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ABSTRACT

The elastic stress field and energy associated with an
infinite straight edge dlslocation in a hexagonal crystal parallel
to the line of intersectlon of the (0001) and the (1122) planes
with 1ts Burger's Vector in the (1122) plane and the [FTEEJ
direction is determined taking into account the anisotropy of
the crystal. The nature of the solution is found to depend
on the relative numerical values of the five independent elastlc
constants. All possible solutions are investigated and the
solution for an isotropic crystal determined as =2 limiting case.

The interaction force between two edge dislocations of
opposite sign gliding on consecutive glide planes is studied.
Expressions for the total energy of such a dislocation dipole
are developed. Numerical results are given at three
temperatures, -7700, 31° C, and 1390 C.

These results are used to develop a quantitative theory
of straln hardening in a single zinc crystal subjJected to unlaxial
tension or compression in the directlion of its crystallographilc
axls. It 1s proposed that such straln hardening is produced by
the dislocation dipoles that are formed on dislocations which
are moving on any one of the six (1122) pyramidal planes
when they intersect similar dislocations which are moving on
other planes of the same type. The density of such dislocation
dipoles as a function of the uniaxial strain along the
crystallographic axis is determined and posslible future avenues

of research that could utilize these results indicated.
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CHAPTER I. INTRODUCTION

Zinc single crystals fracture readily along the basal
plane at low temperatures. Stoffel and Wood [1] * in an
investigation undertaken to determine the dependence of
basal cleavage fracture in zinc on basal slip and tensile
stress normal to the basal plane found that such cleavage
fracture is preceded by plastic elongation in the direction
of the hexagonal crystallographic axis. Such plastic
deformation occurred by slip on two different types of
slip systems. One was the usual basal slip produced by
shear or torsion in that plane. The other was nonbasal slip
on {2112} pyramidsl planes in < 21713 > directlons. The
latter type of slip was produced by tension normal to the basal
plane and resulted in permanent deformation along the hexagonal
crystallographlc axis.

Flgure 1.1 1ndlcates typlcal unlaxlal stress vs strain
curves at two different temperatures 25° C and -77° O for
a single zinc crystal loaded parallel to the hexagonal
crystallographlc axis. It 18 seen that the rate of strain
hardening during this c-axis plastic deformation is very large.
This is because slip occurs simultaneously on six intersecting
slip planes. Stoffel and Wood have suggested that when two
é—{BiT}; dislocations of a screw orientation moving on
{5112}. planes cut across each other they leave a trail of
interstitial atoms behind them. This requires a large amount

of energy. A lesser amount of energy is required if the

#Numbers in brackets indlcate references at the end of this thesis,
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FIGURE 1.1. Typlcal unliaxial stress vs strain
curves at 25°C and -77°C for a single zinc crystal
loaded parallel to the hexagonal crystallographlc axis.
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dislocations cut so as to form a pair of edge dislocation
dipoles, Such dipoles act as a drag on the moving dislocations.
The energy of their formation has to be supplied by the work
done by the applied force on the moving dislocations. As
plastic flow proceeds more and more dislocations cut across
each other, the density of the edge dislocation dipoles
increases. This increased density of dipoles increases the
drag on the moving dislocations proportionately. Thus the
crystal strain hardens.

To formulate a quantitative theory of this mechanism
of strain hardening, 1t 1s necessary to know the stress field
and energy assoclated with, first, an edge dislocation
and, second, of an edge dislocation dipole on a pyramidal
Plane, The elastic stress field 1n the reglon outside the
core of a general dislocation line in a general anisotropic
crystal 1s very complex and has been expressed in terms of
certaln line and surface integrals by Burgers {2) and by
Peach and Koehler [3) . The theory of the elastic stress
field of an infinitely long straight dislocation was given
by Eshelby, Read, and Shockley (4] and was extended by
Foreman [5) and Stroh (6] . While this general method
gives results in the form of sum of complex functions and their
conjugates, the rationalisation of these formulae is rather
laborious. Spence [7) has carried out this rationalisation
for dislocations in the basal plane of graphite, for dislocations

in the basal plane and a plane perpendlicular to the basal
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plane 1ln a hexagonal crystal and for dlslocations in certalin
directlons in other crystal systems. The stress field end
elastic energy of an edge dislocation dipole, wlith dislocation
lines parallel to the line of intersection of the (0001)
basal plane and fhe (1122) pyramidal plane, formed by the
intersection of dislocations of at least partially screw
orientation, Burger's Vector-%<2?73; moving on {5112} planes,
is determined in this thesis.
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CHAPTER II. ELASTIC STRESS FIELD ASSOCIATED WITH AN
INFINITE STRAIGHT EDGE DISLOCATION ON A {1122} PYRAMIDAL
PLANE WITH ITS BURGER'S VECTOR IN THE [sz}) DIRECTION
2.1. Hormulation of the problem

Plgure 2.1 shows an infinitely long straight edge
dislocation located on a {11@?} pyramidal plane in a
hexagonal crystal. The dislocation line lies parallel
t0 a line defined by the intersection of (0001) basal
plane and the (1122) pyramidal plane. The Burger's
Vector is in the (2172) plane and in the <2113> direction.
Rectangular cartesian coordinates are chosen so that the
y~axis colncides with the dislocation line; the x~y plane

then defines the basal plane of the crystal. The z-axls

FIG. 2.1




B
is the crystallographlic c-axis. In figure 2.2 the same
dislocation is assumed to coincide with the axis of an
infinitely long cylinder of a homogeneous hexagonal crjstal
of outer radius R. Such an assumption while reducing the
mathematical complexliy conslderably is found to give
results consistent with the elasticity theory of dislocations
developed so far. The positive direction.ﬁralong the

dislocation is chosen along the posltive y-axis and the

FIG. 2.2

—dy

Burger's Vector b 1s the closure fallure of a right handed
Burger's circult about the positive y-axils. Cylindrical
polar coordinates (S ,% ) will also be used where < is the
angle between the radius £ and the positive x-axls. The
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inclination of the glide plane & t0 the c-axis is fixed
by the crystal structure. If 's' and 'c' are the lattice
dimensions as in Figure 2.1

a c
, Cos8 @ =

%40 22402
Vf——_i" /

FPor such a state one can assume a plane strain situation

Sin 6 =

in which the y-displacement 'v' vanishes and the x and z
displacements are independent of y. In an aelotropic

elastic medium the strains are related to the stresses by

€x = 8119% + S12 97 + S13 o+ S14Tyz+ 515Txz + S16Txy

€y = Sp10% + Spp oy + Spz oyt SpuTya+ So5Tzg + 506 (xy

(2.1)
¢, = S31%% + S350% + S33 0,4+ Sy Tpow S350, + 8367y

------- S 5 02 0 80 8 00 e 2

&(
"

861%9% + Sgo oy + S63<Té+ 564T}z+ 865Tkz + 3667.

The matrix of elastic constants for a hexagonal

crystal is
S;y B2 83 0 0 0
811 813 0 0 0
(2.2)
333 0 0 0
844 0 0
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Por plane strain in the X-z plane the components of

strain in the y-direction vanilsh

@y:SE,1 . +822 °"-} +823 o, +824 Tyz +325 sz "'526 T_.=0

- o (2.3)
%ey=361 % *S62 95 *Se3 o3 Sy gz *Se5 Txp 566 Txy™°
Yyo=Syq Ox Sy oy Sy 0 Sy, T *Sug Ty tSug Gy

Equations (2.3) are used to eliminate s ‘qry , gz

from expressions for &r €5 » G which are now written

X
ex=51 0% +§3°} +55 Tux
€z =531 Tx 533 0 +535 oy (2.4)

SGx=Sgq oy 85z 0, #8355 Ty

where making use of (2.3) for a hexagonal crystal

2 2

_ S11 =912
s = ,
11 5

2
_ Sy1 833 -S¢3
Sax =
53

514 (2.5)

o S12(S19 =842 )
S =S =
13 31

511

Thus the stress strain relationships (2.1) become



€x= 849 93 *+ 843 T,
€= By3 0x + 833 9, (2.6)

C2x= S55 Loz
The equations of equilibrium in tensor notation are

O—ij,j =0 1,)= x,¥,2 (2.7)

For plane strain in the x-z plane these are satisfied

1f the stresses are chosen in terms of a stress function )(_

such that

°x = gz
oz = 1xx (2.8)
Tox ==Ixz

where the subscripts denote differentiation with respect
to the indicated independent wvariable -
The compatibility conditions are

2
s2x . o€z Fexs

oz dx° 0x Oz

(2.9)

Substituting for the strains in terms of stresses and
for stregses 1n terms of the stress function X from equations

(2.6) and (2.8) the governing field equation becomes
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4 4 4
§3§.14. +(2845 +Sgg5 )24 +s”a X_ -0 (2.10)
dx 5x°02° > z* '

This can be put in the form

2 2 2 N e 2 2
(2~ +x2 +o<,.9_.§)(‘7g+xf_’£-_+o<25’§)= (2.11)
ox 0% oy oy~ Ox ox dy oy
where
28 + 8
33
S
11
X1 X2 =
33
K, +K =0

K, X+, 0(1::0

To perform this factorisation |, and «, are confined to
real and positive values and K, and K, to real values. The
restriction that is implied by this means that the roots of the

guartic equation

for p are all complex. This condltion 1s necessary in order
that physically realisable results may be obtained. That

all the roots for p are in fact complex follows from
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certain inequalities satisfied by the elastic constants
as a result of the condition that the strain energy

function

——— —

2 1% 2. 1% 42 . =
811°"x+ & 33362+ & 355sz+ 513 % o

i

is positive definite {8]. Thus equation (2.10) can
always be put in the form of equation (2.11)

2,2 Boundary condltions

To represent an edge dislocation a solution is
needed which gives a closure fallure of ET, the Burger's
Vector, for a Burger's circult around the dislocation.
Further, 1f a closed circult in the material containing
the dislocation is considered, the total force and couple
on the surface of any such closed circuit must be zero,
for equilibrium. Hence the boundary conditions are

On the surface of a closed circuit around the
dislocation

(a) The resultant couple M vanishes

(b) The resultant force Y vanishes

(c) The resultant force X vanishes
and, (d) The closure failure is the Burger's Véctor'?r
for a Burger's circuit around the dislocation.

Purther, on the outer surface of the cylinder f =R
the stresses o, o must vanish.

PP’ e
2.3 Solution

Bquations of the kind represented by (2.10) were studied
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by Green (9] . Eshelby [10] adopted this solution to
obtain the stress field of a stralght edge dislocation
in an anisotropic medium for certain configurations of
the dislocation. The solution to the problem at hand
follows after these works.
Let z, = X + 1 A1y

1

Zs

x +1 Agy
be two complex variables where A1"A2 are related to the

elastlc constants S by

1]

A =1-XE:1 gn

n=1,2

n ——
1+ ¥ +1 J
< = 1
_ig2
X+ 1 + 2(<><n 4Kn )
S - ~Hn
n = 2 %
X+ ] +2(¢¥n-§ L )
oy and X - 2 Ki are real and positive and Ky » Yn , <§n
are real,
Then a general solutlon of equation (2.10) is
X =2Re {an(zn)}. n=1,2 (2.13)

To this correspond the displacements

u = -2Re[2 Ch f:,\ (z,, )]

<
H

-2Re[13 D%, (2, )]



Where

and the stresses

o= -2Re [_ :1.2/\n f;(zn)]

The primes denote differentiation with respect to 2,
The force components (X,Y) and the couple M on any
complete circuit in the material are the changes in the

values of the expressions

X = 2Re 15\ f/n(zn)}
Y=2Re{x£, (zn)} (2.14)
M=

2Re { znfz;(zn) —fn(zn)}

on goling round 1t.
Having obtained the general solution (2.13) one
proceeds to adopt 1t to the boundary conditions. A

solution of the form
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f;(zn) = % A, log z, (2.15)

provides the necessary multivalued displacement that

increases by b the Burger's Vector when < increases by 2T

provided the complex constants A, are sultably chosen to

satisfy the boundary conditions. Iet the suffixes r and 1

denote the real and imaginary parts of a complex function.
Condition {(a) is satisfied for any choice of Ay Ay
Condition (b) yields A2 = =-A

i 11
Condition (c) gives

Aqpryp *Pop Bop =(Ayy - /\Qi)A“_ =0 (2.16)
If ';; and_%; are the components of the Burger's

—

Vector b for a straight edge dislocation on a {5112}
plane, condition (d) yields

b
- = X )
Oy Ayp +0py Aoy + (Ogp =Opp ) &gy = =2 (2.17)
and
2 (2.18)
Dip Ap *Pop Ao = (Dyy =Dy ) 4y, = > T )
When the Ai's are so chosen the stress function A
is given by

A =Re (A1z1log Z4+ A22210g Z

o= Ay2y-452,)



The nature of the solution depends on the relative
)2

magnitudes of (28 and 48,.8 For the present

13 55 33711°
investigation on zinc the adiabatic elastic constants as

given by G.A. Alers and J.R. Neighbors [11] are used.
These experimental values show that at high temperatures

of the magnitude of 100° C

= = 2
(23, 54555)"> 48555,
This inequsallty gets smaller as the temperature 1s

reduced until at 31°0

- - 2 _ .

(2513+855 ) :4333311
0

For temperatures lower than 31.C

(2S 55) < 4833811

These elastic constants from Alers gt al are plotted

in figure 2.3. Numerical values for ( 2S13+355) 4333 11

are given in table 2.1 at a few selected temperatures.

IABLE 2.1
o -
Temperature K 2313+S g) ‘4333 11
in (10~1° eom / dyne)
500 10,483
350 1,756
308 427
304 0

295 -352
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Accordingly one has to distinguish three cases
2
Case (1): ( 28 3+s55)7 43”533

Case (2)

L 1]

( 23 +s )_43

13 11 33

Case (3) ( 28134-855 <4S11 33

- A

A, and /\2 are real

-3
A= Mg =3
-3
M= op =<3

Wwhere °<1 and 0(2 are the roots of

S__x° -(28

33 Yx +S =0

13" 55

Solving for A, A, from (16) %o (19)

'bz /\21'
e = Y 3 3
21T833(°<§o?2 i X3 )
bz’\u‘
Aoy = ST
Z 2 oo * Z
e’frs33(°<1 o3 =, o<22)
b
X
Ayg = =bpy =
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Thus
b, A /\2 ib
A'mzv's' Z(1A22-A2) ! 2T8 (/\:-/\2) Ere)
33 . 1 2 1172
A= :bz/\1 /;2 — - —— 1b§ - (2.20)
217333(/\1 -/\2) 21rs11(/\1—/\2)

The radial stress c§}at any point is given by

LI L SR L &
T TP TP T2 Taal

Substituting for { and differentiating

2 2
_ 1 Re A, (-Sing+iA, Cos¢) . RGAZ(-Sin;&-i/\gLCosqb) (2.21)

o- =
s Cos +1 A Sin & Oos # +1 A, Sin ¢
Similarly
2
o o= .._..........&)(
¥ op2

= L Re { 4,(Cos +1A, 51 )44, (Cos P +1A,5in &(2.22)

and

| 9
T B

]'ID" Re [A (Sincj:-i/\ Oos¢)+A2(Sinqb-i/\200s<i>)] (2.23)

Equations (2.21) to (2.23) show that the external surface

of the eylinder r=R 1s stress free only 1f R is infinitely largs.
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For a finite radius R additional terms must be added
that cancel the stresses given by equations (2.21) %o
(2.23). These terms must in additlon satisfy the equations
of equilibrium and yleld stresses that are single valued
and continuous everywhere within the body and finite
everywhere else including the origin. These additional

terms are

5 A‘I( -Sincf:+i)\1cos4> )2 A.Q(-Sj.nqb-s-fi./\gt.':csc;b)2
cj;j,= "')"é’ Re +
R Cos < +1 /\TSi.n + Cos ¢+i/\231n +

;:—3.1.1% Re [A1 (Cos ¢+1 AqSin < )+A2(Cos <f>+i)\281n<;b)] (2.24)

?O;:- .ng Re [A1 (Sin<p =1 A1cos 95)+A2(Sinc#-i/\20054>)]

Thus the expressions for the total stress components of
the stress field of the dislocation in the cylinder of

finite radius R are given by

2 2
o 2o )Re Ay (-Sind+iACos)  Ay(-Sing + AGos ¢)
£P P R*

Cos ¢ +1A,Sin ¢ Cos gb+i/\281n P

3;;(:;3-% JRe [ A1 {Cos 4>+i/\1 Sin ¢ )+A2(Cos¢ +1/\281n4> )] (2.25)

%’qb:(%-fi )Re[ A (S:lnqb-i/\1 Cos ¢ )+A2(Sin<}=-i/\2005 ¢ )J

S = o7, =0
rz- Sz

Usually the correction terms are neglected because
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they are very small when the outer dimensions of a body
are large compared to the position vector magnitude of the
point at which the stresses are being computed. However,
these terms are retained in the work that follows because
in the stress field of an edge dislocation dipole the terms
of order %—cancel so that the correction terms may be of
more relative significance in the field of a dipole than

in the fleld of an individual dislocation.

Substituting for A, and A, from (2.19) and (2.20) and

rationalising, the complete stress field for case (1) is

given by
P i

0;4::(1__%1) )\1—/}2sz08 &g ) bxﬂsm G2 (.26

PRS2 Sy5(Aq+ Ap) 284 (Ay+ Ay)
o =(L - _51)--/\1)\2’023111 ¢ . by Cos < i (2.27)
P P RZ .”2'”\_3.33(/\14-/\2) 2TT§11(/\1+/\2) n
(o0 :(-—? F ) 1 X
FP P

R (Gos€#+A?Sin%#)(Gos%# +,A§Sin%#)

‘bZI\T/\2 Cos < + bXSin ¢

A

- 1 = AE
28y (A+Ay) 28, (A +4,)

where

A1=—Sin2¢{cos%#+(A%+A1A2+A§)Sin2%J-ATA2(Oos2qb—)H_A281n25b)
-A, A281n24= (Cos2¢ - /\QSinasb )
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A2=(Oos%;5-/\1/\281n2¢)(1+Oos2q5) _0052¢ Oosgc#(/\12+/\1)\2+/\§)
+X A2’y (2.28)

T oy= Oy = 0 (2.29)

It 1s seen that the stresses relax as 1 as in an

isotropic elastic medium.
The stresses in rectangular cartesian coordinates when

the outer radius R->»o0 are

2 22

—xb, A A, {,\Mg. 220222 52 j‘
- =
(x2+)\?22) (x"+A;27)

XX =
25, (A+A)

- x2<,\$+,\,/\2+,\gm,%\gza}2,30)
2T 811 (A +A2) (x2+)\$22)(x2+)\§z2 )

_Xby A Ap
22 omrE,, (), +A)

2 2
[—x2—z2()\1 +)\1A2+ A > )_]

bxZ 2 2
+ — x“=A ANz (2.31)
27§, (".*’\2[ et ]
IS Y X -AAy
B 2T 8s3(AM+AR) (x*+X72° ) (x?'-w\;zz )

+

by X X -AAs - (2.32)
2T Syq(A+An) (xz+)\?zz)(x2'+/\§zz)

= -JS.- (8, 05 +5,303 ) (2.34)
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- — 2 - =

One of the chlef merits of this method 1s the ease

with which the stress field for thie limiting case could

be determined.

in polar coordinates become from (2.26) to (2.29)

Fr

rectangular cartesian coordinates become from (2.30)

Here )\1 = /\2=1

Taking the limit as,\ia»1, the expressions for stresses

:(_.1._._?..) (;'!22008¢ bySin ¢ )

F R2 47 §33

4TSy

1 3p ) (-bZGosqb _bySin ¢ )

£ g2 4T 853

41T§11

1 f_) (-bzsmcf +beos $

)

2 —
P =r 47 S5

Similarly the expressions for the stresses in

41T§11

Son

to (2.34)
-Xb, ng-z2 zby 33?+22 \
o = -l =
XX 4TSy (x24+2%)° 4784 (x242°)°2 J
Xxb Z 2
o = i (-x2-3z2 )+ bx_ (xz—z )
z2 4-”-353 4 T8y
o £ -z 1 bfc_'%z
Xz 4 (x2+yz )2J §33 §11
1
°vy = - — (542%x*513%3z)

(2.35)

(2.36)

(2.37)

(2,38)

(2.39)

(2.40)

(2.41)



20
It is instructive to carry this limiting case to that
for an isotropic elastic body. In englneering notation

the elastic constants S, ., are

1]
S,.= 1
11
Exx
Vyx
S, = —
12 £
XX
313=_ ﬂzx
Exx
B x= 1
33
Ezz
- 1
Yot -
Iy
S,n=
44
Gyz
H
where Exx s Eyy s EZZ are the Young s modull for tension-
compresslion with respect to the directions x,y,z: Gyz

is the shear modulus for a plane that is parallel to yoz;
Dyx is the coefficient which charecterises the decrease
in the x-~directlon for tension in the y-direction.

For an isotroplc elastic medium

] 2
E( V)

E
2T ©
and equations (2.35) to (2.41) become

(L £ -thcosdﬂ Gbeinqb -
2T (1=-1) 27T(1=9)

FP P R?
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3£ (-Gb,Cos b Gb.Sin &
oo = (1«--'5_) - Z
P R 2m(1-92 ) 2T (1~ )
-Gb_Si Gb. G
o*:(,L-ffz) _Sin < . xosqb}
Fe 8 R 2 (1= ) 2T (1= )
-ve Y (b, Cos b, S 4:)}
99 1 (1=0) f R){
oo =g =20 (2'43)
£y g

9
i

Gb,x -32° ] x*-z" 'L
= +
22 2m(1-9)| (x +z2)" JE -1)) {(x *+2%)* [

-Gb X f x2-22 Gbxz 3x2+z2 }
XX om(1- »)l (254252 2T (1-9) ] (x%+2°)°

i

2
G X =2
X2 oM (1-9) {(x% 22)2} o

For b,=0, b = b, equations (2.43) become

-Gb v P
o o= ,___.._.__.("—"'"" ) S.’I.IIC{D
PPo2mi-v) £ R

-Gb 39
oc=_" __(L-2L)sins
+4 27 {(1=-9) £ g

- VGh
o7 =
Yomw(1-v)

w2f
('E,“RL) Sin <



Gb 1 P
= (= =5 )Oos ¢+

P om(1-v) £ Rr*
¥~ % = °
o~ . . —Gzb 3% 4z 1 (2449
X 2T (1= ) {(x°+22 )Ef )
o Gzd xPay? 1
Woam(1-0) [(x2422 )2 )

Gbx xe--z2 )
%= 2 D 12

2M{1=-v ) {(x"+z )/

Equations (2.44) are recognized as those obtained from

isotropic elasticity theory.

2
Case (3): (28134-855) <4S”S}3

Here/ﬁ and,% are complex conjugates

_ - 11
X=Xy [
533
and
3 25 +§
Ky =K5 = 2(—=l) - (251 3+555) (2.45)
533 553

2
This solution for the< and K keeps « and < 3K
n n n n n

) positive,

real and positive and K ,¥, , 0,

Hence the eigenValues)h are defined through Xn
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&q» 28 1n equation (2.12)
From equations (2.16) to (2.18) the solutlion for the

real and imaginary parts of the complex constants Ai is

Ay =4y = b1
4"[(,\11 ir /\1rD1i )
b, A by
AW(ALD =4 D) A4TC,,
bzAli bx
Ay = -

Hence the stresses are

P A Ay
=(- —-)«{ ! + }
F=F R (Cosp -ASin )+ A5t (Cos+A, Sine)24Af sud ¢

Where

A,I:J{Am(ctasqb-/\1iSin4>)+A1i/\1rSin<P}{Sinqb /\ Gosq‘>+)\ Cosqb

T2 SinE#GOqu}
+2{A1i(cos4> -AuSinqb )-AwSinc# A :}{f\r)‘m Gos</>+)\1 rSin4> Cos ¢
(2.47)

b,={a, (Cosd+A, Sing -4, A, _Singbd 510%-)2 cos%+)%, cos™
. { er }'{ ~2A, Sin«#(}os#’}

+2{-Au (Cos<p + /\“:Sinsb )- /\m_A|r Sin sb}{-/\"_/\“- 0054D +/\‘rSin<# Cos 4:}.

(. 37 bz/\h' Sing bz)\“.Gos<f>

(L -3 (2.48)
** £ R 20, 2 (A, D =ADji )
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1 £ [ p,A$in¢ b, A, Cos <
o;:}::(}?"—_z){ z"1 % _ x4 (2.49)
R 27”/1\1311")11*])11) 210G,y _
Sy Ty Y (2.50)
2 2 2 3
- = - {5_1_1;(’\1;-"\1;)'2)‘11-/\11%1}(X"ﬁ\;i)*/\;z{?ﬁ\r Aygdyg+hyy r=Ayi)
X
x (x_/\1iz)2+)\$rzg

2 2 . 2
fhop (N pmAyy )-2A LA 4y ;}(x*)‘l 17)-M rzlsg’\1r’\1_;g_{_ar”11 (Ayz=A4)

2 2 2
(:c+/\1iz) +)\1rz
(2.51)
o = - Ayp(x-Ay2)+hy3A e JApp(xdz) ~AaMps ooy
(x-/\1iz)§/\1§z2 (x+/\11)2+/\1§ 72
o = A1y A1r(x")‘11"‘)+A1i’\1rz}+/\1z{A11 <X-/\1iz)'/\1rZA1x}_
* (x-A Z)z N 2*
1% My
Ay { A2r(x+/\1iz)'A1i)\1rz}+’\1r Ay (x+d 2)A 28,005 53
2 2 2
(X'H\H_Z) +/\1rz
o = - b (3, .o +S,_0" )
¥y S 12 xx 13 zz (2.54)
P22
0 %y 0 (2.55)

It can be shown that these equations collapse to those

for case (2) as/\1r=/\2r—-ar1 and)\”_: -)\21-;-—0.
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These expressions are valld only beyond a certain
minimum radius T, where the strains are small enough so
that the linear theory of elasticlty holds. The problem
now is to estimate thls radius Ty Substitution of the
expressions for the stresses into equations (6) shows
that the maximum strain component at a radius Ts is the
shear strain ¢, evaluated até= 90°. For zinc at 3100,
assuming the elastic constants given by Alers et al [1ﬂ
this shear sirain is found to be

0 b
ézx(ro,qb=90 ) =0,2166 ——

r
s}

Thus the maximum shear sitrain 1s proportional to the
Burger's Vector b which is of atomic dimensions. For
such small dimensions 1t ls reasonable to assume that
the linear theory of elastlcity breaks dovn at 2 maximum

strain of 0.1. Then the core radius ro is glven by

r = 2,166 b
0

This compares with ro = 2% b in an isotropic linear

elastic medium.
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CHAPTER III: STRAIN ENERGY OF A STRAIGHT EDGE DISLOCATION
CONSIDERED IN CHAPTER II.

The elastic straln energy per unit length of the
dlslocation may be determined from the known elastic
stress fileld. This is the strain energy contained in an
annular disc of material of unit thickness with inner radius
ro and outer radius R. It could be concelved of as either
the volume integral of strain energy density or as the work
done by the forces thét have to be applied to the surfaces

of a cut made to form the dislocation.

FIG. 3.1

—‘zh\\ﬁ-

(2112) Plane
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Referring to flgure 3.1 a cut is formed along a line

defined by 4= 360°- 0, where 8, =5in" ==l
a +C

The dislocation is formed by displacing the upper half
of the cut a distance + % b and the bottom half a distance
- % b,

Iet + and - denote the upper and lower surfaces of
the cut.

n,_ , O_ their outward normal vectors.

+ b' their respective displacements at an intermediate
stage of making the cut.

?F unit vector in the direction of the cut.

When the cut surfaces are moved by + % db' their

respective displacemenis lncrease by

dﬁ+= + & % db’

At this stage the stresses in the material are those
corfesponding to a pure edge dislocation of Burger's Vector
b' and hence are given by equations (2.26) to (2.55) with
b replaced by b' ( O\(b'\( b)

The traction on the upper surface of the cut with
the outward normal n is

T =‘c——:‘._ﬁ
+ +

where & is the stress tensor.

Similarly that on the lower surface of the cut is
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ay

T = A = =5 .10
- - +

Three cases are to be distinguished as before.
- - 2
Case (I): (2313+355)7 4311833

-)\l)\zb’zSinﬁﬂ’o . I;KGos <+, “\-é—
218, (A ) 218, (A+A) J

f)
-5)

Increase in elastic energy per unit length along

the dislocatlon due to the increase in displacements

+ du R
aU= /f(T_.du_+T+.du+)df
F= L
Substituting for T the increase in elastic energy 1s
/ 4 <# Vi b{ C ¢ R j:
au=| =2 A b,db Sin &, . bydb, Cos &, [(_1__‘_ yap
or
/ ¢ / 4 2
U= —)\,)\2 bzdeSin C#O bxdbe‘os 430 W(lnl::- _%_'_%I%‘)
—~ - [}
2T 53 (A +A,) 2Ty 4 (A+ Ap) ) R

The strain energy assoclated wlth a dislocation

of Burger's Vector b is then given by

b
U= jb—gU

Hence



)\1/\213 Sin b, .
4ﬂs33(A1+A2) 4TT§”(/\1+/\2)J fy | n

In performing this integration it is assumed that.
the core surface is traction free. The contribution
due to thls source is small and can be neglected in a first
order.linear theory. In equation (3.1) the second and
third terms in the second bracket are small compared to
the first term except for a body whose external dimensions
are smsall, Hence for most practical purposes the elastic

strain energy could be written

2 2
U=| AP, Sind +__Ez Cos 2, klnﬁ.) (3.2)
- - r
41T333(A1+A2) 4T 311(/\1+/\2) J 0
Oase {(2): (2313 ) _4833511

The expression for the strain energy ls obtained
by carrying equations (3.1) and (3.2) to the limiting

case A;—1,

2
+ 355 ) (3.3)

i

A 2
U={-bzs.in qbo b, Gos#ro ‘L (ln_R_ )

-— + —
8TS,, ms,, o

w
[£2]
H

o

and for Rz;ro

U~{;‘3§§}£§_ ) _b"ﬁiﬁ_} (1n ®) (3.4)
i - - 3
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Por an isotropic elastic medium, equation (3.3)

becomes

o) 2
) 2
Uz{ GuzSin 4, GbToos % (1n% - 2 4 %) (3.5)

57 (1-9) 47 (1-0 ) r, R

In particular when b,=o, by=b, and the dislocation

glide plane 1s along ‘¢°=o

2 2
U= Gb (1o - % 4 3 = (3.6)
4 (1-9) r

(]

These results are recognized as those obtained from
isotropic elasticity theory.

The elastlic strain energyper unit length of a
single dlslocation in an infinite body is thus infinite as
in isotropic elasticity theory. As shown above, for zinc
at 3100, r0=2.166 b. Varying R from 10”3 cms to 10 cms

7.48 X 10'Ob U < 14.52 X 10'Ob° ergs/em
or

3.89<U<7.565 eV/atom length "a"

For practical purposes the elastic energy of a single
edge dislocation could be gilven as

UT=10X 1O1Ob2ergs/0m
where b 1s expressed in cms.

- = 2 = =
Case (3): (28,3+555) < 484533

A1 andeQare complex conjugates
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Pollowing the same reasoning as before

A 2 ‘be/\ ﬁ# 0?-
{ jibg Sindg  beh3C00s Py, (,1n_‘;_ 1 %E{Z) {(3.7)
4W(A1iD1I‘-/\1I‘D1i) 4'\7511 °
and for R2>ro
2 b A, Cos# R
e [Aalby Sin $, DAy Oosd (R (3.8)

- A
4T (Ayy Dy p=4pDyy) 4T0, 4
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CHAPTER IV: INTERACTION OF PARALLEL DISLOCATIONS WITH
PARALLEL BURGER'S VECTORS
Figure 4.1 shows two edge dislocatlons of opposite
sign, one lying at the origin of coordinates (x',z')

and the other at x’:xo » z2'=h. T ,1ls the shear stress
£y

acting along the glide plane of the second dislocation

PIG. 4.1
A
/////’e_
/{
N
AR
Y — X
*
A\ 6\2\ ““‘“{2172} plane
2
N
ﬂﬁ:%\ @:
=
*.

due to the first one.,  Consldering unit area on which

T%&Iaots, equilibrium of forces yields

2 2
T;ééz (};f;' Sin ¢ Cos < = O;"Sinc,(? Cos¢ = of;;/(sin % -Cos ) (4.1)

The stress field of a single dislocatlion along c/::séo

N
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is given by

oo (L.30, [0 Cosg  DbySin & | (5.2)
++ £ R\ 473 4TS / '
33 11
o (L_i){-bz Sins . b, Cos < }
pF P R? = 3
4TT;333 4178
PY: 031‘95: (0]

for the case where the elastic constants are related by

- 2
Sy3+55

)= 45, S

(2 11733

This is true for zinec at 3100 and this relationship
is assumed in this chapter.

" Substituting equations (4.2) into (4.1) and making
use of 5250=3600- (90°-0- #)

where
Cos © = —FC

a2+c

2

9in 6 = —&—
]/8.2+02

the shear stress ’(‘ ‘is given by

4ma* 4ot T =-3'5(Sin4’ Cos#) l(aSin%-cOosc#)--E——(aCos#]

833 +cSin<#)

f-z —___l?i’-(aSian;-i-cGosqé )-:’f(aCosqﬁ-cS:’anﬁ)} (4.3)
R Sz3 Sy
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For an isotroplc elastic medium

S 3 1 (1_92
511_333_5(10)

and
Tz P Cos ¢ (—1— (008247 ~sin’% ) - f"z}
o om(1-0) s &

which 1s recognized as that obtained from isotropic
elasticity theory

At any point x':xo , z2'=h

h Xo 2 2 2
Sinﬁb'.':?, GOSQ‘D':—F‘ s f:Xo'}'h

where X, is measured along the glide plane of the first

dislocation. Substituting these into (4.3)

-b (&91-1 cXx 2 CX
4 a2+c"’§gl= - 21 }; = (am — )+ — (a+ ——-o)éz
Y 15,1 (Zey41 h R
330, “h
N £ aXo . n 8%y . _
+ — hx — (— +°)”§("‘ -c) ey (4.4)
5,,h [(,he) +1} h R~ h

where éz and e. are the unilt vectors in the z and x

X
directions respectively and the modulus of the quantity
on the right hand side is taken.

The cdmponent of the force exerted on unit length
of the second dislocation in its glide plane by the

stregs field of the first one is

F:b .T 1 H
2 xy L:X
(¢]
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Substituting from (4.4)

Xo 2 A
s we PPz | LR T (aieey, Boiem |

—- ) 2 h R h

S33h {( %oy +1}

(X0)2 1 h 2

4+ Px oDyl YR/ (E§°+C)--——‘2(§__X° -c)| (4.5)

= Yo (2 7% h h
Sq L 50% )

The interaction force can now be specialised into
that for a dislocation dipole where there are two edge
dislocations of opposite sign gliding on consecutive

glide planes. If b, = -bzéf-equations (4.5) reduce

XQ 2
47 Jat+c® P= bz, -bz, (7)) - 5 (2~ )y %(a-& 2%
- 2
S331 [( 22y +1]
bx, «b Xo y2 e
- PP (R)=1 (8%e,0). 2 (8%0 o) (4.6)
- %
5, b {t %oy} B

For most crystals Ry h and equation (4.6) becomes

b, .b T =1
4ﬂ'Va2+c2 F= Bl Z2 (r) (a-S%2)

o X 2 2 h
§,,h {( ..ﬁ@)+1}-
Xo 2
b b ( 7)) -1 -
- 21 - ) h (?-___a-'.c) (4‘7)

N

= 2
n B {k-éf) + 1}? n
For dislocations on the same glide plane the

interaction force is given by equations (4.6) for the
limiting case h-0



2 2
~ b ~¢b -1 x
4 T ya24+e2 Pesr( C_Z b —)( + 20) (4.8)
Consider
, R
P'=
1
4TThVa2+c2
Xo
et — =
hon ,
Then F' is an extremum when %g: . Differentiation

of (4.7) shows this happens when

2C=2 6¢cp+ba b6ap=be
ot o875BP 3 0CP¥oa 2 Dap-bc

m+ 1 =0 (4.9)
a+pe a+pc a+pce
where o
bZ
5
p = 33
L
S,

For zinec at 3100

o
bx ==0.4T7423 b
B
b,= 0.88031 b
= =13 2
Sy4= 8.377 X 10 “cm /dyne

13

— - 2
822=21.648 X 10 “em /dyne

Q§f§§7= 0.88031

)
o 425
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Then equation (4.9) becomes
1t 40 . 4959m0 ~6m>1 . 487 Tm+1=0

This is a fourth degree equation in m whose roots
are determined by Yewton's method of iteration. They

are found to converge to

m=0.3068
m=2.3053
m=-.554
n=-2.55%

The interactlon force when the dislocations are

so disposed is glven by equation (4.7)

2
b

P(0.3068) = 1.53076 X 10'' —— dynes/em
4ggh

P(2.3053) = -1.17563 X 10! dynes/cm

| 4Th (4.10)

11 p2

PF(=0.554) = =0.7245 X 10 dynes/cm
4TTh
11 b*

F(-2.55 ) = 1.03783% X 10 " dynes/cm
Th

The applied resolved shear stress T} required to
make the dislocations glide past one another is given

by

From (4.10)



wdt(m

PIGURE 4.3. PForce dlagram between two dislocations
of opposite sign

F

1
E?h

+2

+1

-2,55 -1 . // . +1 2,305
"'Oo 55 -3068

SIKY
[}

F=1




dym

=1.53076 X 10" 12 dynes/cn?
T max 4Th
or
11
T =1.0378 X 10 L dynes/cm2
r max 4TTh

depending on the direction of motion of the second
dislocation.

For an equilibrium position, the interaction force
'rxy1 between the two dislocations vanishes, From
equations (4.7) with numerical values of bx,'bzetc.,

inserted such positions are given by

The equilibrium positions are stable when m=— + 1,
or Xo =+ h because any deviation of m from this position
induces a force in the direction that tends to move the
dislocation back towards 4%?:1L It follows similarly
that the equilibrium is unstable when m = =0,15043,

The force dlagram between the dislocations is as

in figure 4.3,
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CHAPTER V. ©STRAIN ENERGY OF A DISLOCATION DIPOLE

The total elastic energy per unit length along
the pair of dislocatlons is the sum of thelr self energies
and thelr interaction energy.

The elastic'energy per unlt length of dislocation 1
when it is alone in the body was given in chapter 111,
equations (3.2), (3.3) and (3.4)

The interactlon energy l1ls the work done by the
stress field of the first dislocation when a sultable
cut is formed in the body and 1ts two surfaces displaced
wlth respect to each other so as to form the second
dislocation. Three cases are to be considered as
before depending on the temperature and the inter-
relationship between the varlous elastic constants.

For the speclal case

45,853

- — 2
(E'S1 1 +355) =

the interaction force was studied in Chapter Iv.
Accordingly this case 1s consldered first.

[ 3 ‘.— a 2 —
Case (2): (2311+355)

A convenlent cut is along the glide plane of the
second dislocation extending from (xo,h) to ( Ra-hz,h)
in the coordinate system (x',z').

The tractions applied to the surfaces of the cut

due to the stress field of the first dislocation are
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- /

T =T__ e

T, =T &,
-+ xy'

+ and - refer to top and bottom surfaces respectively.
These tractions are to be applied in order to prevent
spontaneous displacements from occurring and are maintained
constant while the second dislocation 1s belng formed.

In order to form the second dislocation the

necessary displacements of the top and bottom surfaces

are

al @l
i
+
o
1]

+ = % bzgx

The work done by the tractions T +through the

displacements U, is the interaction energy Uy, and is

U = /’ b’C{ﬁdx

=X
o]

This ylelds after substitution from (4.6) and

integration ,
4Tfal4c? Uiz“[ln“ -%1n(1+ ) +2 2 %(;%)i[&aEJf; + b‘ﬁCL}
Zo xn.0( =b, bza i by, bxye EE S
+ h e LS x.—-% } (5.1)
1+( )% R.R Ss5 5,4
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The interaction energy given by (5.1) is perfectly
general and holds for dislocatlions of the same sign

or for those of opposite sign. For dislocations of
-

opposite sign, namely for a dislocatlion dipole,-g;z-bzzb,

and equation (5.1) becomes

2
- X
4Te24e? U = {111-3 -3In{1+=2-) -
2

= +
12 % 2
1+ Xo % 1R
h? {—bzc _ by
s 5
X 2 33 11
+* n — - © } f - bzc \ (5.2)

In additlion to the interaction energy work has
to be done to overcome the stress fleld of the second
dislocation during 1ts own formation. This is the
self energy of the second dislocation.

At a certaln stage during the formation of the
second dislocation when the relative displacement across
the cut is bé the shear stress across the cut due to

the second dislocation 1s given by

_ ch b 1 x'-x'
4T/a*+c? '(;W: 207, 2y ——t . ) (5.3)
2 833 S11 X'ex R

The tractions assoclated with this stress on the

upper and lower surfaces of the cut are

/

T = +T e respectively
+ xy, *

]
Similarly the displacements assoclated with db2 are
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dU = + 4 db. e respectively

dU2= ; f(‘xye o
X ! =XD+I'0

Hence the self energy of the second dislocation is

b, VRZ-h® »
Uef/( //[ L (%Pzz 2y (! 4 X770 )ay ax
4TWa2+02 s I3 x'-x! R2
b =0 X=X, 33 11 °

Integration will yield U2 as the sum of U1, the
self energy of the first dislocation plus correction terms
due to the position of the second dislocation along its
glide plane, In this theory these correction terms
are neglected and the self energy of the second dlslocation
U2 1s assumed as the same as U, the self energy of the

first dislocation.

for b, =-b. =b
Thus for 1 _-b2 =h
2
r
0=y {b by Sin $, Piz_ff’_i‘fz_ 1n-§- -3 4+ 320 (5.4)
8!18 8TS e R®

11

The total elastic energy per unit length along
the dislocation dipole is



wlifm

Ui= U,+ U12+ U,

2 2
— x 1 X2 ., o 2
4T\/a24c2 U :Jlnll 4310 (142 ) o -—3-—-%(—3)*-%(-“)
il r h?. X?. 2 .2 R
14-2 R R
h* 2 2
S -
X, . s 33 541
#led - Ko Mibge | Do (5.5)
Xo,2 B ORliSz5 8yy
14 A

The energy assoclated with a dislocation dipole
in an infinite body 1s thus finite. For a given

s when R »> h, equation (5.5) becomes

2
2 2
h X 1 b
4T /a2 4c? U+={%n-ﬂ—+%ln(1+-g)+ - \ 222 + Dy
x r h 1 X§ [ ‘S' c_o-«'
o *-—5 33 11
h
X
-0 2 2
N . (5.6)
x - -
1+ ('gp) 533 511

From equation (4.7) the stable equilibrium positions

of the dislocations are given by X =+ h and from

Chapter II, r°=2.166b. Substltution for the various

terms ylelds for zinc at 31°C,

U, = 0.18 electron volts/atom length 'a'

However the core radius r0=2.166 b so that as the
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dislocations approach each other there is a hardening effect
due to the overlapping of cores. Physically a more
realistic equilibrium position for the dislocations

is when the cores Jjust touch each other, Referring

to filgure 5.1, h is the component of one of the two

Burger's Vectors in the direction perpendicular to the

other one and hence is the value of h that results when

a dlslocation dipole 1s formed by the intersectlon of

two gliding dlslocations of at least partlally screw
orientation on a {11§é}pyramidal plane,

PIG. 5.1

Corresponding to this configuration

h=b 3in 2 @ = 0.83501 b



~48=
Substituting these into equation (5.6)

U+=O.74 electron volts per atom length "a"

It follows that in any actual physical situation the
position of the dislocations will lie somewhere in between
the theoretical value of X,= fh and the assumed conflguration
where the cores touch each other so that the total elastic
energy per unit length along the palr of dislocatlions should
lie between 0.74 and 0.18 electron volts per atom length.

The total energy per unlt length of the dipole trail

also includes the energy of the cores of the two dislocations.
This is about 2 electron volts per atom length per dislocation
go that the total emergy of the dipole is about 5 ev/atom
length.

The energy of an interstitiasl atom 1n zinc is about
25 eV. Thus g dipole trall corresponding to a row of
interstitial atoms wlll remain a dipole trail rather
than spontaneously converting itself into a row of
interstitial atoms because 1ts energy is much less
than the energy of the interstitial atom unless work

is done by the external forces to overcome the energy differentieal.

- - 2 - —
Case (1)1 (2313+855)'7 4311833
A

’ and./\2 are real and the self energy of either
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dislocation was given in equation (3. 2) as

2 .. 2
—lezbz SllQ4>o bx Cos ¢o R 1 1
5= + In= - = + >

T
47,5 (A +L) 478,55 (A X)) ©

As indicated at the outset the theory was motivated by the
experimental work of Stoffel and Wood [1] which was conducted
at temperatures of 25°C and -77°C. To provide a correlation
between theory and experiment it was deemed useful to construct
the theory at ZSOC, -77°C and 13900, providing results at not
only the room temperature but also at two temperatures equally
spaced from it. Thus the results following are for zinc at a
temperature of 139°C,

The self energy and the interaction energy change with
temperature are not due only to the changes in the elastic constants
Sij but are due also to the thermal expansion of the crystal lattice.
The variation in the coefficients of thermal expansion of zinc with
temperature is highly nonlinear. The computations are further
complicated by the fact that this variation is different along a
direction in the basal plane and the hexagonal crystallographic axis.
For the present investigation _the following thermal expansion
coefficients as furnished by the New Jersey Zinc Co [12] are

used.
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Between 0°C and 100°C

along ‘'a' axis %, = 15 X 10-6/ °¢

-6
axis o« =61.5X 10/ °

a1

along ‘¢

It is further assumed that these coefficients of
expansion are constant between -77°C and 13900.

The lattice dimensions at 2500 are

a=2,6595 Angstroms
c=4.9368 Angstroms

At any other temperature T

ap ={2.6595 + «_(1-25°C)} 4
ey =4 4.9368 + « (1-25°C)> 4

Hence at 139°C

-3
a = 2,661 X 10 cms

4,94%31% 10'8 cns

e}
H

]

Cos © ¢ = 0.8795

32+02

Sin @ = 0.4735
It 1s seen that the inclination of the pyramidal
plane to the c-axls as defined by © changes with temperature.

The elastic constants S sand S are
13 1]
~-13 o
s11= 9.05 X 10 en /dyne

13

333::29.88 X 10 cmg/dyne
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-1 2
812:: 0.596 X 10 30m /dyne
-13 2
313= -8.075 X 10 “cm /dyne
-13 2
S14= 28,5 X 10 “em /dyne
5., =S, -212 = 9.011 X 10  om /dyne
511
S._ =5__ =13 =22.64 X 10 cm/ dyne
33 33 S
1
-13 5
S =S, = 28.5 X 10 cm” /dyne
55 44
_ -13 5
S _ =S = 0.5567 X 10 om /dyne
13 31

*} and %é are the roots of

- D - - —_
333°<- (2813+355)°<+S11=0

Substituting for the §ij

By definition

— O

A= X

WjH

)\2:: O<2= 00313

The orientation of the dislocation is defined by
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Sinqg ~0.8795

+0.4735

i

Cos<
0

Burger's Vector b = 5.62 X 10-8 cms

Core radius ro =12,17 X 10- cms

For Ry>»r , equation (3.4) is used for U1 and U2.
0
Substituting these various numbers
for R = 10™2, U, =U, = 8.103 X 10 'b> ergs/cm
cms. 1 2

2
for R = 10 cms, U1=U2=16.38 x 10'% ergs/cn

)

Thus for 10 ~“cms ¢ R <10 cms

10

8.103 X 101O b2< U1 <16.38 1:>2 X 10" ergs/ecm (5.7)

or
4,22 U, < 8.55 eV/atom length 'a’

To determine the interactlion energy U12 for this
case, an equilibrium configuration of dislocatlons as

in figure 5.1 1s assumed. Referring to figure 5.2 a radlal
cut 1s made along 4 =, and the two sides of the cut
displaced with respect to each other so that the

component of this displacement along the glide plane

of the second dislocation is b2. This is = convenlent

cut to make as the expression for U o then needs to be

1
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FIG, 5.2

Integrated only with respect to P. Work has to be
done against the stress components o, and c-,corresponding

£ PP
to which are the dlisplacements

by ==-b,81lnd=-0.193 b, respectlvely
so that
R
— o~ — .
Y107 j(b// P " PL %Gy )AS (5.8)
fo
The stresses T T for a given angle <= qbe

are given by equations (2.27) and (2.26) respectively
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with ¢ replaced by #,.

Substitution and integration ylelds

-A A-b Sin4>
- 1" 273, 2
U12_b2Cos 61{

b, Cos r
= 2 }(1115-%.»%-5)
_ e

21T333()\1+/\2) 27 311(1\14-/\2)

r; 2

- b Cos

2
leSiﬂﬁ% ‘lln— 3 3r )
- _ T 2 2R
277333(A1+/\2) 21?311(/\1-“\2))

(5.9)
It is observed from figure 5.2 that

, =360%-(90°~0- )
so that

Gos<?2=81n 0 Cosw+ Cos © SinwWs= 0.639

8in ¢ =-Cos 6Cos @~ Sin 6 SinW=-0.953
The total sitraln energy ls then

U+ = 2U1+U12

Substituting the various numbers, for Ry>r
U, = 0.8041 eV/atom length 'a'
5. .+8..)°¢ 43,8
Case (3): (25;5+855) < 45,555
A1 and /\2 are complex conjugates.

Following the same procedure as for case (1), the
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lattice dlimensions a and ¢ for T:-'T?OO are
-8
a = 2,657T9 X 10 cms
-8
c = 4.9302 X 10 cns
The orientationof the dislocation is given by

Cos © = 0,8788

0.4738

Sin @

The various elastic constants are

-13 2
8.0 X 10 ecm /dyne

311 =
-13 2
S._ = 27.1 X 10 “cm /dyne
33
-13 2
8,, = 0.5525 X 10 cm /dyne
-13 2
313 = =7.15 X10 cm /dyne
S 4 " on?/
4y = 24,0 X 10 cm /dyne
- -13 2
81y = 7.962 X 10 cm /dyne
- -13 2
S,, = 20.71 X 10 cm /dyne
33
— -13 2
S.. = 24.0 X 10 “cm /dyne
55
5 5 44 Tl
13 = S3,=0.5144 X 10 cm /dyne

From Chapter II
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1=(2513 *555 v g uzgg

Kf - K% 2( 511
2 = T
33 33

Hence by definition

W1+1+2((X1- %Kf)%

L - »
=

&
14 X1+i :

— 2. — -
012311)\11 -$3 =(7.79+19.78)10 !

) = 42 %
D = —(8 -3
=% B3 A 5ss )

1

(=14.217-17.124)10"

2 2
02,32 respectively.

==0.124= ¥
2

=1.152 = 1 o.533=,k2

3 cme/dyne :62

3cmg/dyne

A s ¢l s ﬁé are the complex conjugates of ,Xe,

The self energy of a single dislocation was glven

in equations (3.5) and (3.6).

Varying the dimensions

of the crystal R from 10”2 ¢ms to 10 cms, substitution

of the various numbers ylelds
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10
7.14 X 10'%%¢ U < 14.43 X 10 pergs/em (5.10)
or

3.72 < U1<'7.51 eV/atom length 'a’

The interaction energy is determined as before
as the work done when a cut is made along ¢ = 952
and the second dislocation is formed by displacing the
two sides of the ocut by + % b.

R
Uy= J(by -y o, )a7
T
o

The stresses o are glven by equations (2.48)

P’ e
and (2.49) with ¢ replaced by 4:2.

Substitution for the stresses and integration yields

b A,, Sin b Cos 2
Uyp=b,los © {. — % - x,211%0°% }(lng-%+%§%)
| 2T (M1Dip=MrDry) 21013 L R
2
b.Sin 6. - bzl/\u_cos 5 . by Ay SInR 1 (14B.3 370,
2 "1 oo A o r, 2 2R
11012 A e Py ) 210y

(5.11)

For R>yr , substitution of the various numbers into

equations (5.11) and (5.10) and addition yields

U, =0.7046 electron volts /atom jength 'a'
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Comparison of this value for U, at -77°C with the

values for the energy of the dipole-obtalned beforse,
namely, U, =0.74 eV/atom length 'a' at 31°C and
U+=0.8041—EV/at0m length 'a' at 139°C shows that
tﬂe Variation in the elastlc strain energy of an
edge dislocation dipole on a {1152} pyramidal plane
in a single zinc crystal 1s confined to + 10% from
that at room temperature within the temperature range
investigated. For most practical applications, therefore,
the elastic strain energy of such a dipole, where the
dislocation cores touch each other as in figure 5.1
between -75°C and +140°C could be taken as 0.75 eV/

atom length 'al,
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CHAPTER VI. A THEORY OF STRAIN HARDENING IN A SINGLE
ZINC CRYSTAL
As indicated at the outset, experiments conducted
by Stoffel and Wood (1) showed that the probable
mechanism of yielding for a single zinc crystal subjected
to uniaxlal tension involved the motion of dislocations
on the pyramidal planes. Consider figure 6.1. Two
%~(2773)— dislocations moving on two intersecting
{2112} planes intersect and leave behind a trail of
edge dlslocation dipoles. There are six such planes

of type {2112) and simultaneous motion of dislocations

on two or more of them results in strong interlocking

due to the formation of these dipole trails. Such dipoles
FIG. 6.1

1 r—
3 [(2113)

2112) P1 ERPeE
(2112) Plane % (2173
Edge -
dislocation~> Zroooe . > (2112) Plane

dipole i



B0 =
act as a drag on the moving dislocations. The energy
of their formation has to be supplied by the work done
by the applied force on the moving dislocations.
As plastic flow proceeds more and more dislocations
cut across each other, the density of the edge dislocation
dipoles increases. This increased density of dipoles

increases the drag on the moving dislocations proportionately.

Thus the crystal straln hardens,

Figure 6.2 shows only a sectlon AB of one of the
dislocatlions in figure 6.1, a,-%<2T737 dislocation
PIG. 6.2

Edge ;
dislocation /

o
.
w

NN

8V
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moving on a {21125 plane. Let the length of this section
of the dislocation be L, b be its Burger's Vector.
The uniaxial tenslle stress o results in a
resolved shear stress 'rr on the glide plane of this

dislocation.
f(“r= o Cos © (6.1)

where © is defined in figure 2.1

Due to 'Tr there is a force 'T}b on the dislocation
normal %o the dislocation line.

As this sectlon of the dislocation moves 1t intersects
other dislocations on -{5112} planes and leaves behind
a trall of edge dislocation dipoles.

Let d be the linear density of such dipole trails.

Yhen this sectlion of the dislocation AB moves
through a distance dx, work is done by the applied forces.
It 1s given by T}b.dx.L.

This work is expended on the dipole trails. The

energy of these dipole trails increases by

U dxId
-+

Since the energy is conserved
Ty bdx L=U_ dx L d (6.2)

Hence the density of edge dislocation dipole trails

is given by
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T. b
d= T

(6.3)

Uy

All the varliables on the right hand side of this.
equation are known. The Burger's Vector b is known
from physical considerations. The expressions for
the energy of a dipole trail have been developed in
this thesis. A unlaxial stress strain curve ylelds
Tp 88 & function of the uniaxial tenslle strain Ec'
Thus equation (6.3) determines the density of dipole
trails as a function of the uniaxial tenslle straln.

For the present investigation the uniaxial stress-stralin
curve as given in figure 1.1 1is used and d is determined

as a funetlon of Ec at two temperatures 25°C and -7700.

at 25%¢,
Cos ©=0.88031
- 8
b =5.607 X 10 ~ cms

U, =0.445 X 10 4ergs/cm.

Hence from equation (6.3)

d=1.1092 X 10'3cf /em (6.4)
where o 1s eXpressed in dynes/cmg.
or
d=0.765 X 102<7'/cm (6.5)
where o 15 expressed in psi.
The values of d as a function of o and Ec are

given in table O.1.
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TABLE 6.1
d
o EC _
psi per cent no/ca
0.25 X 10° 0.012 1.91 X 10%
0.40 X 10° 0.02 3,06 X 10
0.46 X 10° 0.03 3.52 X 107
1.15 X 10° 0.2 8.79 X 10%
2.00 X 10° 0.4 15.30 X 107
2.35 X 107 0.445 17.89 X 10*
Similarly at -77°C
Cos © = 0.8788
-8
b = 5.609 X 10  cms
-4
U, = 0.424 X 10 ergs/em
Hence
d=1.1625 X 1072 o (6,6)
where o is in dynes/cm
or
4=0.8017 X 10° o (6.7)

where ¢ 18 in psi.

Table 6.2 indicates the relationship between 4
and Ec.

These results are plotted in figure 6.3.

This quantitative relationship between the density
of edge dislocation dipole trails and the unlaxial tenslle
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TABLE 6.2

Ec
per cent

0.012
0.02
0.03
0.2
0.4
0.6
0.675

d
no/cn

2.0 X
3.2 X
4.41X%
20.04X
33.27X
44.09X
50.91X

10

Eog

10

=

10
10
10
10

= s

g

10

strain could be subjected to direct experimental observation,

If the denslty of these dipole tralls as a function of

Ec is observed by X-ray diffraction, for example,

and the experimental results confirm the theoretical

results, then it follows that the factor governing the

motion of dislocations on pyramidal planes in a single

zinc crystal is the formation of these dipole tralls.

Should the experimental results indicate otherwise then

1t would prove conclusively that some other factor

apart from the formation of dipole tralls governs

theilr motion.
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60}
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FIGURE 6.3. TIinear density of dislocatlon dipoles
as a function of uniaxial percent strain.
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