner-Colglazier 3p0 prescription for analyzing strong-inter­
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Tb.is scheme has the great virtue that it allow us to use 
the ideas gained from the properties of currents to .suggest 
the structure of purely hadronic vertices. 

20. R. Walker has kindly supplied the following data for the 
rp ➔ no~+ transition (resonance par8llleters are taken to be 
M = 1233 MeV, r = 120 MeV) 

~+ = 2.49 ± .04 

El+ = .030 ± .03 

(errors are approximate). 
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21. The idea that a unitary transformation Vis responsible for 
the mixing of SU(6)w,currents representa.tions at infinite 
momentum is an old one. It appears in attempts to find 
representations of the current algebra at infinite momentum 
(Dashen and Gell .. Mann; (5) Buccella, Klinert, et al. (7)) and 
in many other research efforts of the last seven years. 
The existence of such a transformation is also implicit in 
the phenomeriological mixing schemes. ( 6) 




