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Abstract

The LIGO (Lascr Interferometric Gravitational-wave Observatory) project, and other
projects around the world, are currently planning to use long-baseline (> 1km) in-
terferometers to directly detect gravitational radiation from astrophysical sources.
In this work we present a framework for lock acquisition, the process by which an
initially uncontrolled resonant interferometer is brought to its operating point. Our
approach begins with the identification of a path which takes the detector from the
uncontrolled state to the operational state. The properties of the detector’s outputs
along this path, embodied in the sensing matrix, must be determined and parame-
terized in terms of measureables. Finally, a control system which can compute the
inverse of the sensing matrix, apply it to the incoming signals, and make the resulting
signals available for feedback is needed to close the control loop. This formalism was
developed and explored extensively in simulation and was subsequently applied to
the LIGO interferometers. Results were in agreement with expectation within error,
typically £20% on the sensing matrix clements, and the method proved capable of
bringing a high-finesse power-recycled Fabry-Perot-Michelson interferometer (a LIGO

detector) to its operating point.
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Chapter 1

Introduction

1.1 Gravitational Waves: A New Window

For all of recorded history astronomers have peered skyward and observed the won-
ders of the universe through an ever broadening range of electromagnetic radiation.
Einstein’s theory of general rclativity predicts another form of radiation; ripples in
the very fabric of space-time produced by accelerating aspherical mass distributions.
These propagating deformations of space-time are known as “gravitational waves”
and they offer a new window through which to view the physical universe. This
window promises a view of exotic and as yet poorly understood objects, but more
importantly it promises a view of the unknown. In physics, as in life, it is through
encounters with the unknown that we arc most dramatically challenged to expand
our understanding.

Sources of gravitational waves strong enough to be detected by a ground-based de-
tector are limited to phenomena that explore the most extreme conditions conceivable
in the context of general relativity with the source density approaching the point of
gravitational collapse into a black hole and the source motion approaching the speed of
light.[1] Sources are further limited by the asymmetric nature of the motion required,
since the lowest order mass distribution which can produce gravitational radiation is
the quadrupole moment, the monopole moment being fixed by mass-energy conser-
vation and oscillation of the dipole moment forbidden by momentum conservation.
Despite these limitations, there are several candidates among the known astrophysical
phenomena which might produce detectable gravitational waves, including supernova
explosions, coalescing compact binaries, and spinning neutron stars, just to list a few.

Gravitational radiation, duc to its quadrupolar nature, produces a oscillating shear

strain in space transverse to the propagation direction. The effect that the passage



of such a wave would have on a ring of inertial masses is shown in figure 1.1. The
quantity used to express the amount of spatial deformation resulting from a passing
gravitational wave, also shown in figure 1.1, is called “strain” and is tyi)ically identified
with the letter A. Strain may be expressed as a fractional change in some spatial

dimension, L, as

AL
T

OO

! S
3

h=2 (1.1}

Figure 1.1: Strain from a gravitational wave traveling into the page would deform
a ring of inertial test masses as shown. The amount of strain depicted, however, is
about 21 orders of magnitude greater than an earth-based observer should expect
from anticipated astrophysical sources.

The coalescing neutron star binary, due to its relative simplicity, limited range
of parameters, and status as the only system experimentally (though indirectly) ob-
served to emit gravitational radiation, sets the scale for ground-based gravitational
wave detector sensitivity. A coalescence of this sort in the Virgo cluster, which as
the nearest major galaxy cluster is the most likely nearby source of events, would
typically produce strains of order A ~ 10 2L.[2] The volume of space covered by a
detector capable of detecting such an event contains of several thousand galaxies and

is likely to produce a neutron star binary coalescence every few years.[3]
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1.2 Interferometer Configurations

The idea of using interferometry as a means of gravitational wave detection was
first proposed in the 1960s ([4] referenced by Thorne in [3]) and 1970s.[6, 7] The
following sections explore the evolution of optical configurations proposed for use in

gravitational wave detection.[8, 9]

1.2.1 Michelson

The Michelson interferometer has been used for more than a century as a sensitive
measurement device and is the cornerstone for all of the gravitational wave detectors
discussed in the following sections. The signal produced by this type of detector is
proportional to the differential phase shift of the light returning to the beam-splitter
(BS, see figure 1.2) produced by differential changes in the lengths of the two arms.
The expression for the phase difference produced by a low frequency gravitational

wave with optimal orientation and polarization is
¢ = 2kLh (1.2)

where L is the unperturbed arm length and k is the wave-number of the light! used in
the interferometer. Through “frontal” or “Schnupp” modulation, and other methods,
a detector placed at the “anti-symmetric port” (ASY) can be made to measure ¢, and
thus detect the wave’s passage.[10] Equation (1.2) can be rewritten to characterize

the sensitivity of a detector as

A¢

A =29 .
"TokL (13)

where A¢ represents the noise in the phase measurement and A#h is the corresponding
minimum mecasurable strain.
For ground-based detectors, practical considerations limit L to a few kilometers

and k to values of order 107/ m; thus for a Michclson interferometer to serve as an

'The word “light” will be nsed liberally in this work and should most often be read as “eleciro-
magnetic radiation.”
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Figure 1.2: A Michelson interferometer.

effective gravitational wave detector it should be sensitive to A¢ ~ 107, Various
noise sources, which are discussed elsewhere in considerable depth, make this level of

phase sensitivity extremely difficult to attain.[11, 12]

1.2.2 Fabry-Perot Arm Cavities

The simplicity of equation (1.3) does not allow for a great variety of approaches to
increasing the sensitivity, given by 1/Ah, of a Michelson based interferometer. There
are only two clear avenues of attack on the impracticality of a simple Michelson
interferometer: increasing the effective length L or decrease the phase noise A¢. The
“Fabry-Perot-Michelson” detector configuration, representative of the only currently
operational interferometric gravitational wave detector, takes the first of these two
routes.[13]
A more descriptive name for this configuration might be a “Michelson-interferometer

with Fabry-Perot arm cavities.” The Fabry-Perot arm cavities result from the ad-

dition of two “Input Test Masses” (IT and IR). Light which enters an arm cavity
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Figure 1.3: A Fabry-Perot-Michelson interferometer.

samples the space between the input and end test masses of that cavity multiple
times before returning to the beam-splitter. For this reason the cavities act as leaky
integrators of phase shift in the arms and serve to increase the sensitivity of the
interferometer at low frequencies, typically by two or three orders of magnitude.[14]

There is, however, a caveat to the use of Fabry-Perot cavities to increase sensitiv-
ity: a cavity only integrates effectively if the light circulating in the cavity interferes
constructively with the light entering the cavity. This amounts to the requirement
that the round-trip phase in the cavity be close? to an integer multiple of 27, which
in turn defines an operating point that must be arrived at and maintained for the

interferometer to function properly.

2The meaning of “close” is determined by the properties of the cavity and will be discussed in
detail in section 3.2.
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“Lock acquisition” is the process by which an uncontrolled interferometer is brought
to and held at its operating point. This is not particularly challenging for Fabry-Perot-
Michelson interferometers since the two pick-off ports (POT and POR) can be used
to measure the light returning from each cavity independent of the other, thereby re-
ducing lock acquisition in this configuration to the largely solved problem of locking
a single cévity.[lS] Lock acquisition in a single Fabry-Perot cavity, however, serves as

the foundation for a more general discussion and is the subject of chapter 3.

ATRR
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Figure 1.4: A power recycled interferometer.

1.2.3 Power Recycling

Many of the detectors that will begin to collect data in the coming years are “Power

Recycled” interferometers.[8] This configuration adds an optic, the “Power Recycling
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Mirror” (PR), to the Fabry-Perot-Michelson configuration. While this addition does
not significantly change the response of the interferometer to gravitational waves, it
- allows the interferometer to operate at higher power than would other;zvise, be possible.
‘More photons in the interferometer implies better detection statistics, which in turn
decreases A¢ by as much as the square-root of the power increase.[16, 17]

Unforfunately, the addition of the recycling mirror brings with it another cavity
which must also be resonant. Even more troubling is the fact that power recycling
mixes the control signals from the two arms and fundamentally changes the dynamics
of the interferometer to that of a coupled cavity system. These changes complicate
the control of the interferometer and add considerable spice to the associated lock
acquisition problem.

The experimental work presented in chapter 5 was performed with a power recy-
cled interferometer. This configuration also serves as the canonical example in the

more general discussion of lock acquisition presented in chapter 4.

1.2.4 Dual Recycling

The next generation of detectors will consist largely of “Dual Recycled” interferom-
eters. The dual recycled configuration includes a “Signal Recycling Mirror” (SR)
at the anti-symmetric port and allows the interferometer to be tuned for increased
sensitivity to gravitational waves in some frequency range. It also complicates the
already difficult acquisition and control problem.[18] While this work does not specif-
ically address the dual recycled configuration, it is intended to be sufficiently general
to guide the designers of this and other configurations to a workable lock acquisition

scheme.

1.3 Purpose of this Work

There are currently several research efforts worldwide that are developing large scale
interferometers for gravitational wave detection. Many of the detectors, including

LIGO,[19] VIRGO,[20] and TAMA [13] will adopt a power recycled configuration.
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Figure 1.5: A dual recycled interferometer.

Both LIGO and VIRGO are multi-kilometer efforts; LIGO has 4 km arms and VIRGO
is 3 km. The TAMA project in Tokyo is an order of magnitude smaller, at 300 m.
Lock acquisition is a necessary step in the operation of all current interferometric
gravitational wave detectors and is likely to remain so for many years to come. While
the problem of lock acquisition has been addressed anecdotally by the builders of many
prototype interferometers, none have addressed the problem in general. Prototypes
inherently avoid some of the potential complexities of lock acquisition by reduction
of the scale of the interferometer, construction as fixed mass interferometers,[21, 2]
reduction of the number resonanf cavities,[22, 23] and/or reduction of signal mixing

and control requirements through artificially low mirror reflectivities.[13, 18] A case-
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by-case post hoc approach has been sufficient for prototype interferometers because
of the relaxed, or non-existent, sensitivity requirements placed on them. However, in
the absence of a firm understanding of the lock acquisition procesé, detectors must
either be limited to systems which avoid complex lock acquisition problems, or risk
being inoperable until they can be retrofitted or redesigned for lock acquisition.

A clear demonstration of the importance of understanding lock acquisition oc-
curred at the 40m LIGO prototype interferometer. This interferometer was designed
to be similar to the power-recycled first generation LIGO detectors, but with arms
100 times shorter. Despite many months of work, the prototype could only be locked
intermittently and there was no clear understanding of the lock acquisition process.

As experimental verification of its applicability, this work has been applied to the
problem of lock acquisition in the first generation of LIGO detectors. These power-
recycled interferometers have 4 degrees of freedom and 5 error signals with which to
hold those degrees of freedom within less than 1071° m of their resonance positions.
Over the course of the lock acquisition process, which requires about a second (plenty
of time for disaster to strike), the fields in the recycling cavity change dramatically and
the power in the arm cavities changes by three orders of magnitude. The changing field
amplitudes cause the responses of the error signals to vary in content, strength and, in
some cases, sign. Through the framework presented in this work these variations may
be understood and compensated for, thereby allowing control of the interferometer
to be maintained and the operational state of the detector achieved.

As the LIGO detectors and their international counterparts launch into this in-
evitable precursory step on the path to robust operation, the need for a general lock
acquisition strategy is apparent. The purpose of this work is to provide a general
framework for understanding the lock acquisition process and its impact on interfer-

ometer design.



10

Chapter 2

Basic Formalism
2.1 Surfaces and Spaces

In this work fields are treated as plane-waves and surfaces are approximated by flat
planes of infinite extent. This treatment is equivalent to using the paraxial approxi-
mation under the assumption that all of the optics are well aligned and well matched
to the input beam such that all of the field energy starts in, and remains in, the
lowest order Hermite-Gaussian mode.[24] While this approach is not sufficient for a
general investigation of interferometer behavior, it is sufficient for demonstrating the
fundamentals of lock acquisition.

The notation used for specifying the position of a surface and the fields at a surface

is shown in figure 2.1. The surface of interest for a given optic is marked with a heavy

bi i
A% Ax
Abo Afo

X X

Figure 2.1: Notational conventions for a surface.

line and referred to simply by the name of the optic, in this case X. The position
of the surface, zx, is measured along a coordinate axis normal to the surface and
pointing away from the optic’s substrate (i.e., into the vacuum). The location of the
zx = 0 plane, or “reference plané”, on the coordinate axis is arbitrary, but is typically

chosen to be near the nominal rest position of the surface if such a position exists.



11

Note that zx > 0 when the surface is displaced in the positive direction relative to
the reference plane, as show in figure 2.1. (In figure 2.2 below, zx > 0 and 2y < 0.)

There are four interacting field amplitudes at each surface. The Lsuperscript indi-
- cates whether the field is on the front (vacuum side) or back (substrate side) of the
surface and whether the field is incoming or outgoing. For instance, A% is the ampli-
tude of the incoming field on the back of surface X. The electric field corresponding
to a given field amplitude is

where w, the angular frequency of the field, is related to the wave-number and wave-
length of the field by k = 27” = <.
Each reflective surface is characterized by a coeflicient of amplitude reflectivity,

rx, and a coeflicient of amplitude transmissivity, {x, which satisfy
ry +t% <1 (2.2)

where rx and tx are real numbers between 0 and 1. The outgoing fields at the surface

are related to the incoming fields by!

Aé;’ = —ry e~ Zikzx A; +ix Af’,é (2'3)
and
Ate =y eBhax At oty Al (2.4)

As a field propagates from surface X to surface Y it acquires phase according to

N A Lxy —zx —
AL (t) = ety Ale (t— Xy T X ZY) (2.5)
C

where Ly.y is the distance between the X and Y reference planes (see figure 2.2).

Note that Lx.y does not depend on zx or zy and is, in fact, a time-independent

'In the more general case of non-pérpendicular incidence, zx should be replaced by cos(fx) zx,
where 6x is the angle of incidence. '
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quantity.
T Lx.y |
- |
X Y

Figure 2.2: The distance between two surfaces.

Though it is not a requirement of this formalism, zx is typically of order A and
is thought of as representing the microscopic motion of a surface. Lx.y, on the other
hand, is typically many orders of magnitude greater than A\ and is thought of as
the macroscopic distance between two surfaces. In this case equation (2.5) can be

approximated by

. ) L.
ALl (t) = Flxy AL (t — )ZY> (2.6)

which conveniently makes the propagation operation independent of the positions of
the surfaces propagated to and from.

In the following chapters, mirror surfaces will generally be given two letter labels
and detector surfaces three letter labels. Detector surfaces will be assumed for sim-
plicity to absorb all light incident on them, and thus the direction specification, which

is always “fi,” will be dropped (e.g., AL,y Will be written as Appx.)

2.2 Modulation and Demodulation

All of the interferometer configurations discussed herein rely on phase modulation of '
the input light and coherent demodulation of the signals from various detectors to
produce information about the state of the interferometer. In general, a sinusoidally

phase modulated field can be represented by a sum of fields oscillating at different,
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frequencies as

EIO (t) — EIN (t) eirmod Sin(wmod t) ' , (27)
o0
= Em(t) Y Ji(Dmoa) €7mert (2.8)
j=—0o0

where J;(z) are the Bessel functions, I'y,,4 is the modulation depth, and wyp,eq is the
modulation frequency. The “Input Beam” in each interferometer configuration is a

phase modulated field given by

where A;y and w;y are the pre-modulation values of the field amplitude and fre-
quency. The frequency components of the Input Beam propagate through the inter-
ferometer independently, interacting only at the photo-detectors.

Though far from reality, it is sufficient in this work to consider idealized photo-
detectors which produce a signal that is simply proportional to the light power inci-

dent on them at any point in time
Sdet = z ADET DET, el wk]t (2.10)

Coherent demodulation by an equally idealized mixer produces a “demod signal”

given by
1

t; — 1o

t1
Sdemod = / dt Sdet sin (wdemodt + ¢demod) (211)

where @gemoq 15 the demodulation phase, and wWgemos = MWmoa With n = 1 being

the most typical form of demodulation. Substituting in the definition of Sg; and
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rearranging terms leads to a more suggestive form

. " |
/ dt Im (Sdetez[wdemOdt+¢demod])

1 et1 ) ) '
= tl — to / dt Im‘(el(bdemod Z A*DET]' ADET;C ez[wdemod'i'w] _wk]t>
to

gk

. Abpr, Apgr, " i ot
e Im 6Z¢demod Z t 7 t dt ez wdem0d+w] UJk] A
, 1— o

gk to

» Sdemod

Given that t; —tg > 1/wpmeq, only the lowest frequency component of Sgemoeq SUrvives

integration

Sdemod = Im( demo ZADET DETk6j+n,k> (212)

J.k

— Im( idemod ZADET DETM) . (2.13)

Equation (2.13) is the basis for all of the demod signals used in this work. Only
small modulation depths ([',;,,¢ < 1) will be considered herein, which usually means
that E7o may be well approximated by truncating the sum in equation (2.8) to contain

only j € {—1,0,1}, such that equation (2.13) reduces to

Sdemod = Im (ewdm”d [A*DET_I ADETO + ADETO ADETJ) . (2.14)

This approximation will be assumed throughout chapter 3 and most of the rest of
this work, though an instance in which it is not suflicient arises and is discussed in

section 4.1.2.

2.3 The End-To-End Model

All of the formalisms described in the previous sections have been implemented in
an interferometer simulation tool referred to as the “End-To-End Model,” or more

commonly as “E2E.” E2E is a time domain simulation environment that can be used
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fo model a wide variety of resonant optical systems.[25] E2E was heavily used in the
development and testing cycles of the lock acquisition framework presented in this
work, as well as in the production of several of the figures that appeaf in the following
chapters. However, since this work is not an exposition of modeling techniques, and

the results depend in no direct way on modeling, E2E will not be discussed in detail.
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Chapter 3

A Simple System: The Fabry-Perot Cavity
3.1 Optical Configuration

The simplest optical resonator, a Fabry-Perot cavity, consists of only two mirrors, but
is sufficient to demonstrate many of the fundamental principals of lock acquisition.
For the purpose of this discussion, the mirrors in the Fabry-Perot cavity will be
assumed to be well aligned, well matched to the input beam, and to move only along
the input beam axis. In this simplified scenario, lock acquisition boils down to gaining

control of the relative position of the two mirrors on this axis.

L

Afr Arr TRN
Input ___ = r
Beam 3~ o }
Appp
REF

_ Figure 3.1: Optical layout of a Fabry-Perot cavity.

Figure 3.1 shows a model Fabry-Perot cavity system. The first component en-
countered by the input beam, which enters from the left, is an optical isolator. The
isolator passes the input beam, but redirects the return beam to the reflection port
photo-diode (REF). The Fabry-Perot cavity itself is made up of an input mirror,
known in gravitation-wave research as a “test mass,” and an end mirror (IT and
ET). The end mirror leaks a small amount of light onto the transmission photo-diode
(TRN) which is typically used to measure the power in the cavity.

There are a number of useful equations which describe the field at various points

given that the mirrors move slowly (see section A.1, for derivations). The amplitude
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of the intra-cavity fields, A%} , is given by

trr bi ‘
1 —rip rgp €% Ay : (3.1)

fo __
Al =

where ¢; = 2k; [L — zrr — zgr] is the round-trip phase in the cavity, and the index
7 refers to the frequency component of the light (see equation (2.9)). Note that the
shorthand L = Ljp.gr will be used in this chapter since Lir.gr is the only important
length in the Fabry-Perot cavity.
bo 3 fo
The reflected field, Aj,, is related to A7z, by

Al}‘,}] = TITAZ}';TJ_ — t]T TET 6i¢j A%«]] 62ikaIT (32)
and the transmitted field, A’}jTj , is given by

Agr = tprAjy et (3.3)

3.2 Near Resonance Control

Fabry-Perot cavities are used in gravitational-wave detectors because they can be
made to increase the phase-shift of reflected light beyond that of a simple mirror.
The reflected phase is most sensitive when the carrier (j = 0) resonates in the cavity.

This resonance point is defined by

pido — e?iko[L+Ares] =1 (3_4)

where A = —z;p — zpr and A,., is the value of A at the resonance point, to be

derived below.

2iko L

The zpr = 0 plane can be chosen such that e = 1, reducing equation (34) to

Ares = n/\0/2 (35)
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where A\; = 27 /k; and n € {0,1,2,3,...}. For the sake of simplicity, since all reso-

nances are equivalent, n = 0, and thus A,.; = 0, will be assumed henceforth.
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Figure 3.2: The Pound-Drever-Hall error signal for a Fabry-Perot cavity. The cavity
parameters are similar to those of the LIGO 1 arm cavities. (r;r = 0.986, rpr = 1, and

Ao = 1064 nm.) The “linear region” in Sppy is centered at A = 0 and approximately
1nm wide. In this region a standard linear controller can be used to hold the cavity

on resonance. The carrier power in the cavity, |A§°T0|2, is also shown for reference.
Note that the key is given along with the axis labels.

Given that T'0g < 1, so that equation (2.14) can be used, the demod signal at

the reflection port is

Sdemod = LM (€i¢d5m°d [ rer., Arer, + ARER, AREFID . (3.6)

Further assuming that L and w,,,q have been chosen such that the first-order side-

bands (j € {—1,1}) are far from resonance when the carrier is resonant (i.e., such
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that Affy, & —Afy | = Ajp, ¢*57), and that daemod =0,

Sdemod = 2Im(A;zEFO AREFl) | , (3-7)
~ 2gpp Im(Al}iTlAt}oT:) (3.8)

where trpr = AREFJ_/AI}‘E,} is the transmissivity of the optical train leading to the
reflection port photodetector. Finally, combining this result with equations (3.1) and

(3.2) yields the error signal for “Pound-Drever-Hall reflection locking,”

2 i *
Sopu = 28 T (A, A [y — 2 7ELET Y (3.9)
P 1 —ri7 rpr €%

Making the substitution Afy, — A;y J;i(Tmoa) from equation (2.9) leads to

121 pre'®o
Spon = —2lgpp |AIN|2 Jo(Tmoa) J1(Lmoa) Zm\ rrr — ITPTZ (3.10)
1-— ’I“]TTETewo
2 tQREF TET t%T .
= 2|A;n|" Jo(Tmod) J1(Tmod) L sin(2koA) (3.11)
|1 — T TeET 6”50
Jo(T'mod) .
= 2t%{EF TeET IA?}O 2 %EP——Z—; Sln(ZkoA) (312)

where the last step utilizes equation (3.1). In the region where Sppy is proportional
to A (henceforth the “linear region,” see figure 3.2) linear control theory can be
applied and a controller that will hold the cavity on resonance is easily derived. The

width of this region is approximately \g/4F, where

T/ TIT TET
f'__

1—rmrrer

(3.13)

is the finesse of the cavity.

This technique is the foundation for the control schemes used in all ground-based
interferometric gravitational-wave detectors. However, unless it is possible to set
|A] < A\o/4F in the absence of a control loop, use of Sppy (and Sde,ﬁod in general)
brings forth the problem of how one arrives in the linear region. This is the essence

of the lock acquisition problem.
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3.3 Lock Acquisition Threshold Velocity

Vit = 0.66 pm/s Vi = 1.0 um/is Vit = 1.5um/s

0.1 . : , 10

A [u m} (dot)
force [mN] (solid)
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1
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Figure 3.3: Threshold velocity in a simple lock acquisition model. A linear controller
attempts to lock the cavity as A = 0 is approached with various initial velocities v;y;:.
From left to right, the first is well below the threshold velocity, the second just below,
and the third well above.

Attempts to be quantitative about the effectiveness of various lock acquisition
schemes lead to the definition of the “threshold velocity” of a given scheme as the value

of “Z—?l below which the controller will “acquire” and hold a cavity near resonance.[15]

Threshold velocity is a useful measure of effectiveness only in cavities where % can be

thought of as a constant over time periods shorter than the time required to cross the
resonance (~ %) since it implicitly assumes that in the absence of the controller
% would have remained constant.!

When attempting to determine the threshold velocity for a control scheme, it is
important to keep the limitations of the actuation system in mind. The actuation
model considered here is that of a force applied directly to the optic. Other actuation

systems will have additional subtleties, but all systems are likely to, in the end,

1The optics in LIGO and other detectors are suspended to provide seismic isolation at high
frequencies. Furthermore, seismic motion is largest at low frequencies (~ 0.1Hz), and, as a result,
A is typically dominated by low frequency motion of the suspended optics. This makes threshold
velocity a meaningful quantity in these systems.
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accelerate the optics via some force. The only limitation that will be assumed is that
of a maximum actuation force.

The phase of the input field can also be used as a form of actuation. While this
can be very effective in systems involving only one long base-line resonant cavity, sys-
tems which involve multiple cavities (e.g., any of the resonant detector configurations

discussed in chapter 1) can only use this technique to actuate one degree of freedom.

3.4 Simple Lock Acquisition

The approach to lock acquisition first and most often taken is to enable the control
scheme designed to work in the linear region and wait for lock to be acquired.[22,
13, 23] This approach is beautiful in its simplicity, and can work well for the Fabry-
Perot cavity, but is not effective when dealing with complex interferometers. The
threshold velocity for this type of scheme depends on the details of the controller and
the interferometer, but there are some features that all such schemes have in common.

The primary problem with applying a linear controller that uses Sgemoq as its
error signal to lock acquisition is that the controller inevitably behaves badly away
from the linear region. Figure 3.3 shows example fringe crossings above and below
a typical linear controller’s threshold. Notice that the controller increases |%‘ as
the linedr region is approached, thereby making the problem of stopping the optics
involved more difficult. Near the threshold velocity, success is only achieved by virtue
of a large force applied as the linear region is crossed. Realistic actuation limits

considerably reduce the threshold velocity of this type of controller (see figure 3.4).

3.5 Guided Lock Acquisition

One approach to increasing the threshold velocity of a linear controller is to pair it
with a non-linear controller. The non-linear controller is used to lower ‘%%‘ until it
is less than the threshold velocity for the associated linear controller.

The scheme described by Camp et al., dubbed “guided lock acquisition,” and
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similar schemes,[15, 1] attempt to estimate %% by analyzing the signals observed as A
crosses zero (see section A.2.) Given a velocity estimate, control forces can be applied
~ such that A returns to zero with a lower value of l%‘ than in the pfevious crossing.
Under the assumptions that define threshold velocity (the frequency of the input field,
wy, is constant and no forces other than the control forces are applied to the optics),
these Scheﬁles work quite well. In real interferometers, however, these assumptions are
violated. The “error” associated with the violation of these assumptions, integrated
over the time required to return to A = 0, limits the effectiveness of this approach.
These schemes suffer somewhat from their inherent complexity, and are difficult to
generalize to complex systems in which robust velocity estimation is more challenging.
This work seeks a more general solution to the problem of lock acquisition. The idea
of guided lock acquisition is presented here for completeness and because in some

noise environments it may be an appropriate addition to a more general scheme.

Vit = 0.2 um/s Vi =0-66 1 m/s
0.1 T . T —10
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-01¢p° -10 =

-0.2 ; : . -20
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Figure 3.4: Threshold velocity in a more realistic lock acquisition model. Including
realistic actuation limits significantly reduces the threshold velocity of a linear con-
troller. The model parameters are taken from the LIGO 1 arm cavity: the force limit
is 10 mN and the mass of the optic is 10.3 kg.
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3.6 Error Signal Linearization

A second approach to ihcreasing the threshold velocity of a linear controller is to
combine signals so as to increase the width of the linear region, thereby making the
linear controller more effective. In a Fabry-Perot cavity, a simple combination of
power and demod signals can be used to produce an error signal with a broad linear

region (see figure 3.5)

S
Stin = 228 (3.14)
PTRN
SPDH
S — (3.15)

2

fo

where Prry is the power incident on the TRN detector. Since the interesting region is

. . - fo (2
near the carrier resonance, and far from the sideband resonances, Prry =~ lt eTAT,

can be used in combination with equation (3.12) to simplify equation (3.15)

S, ~ _OPDH (3.16)
fo |2
HETA[T0

12

9 rerthpr J1(Cmod)
t%?T Jo (Fmod)

sin(2koA) . (3.17)

The most significant limitations to the threshold velocity achievable with error
signal linearization arise from noise in Prgy and the breakdown of the assumptions
that go into equation (3.17) away from A ~ 0 (e.g., when a sideband resonance
is encountered). While the first of these is not an issue in simulation, a typical
experimental setup may require Prry > 0.1Prgy|a—o before enabling the cavity
control loop.‘ (See figure 3.6.) These limitations assure that, for cavities with F > 1,

the useful region of Sp;, satisfies |kgA| < 7 and equation (3.17) can be simplified to

Tt%%EF Jl (Fmod)

TE
- ’ t?ET JO(Fmod)

A, (3.18)

Error signal linearization has been tested experimentally with the 2 kilometer-long

cavities at the LIGO Hanford Observatory and the 4 kilometer cavities at the LIGO
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Figure 3.5: Error Signal Linearization. Sg;, is scaled by Prry at A = 0 such that the
slopes of Sr;, and Sppy are equal near the resonance point and [Af,}o ? = Prgy [tar
is shown for reference. The broad linear region in Sy;, makes it a superior error signal
for use with a linear controller, especially during lock acquisition.

Livingston Observatory (see section 5.1.1 for details about the interferometers). This
technique was observed to significantly improve the lock acquisition performance of
a cavity over that of a simple linear control loop at both sites.

The threshold velocity of the lock acquisition system at the Hanford observatory
was measured to be 1 + 0.1 um/s. This measurement was made by exciting one of
the mirrors, then enabling the lock acquisition system. The lowest velocity resonance
crossed without locking sets an upper limit on the threshold velocity of the controller,
and the highest velocity capture sets a lower limit. In some cases, a lock event very
near the threshold occurs (see figure 3.7), producing tight bounds. A similar method
was applied to measuring the threshold velocity of a simple linear controller applied
to the same cavity. The accelerations produced by this “always on” controller make
bounding the threshold velocity more difficult, but missed resonance crossings indicate

a loose upper bound of 0.65 um/s.
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Figure 3.6: Threshold velocity with error signal linearization, simulated. Figure
(a) shows A and the force applied to the corresponding degree of freedom during a
simulated lock acquisition event. The power in the cavity (\Af}o 2, dash-dot), demod
signal (Sgemod, solid), and linearized error signal (S, dashed) are shown in (b) for
the same event. The error signal used for locking is enabled as Prry crosses 10%
of its peak value; this is the point at which Si;,, as shown above, becomes non-zero
(just before ¢ = 0.04). Note that the threshold velocity of this controller is more than
ten times greater than that shown in figure 3.4 for a controller without error signal
linearization, despite having identical actuation limitations.

Error signal linearization has proven to be a robust and effective technique for lock
acquisition in a Fabry-Perot cavity. An equally important feature of this technique is

its generalizability to more complex systems, which is the topic of the next chapter.
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Figure 3.7: Threshold velocity with error signal linearization, experimental. These
data were collected at the LIGO Hanford Observatory using one of the 2km arm
cavities. This event, which has v, ~ 1 um/s, is very near the threshold velocity of
the controller. Note how Sp;, continues to grow even after the linear region in Sgemeq
has been crossed, thereby allowing the controller to acquire lock when it would have

otherwise been lost.
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Chapter 4

Complex Resonant Systems

This chapter is a general discussion of lock acquisition in complex systems, with the
power recycled LIGO 1 optical configuration, discussed in section 4.1.2, serving as
the canonical example. The approach is to generalize “Error Signal Linearization,”
discussed in the previous chapter, to interferometers with multiple degrees of freedom.

The objective of a lock acquisition system is to take the interferometer from an
uncontrolled state to its operating point, and hold it there. This progression will
generally follow a well defined path along which the interferometer’s control loops
are sequentially engaged and the associated degrees of freedom are “locked” to their
operating points. In the course of lock acquisition, the fields in the interferometer
change and the response of its outputs change accordingly. The lock acquisition
system must compensate for these changes so as to maintain the stability of the

active control loops, and allow for the activation of the remaining loops.

4.1 The Sensing Matrix

The first step in controlling an interferometer is understanding the relationship be-
tween the demodulated outputs and the interferometer’s degrees of freedom. The
“sensing matrix” or “matrix of discriminants,” M, represents this relationship as the
solution to

Siemod = MA. (4.1)

Historically, the sensing matrix has been used only to express the time independent
linear components of this relationship at an interferometer’s operating point.[18, 22
For the purpose of lock acquisition, the use of the sensing matrix must be expanded

somewhat to include the dependence of the matrix elements on the fields in the
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interferometer.

In this context the sensing matrix is a continuously evolving entity which the lock
acquisition system must estimate with sufficient accuracy to obtain and maintain
control of the interferometer. It should be noted that, despite its non-static nature,
the sensing matrix does not attempt to account for high-velocity cavity dynamics
(see section A.2.) Furthermore, the discussion of frequency dependence in the sensing
matrix will be forestalled until section 4.4.

Determining a useful expression for M in general is an extremely difficult task,
but a common special case occurs for most demod signals. In this special case a

matrix element is given by a sum of terms of the form

A 2
M,, = E :gm |ACAvm\ ALO; (4.2)
INCh,

where A,y is an intra-cavity field, A;y  is the input field for the cavity, A}, is
a field at the detector, g,, is a constant gain factor and |l — m| = 1.

Equation (4.2) can be understood intuitively as a collection of gain factors applied
to a disturbance! generated by changing &q. The initial amplitude of the disturbance
is proportional to the amplitude of the resonant field from which it originates, Aq 4y -
A sufficiently low frequency disturbance experiences the same gain in the cavity of
its origin as its parent field, A, av., [Arne,,- 9m is the gain factor which takes the
disturbance from that cavity to the photo-detector that produces Sgemod,, Where a
signal is generated by its interaction with the field A, , known as the “local oscilla-
tor.” Equation (4.2) is simply the product of these factors, summed over all resonant
field-local oscillator pairs.

In the following sections this rather obtuse description is applied to the Fabry-
Perot cavity and the LIGO 1 configuration. The sensing matrix for a Fabry-Perot
cavity is derived from the discussion in chapter 3 and a practical implementation

is briefly discussed. The LIGO 1 sensing matrix is presented, but the details of its

I This “disturbance” can be quantified through the formalism of “audio sidebands” as presented
in chapter 3 of [21].
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implementation are not discussed until chapter 5.

4.1.1 Fabry-Perot Cavity Sensing Matrix

In the case of the Fabry—Perot cavity discussed in chapter 3, the sensing matrix

g ]] (4.3)

is simply the linear coefficient of A in equation (3.12). To clarify the relationship

Abi
— 2 Iy fo
MFP— H4k0tREFTET A%‘ |AIT0
0

between this equation and equation (4.2), note that there are two terms in the sum,

both with m =0,

_ fo
ACAVO - AITQ
. bi
AINCO = AITO
= 2k,t?
go = 0lpEFTET

but with different local oscillators

Apo, = Afn
ALO._l = .—AE}?T_f
Since A%y, = —Al.  ~ A%, is assumed (see text preceding equation (3.7)), these

two terms are combined in equation (4.3). In practice, equation (4.3) is reduced to

Mpp = H grp Pren ]] (4.4)

where Prgpy =~ |tETA§}O|2 is measured in real-time, and ggpp is an empirically deter-
mined gain factor that includes the details of the detection electronics as well as the

optical properties of the cavity.



30

4.1.2 LIGO 1 Sensing Matrix

The considerable support structure aside, the LIGO 1 interferometers consist of 6
mirrors and 5 photo-detectors. The Michelson cornerstone is formed by the beam-
“splitter (BS) and the two input mirrors (IT on the “transmitted side” of the BS, and
IR bn the “reflected side”). The input mirrors transmit about 3% of the light incident
on them into the cavities they form with the end mirrors (ET and ER). Finally, the
power recycling mirror (PR) serves to increase the power in the interferometer by

“recycling” the light that would otherwise be dumped at the reflection port.

ATRR

ER

Yy 7

IR

POB

Input TRT
Beam LA™ .“-.‘:.,, ; 5 '_

PR BS IT ET

YREF ASY

Figure 4.1: LIGO 1 optical layout.

The three sensors in and around the power recycling cavity all produce both demod
signals and DC power signals. The reflection port sensor (REF) detects the light that

returns from the interferometer. This light is made up of the promptly reflected
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field, and the leakage field (i.e., the field that leaks out of the interferometer through
the PR). The antisymmetric port sensor (ASY) is very sensitive to antisymmetric
~ changes in the length of the arms (e.g., gravitational waves), which cause light to leak
out this port. The beam-splitter pick-off (POB) samples the light incident on the
beam-splitter (from the PR) and provides information about the fields in the power
recycling cavity. Lastly, the transmission monitors (TRT and TRR) produce DC
power signals that are used to monitor the power in the arm cavities. (See chapter 5
for more detailed information about the LIGO 1 interferometers.)

Power-recycled interferometers, and the LIGO 1 interferometers in particular, have

four longitudinal degrees of freedom,

Acarm T — |21 + 2zET + 218 + 2ER]
x_ Agarm _ 21r + zgr — 217 + 2EB7] 7 (4.5)
Apre zir + 218 — 285/ V2 — 2pR
| Apich 1] | zir — 21 + 2ps/V2 1]

which represent the common and differential mode deviations of the arms from res-
onance (cArm and dArm), the deviation of the power-recycling cavity length from
resonance (PRC), and the deviation of the Michelson from a dark-fringe (Mich). The
LIGO 1 interferometer design offers five demod signals with which to control these
degrees of freedom,

— I T
Tpob
Suemod = || Qasy (4.6)
Qres
[ @ro ||

where “T” (In-Phase) and “Q” (Quad-Phase) are orthogonal demodulation phases.

Note that for the purpose of controlling a power-recycled interferometer, there is only
one useful signal at the ASY port. The label assigned to this signal’s demodulation

phase is arbitrary, but despite the fact that this signal has properties similar to the
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in-phase signals at other ports, and dissimilar to the quad-phase signals, it is referred

to as Qasy- lasy does not appear in the demod 51gnal vector.

The dominant elements of the sensing matrix for a LIGO 1 interférometer are?

Gearm,I,e; Garef Arpp, Ay (4.7)
Gaarm,1,., garef Agrpr, A- (4.8)
GPRC,ITEf gpref [AREFO - AREFQ} Aprm (4.9)
Gearm o 9apos Apop, A+ (4.10)
Gaarm, Lo Gapob Apop, A- (4.11)
GPRC Lo, 9Ppob Apop, APRM (4.12)
G e Arm,Qasy GAasy Ansy, A- (4.13)
G darm,Qasy Gaasy Aasy, A+ (4.14)
G Mich,Quey gures [Arpr, + Arsr,] Arrm (4.15)
G Mich,Q o Gumpob Apop, APRM (4.16)
where

A= A | A7k , (4.17)

AP,
Apru = ‘AZRll : (4.18)

PR

and the various gs are constant gain coefficients. These equations are all of the form
shown in (4.2) and many can be derived from the steady state signal responses.[26] The
contribution from the second-order sidebands has been included only in the reflected
signals since, while carrier contribution dominates at other ports, Appp may go to
zero, making Appp the dominant contributor to the reflected signal.

Filling in zeros for the (relatively small) elements of the sensing matrix not given

2These equations assume that ry7 = 715, ti7 = tir, and rgs = tps = L They also assume that
NGE y

A X, ~ — A, , which, while not true in general, is satisfied in all regions of interferometer state space
that are relevant to thls discussion. None of these assumptions are necessary to the workings of the
formalism presented here, but they considerably simplify the associated mathematical expressions
and do not hinder the development of a functional lock acquisition scheme.
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above yields the full sensing matrix,

Gearmt,e; GaarmL; GPRO L., 0 1l
Gearm Iy Gaarm oy, GPRCILy, 0
Mpg = GcArm,Qasy GdArm,Qasy 0 0 : (4-19)
0 0 0 G Mich,Q,e
il 0 0 0 G Mich,Qpos ||

4.2 The Input Matrix

The “input matrix” is the matrix that is needed to produce error signals for an
interferometer’s degrees of freedom given its demodulated output. Ideally, the input
matrix solves the equation

A jnd ngemod (420)

and is simply the inverse of the sensing matrix, but there are a number of things that
complicate this relationship.

The most immediate complication is that M is not necessarily a square matrix.
In order for an interferometer to be controllable, the number of demodulated signals
must be greater than or equal to the number of degrees of freedom. If there are more
demodulated signals than degrees of freedom, there will be an infinite set of solutions
to equation (4.20) from which the system designer may choose.

An example of this type of complication can be seen in Mpg above. The solution
in this case is to eliminate one of the two quad-phase signals that provide information
about Ajzcn. The choice of which to remove is made dynamically based on noise
considerations and is discussed in section 5.1.

A more significant complication arises from singularities in M. There are two
fundamentally different types of singularities: “no signal” and “degenerate signal”
singularities. Singularities effectively reduce the number of demod signals, thereby
rendering one or more of the interferometer’s degrees of freedom uncontrollable.

The general algorithm for handling singularities in M is as follows:
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1. Remove rows and columns from M until the remaining matrix, M, is invert-
ible.

2. For each row and column removed from M to produce M, set the corre-
sponding columns and rows of G to zero.

3. Invert M to produce the remainihg elements of G.

The input matrix produced by this algorithm solves the equation

— —

SGTT‘ - GSdemod (421)

where §em‘ ~ Z_Sp for the rows of G not eliminated in step 2, and ggﬂp = () otherwise.

4.2.1 No Signal Singularities

No signal (NS) singularities occur when a matrix element becomes so small that it is
dominated by noise in the measurement of its constituents. This situation is handled
by the setting the offending matrix element to zero. These zeros may cause the sensing
matrix to become singular and while this represents a lack of information rather than
a true singularity, the result is the same.

The Fabry-Perot cavity offers a simple example of an NS singularity. When the
cavity is far from resonant (i.e., |A| > Xo/F), Prr becomes small and its measured
value is bound to be dominated by noise and other effects. In this situation Sgemod
offers little information about A and it cannot be used to generate meaningful control
forces, so Grpp = 0 is used. The discontinuity resulting from the removal of this NS
singularity can be seen in figure 3.6 as a jump in the linearized error signal from 0 to
2.2 just before £ = 0.04.

The explicit zeros present in Mpg are also of this origin. It is true, of course, that
in a real interferometer no element of gdemod is totally insensitive to any element of
A, but the elements that are small or indeterminant are set to zero by the “no signal

rule” described above.
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4.2.2 Degenerate Signal Singularities

Degenerate signal (DS) singularities arise when two demod signals become linearly
dependent (i.e., two signals contain the same information). This is a true matrix
‘singularity t’hat can occur while the power in the interferometer is changing.

Since the estimation of the sensing matrix is imperfect, the region around a DS
singularity must be handled with care. As the matrix determinant goes to zero the
elements of G become large and imperfections in M and §demod (e.g., small DC offsets)
will cause control to be lost. For this reason, the notion of matrix “singularity” must
be broadened somewhat. A sensing matrix is considered singular if the absolute value
of the normalized determinant (see appendix B.3) is less than some predetermined

minimum, typically about 0.1.

4.3 Multi-Step Lock Acquisition

The general process of lock acquisition can be described as the expansion of the invert-
ible part of the sensing matrix, 1\71, accomplished by the removal of NS singularities
from M. The process begins with M of minimal dimension, and ends when M is
stable and has the same dimensionality as G. In order for lock acquisition to occur
there must be a path from the uncontrolled state to the fully controlled state along
which G can be determined with sufficient accuracy to maintain control.

The particulars of the lock acquisition path depend on the interferometer in ques-
tion and the signals it makes available. The following sections outline the lock acqui-

sition path for a LIGO 1 interferometer.

4.3.1 State 1

None of the degrees of freedom are controlled. The cavities

occasionally resonate as the mirrors move freely. This is the

— / ‘ ‘ starting point for lock acquisition.
In this state G = 0 and M is a 0 by 0 matrix.
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4.3.2 State 2

Arien and Apge are controlled such that the carrier is anti-

resonant in the power recycling cavity and zero at the ASY

port. The recycling cavity length and the modulation fre-

quency are chosen such that the carrier anti-resonance is
coincident with a resonance for the first-order sidebands.® The sideband power in the
recycling cavity in this state, and throughout the rest of the state progression, is
about ten times the input sideband power. There is essentially no carrier power in
the interferometer in this state.

In state 2 M becomes the 2 by 2 matrix

~ GPRC I, 0
Mppg, =

0 G Mich,Qres

which uses I,.; and Qs to produce error signals for Aprc and Apsich-

4.3.3 State 3

State 3 is reached when state 2 holds and one of the two

arm cavities is controlled such that the carrier is resonant.

| Resonance in the arm cavity causes the carrier field reflected

from that arm to reverse its sign, thereby making the ASY
port bright for the carrier. This sign reversal results from the over-coupled nature of
the arm cavity (i.e., 7y < rgpr) and has a number of beneficial properties which are
beyond the scope of this work.

With an arm cavity resonant, the carrier power in that arm increases to approx-
imately four times that of the input beam. The carrier field in the arm can now be

used to sense its length, thereby removing a NS singularity from M and expanding

3This requirement can be expressed as 2Lpr.ps + Lps.r + Lesar = (n + 3)Amod, where
Amod = 27C/Wmed is the modulation wavelength and n € {0,1,2,3,...}.
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M to
_ GcArm,ITef GPRC,ITEf 0
MPR;; = ’GcArm,Qasy 0 0
0 0 G Mich,Q,.f

Note that in this state Agarm = £Acarm, depending on which arm is locked.

4.3.4 State 4

T This is a transitory state that occurs when state 3 holds
' and the as yet uncontrolled arm cavity is locked at carrier
W resonance. In this state the carrier is resonant in both arm

T .’
1

cavities and the recycling cavity. The resulting coupled
cavity allows the carrier power in the interferometer to increase by roughly three or-
ders of magnitude.

At the onset of this state all of the degrees of freedom are controlled and all
of the NS singularities have been removed from M. A DS singularity is, however,
encountered in the course of the power buildup. As the singularity is approached,
control of Apge is relinquished, but is regained once the DS singularity is passed

enroute to state 5.

4.3.5 State 5
The final state of the interferometer, at least from the lock
T acquisition point of view, is reached when state 4 has en-
dured long enough for the power in the interferometer to sta-

|
: bilize. This is the ending point for lock acquisition, though

the controllers used to achieve this state must be capable of holding it long enough
for the transition to a low-noise controller to occur.

The lock acquisition path for the LIGO 1 configuration was first described by Lisa
Sievers, though she did not include state 5. State 5 is used to distinguish between the
point at which all degrees of freedom are controlled, state 4, and the point at which

stable lock has been achieved. The time between acquisition of state 4 and acquisition
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of state 5 for the LIGO 1 interferometers is of order a half-second (see figure 4.2).
‘The distinction between these two states is important because, as a result of the DS
singularity and the large increase in circulating power that occur during this time,

maintaining control of the interferometer during state 4 can be quite challenging.

) Simulated LIGO 1 Lock Acquisition
10 ¢ T - T T T T T T T T

g State 1 | State 2 H State 3 H 4 |}_5__:

Figure 4.2: A simulated lock acquisition event for a power-recycled interferometer.
The state progression is noted at the top of the figure. The time series shown are
|Apos,|” (dotted), Prer (solid), and Prgp (dash-dot.)

4.4 Frequency Response

The topic of frequency response, though critical to the design of a control system,
has, for simplicity, not been mentioned in the preceding discussion. The objective
of applying the input matrix is to maintain stability of the control loops. If the
frequency response of the interferometer to a given degree of freedom is the same
at all ports and is independent of the state of the interferometer, maintaining the
gain at any one frequency will suffice to accomplish this objective. If, on the other
hand, the frequency response of the interferometer to a given degree of freedom is

significantly different at different ports or at different times, the sensing matrix must
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be constructed with the properties of the control system in mind.

In the LIGO 1 interferometer there are two examples of complicated frequency
~ response. One of these is in the cArm degree of freedom as state 4 progresses. In
-state 3 the frequency response of all signals to this degree of freedom is that of the

arm cavity
1

——Acarm 4.92
¥ iwfw, A (4.22)

S demod (w)

with w, ~ 100Hz, but in state 5 the response is that of the coupled cavity with
we ~ 1 Hz.[26]

To prevent this change from destabilizing the cArm control loop, the sensing
matrix must be designed to reflect the change that occurs at the unity gain frequency
of the loop, wearm. Fortunately, the unity gain frequency for this loop is typically
close to the arm cavity pole (100Hz < wearm < 200Hz) so the transition to the
coupled cavity response has no significant effect on the stability of the control loop.

The second example of non-trivial frequency response is found in the signals used
to control the PRC degree of freedom. In this case, the frequency response in the two
most sensitive signals (Iggr and Ipop) are similar, and essentially flat, until state 4.

During state 4 the frequency responses of these signals change, and in state 5 can be

somewhat different from each other,

1+ iw/w,
A .
IREF(UJ) X 1 +iw/wc PRC (4 23)
14+ w/w
IPOB(CU) / pApRC (424)

where w, ~ 1 Hz is again the coupled cavity frequency, w, S 2Hz and w, ~ 0.5 Hz.
However, it is again true that the response at the unity gain frequency of the control
loop (wpre ~ 40 Hz) does not change appreciably.[26] Care must be taken, however, to
evaluate the elements of the sensing matrix at the unity gain frequency of the control
loop rather than at DC since, as in this case, the results may differ significantly.
The general rule applied in these two examples is: If the phase response to a given

degree of freedom at the unity gain frequency of the corresponding control loop is
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similar at all ports, it is sufficient for the sensing matrix elements to be proportional
to the sensing gain at the unity gain frequency. To handle the more general problem
of arbitrary frequency dependence a frequency dependent sensingL matrix may be
used, but the particulars of the LIGO 1 configuration make this level of complexity

unnecessary.



41

Chapter 5

Experiment

This chapter describes the application of the theory and techniques discussed in the

previous chapter to the LIGO 1 interferometers.

5.1 Experimental Setup

The apparatus consists of two conceptually separate pieces: the analog and optical
hardware, and the digital control software. The analog-to-digital and digital-to-analog
converters (ADCs and DACs) represent the interfaces between these pieces. These
system components are described separately in the following sections.

N TN N Ty

— > 5 |-» Analog and ..l 5= Digital .
=i Optical > 0 Control [~
MA™  Hardware [0 [ Software |—

N/ Ne—e— N/

1
A

Figure 5.1: Experimental apparatus conceptual pieces.

5.1.1 The Analog and Optical Hardware

There are three LIGO 1 interferometers, two located in the desert at Hanford, Wash-
ington, and one in the forest near Livingston, Louisiana. The configuration of the
primary interferometer at each site, known as the “4k” interferometer, is shown in
figure 4.1. The vast majority of the experimental work was performed from October
2000 to February 2001 with the secondary (a.k.a. “2k”) interferometer at the LIGO

Hanford. Observatory. This interferometer includes two folding mirrors which allow
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it to share its vacuum envelope with the 4k interferometer (see figure 5.2), and has
somewhat different optical path lengths than the 4k interferometers. Approximate

~ optical parameters for both the 4k and 2k interferometers are given in table 5.1.

+TRT

ET

y

ASY AREF
IT
. Input
FTNS [ i —— Beam
¢ pa
POR FR IR ER

Figure 5.2: LIGO Hanford 2 km optical layout.

The input beam arrives at the PR mirror after being phase modulated ([ypq =
0.44) and passing through a mode-cleaner.[27] The input power was variable, most of
the experiment was performed with 100 mW incident on PR, but the power was later
increased to 1 W.

In addition to the five demod signals that appear in equation (4.6), the LIGO 1
lock acquisition system uses four low frequency (bandwidth < wy,.q4) power signals
(Prer, Pros, Prrr, and Prgrg), and a signal produced by demodulating at POB
at twice the modulation frequency. (Note that this demod signal, known as Spos,
is used to measurev the sideband power in the recycling cavity and should not be

confused with other demod signals, generically know as Sgemoq, Which are used to
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Optic || & |1-# -2
PR 2.8% | 1000ppm
BS 51% 777

ITand IR || 2.8% 70ppm
ET and ER | 5ppm 70ppm
FT and FR || 5ppm 70ppm

“ Primary “4k” \ Secondary “2k”

Lpr.Bs 4397 mm 3022 mm
Lps.r 4937 mm 9528 mm
Lps.r 4637 mm 9828 mm
Lir.pr and Lip.gr 3995 m 2009 m
Jrmod = Wmod/ 2T 33.3 MHz 29.5 MHz

Table 5.1: LIGO 1 optical parameters.

produce error signals.) Each of these signals is digitized and made available to the
digital control system for real-time processing.

All of the optics in the LIGO 1 interferometers are suspended to provide seismic
isolation above the pendulum resonance frequency at 0.74Hz. The actuators are
coil/permanent magnet pairs which produce a force on the optic proportional to the
actuation signal produced by the control system, up to a limit of about 10 mN. The

mass of each optic is approximately 10.3 kg.

5.1.2 The Digital Control System

The digital control system used in the LIGO 1 interferometers runs on VMIVME
7697 modules, the core of which is a 1GHz Pentium processor. There are three such
modules for each interferometer, one at the vertex and one at each end. These modules
communicate over an optical reflective memory link. The connection from the digital
system to the world of analog electronics is provided by Pentek 6102 ADC/DACs
operating at 16384 Hz.

Processing of gdemod by the digital control system to produce actuation signals for

each optic is done in four steps:
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1. Compute the input matrix G (see section 5.3).

2. Multiply the demod signals by the input matrix to produce error signals for
each degree of freedom (i.e., S = ngemod).

3. Filter the error signals to produce actuation signals for each degree of freedom
(see table 5.2 for filter parameters).

4. Multiply the degree of freedom actuation signals by the output matrix, de-

scribed below, to produce actuation signals for each optic.
Implementation of the first step is discussed in detail in the following sections. Step 2

is simple matrix multiplication, the filters used in step 3 are shown in table 5.2, and

a typical output matrix equation for step 4 is

Fpr 0 0 0 0
Fps 0 0 0 0
F FT 0 0 —\/§ _\/5 F, cArm
Frr 0 0 —V2 V2 Faarm (5.1)
Fir 0 0 0 0 Frre '
Fir 0 0 0 0 Fagicn
Fgr -1 -1 0 0
Frr -1 1 0 0
{ Filter ” Purpose Properties
1 roll-off Butterworths at 1 kHz and 2 kHz
2 pendulum compensation zero at 10 Hz
3 cavity pole compensation zero at 100 Hz
4 low-frequency boost pole at 0.1 Hz and zero at 10 Hz
Degree of Freedom ” Filters l Unity Gain Frequency
cArm and dArm || 1, 2, 3 and 4 (switchable) 100 to 200 Hz
PRC and Mich 1 and 2 30 to 50 Hz

Table 5.2: LIGO 1 digital filter bank.
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5.1.3 Sources of Excitation

There are two primary sources of excitation against which the interferometer control
systems must work: seismic noise and laser frequency noise. Each opticin the inter-
ferometer isv suspended, and the suspension point is supported by a seismic isolation
system which isol’ates it from the motion of the ground. The motion of the optics
due to ground motion, known as seismic noise, varies considerably from day to day
and is much larger in Livingston than in Hanford, but a representative spectrum of

suspension point motion along the optic axis is shown in figure 5.3.

10° ¢ —— —————

Seismic Noise [um/Hz”Z]

10 1 ' I — HIO I ‘ T ”I1 . I T 2
10 10 10 10
frequency [Hz]

Figure 5.3: Seismic motion is one of the primary sources of excitation that a lock
acquisition system must contend with. The amount of seismic motion varies greatly
with location, time of day, weather, and other factors. These data were taken with
the Hanford 2k interferometer, using the noise in the dArm degree of freedom as a
measure of seismic noise in the frequency range shown.

The second source of excitation, frequency noise, is indistinguishable from com-
mon mode mirror motion. The equivalent mirror motion, AL, for a given change

in frequency, Af, is given by the familiar relationship Af/f = AL/L, where f and
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L are the initial frequency and length. The frequency noise spectrum of the light

incident on the PR is shown in figure 5.4.

-

10 ¢

Frequency Noise [Hz/Hz“ 2]
)

1
—
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—
o
T

107 — I
10 10 10

frequency [HZz]

Figure 5.4: Frequency noise on the input beam is equivalent to common mode motion
of the optics. At the time this data was taken, frequency noise dominated over seismic
noise above 1Hz for the Hanford 2k interferometer arms. The frequency-to-length
conversion factor, in this case, is 7.1 x 1076 ym/ Hz.

5.2 Detection Mode Control Scheme

Control of the interferometer is relatively simple in the operational state, known as
“Detection Mode,” and the input matrix for this state is the same as that used by

the lock acquisition system in state 5, except that A_ = 0 is asserted for simplicity
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(see section 4.3.5). In this state the input matrix equation is

IR }
Serrpre GP RCIres G trm drey 0 0 1 || Trer |
_ GPhe Lpob GcDAA;Im,Ipob 0 0 Lot
o 00 Gl 0 Qun ||
erTa Arm | 0 0 0 Gl || || Qoo |]
(5.2)

where each GPM is the detection mode gain constant for each degree of freedom. This

control scheme is discussed in detail in [26].

5.3 Sensing Matrix Estimation

5.3.1 Field Amplitude Estimators

The sensing matrix is determined by the amplitudes of three resonant fields (A,
and Apgy), and six local oscillator fields (A gy, , Apop,> Apos,» Arery> Arer, and
Appr,; see section 4.1.2). Each of these must be inferred from measurement, the

more directly the better.

According to equation (4.17) IA T,

! Al

and AZ,  are all necessary to esti-

mate A,_. Measurements of the power transmitted through the arms cavities suffice

: 2 2
as estimators of | 477, |” and |Af%,

. 12
thr |AT7 " =~ Prer (5.3)

~ PTRR- (54)

tET ‘AIRO

The primary assumption here is that contributions to the transmitted power from field
components other than the carrier (j = 0) are negligible. This assumption is valid
along the acquisition path, since the carrier field resonates in the arm cavities in states
3, 4 and 5, and at no point on the path do the sidebands resonate in the arm cavities.
Another way to say this is that a sideband resonating in an arm cavity represents a

departure from the acquisition path, and thus it also represents a departure from the
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region in which these equations are valid and utilized.
Assuming that the fields in the recycling cavity are changing adiabatically and

the carrier is well mode-matched into the recycling cavity, Af;’RO can be estimated by

trr )
Ao~ S Ab 5.5
PR ™1 — ratichorpr O (5:5)

where ryen = Afp/ ALy is the amplitude reflectivity of the Michelson and arm cav-
ities treated as a whole. When neither arm cavity is resonant (state 2) the recycling
cavity is anti-resonant for the carrier. In this state the carrier light interferes destruc-

tively at the ASY port and rapien, =~ —1, which implies that

tpr .
fo ~ i
AR, = T A% g, (5.6)

When only one arm cavity is resonant (state 3) the change in sign of the over-coupled
cavity causes the carrier light to interfere constructively at the ASY port, making
TMicho = 0 and

A?Ro ~ tPR A%Ro' (57)

When both arm cavities are resonant (states 4 and 5), 7pzen, is less than one by
a small and variable amount. A robust estimator for Ap, in these states can be

derived from the arm cavity amplitudes. Since

o tir
Afo fd > - Afo 58
ITo V2 1—rpprer TR (5:8)
R t]R
Al = 0 Afe 5.9
THo V2 1 —riprpg = TR (5.9

where 0 < {ag,, ag,} < 1 are the mode-matching coefficients® for the arm cavities.

!These “mode-matching coefficients” were not included in the theory discussions of chapters 3 and
4, but are needed experimentally to quantify the imperfect spatial overlap of a cavity’s eigenmode
with the input field. Quantitatively, « is the overlap integral of the cavity eigenmode with the input
field, typically 0.5 < oo < 1.
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Inverting this equation yields

o L —rrrer R R \
A;—"Ro = 2 tIT maX(AﬁTo’ A;Ro) ) ) (510)
assuming that at least one of {ar,, ag,} ~ 1.

These estimators are combined to produce A, as follows: in state 2, when neither

arm is near resonance,

A, ~0 (5.11)

in state 3

Prrr £ Prrr

~ 2
Ai - tPRtET b )
A
PRy

(5.12)

and in states 4 and 5

A ~ trrtgr Prrr = Prgr
+

- ] 5.13
1 —rmerer \/2 max(Prrr, Prrr) ( )

Since the input power and modulation depth are directly measurable and relatively
constant, A% R, is easily determined. One of the pick-off local oscillator fields, Apgp,,

is also available from these measurements since it is simply proportional to Afp"RO,

Apop, = troBALR, (5.14)

where tpop is the amplitude “transmissivity” of the optical train leading from the

PR to the POB detector.

Appy is estimated with the aid of a signal produced by demodulation of the field

at POB at twice the modulation frequency,

Spop =~ ~tpopRe (Af};}:_lAgRl +APR APR, + ASEOAQ’RJ (5.15)

o 2 o o
~ thon || Al | — 2| A AR (5.16)
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This signal is a valid estimator for

VSpos

tpoB

Afp (5.17)
when ‘Afp"RDAf;gzl < ‘Afp"Rl ?a condition that is satisfied at all points on the ac-
quisition path after the acquisition of state 2 since the second-order sidebands are
anti-resonant in the recycling cavity throughout. The estimator used for Apg,,, a

slight modification of equation (4.18) which allows for imperfect optics, is

IAgRl

bi ?
OPRM; APR1

|2

(5.18)
where apgpy, is the mode-matching coefficient for the first-order sidebands into the
recycling cavity. Unfortunately, no independent measure of apgys is available, so one

must either assume that the cavity’s alignment is sufficiently stable to treat appas as

a constant, or that the cavity is exactly resonant such that

fo
1 — Tagich, 7Pr APR,

(5.19)

QAPRM, — - .
' tpr AR,
Since the particulars of the interferometer make the latter assumption more plausible,

our estimator is
tpr vV Spros

bl
1 — 7rmicTPR tPOB

Appy = (5.20)

where 7arich, = /1 — t?mahl and t?\/mhl is assumed to be dominated by the transmis-
sion of sidebands to the ASY port provided by the Schnupp asymmetry,

mo L : - L :
bagien, ~ sin (27rw a|Lps.r BS.IR]> _ (5.21)
, 2me

Spop is also used directly in estimates of the local oscillator field amplitudes

Apop, and A, gy, . Appp, is estimated by

Apos, = VSpPoB; (5.22)
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and, similarly,
V' Spos

(5.23)
tpoB

Ausy, = tarich

This leaves the three reflected fields. The second-order sideband field, which
does not resonate in the interferometer at any point on the acquisition path, can be

estimated directly from the input field
Arpr, = Abg,- (5.24)

Since the first-order sidebands resonate in the recycling cavity, but are poorly mode-
matched in the “cold” LIGO 1 interferometers,? the reflected field is estimated in two

parts: mode-matched (Aggpy,, ), and non-mode-matched (Aggp, ). The estimators

for these two components are

Apppm, = TPROPRM; APp, — tPRTMich, Afg, (5.25)
Apprn, = rrrAf1 — prar A, (5.26)

where equations (5.17) and (5.19) are used to estimate AL, and apry,. Each of
these components will have some overlap with the interferometer’s carrier eignemode
and will contribute to the demodulated signal. The effective local oscillator is taken

to be a linear combination of the components

AREF1 = aRE'FmAREle + aREFnAREFm' (5.27)

Measurement of these mode overlap coefficients remains a technical challenge, but
agrprm = 1 and agrgr, = 1 is sufficiently accurate to allow for lock acquisition.

The reflected carrier amplitude can be computed in a similar fashion, with the

2The LIGO 1 optics are designed to be well mode-matched in the presence of thermal lensing.
Lock acquisition, however, must take place before the optics can be heated by the resonant fields.
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simplification that it is assumed to be well mode-matched,?
Apgr, = TR AR, — tPRTMicho AbRy» - (5.28)

where 7ich, and Af,  are as discussed above (see equations (5.5) through (5.10)),
except that in this context rpsicn, =~ 1 will suffice in states 4 and 5. This estimate is,
however, further complicated by the existence of the reflected power measurement,
Prer, which should satisfy

\2

Prir = |AREJ;«“0\2 + | Argrm, |2 + |AREFn1‘2 + |Arer, (5.29)

Since Prgp is typically dominated by |A REF, ‘2, it seems plausible that equation
(5.29) can be used to produce a more robust measure of [A REF, ‘2 than estimation via
equation (5.28). This strategy is, in fact, the one used in the LIGO 1 lock acquisition
system, with the sign ambiguity resolved by taking the sign of Aggp given by equation

(5.28).

5.3.2 Calibration of Power Signals

Three power measurements (Prgr, Prrr and Prgp) and one demodulated signal
(Spop) are used in the field amplitude estimators described in the previous section.
Since Spop is difficult to calibrate directly, the power measurement at the same
port, Ppog, is also needed. The unitless calibrated measurements, represented by an

overbar, are relative to the input power,
— bi
Py = ZAPRJ" (5.30)
j

Prer and Ppop are calibrated with IT and IR misaligned and PR aligned. In this

3Since the carrier resonates in the arm cavities it is not sensitive to the nearly degenerate nature
of the power recycling cavity. This feature insures that, unlike the sidebands, the carrier is always
well mode-matched (i.e., apru, ~ 1)-
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configuration®
_ P
Prer = ;EF = 7'123R (5.31)
IN ‘
and
= Prop
P = = 1. 5.32
POB tQPRP]N ( )

The transmitted arm power calibration is performed by misaligning IR and PR,

then locking the aligned arm cavity. If the mean alignment is good

2
B = [\/§ 1—rrrer Prrr
rRT = | —

~1
ap,  trrter } Jo(Tmod)” 12 Prn

(5.33)

when the power is at its highest points (i.e., Oz%b ~ 1). A symmetric configuration is
used to calibrate Prgrg.

To calibrate Spog, ET and ER were misaligned and the recycling cavity locked
(state 2). It is important to note that, like locking a simple Fabry-Perot cavity, this
can be achieved without a sophisticated lock acquisition system (i.e., just enabling

the control loops suffices). In this state

SPOB ~ PPOB
Jl (I—‘mod)2 t%DRPIN 2 Jl(l_‘mod)2

SPOB = (534)

5.3.3 Gain Coefficients

The last set of ingredients necessary to estimate the sensing matrix are the gain coef-
ficients that appear in equations (4.7) through (4.16). Unlike field amplitudes, which
can change rapidly, the gain coefficients need only be measured when the interfer-
ometer response they quantify changes (e.g., the interferometer’s mean alignment is
changed, the sensing electronics are changed, etc.).

The general procedure for measuring a gain coefficient is as follows:

4At the time of this experiment, the signal for Ppop was actually taken from Ppor (see figure
1.4). Calibration was performed with all the mirrors except I'T misaligned such that Pros = PpoT-
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1. Put the interferometer in a state in which the gain coefficient to be measured
appears in a non-zero element of M, call it M, ,.

2. - Measure the transfer of an excitation in Eq to gerrp (typically near the unity
gain frequency of the loop controlling ﬁq).

3. Multiply the gain coefficient by the measured transfer amplitude.

It is often beneficial to repeat this procedure until the gain coefficient converges on
some stable value.

Note that this procedure requires the interferometer to be locked in a particular
state, which can be problematic if the gain coeflicient to be measured is required
to reach that state. The LIGO 1 lock acquisition system is designed to avoid this
“chicken-and-egg” problem by bootstrapping off easily acquired states. The complete
gain coeflicient measurement procedure is

1. As in the measurement of Sppp, lock state 2 and measure 9Pref> YPpobs GMref,
and gaspob-

2. As in the measurement of Prgr or Prgg, lock either arm cavity using I,y
Replace Qg4 with I, in gdemod and measure g45,. This replacement is nec-
essary to compensate for the absence of the Michelson which, when present,
rotates the local oscillators for this signal (A,gy, and A,gy. ) by 7/2.

3. Lock the recycling cavity and the transmitted arm (state 3) with ER mis-
aligned and measure all of the gain coefficients. For the previously measured
coefficients, the results should be similar.

4. Switch to the reflected arm and remeasure all of the gain coefficients. The

results should be similar to those measured in step 3.

5.4 Implementation

This section discusses the implementation details of the lock acquisition algorithm
used in the LIGO 1 interferometers. The algorithm performs two types of actions:

continuous changes in G which compensate for continuous changes in M, and discon-
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tinuous changes in G which result from changes in the size of M. The discontinuous
changes occur at the state boundaries discussed in section 4.3 and on either side of
the DS singularity that is crossed in state 4. Each of these discontinuous changes is

marked in the algorithm by a state bit and recognized via a trigger of some sort.

5.4.1 ’Discontinuous Changes: Triggers and Bits

The state progression begins with the departure from state 1. As the recycling cavity
becomes resonant, Sppop increases and it remains at an elevated level all along the
acquisition path. Furthermore, carrier resonances in the recycling cavity produce a
negative signal (see equation (5.15)),' a fact that makes Sppop a particularly good
indicator of state 2 since spurious carrier resonances are easily rejected. For these
reasons, the trigger which recognizes the transition from state 1 to state 2 and beyond
is based on the value of Spop. This trigger has distinct on and off levels to prevent
noise from toggling the state. These levels are called “RecOn” and “RecOff” and the
associated bit is “Engaged.” To reiterate, the Engaged bit is set when Spog > Trecon
and is réset when Spop < Trecofs-

State 3 is entered when one of the two arms becomes resonant for the carrier.
The power buildup in the cavities, as measured by the transmitted power signals,
PTR{T,R},is used to recognized the approach of resonance (PTR{T, r} > Tarmon) and
the passage of resonance (PTR{T,R} < Tarmoss). The corresponding state bits are
labeled “ArmTOn” and “ArmROn.” When one of these bits is set, along with the
Engaged bit, the interferometer is in state 3.

Entry into state 4 is indicated when both arm bits and the Engaged bit are set.
The passage of the DS singularity in state 4 is marked by the “InvBad” bit. This bit
is set anytime the absolute value of the normalized determinant of M is less than the
threshold value “DetNormMin.”

Also in the course of state 4 the Apge, degree of freedom transitions from @)¢f to
Qpov to avoid a zero in the reflected signal gain. This transition is accomplished by

simply switching signals at a predetermined arm power level dubbed “MichSwitch.”
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5.4.2 Continuous Changes: The Input Matrix in Each State
State 1: Not Engaged

“In this state M is essentially unknown so there is little to be done but wait for state 2
to happen by chance. At the Hanford site some excitation is necessary and is provided
by setting

Gi,.;,PRC = Cpush/ GPref (5.35)
and

GQTEf,Mich = Cpush/ngef (536)

where cpysp is an adjustable parameter.

State 2: Engaged

In state 2 Apsen, and Appre are controlled. Ajpzen, being rather separate in M is dealt

with separately. Until state 4 the error signal for A, is produced entirely from
Qref via

GQTEI,Mich - _Mli(:heref. (537)

In this state the error signal for PRC comes from I, via

-1
GITEf,PRC = Y PRCIL.f (538)
and the error signals for cArm and dArm are zero.

State 3: Engaged and one Arm Locked

As a NS singularity is removed from M, a 2x2 matrix inversion is performed to
produce error signals for Aprc and A, apm,
-1
S@T’I‘P,RC GPRC,ITEf GcArm,ITef Iref

S

erTcArm ’ 0 GCATm,Qasy Qasy
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and S +Serr,4,,, depending on which arm is resonant.

ETTdArm

States 4 and 5: Engaged and both Arms Locked

As state 4 is entered and the last NS singularity is removed from M and the input

matrix expands again to

-1

SGTTPRC . GPRC,I.ref GcArm,ITef GdArm,Iref Iref

SerrcArm = GPRC’,I ob GcArm,I ob GdArm,I ob Ipob i (540)
p 2 p

SerrdATm 0 GcArm,Qasy GdArm,Qasy Qasy

As the determinant of the 3x3 matrix shown above becomes small the signals for
Apre and A arm become inseparable. This DS singularity forces a choice between
controlling A, grm Or Apge. Since A g dominates in both I,y and 1,4, and since
it is far more sensitive to the excitation sources than Apgc, the error signal equation

is reduced to

-1

Se"'"'cA'rm _ GCATm,Iref GdATm,ITef ITef ’ (541)

Serrgarm GearmQusy GdArm,Qasy Qasy
and Serrppe = 0 until the DS singularity passes. Assuming the power in the in-
terferometer continues to grow, the absolute value of the normalized determinant of
the matrix in equation (5.40) will exceed DetNormMin and control of all degrees of
freedom will be reestablished.
Finally, when PTR{T’ r) increases beyond Tasichswitch; Dumicn 18 switched to Qpep by

setting MQTEf,MZ-ch =0 and

G Qs Mich = Gificn,a, (5.42)
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5.5 Experimental Results

At the time of this Writihg only the Hanford 2k interferometer has been locked stably
in its final configuration. This interferometer has been locked repeatedly (over one
hundred times) and, if left undisturbed, will typically hold lock until the available
actuators run out of range due to tidal stretching of the Earth’s surface. After each
loss of lock event the interferometer requires about a minute to damp the excited
optics and, when well aligned, will reacquire lock in less than twenty minutes. The
mean-time-to-lock demonstrated in this experiment varies considerably depending on
the state of the interferometer and its environment, but is consistently short enough
to have no significant impact on the duty-cycle of the detector, which is expected to
hold lock for days, if not weeks, at a time once all of the actuators and controllers
are functioning.

In addition to the indirect evidence provided by a locking interferometer, the
correctness of the input matrix computed for lock acquisition was tested directly by
measurement of the gain coefficients in state 3 and state 5. If the sensing matrix
equations are correct, these coefficients should have the same value in all states, but
since the full interferometer cannot be locked without them, they must initially be
measured with the interferometer in state 3. When remeasured in state 5, the values
of all gain coefficients were found to agree with the state 3 measurements within
measurement error, which was typically less than 20%.

A lock acquisition time series for the Hanford 2k interferometer is shown in figure
5.5. Comparing this event with the last second of the simulated event shown in figure
4.2 reveals considerable similarity, though no arrangement >Was made to ensure this.
Two immediate differences are that the arms locked in the opposite order, and that
Prpr in the experimental data shows 3 resonance approaches that did not lock while
the simulated event shows no such events after acquisition of state 2. These differences
are inevitable, given the random nature of such events, but consistent differences are
also present. Systematically lower power levels in the physical interferometer result

from imperfect mode-matching, particularly for the sidebands in the recycling cavity
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(as seen in Sppg), and from imperfect alignment, which degrades the carrier buildup

(as seen in Prrr and Prgr) by allowing power to escape through the ASY port.

. Hanfod 2k Lock Acquisition
10 g T T T T T T T T T

State 2 Jl } 3 || I State 4

i

-_
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(s]

Figure 5.5: A lock acquisition event at the Hanford 2k power-recycled interferometer.
Similar to the simulated acquisition event shown in figure 4.2, the state progression

is noted at the top of the figure and the time series shown are Spop (dotted), Prgr
(solid), and Prgg (dash-dot).
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Chapter 6

Conclusion

A considerable amount of time is spent designing a detector for good sensitivity in the
operating state, but care must also be taken to ensure that the detector will be able
to reach that state. This is not a statement about the gradual process of increasing
a detector’s sensitivity by removing noise sources, but rather about the swift and dy-
namic process of lock acquisition. Since lock acquisition may demand greater dynamic
range and higher bandwidth of existing signals than the control system used in the
operational state of the detector, and may require additional diagnostic signals, it can
place considerable demands on the detector’s sensing and control system. This work
presents a general framework for understanding lock acquisition, and thereby allows
it to be treated as an integral part of the detector in the design phase, as opposed to
leaving it as a problem to be solved as the detector moves toward operation.

The approach presented in this work begins with the identification (by simulation
or intuition) of a path which takes the detector from the uncontrolled state to the
operational state. The properties of the detector’s outputs along this path, embodied
in the sensing matrix, must be determined and parameterized in terms of measure-
ables. Finally, a control system which can compute the inverse of the sensing matrix,
apply it to the incoming signals, and make the resulting signals available for feedback
is needed to close the control loop.

This formalism was experimentally developed and verified on a km-scale gravitational-
wave detector. The LIGO 2km interferometer at Hanford was locked using the tech-
niques developed in this work and, in addition to its demonstrative role, the success of
the experiment was a critical step in making the initial LIGO detectors operational.

It is hoped, and expected, that this work will be applicable to both the generation
of detectors currently under construction around the world, and to future detector

configurations. Applied in the design phase, a firm understanding of lock acquisition
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will allow for sophisticated interferometers to be constructed with confidence in their

operability.
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Appendix A

"The Fabry-Perot Cavity
A.1 Cavity Statics

Under the assumptions of perfect alignment and mode-matching, the Fabry-Perot
cavity has only one degree of freedom: the round-trip phase ¢(¢). This degree of
freedom can be completely accounted for by its effect on the intra-cavity electric field
leaving the input mirror at time ¢, Fj° (t), which will hence forth be referred to simply

as F(t). The iterative equation for E(t) is
E(t) :tj E]N(t) -I—’I"I’I‘Eeiqﬁ(t_T) E(t—2T), (Al)

where T = Ly.g/c is the one-way trip time in the cavity, and ¢(t) is the round-trip
phase of the intra-cavity field that left the input mirror at time ¢ — 7', was reflected
off the end mirror at time ¢, and returned to the input mirror at time ¢ + 7. It is
assumed that mirror displacements are small relative to the cavity length so that T'
may be held constant.

Considerable simplicity can be gained by measuring the phases of all fields relative
to that of E;y(t). The two primary simplifications are that no ™" term is necessary
in any of the equations and phase noise on the input field is accounted for by ¢(t).
If the amplitude of the input field is assumed to be constant, Erx(t) can be replaced
by a real constant, Fry.

For a static, or adiabatically changing ¢(t), equation (A.1) can be solved by taking
the limit as 7" — 0,

lr

E(t) = —— K. 2
() 1_7_1 e e“@’(t) IN (A )

The reflected field is the sum of the promptly reflected input field and the leakage
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field from the cavity

E}O (t) = [TIEIN — tI TE €i¢(t) E(t)] GQikzI. ‘ ) (A?))

A.2 Cavity Dynamics

For high finesse cavities it is common to have resonance crossings that occur at an es-
sentially fixed velocity. These crossings produce a characteristic waveform from which
the velocity of the crossing can be determined, along with the finesse of the cavity
and the demodulation phase. Though some work has been done on producing an
analytic expression for this waveform, simple, continuous form has proven elusive.[28]
The follow derivation arrives at two easily computed continuous approximations that
are suitable for a variety of applications, including fitting experimental data.

For the special case in which ¢(t) = 26¢, where (§ is a constant, equation (A.1)

can be rewritten as

= t;E;n Z glon 22i[Bt—iy]n (A4)

where v = —1In(ryrg) /2 = T/7, @ = 28T, and 7 is the decay time of the cavity.
This special case can be realized by fixing the input field frequency and the input
mirror while moving the end with constant velocity vg, in which case 8 = —kvg.
Equivalently, one can move the input mirror (5 = —kuv;), sweep the frequency of the
input field (8 = %T), or perform any linear combination of the three.

For high finesse cavities with slowly changing phase (v < 1 and o < 1), the sum

can be converted to an integral giving
E(t) 2 B(t) = t;Ey / glos® ~HlBt=ia (A.5)
0
Completing the square and changing the integration variable results in

E(t) = t[E]N(B_in2 \/5 HO (A6)
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where

HOE/ ei[z_"]zdz, (A7)
0 ‘ ‘

and n = ng +inr = [Bt — 7] /.
Extending the integration variable to the complex plane provides some insight
into the mathematical problem. The first step is to deform the contour and break it

into several pieces (see figure A.1) such that
]I() - 1[1 -+ ]12 -+ ]13 -+ ]14. (A8)

We will attack each of these pieces in turn, starting with I, and working back to I;.

Im[z]

4

A
\ 4
\
3 \
0 L{>
Re[z]
1
2
3 n

Figure A.1: Deformed contour integral segments. £ = [i — 1],

I4 closes the contour by connecting I3 to I at infinity. This integral can be shown

to be zero by making the substitution

z = 1t (A.9)
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and showing that
lim 0'4——>——OOV‘0§¢4<7T/4 . (AlO)

T4—+00

where 04, = Re (z [r4ei¢4 — 77] 2). Expanding the square and taking the real part leads

to-

o4 = 75 8in(2¢4) + 2r4[sin(ds) nr + cos(ds) nr] + n°. (A.11)

The first term ensures that

lim o4 & —00 V0 < ¢y < /4, (A.12)

7400

and for ¢, =0
o4 = 2rq cos(¢g) N1 + 177, (A.13)

which also goes to —oo since 1y < 0 for all physical choices of v and «.

The contour used in I3 is arrived at by making the substitution !
z=Viz+n. (A.14)

The resulting integral,

]13 = \/;/ e_Z§dz3, (A15)
0

evaluates to I3 = vin/2.

To evaluate I, we make the substitution
z = —2z9+1, (A.16)

which leads to
ne+mil
Iy :/ e*2dz,. (A.17)
0

!Throughout this paper v/ will be taken to mean e/%.
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This integral can be rewritten in terms of the Fresnel integrals as

I, = g[C<\/g[mz+m]>‘+i5<\/g[mz+m]>](- : (A.18)

‘For I; we will resort to approximation. Using the substitution

2= % (A.19)
and expanding the square results in
in? —V2 i
I = e\ﬁ /0 gAtVinag,, (A.20)

Replacing the first term in the exponential with its Taylor expansion about z; = 0

gives
in? X V20 2n _
]Il - 6\/{ ZA %62\/; ”Zldzl. (A21)
n=0 )

Finally, evaluating the integral we obtain

7;772 e.o]

I, = 2 [2n]! {1 VA i [—V/8i 77771]m ‘ (A.22)

Vi o n! [2\6 77} e m!

m=0

Given thét we started with a summation equation (A.4) which seems much simpler
than this result, one might wonder what has really been gained. The advantage of this
expression is that we may discard all but the first few terms in the outer summation
(typically up to n ~ 5). The exact number of terms to keep, which depends on the
parameters and the desired accuracy, is best determined empirically.

Since the Fresnel integrals are not as common as the error function, it is worth
noting that a slight change in the integration contour (see figure A.2) removes the

need for Fresnel integrals. Extending contours 1 and 3 such that I, = I; + I3 leads to

=i
—

ein’ & k[2n]! I N N
_ Z 1 — e~ V2 nlnr—ni] , A.23
\/; n=o ™! [Q\ﬁ 77] o ' mZ—o m! (A2
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and
I =i / eHdzs, (A.24)
—[nR+771]/\/§ .

which can be rewritten as

X

ﬁgz

-5

[1 + Erf [[nR + m]/\/iﬂ . (A.25)

This contour has the disadvantage of lengthening I;. As a result, a few more terms

in the summation must be kept.

Im|z]

4

\
\ 4
|
3 i
- J———(>
Re[z]
1
M
3
Figure A.2: Alternate contour. £ = [ ]

V2i

With an-analytic expression for F(t) in hand, standard non-linear fitting methods
can be used to determine the parameters associated with observed resonance crossings.
Data collected from the Hanford 2 km interferometer is shown in figure A.3 along with
a fit using equation (A.25) and equation (A.23) including terms up ton = 5. The fit to
this event indicates that the crossing velocity was 6.2 yum/ s, the demodulation phase
10° from optimal, and the cavity decay time is 835 us (as opposed to the nominal

value of 944 us).
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It is also worth noting that in all of these equations the scale is set by n. This
fact can be used to define a critical velocity above which cavity dynamics become

apparent. Choosing this point to be at n; = 1 yields

2

i (A.26)

Verit =

The resonance crossing shown in figure A.3, for instance, has v ~ 10v.;. Crossings

with v < wg; are well described by the adiabatic equations given in section A.l.

x10*

“15 : ' ;
0.225 0.23 0.235 0.24 0.245
tis]

Figure A.3: Hanford 2km cavity response to a fixed velocity sweep. The demod
signal is fit using the alternate contour presented above, keeping the first seven terms
in equation (A.23). Three additional fit parameters are used to describe a quadratic
fit to a slowly varying offset in the measured signal due to the presence of other nearby
resonances.
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Appendix B

Notational Conventions
B.1 Notational Conventions

For the sake of clarity, if not readability, this work attempts to abide by a few simple
notational conventions. Square brackets, | |, are used in equations for grouping math-
ematical expressions. Parentheses, ( ), are reserved for specifying function arguments
and curly brackets, { }, for delimiting sets. Matrices are delimited by double square
brackets, [[ ]] In some cases, the type of variable is indicated as follows: S matrix,
§ vector, § unitless ratio.

The use of complex variables is prevalent in this work. The lowercase letter 7 is
used to represent the unit imaginary number. Function notation is used to express
- the real, Re(), and imaginary, Zm(), parts of a complex variable or expression.
Absolute value notation is used to express the magnitude of a complex variable or
expression and * is used to indicate the complex conjugate as in the equation |:U|2 =
Re(z)? + Im(z)’ = & «*.

Unless otherwise specified, variables (e.g., positions and field amplitudes) are im-
plicit functions of time. If an equation contains variables that are evaluated at dif-

ferent times, all evaluation times are specified explicitly.



70
B.2 Symbol Glossary

B.2.1 General

Ay generic field amplitude on surface X
- A% - incoming field amplitude on the back of surface X
AL | incoming field amplitude on the front of surface X
A% | outgoing field amplitude on the back of surface X
AL outgoing field amplitude on the front of surface X
c speed of light in vacuum
Ex generic electric field on surface X
J sideband index
k wave number
Py generic field power on surface X
g electronic gain or optical transduction gain

l,m,n,p,q integer variables and numeric subscripts

Lxy distance between reference planes of surfaces X and Y
rx amplitude reflectivity of surface X
tx amplitude transmissivity of surface X
Zx position of surface X
o} | optical mode overlap coefficient
A wavelength
w angular frequency

B.2.2 Chapter 1

h  gravitational wave strain

L length over which strain is méasured (e.g., interferometer arm length)
Ah minimum measureable strain
AL change in L due to h

A¢ noise in ¢

¢  differential phase shift at the beam-splitter



B.2.3

Ay
Ajo,

App,

Ero(t)

Jj(x)
Sdemod
I'mod
Pdemod
WIN
Wro;

Wmod

B.2.4

Ir
ET
F
REF
SLin
Sppm

TRN

Vinit

AT@S
?;
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Chapter 2

field amplitude of field source

field amplitudes of inpﬁt field

field amplitudes at a photodiode

electric field at interferometer input

Bessel functions

demod signal

modulation depth

demodulation phase

angular frequency of field source

angular frequency of input field components (carrier and sidebands)

angular modulation frequency of input field

Chapter 3

input test-mass

end test-mass

cavity finesse

reflection photodiode

linearized error signal for a Fabry-Perot cavity
Pound-Drever-Hall reflection locking signal
transmission photodiode

initial velocity in lock acquisition simulations
length degree of freedom

value of A at carrier resonance points

round-trip phase in a Fabry-Perot cavity



B.2.5

ASY
BS
IT
IR
ET
ER

G
M

MFP

MPR

POB
PR

REF

gdemod

TRT

TRR

A

B.3
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Chapter 4

antisymmetric photodiode
beam-splitter

input test-mass, transmitted side

_input test-mass, reflected side

end test-mass, transmitted side

end test-mass, reflected side

input matrix

sensing matrix

sensing matrix, Fabry-Perot cavity
sensing matrix, power-recycled
beam-splitter pick-off photodiode
power recycling mirror

reflection photodiode

vector of demod signals

transmission photodiode, transmitted side
transmission photodiode, reflected side

vector of length degrees of freedom

Normalized Determinant

In order to use the determinant of a matrix not just as an indicator of arrival at

a matrix singularity, but as a measure of the proximity of a singularity, it must be

normalized. The normalized determinant given here is constructed such that scaling

of any given row or column does not change its value.

For some set of indices py, ,,, the determinant of a matrix M can be expressed

N

M| = (1" [] My (B.1)

n—1 m=1
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For the same p,y, ,, the normalized determinant is

Al _ 27]7\,[:1(_1)n HT]ZZI Mmapm,n

M| = ==
Zn:l Hm:l Mm,Pm,n

such that .
~1<M|< 1.

(B.3)
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