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ABSTRACT

In this thesis an attempt is made to clarify the connection
between two physically different SU(G)W algebras. The one SU(B)W is
an approximate symmetry group, and leads to the idea that hadrons are
composed of just a few "constituent" quarks. The other SU(G)w is an
algebra of physically observable operators, integrals over various
components of vector, axial, and tensor currents. These currents
behave, algebraically, as if they were simple bilinear combinations

of "current"

quark fields.

We propose that these two physically different algebras
are related by a unitary transformation. This transformation is
necessarily very different from the identity. We identify seversl
properties of this transformation, and then go on to construct it
explicitly in the free quark model, where it yields an exactly con-
served SU(S)W symmetry of constituent quarks.

- We then show how this transformation may be constructed in
models with interacting quarks. In general, the algebraic structure
of the transformation depends upon the dynamical details of the
interaction. We discuss the effect of interactions in more detail,
distinguishing two cases. In one case the structure of the trans-
formation in the interacting model need not have any relation to that
of the free guark model. In the other case, the slgebraic structure

of the two transformations are the same. We cannot distinguish these

two cases at present. However, as found in the last section, the

.
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algebraic structure of the transformed currents in nature seems to be
roughly that given by the free quark model transformation. The
mechanism by which thie occurs is obscure at present, and we can
make no clearcut distinction between the two cases.

As we have indicated, the last section is devoted to the
application of the algebraic structure of the free quark model trans-
formation to the matrix elements of physical currents. We are thus
led to many successful approximate relations among matrix elements,

not the least of which is the recovery of the famous ratio

b (proton)/uT (neutron) = - 3/2.
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*
I. INTRODUCTION

Two Algebras Named SU(B)W

The name SU(6)W first appeared in particle physics during
the year 1965. Since that time, it has been used to denote the
algebra of two physically different sets of operators.

One of these SU(G)W’S, which we shall hereafter call

sU(6) was discovered by H. J. Lipkin and S. Meshkov.(l) These

W, strong’
authors sought to explain the approximate spin independence of the

strong interactions by postulating that the strong interaction

Hamiltonian, H ,, approximately commutes with a set of 35 operators

st
o

Wi . These operators are taken to have the same commutetion relations,

charge conjugation, and parity as the quark model expressions

W~ Jx af0) et (1-12)
al e % gt o™ M () (1-1b)
g~ Jx a(x) F Fal -

02 Ja o) % e I-le)
i x q (x = Falx (I-1lc
Wo~ fd° +)£2\_:L() 1-14)
i x a'(x) F Zalx (T~

¥ This chapter is essentially a review, for the purpose of making the
distinction between the two SU(6)y's as clear as possible. It
contains nothing which cannot be found in references 5 and 11,



where Ki is the usual 3x3 matrix representation of SU(3), and i runs
from O toc 8., The B and Ui are 4#4 Dirac matrices. Note that W5 is
excluded from SU(6)W; its inclusion simply enlarges the algebra
slightly to U(G)W. One must be careful abdut interpreting expressions
(I-la)~(i-1d). They are not equations. The tilde here means simply
"has the same glgebra as." As we shall see later, the Wia cannot even
be written as integrals over local operators; nevertheless, their
algebra is the same. It is important not to become confused here.
The expressions on the right-hand sides of (I-la) - (I-1d) are often
used in quark models to denote an SU(6)w algebra of locsl currents.
We do not wish to imply any such thing here. We only write these
expressions as a shorthand for the assumed algebraic structure of the
W

Now it should be Immediately clear -- from the hadron mass
spectrum, for example ~-- that SU(G)W;strong symnetry, insofar as it
exists, must be badly broken. Nevertheless, the general hope is that
there is some ideal limit, not "too" far removed from reality, in
which the symmetry becomes exact. For example, we might hope that HSt

can be broken up into the form H_ + @ H ., where [Wia, Ho] =0 so

nt

that only Hi breaks the symmetry. If the matrix elements of HO

nt
are large in comparison to those of Hint’ then we have broken symmetry,

which becomes exact in the "ideal limit" o — 0.
If we simply assume that such an ideal limit exists for

su(s) , and proceed to test the predictions of this hypothetical

W,strong
symmetry, we find quite good agreement with experiment in many cases.



In making these predictions, the lowest lying negative parity mesons
(the pseudoscalar and vector octets and singlets) are assumed to belong

to the 35 and 1 representations, and the lowest lying positive parity

+ +
baryons (the % octet and % decimet) to the 56.
Perhaps the most interesting feature of SU(G)W,strong is the

fact that the w-charge* of a particle geems to be independent of its
momentum in the 2 direction. Although this property is suggested by
the guark model expressions (I-la)-(I-1d), (which are, moreover, only
invariant under boosts in the g direction in the ideal 1limit where
they commute exactly with Hst)’ there is really no compelling reason
to believe that the postulated Wia have the same Lorentz properties as
these expressions. That the Wia actually do commute with boosts in the
% direction, [Wia, AS] = 0, seems to be demonstrated by the validity
of the Johnson-Treiman relations(z) for a wide range of particle
momentsa. This peculiar fegture makes symne
easy to evaluate for collinear processes. The fact that these pre-
dictions hold equally well for states with any momentum in the 2

direction has earned SU(6) the name of "relativistic spin

W, strong
symnetry.”
In summary, there seems to be a fair amount of purely

empirical evidence supporting the existence of a badly broken

su(s) symmetry. At present, we know very little about the

W,strong

* Note that we shall use the term "charge" in a generic sense. Thus,
we shall refer to any set of integrated operators forming a closed
algebra as "charges" regardless of whether or not they can be
expressed as the spatial integral of the timelike component of a
4-vector density.



charges which generate this symmetry. We know definitely only their
commutation relstions, charge conjugation, and parity. We suspect
that the charges are invariant under boosts in the % direction (that
is, in the ideal limit in which the symmetry is exact). Further than
this, we cannot go at the moment.

The second SU(G)W was introduced in the same year by
R. Dashen and M. Gell—Mann.(S) These authors considered extensions
of the well-known chiral SU(3) x SU(3) algebra of the vector and axial
vector charges, Fi and Fis, respectively. These charges are the space
integrals of the Oth components of the vector and axial vector current
densities jé“(x) and 5:iu5(x). Both densities are directly measurable
in wesk and electromagnetic processes, and hence are well-defined
physical operators. Dashen and Gell-Mann proposed adding a new density,

that of a world scalar, to the system and commubting operators at equal

relations are those of the quark model, the glgebra closes on a U(12)
of 144 operators. Among this set of operators one finds an anti-
symmetric tensor current, J:i“v(x), which behaves like the quark model
expression 4q (x) o™’ %} a(x). Although nothing seems to be directly
coupled to this current in nature, unlike }:i“(x) and ]:ius(x), it may
nevertheless appear on the right-hand side of commutators of directly
observable operators, eg. in [8” S:ius(x), J:ik(y)] . We may thus
assume that it makes physical sense to talk about operators in which
these tensor curfents appear.

The tensor currents ]:iuv(x) are particularly interesting

for us becsuse they can be used in conjunction with the vector and



axial vector currents to define an SU(G)W subgroup of U(12) whose
operators have the same commutation relations, charge conjugation,

« Let us be careful not to

. a
and parity as the W,  of SU(6)W,strong

identify the two sets of operators too quickly, however, and instead

call the new algebra by the name SU(6) This algebra con-

W,currents’

sists of 35 operators Fia which are defined as

F,ooo= Ja%x F o) (1-22)

Fil = % fdsx f:i25(x) (1-2b)

r° = 3 l%x F% (1-2c)

r° = 3 Ja% FLPw (1-24)
The SU(E)W,currents algebra of this set of operators was

suggested by the quark model, where the local currents are bilinear
in quark fields, q (x) T é} q(x). The similarity in algebraic
structure between the Wia in (I-la) - (I-1d) and the Fia above becomes
clearly evident with this identification. It is vital to distinguish
similarity in structure from equality, however. In various quark

models we find that the above charges are equal to integrals over the

A
2
the Wia only have the same algebraic structure (indicated by the

bilinear expressions q+(x) T a(x), whereas in these same models

tilde). The Wia in these models are not even integrals over local

operators.



In the case of the algebra (I-2a) - (I-24) above, the
operators may be completely defined, in principle, in a context other
than that of the presumed symwetry itself. In particular, the Lorentz
transformgtion properties are known, and we clearly see the property
that [Fia,AS] = 0 if the Fia are conserved. In fact, the forms (I-2a)-
&-Zd)show us how to sharpen our expression of this property: we need
only note that the Fia are "good" operators, in the sense that their
matrix elements don't vanish when taken between finite mass states with
infinite momentum in the % direction. The "goodness" of the Fia auto-
mgtically implies [Fia, AS] = 0 in the limit of comservation, and
gives an unambiguous statement of what we mean when the Fia are not
conserved. In & like manner, we can summarize the idea that the

su(se) charges are independent of momentum in the 2 direction

W, strong
by making the w.> "good" operators.

i
quat

1=
(w]
3
tn
i)
!
no
[hv]
g

)~ (T-7d) demonstrate the existence of a set of
35 operators Fia wvhich are physically well defined, and which seem in
all respects similar to the 35 operators Wia. The fundamental question
is, are these two sets of operators really the same? There seem to be
several good reasons for identifying the Wia with the Fia. In
particular, it seems that the W , the generators of the ordinary su(3)
of strong inbteractions, are the same as the Fi’ the integrasls of the
timelike components of the vector currents, by the success of CVC in
wegk interactions. Since the two sets of operators behave alike in
algebraic respects, it would be quite natural to use the hint from CVC
and set them all equal. There are, however, several formidable

objections to such a procedure.



The first objection is that no sensible ideal limit

is known to

(wherein the charges of SU(6) commute with H_

&)

is not even a symmetry of the free quark model,

W, currents

exist. SU(6)W,currents
where the Fia fail to commute with the quark kinetic energy term. The

only limit in which SU(6) can become a symmetry is one where

W,currents
the quark mass tends to infinity -- i.e., the nonrelativistic limit --
but such a limit can be of no value for the manifestly relativistic
processes which we wish to consider. One can argue that (as we find in
the free quark model) the commutator [Fia, Hstl has a zero expectation
value when taken between collinear states moving in the % direction.
However, if one takes this idea seriously, one faces the difficulty of
how to propagate the symmetry through the non-collinear intermediate
states which presumably make large contribubtions to many low-energy
strong interaction processes where SU(S)W,strong is known to work
fairly well {for higher energy processes, one migh
that the cutoff in transverse momentum at 00 MeV/c would be effective
in suppressing the non-collinear intermediate states).

Another possibility is to couple the quarks to fields which

transform according to non-trivial SU(6) representations,

W,currents

hoping to arrange the interaction in such a way that the interacting

Hamiltonian is SU(S)W currents invariant. Such an approach, somewhat
2

in the spirit of the non-linear chiral Lagrangians, has actually been

proposed by P. Chang and F. Gﬁrsey.(é) As we shall find, however,

the identification. of SU(6) as an approximate symmetry group

W, currents

leads to résults which are quite unsatisfactory. 1In the present



approach, we shall assume that the generators of SU(S)w currents
2

far from being conserved.

There is direct objection to the use of SU(6)

W,currents
an approximate symmetry group. R. Dashen and M. Gell-Mann(s) have
: + +
attempted to classify the % octet and g decimet baryons in a 56
of SU(G)W,currents in the infinite momentum frame. They have shown
that such a classificgtion would imply that the anomalous magnetic
+
moments of all % octet baryons must vanish, along with the octet-

decimet magnetic transition amplitudes. Since these results are far
from being true in nature, one arrives at the necessity of describing

the physical baryons as complex mixtures of many SU(8), . ...
b4

irreducible representations. This impurity of physical states under

the transformations generated by SU(6) (or its subgroup

W, currents

sU(3) x SU(S)’currents) is, in fact, the raison d'&tre of the many

mixing schemes which have boen

(6)

the maﬁrix elements of currents between states of infinite momentum.
While these different schemes vary in detail, they all seem to agree
on the need for very appreciable mixing between a variety of irreducible
representations. |

We can thus contrast the SU(8) , whose charges are

W, currents

Tar from being conserved, and under which physical states appear to be
complicated mixtures of irreducible representations, to the

su(8) , whose empirical success presents the quite different

W,strong
aspect of nearly conserved charges with physical states lying in

simple irreducible representations.



In more plcturesque terms, we can say that the image of a

baryon we develop using the SU(6) is one of just three

W,strong

"constituent” quarks sitting in an S state, whereas the SU(G)W,currents
baryon is a complex object with many "current" quarks and quark pairs,
all moving in states with various orbital angular momenta. This
picture is reinforced by the results on deep inelastic electron
scattering from SLAC. The infinite numbers of "partons" required to
explain the observed neutron and proton structure functions are pre-
sumably nothing other than these current quarks and current quark pairs
along with some kind of neutral glue.

Thus, we are forced to conclude that the two SU(G)W,S are
quite different. We might expect, however, that there is some relation

between them. Their close similarity should not be dismissed as purely

accidental. Since we can't set them egqual, let us suppose instead

Since the quantum numbers of either SU(S)W do not uniquely
define a state, it is not necessary that a unitary V exists. V will
exist only if the structure of representations of either SU(B)W on

the physical states is the same. For example, if we find a 70 of

SU(G)W,strong in the spectrum, there must be a corresponding 70 of
sU(a)W,currents in the Hilbert space of physical states. We postulate

this to be the case, writing

W.o = VEZV | (1-3)

vhere V is unitary.
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Some of the properties of V are immediately evident: It
must have parity P = +, charge conjugation C = + (since these
properties are identical for both sets of charges, and we wish V to
be continuously connected to the unit transformation). It must be
snvarisnt under spatisl rotations sbout the £ axis, [V,J°] = 0, and
it must be an SU(3) singlet, [V, F, 1 = 0, at least to a very good
approximation, in order for CVC generalized to SU(3) to remain valid.
Other properties will be discussed in the next chapter.

Before going on, a few words about the classification of
states would seem appropriate. Simple classification of states in
SU(G)W.multiplets is not enough to uniguely specify a state. It has
been found many other quantum number are reguired. One of these
quantum numbers can be taken to be the spin in the 2 direction (i.e.,
the helicity for collinear processes), and the group denoted

~7 7T

SU(6)W x 0(2) {(for either SU{6)

W). A more useful classi
however, is derived by noting that Wbs and Fo3 act like quark spin
operators for "constituent" and "current" quarks respectively. Since
both operators commute with JS, it mekes sense to define "quark orbital
angular momenta" by LS(W) =5 - wo3 and L5(F) =70 - FOS . Although
these identifications are suggested by the gquark model, the procedure
is perfectly general. We may now classify states in terms of their
S‘U(e)W guantum numbers, and "angular momenta." For example, the

classification for the low-lying baryons would be 356,

Ls(W) = 0. The next highest set of baryons seems to be a 70,

=
&3}
—
=
~
I

= -1,0,1.

Such a classification can be used to make the nalve quark



picture of hadrons more precise. Let us suppose that [V, FOS] % 0,
so that FO“J and W03 are different operators. Then in genersl, where

the sU(8) picture indicates, say, three guarks with a simple

W, strong
spin structure, the SU(EB)W.’currents classification of the same state
will indicate a large mixture of different spins. Correspondingly,
the values of LS(W) will be simple, while those of LS(F) will indicate
a mixture of "orbital angular momenta." LS(F) must be complicated in
order that LS(F) + Fo5 add up to the same 72 as LS(W) + Wbs (remember

5, V] = 0, so that the value of J3 is the same for both classi-

[J
fications).

The transformation V thus expresses the genersl idea of
the phenomenological mixing schemes in a compact way. It allows one
to describe the hadrons as simple objects, "containing" just three
quarks where strong interactions are involved, and at the same time
giving them the neceggary complicated structure where current matrix
elements are concerned.

The.usefulness and structure of such a transformation have
been demonstrated phenomenclogically by F. Bueccells, H. Kleinert,

(7)

C. A. Savoy et al. in the infinite momentum frame. These authors
have succeeded in fitting many coupling constants by means of this
approach. The present work will be more theoretical in nature, and
will concentrate more on showing how such a transformstion arises
physically. Our result will be seen to have transformation properties
similar to that of Buccella, Kleinert, and Savoy.

The major problem is to actually say something sbout V.

Assuming that such an operator actually exists in nature, what can we



find out about its properties? 1In the next chapter we shall define
V in an unambiguous way and make a list of what we know about V from
physics. We will show how such a V can be explicitly constructed in

the free quark model (to give an exact SU(6) ). We then go on

W,strong
to show how V may be constructed in any model based on interacting
quarks.

A mystery then arises. The problem is that the algebraic
structure of transformed charges and currents in nature seems to be
roughly that of the free quark model. The evidence for this is that
blind use of the free quark model transformstion properties yields many
successful relations between physical matrix elements.

We propose a solution to this mystery, arguing that the free
gquark algebraic structure may persist in interacting mcdels if the

spectrum of the interacting model shows an SU(6) symmetry of

W,strong

the appropriate kind. The two miracles, that of an SU(G)W strong
’D

symmetry apparent in the spectrum and that of a free quark-like
algebraic structure may be relgted, leaving only one miracle to
explain.

Since the hadron spectrum does show an approximate

su(e) symmetry, it is therefore possible +to suppose that

W,strong

relations between physical matrix elements derived via the algebraic
structure of the free quark transformation Vfree will be accurate to

the order of SU(6) symmetry bresking in the spectrum, that

W,strong
is, to 20% or 30%.

This expectation is verified in the last chapter vhere many
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gsuccessful relations among the matrix elements of the axial vector
charge and the electromagnetic current are found. HNevertheless,

one should not regard this solution as.anything more than a possibility.
The acbusl mechanism by which the structure of V is determined is
obscure, and it would be premature to try to guess the mechanism from
the present work. In this respect we have only just begun to approach

the problem, and there is a great deal yet to be learned.
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ITI. PROPERTIES OF THE TRANSFORMATION

Thus far, we have not stated precisely what job this

ig

transformation V performs. Ambiguities occur because SU(6)W strong 1
b

not an exact symmetry. If SU(6) were exsgct, there would be

W,strong

no difficulty: Thefe would exist a well-defined set of generators
Wiq which could be relgted to the Fia. However, the generstors of an
approximate symmetry are not particularly well defined: We can always
add other small operators, operators which may either better or worsen
the appearance of symmetry without changing the "approximately con-
served" nature of the generators. Thus, when there is no exact

su{e) we need yet another unitary transformation: e unitary

W,strong
transformation which takes us from the actual energy eigenstates to

states transforming irreducibly under SU(6) This transfor-

W,strong”
mation, too, is poorly defined. However, the combined transformation,

the one which takes us from energy eigenstates to irreducible repre-

sentations of SU(6) and thence to irreducible representations

W,strong
of 8U(6)

W, currents is well defined, since the generators of

su(s) are integrals over (in principle) observable operators.

W, currents

This is the transformation which we shall study. Note that it reduces

to our naive idea of a relation between SU(6) and SU(6)

W,strong W, cur=-

when SU(6) is exactly conserved, since in that case

rents W,strong

energy eigenstates coincide with irreducible representations of
SU(G)W,strong'
Before proceeding, we need some sort of notation for

labeling states. Let us label a state as the p member of the R
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representation of an SU(S)W. Which su(s)w is meant will be denoted
by a subscript "strong" or "currents." ILet us denote any other quantum
numbers which may be needed to uniquely specify a state by "a". The
operators connected with the "a" are assumed to.commute with the
generators of the gppropriate SU(G)W, and hence are included within
the subscript. This is unnecessary only if the operators in question
commute with V, which will generally not bé the case. Note that V
does not change momentum, so that momentum is always a good quantum
number, although energy may not be. (This unpleasant tie to a
particular Lorentz frame will be dissolved later, when we switch to
charges integrated over a light-like plane. For now, we feel that

there is some pedagogic value in remaining fixed in a particular

frame.)
Using this notation, we designate a state as
—
lp (R, p, @) > when we wish to work with states which are
currents

irreducible representations of SU(G)W, currents, and as

[5’(R, o, Q) > when irreducible representations of SU(6)

strong W,strong

are more convenient. In many cases we shall not need the full list
of quantum numbers, and so shall write R, or some other letter, in

place of the list. Thus, we shall often use the notation IR >
currents

or [R > to denote a state which transforms irreducibly under
strong

su(s) or SU(6) , respectively. When SU(B)

W, currents W,strong W, strong

is an exact symmetry, V specifies the relationship between the two
labeling schemes, by definition. In general, a state labeled by one
scheme will have a projection upon many states labeled by the other

scheme.
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Finally, we shall designate "physical states" -- that is,
states which are eigenstates of the Hamiltonian -- by the traditional
Poincaré group quantum numﬁers: momentum fi energy B, spin j, and the
spin component along %, m. Furthermore, we mgy have to designate the
channel we are interested in by other conserved quantum numbers such
as charge, isotopic spin, and strangeness (which are conserved by the
hadronic part of the Hamiltonian). We shall use the symbol @ %o
collectively designate these gquantum numbers (note that Q is a subset
of p, since both SU(S)W'S include SU(3)). Thus, we designate a
"physical state" by Ifi E jm; Q> or, for brevity, simply by |E >
when we do not need to specify the other indices in more detail.

Armed with these notational devices, we can expand a physical

state in terms of states which transform irreducibly under

SU(S)W’currents :
IEZ Ejm; Q) =R,%,a (£>(R’p’a)currents '51 Ejm; Q>1 5)(R’p’@)currents)
or simply

'|E ) = ; (Rcurrents lE) churrents> (11-1)

the specific values of the indices being understood. In operator form

this becomes

»n = ) (11-2)

’E (Rcurrents 'Rcurrents

where

V = T |E(R (T1-3)

R currents

currents

) (R
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V is not fully defined until we specify an association
(Rpa)« (E jm; Q). In principle, we can choose any association
we wish without changing the physical content of the transformation,
but in practice we shall find a "natural" one.
The transformation V in eq. (II-3) relates physical states

to states which transform irreducibly under SU(6) As such,

W, currents’

it is the appropriate generalization of the transformation between

and SU(8) discussed in the introduction.

su(s) W,strong

W, currents

In the following work we shall retain eg. (I-3), although
it is now more a definition of Wia than of V. In this way we avoid
the complication of considering some transformation which takes us
 from physical states to states which transform irreducibly under a

The SU(6) classification of a

poorly defined SU(6) W,strong
2

W,strong’

given state is thus completely determined by the association

R, e ) ©(E 5 m; Q). Fro

-1 )
(0 43Y i by

3
+
jag

w, broken SU(R)
’ ' ‘W,strong

is a very subordinate kind of symmetry -- as it should be since its
operators are not physically well determined. The actual algebraic

framework of the theory derives from SU(6) , whose operators

W, currents

are well determined. The reason that we even consider SU(S)W strong
2

as a separgte entity is due to a dynamical accident: physical states

do seem to lie in approximately degenerate SU(6) multiplets.

W,strong

The SU({6) elgebra, however, is far from being a symmetry,

W, currents
so we need some transformation V to take us over to the physical states.
Once among the physicel states, the approximate degeneracy of multi-

plets implies that we are only a smell step away from some

su(e) . In view of this situation, we have defined the
W,strong bl
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irreducible representations of SU(S)W,strong to coincide with these

multiplets. Moreover, this 1s how we establish our "natural” associ-

ation of physical states with SU(G)W,currents states: We first group
)}(an

= . . oy g
a set of states{.ip Ejm; Q)} into a multiplet {IP (R,p,a)strong

empirical process), then we associate (R,p,0) « (R, p, Q)

strong currents”

This process is unique to the extent that we can find all the states
in a given multiplet, but is only possible in practice because of the
approximate degeneracy of multiplets. It should be clear from the
definitions that [wio‘, H,] =0 vhen the multiplets are exsctly
degenerate, and [Wioa Hst] =~ 0 vwhen the splitting is smszll.

So much for the general structure. 1In order to actually
learn something about V we must construet it somehow. We shall attempt
to do this in the next two chapters.

To aid this construction, we can derive some constraints
can be impoged uvpon major portions of
V. Several properties were mentioned in the introduction. Beside
these, a further property follows directly from definition (II-2)
and the fact that the Fia are "good" operators. This requires that
V must be constructed only from "good" operators itself or, at least,
that it can only take good operators into good operators. For the
present, we shall assume the stronger form, viz. that V contains only
"good" operators. We shall see how this must be modified in Chapter IV.

As a result of the "goodness" requirement, we expect that V
contains no world scsglar densities, no transverse components of vector
densities, and no spatial or longitudinal components of tensor density

operators. V should be expressible as a spatial integral (to preserve
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translation invariance) over operators having one and only one time or
7z index among their Lorentz indices. All other indices must be
transverse, x or y.

An immediate conseguence of these restrictions is that V
cannot be invariant under the complete 0{3) of spatial rotations. We

must thus define a new V (i.e., a new SU(6) )} for each direction

W,strong
in space. This should come as no surprise: by defining a "collinear
group" like SU(S)W, we have picked out a privileged direction in space,
and it is only natural. that operators connected with the group should

depend upon that direction.

Let us now summarize our knowledge about the transformation

(a) V transforms states lying in irreducible representations of

su(s) into states with definite energy and spin

W, currents

|E (R » = v ) .

R
currents ! currents

(b) V transforns the F,” in such & way that the VF,* vt are

conserved in some sensible limit not "too" far removed
from reality. In other words, physical states fall into

nearly degenerate SU(6) multiplets.

W,strong

(¢) V contains only "good" operators or, at least, takes "good"
operators only into "good" operators. This ensures that
finite mass states at infinite momentum are mixed only

emong themselves.
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(d) V is an SU(3) singlet, [Fi, V] = 0, in the limit vhere all
physical processes are SU(3) invariant.
(¢) Vhas P= 4, C = + and is invariant under 0(2), [JS, vl = o.

(f) V is unitary.

In order to get further insight into the structure of V, it seems

necessary to resort to explicitly constructing it in a simple model.
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ITI. EXPLICIT CONSTRUCTION OF V I THE FREE QUARK MODEL

In the free quark model the fundamental operator of the
theory is q{x), a local relativistic field obeying the equal time

anticommutation relations,

o)y G} oy = B 850x - 3) (111-1)

il

0, ete.

{qa(}:), qB(y)} ot

Local current densities can be constructed from bilinear combinations
. + AL .

of these fields, being of the form q (x) T §-q(x), where [ is a 4x4

Dirac matrix. In terms of these densities, the generators Fia of

su(e) are definable in this model. Note that thesc opsrators
W, currents

exist only in the model, and that there is no reason to believe that

- . e S = 2 e e PO VR D . SO R
he corresponding operators 1n nguvure

en in such a
oo s N . S 28
bilinear form. However, since the Fi in nearly any quark model. are
a .
the same as the Fi in the free quark model (so long as whatever

gluons which may be present are SU(6) singlets), we shall

W, currents
adopt the form below without specisgl subscripts in the work that
follows. Nevertheless, one must keep in mind that such Fia are model
operators, and that the generators {I-2a) - (I-2d) of the physical
su(se) need not have the same form.

W, currents

With these reservations we can define
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roo= Ja%x ate0 B a) (111-22)
1 1 3 + 1 Ki
o= 5 Ja%x dT(x) BT 5 alx) (I1I-2)
Model
2 1 3 + 2 7\i
F,° o= 35 Ja% o' (x) B & a(x) (III-2c)
3 1 3 + 3 Ai
.U o= 5 Ji%x ¢ (x) o - a(x) (111-24)
The SU(S)W,strong generators appear in this model as
o B a -1
i, free = 'free 'i  Vfree (111-3)

Finally, the Hamiltonian of the theory'is

H = fdsx at(x) { -ia . g} + mB } a(x) (I1I-4)

a

i s Hogol # 0 In any limit

W, currents previously mentioned. [F

except the non-relativistic one where m — o, with the kinetic energy
becoming a negligibly small portion of the total energy.

In the following, we shall find it convenient to work in
have a simple form. We thus define

= v-Iov. In this represen-

. o
a representation where the wi,free

the "W-representation" whose operators O

W
. a
tation, the operators (Wi,free)w have the forms (III-2a) - (III-24),
" a -1 o .
while (Fi )W = Vfree Fi Vfree and hence contain whatever complex-

ities Vfree may contain. The advantage of this representation is that
o

commute with
i,free

we can tell gt s glance whether or not the W



3

contains any other Dirac matrices than 1, B, O7,

Hfree: it (Hfree)w

Ba°, then the (w,”

,free)w will not commute with it (that is, so long as

(B is bilinear in quark fields. Consideration of more compli-

free)W

cated forms is not necessary at present).

Let us write the unitary operator Vfree as
Veree = exp(i Yfree) (111-5)
where Yfree is an Hermitian operator. Then we can readily check that

if we choose

A
1 3 + Yot L
Leree 3 Ja°x q7(x) arctan ( — ) a(x) (III-8)
then
-1
(Hfree)w =V free Hfree Vfree (171-7)

fdsx q+(x) { -ioz3d3 + vimg + (Z . B_)L)EI)Q(X)

a

which manifestly commutes with (wi,free)w’ since
= 2 2 .
(,-3)° = -3, -3 =-3° . Inequations (IIT-6) - (III-7),

the operator funetions of ;l . 31 are defined by their power series
expansions; that is, in terms of the string of operators of decreasing
physical dimension £ : q(x) a(x) 4 = -3, q(x) BJ? a(x) £ = -5,
a(x) ai? QLQ a(x) £ = -7, etc. Note that Vopee PECOmes the identity
transformation only in the limit m —- = , as expected.

Thus, at least within this model, we can define an exactly

« The transfor-

conserved set of operators forming an SU(G)W strong
b
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mation V. __ explicitly possesses the properties (a) - (£) of
Chapter II. One can easily check that the Wiafree , written below in
B

terms of the local quark fields q(x), commute with Horoe!

wi, free = By (III-81)
- - 1
1 1 3 4+, 1f 1 70 & ,}58 A
Wi,free = Fi + fd x4 (X) i {l+)£ m oLl 4 o _2_ q(:x)
(I11-8b)
- -~ 5
2 2 30 4,y 1 [ 1 w4505 M
Wi,free - Fi +[axa (X)x {l+x m ‘}7 m ) a(x)
(I1I-8c)
-5 - - o '
3 B 3 3+ 1 1 oo’ oL . { 37k o M
Wi,free - Fi +fd x4q (X)ac {lﬂ{ m e m 2 a(x)
(IT1-84)
where the operator # is defined as
- - 5 1
7y B_L 2
Y = 1+ — (1II1-9)
L A A |

hence }® contains only operators of even dimension, £ = 0, -2, -4, ...
The additional terms in (III-8b) - (III-84) vanish if m - , or if
the quarks have no transverse motion; however, these terms must be
present for the Wia to be generally conserved.

These transformed operators lock gquite complex as written
above. Is there any way to see why such complexity is necessary? In
fact, there is. Let us write the g(x) in terms of creation and
annihilation operators. Uslng a non-relativistic box normalization,

we write



a(x) = 1 {a;fr) u(r)(E3 ol kex b;fr) v(r)(E3 o1 k-x:}

Jvi T v E
(III-10)

where the notation is standard, except that r runs over both Dirac

(r)

and SU(3) indices. In terms of these e’ and bﬁgr) operators,

the w;?free take on a simple form:
Wi,free = ;;:: {a%;r) aéf)[ﬁ+(r)(o) %} u(s)(o)l
ki;r,s
LHE) L@ +(2) oy ML (8)
;k _kr [.+ © 5£ ° (O)J } (II1-11a)
Wi:,Lfree = Z {a:(x-) aLS)[u+(r)(0) (R_J__ ot Z\;R) u(s)(O)
EZr,s k K ' J
+<s bﬁf){ +(r)(o) &t ot %% R) v(s)(o; j (III-11b)
k -
Wi;afree - { +(I') [ +(I‘)(O)(R-l 02 _7\_;_ R) u(s)(o)
K;r,s :
+(s b_(::) [v+(r)(o)(R-l 52 Z\% R) V(S)(O)_ } (III-11c)
-k §
3 (r) ( )|, +(x 1 3l 5
i,free { a’t” ° [+( )(O)(R 0® ~ R) u )(O)I
k;r,s

ék X

+(s) (r)[ +(r)(o)(R-l 3 Kl R) (S)(Oil.} (III-114)
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where the u(r)(o) and v(r)(o) are rest spinors. The matrix R repre-

sents a rotation of the Dirac indices, given by the 4x4 matrix

o ' -
(w + k )(w + m) 1 15 ® x>

A ( . _ (III-12)
W m w+ k ) (w + m)

here, w is the "transverse energy," |E;_|2 s , and X° is the

ordinary energy, ‘V |1-§-.}|2 + m2 . The significance of R is readily

determined by means of a simple example. First, note that R is unity

3 A
for k” = 0, i.e., for a quark moving in a direction transverse to z.
+(1,8)
:;L 3
it would be classified as a 6, spin

A single quark state moving in this way would be created by a,
for example. Under SU(S)W;strong
up, strange quark. Now consider what happens if we boost this state
and examine it in a frame of reference where ks # 0. What we see is
no longer a spin up state, if EZ_% 0. In general, there is a rotation
of the spin, a Wi
a mixture of spin up and spin down components. Now if R were unity,
it is clear that the SU(B) classification of the state would
W,strong

change; however, R is just the inverse of the Wigner rotation in this
case. Thus, the mixture of spin components produced by the boost is
(0

3 ..
i, free for that momentum k . This is

precisely the eigenstate of W
the detalled mechanism by which the Wia remain invariant under boosts:
as already stated, the SU(G)W,strong classification of a state is
independent of its momentum in the 2 direction. Note in particular
that R does not approach unity as k® - o thus, we can already see

that a state with infinite momentum, classified in an irreducible
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representation of SU(6)W strong’ will contain a mixbure of represen-
2

tations of SU(6) (this is clear from the fact that FO"’ simply

W, currents
counts the number of spin up and spin down quarks, regardless of their
transverse momenta -- but an eigenstate of WO3 contains a mixture of
up and down quarks, as specified by R).

We see by this example whence the complexity of (III-8b) -

(ITT-8d) arises: it is from the need for invariance of the

SU(6)W;strong charges under boosts in the 2 direction. Also note that
equations (III-1la) - (III-11d) do not contain a'd® - type cross terms:
i.e., the Wﬁa annihilste the vacuum, as required.

i,free

Let us now analyze the structure of Vfree in more detsail.
The first striking property we observe is that it is non-local in the
transverse directions. This property can be readily demonstrated by

examining the behavior of the quark field q(x) when it is transformed

by V :
free __7) 5)
AN
(x) VL D (I11-130)
v, alx) Vv = a(x I1I-13a
free free > K (345-5- l)
3
= [y Kp. (x-v) a(y) (III-13b)
where the kernel Kfree(x) is given by
| ( 31 i 5' x (w+m +'§ ;’
Kfree(x) - x ) deP_L e - * ‘L_\‘L (I11-14)
(2x) - Yow(w + m)

in which w is again the "transverse energy.”" Since the integrand of

(IIT-14) approaches unity only for 'P;J << m, we expect Kfree(x) to
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X . . 1 . ,
receive contributions from [XLJ < = l.e., from a distance comparable

to the Compton wavelength of a quark.

In order to further analyze the structure of V s wWe

free

introduce the quark spin =t and orbital angular momentum Li

s free yfree

operators of this model. The sum of these two operators is the total

i i i 3
angular momentum, J = L ,free + Z ,free Note that L ,free and
23 free correspond to the previously introduced operators LS(F) and
3
3 . i i . ,
FO , respectively. L ,free and X ,free are defined in the usual way:
.t = te . [3% x¥tx) ¥ qx) (III-158)
,free ijk
i 3 + ci
)y ,free = Jax ¢ (x) - a(x) (I1I-15b)

We may now employ these operators, and the Fia, to discuss the

properties of Yfree unde; the group bU(S}W,currents x 0(2). We see

3 _ - + Z
that Yf is the uncharged, Ad = O, AT ,f = %]l member of a 35

(transforming like an W, helicity + and -}, or the corresponding member

of a (3,3) + (3,3) under the chiral SU(3) x SU(3) subgroup.

currents

vhile only chenging L°
N Yie 3

in 74-° @/m implicit in the arctan (—Air—*) implies a very complex

by #1, the presence of the power series
» free -3 -3

tensor structure, involving strings of operstors with A j = 0,1,2,...

Hence Yfree can effect the mixing of essentially all total angular

momenta, and also leads to states of different quark spin 25 Pree’
b4

The cutoff in these expansions, hence the maximum range of angular

momenta mixed, is regulated by the rate of convergence of the expansions
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in 7—1- §>_m + Inasmuch as there is reason to think that convergence

may be very slow, we can expect very complete mixing. (Such slow

convergence is suggested by the identification of lPL\ in this model

with the transverse momentum cutoff of ca.-SOOMeV/c observed in strong

interactions. Taking m = 300MeV also, as suggested by magnetic moument

calculations, we find |py |/m ~ 1. Thus in coordinate space, we
7.1.‘51

expect ( —— ) ~ l.)

Thus, we see that Vfree in this model possesses many of the
qualitative features expected for the actual transformation V (i.e., it
possesses features which show up in the phenomenological mixing schemes

for states at infinite momentum). In particular, Vfree can connect

states which lie in nonexotic representations (eg, positive parity

3

free(F) = 0) to states lying in exotic-con-

baryons lying in a 56, L
' Z
taining representations (such as 700, L;ree(F) = %1). Note that,

*
insofar as V, is an SU(3) singlet , it will take SU(3) 1l's, 8's,

ree
and 10's only into l's, 8's and 10's, respectively. These latter su(3)
multiplets, however, lie in SU(G)W representations (like 700) which may

contain exotic SU(3) multiplets (27's, say). Viree Con also lead

*1¢ the analysis by M. Gell-Mann, R. J. Oakes, and B. Renner (9) is
correct, and the bare mass of the strange quark is actually much
larger than that of the non-strange quarks, Vipee may contain an
enormous SU(3) violation (assuming that the rule for constructing
Vipee in this case is to replace m by the bare mass of each quark
it acts on). Since this seems to conflict with generalized CVC, it

may rule out Vepee as an approximation to V. It could nevertheless

happen that V has an algebraic structure similar to that of & Vepee
with equal quark masses, although the mechanism is presently unknown.
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directly to states with the "exotic" quantum numbers I 0™", (oad)™* ,
{even)™™ by creating qq pairs.

The structure of Y in equation (III-8) is very similar

free

to that of the Foldy-Wouthusen transformation. In fact, they are

identical, except for one important omission: Yfree is a function of
- =

;1' 61 , not 7+ 3. It is the additional term 73 53 (which makes
the F-W transformation invariant under the full rotation group 0(3))
that distinguishes these two transformations. This difference is
crucial, since 73 55 is not a "good" operator: Its inclusion would

lead to an SU(6) whose charges depend upon the momentum in the

W,strong

2 direction, directly contradicting the experimental evidence.
Thus, we have found that, so far as the free quark model

is concerned, we can construct an exact SU(6) which explicitly

W,strong
satisfies all our requirements. We have constructed a set of non-local

o/

free which exactly annihilate the vacuum. The problem
2

operators Wi
walch now arises is the relevance of the model to physics. Before
going on, however, it may be worthwhile to say a few words sbout this
kind of non-local transformgtion in general.

Since we have made our non—local‘SU(G)W,strong an exact
symmetry, it is no longer restricted to purely collinear processes.

A

As is obvious, however, the z direction still plays a very special
role in theory, and we can expect that when states do not have momenta

A
parallel to z, their charges will have some special properties. In
o
i,free
2, we see that the SU(8)

fact, since the W do not commute with boosts perpendicular to

W,strong charges, while exactly conserved in
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this model, depend upon the value of the transverse momentum. Only

for states with momenta parallel to % are the charges independent of

momentum. Thus, between collinear states the SU(S8) will appear

Wystrong
as a conventional symmetry where states have fixed charges. For non-

collinear states, the SU(S)W symmetry may still hold, but the

sstrong
charges will depend upon the energy and angle, resulting in predictions
which may be less obvious than those of the conventional type of
symnetry. Moreover, these results should be correspondingly more
difficult to see whlen large symmetry bresking combines with rapidly
changing differential cross sections.

The non-local transformation Vfree presented here is only
one meuwber of a wide class of such transformations, all of which lead
to charges depending upon momentum. For example, the close resemblance

of V e to the Foldy-Wouthusen transformation, V. ., may induce us to

fre Fw
investigate the properties of some of the non-local F-W transformed

cperators. We would find, for example, that the model contains a set
3.+ o AL -1

of non-local operators V.. Ja”x 9" (%) 5 5 a(x) v -

an SU(6) (The idea that the F-W transformation may be useful for

which generate

generating such a symmebtry group has been independently suggested<lo) by
several authors). In this case, although Vo, possesses full 0(3) invariance,
it does not commute with boosts in any direction, so that the charges
are always momentum dependent. We have here a static SU(6) which is a
true invariance of the theory, its operators being exactly conserved,
but which only appears as a conventional symmetry between states at

rest. Use of these types of non-local transformations may thus provide



us with a bridge which will allow us to circumvent the difficulties
of combining internal and spacetime symmetries in a consistent and
useful manner.

There has never been any real reason to believe that the
symmetries observed in strong interaction physics are generated by
the integrals of local current densities: all that we have ever been
able to observe in the case of SU(G)W, for example, is the algebra of
the integrated charges. Hopefully, the present discussion provides
some evidence that these charges may, in fact, be integrals of non-

local operators.



IV. CONSTRUCTION OF V IN INTERACTING QUARK MODELS

In the previous chapter we saw how to construct a trans-
formation Vfree in the free quark model. This transformation takes

us from a set of local operators Fia which do not commute with H

04
,free

free

to a set of nonloecal opergtors Wi which exactly commute with

H The problem is to extend these free gquark results to more

free’

general models, models in which an exact SU(6) symmetry may

W,strong
not exist.

We shall approach this problem through the free quark wmodel:
That is, we shall assume that the Hilbert space of the Interacting
problem can be spanned by free particle states. Note that this is
a highly non-trivial assumption: in particular, it is certainly not
true in ordinary quantum field theories, as is demonstrated by Haag's
theorem. However, as emphasized by H. Fritzsch and M. Gell-Mann,(ll)
experience with the behavior of matrix elements in the Bjorken limit
of deep inelastic scattering suggests that the strong interactions
are "softer"” than the conventional, barely renormalizable, theories
we know of at present. It therefore may make sense to follow a nalve
approach to the problem.

If the Hilbert space of the interacting model can be spanned
by free particle states (that is, states of free quarks plus free
gluons of some sort), then we can expand any given eigenstate of the
full Hamiltonian into a sum over a large number (perhaps infinite) of
free particle states. The matrix which is formed from the projection

coefficients is unitary, and can be considered to be an operator

acting upon states within the Hilbert space. Calling this operatorll,
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state into the "corresponding" eigenstate of the full Hamiltonien,
U lEfree) = [ (Efree)> (1v-1)

What we mean by the "corresponding" eigenstate has to be clarified.
For most purposes it will be sufficient to say that an eigenstate
{Efree) of the free Hamiltonian “corresponds” to an eigenstate
lE(Efree)) of the full Hamiltonian if |E (Efree)> develops out of
[Efree) as the interaction is adisbatically switched on. That is, if

we write the full Hamiltonian H, =H + N\H s then the

t free interaction

eigenvalue E(A) of the state in question is a continuous function of

A such that E(0) = E. __ and E(1) = E. U will therefore be uniquely

fre
defined so long as we are not troubled by level crossing or some such
pathology. Note that we shall always quantize in a large but finite

box, so that the spectrum of_Hfree is discrete. In this way we shal;
avoid any counting difficulties due to comparing discrete spectra of

bound states to continuous spectra of free states.

The operatorlf should be familiar from elementary guantum

mechanics. It has a simple Implicit definition,

A
1im elett e-leree t
% =1t = - » (IV-E)
A
where Hst is the full strong interaction Hamiltonian and Hfree is a

"renormalized" free Hamiltonian which is diagonal in the basis of
free particle states, but whose eigenvalues are those of the corre-
)E

The operator'u should not be at all mysterious. Although

A
sponding eigenstates of H_, . That is, H, ‘Efree) = E(Efree free>‘
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the implicit definition (IV-2) may be somewhat infamiliar, it actually
expresses nothing more than the Rayleigh-Schroedinger perturbation
series (when that series converges) in operator form. Thus, when
perturbation expansions are valid, we can explicitly evaluate the
matrix elements of L(by'this familiar technique. In principle,l(
exists even when perturbation expansions fail, but in this case it
may be hard to compute.

Note that (IV-2) shows how U is related to the Mgller wave

(+)

matrix § of scattering theory. U ana Q(+) are identical if there
.are no bound stabtes in the theory, but if bound states are present
11 is still unitary, although Q(+) is not.

This operator Y can now help us to determine the

su(s) structure of a given interacting state, and thus allow

W, currents

us to compute V in any given model. The procedure is simple: we use

U to project the interacting state onto free states, and then use

v to describe the SU(6) content of each free state. We
free W, currents

can use precisely the operator Vfree developed in Chapter IIT as long

as whatever gluons that may be present in the model are singlets of

In this case the generators of SU(6) in

su(se) W, currents

W, currents”
the model will be the same as for the free quark model, and the gluon
content of a given free state will not change its SU(6)W,currents
structure. These conditions are automatically fulfilled in any model
with a neutral gluon whose field commutes with the quark field.

Thus, we can easily write an explicit form for V, one which

may be used to evaluate it, in principle, in any given interacting

model.



Since SU(6) is exact in the free quark model, we

W,strong

‘o . . \
can label states either according to Poincare quantum numbers or

su(s) representation. Thus,

W,strong

(R)) = |R )

| strong’ Veree |Rcurrents> (1v-3)

free

by definition of V. . Recalling (Iv-1),

IE (R)> = ?A'1Efree(R)) = IA.Vfreechurrents> (IV~4)
Comparing this wita (II -3), we see that
Vo= U Vree .(IV_S).
and thus
wi“ =V Fia vho- Iﬁ'wi?free - (1V-6)

The gbove definition (IV-5) of V will be employed for the
remainder of this work. It is not the only possible form, however,
due to our neglect of gluon degrees of freedom. In fact, (IV-5) could
be multiplied on the right by any arbitrary function of the gluon

fields without changing its SU(6) algebraic structure.

W, currents
Moreover,?{ is somewhat arbitrary also, in that we could have chosen
some other way to associate interacting states and free states. It
just happens that the form (IV-5) is most convenient for our purposes
at present, so there is no reason to consider other possible forms.
Note that V in (IV-5) satisfies the requirements (a) - (f)

of Chapter II. The only reservation we must make is thatlblneed not

be a good operator. However, it can only take good operators to good
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operators, since in any Lorentz invariant theory dressed operators
must have the same Lorentz structure as bare operators. Thus, the
definition (IV-5) satisfies our intuition about this property of V.

The structure of the SU(6) operators Wia in inter-

W,strong

acting models is also clarified by this form of V. As can be seen
from (IV-6), Wia takes us from one physical state |E> (eigenstate
of Hst) to another by referring back to the free eigenstate (Efree) s
from which the physical state developed as the interaction was turned

on. Once back in the realr of free states, W o

1, free is applied, and

the resulting free state is finally related to the corresponding

eligenstate |E') of Hst' The changes from eigenstates of Hst to

those of Hfree are accomplished by the operatorZ{ in (IV-6).

The Wia are conserved when this process always leads from

a given eigenstate of H , to another with the same energy. Thus, if

st

[W}a, Hst] = 0, we expect to find an SU(6)

5 multiplet structure

W,strong

among the eigenstates of Hst paralleling that of the eigenstates of

Exact conservation of Wia is an extremely strong condition,
however. Nevertheless, we do see approximately degenerate SU(G)W,strong
multiplets in nature, and it is often an interesting approximation to
consider them exaétlz degenerate. Does this circumstance compel us
40 consider the case where the wia are completely conserved? For-
tunately, the answer is no.

One of the principal reasons that we consider an

su(e) gpproximate symmetry at all is because the observed

W,strong

particle and resonance states seem to fall into multiplets of states



with different spin. Thus, the most we can be certain of is that

rw,©
1

, H .1 =~ 0 within the subspace of these states. That is, there
st

exists a particular set of states, which we shall call |P(M)) , for

which

(o] v, 8,1 |[PM') ~ o (TV-7)

The notation |P(M)} is meant to convey that these are what we naively
call "single particle” states with various masses M. In the light of
our present knowledge we have no right to extend (IV-7) to any of the
other states in Hilbert space. In particular, we need not assume that
the Wia are conserved when states containing several stable particles
are involved (eg. a sp collision state). Thus, there is no reason to
believe that the existence of approximately degenerate multiplets

necessarily implies a general symmetry of HS . Experimentally, the

t

situation is unclear at the present time, and it is not known whether

a rough SU(6) symmetry exists for collisions or not. There

W,.strong

is even some question sbout whether there is an SU(6) vertex

W, strong

symmetry, as we shall see in Chapter VI.

How shall we interpret (IV-7) in these circumstances? On
one hand, we can regard the existence of degenerate multiplets in the
spectrum as being the result of a dynamical conspiracy among states
with different spin and parity. In this case there need be no relation-

ship between the SU(6) multiplet to which e physical state |E)

W,strong

belongs and the (free)sU(6) multiplet to which the corresponding

W,strong

state IE ) belongs. On the other hand, we may find it more reason-

free

able to attribute the observed degeneracies to a kind of "spectrum sym-

metry." That is, we presume that the states |E)in a given su(6), miltiplet
: hWstrong
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correspond to states ,Efree> which lie in the same multiplet of the

. In other words, we presume that the matrix
W,strong

elements of the operator?l in, say, the basis of free states,

free SU(8)

1
(Efree[ U IEfree) , are such that they are large only between states

|E. ) and |E%ree> which have the same classification under the

free

free SU(G)W,strong'
Putting these alternatives into mathematical language, we
can interpret (IV-7) as being due to either:

(a) Detuiled dynamical cancellations, in which case

o) v, 5UT [p@t)) 4 o (IV-8)

or

(b) A "spectrum symmetry,"
(e| tw,SUT Peer)) ~ o (IV-8b)

If nature hag actually chosen alternative (a), then the structure of
V is obscure. In order to relate matrix elements of currents taken

between different members of an SU(6) multiplet, we must know

W,strong
2{. Algebraic predictions become a matter of the detailed dynamics of
the strong interactions. This is the case, for example, if z real
neutral vector gluon theory underlies the strong interactions. In
this exsmple, the inevitable spin-orbit interactions break up the free

multiplets somehow

su(s) multiplets. Even if su(s)w

W,strong ystrong

reappear for large coupling strengths, thely will probably not bear
any relation to the original multiplets of the free fields.

Case (b) is more clearcut. Admittedly, there is no known
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theory in which (IV-8b) is true when couplings are large. However,

there are equally few theories which show SU(8) multiplets

W, strong

in their spectra.
In these circumstances, we could simply assume that whatever
the real forces underlying the strong interaction are, they yield an

approximate SU(6) symnetry by means of alternative (b).

W,strong

The advantage of this assumption 1s that it allows us to

use Vfree to compute the algebrgic structure of physicasl currents.

This proposition is easily proved. If we assume that (IV-8b) is true,

(IV-6) tells us that

ean| W% [pa) ~ e | v, . 1204) (1v-10)

isfree

That is, the states |P(M)) have nearly the same classifications under

the free SU(6) as under the SU(6) for physical states.

W,strong Wystrong

However, we already know the algebraic structure of currents'}ﬁﬁ(x)

with respect to the free SU(6) , since the }:jﬁ(x) are just

W,strong

bilinear operators like q+(x) rP %% q(x) in any quark model in

which the glue (whatever it is) is an SU(6) singlet.

W, currents

Knowing roughly the classification of both states and

operators under the free SU(8) , we can find many approximate

W,strong

relations between matrix elements.
In Chapter VI we shall find it convenient to consider the

su(6) algebraic structure of operators like V_lxljﬁ(x) v

W,currents

tgken between states classified as irreducible representations of

SU(S)W,currents' That is, we consider



41

IR a -1 &) )
<RcurrentsI L5 v :Fj (x) V] churrents) (Iv-1la)
rather than
(R! | (w® 'FB(x)] |R ) (IV-11b)
strong i273 strong
. . -1
These expressions are actually equal, since churrents> =V letrong)'

Thus, the assumption that the algebraic structure of }%js(x) with

is given by W.a

W, strong i,free O (Iv-11b) is equivalent

respect to SU(6)
to the assumption that the algebraic structure of vt }:jB(x) V with
respect to SU(6) in (IV-1la) is given by

-1 - B
Vfree J (x) v

W, currents
free* This fact will be of great utility in the
evaluation of matrix elements.

Although the symmetry may be realized by (b), so that Wia
and wﬁ?free have the same matrix elements smong the "single particle"
states, note that this does not imply that the j:jg(x) have the same
matrix elements as in the free quark model, since we never assume that

[U, FJB(X)J or [U, v

thing that V has in common with Vfree is its algebraic structure -~

free] even approximagtely vanish, The only

the values of its matrix elements may be much different.

In summary, we have attempted to supply a rationale for
the fact that the algebraic structure of the V that is used by nature

is roughly that of V . It may be that this is explained by the

free

realization of SU(6) via mechanism (b). Nevertheless, it is

W,strong
possible that mechanism (a) is actually used, and some complicated
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(but obscure) cancellation allows V and Vfree to be roughly the same
slgebraically. Since we are ignorant of the Hemiltonian which governs
the strong interactions, this point cannot be readily settled. Perhaps
the safest point of view is a purely pragmetic one: we shall simply
apply the algebraic structure of Vfree to physical currents, and note
whether or not the results seem to approximate the physical world.

Before evaluating the consequences of V s, we ghall

free
introduce the language of light-like charges and moments. This
language avoids some of the clumsiness of the infinite-momentum
freme, and will permit a rapid and elegant evaluation of the conse-

quences of the free quark algebraic structure for the matrix elements

of physical currents.
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V. LIGHT-LIKE CHARGES AND MOMENTS

The first step in performing any calculations with non-

conserved operators is to work exclusively with charges and moments

integrated over a null surface 0 + x> = const., or a '"light-like

plane.” Such charges have many advantages over equivalent formulations

at infinite momentum, as has been emphasized by H. Leutwyler.

(12)

Their principal advantage 1s that they annihilate the vactum, whether

or not they are conserved. Thais allows such charges the posgibility

of having finite dimensional representatlons, and may even invalidate

Coleman's Theorem in their case.

As
preferred over
of algebras of
re-express the
of them.

In
write down the
since they are

M
P, =
1

e B o} >
] 1]

>
i

a result, these light-like charges are certainly to be
other formulations for discussing the representations
nonconserved operators, and our first care will be to

transformation obtained in the free guark model in terms

order to make the structure of these charges clear, we

form of the light-like charges of SU(6), _ .
b

known in terms of integrals of local currents. Thus,

fa%x 00" [0 + F 2601 /42 (V-1a)
Ljat o) (F. 5w + F2w1 /2 (v-1b)
ILE B RN R COI TR OV WANE (V-1c)

fa% 5 (M) L0 « F 001 /.02 (v-12)

o] Rau
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where x' = (XO + XS) /+[2 and the caret over the charges denotes that
they are integrated oﬁer the light-like plane X+ = 0.

Tet us briefly examine some of the properties of these
charges. The most striking property is evidently their momentum
transfer: when applied to a state of momentum pH the gia do not change
El_, nor pO + pS. They can alter only pO— pS. Thus, the %ia carry

2 . .
zero mass, (Ap) = O. Since there are no zero mass hadrons, this

A
implies that the Fia cannot produce anything out of the vacuum

A O .

F,olo) =0 (V-2)

s0 long as they are decoupled from infinite momentum states with

po- p5 = 0. Of course, if the %ia act on a state at rest with mass m,
they can lead to a state of different mass m* # m, vrovided that the
final state has momentumn p3 = (mg'-mﬁg)/Em. Only if the %ia are con-

[H~P5

Lo

gserved,

ﬁi“} = 0, will they not lead to states of different mass.
What condition (V-2) does guarantee, however, is that the ﬁia cannot |
produce any disconnected pairs. Thus, application of varicus %ia's to
a state an arbitrary number of timres does not lead to the creation of
an arbitrary number of palrs: +here exists a possibilility that we shall
return to the original state after a finite number of steps, and thus
obtain a finite dimensional representation of the algebra.

The Lorentz properties of the %;1 are not simple. It is

A
clear that they commute with finite boosts zalong 2, [Fia

3
3 AJ:O:
but they do not commute with transverse boosts. In particular, a state

—
with given helicity and transverse momentum p;_# 0 does not have the
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same SU(6) classification as a state with the same helicity

W, currents
but different transverse momentum. To remedy this defect, we must

A
introduce special transverse boost operators which leave the F. in-

variant. Thus, defining

E

it
>

(v-3a)
(V-3b)

) A
we can easily check that El and E° commute with all Fia. States with
—
transverse momenta p,; generated by means of the EZ_ can thus be

clagsified in the same SU(6) representation, whatever E:_ may

W, currents
be:

— —_—
- -3 e« T
R 5) = TP B (v-2)

where R signifies the particular representation. The transverse boost-
rotation in (V-4) can be decomposed into a pure Lorentz boost preceeded
end followed by rotations. We find that an E-boosted state like that
in (V-4) can be related to a certain mixture of helicity states with
the same moments.

As to other properties of the light-like charges (V-la) -
(V—ld), we merely note that they have the same charge conjugation C as
. their spacelike xo = 0 counterparts, but dc not have definite parity.

- 37
P under

Instead of parity, we can define the operation 6{: e
_ A 1A A 1A A3
which the Fia are elgenvectors. Thus, ® lFiEK = + Fi’ BKZLFi56{= —Fid,

A
ete., Hence, instead of requiring that V have parity P = +, we allow

A
the light-like version V to be a parity mixture, but require that it



have R = + instead.
We are interested in matrix elements of various moments

of currents as well as their charges. That is, cobjects like
—, 4 + a +i(1;>’ - I_J_)) A
(a,p'] [a™x8 (x7) T (x)e™ P T 0T LB ) (v-5)

where the states always have the normalization (A,;‘[ B,p) = 8yp 85,-5 .
If the transverse momenta of IA,B') and [B,-f)) have been generated by

E boosts, the matrix element (V-5) depends only upon the difference
(;'L -pj) of transverse momenta. (There is no dependence, of course,
on the longitudinal momentum -- the difference p'3 - p3 is fixed by
the requirement that (pO + p3) is the same for both states.) This

property is easily demonstrated: If the transverse momenta are generated

by E boosts, we can write (V-5) as
(4,5, = o] fas () Fia(x)e+i(§1 - E).(i}u El)|B,51 - 0)
- (8,5, = 0| BY (7, - 5,) BT, - 0) (v-6)
where we have defined
22 E) - fates (M) F e G B (v-7)

The mabrix element (V-6) cbviocusly depends only upon -p—>_'l_ - i)i s as required.
A

The operators Fia(f):_) have many nice properties -- for example, they

commute with the translation operator ?.L’ so that moments of ,Fia(x) can

be expressed in terms of forward matrix elements. This is g useful
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property for SU(6) calculations, since we only know how to

W,strong
clagsify states with collinear momenta. Other properties of these
operators will be discussed as needed.
In a similar way, we can define light-like SU(a)w,strong
A
operators, Wia, which have the same property of annihilating the
A A
physical vacuum,‘wsxlo) = 0. The relation between these Wgu operators
A A
and the F,” is given by the light-like transformation V
A A_
.a ¥ 1
1

A
W, = VF

. (v-8)

- 3 h~a A -
where V is such that [H-P", W, ] =~ 0. The W, , then, lead to states
A
of nearly the same mass, while the Fia can lead to states of quite
different mass.
Ao Ao A
As before, we can construct the operators Wi ’ Fi , and V
in the free quark model, obtaining essentially the same results as in
Chapter III. This generalization is quite simple, and we only record
the form of the result. Following J. B. Kogut and D. E. Soper,(ls)

we quantize on the x+ = 0 plane, using the anticommutation relations

/N2 r, 8(x" -y) 85 - 7))

{q: (x), q+(Y)} X =yt

0, etc. (v-9)

il

fa,(, 0,0 | .

where the "independent fields" q+(x) are obtained from g(x) by the pro-

jection operator P, : q+@<)==ZP#q(x) = %{l«as)q(x). The light-like

W, currents generators for the quark model are

su(e)
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A 4 + A
F, = NE- [d™x B(x )q: (x) 5 +(x) (V-10a)
31 L 2 fate st (0 B Mg () (V-100)
i °N xolx)e \x) T A x -
Model o
A2 4 +y + Bo~ Ai .
F,° = Jo fa*x 5(x )q+ (x) > 5 q+(x) (V-10c)
53 . o fak st () Mg (x) 104)
1 = N X X q+ X 5 2q+x (V-
The "good" classification of the SU(G)w curremnts operators is reflected
E4

by the fact that they contain only q+(x) fields. "Bad" operators
contain one q+(x) and one q_(x):P_(x)q(x):%(l-as)q(x) "dependent"” field
(which does not have canonical commutation relations). Those operators

containing only g (x) fields (like ]:io(x) - }:is(x)) are called

"terrible."
) A . 1 "
The transformation Vfree 1s a 'good” opergtor. ‘It is there-
fore well-defincd, and has o simple algebrgic structure. Writing
~ .A
Vfree = exp -Yfree’ the old free quark result becomes
- -
A 4 4y 4 7o a.L :
Yee = l/afé JaTx B (x )q+ (x) arctan ( )q+(x) (v-11)

A
The algebraic structure of Y is the same as before: it belongs to

free
a (3,3) + (3,3), L2(F) = £1 of sU(3) x sU(3) x 0(2)

3 A
o Wi,free

currents » Sb¢s A8
A
before, the Wi,free are conserved, [Hfree ] = 0. TNote,

however, that for free guarks the light-like SU(6) is also

W, currents

A
conserved, [Hfree - PS, Fia] = D. PBeveral authors(lé) have recently

A

taken this to mean that a unique V cannot be defined on the light-

free

like plane. It is true that the simple criterion by which Vfree was
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A
derived can no longer be used; however, V ce probably does more than

fr

just ensure the existence of a conserved SU(B)W strong’
3

Experience with the way Vfree acts on quark states in the in-

finite momentum frame suggests that the rotstions performed by %free
are necessary to ensure that the multiguark states may have definite
total spin. The definition (a) in Chapter II may still be useful --
only now we must emphasize spin rather than merely energy.

That the %ia and the spin generators are not automatically

(15) «

compatible is the upshot of Dashen and Gell-Mann's angular

A
condition” on the matrix elements of the Fia. The fact that Gell~Mann(l6)

has found that the angular condition forces mixing of SU(G)W,currents
representations even in the free quark model seems to support this ides.

Much more work remains to be done on this subject. Can %
be uniquely defined by means of some spin criterion? If the answer is
yves, such a criterion may be more useful in the case of broken symmetry
than the Ztvfree prescription. The understanding of this question may
thﬁs be of very great importance.

The gbove form (V-11) for eree is particularly significant
in the light of a proposal by H. Fritzsch and M. Gell-Mann.(l7) The
large algebra of good light-like plane operators which they postulate
include the operators of which eree is composed. Moreover, they hope
to be gble to construct the relevant components of the energy-momentum
tensor within this large algebra, formulating a complete theory of

strong interactions in terms of physical functions of quark and gluon

fields on the light-like plane. Within the context of this theory
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free may be found to be a useful approximation to the more complicated

> <>

. In any event, this algebra may provide us with a way in which

3>

free BAY be defined in terms of observable operators.

In the next chapter eree will be used to transform various

good light-like charges and moments, extracting the algebraic structure

from the model gnd applying it to physical operators.
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VI. APPLICATION TO CURRENT MATRIX ELEMENTS

We have now come to the point where some calculations can

be made. The form of the transformation between SU(G)W currents 209
J

su(se) for the free quark model has been discussed in Chapter III.

W,strong _
In Chapter IV we discussed the form of the transformation in interacting
models. We saw that in at least one case, that of an SU(6)
: W, strong

multiplet structure realized by a "spectrum symmetry," we may expect the
algebraic structure of the free quark model to persist even in.interact-
ing models. Whether this actually occurs in nabure, we do not know. It
is, nevertheless, interesting to compute the consequences of the ides
that % may have the same algebraic structure. as %free' We shall see
that we get reasonable results from this assumption.

Using the formalism of light-like charges and moments, we

. Ao =

are interested in matrix elements like (A[F:.L (pL)IB) vhere |A) and
In\
157
transverse momentum and finite longitudinal momentum. We assume that
these states have simple transformation properties under SU(G)%Lstrong'

For actual computation however, it will be convenient to use the

su(3) x su(3), subgroup of SU(8) , since the trans-

currents W, currents

formation properties of operators are more easily discussed in these
terms.
Using this trick, we can throw all of the complexity of

the mixing onto the operators. Thus, the matrix element
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(A’ “ (5:_) IB} )

strong!Fi strong

R ANCHNE: ) (1)

carrents ’currents

AZLA A
The problem now reduces to one of the structure of V lFia (51) V under
su(3) x sU(3) x 0(2)’currents' We shall gbstract this structure (but
not the numerical values of matrix elements, of course!) from the
free quark model.

We shall consider the matrix elements of the electromagnetic

N — . AL - .

current, Fem(pL)’ and the axial vector current, F, (p,), since many
of the matrix elements of these currents have been measured.

The truly remasrksble thing about the transformation
properties derived from the free quark model is their simplicity:
since Vfree is bilinear in quark fields, bilinear operators are trans-
formed only into bilinear operators. Thus, the resulting transformed

current can contain the irreducible representations (1,8) + (8,1) and

(3,3) + (3,3) and nothing else. This property of rapid termination is

unique to the free quark model, and unless we have some speclal reason
to think that the free quark algebra should be preserved, we would

not expect it to show up in an interacting model.

In general, thell in V will introduce products of these
simple irreducible representations, spoiling the termination property
and invalidating the free quark results. However, due to the argument
made in Chapter IV, it is conceivable that these extrs terms do not

contribute very greatly to matrix elements of physical currents
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between hadron states. The results below are all based upon this
assumption. We must, of course, expect some deviations of the pre-
dictions from the experimentsl values, since the validity of the Gfree
structure can only be approximate.
A. The Axial Vector Current.

The axial vector charge, ﬁ;S = ﬁi3(£ib= 0), yields the
Tirst interesting results. Referring to the Appendix, where the form
of Q-lﬁ£3 ﬁ'is explicitly written out for the free quark model, we see

that the structure of the transformed operator is:

i
o

VISV~ (1,8) + (8,105%(H) (vI-2)

+ (3,3) + (?ﬁE)LS(ﬁ) #1

The first term transforms like ( 75 %% , and the second term like
o
(Bai- 9, %%). The first term transforms like the original charge $45

A
(Although there is no reason whatsoever to think that it is FiSI

It
is not equal ‘to ﬁis even in the free quark model.). The second term is
new, and can lead from Lg(ﬁ) = O representations (like the baryon 586,
L3(#) =0) to nigher ones (like 70, LO(W) = #1, or 56, LO(f) = 1),

This is the kind of behavior we expect of the physical %iS -~ guch
behavior is actually seen in, for example, the Adler-Weisberger sum
rule, where we find many resonances contributing to the empirical sum
over states.

More detailed results are obtained by sandwiching the

transformed charge (VI-2) between wellknown states, like the baryons,
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classified as 56, La(ﬁ) = 0 under SU(6) . We see that only

W,strong
A
the first, LS(F) = 0 term can contribute to the matrix element

1 a3A 3,4
F,” V is taken between L (F) = O states, which

(Remenmber that s
correspond to the LS(%) = 0 classification of the physical states.
This jumping back and forth between LS(%) and LS(ﬁ) may seem confusing
at first, but, by enabling us to put 9 on the operator, it actually
results in a great simplification.). Since the first term of (VI-2)
has precisely the same SU(3) x SU(S),currents structure as fis itself,
we see that we simply get back all the old SU(G)w results for these
matrix elements -- with one Important proviso. The difference is that
the first term of (VI-2) is not a generator of SU(3) x SU(S)’currents'
The values of its matrix elements are not determined by the symmetry;
there is always some reduced matrix element 7, which is in general
different from 1 (we have defined 1 so that n = 1 if there is no
transformation). Thus, we find the traditional SU(6)W results modified

by factors:

niwn

(D/F) (VI-3)

axial ~

I

5
= -1z G = -

The D/F ratio is the same as before, since y cancels ocut. Whether or
not 1 = l/N[é is a question of dynamics which the present work cannot
decide (Tt is nevertheless interesting, although probsbly not too

1 .
~—~————==§> which

significant, that the free quark model gives n = { 5
l+p, /m

one can argue should be about 1/+2 .).
The structure (VI-2) which we have proposed for the trans-

formed axial wvector charge has been applied to the decays of
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L3(ﬁ)‘= -1,0,+l. mesons by F. J. Gilman and M. Kugler,(lS) who use
PCAC to relgte the axlal vector charge to plon decay amplitudes.
These authors have also introduced the simplifying assumption that
the (1,8) + (8,1) Ls(ﬁ) = 0 term in (VI-2) is the generator ﬁis times
g constant. Although this assumption is not true even in the free
quark model, Gilman and Kugler have found it useful for some phenom-
enological purposes. However, as a consequence of this drastic
restriction, Gilman and Kugler find that the Roper N’(lé?O) cannot
decay into a nucleon and pion. This decay is fully allowed by our
structure in (VI-2), since the first term is not a generator.

Gilman and Kugler nevertheless find generally satisfactory
results for the decays of Ls(ﬁ) = -1,0, +1 mesons to LS(ﬁ).= 0 mesons.
In particular, they find that the decay B — wn is purely transverse
and that ng/gAzp = 2 for the J3 = 1 (transverse) part. Both of
‘these results seem to be in good agreement with recent experiments.
If we were to be more general, however, and admit a (1,8) + (8,1)
Ls(ﬁ) = O term in the transformed charge which is not a generator,
certain results of theirs would be altered. The longitudinal decay
B - wxx would be allowed, for example. In general we would have two
reduced matrix elements to characterize the decays rather than one.

It is something of a mystery that this second reduced
mgtrix element should vanish, but perhaps further investigation will
clarify the issue.

The use of PCAC raises an interesting problem since, as
Gilman and Kugler have found, when PCAC is combined with the trans-

formation properties (VI-2) one sometimes finds results which conflict
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with the predictions of SU(8) vertex symmetry. The B — wx decay

W,strong

is a good exsmple of this conflict, since su(se) symmetry forbids

W, strong

the transverse decay, whereas the structure of the transformed axial

charge, via PCAC, allows it. SU(6) is thus not even a good

W,strong
vertex symmetry when non-zero quark orbital angular moments are in-
volved. SU(G)W,Strong must be restricted solely to the classification
of states, and some new prescription adopted for the discussion of
strong interaction vertices.(l9)
The elgebraic structure of the transformed ﬁis thus seems
t0 give adequate results for forward matrix elements. The ares where
the old results first broke down, however, was in the first moments
of the electromagnetic current. We must therefore turn to these to

these to see that the proposed algebraic structure really does make

the corrections we intended it to make.

B. Moments of the RElectric Current

A
The matrix elements of the electromagnetic charge, Fem = Q,

A A
are, of course, trivial since [V,F_] = O. The moments are more

em
interesting, however. 1In particular, the first moment,

o A X

—F_ (& )|, _ is nothing less than the anomalous magnetic moment
3 kx em' X kx— 0

operator. TFor spin—% particles, the anomalous magnetic moment uA, is

given by
Eé_: 3 (a, 1o ;rest;-%]ﬁém(kx)|A,stro srest;4s >|k - 0
M Ok shrong e X

X
(VIi-4)

This identification can be readily checked by expanding out the matrix

element in terms of the traditional invariants, being careful to
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remenber the spin rotations induced by the E boosts. One then sees
that only the Pauli form factor F2(O) is projected out.

A
We can also differentiate Fem(kx) directly, finding

s ) Y 3 + + 1 ) 1
= +i (A,Strong,rest, = | {fd x 8 (x )x}lem(x)+Q,E }]A,strong,res’cdrg)

A
M
(VI-5)

The second term is just kinematic: Q is the net charge of the state

. 1 2 1l
1A’strong> , vhile B~ = g____l%__f_&__ . But (rest[E [rest) = (rest!J |rest).
AY has negative parity, and therefore has no diagonal matrix elements

between states at rest. Since (rest,-%|J2| rest,+5) = i/2, we find

7

A . ety s ()Tt . L
5 = (A,Strong,res.t, 5| fa"x & (x )x}em(x)l A’strong’reSt’+2)- ﬁQ

(VI-6)

The second term is just the Dirac Moment! WNote that this identification
is a bit more subtle than it seems, since Bl and fd4x6 (x+)xj-:m (x)
individually can change 5} L » and their forward matrix elements may not
be well defined. However, if the evazluations are done in terms of
symuetric wave packets, rather than plane wave states, no ambiguities
arise and the matrix elements are perfectly well defined. The upshot

of this argument ig that we can write

. X . -
_p’_P_- +i (A’strong’reSt [fd %8 (x" )yF (x) | A, trong’reSt’+2 )

p-1 4 + + A 1
= +1{A, currents T8t -5V fa%xs (x )xFem(x)Vl By oprents TESE5+2 )

(VI-7)
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where o is the total magnetic moment of the particle. The slgebraic

structure of this operator is readily determined (see Appendix):

Ao
¥ Jate oML~ (@We) + (8), BB = m |
- - (vi-8
+ (3,3) + (3,3), 1°(}) = 0, 2
- = Z A . 1AL
vhere the (3,3) + (3,3), L°(F) = O term transforms like ( ¥ 5

A
With the assigmment of the nucleon, spin-up to (6,3)L3(W) = 0 and the
A
micleon, spin-down o (3,6)L°(W) = 0, we find that the(l,8) + (8,1)
parts give no contribution, the (3,3) + (3,3), Lé(%) = 0 term alone

connecting the two states. It is easy to verify that this yields

by (proton)

E;"TEEEEEEE) =T

nlw

(vI-9)

We have thus recovered this famous ratio. The fact that one obtains
A

the result My = 0 when the transformation V —+ 1 is, alone, a striking

proof of how badly such a transformation is needed, since an

1
su(s) "symmetry" would predict that {rest;~3|E I rest;43) =0

W, currents

-- in clear contradiction to the Lorentz algebra! One must conclude

that states belonging to irreducible representations of SU(ES)W currents
>

cannot even have definite spin!
We can also compute p¥, the ML transition moment for
p =AY, assigning the AT, spin 45 to (8,3), LS(W) = 0. As before, we

can verify that
2 2
m

d A= 2 Doy o
’2}3 2m X

p¥ = 2 (at 1 rest l% (k)] »
Ekx strong’<’ em\ X strong

(VI-10)



59

—— : — 2 A
Again, only the (3,3) + (3,3), Lb(F) = 0 term contributes, yielding

the traditional

oA
e = —— by (PTOtON) (vIi-11)

which is within about 30% of the measured value. Finally, we can work

out the E2 transition moment for p —>Af,

2 2

m - m
m__l_._.é... -1 + - S S
B2 =3 5% {lfé A strong’?’rest lFem(kx)'pstrong’ 2yP3= em, )

2

__ﬁ_;E_ )

2 7.+
+ 3Nz (o ,rest IP (k ) pstrong’a’pS 2m }:k =0
x

(VI-12)

With the assigmment of AT , spin +§; , to (10,1)L3(§Cr) = 0, this yields
B2 = 0, in good agreement with experiment. This moment has a very
special importance for our work, since neither (1,8) + (8,1) terms nor
(3,3) + (3,3) can give any contributions to E2. Products of these
representations, however, can contribute, so that the vanishing of E2
provides a test for the gbsence of such terms. Experimentally,(zo)
E2/M1 = ,02 * .02, which seems to indicate that any terms transforming _
like products of currents (i.e., terms not bilinear in quark fields)

are gbsent, or at least contribute very little to ALS(ﬁ) = 0 transitions.

We can now go on to higher moments, finding, for example,

charge radii of spin 5 partlcles,
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2 d 2 .
R = -—-—é- GE(q )l o
dq g =0
= = (A s 45, rest| fdéxﬁ(x+)x 2t (x)|a 45, rest)
2 MWgtrong’ ' e? Fem ’strong’ " °?
+ Q/aM?
(VI-13)

where GE(qe) is the Electric Sachs form factor. From the Appendix

we find that the transformed operator has the structure,

T fatx 5(x")x El:.'zm(x)\'} ~(1,8) + (8,1) L)

1l
(@]

]
H+
jaAn

+ (3,3 + (3,3) 1o (VI-14)

A
vhere the first term has pieces transforming like (—EE) and

(LS(F) o> —gg . This second piece can be shown to vanish by means
A
of | parity and a spin flip operator exp (ix Foz). Note that
A

4 A
(L3(F) o> L) is even under ] , but odd under exp (i Fog).

2

We thus conclude that the charge radii are proportional
$0 the charge for the entire 56 (i.e., pure F coupling for the nucleon
8). In particular, this means R2(neutron) = 0, waich is to be compared
with the experimental value of .027 * .00L fm?, or -1/5 of the proton
charge radius. Although this violation of 20% is scceptable when we
remember the approximatiéns that léd to the prediction, its size is
still a bit surprising in comparison with the accuracy of our other
results. Perhaps this is a warning that as we increase the complexity

by going to higher moments we may also be increasing the sensitivity

of the predictions to terms not present in the free guark model.
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Tae evaluation of these higher nioments becomes extremely
laborious, as can be seen from the transformation properties of the
charge radius in the Appendix. Furthermoré, the exp ikx(x%El)
operator alone complicates the extraction of form factors.

What we need is a cleaner method for deriving these higher
moments, so that we can get a better idea gbout exactly what is going
wrong (if anything). The most fruitful approach to this problem
seems to be the application of Dashen and Gell-Mann's angular condi=-
tion,(ls) which relates higher moments to lower moments. Perhaps in
this way the problem of the higher moments can be clarified. This

work remains to be done.
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VII. CONCLUSION

The results of the last chapter make it apparent that the
algebraic structure of the transformation between SU(6)
W, currents

and SU(6) in the free guark model may be close to that of the

W, strong
transformation in the real world.

Although we expect that the actual transformation 9 will
yield more than just operators belonging to (3,3) + (3,3) and
(1,8) + (8,1) when V is used to transform charges and moments like
%ja(k ), such terms seem to be nearly absent, at least for matrix
elements of %js(k ) between baryon states in the 586, Ls(ﬁ) = 0. The
mechanism which produces the similarity of the algebraic properties of

A A
V and Vfree is presently unknown. The problem was discussed in

Chapter IV, but the issue has yet to be completely clarified.

We have found what seems like a reasonable definition of
the transformation between the two SU(G)W'S, one which can be applied
(in principle, at least) to study a wide range of models. Such a
study would be one avenue of learning more about the structure of this
transformation.

Another means of learning more about the structure of the

A

transformation would be to investigate the impact of, say, Vfree on

the problem of saturating the local SU(3) x SU(3) at infinite momentum.
This work remains to be done. In the meantime, however, we
have made some progress in understanding how to use the SU(G)W’currents

algebra to predict relations between matrix elements. An extremely
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simple (although somewhat unrealistic) example of the transformation
between the two SU(B)W'S has been found. Hopefully; the existence of
this concrete example of the relation between the two SU(S)wfs will
make the wide difference between the "current auark" and "constituent
quark”" points of view clear.

Lastly, we have found some rational basis for understsnding
where the "naive gquark model" results come from -- we have recovered

all the succegses of these schemes, and tempered'the fgilures.
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APPENDTX

Transformation of Light-like Charges and Moments in the Free Quark Model

A, The Axial Vector Cinm»3e
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19, M. Gell-Mann has made a suggestion on how to resolve this
problem, PCAC and vector domingnce gllow us to evaluste the
consequences of Vfree for certain strong interaction vertices
(those involving pions or vector mesons). Strong interaction
vertices in general can be expanded in terms of invariants,
ench of which has definite SU(B)W ctrong Properties, after the
manner of Sakita and Weli (B. Sakita and K. C. Wali, Phys.
Rev. 139, B1355, (1965)). In this scheme mesons and baryons
are described as objects with appropriate sets of SU(1L2)
indices. Vertices are described by means of invariant terms
congisting of the various possible contractions of these
indices with the external momenta and with each other.

We can see what the structyre of %frée implies for these
invariants in processes where Vyepee can be applied. The next
step of generalization would be to agsume this structuge
applies for all strong interaction processes, whether Vense can
be applied or not.

It seems likely that this procedure will result in the
Rosner-Colglazier 5P, prescription for analyzing strong~inter-
action vertices (E. W. Colglazier and J. L. Rosner, Nuclear
Physics B27, 349 (1971). See also W. P. Petersen and
Je Le Rosner, Phys. Rev. D6, 820 (1972)). This hypothesis has
yet to be verified, however.

This scheme hag the great virtue that it allows us to use
the ideas gained from the properties of currents to .suggest
the structure of purely hadronic vertices.

20. R. Walker has kindly supplied the following data for the
yp — nOx* transition (resonance parameters are taken to be
M= 1233 MeV, I = 120 MeV)

_ - ’
Mi+ = 2.49 * 04
El+ = 038 + 03

(errors are approximate).
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The ides that & unitery transformation V is responsible for
the mixing of SU(6)y, currents representations at infinite
momentum is an old one. It appears in attempts to find
representations of the current algebra at infinite momentum
(Dashen and Gell-Mann, (5) Buccella, Klinert, et al.(7)) and
in many other research efforts of the last seven years.

The existence of such & transformation is also implicit in
the phenomenological mixing schemes. (6)





