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Abstract

Parallel to significant advances in sensor hardware, there have been recent develop-

ments of sophisticated methods for quantitative assessment of measured data that

explicitly deal with all of the involved uncertainties, including inevitable measure-

ment errors. The existence of these uncertainties often causes numerical instabilities

in inverse problems that make them ill-conditioned.

The Bayesian methodology is known to provide an efficient way to alleviate this ill-

conditioning by incorporating the prior term for regularization of the inverse problem,

and to provide probabilistic results which are meaningful for decision making.

In this work, the Bayesian methodology is applied to inverse problems in earth-

quake engineering and especially to structural health monitoring. The proposed

methodology of Bayesian learning using automatic relevance determination (ARD)

prior, including its kernel version called the Relevance Vector Machine, is presented

and applied to earthquake early warning, earthquake ground motion attenuation es-

timation, and structural health monitoring, using either a Bayesian classification or

regression approach.

The classification and regression are both performed in three phases: (1) Phase

I (feature extraction phase): Determine which features from the data to use in a

training dataset; (2) Phase II (training phase): Identify the unknown parameters

defining a model by using a training dataset; and (3) Phase III (prediction phase):

Predict the results based on the features from new data.

This work focuses on the advantages of making probabilistic predictions obtained

by Bayesian methods to deal with all uncertainties and the good characteristics of

the proposed method in terms of computationally efficient training, and, especially,
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prediction that make it suitable for real-time operation. It is shown that sparseness

(using only smaller number of basis function terms) is produced in the regression

equations and classification separating boundary by using the ARD prior along with

Bayesian model class selection to select the most probable (plausible) model class

based on the data. This model class selection procedure automatically produces

optimal regularization of the problem at hand, making it well-conditioned.

Several applications of the proposed Bayesian learning methodology are presented.

First, automatic near-source and far-source classification of incoming ground motion

signals is treated and the Bayesian learning method is used to determine which ground

motion features are optimal for this classification. Second, a probabilistic earthquake

attenuation model for peak ground acceleration is identified using selected optimal

features, especially taking a non-linearly involved parameter into consideration. It is

shown that the Bayesian learning method can be utilized to estimate not only linear

coefficients but also a non-linearly involved parameter to provide an estimate for

an unknown parameter in the kernel basis functions for Relevance Vector Machine.

Third, the proposed method is extended to a general case of regression problems

with vector outputs and applied to structural health monitoring applications. It

is concluded that the proposed vector output RVM shows promise for estimating

damage locations and their severities from change of modal properties such as natural

frequencies and mode shapes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there have been many advancements in sensor development, including

digital, wireless sensor units and sensor networks, which enable the effective collec-

tion of a large amount of data useful for earthquake engineering as well as struc-

tural health monitoring. These new technologies have facilitated rapid acquisition of

measurements which are useful for comprehensive assessment of post-disaster dam-

age. They also provide invaluable information to improve the scientific understanding

about the earthquake itself, as well as the dynamic responses of structures subject

to earthquake shaking. The improvements in sensing and communication technology

are also making it possible to install dense networks of sensors.

In parallel to these hardware developments, methodologies for the quantitative

assessment of measured data have been developed, although much less attention has

been paid to developing methodologies that can deal with all of the uncertainties

involved and provide appropriate probabilistic predictions. Also, the existence of

uncertainties due to measurement errors and especially modeling errors, and the lack

of sufficient data, can cause inverse problems to be ill-conditioned.

In recent years, sophisticated data processing algorithms have been developed

by computer scientists and statisticians working on statistical learning theory (also

named “machine learning”) such as Neural Networks, Support Vector Machine (SVM),

Relevance Vector Machine (RVM), and so on. This machine learning is a subfield of
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artificial intelligence and has the goal of using a computer to learn some relation-

ship between input and output based on a training dataset. In particular, SVM is a

recently-developed, powerful, state-of-the-art technique for regression and classifica-

tion (Burges, 1998; Schölkopf and Smola, 2002; Vapnik, 1998).

There are two main types of machine learning problems: classification and regres-

sion. Classification can be defined as the act of identifying a separating boundary

that separates different-class data in a feature space by using a given training dataset,

and then deciding the category to which new data belongs by using that separating

boundary. Regression is to infer a mathematical relationship between inputs and the

corresponding outputs based on given dataset, which is usually done by prescribing

a parameterized mathematical form and then estimating the parameters.

SVM is a machine learning algorithm that has been used as an efficient tool in

bioinformatics, computer science, and ,to a much lesser extent, civil engineering. In

classification, SVM determines the separating boundaries between classes by max-

imizing the margin, which is the distance between two different classes when the

training data is mapped into the transformed feature space, while also minimizing

the misclassification error. Similarly when using SVM in regression, the parameters

of a pre-defined function are estimated with the consideration of regularization (this

term has the same function form as the margin in classification), while also minimizing

the error using a so-called ε-insensitive loss function. SVM has various advantages,

such as (1) solving a convex optimization problem during training which guarantees

a global optimum instead of a local one, (2) faster convergence in training than most

other pattern recognition methods, for example, neural networks (Ding and Dubchak,

2001), and (3) efficient operation when predicting a result for new input data.

One disadvantage of SVM is that it is not a probabilistic method and so it does not

explicitly quantify the uncertainties involved. A probabilistic treatment of learning

from data and making predictions is recommended so that the uncertain errors caused

by modeling and measurements can be explicitly addressed. This consideration mo-

tivated our use of Bayesian learning with an automatic relevance determination prior

and an application of this, called the Relevance Vector Machine (RVM), which was
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recently introduced as a Bayesian learning method using the same form of kernel basis

functions as SVM (Tipping, 2000 and 2001; Tipping and Faul, 2003). It overcomes

some disadvantages of SVM, such as:

(1) no explicit treatment of uncertainty in the predictions

(2) a relatively larger number of kernels required (increasing approximately linearly

with the number of training data)

(3) waste of data and computational effort to estimate a trade-off parameter by cross-

validation.

1.2 Bayesian Methodology

Most engineering problems can be divided into two main categories: forward prob-

lems and inverse problems. Forward problems compute the outputs using known

mathematical models of systems for given inputs, while inverse problems infer math-

ematical models of unknown systems based on measured inputs and outputs. It is

well known that the forward problem can usually be set up to be well-posed while the

inverse problem is often inherently ill-posed so that a solution is non-unique, or may

not even exist. Regularization theory was suggested to alleviate this ill-posedness in

inverse problems by Tikhonov (Groetsch, 1984) and it has been proven to provide

satisfactory results (e.g., Beck et al., 1985; Lee et al., 1999; Park et al., 2001). For

non-Bayesian methods, another penalty term is usually added with a parameter to

adjust its trade-off with datafit errors.

The Bayesian methodology provides logical and quantitative rules to treat inverse

problems based on measurements or observations and any prior knowledge that is

available.

Probabilistic inference is performed by using Bayes’ theorem:

P(hypothesis|data, I) ∝ P(data|hypothesis, I)× P(hypothesis|I)

posterior ∝ likelihood × prior
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where I stands for background information. It was mentioned that (Sivia, 1996):

The power of Bayesian theorem lies in the fact that it relates the quantity of

interest, the probability that the hypothesis is true given the data, to the term

that we have a better chance of being able to assign, the probability that we would

have observed the measured data if the hypothesis was true.

In the Bayesian methodology, the prior can be used to provide regularization of ill-

posed problems.

In this dissertation, it is demonstrated that Bayesian learning using an automatic

relevance determination prior is effective for regularization against ill-conditioning

and for avoiding over-fitting of data by using model class selection by applying the

approach on earthquake engineering problems and on structural health monitoring.

1.3 Background on Structural Health Monitoring

Structural Health Monitoring (SHM) is the implementation of a damage detection

and assessment strategy to aerospace, mechanical, and civil structures, based on

monitoring sensor signals. The SHM process includes obtaining measured data on

structural dynamic responses from an array of installed sensors over a certain period

of time, extracting the damage sensitive features from the dataset and then analyzing

the features to determine the current health states. The goal of SHM is to provide

reliable information about the integrity of the structure after extreme events such as

earthquakes, as well as investigating serviceability which might be impacted by aging

or environmental effects (Brownjohn et al., 2004).

Two systematic ways to perform the damage assessment are by pattern classifi-

cation or by regression based on the measured data, where features extracted from

the measurements are used either to classify which damage state the structure is in

(including the possibility that it is undamaged) or to predict damage locations and

severity, respectively.

This pattern classification and regression belong to what is called supervised learn-
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ing by computer scientists, in which the given training dataset consists of either the

extracted features along with the corresponding labels for the damage states of in-

terest (classification) or the measured inputs and outputs as continuous variables

(regression). On the other hand, when the training dataset is given without any

labels, it is called unsupervised learning. In this latter case, either the dataset is

gathered into groups based on similarity between them, which is called clustering, or

the probability distribution is determined by density estimation from the dataset. In

SHM, unsupervised learning can be applied to a dataset not containing features from

the damaged structure to identify the presence of the damage alone, while supervised

learning uses data from an undamaged and possibly damaged structure to quantify

the damage severities as well as to identify the locations of damage. Supervised learn-

ing methods are selected in this dissertation to obtain more comprehensive damage

assessment results.

However, there is a difficulty in extracting a dataset from not only undamaged

structures but also possibly damaged ones, since different damage scenarios can not

be imposed on real structures of interest. To overcome this difficulty, model-based

damage detection methods may be utilized to obtain damage sensitive features from

a finite element (F.E.) model by selecting various possible damage scenarios for a

structure under inspection, assuming that the F.E. model gives a good representation

of the behavior of the real structure.

Needless to say, constructing a good structural model is essential in model-based

methods and this can be performed by model-updating methods (e.g., Beck and

Katafygiotis, 1998). The merit of model-based methods is that it is possible to ob-

tain quantitative information about damage, such as damage indication, location,

and severity. In this thesis, model-based supervised-learning damage assessment is

viewed as consisting of four steps:

(1) Construct an updated baseline F.E. model of the real structure.

(2) Generate training data by imposing different damage patterns on the F.E. struc-

tural model and extracting the corresponding damage sensitive features.

(3) Apply the Bayesian learning method to this training data to develop an algorithm
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to identify damage locations that can be applied to data from the real structure.

(4) Also use this Bayesian learning method to develop a procedure to estimate damage

severities that can be applied to real data.

To extract appropriate features, usually dynamic characteristics such as estimated

modal parameters are utilized, based on the basic premise that structural character-

istics such as the stiffness, mass, or energy dissipation properties of a system are

changed by damage, and these in turn alter the dynamic characteristics of the sys-

tem.

1.3.1 Pattern Classification Applied to Structural Health Mon-

itoring

Pattern classification is used to classify features based on information extracted from

measurements or observations. The classified patterns are usually groups of features

considered to have the same properties that are of interest.

There are three main phases in pattern classification: feature extraction, training,

and prediction phases. The main objective of pattern classification is to determine

the separating decision boundaries between data having different properties. These

boundaries could be so complicated as to classify all training data completely with

no misclassification of the data or so simple as to give many misclassifications. Since

the main concern is to make accurate predictions of the label for new data which is

not included in the training data, it is important to avoid either over-fitting of the

data caused by an over-complicated decision boundary or under-fitting of the data by

an over-simplified one. It will be shown in this work how Bayesian learning with an

automatic relevance determination prior can achieve a decision boundary of optimal

form for SHM applications.
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1.3.2 Regression Procedure Applied to Structural Health Mon-

itoring

A regression approach to SHM may be accomplished by utilizing a Bayesian learning

methodology to update the probability distribution over the unknown model param-

eters of a regression model based on given data, using an automatic relevance deter-

mination prior to eliminate irrelevant terms. This regression approach undergoes the

same three steps as pattern classification: feature extraction, training, and prediction

phases. One advantage of a regression approach to SHM compared with classifi-

cation is that it does not require as much computational effort to generate a large

amount of training data for different damage scenarios, since unlike classification, it

is unnecessary to cover for each possible damage location and severity.

The main objective in SHM using a regression approach is to estimate the most

plausible regression model which relates the input features and the corresponding

output (damage locations and severities) based on the training dataset, and then to

perform a damage assessment using the regression model with new data (features

extracted in real-time from sensor signals).

1.4 Organization

This dissertation presents the detailed mathematical background and procedures for

newly-developed Bayesian learning methods that use an automatic relevance deter-

mination prior, including the Relevance Vector Machine. These methods are then

applied to some earthquake engineering problems and to structural health monitor-

ing. For SHM, an extended version of RVM is presented to effectively deal with

vector outputs. The capabilities of the proposed methodology for each application

are demonstrated.

Chapter 2 describes the detailed mathematical procedures that are utilized for

regression and classification problems.

Chapter 3 presents an application of the proposed method using an appropriate
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dataset for earthquake early warning, so that incoming seismic signals can be auto-

matically classified in real time as near-source or far-source. Chapter 4 deals with the

estimation of earthquake ground motion attenuation equations using a strong-motion

database.

In Chapter 5, structural health monitoring applications are presented. For this,

an enhanced algorithm is presented and applied to illustrative examples, including

the IASC-ASCE SHM benchmarks.
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Chapter 2

Bayesian Learning Using
Automatic Relevance
Determination Prior and
Relevance Vector Machine

Bayesian Learning is performed in three phases in both regression and classification:

• Phase I (Feature Extraction Phase): This phase distills a small number of

regression variables or features from a large set of data that are thought to

explain or help predict quantities of interest in case of regression, or characterize

each class of interest in the data in case of classification.

• Phase II (Training Phase): This phase identifies a mathematical relationship

between input regression variables or features and quantities of interest in re-

gression, or a separating boundary based on extracted features for classification,

usually using some form of regularization during the identification.

• Phase III (Prediction Phase): In this phase, a prediction is made using the

estimated regression equation or separating boundary from the previous phase

to decide what is the expected response corresponding to new data in regression

,or which is the appropriate class for new data in classification.

Bayesian methods for regression and classification problems have the advantage

that they make probabilistic predictions for the responses corresponding to inputs or
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for the class that corresponds to a given feature vector (rather than giving only a

point estimate in regression or a possibly misleading yes/no answer in classification).

These predictions are based on a rigorous Bayesian learning procedure that rests on

the axioms of probability. The essential ingredients are a set of predictive proba-

bility models involving a parameterized regression function or separating boundary

function, and a probability model (the prior) over this set. The prior can be prag-

matically chosen by the user to regularize the ill-conditioned problem of identifying

a pre-defined mathematical form of regression equation or a boundary that separates

the classes in the feature vector space. In the absence of such regularization, the train-

ing phase will usually lead to “over-fitting” of the data, so that the generalization

beyond the training data in the prediction phase will perform poorly.

In this chapter, the mathematical procedure for the novel methodology of Bayesian

learning using automatic relevance determination (ARD) prior and the special case

of the Relevance Vector Machine (RVM) is introduced, and the extension of RVM to

vector-valued outputs is investigated.

2.1 Bayesian Learning Method Using Various Pri-

ors

In this section, the advantages of a Bayesian learning methodology using various

priors are presented and compared with those of some non-Bayesian methods. For

simplicity, the focus in this introductory section is on regression problems involving

the prediction of some scalar quantity y.

2.1.1 Least-Squares Estimation using Linear Model

We start with the familiar linear (with respect to its parameters) regression equation

of the form:

f(x|θ) = τ(x)T θ =
m∑

j=1

θj · gj(x) + θ0 (2.1)



11

where x ∈ Rn is the selected input (regression variables), τ(x) ∈ Rm+1 = [1, g(x)T ]T ,

g(x) is the vector of chosen linear or nonlinear basis functions, and the unknown

parameters θ ∈ Θ ⊂ Rm+1 define a specific predictive model within a set of possible

models defined by Θ.

Let DN = {(xi, yi) : i = 1, ..., N} = (X, y) denote the data for identifying the

model. Then, least-squares estimation (LSE) is performed by minimizing the sum of

squares error with respect to θ ∈ Θ:

E1(θ) = ‖y − f(X|θ)‖2 =
N∑

i=1

(yi − f(xi|θ))2 (2.2)

to get an estimate θ̂ of the parameter vector.

In case of a linear regression model, an analytical solution can be obtained by

taking first and second derivatives of (2.2). For a nonlinear model, however, it is not

usually possible or feasible to obtain an analytical solution. In such a situation, the

solution must be sought numerically using a nonlinear optimization algorithm. It is,

however, well-known that least-squares estimation alone may lead to poor generaliza-

tion due to over-fitting of given data (i.e., the prediction error for new data is poor).

Furthermore, many least-squares problems are ill-conditioned, that is, there are many

least-squares solutions, or at least many near-optimal solutions.

For a non-Bayesian approach, an ill-conditioned problem can be regularized by

adding a term:

E2(θ) = ‖θ‖2 =
m∑

i=0

θ2
i (2.3)

to E1(θ) in (2.2) that penalizes large values of the θi’s. This penalty term is suggested

by Tikhonov to alleviate ill-conditioning in inverse problems (Groetsch, 1984). Then,

the unknown parameter vector θ is estimated by minimizing the objective function:

E(θ) = C1E1(θ) + C2E2(θ) (2.4)

where C1(> 0) and C2(> 0) allow a trade-off between the fit to the data and the size
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of the θi’s.

The cost function is usually defined as:

E(θ) =
1

2
E1(θ) +

λ

2
E2(θ) (2.5)

The trade-off parameter λ in (2.5) is called as “Regularization Factor”, which controls

the complexity of the regression equation and avoids over-fitting; as λ→ 0, the smaller

regularization effect causes oscillations of the regression equation by ill-conditioning,

but on the other hand, the regression equation becomes flat as λ→∞. Intermediate

values of λ control the smoothness of the regression function.

The Support Vector Machine (SVM), one of the state-of-the-art machine learn-

ing techniques, adopts this penalty term E2(θ) with C1 = C(trade-off parameter)

and C2 = 1
2
; C is determined by cross-validation (Vapnik, 1998). In 10-fold cross-

validation, for example, the training dataset is divided into 10 subsets of (approxi-

mately) equal size and the algorithm is trained 10 times, each time leaving out one

of the subsets from training and then using the omitted subset to determine the

optimal value of C which satisfies a certain prediction-error criterion, for example,

minimizing the sum of prediction errors by using the omitted subset as the prediction

dataset. This procedure, however, means that the corresponding algorithm requires

large amount of computational effort during the training phase.

As an another way to avoid over-fitting in non-Bayesian method, one can use

a different penalty term; for example, proportional to m, the number of adjustable

parameters in the model, as in Akaike’s Information Criterion (AIC) (Akaike, 1974).

AIC selects the model with the lowest AIC value which gives a balance between the

fit to the data and the number of parameters.

2.1.2 Bayesian Inference

Unlike LSE, Bayesian inference gives a probabilistic description of the unknown pa-

rameters rather than a point estimate. Additionally, it provides a unifying framework

to control model complexity, i.e., to overcome the over-fitting problem, and it allows
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the modeling uncertainties for the parameters to be integrated out when making pre-

dictions by using marginalization, i.e., by taking all likely values into consideration

during integration.

To account for the fact that no model gives prefect predictions, the regression

equation is embedded in a probability model by introducing an uncertain prediction

error ε, so that the quantity y to be predicted using x ∈ Rn is given by

y = f(x|θ) + σε (2.6)

where ε is a Gaussian variable with zero mean and unit variance. This choice of

the probability model for the prediction error is motivated by Jaynes’ Principle of

Maximum Entropy (Jaynes, 2003). Equation (2.6) defines a probability model

p(y|x, θ, σ2) = N(y|f(x|θ), σ2) (2.7)

i.e., y is conditionally Gaussian with mean f(x|θ) and variance σ2.

Bayesian inference using Bayes’ theorem gives the posterior for the unknown pa-

rameter θ in terms of the likelihood and prior:

p(θ, σ2|DN) =
p(DN |θ, σ2)p(θ)p(σ2)

p(DN)
∝ p(DN |θ, σ2)p(θ)p(σ2) (2.8)

The likelihood p(DN |θ, σ2) in (2.8) measures how well the parameters θ and σ2 predict

the observed data DN and it can be expressed as a Gaussian distribution based on

the probability model in (2.7):

p(DN |θ, σ2) =
N∏

i=1

p(yi|xi, θ, σ
2)

= (2πσ2)−N/2 exp
[
− 1

2σ2

N∑
i=1

(yi − f(xi|θ))2
]

(2.9)

The prior p(θ) can be chosen to reflect the analyst’s uncertainty about the value of

parameter θ and a reasonably flexible choice is a Gaussian distribution parameterized
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by α as follows:

p(θ|α) = N(θ|0,A−1) = (2π)−(m+1)/2|A|1/2 exp
[
− 1

2
θTAθ

]
(2.10)

where A = diag(α0, α1, ..., αm) ∈ R(m+1)×(m+1) and α is called a hyperparameter, since

it parameterizes the prior distribution of the parameters. The Bayesian approach with

this Gaussian prior can be categorized into three cases according to the constraints

on the values of the hyperparameter vector α:

C1. Non-informative prior where all αi → 0; in this case, if the focus is only on

the most probable values of θ and σ2, it is equivalent to Maximum Likelihood

Estimation (MLE);

C2. Gaussian prior with the same variance for each parameter, i.e., αi = α for

i = 0, ...,m, leading to a regularization method known as Ridge Regression;

C3. Automatic Relevance Determination (ARD) prior with all αi independent.

When the number of parameter becomes large, i.e., m increases, C1 gives an ill-

conditioned problem, C2 introduces regularization to give better conditioning, but C3

not only allows regularization but also controls model complexity by automatically

selecting the relevant regression terms to give sparsity; i.e., ARD prior selects only

a small number of relevant basis expansion terms by automatically pruning others

(Mackay, 1994; Tipping, 2000).

C1: Non-informative Prior

The non-informative or uniform prior treats all possible parameter values as being

equally plausible a priori. Therefore, the posterior state of knowledge is influenced

only by the data through the likelihood. If only the most probable values of the

parameters are examined, they are given by maximizing the likelihood to give the

MLE values θ̂ and σ̂. This implies that θ̂ = arg minE1(θ) where E1(θ) is defined

in (2.2) and σ̂2 = 1
N
E1(θ̂). Actually, MLE gives the same solution as LSE when
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the non-informative prior is utilized with the Gaussian prediction error ε, which can

lead to ill-conditioning. It is noted that classical MLE is not equivalent to the full

Bayesian approach with a uniform prior because the latter gives a posterior PDF

which shows how plausible each of the possible parameter values are, which is charac-

teristic of the Bayesian approach; this allows, for example, the modeling uncertainty

for the parameters to be integrated out when making predictions. This procedure of

marginalization is presented later.

C2: Gaussian Prior with Equal Variances

If we assume the same variance for all parameters θi (i.e., α0 = α1 = ... = αm = α),

the resulting Gaussian prior has a form

p(θ|α) = N(θ|0, α−1) =
( α

2π

)(m+1)/2

exp
[
− α

2

m∑
i=0

θ2
i

]
(2.11)

Also the posterior PDF p(θ|DN , σ
2, α) is given by Bayes’ theorem:

p(θ|DN , σ
2, α) =

p(DN |θ, σ2)p(θ|α)

p(DN |σ2, α)
∝ p(DN |θ, σ2)p(θ|α) (2.12)

Thus, taking the natural log of (2.9), (2.11), and (2.12) (ignoring additive constant

terms) leads to:

ln p(θ|DN , σ
2, α) = − 1

2σ2

N∑
i=1

(yi − f(xi|θ))2 − α

2

m∑
i=0

θ2
i

= − 1

2σ2
E1(θ)−

α

2
E2(θ) (2.13)

Therefore, for σ2 fixed, the objective function in regularized LSE, E(θ) in (2.4),

corresponds to the log of the posterior PDF p(θ|DN , σ
2, α), and so the regularized

least-squares estimates correspond to the most probable values of θ, given σ2 and α.

However, in the Bayesian approach, both σ2 and α can also be estimated directly

from the data by maximizing the evidence p(DN |σ2, α), as shown in Section 2.2.

The Gaussian prior in (2.11) controls ill-conditioning by automatically providing
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regularization when estimating the unknown parameters through the penalty term

E2(θ) in (2.13). All the available dataset can be devoted for training since the trade-

off parameters σ2 and α can be estimated directly without using cross-validation by

using model class selection (Beck and Yuen, 2004).

This concept of model class selection is consistent with Ockham’s razor, which is

the principle of preferring a simpler model unless there are compelling reasons for a

more complex model. Suppose there are two models M1 and M2 for comparison and

the relative plausibility between these two models needs to be estimated in the light

of data. Bayes’ Theorem yields the relative probability between the two models:

P (M1|DN)

P (M2|DN)
=
p(DN |M1)P (M1)

p(DN |M2)P (M2)
(2.14)

If the two models are treated as equally plausible a priori, then the second ratio is

unity and the first ratio embodies Ockham’s razor and is called the Ockham factor.

Since a simpler model M1 tends to make a more precise prediction, while a complex

model M2 is capable of making a great variety of predictions, the situation is shown

schematically in Figure 2.1 which shows how M1 is more probable if the data is very

likely based on M1 (large Ockham factor in (2.14)) whereas M2 is only more probable

if the data is very unlikely based on M1 (small Ockham factor in (2.14)) (Mackay,

1992b, 1995). Now consider σ2
1 and α1 in (2.13) as defining model class M1 and σ2

2 and

α2 defining M2, then the most probable model class can be selected using (2.14) where

p(DN |Mi) = p(DN |σ2
i , αi) =

∫
p(DN |θ, σ2

i )p(θ|αi)dθ. In general, the parameters σ2

and α can be chosen to maximize p(DN |σ2, α).

C3: Automatic Relevance Determination Prior

In regression problems, some of the input variables will have a strong influence on the

prediction of the output variable while others may be irrelevant. Automatic Relevance

Determination (ARD) prior automatically suppresses irrelevant input variables by

pruning them out. This is done by introducing an independent variance α−1
i for each
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Figure 2.1: Illustration of Ockham’s Razor (Mackay, 1992b).

parameter θi in the prior. The resulting prior has the same form as (2.10):

p(θ|α) = N(θ|0,A−1) = (2π)−(m+1)/2|A|1/2 exp
[
− 1

2
θTAθ

]
As shown in the remaining sections of Chapter 2, this one-to-one correspondence of

the hyperparameter vector α to the parameter vector θ makes Bayesian learning using

ARD prior effective in practice in yielding sparsity (i.e., utilizing only a small number

of input or, equivalently, relevant basis expansion terms, by automatically pruning

others; this occurs because during estimation, some αi →∞⇒ θi → 0, which results

in the irrelevant input terms being pruned). In the next two sections, the focus is on

this ARD prior and its use in regression and classification problems.

2.2 Bayesian Learning Using Automatic Relevance

Determination Prior: I–Regression

In this section, the detailed mathematical procedure of Bayesian learning for regres-

sion using the ARD prior is presented. The classification counterpart will be presented

in Section 2.3.
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2.2.1 Training Phase in Regression

Let the most probable value of the output vector y ∈ R be related to an input vector

(predictor variables) x ∈ Rn by a chosen regression function f(x|θ) when the model

parameter vector θ is specified. This function is embedded in a probability model by

introducing an uncertain prediction error to account for the fact that no model gives

prefect predictions, so:

y = f(x|θ) + σε (2.15)

which defines the probability model:

p(y|x, θ, σ2) = N(y|f(x|θ), σ2) (2.16)

where f(x|θ) is defined as a linear combination of the gj(x), j
th component of g(x)

with a parameter θj so that:

f(x|θ) = τ(x)T θ =
m∑

j=1

θj · gj(x) + θ0 (2.17)

where τ(x) = [1, g(x)T ]T and each gi(x) is a linear or nonlinear basis function.

Let DN = {(xi, yi) : i = 1, ..., N} = (X, y) denote the data with input (predictor

variables) xi ∈ Rn. Based on a Gaussian white-noise model for the prediction errors

εi (which is a maximum entropy probability distribution for given mean and variance

(Jaynes, 2003)), the εi are modelled independently and identically distributed as

N(0, σ2). Thus, the likelihood for the given dataset is

p(DN |θ, σ2) =
N∏

i=1

p(yi|xi, θ, σ
2)

= N(Φθ, σ2I)

= (2πσ2)−N/2 exp
[
− 1

2σ2
‖y −Φθ‖2

]
(2.18)

where Φ = [τ(x1), ..., τ(xN)]T ∈ RN×(m+1), and θ = [θ0, θ1, ..., θm]T .
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Define the ARD prior PDF for θ to be

p(θ|α, σ2) = N(0,A−1(α))

= (2π)−
m+1

2 |A(α)|
1
2 exp

{
− 1

2
θTA(α)θ

}
(2.19)

i.e., θ is Gaussian with mean 0 and covariance matrix A−1(α), as before, and indepen-

dent of the prediction-error variance σ2, which is taken as fixed here; its estimation

is discussed later in this section.

Then the posterior PDF for the unknown parameters θ can be calculated via

Bayes’ Theorem by

p(θ|DN , α, σ
2) =

p(DN |θ, α, σ2)p(θ|α, σ2)

p(DN |α, σ2)

= (2π)−
m+1

2 |Σ̂|−1/2 exp
[
− 1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

]
(2.20)

where Σ̂ = (σ−2ΦTΦ + A)−1 and θ̂ = σ−2Σ̂ΦTy.

In the next step, Bayesian model class selection is used to select the most plau-

sible hyperparameter α ∈ A and σ2 (e.g., Beck and Yuen, 2004). The model class

M is defined as a mathematical structure assumed for p(y|x, θ, σ2) and the prior

PDF p(θ|σ2, α). The most probable model class M(α̂, σ̂2) based on data DN is given

by finding α̂ and σ̂2 that maximizes p(α, σ2|DN) ∝ p(DN |α, σ2)p(α, σ2). If a uni-

form prior on α and σ2 is considered, then it is equivalent to the maximization of

the evidence for α and σ2, p(DN |α, σ2), which is equivalent to the maximization of

ln p(DN |α, σ2) given by:

L(α, σ2) = ln p(DN |α, σ2) = ln

∫
Rm+1

p(DN |θ, σ2)p(θ|α)dθ

= −1

2

[
N ln 2π + ln |σ2I + ΦA−1ΦT |+ yT (σ2I + ΦA−1ΦT )−1y

]
= −1

2

[
N ln 2π + ln |C|+ yTC−1y

]
(2.21)

where C(α, σ2) = σ2I + ΦA−1ΦT and A(α) is defined as before. Details of this
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derivation are given in Appendix A.

The maximization of L(α, σ2) is performed using an iterative procedure as follows.

To determine αi given the latest values of the other αj’s (j 6= i), C can be re-written

as the sum of two terms, one that is related to αi and another that is not, as follows:

C = σ2I + ΦA−1ΦT = σ2I +
∑
m

α−1
m τmτ

T
m

= σ2I +
∑
m6=i

α−1
m τmτ

T
m + α−1

i τ iτ
T
i = C−i + α−1

i τ iτ
T
i (2.22)

where C−i is the covariance matrix C with the components of τ i = τ(xi) removed.

By using the matrix determinant and inverse identities,

|C| = |C−i||1 + α−1
i τT

i C−1
−i τ i| (2.23)

C−1 = C−1
−i −

C−1
−i τ iτ

T
i C−1

−i

αi + τT
i C−1

−i τ i

(2.24)

L(α, σ2) becomes

L(α, σ2) = −1

2

[
N ln 2π + ln |C−i|+ yTC−1

−i y

− lnαi + ln(αi + τT
i C−1

−i τ i)−
(τT

i C−1
−i y)

2

αi + τT
i C−1

−i τ i

]
= L(α−i, σ

2) +
1

2

[
lnαi − ln(αi + τT

i C−1
−i τ i) +

(τT
i C−1

−i y)
2

αi + τT
i C−1

−i τ i

]
= L(α−i, σ

2) + l(αi, σ
2) (2.25)

Therefore, the term related with αi is isolated in l(αi, σ
2).

By setting the partial derivative of (2.25) with respect to αi to zero, the value that

maximizes L(α, σ2) is found. This Bayesian model class selection procedure gives:

∂L(α, σ2)

∂αi

=
1

αi

− 1

αi + Si

− Q2
i

αi + Si

= 0 (2.26)
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which leads to:

α̂i =

 ∞, if Q2
i ≤ Si

S2
i

Q2
i−Si

, if Q2
i > Si

(2.27)

where Qi = τT
i C−1

−i y and Si = τT
i C−1

−i τ i with C = σ2I + ΦA−1ΦT . In practice, many

of the αis approach infinity during this iterative process, and so the corresponding θis

approach to zero, thereby pruning the corresponding term of τ(x) from the regression

function. In the end, only the terms of τ(x), corresponding to a small number of the

finite αis, are retained. The detailed procedure of this Bayesian model class selection

is described in Appendix C.

To summarize: starting with an initial estimate of α̂, α̂i is iteratively calculated

from (2.27) for each i = 1, ..., N , always utilizing the latest estimates for the αj to

evaluate C(α), and this procedure is continued until it converges to α̂. For those α̂i

that approach infinity, there is a pruning of the corresponding basis function vectors

τi(x) since α̂i →∞⇒ θ̂i → 0. Thus, only the basis function term τj(x) that have α̂j

finite are used in determining the regression equation.

It is shown in Appendix C.2 that the noise variance σ2 can be re-estimated by:

σ̂2 =
‖y −Φθ̂‖2

N −m+
∑

i α̂iΣ̂ii

(2.28)

after each new iteration of the α optimization.

2.2.2 Prediction Phase in Regression

Based on the results from the previous subsection, prediction is performed as follows.

We want to probabilistically estimate a new and unknown output ỹ based on a given

input variable x̃ and the dataset for training DN . The desired probability distribution

is given by marginalization followed by the product rule (or, equivalently, the Theorem
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of Total Probability):

p(ỹ|x̃,DN) =

∫
p(ỹ, θ, α, σ2|x̃,DN)dθdαdσ2

=

∫
p(ỹ|x̃,DN , θ, σ

2)p(θ|DN , α, σ
2)p(α, σ2|DN)dθdαdσ2 (2.29)

This robust predictive PDF takes into account all possible uncertainties for the pa-

rameters θ, α, and σ2. This marginalization to obtain the robust predictive PDF is

a great advantage of the Bayesian approach over other methods since it means no

information is lost during parameter estimation. Using Laplace’s asymptotic approx-

imation for large N (Beck and Katafygiotis, 1998; See Appendix B for details):

p(ỹ|x̃,DN) ∼=
∫
p(ỹ|x̃, θ, σ̂2)p(θ|DN , α̂, σ̂

2)dθ = N(ỹ|y∗, σ2
∗) (2.30)

where α̂, σ̂2 are the most probable values for α, σ2, respectively, based on data

DN , derived as in Section 2.2.1, y∗ = θ̂T τ(x̃) and σ2
∗ = σ̂2 + τ(x̃)T Σ̂τ(x̃). In (2.30)

p(θ|DN , α̂, σ̂
2) is the posterior distribution given in (2.20).

2.3 Bayesian Learning Using Automatic Relevance

Determination Prior: II–Classification

2.3.1 Training Phase in Classification

In classification, the data DN = {(xi, yi) : i = 1, ..., N} = (X, y) consists of features

(predictor variables) xi ∈ Rn and labels yi ∈ {0, 1} (for example, yi = 0 for the data

in one class, yi = 1 for the data in another class).

Suppose that the function characterizing the separating boundary between the

two classes is taken as a linear combination of some prescribed basis functions gj(x)

with unknown coefficients θ = {θ0, θ1, ..., θm} ∈ Rm+1:

f(x|θ) = τ(x)T θ =
m∑

j=1

θjgj(x) + θ0 (2.31)
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where τ(x) = [1, g(x)T ]T ∈ Rm+1 is the vector of chosen linear or non-linear basis

function g(x) of features x = {x1, ..., xm}T . The separating boundary function f(x|θ)

is also called the discriminant function. For a known parameter vector θ, the separat-

ing boundary between the different classes is defined as f(x|θ) = 0, and probabilistic

predictions of the class label y ∈ {0, 1} corresponding to extracted features x will be

based on the probability model:

P (y|x, θ) =

 φ(f(x|θ)), if y = 1

1− φ(f(x|θ)), if y = 0

= φ(f(x|θ))y{1− φ(f(x|θ))}1−y (2.32)

where φ(·) ∈ [0, 1] is the monotonically increasing sigmoid function on R defined by

φ(x) = 1
1+e−x so limx→∞ φ(x) = 1, limx→−∞ φ(x) = 0, and φ(x) + φ(−x) = 1 (Figure

2.2). Thus, when f(x|θ) is large and positive (respectively, negative), the probability

is near 1 that x corresponds to an instance of the y = 1 (respectively, y = 0) class.

Of course, since (2.31) is just a model for the separating boundary, there are no true

values of θ to be “estimated”, but we can learn about how plausible its various values

are by Bayesian updating using the data DN .

Based on the predictive probability model (2.32), the likelihood P (DN |θ) is:

P (DN |θ) =
N∏

i=1

P (yi|xi, θ)

=
N∏

i=1

φ(f(xi|θ))yi{1− φ(f(xi|θ))}1−yi (2.33)

which measures how well the predictive probability model defined by θ predicts the

actual data.

The ARD prior p(θ|α) is defined identically with the regression case:

p(θ|α) = (2π)−
m+1

2 |A(α)|
1
2 exp

{
− 1

2
θTA(α)θ

}
(2.34)

which provides a means of regularizing and encouraging sparsity during the learning
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Figure 2.2: Configuration of Sigmoid Function.

process (Mackay, 1994).

The main difference between regression and classification is that one can no longer

do analytical integration with respect to θ, so one instead constructs a Gaussian ap-

proximation of the posterior p(θ|DN , α) based on Laplace’s asymptotic approximation

(Beck and Katafygiotis, 1998; Mackay, 1992). This is achieved by making a quadratic

approximation of the log-posterior around the most probable value, θ̂, given by max-

imization of the posterior PDF, leading to a Gaussian distribution with mean θ̂ and

covariance matrix Σ̂ which is the inverse of the negative of the Hessian matrix of the

log-posterior.

The detailed procedure for the Laplace approximation is as follows:

(1) For a given value of α, the log-posterior constructed from (2.33) and (2.34) (ig-
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noring irrelevant additive terms that depend only on α) is:

ln[p(θ|DN , α)] =
N∑

n=1

ln[P (yn|θ, xn)] + ln[p(θ|α)]

=
N∑

n=1

[
yn · lnφn(θ) + (1− yn) · ln{1− φn(θ)}

]
−1

2
θTA(α)θ (2.35)

where A(α) = diag(α0, α1, ..., αN) and φn(θ) = φ(f(xn|θ)). By using an iterative pro-

cedure based on a second-order Newton method (or any other optimization method),

the most probable values θ̂(α) are estimated by maximizing ln[p(θ|DN , α)].

(2) The inverse covariance matrix is Σ̂−1(α) = −∇θ∇θ ln p(θ|DN , α) evaluated at

θ̂(α) and the resulting Gaussian approximation of the posterior distribution is:

p(θ|DN , α) ∼= (2π)−(m+1)/2|Σ̂|−1/2 exp
{
− 1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

}
(2.36)

where

Σ̂(α) = (ΦTBΦ + A)−1 ∈ R(m+1)×(m+1) : covariance matrix for θ, given α

θ̂(α) = Σ̂ΦTBŷ(α) : the most probable value of parameter θ, given α

ŷ(α) = Φθ̂ + B−1(y − φ(Φθ̂)) ∈ RN

B(α) = diag(β1, ..., βN) ∈ RN×N with βn(α) = φn(θ̂)(1− φn(θ̂))

Φ = [τ 1, ..., τN ]T ∈ RN×(m+1)

τn = τ(xn) = [1, g(x)T ]T ∈ Rm+1.

The posterior in (2.35) contains all that is known about the parameters θ based

on the assumed model class M(α) and the data DN .

The Bayesian model class selection procedure is applied as in the regression case

leading to the same equation as in (2.27):

α̂i =

 ∞, if Q2
i ≤ Si

S2
i

Q2
i−Si

, if Q2
i > Si

(2.37)
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where Qi = τT
i C−1

−i y and Si = τT
i C−1

−i τ i, but with different C = B−1 + ΦA−1ΦT .

In summary, the training phase in the classification case follows an identical pro-

cedure to the regression case presented in Section 2.2.1 except that:

(1) A sigmoid function is adopted to construct the probability model in (2.32) and

hence it appears in the likelihood function.

(2) No prediction error variance σ2 is required.

(3) The Laplace asymptotic approximation is utilized for estimating a Gaussian ap-

proximation for the posterior p(θ|DN , α).

(4) C = B−1 +ΦA−1ΦT is used instead of C = σ2I+ΦA−1ΦT in the Bayesian model

class selection procedure for selecting α.

2.3.2 Prediction Phase in Classification

Predictive probability P (ỹ|x̃,DN) for the unknown label ỹ with the corresponding

new feature x̃ is given similarly as before by the Theorem of Total Probability and

by using Laplace’s asymptotic approximation twice:

P (ỹ|x̃,DN) =

∫
P (ỹ|x̃,DN , θ)p(θ|DN , α)p(α|DN)dθdα

∼=
∫
P (ỹ|x̃, θ)p(θ|DN , α̂)dθ

∼= P (ỹ|x̃, θ̂(α̂)) (2.38)

where α̂, θ̂ are the most probable values for α, θ, respectively, based on data DN , and

P (ỹ|x̃, θ̂(α̂)) is given by (2.32). To deal with p(θ|DN , α̂), the approximate form of the

posterior distribution given in (2.36) is utilized, consistent with Laplace’s asymptotic

approximation for large N .

2.4 Relevance Vector Machine

In the previous sections, the Bayesian learning method using the ARD prior for re-

gression and classification problems is investigated. However, there is still the issue of
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choosing the basis functions in (2.17) and (2.31). Moreover, instead of dealing with

a scalar-valued regression output, generalization to vector-valued outputs is impor-

tant for some applications, such as structural health monitoring. In this section, the

Bayesian learning method using the ARD prior is applied to regression and classifica-

tion problems including vector-valued regression, by using kernel functions centered

on each data point as the basis functions.

2.4.1 Kernel Methods

The choice of basis functions in f(x|θ) can sometimes be based on theoretical consid-

erations but often this is lacking and so we can use a data-based approach where the

basis functions are chosen as a kernel function centered on each data point (Schölkopf

and Smola, 2002), then the ARD prior can be used to automatically remove the “ir-

relevant” kernel terms.

The Relevance Vector Machine (RVM) is a kernel version of Bayesian learning

using the ARD prior:

f(x|θ) =
N∑

i=1

θi · k(x, xi) + θ0 (2.39)

where θ = [θ0, θ1, ..., θN+1]
T . This equation is (2.17) or (2.31) with gi(x) = k(x, xi).

Using kernel functions, however, increases the number m of parameters, i.e., dimen-

sion of θ, since m = N (m and N are the number of basis terms and training data,

respectively) and this is likely to cause ill-conditioning when estimating θ. This is

why the ARD prior is used in the RVM to greatly reduce the number of kernel basis

functions.
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2.4.2 Relevance Vector Machine Regression

2.4.2.1 Training Phase

A probability model is introduced as before in Section 2.2.1:

y = f(x|θ) + σε

=
[ N∑

j=1

θj · k(x, xj) + θ0

]
+ σε (2.40)

where θ = [θ0, θ1, ..., θN ]T ∈ RN+1. Note that the dimension of θ, i.e., the number of

unknown parameters that need to be estimated, increases up to N +1 when N is the

number of the given data.

The likelihood for a given dataset DN = {(xi, yi) : i = 1, ..., N} = (X, y) also has

the same form as in (2.18):

p(DN |θ, σ2) = N(Φθ, σ2I)

= (2πσ2)−N/2 exp
[
− 1

2σ2
‖y −Φθ‖2

]
(2.41)

where Φ = [τ(x1), ..., τ(xN)]T ∈ RN×(N+1), and τ(xi) = [1, k(x1, xi), ..., k(xN , xi)]
T ∈

RN+1.

Using the same ARD prior as in (2.19) with mean 0 and covariance matrix A−1(α),

p(θ|α, σ2) = (2π)−
N+1

2 |A(α)|
1
2 exp

{
− 1

2
θTA(α)θ

}
(2.42)

the posterior PDF for the unknown parameters θ can be calculated via Bayes’ Theo-

rem:

p(θ|DN , α, σ
2) =

p(DN |θ, α, σ2)p(θ|α, σ2)

p(DN |α, σ2)

= (2π)−
N+1

2 |Σ̂|−1/2 exp
[
− 1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

]
(2.43)

where Σ̂ = (σ−2ΦTΦ + A)−1 and θ̂ = σ−2Σ̂ΦTy.
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The detailed Bayesian model class selection procedure is similar to Section 2.2.

The maximum of the log evidence is determined by finding the stationary points of

L(α, σ2) with respect to each αi and σ2. To find α̂i:

∂L(α, σ2)

∂αi

=
1

αi

− 1

αi + Si

− Q2
i

αi + Si

= 0 (2.44)

which leads to:

α̂i =

 ∞, if Q2
i ≤ Si

S2
i

Q2
i−Si

, if Q2
i > Si

(2.45)

where Qi = τT
i C−1

−i y and Si = τT
i C−1

−i τ i with C = σ2I + ΦA−1ΦT . If any of the αi’s

approach infinity during this iterative process, then the corresponding θi approaches

zero, thereby pruning the corresponding kernel k(x, xi) from the regression function.

In practice (refer to the applications in the following Chapters), most of the kernel

basis function terms are pruned out during the training phase; the terms which are

not pruned are called Relevance Vectors (RVs). Since the number of RVs is quite

small compared with the number of data, a sparse regression model is obtained.

Since both Qi and Si depend on the αi, (2.45) does not give an explicit solution,

but instead requires an iterative procedure. For the iterative procedure to determine

the α̂i, the “bottom-up” technique can be used in contrary to the “top-down” method

presented in Section 2.2 and 2.3. This algorithm is described in Tipping and Faul

(2003) and is summarized below. While the “top-down” algorithm starts with all

basis functions included and prunes most of them out in the training procedure, the

“bottom-up” algorithm starts with no basis functions included and starts to add

relevant ones. The advantages of using the bottom-up algorithm are:

(1) This technique significantly reduces the training time;

(2) It prevents ill-conditioning that can occur during inversion of the Hessian matrix

in the training phase.

The procedure for the “bottom-up” approach is as follows (Tipping and Faul,

2003). Starting with an initial estimate of α̂, α̂i is iteratively calculated for each
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i = 0, ..., N by going through the following steps:

(1) Initialize σ2, for example, 1
10

of the sample variance of y.

(2) Set all α−i to infinity and calculate each αi for i = 0, 1, ..., N . αi can be

calculated from (2.45) using a single basis vector τ i.

αi =
S2

i

Q2
i − Si

=
‖τ i‖2

‖τT
i y‖2/‖τ i‖2 − σ2

(2.46)

since C−1
−i = σ−2 in the first iteration.

(3) Compute Σ̂ = (σ−2ΦTΦ+A)−1 and θ̂ = σ−2Σ̂ΦTy. These are initially scalars,

and then in later iterations they are computed using the basis functions so far

included.

(4) Compute Sm and Qm for all m = {0, 1, ..., N} using:

Sm =
αmsm

αm − sm

Qm =
αmqm
αm − sm

sm = σ−2τ(xm)T τ(xm)− σ−4τ(xm)TΦΣΦT τ(xm)

qm = σ−2τ(xm)Ty − σ−4τ(xm)TΦΣΦTy

(5) Select the basis function τ(xi) and the corresponding hyperparameter αnew
i that

maximizes L(α, σ2) and then update hyperparameter αi, as follows:

• If Q2
i > Si and αi <∞, then update αi = αnew

i = S2
i /(Q

2
i − Si).

• If Q2
i > Si and αi = ∞, then add τ(xi) and update αi = αnew

i = S2
i /(Q

2
i −

Si).

• If Q2
i ≤ Si, then prune τ(xi) and set αi = αnew

i = ∞.

(6) Recompute the variance (σ2)new = (‖y −Φθ̂‖2)/(N −
∑

i γi), Σ̂, and then θ̂

where γi = 1 − αiΣii and Σii is the ith diagonal element of Σ computed with

current α and σ2.



31

(7) Repeat the above procedure (from 3 to 6) until it converges.

2.4.2.2 Prediction Phase

Based on the results from the previous section, a probabilistic prediction for the

unknown response ỹ is calculated from new input x̃ and the dataset DN using the

Theorem of Total Probability to include all possible uncertainties of the parameters:

p(ỹ|x̃,DN) = N(ỹ|y∗, σ2
∗)

where α̂, σ̂2 are the most probable values for α, σ2, respectively, based on data DN ,

y∗ = θ̂T τ(x̃), and σ2
∗ = σ̂2 + τ(x̃)TΣτ(x̃), as before.

2.4.3 Relevance Vector Machine Classification

2.4.3.1 Training Phase

The RVM classification also uses Bayesian learning with the ARD prior. For the

available dataset DN = {(xi, yi) : i = 1, ..., N} = (X, y) with a predictive prob-

ability model P (y|x, θ), data DN is used to update the prior PDF p(θ|M(α)) to

p(θ|DN ,M(α)) via Bayes’ Theorem, where M(α) denotes the model class (i.e., math-

ematical structure assumed for P (y|x, θ) and the prior PDF p(θ|M(α))).

Using a monotonically increasing sigmoid function φ(·) ∈ [0, 1] defined as before,

the predictive probability model is:

P (y|x, θ) = φ(f(x|θ)y{1− φ(f(x|θ))}1−y (2.47)

where label y ∈ {0, 1}, θ ∈ RN+1 and k(x, xi) is a specified kernel function. Note that

f(x|θ) =
N∑

j=1

θjk(x, xj) + θ0

and if f(x|θ) = 0, P (y = 1|x, θ) = P (y = 0|x, θ) = 0.5, so
∑N

i=1 θik(x, xi) + θ0 = 0
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defines the boundary surface in the feature space between those feature vectors that

imply label y = 1 is more likely and those that imply y = 0 is more likely. Note also

from (2.47) that P (y = 0|x, θ) + P (y = 1|x, θ) = 1.

Assume DN consists of independent samples, then the likelihood function is:

P (DN |θ) =
N∏

i=1

P (yi|xi, θ)

=
N∏

i=1

φ(f(xi|θ))yi{1− φ(f(xi|θ))}1−yi (2.48)

Once again, define the ARD prior PDF to be Gaussian with mean 0 and covariance

matrix A−1(α) = diag(α−1
0 , α−1

1 , ..., α−1
N ), i.e., p(θ|α) = N(0,A−1(α)). Note that each

hyperparameter α ∈ A ⊂ RN+1 defines a model class M(α) where each predictive

model in the class is defined by specifying θ ∈ Θ in (2.47), independent of the

hyperparameter α, which only serves to specify the prior for the model class.

The RVM classification uses Laplace’s asymptotic approximation for the posterior,

p(θ|DN , α) (MacKay, 1992; Beck and Katafygiotis, 1998; Appendix B), which leads

to:

p(θ|DN , α) ∼= (2π)−(N+1)/2|Σ̂|−1/2 exp
{
− 1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

}
(2.49)

where Σ̂(α) = (ΦTBΦ + A)−1 ∈ R(N+1)×(N+1),

θ̂(α) = Σ̂ΦTBŷ,

ŷ(α) = Φθ̂ + B−1(y − φ(Φθ̂)) ∈ RN ,

A(α) ∈ R(N+1)×(N+1),

B(α) = diag(β1, ..., βN) ∈ RN×N ,

βn(α) = φ(f(xn|θ)){1− φ(f(xn|θ))},

Φ = [τ(x1), ..., τ(xN)]T ∈ RN×(N+1),

τ(xn) = [1, k(xn, x1), ..., k(xn, xN)]T ∈ RN+1.

In the next step of the RVM, Bayesian model class selection is used to optimize the

hyperparameter α ∈ A as detailed in Appendix C. The most plausible hyperparameter
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α is:

α̂i =

 ∞, if Q2
i ≤ Si

S2
i

Q2
i−Si

, if Q2
i > Si

(2.50)

where Qi = τT
i C−1

−i y and Si = τT
i C−1

−i τ i with C = B−1 + ΦA−1ΦT .

To estimate this α̂, the bottom-up algorithm explained for RVM regression is

also utilized in order to prevent ill-conditioning which may occur during the training

phase.

2.4.3.2 Prediction Phase

For the unknown label ỹ corresponding to new feature x̃, the desired predictive prob-

ability is given by the Theorem of Total Probability:

P (ỹ|x̃,DN) ∼= P (ỹ|x̃, θ̂(α̂)) (2.51)

where α̂, θ̂ are the most probable values for α, θ, respectively, based on data DN , and

P (ỹ|x̃, θ̂(α̂))is given by (2.32).

2.4.4 Relevance Vector Machine Regression for Vector Out-

puts

2.4.4.1 Training Phase

The original RVM algorithm was presented only for a scalar output (Tipping, 2001).

In this section, the procedure for training and prediction using an expanded RVM

methodology that is applicable to vector outputs is presented (Thayananthan, 2005).

Let f(x|θ) denote the chosen regression function relating the feature vector x ∈ RL

to the most probable value of the output vector y ∈ RM (for example, damage location

or severity index vector in structural health monitoring), when the model parameter

vector θ is specified. This function is embedded in a probability model by introducing

an uncertain prediction error to account for the fact that no model gives prefect
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predictions, so:

y = f(x|θ) + ε (2.52)

where ε is modeled as a Gaussian vector with zero mean and covariance matrix Ω =

diag(σ2
1, ..., σ

2
M). This choice of the probability model for the prediction error is

motivated by Jaynes’ Principle of Maximum Entropy (Jaynes, 2003). It gives a

Gaussian (Normal) predictive probability model (PDF) for the output vector y:

p(y|x, θ, σ2) = N(y|f(x|θ),Ω) (2.53)

where σ2 = [σ2
1, ..., σ

2
M ]T and Ω = diag(σ2).

Let DN = {(xi, yi
) : i = 1, ..., N} denote a training dataset where xi ∈ RL is the

ith example of the feature vector and y
i
∈ RM is the corresponding vector output.

As before, the regression function is expressed in terms of a kernel basis expansion

where the ith kernel function is centered at data point xi (we use Gaussian radial

basis functions in the examples later) so that for the mth component of the regression

function f :

fm(x|θ) = θm0 +
N∑

i=1

θmik(x, xi) = τ(x)T θm (2.54)

where θm = [θm0, θm1, ..., θmN ]T ∈ RN+1, θ = [θT
1 , ..., θ

T
M ]T ∈ R(N+1)M , and τ(x) =

[1, k(x, x1), ..., k(x, xN)]T ∈ RN+1 for m = 1, ...,M . Using Bayes’ Theorem to incor-

porate the information from the data DN leads to the posterior PDF for the model

parameter vector θ:

p(θ|DN , α, σ
2) =

p(DN |θ, σ2)p(θ|α)

p(DN |α, σ2)
(2.55)

where α = [α0, ..., αN ]T contains hyperparameters that control the prior for θ.

The components of y are independent (since Ω is diagonal) so the likelihood

function can be expressed as a product of Gaussians for each output component:

p(DN |θ, σ2) =
M∏

m=1

N(νm|Φθm, σ
2
mI) (2.56)
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where νm = [(y
1
)m, ..., (yN

)m]T and Φ = [τ(x1), ..., τ(xN)]T ∈ RN×(N+1). The prior is:

p(θ|α) =
M∏

m=1

N(θm|0,A−1) (2.57)

where matrix A = diag(α0, ..., αN). The posterior PDF for θ is:

p(θ|DN , α, σ
2) ∝

M∏
m=1

N(θm|θ̂m,Σm) (2.58)

where θ̂m = σ−2
m ΣmΦTνm and Σm = (σ−2

m ΦTΦ + A)−1 give the most probable value

of θm and its covariance matrix, respectively.

In the next step, Bayesian model class selection is used to select the most probable

hyperparameters α̂ and variances σ̂2 based on data DN . If we take a uniform prior

probability distribution over all possible model classes defined by α and σ2 then by

applying Bayes’ Theorem at the model class level, the most probable model class is

the one that maximizes the log evidence (Beck and Yuen, 2004), which is given by

(Tipping and Faul, 2003):

L(α, σ2) = ln p(DN |α, σ2)

= ln

∫
p(DN |θ, σ2)p(θ|α)dθ

= −1

2

M∑
m=1

[
N ln 2π + ln |Cm|+ νT

mC−1
m νm

]
= L(α−i, σ

2) +
M∑

m=1

[
lnαi − ln(αi + Smi) +

Q2
mi

αi + Smi

]
= L(α−i, σ

2) + l(αi, σ
2) (2.59)

where L(α−i, σ
2) is the evidence with τ i = τ(xi) excluded, Cm = σ2

mI + ΦA−1ΦT ,

Smi = αismi

αi−smi
and Qmi = αiqmi

αi−Smi
and smi and qmi are calculated using the Woodbury
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identity as follows:

smi = σ−2
m τT

i τ i − σ−4
m τT

i ΦΣmΦT τ i

qmi = σ−2
m τT

i νm − σ−4
m τT

i ΦΣmΦTνm

The maximum of the log evidence is determined by iteratively maximizing l(αi, σ
2)

with respect to αi and σ2
m. For example, to find α̂i:

∂L(α, σ2)

∂αi

=
M∑

m=1

{ 1

αi

− 1

αi + Smi

− Q2
mi

αi + Smi

}
= 0 (2.60)

and similarly, an expression can be found for σ̂2
m. Since Smi and Qmi in l(αi, σ

2)

depend on all of the αis (since Σm does), an iterative algorithm explained in detail in

Appendix C is applied to solve these equations for each α̂i and σ̂2
m. In practice, many

of the αis approach infinity during this iterative process, and so the corresponding

θmi for each m = 1, ...,M are set to zero (they have zero mean and zero variance),

thereby pruning the corresponding kernel k(x, xi) from the regression function. In

the end, only the kernels corresponding to a small number of the xi are retained (as

before, these are called the relevance vectors).

That training algorithm for RVM for vector outputs is summarized as follows

(Thayananthan, 2005):

(1) Initialize σ2
m as 1

10
of the sample variance of νm, for m = 1, ...M .

(2) Compute Σ̂m and θ̂m for m = 1, ...M from:

Σ̂m = (σ−2
m ΦTΦ + A)−1

θ̂m = σ−2
m Σ̂mΦTνm
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(3) Compute Smi and Qmi for all m = 1, ...,M and i = 0, ..., N using:

Smi =
αismi

αi − smi

Qmi =
αiqmi

αi − smi

smi = σ−2
m τ(xi)

T τ(xi)− σ−4
m τ(xi)

TΦΣmΦT τ(xi)

qmi = σ−2
m τ(xi)

Tνm − σ−4
m τ(xi)

TΦΣmΦTνm

(4) Select the basis function τ(xi) and the corresponding hyperparameter αnew
i that

maximizes L(α, σ2):

αnew
i = arg max

αi

l(αi, σ
2)

m = arg max
i

l(αnew
i , σ2)

where l(αi, σ
2) is defined (implicitly) by (2.59).

• If αm = ∞ and αnew
m <∞, then add τ(xm) and update αm = αnew

m .

• If αm <∞ and αnew
m = ∞, then remove τ(xm) and update αm = ∞.

• If αm <∞ and αnew
m <∞, then update αm = αnew

m

(5) Recompute the variance σ2
m, then Σ̂m, and θ̂m, using:

σ̂2
m =

||νm −Φθ̂m||2

M −
∑M

i=1 γi

where γi = 1− αiΣii and Σii is the ith diagonal elements of Σ.

(6) Repeat the above procedure (from 2 to 5) until it converges.

2.4.4.2 Prediction Phase

In the prediction phase, we make predictions for the output (damage index vector)

corresponding to a new feature vector x̃ based on the robust posterior predictive
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probability distribution as follows. The robust predictive probability for the corre-

sponding output vector ỹ based on the most probable model class is given by the

Theorem of Total Probability:

p(ỹ|x̃,DN , α̂, σ̂
2) =

∫
p(ỹ|x̃, θ, σ̂2)p(θ|DN , α̂, σ̂

2)dθ

= N(ỹ|y∗,Ω∗) (2.61)

where y∗ = [y1∗, ..., yM∗] ∈ RM , ym∗ = θ̂
T

mτ(x̃), θ = [θT
1 , ..., θ

T
M ]T ∈ R(N+1)M , Ω∗ =

diag(σ2
1∗, ..., σ

2
M∗) ∈ RM×M , σ2

m∗ = σ̂2
m + τ(x̃)T Σ̂mτ(x̃) and Σ̂m = (σ̂−2

m ΦTΦ + Â)−1.

2.4.5 Illustrative Examples

2.4.5.1 RVM Regression: Sinc Function Estimation

As an illustrative example for RVM regression, the function sinc(x) = sin(x)/x, is

chosen. 100 uniformly-spaced samples of x ∈ [−10, 10] are generated with Gaussian

noise of mean 0 and standard deviation 0.01 (sinc function and generated samples

shown as red dashed line and red dots, respectively, in Figure 2.3).

The Gaussian kernel, k(xm, xn) = exp
(
− ‖xm−xn‖2

22

)
with width = 2 is used for

both RVM and SVM where the SVM results using the same dataset are also presented

for the purpose of comparison. The solid blue lines in Figure 2.3 are the estimated

regression functions by RVM and SVM. The blue circles around some of the data

specify Relevance Vectors (RVs) or Support Vectors (SVs); these RVs or SVs control

the identified regression function based on the 100 data points.

The trade-off parameter C for SVM is estimated by 5-fold cross-validation and is

given in Table 2.1. In 5-fold cross-validation, the training dataset is divided into 5

subsets of (approximately) equal size and SVM is trained 5 times, each time leaving

out one of the subsets from training and then using the omitted subset to determine

the value of C which satisfies a certain error criterion i.e., to minimize the prediction

error for the omitted subset. It is shown in Figure 2.3 that the RVM algorithm pro-

vides a satisfactory regression function using only 8 RVs, a much smaller number of
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Figure 2.3: RVM and SVM Regression Based on Dataset of 100 Points Generated
from sinc Function with Gaussian Noise of Mean 0 and Standard Deviation 0.01.
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terms compared with 67 SVs for the case of SVM.

C No. of RVs or SVs Error (RMS)

RVM N/A 8 0.039
SVM 1.62 67 0.047

Table 2.1: Comparison between RVM and SVM for Sinc Function Estimation.

100 test data generated from the same sinc function are used for quantitative compar-

ison between RVM and SVM and the prediction is performed. The root-mean-square

(RMS) errors between the data and the RVM and SVM predictions are computed for

each case as shown in Table 2.1; the smaller RMS error and much smaller number of

terms in the regression function suggest that the RVM is a more effective regression

method.

2.4.5.2 RVM Classification: Ripley’s 2-D Gaussian-mixture Dataset

As a simple example of an RVM application for classification, it is applied to ran-

domly generated datasets from two mixtures of two equally-weighted 2-D Gaussian

PDFs (equal variances of 0.03) due to Ripley (1996). Data are labelled with y = 1

(blue dots) if from the mixture of two Gaussian PDFs with means at x = (−0.3, 0.7)

and (0.4, 0.7), and labelled with y = 0 (red crosses) if from the mixture of the two

Gaussian PDFs with means at x = (−0.7, 0.3) and (0.3, 0.3). The results by SVM us-

ing the same dataset are also presented for the purpose of comparison. The Gaussian

kernel, k(xm, xn) = exp
(
− ‖xm−xn‖2

0.52

)
is selected for both RVM and SVM, and the

results from using 250 data points with labels yn and feature vectors xn = (x1n, x2n),

n = 1, ..., 250, are shown in Figure 2.4, where the principal decision boundary sepa-

rating the two labelled datasets is plotted as a solid blue line for RVM and SVM. The

dashed and dotted lines alongside the solid line in the RVM classification represent

more conservative decision boundaries explained later. The blue circles around some

of the data specify Relevance Vectors (RVs) or Support Vectors (SVs). They are the

data points controlling the decision boundary based on the 250 data points. The

parameter C given in Table 2.2 represents the trade-off between model complexity
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and misclassification in SVM and it is determined by using 10-fold cross-validation

(Vapnik, 1998). Figure 2.4 demonstrates that the RVM algorithm provides a satis-

factory decision boundary by using only 7 RVs (i.e., 7 Gaussian kernel terms), which

is quite small compared with 93 SVs for the case of SVM. Note that large x1 and x2

correspond to a high probability for label y = 1 in RVM.

C No. of RVs or SVs
Misclassification rate(%)

P1 = P0 = 0.5 P1 = 0.4 and P0 = 0.4

RVM N/A 7 9.90 6.80
SVM 1.32 93 9.90 N/A

Table 2.2: Comparison between RVM and SVM for Gaussian-mixture Dataset.

For quantitative comparison, 1,000 test data are generated from the same Gaussian-

mixture distribution with known labels, and prediction is performed to investigate

the respective misclassification rates based on the trained RVM and SVM algorithms.

The misclassification rates are given in Table 2.2 as the percentage misclassified by

being on the wrong side of the principal decision boundary (which corresponds to a

probability = 0.5 threshold in the RVM). For example, if 99 test data are misclas-

sified (i.e., given a wrong label), then the error is 99
N
× 100 = 9.9%, where N=1,000

is the total number of test data. As is shown in Table 2.2, the misclassification rate

for both methods is the same when using the principal decision boundary. The mis-

classification rate with RVM drops to 6.80% if two conservative decision boundaries

corresponding to P1 = 0.4 and P0 = 0.4 are used; e.g., a data point with actual

label y = 0 is misclassified only if it appears above the contour for P0 = 0.4. Such

probabilistic decision making is possible only for RVM.
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Figure 2.4: RVM and SVM Classification Based on Dataset of 250 Points Drawn
Randomly from Two Mixtures of Two 2-D Gaussians. (The RVs and SVs that control
the decision boundaries are shown as blue circles. P1 and P0 denote the probabilities
of labels y = 1 and y = 0, respectively.)
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Chapter 3

Near-source and Far-source
Classification for Earthquake Early
Warning

Since an earthquake is an abrupt event that comes without much warning, there

is increasing research interest in automated seismic early warning systems that can

take rapid actions to mitigate damage and loss before the onset of the damaging

ground shaking at a facility (Allen and Kanamori, 2003; Cua, 2005). The basic

principle in seismic early warning is that an automated and reliable system may

allow time for taking mitigation measures because the speed of transmitted signals

(about 300, 000 km/s) to the system computer from the seismic network sensors that

detect the onset of the event is much faster than that of the most damaging S-waves

(about 3.5 km/s).

The Virtual Seismologist (VS) method was recently developed for an early warn-

ing system (Cua, 2005), which can estimate the location of the epicenter and the

magnitude within a few seconds after the detection of the P-waves near the causative

fault. This VS method, however, currently works for moderate earthquakes of mag-

nitude less than about 6.5 because it assumes a point-source model for the rupture

(Cua, 2005). To construct a seismic early warning system dealing with larger earth-

quakes, knowledge of the fault geometry is essential, and an important ingredient in

establishing the extent of the rupturing fault is to be able to classify the station into

near-source and far-source (Yamada et al., 2007).
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In this Chapter, automatic near-source and far-source classification of incoming

ground motion signals is presented, and the Bayesian learning method using an ARD

prior determines which ground motion features are optimal for this classification. In

Section 3.1.1, the earthquake dataset used for training is described, and the prediction

phase of the Bayesian learning method using the ARD prior is presented in Section

3.1.2. In Section 3.2, the classification results obtained by the proposed method are

presented and compared with those from a previous related study (Yamada et al.,

2007).

3.1 Near-source and Far-source Classification

3.1.1 Earthquake Data

The same dataset used previously by Yamada et al. (2007) is utilized to allow compar-

ison of the results. This dataset consists of 695 strong-motion records from 9 earth-

quakes of magnitude greater than 6.0: Imperial Valley (1979), Loma Prieta (1989),

Landers (1992), Northridge (1994), Hyogoken-Nanbu (1995), Izmit (1999), Chi-Chi

(1999), Denali (2002) and Niigataken-Chuetsu(2004). If the station is located less

than 10 km from the fault rupture, the corresponding records are categorized as

near-source (NS) and far-source (FS) otherwise. Only stations with fault distances

less than 200 km are included, since otherwise the ground motion amplitudes are

small, resulting in a low signal-to-noise ratio. In Table 3.1, the utilized number of NS

and FS records for each earthquake is listed.

The eight ground motion features listed in Table 3.2 were extracted from each

of the 695 records by Yamada (2007) after suitable signal processing of the accelero-

grams. The log10 values of these features are combined into a vector g(x) ∈ R8:

g(x) = [ log10Hj, log10 Zj, log10Ha, log10 Za, log10Hv, log10 Zv,

log10Hd, log10 Zd]
T (3.1)
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Earthquake Mw
a NS FS Total Fault Modelb

Imperial Valley (1979) 6.5 14 20 34 Hartzell and Heaton (1983)
Loma Prieta (1989) 6.9 8 39 47 Wald et al. (1991)
Landers (1992) 7.3 1 112 113 Wald and Heaton (1994)
Northridge (1994) 6.6 17 138 155 Wald et al. (1996)
Hyogoken-Nanbu (1995) 6.9 4 14 18 Wald (1996)
Izmit (1999) 7.6 4 13 17 Sekiguchi and Iwata (2002)
Chi-Chi (1999) 7.6 42 172 214 Ji et al. (2003)
Denali (2002) 7.8 1 29 30 Tsuboi et al. (2003)
Niigataken-Chuetsu (2004) 6.6 9 58 67 Honda et al. (2005)

Total 100 595 695

Table 3.1: Number of Near-source and Far-source Records in Earthquake Dataset
Used for Classification. (a moment magnitude Mw is cited from Havard CMT solution
and b listed fault models are utilized to classify near-source and far-source station.)

Ground Motion Feature Unit

Horizontal Peak Ground Jerk (Hj) (cm/s3)
Vertical Peak Ground Jerk (Zj) (cm/s3)
Horizontal Peak Ground Acceleration (Ha) (cm/s2)
Vertical Peak Ground Acceleration (Za) (cm/s2)
Horizontal Peak Ground Velocity (Hv) (cm/s)
Vertical Peak Ground Velocity (Zv) (cm/s)
Horizontal Peak Ground Displacement (Hd) (cm)
Vertical Peak Ground Jerk (Zd) (cm)

Table 3.2: Eight Extracted Features.

where H and Z mean the peak horizontal and vertical components and j, a, v and

d stand for jerk, acceleration, velocity, and displacement, respectively. The same

dataset of feature vectors is also used in Yamada et al. (2007) where a Bayesian

classification scheme was also applied, but an automatic relevance determination prior

was not used to select which of these features were most relevant for near-source versus

far-source classification.

3.1.2 Separating Boundary Model

For NS and FS classification, the extracted features x ∈ R8 defined in Table 3.2 are

used with label y ∈ {0, 1} (y = 0 for far-source data, y = 1 for near-source data),

and the theory for Bayesian learning for classification that is presented in Section
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2.3 is applied to the earthquake dataset with the number of data points N = 695.

The separating boundary between the two classes is taken as a linear combination

of the logarithms of the features x = {x1, ..., x8}T with unknown coefficients θ =

{θ0, θ1, ..., θ8}T ∈ R9:

f(x|θ) =
8∑

j=1

θjgj(x) + θ0 (3.2)

The separating boundary is defined by f(x|θ) = 0, and probabilistic predictions of

the class label y ∈ {0, 1} corresponding to extracted features x are based on the

probability model:

P (y|x, θ) = φ(f(x|θ))y{1− φ(f(x|θ))}1−y (3.3)

where the sigmoid function φ(·) ∈ [0, 1] is defined as before in Section 2.3.

3.2 Comparison of Results

3.2.1 Function for Separating Boundary

In a previous study that used a fixed prior (instead of the ARD prior), the three-

parameter model given in (3.4) was found to give the optimal separating boundary

function based on the earthquake dataset described in Section 3.1.1 (Yamada et al.,

2007):

M1 : f(x|θ̂) = 6.046 log10 Za + 7.885 log10Hv − 27.091 (3.4)

This corresponds to a model class, denoted M1 here, that was selected by finding

the most probable model class among 255 (=28 − 1) models consisting of all possible

combinations of the 8 features in Table 3.2 and using a fixed Gaussian prior p(θ|M)

for each model class M. For M1, the Gaussian prior was selected to have the same

standard deviation of α
− 1

2
i = 100 for each coefficient θi. The misclassification rates

for M1 are 22.00% and 2.02% for the NS and FS data, respectively.

The proposed method of Bayesian learning is first applied here to a model class
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with the same features as in (3.4) but using the ARD prior which has an independent

variance α−1
i for each θi (i = 0, 1, 2). Model class selection is used to determine the

optimal model class as described before (the corresponding optimal prior variances

are given later). The optimal boundary function for this model class M2 is given in

(3.5):

M2 : f(x|θ̂) = 6.129 log10 Za + 7.484 log10Hv − 26.588 (3.5)

The corresponding misclassification rates are 23.00% and 2.02% for NS and FS data,

respectively. Note that M2 is the most probable model class based on the earthquake

dataset that is restricted to contain only Za and Hj in the boundary function; it does

not necessarily optimize misclassification rates.

Based on the misclassification rates, it could be concluded that the difference in

performance between the two three-parameter models (3.4) and (3.5) is negligible.

However, it is shown later that M1 is actually less probable than M2, based on the

data.

Finally, the proposed methodology of Bayesian learning using the ARD prior

is applied to models containing all 8 features in Table 3.2. This produces a five-

parameter model class M3 whose optimal separating boundary function is:

M3 : f(x|θ̂) = 2.055 log10Hj + 5.350 log10 Za + 4.630 log10Hv

+ 1.972 log10Hd − 30.982 (3.6)

Note that for M2, the Bayesian learning algorithm is restricted to have no more than

log10 Za and log10Hv, the features that are used in the previous model class M1, while

M3 actually selects 2 additional features (giving a total of 4 features selected from

a potential of 8 by automatically pruning irrelevant features). The corresponding

misclassification rates for M3 are 18.00% and 1.85% for NS and FS data, respectively,

much smaller than those for M1 and M2.

The coefficients for the optimal separating boundaries, the optimal prior variances

and the corresponding classification results for each model class are summarized in
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M aNi 1 Hj Zj Ha Za Hv Zv Hd Zd

M1 3 -27.091 b– – – 6.046 7.885 – – –
M2 3 -26.588 – – – 6.129 7.484 – – –
M3 5 -30.982 2.055 c0 0 5.350 4.630 0 1.972 0

Table 3.3: Coefficients for Optimal Separating Boundary Function for Each Model
Class. (aNi is the number of parameters used for each model. b– means the corre-
sponding parameters are not considered for each model. c0 means the corresponding
parameters are automatically pruned during training.)

M Prior Covariance Matrix

M1 diaga(1002, 1002, 1002)
M2 diag(26.762, 6.192, 7.572)
M3 diag(31.232, 2.252, 5.482, 4.972, 2.202)

Table 3.4: Prior Covariance Matrix for Each Model Class. (adiag means diagonal
matrix with the diagonal elements following.)

Actual Class
Predicted Class

Total Observations
Near-source Far-source

M1

Near-source 78(78.00%) 22(22.00%) 100
Far-source 12(2.02%) 583(97.98%) 595

Total Predictions 90 605 695

M2

Near-source 77(77.00%) 23(23.00%) 100
Far-source 12(2.02%) 583(97.98%) 595

Total Predictions 89 606 695

M3

Near-source 82(82.00%) 18(18.00%) 100
Far-source 11(1.85%) 584(98.15%) 595

Total Predictions 93 602 695

Table 3.5: Classification Results for Earthquake Database Using Three Different
Model Classes. (Bold values represent the least misclassification rate.)

Tables 3.3, 3.4, and 3.5, respectively. The performance of these three model classes

are next examined by leave-one-out cross-validation and then by calculating their

probability based on the earthquake data DN .

3.2.2 Leave-One-Out Cross-Validation

Table 3.5 shows the classification results for models M1, M2, and M3 using all 695

records in the earthquake dataset, both for training and predicting the labels. As

shown in this table, M3 outperforms the two other models on the basis of smaller
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misclassification rates. For another check on the performance of these three models

for predicting the class, leave-one-out cross-validation (LOOCV) is performed.

LOOCV, as the name implies, takes one data point at a time from the whole

dataset and then a prediction is made based on the optimal separating boundary

determined from the remaining data. This procedure is repeated until each data

point has been compared with the prediction (taken here as the class with the higher

predictive probability). Actually, LOOCV is equivalent to K-fold cross-validation

where K(= 695 here) is equal to the number of data in the original dataset. Note

that LOOCV is commonly used in Tikhonov regularization to select the regularizing

parameter, but this is handled automatically in the Bayesian approach presented here.

The results of LOOCV for each model class are presented in Table 3.6. Based on

the misclassification rate, which is the ratio of the number of misclassified data to the

total number of data, classification model M3 shows a better performance.

Model Prediction Error

M1 36/695 (5.18%)
M2 37/695 (5.32%)
M3 31/695 (4.46%)

Table 3.6: Misclassification Rates Based on Leave-One-Out Cross-Validation.

3.2.3 Posterior Probability of Each Model Class

In this section the posterior probability of each model class in the set M = {M1,M2,M3}

is computed based on the dataset DN of 695 records:

P (Mi|DN ,M) =
P (DN |Mi)P (Mi|M)

P (DN |M)

=
P (DN |Mi)P (Mi|M)∑I
i=1 P (DN |Mi)P (Mi|M)

(3.7)

where P (DN |Mi) is the evidence for Mi, P (Mi|M) is the prior reflecting the initial

choice of the probability of each model class in set M, and the denominator P (DN |M)

is a normalizing constant. Assigning equal prior probability to each model class, the



50

posterior probability of each model class is proportional to its evidence, that is:

P (Mi|DN ,M) ∝ P (DN |Mi) (3.8)

Using the Theorem of Total Probability, the evidence is calculated from:

P (DN |Mi) =

∫
P (DN |θi,Mi)p(θi|Mi)dθi (3.9)

This is the average value of the likelihood weighted by the prior over all possible values

of the parameters θi. For a large number of data, an asymptotic approximation can

be applied to the integral in (3.9) (Beck and Yuen, 2004):

P (DN |Mi) ∼= P (DN |θ̂i,Mi)
2πNi/2p(θ̂i|Mi)√

|H(θ̂i)|
(3.10)

where θ̂i is the most probable value of θi and Ni is the number of parameters in

model class Mi. The first factor in (3.10) is the likelihood, and the remaining factors

together are the Ockham factor. This Ockham factor penalizes more complex models.

The Hessian matrix H(θi) in (3.10) is given by the same expression as for Σ̂−1(α) after

(2.49) where each variance α−1
i is given in Table 3.4. The posterior probabilities for

each of M1, M2, and M3 are presented in Table 3.7, which shows that M3 is much

more probable than M1 and M2 based on the dataset DN .

There is a nice information-theoretic interpretation (Beck and Yuen, 2004, Muto

and Beck, 2007) of the log evidence that shows that it consists of the difference

between a datafit term (the posterior mean of the log likelihood function for the model

class) and a relative entropy term which quantifies the amount of information (in the

sense of Shannon) extracted from the data by the model class. It is the latter term that

prevents over-fitting to the data and which leads to an automatic Principle of Model

Parsimony (Beck and Yuen, 2004) when Bayesian updating is performed over a set of

model classes, as done here. This information-theoretic interpretation is evident from

the asymptotic approximation (3.10) for large N which shows that the log evidence
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M ln Ockhama ln Likelihooda ln Evidencea Probabilityb

M1 -15 -81 -96 0.00
M2 -10 -79 -89 0.11
M3 -12 -75 -87 0.89

Table 3.7: Posterior Probability Calculation for Bayesian Model Class Selection. (aln
Ockham, ln Likelihood, and ln Evidence are natural logarithms of the Ockham factor,
likelihood, and evidence, respectively. bProbability is calculated from the evidence on
the basis that the Mi (i = 1, 2, 3) are equally probable a priori.)

is approximated by the sum of the log likelihood of the most probable model in the

model class and the log Ockham factor, which is an asymptotic approximation for

the negative of the relative entropy. This is how it was originally discovered (Beck

and Yuen, 2004) but more recently it has been proved for the general case (Muto

and Beck, 2007).

3.2.4 Effect of Prior

It seems obvious that the likelihood calculated by using the more complex model

M3 compared with M1 should be larger. However, the ARD prior leads to a larger

Ockham factor for M3 than M1, resulting in the higher evidence and higher posterior

probability for the more complex model class. Evidently, this difference in the Ock-

ham factor comes mostly from the different priors, as shown by the breakdown of the

log Ockham factor into its three terms in Table 3.8, where:

lnOckham =
Ni

2
ln(2π) + ln p(θ̂i|Mi)−

1

2
ln |H(θ̂i)| (3.11)

M Ni

2
ln(2π) ln p(θ̂i|Mi) −1

2
ln |H(θ̂i)| ln Ockham

M1 2.7568 -16.6140 -1.5514 -15.4085
M2 2.7568 -11.3634 -1.6298 -10.2363
M3 4.5947 -15.1611 -1.7572 -12.3237

Table 3.8: Components of ln Ockham Factor in (3.11).
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3.3 Conclusions

A novel methodology of Bayesian learning using the automatic relevance determina-

tion (ARD) prior is applied to classify measured earthquake motions into near-source

and far-source. The extracted features in the training dataset correspond to the log10

values of peak jerk, acceleration, velocity, and displacement in the horizontal and ver-

tical directions from 695 earthquake records, and these data are used with Bayesian

learning to establish a separating boundary in the feature space. The ARD prior

plays an important role by promoting sparsity when selecting the important features

(i.e., by utilizing only a small number of relevant features after automatically pruning

the remaining features). The selected best separating boundary for classification of

seismic signals into near-source and far-source is:

f(xi|θ̂) = 2.055 log10Hj + 5.350 log10 Za + 4.630 log10Hv

+ 1.972 log10Hd − 30.982 (3.12)

where Hj, Za, Hv and Hd are the horizontal jerk, vertical acceleration, horizontal ve-

locity, and horizontal displacement, respectively, of the ground motion record. Based

on (3.12), the probability for new data with features x̃ to be classified as near-source

(ỹ = 1) or far-source (ỹ = 0) is:

P (ỹ = 1|x̃, θ̂) =
1

1 + exp(−f(x̃|θ̂))
(3.13)

P (ỹ = 0|x̃, θ̂) = 1− P (ỹ = 1|x̃, θ̂) (3.14)

In view of the results so far achieved, it can be concluded that it is beneficial to

use the proposed Bayesian learning using the ARD prior because it leads to:

• higher correct classification rates (equivalent to a lower misclassification rate)

(see Table 3.5);

• better generalization performance, as demonstrated by the leave-one-out cross-

validation results (see Table 3.6);
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• the most probable model class based on the calculated posterior probability (see

Table 3.7).

The proposed method is readily applied to real-time analysis of recorded seismic

ground motions for near-source and far-source classification, since the only calcula-

tions involved are those implied by (3.12) to (3.14).
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Chapter 4

Ground Motion Attenuation
Relations (Ground Motion
Prediction Equations) using
Regression

Modeling the attenuation of ground shaking intensity measures such as peak ground

acceleration (PGA) or response spectral ordinates is essential for seismic hazard anal-

ysis. The attenuation model can be used for earthquake-resistant design purposes, as

well as for the inversion problem which deals with estimating the size and location of

an earthquake event.

Least-squares regression analysis that minimizes the Euclidean norm of the errors

between model and data has often been performed to estimate the unknown param-

eters in a prescribed mathematical form for the attenuation equation (e.g., Boore et

al., 1993 and 1997). However, it is well known that prediction errors may be larger

than the data-fit errors due to over-fitting of the data; a more complex model with

more unknown parameters may fit the given data better, but it may result in poor

future predictions. For a well-known ground motion attenuation equation (Boore et

al., 1997), Bayesian model class selection was performed and it is concluded that all

the proposed input variables for that equation may not be necessary (Muto, 2006).

In this chapter, the procedure of Bayesian Learning using the ARD prior is pre-

sented to identify a probabilistic attenuation model for PGA from recorded ground

motions and the results are compared to a previously-developed stochastic simulation
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method for identifying a predictive attenuation equation for PGA.

4.1 Estimation of Earthquake Ground Motion

4.1.1 Earthquake Data

The earthquake database to identify the probabilistic attenuation model is presented

in Table 4.3 at the end of this chapter. Data collected from 271 strong motion

records in 20 earthquakes are utilized (Boore et al., 1997). For peak accelerations,

the geometric mean value of two orthogonal horizontal components is used rather

than their maximum, since it represents a more stable peak acceleration parameter

(Campbell, 1981). The magnitudes of the earthquakes are equal to or greater than

5.0, representing events which are of most concern in earthquake-resistant design.

4.1.2 Boore-Joyner Attenuation Model

There is a well-known regression equation for the peak ground acceleration from an

earthquake (e.g., Boore, et al., 1993):

log(PGA) = b1 + b2(M − 6) + b3(M − 6)2 + b4R+ b5 logR+ b6GB + b7GC + σε (4.1)

where M is the magnitude of an earthquake, R =
√
d2 + h2 (called the fault distance),

d is the closest horizontal distance in km from the site to a point on the surface that

lies directly above the rupture, h is a fictitious depth parameter introduced to be

representative of a regional event, GB, GC ∈ {0, 1} are binary soil classification

parameters in Table 4.1, and ε is the uncertain prediction error which is modeled as a

Gaussian variable with mean zero and standard deviation unity. Boore et al. (1993)

suggested h = 5.57 for California earthquakes. The model parameters are σ, h and

b = {b1, ..., b7}T .

In Muto (2006), Bayesian Model Class Selection was performed to find out the

most probable model class by using several methods to evaluate the necessary quan-
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tities: Laplace’s asymptotic approximation and three stochastic simulation methods:

Gibbs sampler, Metropolis-Hastings Algorithm, and the newly developed Transient

Markov Chain Monte Carlo Method (Ching and Chen, 2006). For h, the fictitious

depth, which is non-linearly involved in the regression equation, the most plausible

value was estimated by maximizing its posterior probability distribution based on the

data, instead of using the given value of h by Boore el al. (1993).

Site Class Range of Shear Velocity

A greater than 750 m/s
B 360 m/s to 750 m/s
C 180 m/s to 360 m/s
D less than 180 m/s

Table 4.1: Definition of Site Classes. (GB or GC is 1 if a site is classified in class B
or C, respectively, and 0 otherwise.)

4.1.3 Training Phase for PGA Estimation

Let us assume first that h is given, then the parameters and the function form can

be defined as

y = log(PGA)

= b1 + b2(M − 6) + b3(M − 6)2 + b4R + b5 logR + b6(GB) + b7(GC) + σε

= τ(x, h)T b+ σε = f(x|b, h) + σε (4.2)

where x = {M,d,GB, GC}T , b = {b1, b2, b3, b4, b5, b6, b7}T , τ(x, h) = [1,M − 6, (M −

6)2, R(h), logR(h), (GB), (GC)]T , andR =
√
d2 + h2. Thus, y is Gaussian, p(y|x, b, σ2, h) =

N(y|f(x|b, h), σ2), given b, σ2, and h.

The likelihood for the given earthquake dataset DN = {(xi, yi) : i = 1, ..., N} =

(X, y) with xi = {Mi, di, (GB)i, (GC)i}T ∈ R4 and yi = {log(PGA)i} ∈ R is:

p(DN |b, σ2, h) = N(Φb, σ2I) = (2πσ2)−N/2 exp
[
− 1

2σ2
‖y −Φb‖2

]
(4.3)

where Φ(h) = [τ(x1, h), ..., τ(xN , h)]
T ∈ RN×7. Define the ARD prior PDF as before,
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that is, p(b|α, σ2, h) = p(b|α) = N(0,A−1(α)) so b is Gaussian with mean 0 and

covariance matrix A−1(α).

Then the posterior PDF for the unknown parameters b can be calculated via

Bayes’ theorem:

p(b|DN , α, σ
2, h) =

p(DN |b, α, σ2, h)p(b|α, σ2, h)

p(DN |α, σ2, h)

= (2π)−7/2|Σ̂|−1/2 exp
[
− 1

2
(b− b̂)T Σ̂−1(b− b̂)

]
(4.4)

where Σ̂ = (σ−2ΦTΦ + A)−1, b̂ = σ−2Σ̂ΦTy, and σ̂2 =
‖y−Φb̂‖2

N−Σiγi
as before in Section

2.2.1. Note that Σ̂ and b̂ depend on α, σ2, and h.

4.1.4 Posterior Robust Predictive Probability Distribution

for PGA

Let ỹ denote the unknown log(PGA) calculated from x̃ = {M̃, d̃, G̃BG̃C}T , then the

desired posterior robust predictive probability distribution for PGA is given by the

Theorem of Total Probability where Laplace’s approximation is used to evaluate the

integral over α, σ2, and h (i.e., α, σ2, and h define the model class for y which covers

all possible values of b, where the latter is treated analytically since it is Gaussian

given α, σ2, and h):

p(ỹ|x̃,DN) =

∫
p(ỹ, b, α, σ2, h|x̃,DN)dbdαdσ2dh

=

∫
p(ỹ|x̃,DN , b, σ

2, h)p(b|DN , α, σ
2, h)p(α, σ2, h|DN)dbdαdσ2dh

∼=
∫
p(ỹ|x̃, b, σ̂2, ĥ)p(b|DN , α̂, σ̂

2, ĥ)db

= N(ỹ|y∗, σ2
∗) (4.5)

where y∗ = b̂T τ(x̃, ĥ), σ2
∗ = σ̂2 + τ(x̃, ĥ)T Σ̂τ(x̃, ĥ) and α̂, σ̂2, and ĥ are the most

plausible values which maximize the evidence p(DN |α, σ2, h). In (4.5), α̂ and σ̂2

are determined as in Section 2.2 where a non-informative prior on the parameters
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defining the model class is chosen. Then the most plausible fictitious depth ĥ can be

determined by maximizing the evidence of h:

h = arg max
h

p(DN |α̂(h), σ̂2(h), h) (4.6)

4.1.5 Estimation of a Non-linearly Involved Parameter

4.1.5.1 Inclusion of the Fictitious Depth Defining Model Class

As described in the previous Section 4.1.4, a non-linearly involved parameter h can be

estimated by considering it to define model class along with α and σ2. The estimated

regression coefficients b, σ, and h are in Table 4.2, Case 2.

4.1.5.2 Estimating the Fictitious Depth by Stochastic Simulation

The Metropolis-Hastings algorithm (a Markov Chain Monte Carlo (MCMC) simu-

lation method (Martinez and Martinez, 2002)) is also applied for estimating the

fictitious depth, h, instead of using Bayesian Model Class Selection, as above.

This method consists of two steps. In the first step, the Bayesian learning al-

gorithm using the ARD prior is applied to estimate the regression coefficients b for

given h; then the MCMC algorithm was applied to generate samples from the poste-

rior PDF p(h|b,DN , α̂, σ̂
2) based on σ2 and the regression coefficients b estimated in

the previous step. A lognormal distribution for h is used as a proposal distribution in

the Metropolis-Hastings algorithm with the mean and standard deviation estimated

from the depths for 12 earthquakes.

The generated samples of fictitious depth h and the corresponding estimated re-

gression coefficients b is shown in Figure 4.1 as a function of the number of generated

samples of h. The moving averages for each parameter are also shown in Figure 4.2

with dotted line representing the standard deviation. The burn-in period for MCMC

is about 30 samples. The plot shows around 300 samples are enough for obtaining

the converged value of h, and for the comparison in the next section, the mean of

500 samples of h is taken. The estimated regression coefficients and h are in Table
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Figure 4.1: Estimated Values of Regression Coefficients and Samples of Fictitious
Depth during MCMC Algorithm.
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Figure 4.2: Mean and Standard Deviation of Regression Coefficients and the Gener-
ated Fictitious Depth during MCMC Algorithm.
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4.2, Case 3. Compared with Case 1 (Bayesian Model Class Selection by Maximizing

Evidence) and even Case 2 (result in the previous section), the proposed method is

proven as effective in estimating a non-linearly involved parameter h.

4.2 Comparison of Results

In this section, the results from the various methods are compared. Table 4.2 shows

the comparison results. Case 1 shows the mean parameter estimates by utilizing

Transitional Markov Chain Monte Carlo simulation (Muto, 2006) and a fixed prior

on the model parameters. The results for Case 2 and 3 are obtained by using (4.6)

and MCMC for h, respectively, along with Bayesian learning using the ARD prior for

the regression coefficients. Dashes (i.e., –) for b1, b3, and b4 in Case 1 represent that

corresponding coefficients are not considered for that method and zeros for b1 and b4

(Case 2 and 3) stand for pruning of the corresponding parameters by the ARD prior,

not excluding them beforehand.

Case b1 b2 b3 b4 b5 b6 b7 h σ

1 – 0.230 – – -0.834 0.164 0.256 6.78 0.197
2 0.000 0.260 -0.053 0.000 -0.804 0.150 0.231 6.43 0.194
3 0.000 0.260 -0.054 0.000 -0.810 0.152 0.233 6.98 0.194

Table 4.2: Comparison Results for Parameter Estimation.

The Bayesian learning method using the ARD prior is efficient in computational

cost. For Case 1, the most probable model class is selected using Bayesian model class

selection from considering all 127 = 7C1 + 7C2 + 7C3 + 7C4 + 7C5 + 7C6 + 7C7 = 27− 1

possibilities. The proposed method, however, automatically selects the most plausible

model class based on the given data, which results in smaller errors in shorter time

(or results in much less computational effort). The improvement in efficiency comes

from being able to use a continuous-variable optimization algorithm on α, i.e., to

perform continuous model class selection, rather than a discrete optimization over

all 127 possible model classes. Therefore, it is beneficial to select continuous model

class selection, especially using the ARD prior which assigns one hyperparameter per
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input that controls the contribution of that corresponding input.

In contrast to Case 1, the results from the proposed method show the existence of

an additional term with coefficient b3 (see Table 4.2). The small negative values of b3

seems to suggest that some saturation of PGA is expected with magnitude, but more

research is needed with a dataset that contains more large earthquake recordings.

This term has been adopted to provide better fits for longer period ground motions

for the 5% response spectral ordinates where saturation with magnitude appears to

be more pronounced (Boore et al., 1997).

4.3 Conclusions

The Bayesian learning method using the ARD prior is shown to be an efficient tool

for estimating unknown parameters in the peak ground attenuation equation; more

generally, this work suggests that it should be a reliable and promising estimation

tool for function estimation from data.

The proposed method has several advantages:

(1) It performs automatic model class selection by optimizing the hyperparameters,

which reduces computational effort greatly compared with studying all 127 model

classes as done in discrete optimization over all model classes in previous work.

(2) It provides robust probabilistic estimation by considering all forms of uncertainty.

There has been much previous work on the estimation of earthquake ground mo-

tion attenuation equations; recently the next generation attenuation relationships

have been studied (http://peer.berkeley.edu/nga/index.html). In this situation, the

Bayesian learning method using the ARD prior should prove to be an effective tool,

having the ability to choose the most plausible model based on an earthquake dataset.

In this approach, one selects a flexible model containing all terms thought to influ-

ence the ground shaking at a site, and then lets the algorithm automatically prune

irrelevant terms by using the ARD prior and the earthquake dataset.
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Table 4.3: Earthquake Records Used.

Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Imperial Valley 1 7.00 12.0 C 0.359 0.224
Kern County 7.40 42.0 B 0.196 0.177
Kern County 7.40 85.0 B 0.135 0.090
Kern County 7.40 109.0 B 0.054 0.048
Kern County 7.40 107.0 C 0.062 0.044
Daly City 5.30 8.0 A 0.127 0.105
Parkfield 6.10 16.1 B 0.411 0.282
Parkfield 6.10 17.3 B 0.072 0.066
Parkfield 6.10 6.6 C 0.509
Parkfield 6.10 9.3 C 0.467 0.403
Parkfield 6.10 13.0 C 0.279 0.276
Borrego Mountain 6.60 45.0 C 0.142 0.061
San Fernando 6.60 17.0 B 0.374 0.288
San Fernando 6.60 25.7 B 0.114 0.103
San Fernando 6.60 60.7 B 0.057 0.047
San Fernando 6.60 19.6 C 0.200 0.159
Sitka 7.70 45.0 A 0.110 0.090
Managua 6.20 5.0 C 0.390 0.330
Point Mugu 5.60 16.0 C 0.130 0.080
Hollister 5.20 17.0 A 0.011 0.008
Hollister 5.20 8.0 B 0.120 0.050
Hollister 5.20 10.0 B 0.140 0.100
Hollister 5.20 10.0 C 0.170 0.100
Santa Barbara 5.87 0.0 B 0.210 0.100
Santa Barbara 5.87 11.0 B 0.390 0.240
Santa Barbara 5.87 14.0 B 0.280 0.240
St. Elias 7.60 25.4 B 0.160 0.110
Coyote Lake 5.80 9.1 A 0.127 0.100
Coyote Lake 5.80 1.2 B 0.419 0.344
Coyote Lake 5.80 17.9 B 0.110 0.090
Coyote Lake 5.80 19.2 B 0.120 0.080
Coyote Lake 5.80 30.0 B 0.044 0.040
Coyote Lake 5.80 3.7 C 0.257 0.236
Coyote Lake 5.80 5.3 C 0.267 0.260
Coyote Lake 5.80 7.4 C 0.263 0.196
Imperial Valley 2 6.50 14.0 B 0.200 0.110
Imperial Valley 2 6.50 23.5 B 0.167 0.149
Imperial Valley 2 6.50 26.0 B 0.210 0.120
Imperial Valley 2 6.50 0.5 C 0.320 0.300
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Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Imperial Valley 2 6.50 0.6 C 0.520 0.360
Imperial Valley 2 6.50 1.3 C 0.720 0.450
Imperial Valley 2 6.50 1.4 C 0.316 0.240
Imperial Valley 2 6.50 2.6 C 0.810 0.660
Imperial Valley 2 6.50 3.8 C 0.640 0.500
Imperial Valley 2 6.50 4.0 C 0.560 0.400
Imperial Valley 2 6.50 5.1 C 0.510 0.370
Imperial Valley 2 6.50 6.2 C 0.400 0.270
Imperial Valley 2 6.50 6.8 C 0.610 0.380
Imperial Valley 2 6.50 7.5 C 0.260 0.220
Imperial Valley 2 6.50 7.6 C 0.240 0.240
Imperial Valley 2 6.50 8.4 C 0.459 0.311
Imperial Valley 2 6.50 8.5 C 0.230 0.200
Imperial Valley 2 6.50 8.5 C 0.220 0.170
Imperial Valley 2 6.50 10.6 C 0.280 0.220
Imperial Valley 2 6.50 12.6 C 0.380 0.380
Imperial Valley 2 6.50 12.9 C 0.310
Imperial Valley 2 6.50 15.0 C 0.110 0.080
Imperial Valley 2 6.50 16.0 C 0.430 0.330
Imperial Valley 2 6.50 17.7 C 0.267 0.263
Imperial Valley 2 6.50 18.0 C 0.150 0.110
Imperial Valley 2 6.50 22.0 C 0.150 0.150
Imperial Valley 2 6.50 22.0 C 0.150 0.120
Imperial Valley 2 6.50 23.0 C 0.130 0.086
Imperial Valley 2 6.50 23.2 C 0.188 0.149
Imperial Valley 2 6.50 32.0 C 0.066 0.049
Imperial Valley 2 6.50 32.7 C 0.349 0.235
Imperial Valley 2 6.50 36.0 C 0.100 0.070
Imperial Valley 2 6.50 43.5 C 0.163 0.122
Imperial Valley 2 6.50 49.0 C 0.140 0.110
Imperial Valley 2 6.50 60.0 C 0.049 0.043
Livermore Valley 1 5.80 20.8 B 0.045 0.010
Livermore Valley 1 5.80 33.1 B 0.056 0.050
Livermore Valley 1 5.80 40.3 B 0.065 0.060
Livermore Valley 1 5.80 15.7 C 0.154 0.060
Livermore Valley 1 5.80 16.7 C 0.052 0.040
Livermore Valley 1 5.80 28.5 C 0.086 0.050
Livermore Valley 2 5.50 10.1 B 0.267 0.190
Livermore Valley 2 5.50 26.5 B 0.026 0.030
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Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Livermore Valley 2 5.50 29.0 B 0.039
Livermore Valley 2 5.50 30.9 B 0.112 0.050
Livermore Valley 2 5.50 37.8 B 0.065 0.040
Livermore Valley 2 5.50 4.0 C 0.259 0.220
Livermore Valley 2 5.50 17.7 C 0.275 0.090
Livermore Valley 2 5.50 22.5 C 0.058 0.040
Livermore Valley 2 5.50 48.3 A 0.026 0.020
Horse Canyon 5.30 5.8 A 0.123 0.088
Horse Canyon 5.30 12.0 A 0.133 0.118
Horse Canyon 5.30 12.1 A 0.073 0.067
Horse Canyon 5.30 36.1 A 0.111 0.084
Horse Canyon 5.30 20.6 B 0.097 0.076
Horse Canyon 5.30 20.6 B 0.096 0.096
Horse Canyon 5.30 25.3 B 0.181 0.114
Horse Canyon 5.30 36.3 B 0.110 0.094
Horse Canyon 5.30 41.4 B 0.040 0.320
Horse Canyon 5.30 43.6 B 0.047 0.044
Horse Canyon 5.30 44.4 B 0.022 0.017
Horse Canyon 5.30 35.9 C 0.082 0.050
Horse Canyon 5.30 38.5 C 0.094 0.060
Horse Canyon 5.30 46.1 C 0.057 0.046
Horse Canyon 5.30 47.1 C 0.080 0.062
Loma Prieta 6.92 10.5 A 0.500 0.430
Loma Prieta 6.92 29.9 A 0.060 0.040
Loma Prieta 6.92 32.5 A 0.090 0.070
Loma Prieta 6.92 42.7 A 0.070 0.070
Loma Prieta 6.92 67.6 A 0.110 0.060
Loma Prieta 6.92 69.0 A 0.040 0.060
Loma Prieta 6.92 72.6 A 0.110 0.070
Loma Prieta 6.92 77.2 A 0.080 0.070
Loma Prieta 6.92 78.5 A 0.090 0.080
Loma Prieta 6.92 79.5 A 0.060 0.030
Loma Prieta 6.92 80.5 A 0.050 0.060
Loma Prieta 6.92 0.0 B 0.500 0.640
Loma Prieta 6.92 10.9 B 0.370 0.330
Loma Prieta 6.92 11.7 B 0.340 0.530
Loma Prieta 6.92 12.0 B 0.330 0.260
Loma Prieta 6.92 12.3 B 0.250 0.280
Loma Prieta 6.92 12.5 B 0.440 0.470
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Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Loma Prieta 6.92 13.2 B 0.280 0.270
Loma Prieta 6.92 19.9 B 0.170 0.130
Loma Prieta 6.92 20.0 B 0.250 0.260
Loma Prieta 6.92 21.7 B 0.190 0.170
Loma Prieta 6.92 34.1 B 0.070 0.070
Loma Prieta 6.92 36.1 B 0.130 0.080
Loma Prieta 6.92 38.7 B 0.080 0.080
Loma Prieta 6.92 42.0 B 0.110 0.130
Loma Prieta 6.92 46.4 B 0.110 0.120
Loma Prieta 6.92 46.5 B 0.090 0.160
Loma Prieta 6.92 46.6 B 0.090 0.100
Loma Prieta 6.92 48.7 B 0.100 0.110
Loma Prieta 6.92 49.9 B 0.070 0.100
Loma Prieta 6.92 53.0 B 0.060 0.090
Loma Prieta 6.92 53.7 B 0.070 0.070
Loma Prieta 6.92 56.0 B 0.080 0.080
Loma Prieta 6.92 57.7 B 0.160 0.160
Loma Prieta 6.92 58.7 B 0.060 0.060
Loma Prieta 6.92 75.9 B 0.120 0.100
Loma Prieta 6.92 77.6 B 0.050 0.060
Loma Prieta 6.92 8.6 C 0.470 0.540
Loma Prieta 6.92 12.1 C 0.330 0.370
Loma Prieta 6.92 14.0 C 0.370 0.550
Loma Prieta 6.92 15.8 C 0.220 0.420
Loma Prieta 6.92 24.3 C 0.330 0.230
Loma Prieta 6.92 25.4 C 0.290 0.270
Loma Prieta 6.92 27.0 C 0.160 0.170
Loma Prieta 6.92 27.5 C 0.220 0.190
Loma Prieta 6.92 27.8 C 0.230 0.250
Loma Prieta 6.92 29.3 C 0.110 0.130
Loma Prieta 6.92 31.4 C 0.100 0.140
Loma Prieta 6.92 31.4 C 0.120 0.090
Loma Prieta 6.92 34.8 C 0.200 0.210
Loma Prieta 6.92 35.0 C 0.290 0.190
Loma Prieta 6.92 42.4 C 0.150 0.200
Loma Prieta 6.92 50.9 C 0.170 0.160
Loma Prieta 6.92 56.3 C 0.140 0.180
Loma Prieta 6.92 61.6 C 0.080 0.090
Loma Prieta 6.92 63.2 C 0.330 0.240
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Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Loma Prieta 6.92 67.3 C 0.100 0.130
Loma Prieta 6.92 68.8 C 0.040 0.040
Loma Prieta 6.92 75.2 C 0.260 0.200
Loma Prieta 6.92 76.3 C 0.200 0.260
Loma Prieta 6.92 78.6 C 0.050 0.050
Loma Prieta 6.92 78.8 C 0.290 0.270
Loma Prieta 6.92 80.5 C 0.080 0.080
Petrolia 7.10 1.9 A 0.210 0.180
Petrolia 7.10 9.8 B 0.480 0.320
Petrolia 7.10 12.3 B 0.390 0.550
Petrolia 7.10 13.7 B 0.120 0.120
Petrolia 7.10 14.6 B 0.280 0.320
Petrolia 7.10 17.6 B 0.260 0.260
Petrolia 7.10 23.9 B 0.180 0.140
Petrolia 7.10 32.6 B 0.180 0.240
Petrolia 7.10 0.0 C 0.690 0.620
Petrolia 7.10 10.0 C 0.300 0.370
Petrolia 7.10 27.8 C 0.200 0.150
Petrolia 7.10 35.8 C 0.170 0.160
Landers 7.30 2.1 A 0.880 0.630
Landers 7.30 27.6 A 0.120 0.120
Landers 7.30 37.6 A 0.060 0.050
Landers 7.30 41.9 A 0.090 0.070
Landers 7.30 51.3 A 0.060 0.050
Landers 7.30 56.2 A 0.030 0.030
Landers 7.30 60.1 A 0.050 0.060
Landers 7.30 60.8 A 0.040 0.050
Landers 7.30 68.2 A 0.042 0.053
Landers 7.30 68.3 A 0.150 0.120
Landers 7.30 69.7 A 0.060 0.080
Landers 7.30 70.2 A 0.030 0.020
Landers 7.30 78.0 A 0.030 0.040
Landers 7.30 78.7 A 0.140 0.130
Landers 7.30 83.7 A 0.050 0.060
Landers 7.30 86.0 A 0.040 0.050
Landers 7.30 89.0 A 0.030 0.030
Landers 7.30 89.4 A 0.040 0.040
Landers 7.30 89.4 A 0.050 0.040
Landers 7.30 93.3 A 0.040 0.040



67

Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Landers 7.30 95.9 A 0.050 0.030
Landers 7.30 97.4 A 0.020 0.020
Landers 7.30 97.6 A 0.080 0.080
Landers 7.30 99.4 A 0.040 0.050
Landers 7.30 100.1 A 0.050 0.050
Landers 7.30 104.8 A 0.030 0.030
Landers 7.30 112.2 A 0.040 0.060
Landers 7.30 117.9 A 0.030 0.040
Landers 7.30 11.3 B 0.290 0.280
Landers 7.30 17.7 B 0.207 0.188
Landers 7.30 22.5 B 0.170 0.150
Landers 7.30 22.8 B 0.430 0.280
Landers 7.30 25.8 B 0.220 0.220
Landers 7.30 27.7 B 0.136 0.134
Landers 7.30 27.8 B 0.137 0.087
Landers 7.30 37.7 B 0.150 0.140
Landers 7.30 45.4 B 0.180 0.170
Landers 7.30 45.4 B 0.100 0.120
Landers 7.30 57.0 B 0.130 0.140
Landers 7.30 57.8 B 0.040 0.060
Landers 7.30 59.5 B 0.050 0.070
Landers 7.30 61.7 B 0.070 0.050
Landers 7.30 62.4 B 0.080 0.090
Landers 7.30 62.6 B 0.060 0.060
Landers 7.30 64.1 B 0.080 0.080
Landers 7.30 65.0 B 0.120 0.110
Landers 7.30 65.6 B 0.050 0.050
Landers 7.30 66.9 B 0.060 0.060
Landers 7.30 71.9 B 0.080 0.090
Landers 7.30 74.8 B 0.040 0.050
Landers 7.30 76.0 B 0.120 0.120
Landers 7.30 76.1 B 0.080 0.090
Landers 7.30 77.5 B 0.100 0.090
Landers 7.30 79.0 B 0.050 0.080
Landers 7.30 79.4 B 0.050 0.030
Landers 7.30 80.6 B 0.060 0.060
Landers 7.30 81.2 B 0.100 0.110
Landers 7.30 83.7 B 0.060
Landers 7.30 84.7 B 0.060 0.060
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Earthquake Magnitude(M) Distance(d) Site Class PA H1 PA H2

Landers 7.30 85.7 B 0.080 0.080
Landers 7.30 86.4 B 0.080 0.090
Landers 7.30 88.3 B 0.110 0.110
Landers 7.30 89.6 B 0.070 0.050
Landers 7.30 92.4 B 0.090 0.130
Landers 7.30 93.1 B 0.080 0.120
Landers 7.30 95.0 B 0.050 0.050
Landers 7.30 96.2 B 0.040 0.050
Landers 7.30 99.2 B 0.100 0.050
Landers 7.30 101.7 B 0.120 0.070
Landers 7.30 105.7 B 0.040 0.050
Landers 7.30 107.4 B 0.080 0.080
Landers 7.30 116.1 B 0.070 0.050
Landers 7.30 118.2 B 0.060 0.080
Landers 7.30 26.3 C 0.250 0.150
Landers 7.30 36.7 C 0.090 0.090
Landers 7.30 37.7 C 0.120 0.100
Landers 7.30 49.6 C 0.130 0.290
Landers 7.30 52.6 C 0.100 0.080
Landers 7.30 54.9 C 0.120 0.100
Landers 7.30 65.5 C 0.050 0.050
Landers 7.30 66.8 C 0.050 0.070
Landers 7.30 69.1 C 0.100 0.090
Landers 7.30 72.6 C 0.090 0.070
Landers 7.30 72.7 C 0.120 0.100
Landers 7.30 77.5 C 0.120 0.120
Landers 7.30 79.0 C 0.060 0.070
Landers 7.30 79.6 C 0.220 0.110
Landers 7.30 79.9 C 0.090 0.080
Landers 7.30 86.8 C 0.140 0.110
Landers 7.30 87.3 C 0.050 0.050
Landers 7.30 98.7 C 0.080 0.070
Landers 7.30 98.7 C 0.060 0.100
Landers 7.30 105.6 C 0.130 0.150
Landers 7.30 106.2 C 0.040 0.030
Landers 7.30 115.3 C 0.090 0.080
Landers 7.30 117.6 C 0.050 0.070
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Chapter 5

Structural Health Monitoring

5.1 Illustrative Examples for Structural Health Mon-

itoring

5.1.1 RVM Classification for SHM

In this section, the application of RVM classification for SHM is investigated using

several simple structural systems.

5.1.1.1 Planar Shear Building Models

The first examples are 3-, 4-, and 5-story planar shear-building models. The models

are used to generate 400 training data corresponding to either noisy scaled funda-

mental mode shapes (dividing by the square of the fundamental frequency) or noisy

first Ritz vectors, that is, two datasets are generated to use as features. The lumped

floor masses are m = 100 kips/g = 0.2591 kip sec2/in and the interstory stiffnesses

are k = 31.56 kips/in. The natural frequencies of the undamaged 3-, 4-, and 5-story

buildings are 0.78, 0.61, and 0.50 Hz, respectively.

Damage is imposed as a 20% stiffness reduction to the first story of each building

and three levels of Gaussian noise of mean zero and standard deviations 3%, 5%, and

10% are added to the extracted mode shapes and Ritz vectors and 3% is added to the

natural frequencies. Then the scaled fundamental mode shapes and first Ritz vectors

are prepared as feature vectors.
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5.1.1.2 Bridge Models

Figure 5.1 shows the configuration of a 2-D truss and a 3-D frame representing sim-

ple bridge models. For both the truss and bridge training datasets, 400 9-D feature

vectors are extracted from a finite element model of each structure. For each struc-

ture, the feature vectors are either the noisy fundamental scaled mode shapes or the

noisy first force-dependent Ritz vectors, and they are simulated for undamaged and

20% damaged structures with different levels of simulated measurement noise added.

Damage is imposed as a 20% stiffness reduction to the element labeled 1 of each

bridge models.

 4 m 4 m 

3 m 

1 

 104 ft 104 ft 

17 ft 

1 
X 

Z 

Figure 5.1: Configuration of 2-D Truss and 3-D Frame Bridge Structures.

For the 2-D truss bridge model, density (ρ), Young’s modulus (E), and cross-

sectional area (A) are 7850 kg/m3, 220 GPa, and 16.5 cm2, respectively, and the

values along with units used as material properties and constants for the 3-D frame

bridge are listed in Table 5.1. The fundamental frequencies of the 2-D truss and 3-D

frame models are 67.49 and 7.57 Hz, respectively.
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Values Units

ρ 4.658e-3 (kips sec2/ft4)
E 518400 (kips/ft2)
Iz (Deck) 130.23 (ft4)
Iz (Column) 34.92 (ft4)
Iy (Deck) 4976.85 (ft4)
Iy (Column) 34.92 (ft4)
GJ (Deck) 1.55e+8 (kips ft2)
GJ (Column) 1.55e+7 (kips ft2)
A (Deck) 51.66 (ft2)
A (Column) 22.35 (ft2)

Table 5.1: Material Properties and Constants for a 3-D Frame Bridge.

5.1.1.3 Classification Results

Figure 5.2 provides SHM results for the planar 3-story shear building using the scaled

mode shapes. The 3-D feature vectors are viewed at the same azimuth and elevation

for both RVM and SVM. The separating decision boundary, shown as a gray-colored

plane, is estimated from each RVM and SVM method and separates the training

dataset. Datasets generated from undamaged and 20% damaged 3-story shear build-

ings are plotted as red crosses and blue dots, respectively.

C
No. of RVs
or SVs

Misclassification rate (%) Execution
Time(sec)P1 = P0 = 0.5 P1 = 0.4 and P0 = 0.4

RVM N/A 2 1.50 1.25 4.70
SVM 1.0156 93 1.75 N/A 14.14

Table 5.2: Comparison between RVM and SVM for 3-story Building Example.

The performance of RVM is slightly better than that of SVM in the sense of the

misclassification rate, as shown in Table 5.2, but the number of controlling feature vec-

tors, i.e., the number of Relevance Vectors (RVs) and Support Vectors (SVs), differs

substantially: 2 RVs for RVM and 93 SVs for SVM. Another specific characterization

of RVM is that the RVs are located further from the decision boundary than SVs,

which may explain the higher sparsity (i.e., fewer kernel terms defining the separat-

ing boundary) inherent in RVM. In other words, SVM uses data near the separating

boundary to estimate it, while only a few representative data play the important role
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Figure 5.2: RVM and SVM Classification Using the Dataset of the Scaled Fundamen-
tal Mode Shape Simulated from the 3-story Building. 10% and 3% noise are added
to the fundamental mode shape and fundamental frequency, respectively.
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Imposed Misclassification rate (%)
Damage (%) RVM SVM

3-Story
Building

5 6.0 5.5
25 0.5 0.5

Table 5.3: Comparison between RVM and SVM for 3-story Building Example.

of defining the separating boundary in RVM. In SVM, 10-fold cross-validation is also

employed for deciding the trade-off parameter C; this parameter provides trade-off

between data-fit errors and the complexity of separating boundaries (classification),

or estimated regression equations (regression). Table 5.2 shows the detailed results,

including the value of C for SVM and the reduction of RVM misclassification rate

from 1.50% to 1.25% when more conservative decision boundaries corresponding to

P1 = 0.4 and P0 = 0.4 are considered for RVM. The elapsed times for executing the

RVM and SVM programs are also shown. As mentioned before, SVM takes longer

because of the cross-validation, which requires multiple processing of the training

data.

New monitoring data of the scaled mode shape are generated for two cases: 5%

and 25% stiffness reduction in the first story of the damaged 3-story building, then

the RVM and SVM trained by the undamaged (0%) and 20% damaged datasets are

applied. The 5% and 25% damaged states are expected to be classified close to the

0% and 20% categories, respectively. Table 5.3 shows the results of classification: the

performance of each method becomes better as the damage severity increases. The

higher misclassification rate in predicting the 5% damaged state is expected because

the damage features do not differ much in the initial damage stages. The 6% error

percentage, however, is a promising result considering that 10% level of noise is added

to generate the scaled mode shapes and only first mode information is used.

Table 5.4 shows the comparison results of RVM using the scaled fundamental mode

shape and the first Ritz vector as features to check their relative performance, since

it is often claimed that the first Ritz vector is a better feature than the fundamental

mode shape for damage detection. The smaller misclassification rate between each

case is written in bold and it shows that the scaled fundamental mode shape is



74

Dim. of
features

Noise
level(%)

Scaled mode shape Ritz vector
No. of RVs Errors(%) No. of RVs Errors(%)

3-Story
Building

3
3 2 0.25 2 5.00
5 2 1.00 4 17.50
10 2 1.50 5 31.00

4-Story
Building

4
3 2 0.25 3 2.00
5 3 2.50 3 14.00
10 3 3.25 6 27.50

5-Story
Building

5
3 3 0.25 3 1.00
5 4 0.75 5 11.00
10 4 7.25 11 25.50

Truss 9
3 5 0.50 2 10.50
5 8 1.00 2 14.00
10 16 7.25 6 19.50

Bridge 9
3 7 1.50 5 3.00
5 12 6.00 4 15.00
10 20 12.00 7 31.00

Table 5.4: Comparison between Scaled Fundamental Mode Shape and the First Ritz
Vector Applied to Various SHM Examples by RVM. (“Errors” is misclassification
rate.)

consistently more damage sensitive.

Some remarks concerning a pattern classification approach for SHM are warranted.

As shown above, binary classification (two-labeled dataset) using RVM is effective

in providing SHM results with a small amount of misclassification (considering the

amount of noise). Moreover, the Bayesian classification methodology allows proba-

bilistic predictions, i.e., predictions with the degree of belief, so that users can make

conscious decisions on structural safety, operational loss, or potential catastrophe

caused by the decisions. For example, if one user wants to operate a SHM system for

a nuclear power plant especially to reduce missed alarm, (i.e., a SHM system does not

warn the user even if damage exists), decision boundaries with a higher probability to

an undamaged state should be selected in order to reduce the unchecked defects. On

the other hand, frequent false alarm of a smoke detector would let users turn off the

device and this also can be prevented by choosing decision boundaries with a lower

probability to a smoke-free state. However, as the structure becomes complicated,

the size of the generated dataset to cover all damage cases may become very large.
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Suppose that 100 training data need to be generated from a 3-story shear building

model for each damage location and each different damage severity. If the number of

possible damage severities is 3 (for example, 25%, 50%, and 75% stiffness reduction)

and the number of simultaneous damage locations is 3 (i.e., damage can occur at

each floor simultaneously), then the total number of training dataset is 11,800 ( =

(3C0 + 3C13 + 3C23
2 + 3C33

3)× 100 ); this total number of training dataset becomes

101,400 for a 5-story building. To reduce the size of the dataset, we can shift to a

Bayesian regression approach for SHM; then the total number of data is reduced to

118 and 1,014 for 3-story and 5-story buildings, respectively. Another advantage of a

regression approach is that it is possible to estimate damage severities as continuous

quantities instead of discrete damage states; for example, instead of generating the

training dataset with 3 different damage severities as before, the trained algorithm

with a smaller number of possible damage severities (say, 25% and 75% stiffness re-

duction) is expected to provide the prediction for 50% stiffness reduction. This can

reduce the total number of training data to 27 and 243 for 3-story and 5-story build-

ings, respectively. However, to apply RVM regression for SHM, it is necessary to

extend the RVM algorithm to treat vector outputs. In the next section, an extended

RVM regression approach for SHM is investigated.

5.1.2 RVM Regression with Vector Outputs

There has been a lot of research on what to use as damage-informative features for

SHM: modal properties such as natural frequencies and mode shapes, or the changes

in these quantities (Ching and Beck, 2004; Vanik et al., 2000; Yuen et al., 2004);

the ratios between changes of the measured eigenvalues (Cawley and Adams, 1979);

Ritz vectors, or the changes in them (Cao and Zimmerman, 1997; Sohn and Law,

2001; Lam et al., 2006); damage signature, defined as the ratio of the change of

eigenvectors to the change of eigenvalues (Yuen and Lam, 2006); mode shapes scaled

by the inverse square of their natural frequencies (Oh and Beck, 2006); and so on.

The goal has been to search for features that are sensitive to structural damage but
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insensitive to modeling and/or measurement errors.

In this section, a two-step approach is performed to detect and assess structural

damage (Yuen and Lam, 2006). The first step is to identify any damage locations.

Damage signatures defined as the ratios of the change in Nm mode shape components

to the change of a reference eigenvalue (e.g., fundamental frequency squared) are

utilized as inputs to the RVM and a damage location index vector is chosen as output:

Step 1 Input : Damage Signature from jth mode (DSj) =
∆φj

∆ω2
1

, j = 1, ..., Nm

Step 1 Output : L = [L1, ..., LNL
]T (5.1)

where NL is the number of possible damage locations and Li has value of 1 if damage

exists at the ith location and 0 otherwise. In the second step, utilizing the iden-

tified damage locations from the first step, damage severity is estimated by using

the changes in mode shape components and natural frequencies from the undamaged

(baseline) structure as input, and a damage severity index vector as output:

Step 2 Input : [∆φj,∆f ], j = 1, ..., Nm

Step 2 output : E = [E1, ..., ENE
]T (5.2)

where NE is the number of damage locations identified from the first step and Ei

has values between zero and one representing the fractional stiffness reduction at

corresponding structural elements.

Systematic methodologies for pattern recognition or regression, such as ANN,

SVM, and RVM, are classified as supervised learning methods since the damage states

for a training dataset are assumed to be known a priori. This condition can not be

satisfied with real data since it is not possible to induce various damage states in

an existing structure. Supervised learning, however, enables the SHM results to

provide more information regarding damage severity and location. In this study, we

implement a supervised learning approach by using a finite-element (FE) model of

the structure to generate the training dataset by introducing various damage patterns
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in the FE model. However, the FE model used for training is not the same as the

one representing the actual structure in the testing phase; realistic modeling error is

reflected in the difference between the actual structural system and the FE model

used to generate a training dataset. Also, a certain amount of noise is added to the

simulated acceleration time histories to encourage robustness against measurement

errors during the operating phase.

A five-story shear building is chosen which has previously been used to study the

applicability of ANN for estimating the damage locations and severity (Yuen and

Lam, 2006). A similar study is performed here using the vector output RVM. However,

for more realism, modeling errors are introduced in this study when generating a

training dataset by using 95% of the floor mass and 90% of the interstory stiffness

when constructing the FE model from which mode shapes and natural frequencies

are calculated for various damage states. (Yuen and Lam (2006) did not consider

modeling error when generating a training dataset).

Training consists of two steps as explained before. In the first step, damage sig-

natures and indices (5.1) are used as inputs and outputs, respectively. After training

a RVM to find the damage locations, another RVM is trained to estimate damage

severities using changes in the modal parameters (here fundamental frequency and

mode shape as inputs and damage severity indices (5.2) as outputs).

5.1.2.1 Step 1: Detecting Damage Locations

When training the RVM to find the damaged stories, the total number of possible

damage cases is 32 (including an undamaged case) because multiple stories may be

damaged. For each of these damage cases, a 50% stiffness reduction is imposed for

each damaged story to generate the feature vectors from the training FE structural

model. The RVM trained to find damage locations is then implemented by using the

mode shapes and natural frequencies from simulated dynamic data from the other

FE model that represents the actual shear building. To provide a severe test, only

the fundamental frequency and mode shape are extracted from noisy data obtained

by adding 5% root-mean-square discrete white-noise to simulated acceleration time
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histories to reflect the measurement noise.

The damage cases used in this prediction phase are as follows:

(1) Single damage in each story with 20% stiffness reduction (see results in Table

5.5(a)).

(2) Single damage in each story with 80% stiffness reduction (see results in Table

5.5(b)).

(3) Damage in two stories with 20% stiffness reduction in each (see results in Table

5.6).

(4) Damage in the 2nd and 3rd stories with selected stiffness reductions r2% and r3%,

respectively (see results in Table 5.7).

In these tables, RVM output values near one indicate the location of damage, so a

threshold of 0.5 was taken to indicate that the story is damaged. Note that datasets

for prediction are not included in the training dataset. From Table 5.5 to Table 5.7,

it can be concluded that the RVM works well for identifying damage locations with

a performance comparable with the previous study using ANN (see the results in

Yuen and Lam (2006)). In two instances of Damage Case 3, 1/3 and 3/4, the RVM

indicates the top story is damaged when it is not; this is not so serious because this

should be assigned a low damage severity in Step 2. On the other hand, in Damage

Cases 1 and 2, story 4 damage is missed, and in Damage Case 4, damage is missed

in the 50/10, 50/20, 50/80 and 50/90 cases, which is a more serious failure of the

damage location approach.

5.1.2.2 Step 2: Assessing Damage Severity

After locating the potentially damaged structural members, the severity of the damage

is estimated. Two different cases are considered when training and predicting for this

purpose:

(1) The fundamental frequency and mode shape are used together and are generated

from FE model with a single damage at the 2nd story. These features are generated

by imposing 10%, 20%, 30%, 40%, 50%, 60%, and 70% stiffness reduction to the

corresponding story. For the prediction, the stiffness at the 2nd story is reduced by
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(a) (b)

Story
Damage Case 1 Damage Case 2

1 2 3 4 5 1 2 3 4 5

1 1.07 -0.10 -0.19 -0.02 0.00 1.06 -0.43 -0.01 0.01 0.00
2 0.27 0.75 0.17 -0.04 0.00 0.10 0.57 0.17 0.00 0.00
3 0.12 0.11 0.88 0.15 0.00 0.03 -0.09 1.22 -0.02 0.00
4 -0.28 -0.32 0.42 0.98 0.00 -0.06 -0.16 0.14 0.87 0.00
5 0.42 0.11 0.42 0.31 0.40 0.18 0.10 0.14 0.27 0.40

Table 5.5: Identify Single Damage of (a) 20% and (b) 80% Stiffness Reduction in
Each Story. (Bold numbers correspond to actual damage locations.)

Damage Case 3
Story

1 2 3 4 5

1/2 0.81 0.96 0.11 -0.05 -0.02
1/3 0.97 0.33 1.33 -0.32 0.58
1/4 1.12 0.33 0.20 1.21 0.30
1/5 1.07 0.29 0.23 -0.36 1.30
2/3 -0.12 0.94 0.99 -0.22 0.16
2/4 -0.20 1.03 0.01 0.79 0.25
2/5 -0.24 0.86 0.03 -0.23 1.12
3/4 -0.06 0.03 1.00 0.64 0.52
3/5 -0.05 0.02 0.83 -0.07 0.72
4/5 -0.01 -0.01 0.08 0.79 0.52

Table 5.6: Identify Damage of 20% Stiffness Reduction in Both x1/x2 Stories. (Bold
numbers correspond to actual damage locations.)

Damage Case 4 Story
r2/r3 1 2 3 4 5

50/10 -0.02 0.97 0.25 -0.18 0.01
50/20 -0.05 1.01 0.42 -0.18 0.05
50/30 -0.05 1.03 0.64 -0.26 0.15
50/40 -0.07 1.01 0.74 -0.15 -0.02
50/50 -0.07 0.97 1.02 -0.08 0.04
50/60 -0.02 0.85 1.25 -0.08 0.03
50/70 0.24 0.88 1.36 -0.13 -0.18
50/80 -0.28 0.42 0.98 -0.03 0.22
50/90 -0.14 0.13 0.50 -0.10 0.21

Table 5.7: Identify Damage in the 2nd/3rd Stories of r2/r3% Stiffness Reduction.
(Bold numbers correspond to actual damage locations.)
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Damage Case
Story

1 2 3 4 5

Damaged
1 0.00 0.20 0.00 0.00 0.00
2 0.00 0.50 0.30 0.00 0.00

Predicted
1 0.00 0.19 0.00 0.00 0.00
2 0.00 0.51 0.32 0.00 0.00

Table 5.8: Estimated Damage Severities.

20%.

(2) Similarly to the single-damage case, 10% to 70% stiffness reductions are imposed

on the 2nd and 3rd stories. The same features as in (1) are obtained from the FE

model for training. For the prediction, damage is imposed as a 50% and 30% stiffness

reduction at the 2nd and 3rd stories, respectively.

Note that in the second step, the damage locations are assumed known. The

predicted damage severities shown in Table 5.8 are very close to the exact values:

19.42% for the first case and 50.51% and 32.19% for the 2nd and 3rd stories for the

second case. The performance is comparable to that of the study using ANN for

the same example (see the results in Yuen and Lam (2006)). We conclude that the

proposed vector output RVM successfully estimates both the damage locations and

the damage severity for this simple illustrative example (with minor exceptions as

shown in Table 5.7).

5.2 IASC-ASCE Structural Health Monitoring Bench-

marks

5.2.1 IASC-ASCE Benchmark Structure

The IASC-ASCE benchmarks were developed for researchers to apply numerous SHM

studies to a common structure for a common objective, thereby providing a platform

for side-by-side comparison of SHM methods. The series of benchmarks were initi-

ated by the joint IASC-ASCE Task Group on SHM (http://mase.wustl.edu/wusceel

/asce.shm/benchmarks.htm). There were two phases, each consisting of simulated and
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test data benchmarks; only the Phase I simulated-data benchmarks are considered

here. (See the special issue of the Journal of Engineering Mechanics, January 2004,

devoted to these benchmarks.)

As the first step, the Task Group constructed an analytical structural model based

on an existing steel frame scaled-model structure located at the University of British

Columbia and shown in Figure 5.3. This structure consists of 4-story, 2-bay by 2-bay

braced frame with 2.5 m× 2.5 m floor dimensions and 0.9 m height per story. Element

properties for this model are detailed in Johnson et al. (2000, 2004). Two finite

element (FE) models with 12 and 120 degrees of freedom (DOF) were constructed

to simulate the acceleration time histories measured in the X (strong) and Y (weak)

directions at the location shown with red dots in Figure 5.4. The details on the

simulation cases with damage patterns are summarized in Table 5.9.

5.2.2 Identification of Modal Parameters

In the first step of damage detection, the lower-mode mode shapes are extracted from

the measured time histories using a modal identification program called MODE-ID

(Beck, 1996). This program uses a parametric time domain technique to estimate the

modal parameters efficiently by using a non-linear least-squares method based on a

linear dynamic model and the measure-of-fit objective function defined by:

J(ψ) ≡
N∑

i=1

||y(i∆t)− q(i∆t, f, ψ)||2 (5.3)

where ψ is the vector of modal parameters, y, q ∈ RN0 are the measured and model

responses, N0 is the number of output channels, f is the measured inputs, and N is

the number of sampled data points.

For ambient vibrations or, more generally, vibrations caused by unknown inputs,

MODE-ID is not immediately applicable because it requires the input time histories

to compute the model response. In this case, MODE-ID takes advantages of the fact

that the theoretical cross-correlation functions of the response for a system satisfying
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Figure 5.3: Steel Frame Scaled Model Structure Used for Benchmarks. (taken from
http://mase.wustl.edu/wusceel/asce.shm/structure.htm.)
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Figure 5.4: Configuration of Benchmark Structure.
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the equation of motion,

Mẍ(t) + Cẋ(t) +Kx(t) = f(t) (5.4)

where x, f ∈ Rn and M , C, and K are mass, damping and stiffness matrices, respec-

tively, satisfy the equations of motion for free vibrations if the inputs are modeled

as temporally uncorrelated and stationary (Beck et al., 1994; Beck, 1996). Thus,

sample cross-correlation functions are formed from the measured responses and given

to MODE-ID as free vibrations, where the time lag τ serves as a pseudo vibration

time.

The cross-correlation between two stationary signals, xi(t) and xr(t), is defined as

Rir(τ) ≡ E[xi(t) · xr(t+ τ)]

∼=
1

T

T∑
i=1

[xi(t) · xr(t+ τ)] (5.5)

where xi(t) and xr(t) are the acceleration measurements at the ith channel and at

a reference channel, respectively. From this, one can construct a time history (with

respect to τ) consisting of these correlations for all channels as a column vector for

each time lag τ = 0, 1, ....

[R1r(τ)R2r(τ)...Rnr(τ)]
T (5.6)

where n is the total number of output channels. This vector time history serves as

the measured output response for MODE-ID for its free-vibration mode of operation.

The same procedure can also be applied to accelerations, which most vibration sensors

measure (Beck et al., 1994). MODE-ID estimates the natural frequency, damping

ratio, and mode shape components at the observed degrees of freedom for a specified

number of modes of vibration.
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5.2.3 Damage Cases and Damage Patterns

The RVM approach to SHM is applied to simpler cases (damage cases 1 – 3) and then

extended to more realistic ones (damage cases 4 – 5) of the Benchmark. For all damage

cases, simplified models, such as shear building models using lumped masses with

reduced DOFs, are used to generate the training dataset in order to reflect modeling

error. The simulated dataset from the IASC-ASCE benchmark simulation phase I is

used for the prediction phase (http://mase.wustl.edu/wusceel/asce.shm/analyt 1.htm

). All of the damage cases and damage patterns are listed in Table 5.9. Damage

patterns are defined as (Johnson et al., 2004):

1) No stiffness in the braces of the first story (i.e., the braces still contribute mass,

but provide no resistance within the structure)

2) No stiffness in any of the braces of the first and third stories

3) No stiffness in one brace in the first story (north brace on the west face of the

structure)

4) No stiffness in one brace in the first story (north brace on the west face) and in

one brace in the third story (west brace on the north face)

Description
Case

1 2 3 4 5

12 DOF Model O O O
120 DOF Model O O
Symmetric Mass O O O
Asymmetric Mass O O
Ambient Excitation O O
Shaker on Roof O O O
Damage Patterns: Remove Followings

1) All Braces in 1st Story O O O O O
2) All Braces in 1st & 3rd Stories O O O O O
3) One Brace in 1st Story O O
4) One Brace in 1st & 3rd Stories O O
5) 4) & Loosen Floor Beam at 1st Level O
6) 2/3 Stiffness in One Brace at 1st Story O

Table 5.9: Damage Cases and Patterns in Detail.
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5) The same as damage pattern 4) but with the north floor beam at the first level

on the west face of the structure (i.e., the beam from (2.5m, 0, 0.9m) to (2.5m,

1.25m, 0.9m)) partially unscrewed from the northwest column at (2.5m, 0, 0.9m)

consequently, the beam-column connection there can only transmit forces and

cannot sustain any bending moments

6) Two thirds stiffness (i.e., a one-third stiffness loss) in one brace in the first story

(the same brace damaged in pattern 3: the north brace on the west face).

5.2.4 Damage Cases 1 – 3

5.2.4.1 Training Phase

To generate the training dataset, a four-story shear building model with lumped

masses is utilized. This lumped mass model uses the so-called “nominal” mass ma-

trix to construct the diagonal mass matrix of M = diag{3242, 2652, 2652, 1809} kg

(Yuen et al., 2004). The interstory stiffnesses are parameterized with stiffness param-

eter θi scaling the ith story stiffness ku
i = 68.1MN/m so that the damage is represented

as a fraction of the undamaged stiffness:

kpd
i = θik

u
i

where ku
i and kpd

i stand for the stiffness in the undamaged and possibly damaged

states of the ith story, respectively.

The generated feature vectors consist of mode shape changes and modal frequency

changes, since the changes of modal parameters are considered to be more insensitive

to modeling errors than the parameter values themselves (Lam et al., 2006). Several

candidates are tested to investigate their performance or sensitivity to damage in the

prediction phase.

Using ∆ to denote the difference between the potentially damaged and undamaged

values, the eight candidates are prepared for both training and prediction phases:

(a) xa
i = [∆

(
φ

1

ω2
1

)
∆

(
φ

2

ω2
2

)
]i with the component of φ

j
at roof = 1.
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(b) xb
i = [∆

(
φ

1

ω2
1

)
∆

(
φ

2

ω2
2

)
]i with ||φ

j
||2 = 1.

(c) xc
i = [

∆φ
1

∆ω2
1

∆φ
2

∆ω2
2
]i with the component of φ

j
at roof = 1.

(d) xd
i = [

∆φ
1

∆ω2
1

∆φ
2

∆ω2
2
]i with ||φ

j
||2 = 1.

(e) xe
i = [∆φ

1
∆f1 ∆φ

2
∆f2]i with the component of φ

j
at roof = 1.

(f) xf
i = [∆φ

1
∆f1 ∆φ

2
∆f2]i with ||φ

j
||2 = 1.

(g) xg
i = [∆φ

1

∆f1

fu
1

∆φ
2

∆f2

fu
2

]i with the component of φ
j

at roof = 1.

(h) xh
i = [∆φ

1

∆f1

fu
1

∆φ
2

∆f2

fu
2

]i with ||φ
j
||2 = 1.

for i = 1, ..., N , and where φ
j

and ωj or fj are jth mode shape and corresponding

modal frequency with ωj = 2πfj for j = 1, 2. Note that xc
i and xd

i have the same

form of damage signature as defined earlier and xg
i and xh

i are considered normalized

frequencies.

For training, eight levels of stiffness losses are imposed, i.e., 10%, 20%, 30%, 40%,

50%, 60%, 70%, and 80% of each undamaged element stiffness, and then features are

simulated from the mass and stiffness matrices via eigen-analysis with the restriction

that the damage can occur at most two different locations at the same time. The

total number of training vectors is 417 including undamaged data:

Total No. of Data = 4C0 + 4C18
1 + 4C28

2 = 417

where the combinatorial factor is defined as nCr = n!
(n−r)!r!

.

Only the mode shapes and modal frequencies of the first two modes are selected

to compose the feature vectors in the training dataset. The results presented later in

Tables 5.11, 5.12, and 5.13 show that damage can be identified and assessed satisfac-

torily with these modal parameters.
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5.2.4.2 Prediction Phase

The dataset for prediction is extracted from the simulated benchmark structure data

using the specified values of the damping coefficient, time step ∆t, and noise level:

0.01, 0.004 sec, and 10%, respectively. The first 10 sec of data was eliminated to

exclude the transient response time history and the remaining 20 sec was taken as

stationary response. As noted previously, the input time histories that were utilized

to simulate the ambient vibrations are not used here, since they are unknown in

practice. Note that a comparison of the unknown input case and the known input

case shows that the estimates for the stiffness parameters have a significantly larger

coefficient of variation in the former case (Yuen et al., 2004).

To extract the modal parameters with unknown input, the sample correlation

functions are evaluated according to the procedure explained in Section 5.2.2. The

acceleration measurements at the lowest floor (i.e., at the first floor in this study)

are selected as the reference channel to correlate with others. Since the first and

second mode shapes in each direction are utilized for all damage cases from 1 to 5,

possible nodes for a higher mode can be excluded at the first-floor level. The roof

acceleration also could be used for the reference channel, but it is known that the

relative contributions of the higher modes is greater at lower floors than that at the

roof (Beck et al., 1994).

The sample correlations between the first-floor reference channel and the channels

at each of the floors in the weak directions are shown in Figure 5.5. Only 1 sec is

shown, since only this segment is used in MODE-ID. The extracted modal frequencies

are listed in Table 5.10 and the mode shapes for each damage case and pattern are

shown in Figures 5.6, 5.7, and 5.8. After extracting the modal parameters using

MODE-ID, an investigation is performed to determine which combinations of features

are more sensitive to damage.
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Figure 5.5: Sample Correlations between the First-Floor Reference Channel and the
Measured Accelerations at the First to Fourth Floor, respectively.
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Damage
Case

Damage
Pattern

Frequencies (Hz)
W1 S1 W2 S2

1
0 9.35 25.57 38.79 48.00
1 6.26 21.48 37.52 47.91
2 5.94 14.96 36.29 41.48

2
0 8.54 23.44 36.75 46.98
1 5.54 19.52 35.40 46.76
2 4.91 12.45 34.61 38.73

3
0 9.49 25.54 38.58 48.55
1 6.31 21.34 37.59 47.18
2 5.83 14.86 36.34 41.15

4

0 9.25 11.58 25.21 31.66
1 6.17 9.81 21.26 28.62
2 5.77 9.37 14.79 24.76
3 8.76 11.58 24.39 31.66
4 8.76 11.42 24.39 30.81

5

0 8.50 9.04 23.13 25.58
1 5.43 7.33 18.99 22.52
2 4.90 6.60 12.28 17.60
3 7.98 9.03 22.34 25.58
4 7.98 8.76 22.32 24.78
5 7.92 8.76 22.28 24.78
6 8.35 9.03 22.86 25.58

Table 5.10: Extracted Modal Frequencies for Cases 1–5.
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Figure 5.6: Identified Mode Shapes for Case 1, Pattern 0, 1, and 2.
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Figure 5.7: Identified Mode Shapes for Case 2, Pattern 0, 1, and 2.
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Figure 5.8: Identified Mode Shapes for Case 3, Pattern 0, 1, and 2.
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The identified modal parameters in the formats defined earlier in (a) through (h)

are utilized in the one-step procedure to identify the damage locations and to esti-

mate the damage severity: this one-step procedure can identify the damage locations

and damage severities simultaneously, while the two-step procedure presented before

assesses the damage severities in the second-step only at the damage locations iden-

tified in the first-step. Damage patterns 0, 1, and 2 for each damage case 1 through

3 represent the undamaged state, single damage with all braces in the 1st story re-

moved and multiple damage with all braces in the 1st and the 3rd story removed,

respectively. The stiffness for damage pattern 1 and 2 corresponds to 29% of the

undamaged stiffness, i.e., 71% stiffness reduction of the undamaged stiffness. The

predictions for each damage case and pattern are summarized in Tables 5.11, 5.12,

and 5.13. The stiffness parameters in the “Damaged” row correspond to the actual

stiffness reduction (71%), calculated based on a shear building model.

Used
Features

Damage
Case

Damage
Pattern

Story
1 2 3 4

Damaged 1
1 0.71 0.00 0.00 0.00
2 0.71 0.00 0.71 0.00

Predicted

xa 1
1 0.71 0.08 0.00 0.02
2 0.70 0.00 0.65 0.00

xb 1
1 0.70 0.06 0.00 0.09
2 0.69 0.00 0.68 0.03

xc 1
1 1.56 0.00 0.21 0.34
2 0.92 0.06 0.73 0.05

xd 1
1 0.53 0.00 0.00 0.07
2 0.74 0.00 0.74 0.00

xe 1
1 0.74 0.00 0.03 0.04
2 0.71 0.00 0.69 0.05

xf 1
1 0.71 0.01 0.00 0.02
2 0.71 0.00 0.61 0.02

xg 1
1 0.72 0.00 0.00 0.03
2 0.71 0.00 0.67 0.02

xh 1
1 0.74 0.00 0.00 0.03
2 0.73 0.00 0.70 0.02

Table 5.11: Stiffness Loss Predictions for Each Candidate Feature (Damage Case 1).
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Used
Features

Damage
Case

Damage
Pattern

Story
1 2 3 4

Damaged 2
1 0.71 0.00 0.00 0.00
2 0.71 0.00 0.71 0.00

Predicted

xa 2
1 0.77 0.09 0.00 0.12
2 0.72 0.00 0.71 0.05

xb 2
1 0.78 0.04 0.00 0.22
2 0.75 0.05 0.98 0.00

xc 2
1 2.29 0.00 0.21 0.55
2 0.39 0.06 0.50 0.00

xd 2
1 0.33 0.00 0.00 0.00
2 0.31 0.00 0.35 0.00

xe 2
1 0.75 0.00 0.01 0.00
2 0.72 0.02 0.76 0.01

xf 2
1 0.73 0.00 0.00 0.00
2 0.71 0.00 0.66 0.00

xg 2
1 0.75 0.04 0.00 0.00
2 0.74 0.05 0.78 0.02

xh 2
1 0.75 0.00 0.00 0.00
2 0.79 0.01 0.78 0.00

Table 5.12: Stiffness Loss Predictions for Each Candidate Feature (Damage Case 2).

Used
Features

Damage
Case

Damage
Pattern

Story
1 2 3 4

Damaged 3
1 0.71 0.00 0.00 0.00
2 0.71 0.00 0.71 0.00

Predicted

xa 3
1 0.71 0.08 0.00 0.00
2 0.67 0.00 0.69 0.04

xb 3
1 0.69 0.06 0.00 0.17
2 0.71 0.00 0.79 0.00

xc 3
1 1.40 0.00 0.39 0.21
2 0.76 0.18 0.62 0.00

xd 3
1 0.44 0.02 0.00 0.00
2 0.99 0.04 1.02 0.00

xe 3
1 0.73 0.04 0.03 0.05
2 0.74 0.03 0.71 0.03

xf 3
1 0.70 0.03 0.00 0.04
2 0.71 0.00 0.62 0.01

xg 3
1 0.72 0.04 0.00 0.04
2 0.72 0.00 0.69 0.00

xh 3
1 0.74 0.01 0.00 0.05
2 0.75 0.00 0.72 0.00

Table 5.13: Stiffness Loss Predictions for Each Candidate Feature (Damage Case 3).
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The results are best for feature xe, which outperforms slightly xg and xh, based on

the root mean-square errors calculated using the real stiffness reduction. For damage

cases 4 and 5, therefore, features having the same form as xe are used for SHM.

The analysis results show that the proposed algorithm applied to the IASC-ASCE

benchmarks provides reliable results for damage cases 1, 2, and 3.

5.2.5 Damage Cases 4 – 5

Damage case 4 – 5 are based on a three-dimensional 12-DOF shear building model for

training. The main difference with the previous damage cases 1 – 3 is that damage

cases 4 – 5 can locate damage in a face of building, not just in a story.

On the other hand, there is a problem with using the same procedure as in damage

cases 1 – 3; that is, where eight levels of stiffness reductions are imposed on the

structural elements and then the modal features are extracted from a 12-DOF FE

model and used as the dataset to train the RVM algorithm. This problem is due to the

number of possible scenarios which increases enormously and causes computational

difficulties:

No. of Possible Damage Scenarios =

NL∑
i=0

NTL
Ci N

i
DL

where NL, NTL, and NDL represent the number of simultaneous damage locations,

the number of all possible damage locations, and the number of damage levels, re-

spectively, and C is the combinatorial factor defined earlier. For example, the total

number of training data becomes
∑4

i=0 16Ci3
i = 163, 669 when one considers three

different damage levels, such as 25%, 50%, and 75%, occurring at 4 different loca-

tions among a total of 16 locations at the same time; thus, the largest matrix in

the Bayesian learning method is Φ ∈ R163669×163670. Although these problems caused

by the large training dataset can be handled using a parallel computing capability,

using expert knowledge before training the algorithm to recognize the critical points

where damage is most likely to occur may be used to reduce the number of cases

significantly.

Another strategy, and the one chosen here, is to use the two-step approach applied
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to the five-story shear building model in Section 5.1.2. As shown for the five-story

shear building, a damage signature is first computed to give information on the dam-

age locations. Since the damage index L in (5.1) has a value between 0 and 1 (corre-

sponding to undamaged and damaged cases, respectively), we judge that damage is

likely if the damage index exceeds 0.6. This value of 0.6 is somewhat ad-hoc, but the

second step that estimates damage severity should correct for any potential damage

locations shown in the first step that do not correspond to actual damage. This whole

procedure is an effort to reduce the number of training data, and the following results

show that it is useful from this point of view. Details are presented in the following

sections.

5.2.5.1 Training Phase

In these cases, a three-dimensional 12-DOF shear building model is employed to

generate a training dataset. Damage can be identified by utilizing stiffness parameters

θij for each story i and face j for i = 1, 2, 3, 4 and j = +x,−x,+y,−y faces (see Figure

5.9 for details):

kpd
ij = θijk

u
ij

where the ku
ij are computed from the benchmark structure with an assumption of

shear building model:

ku
i,+x = ku

i,−x = 34.0MN/m

ku
i,+y = ku

i,−y = 53.5MN/m

In Figure 5.9, the floor plan is shown with the shear center (x̄i,ȳi) at the ith floor

calculated by

x̄i =
a(ki,+x − ki,−x)

2(ki,+x + ki,−x)

ȳi =
a(ki,+y − ki,−y)

2(ki,+y + ki,−y)
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Figure 5.9: Floor Plan for Benchmark Structure.

where a is the width of floor (a = 2.5 m here).

The local stiffness matrix with respect to shear center O′
i can be computed (Yuen

et al., 2004):

K′
i =



kix 0 0 −kix 0 0

0 kiy 0 0 −kiy 0

0 0 kit 0 0 −kit

−kix 0 0 kix 0 0

0 −kiy 0 0 kiy 0

0 0 −kit 0 0 kit


(5.7)

where

kix = ki,+y + ki,−y

kiy = ki,+x + ki,−x

kit = (
a

2
− x̄i)

2ki,+x + (
a

2
− ȳi)

2ki,+y + (
a

2
+ x̄i)

2ki,−x + (
a

2
+ ȳi)

2ki,−y
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The local stiffness matrix is transformed with respect to geometric center Oi via

matrix T̄:

Ki = T̄T
i K′

iT̄i (5.8)

where

T̄i =

 T−1
i 0

0 T−1
i

 with Ti =


1 0 ȳi

0 1 −x̄i

0 0 1


These constructed local stiffness matrices are assembled and used to simulate the

training dataset consisting of modal frequencies and corresponding mode shapes mea-

sured at −x,+y,−y faces (shown as red dots in Figure 5.9).

5.2.5.2 Prediction Phase

As before, the sample correlation functions are computed using the acceleration time

histories at the reference channel and at the channels located on each face per floor.

Acceleration time histories are generated from the full structural model for the bench-

mark phase I using the specified values of the damping, ∆t, and noise level: 0.01,

0.004 sec, and 10%, respectively. Figure 5.10 shows the correlation functions at nodes

11, 13, 15, and 17 located on the first floor (see Figure 5.4). The extracted modal fre-

quencies are summarized in Table 5.10 and the corresponding mode shapes are shown

in Figures 5.11 and 5.12 (the third mode is the fundamental torsional mode which

received no, or very little, excitation). The mode shapes at −X, +Y , and −Y faces

(i.e., the faces which are perpendicular to the −X, +Y , and −Y axes, respectively)

are shown for each damage pattern. Using these features, damage identification and

damage severity estimation are performed.

5.2.5.3 Identification of Damage Locations

To develop the training dataset consisting of the damage signatures, 50% stiffness

loss is assigned to the stiffness in each (weak and strong) direction as before, with

the damage index set to 1 for damaged elements; both elements that contribute to
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Figure 5.10: Correlations between Measurements at Reference Channel and Measured
Accelerations at Node 11, 13, 15, and 17, respectively.

the stiffness in the corresponding direction have their stiffness reduced (for example,

elements in the +X and −X faces when assigning damage in the weak direction).

The prediction results are summarized in Table 5.14 and one can see that all actually

damaged elements are included when using the criteria of 0.6 for the damage index

threshold. Note that in this case, the stiffnesses are constrained to be the same in

each direction, i.e., θi,+y = θi,−y and θi,+x = θi,−x. All suspicious locations to be

considered as possibly damaged are shown bolded and underlined in the table.

5.2.5.4 Assessment of Damage Severities

After identifying the potential damage locations, the damage severities are estimated

using another trained RVM. Two levels of damage, 30% and 70%, are used at the

locations obtained in the first step in order to generate the training dataset, and

the prediction is performed using the features extracted with the imposed damage as

shown in Table 5.15. As is shown in Table 5.16 and 5.17 for damage case 4 and 5,

respectively, this two-step approach can successfully identify damage locations and
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Damage
Case

Damage
Pattern

Story 1 Story 2 Story 3 Story 4
θi,y θi,x θi,y θi,x θi,y θi,x θi,y θi,x

4

1 1.48 2.05 0.19 0.49 0.23 0.44 0.20 0.34
2 1.16 1.53 -0.12 0.43 0.76 0.85 0.29 0.32
3 -1.94 0.95 0.42 0.37 1.93 0.39 2.59 0.07
4 0.06 1.24 0.57 0.95 1.23 0.59 0.35 0.28

5

1 1.82 2.26 0.19 0.43 0.11 0.44 -0.02 0.32
2 0.97 1.42 0.42 0.33 0.79 0.90 0.07 0.26
3 3.60 0.90 -1.29 0.43 1.06 0.48 -2.59 2.62
4 -0.22 1.27 0.19 0.56 1.63 0.57 0.08 0.35
5 -0.23 1.30 0.21 0.56 1.63 0.56 0.08 0.36
6 5.10 0.79 3.09 -0.19 1.38 0.71 -7.01 -0.85

Table 5.14: Identified Damage for Damage Case 4 and 5 using Damage Signature.

their severities by applying the steps sequentially.

In damage patterns 5 and 6 (only for damage case 5), one brace in the 1st story

and the 1st, 3rd stories are removed with a loosened floor beam in the 1st story for

both patterns, respectively (refer to Table 5.9). Comparing the results from damage

pattern 4 with those from damage pattern 5, the effect of loosing the floor connection

is negligible as was stated in Yuen et al. (2004).
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Floor Damage Pattern θi,−y θi,+x θi,+y θi,−x

1

1 0.45 0.71 0.45 0.71
2 0.45 0.71 0.45 0.71
3 0.00 0.36 0.00 0.00
4 0.00 0.36 0.00 0.00
5 0.00 0.36 0.00 0.00
6 0.00 0.12 0.00 0.00

2

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00

3

1 0.00 0.00 0.00 0.00
2 0.45 0.71 0.45 0.71
3 0.00 0.00 0.00 0.00
4 0.23 0.00 0.03 0.00
5 0.23 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00

4

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00

Table 5.15: Actual Stiffness Loss for Damage Case 5. (Damage Patterns 1 to 4 are
also applied to Damage Case 4.)
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Floor Damage Pattern θi,−y θi,+x θi,+y θi,−x

1

1 0.43 0.70 0.44 0.72
2 0.42 0.69 0.43 0.71
3 0.00 0.37 0.00 0.00
4 0.00 0.30 0.00 0.02

2

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.02

3

1 0.00 0.00 0.00 0.00
2 0.46 0.72 0.42 0.69
3 0.03 0.00 0.02 0.00
4 0.18 0.00 0.03 0.00

4

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.02 0.00 0.00 0.00
4 0.03 0.00 0.00 0.00

Table 5.16: Predicted Stiffness Loss for Damage Case 4.
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Floor Damage Pattern θi,−y θi,+x θi,+y θi,−x

1

1 0.44 0.71 0.43 0.73
2 0.43 0.71 0.42 0.70
3 0.03 0.41 0.02 0.07
4 0.00 0.36 0.00 0.00
5 0.00 0.37 0.00 0.00
6 0.00 0.21 0.01 0.03

2

1 0.00 0.00 0.00 0.00
2 0.00 0.01 0.00 0.00
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00

3

1 0.00 0.00 0.00 0.00
2 0.46 0.70 0.43 0.73
3 0.00 0.00 0.02 0.00
4 0.22 0.00 0.02 0.00
5 0.22 0.00 0.07 0.00
6 0.04 0.00 0.02 0.00

4

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
3 0.02 0.00 0.00 0.00
4 0.08 0.00 0.03 0.00
5 0.08 0.00 0.03 0.00
6 0.09 0.00 0.00 0.00

Table 5.17: Predicted Stiffness Loss for Damage Case 5.
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5.3 Conclusions

Parallel to the development of sensor technology, there is a need for efficient and reli-

able data processing tools for structural health monitoring. For SHM which deals with

a large amount of sensor data with intrinsic errors, the Bayesian updating method-

ology is a powerful way to make probabilistic-based decisions, since it quantitatively

treats all the uncertainties involved. In particular, Bayesian learning using RVM has

significant potential for a systematic SHM methodology. Its advantages include:

(1) Quantitative procedure for meaningful probabilistic decision-making that explic-

itly treats all uncertainties rather than a deterministic result with no indication of

how much confidence should be attached to the prediction.

(2) Automatic determination of the trade-off between the fit to the data and model

complexity (i.e., no need to perform cross-validation).

(3) Clear use of a prior distribution that automatically prunes irrelevant kernel terms,

which results in greatly reducing the number of parameters that must be estimated.

(4) Very efficient in the operating phase compared with the common SHM approach

based on structural model updating (e.g., Ching and Beck, 2004)

In the classification application presented in this study, only a binary classification

case is explored for SHM. In future work, an investigation will be made of multi-

classification cases which deal with multiple classes of damage (i.e., different levels

and locations).

A regression method based on the vector output RVM is introduced to determine

the damage locations and severity from changes in the identified modal parameters.

RVM automatically selects the most probable model class to provide the best predic-

tions for damage assessments by maximizing the evidence for the model class based

on the regularizing ARD prior. In regression problems, once the RVM is trained,

it is efficient for on-line SHM based on extracting the selected feature vector from

dynamic data. From the five-story shear building model and the IASC-ASCE bench-

mark structure examples, we conclude that the proposed vector output RVM shows

promise for estimating both the damage locations and the damage severities from
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changes in the structure’s dynamic characteristics, such as its modal parameters,

when the SHM is performed in two steps: first identify damage locations and then

estimate damage severities.
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Chapter 6

Concluding Remarks and Future
Work

Recent achievements in modern sensing technology, such as wireless and digital sen-

sor development, enables the collection of large amounts of data that contain less

noise with less expense. These technological improvements necessitate accompanying

development of sophisticated data analyzing methodologies. In this dissertation, a

novel Bayesian learning method using an automatic relevance determination prior is

demonstrated and it is extended to perform classification and regression with vector

outputs.

In contrast to non-Bayesian methods, the proposed Bayesian methodology is

shown to provide a probabilistic interpretation of the results with the consideration

of all possible uncertainties, and with regularization to alleviate ill-conditioning and

data over-fitting in inverse problems. Furthermore, in the prediction phase, the pro-

posed methods work in real-time to render it of significant value for on-line earthquake

early warning systems as well as structural health monitoring systems.

In Chapter 3, an application to earthquake early warning systems is demonstrated.

For an abrupt calamity such as earthquakes, the availability of a warning system is

of great value in reducing the loss of human lives and the operational loss of civil

structures. By being able to classify measured accelerograms in real-time into near-

source and far-source, a first step in an earthquake early warning system for large

earthquakes is accomplished. As is shown, this newly-introduced method is capable
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of providing a robust classification result, which lowers the misclassification rates and

prediction errors by assigning an independent prior variance to each parameter. The

proposed method can effectively adjust the trade-off between data-fit errors and model

complexity by virtue of the ARD prior, which is shown to provide smaller prediction

errors as judged by leave-one-out cross-validation and the calculated evidence for the

model.

In Chapter 4, ground motion attenuation equations are estimated by using a

regression model based on the Boore-Joyner attenuation model. The obtained result

is also compared with a previous one using the Bayesian method with non-informative

prior. The proposed method using the ARD prior yields the most probable model

with the inclusion of one additional term of (M − 6)2 compared with the previous

model. Another focus of this chapter is on the estimation of a non-linearly involved

parameter h (the fictitious depth) which is estimated by model class selection and by

stochastic simulation using a Markov Chain Monte Carlo simulation method. The

same method for estimating a non-linearly involved parameter can also be applied

for the width estimation of the radial basis function kernels in the Relevance Vector

Machine.

The applications described in Chapter 3 and 4 show that the Bayesian learning

method using the ARD prior plays an important role in a feature selection algorithm

when the features extracted from measurements or observation are utilized as inputs

via a sum of basis functions with unknown parameters as coefficients. Using model

class selection to find the optimal hyperparameters (variances) in the prior, some of

the coefficients become zero (Gaussian with zero mean and zero variance), thereby

pruning out terms that prove to be irrelevant for predictions, as determined from the

data. Therefore, one can choose the strategy to just let the algorithm sort out the

relevant terms by initially including all seemingly relevant terms.

In Chapter 5, structural health monitoring (SHM) applications are investigated

using the so-called Relevance Vector Machine (RVM). RVM is an extended version

of the Bayesian learning method using the ARD prior which incorporates kernel ba-

sis functions for classification and regression. RVM classification is first applied to
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SHM problems using simulated data from various FE models with different levels of

noise added. The proposed methodology is able to provide good classification results

for damage detection along with a quantification of the degree of belief in the result

via associated probabilities. This probabilistic interpretation for damage detection

has an advantage of great value in that it helps to give an importance ranking when

inspecting a possibly damaged structure, that is, those locations with high probabil-

ity of damage might be inspected first. However, the classification approach has a

disadvantage that the number of training data may be too many which makes the

training phase computationally expensive as the structure becomes more complicated

(refer to Section 5.1.1.3). Although this problem can be handled using parallel com-

puting capability, an effort to reduce the number of cases, such as using an expert’s

prior knowledge to recognize the structurally weak points, is valuable in making the

classification approach more practical, rather than installing parallel computers.

Another strategy is to use RVM regression. Most previous work on RVM applied

to regression problems has used a scalar output, as in the original theory, but in this

study, RVM is applied using vector outputs to examine its effectiveness; this is an on-

going research topic in machine learning in order to make RVM a good tool for general

regression problems. A two-step method to identify potentially-damaged locations

first and then to estimate the corresponding damage severities only at the identified

structural elements is presented and illustrated using a 5-story shear-building model

and a 4-story IASCE-ASCE benchmark model using the phase I simulated data. It is

shown that the two combined procedures are complementary to each other and they

provide good estimates of the damage locations and associated severities.

Future work will include the extension of the classification method from a bi-

nary to a multi-class case, which can then be applied to soil liquefaction problems,

fragility function estimation problems in performance-based earthquake engineering

and SHM using real datasets. The regression method may be further applied as an

effective regression tool to develop ground motion attenuation equations using the

strong motion records in the PEER NGA database (http://peer.berkeley.edu/nga/).

It can be also applied to the IASC-ASCE SHM benchmark simulation phase II
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and experimental phase II, as well as to a bridge health monitoring benchmark

(http://people.cecs.ucf.edu/catbas/).

In conclusion, Bayesian learning using the ARD prior and its kernel implemen-

tation in RVM for vector output regression are powerful tools to make robust pre-

dictions considering all possible inherent uncertainties and to provide a probabilistic

interpretation helpful when making decisions. By using model class selection and

regularization simultaneously, the proposed method makes on-line tasks from earth-

quake early warning to SHM possible, so that these tasks can be operated efficiently

in real time.
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Appendix A

Posterior PDF and evidence by
Using Bayes’ Theorem

In this section, the detailed derivations for posterior PDF and evidence is presented

for the regression problem. For classification, the same procedure is utilized leading

to similar results which will be explained at the end. According to Bayes’ theorem,

the posterior can be expressed by likelihood, prior, and evidence:

posterior =
likelihood× prior

evidence

p(θ|DN , α, σ
2) =

p(DN |θ, α, σ2)× p(θ|α, σ2)

p(DN |α, σ2)
(A.1)

The likelihood and prior are defined as:

p(DN |θ, σ2) = N(Φθ, σ2I)

= (2πσ2)−N/2 exp
[
− 1

2σ2
‖y −Φθ‖2

]

p(θ|α, σ2) = N(0,A−1(α))

= (2π)−
N+1

2 |A(α)|
1
2 exp

[
− 1

2
θTA(α)θ

]
where Φ = [τ(x1), ..., τ(xN)]T ∈ RN×(N+1), τ(xi) = [1, k(xi, x1), ..., k(xi, xN)]T , and

θ = [θ0, θ1, ..., θN ]T .

In this section, the derivation of posterior PDF and evidence is presented based
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on Bayes’ theorem. These can be performed by expanding the known right-hand side

of likelihood and prior in terms of θ, rather than using Bayes’ theorem (A.1) directly.

p(θ|DN , α, σ
2)× p(DN |α, σ2) = p(DN |θ, α, σ2)× p(θ|α, σ2)

= (2πσ2)−
N
2 (2π)−

N+1
2 |A(α)|

1
2︸ ︷︷ ︸

<1>

×

exp
[
− 1

2σ2
||y −Φθ||2 − 1

2
θTA(α)θ

]
︸ ︷︷ ︸

<2>

(A.2)

< 1 > in (A.2) can be transformed,

< 1 > = (2πσ2)−
N
2 (2π)−

N+1
2 |A(α)|

1
2

= (2π)−
N
2 (2π)−

N+1
2 ((σ2)−N |A(α)|)

1
2

= (2π)−
N
2 (2π)−

N+1
2 ((σ2)−N |A(α)|)

1
2

= (2π)−
N
2 (2π)−

N+1
2 |C|−

1
2 |Σ̂|−

1
2 (A.3)

using determinant identity,

|C| = |σ2I + ΦA(α)−1ΦT |

= |A(α)|−1|σ2I||A(α) + σ−2ΦTΦ|

= |A(α)|−1|σ2I||Σ|−1

= (σ2)N |A(α)|−1|Σ|−1
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< 2 > in (A.2) can be transformed,

< 2 > = − 1

2σ2
||y −Φθ||2 − 1

2
θTA(α)θ

= −1

2

[
θT (σ−2ΦTΦ + A(α))θ − 2σ−2yTΦθ + σ−2yTy

]
= −1

2

[
(θ − θ̂)T Σ̂−1(θ − θ̂)− θ̂

T
Σ̂−1θ̂ + σ−2yTy

]
since, 2θ̂

T
Σ̂−1θ − 2σ−2yTΦθ = 0

= −1

2

[
(θ − θ̂)T Σ̂−1(θ − θ̂) + yT (σ−2I− σ−2ΦΣ̂ΦTσ−2)y

]
= −1

2

[
(θ − θ̂)T Σ̂−1(θ − θ̂) + yT (σ2I + ΦA(α)−1ΦT )−1y

]
= −1

2

[
(θ − θ̂)T Σ̂−1(θ − θ̂) + yTC−1y

]
(A.4)

using Woodbury inversion identity,

σ−2I− σ−2ΦΣ̂ΦTσ−2 = (σ2I + ΦA(α)−1ΦT )−1

Combining (A.3) and (A.4) provides expressions on posterior PDF and evidence

given by:

p(θ|DN , α, σ
2) = (2π)−

N+1
2 |Σ̂|−1/2 exp

[
− 1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

]
p(DN |α, σ2) = (2π)−

N
2 |C|−

1
2 exp

[
− 1

2
yTC−1y

]
where Σ̂, θ̂, and C are defined as before.

For classification problem, substitute C = B−1+ΦA(α)−1ΦT with B = diag(φ1(θ){1−

φ1(θ)}, ..., φN(θ){1− φN(θ)}).
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Appendix B

Laplace Approximation

In classification, Laplace approximation is applied to posterior PDF. In this section,

the detailed mathematical procedure is presented. This Laplace approximation, as

explained before, is a quadratic approximation of the ln-posterior around the most

probable value, θ̂, given by maximization of the posterior PDF, leading to a Gaussian

distribution with mean θ̂ and covariance matrix Σ̂ which is the inverse of the negative

of the Hessian matrix of the ln-posterior.

For a given value of α, the log-posterior is:

ln[p(θ|DN , α)] =
N∑

n=1

ln[P (yn|θ, xn)] + ln[p(θ|α)]

=
N∑

n=1

[
yn · lnφn(θ) + (1− yn) · ln{1− φn(θ)}

]
−1

2
θTA(α)θ (B.1)

where A(α) = diag(α0, α1, ..., αN) and φn(θ) = φ(f(xn|θ)).

The most probable values θ̂(α) are estimated by equating the first derivative of
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(B.1) to zero:

∂ ln[p(θ|DN , α)]

∂θj

=
N∑

n=1

[
yn ·

∂ lnφn(θ)

∂θj

+ (1− yn) · ∂ ln{1− φn(θ)}
∂θj

]
− αjθj

=
N∑

n=1

[
τ(xn)j

{
yn · (1− φn(θ))− (1− yn) · φn(θ)

}]
− αjθj

=
N∑

n=1

[
τ(xn)j

{
yn − φn(θ)

}]
− αjθj = 0 (B.2)

where τ(xn)j is the jth element of τ(xn) defined as τ(xn) = [1, k(xn, x1), ..., k(xn, xN)]T ∈

RN+1.

Equation (B.2) gives

ΦT (y − ψ) = A(α)θ (B.3)

where Φ = [τ 1, ..., τN ]T ∈ RN×(N+1), and ψ = [φ1(θ), ..., φN(θ)]T ∈ RN .

Because of the non-linearity of θ (in ψ at left-hand-side), use Taylor expansion.

Then,

φn(θ) = φn(θ̂) +
N∑

j=0

∂φn(θ)

∂θj

(θj − θ̂j) + higher order term

∼= φn(θ̂) +
N∑

j=0

φn(θ){1− φn(θ)}τ(xn)j(θj − θ̂j) (B.4)

which gives

ψ ∼= ψ̂ + BΦ(θ − θ̂) (B.5)

where B = diag(φ1(θ){1− φ1(θ)}, ..., φN(θ){1− φN(θ)}).
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Substituting (B.5) into (B.3) gives,

ΦT (y − ψ) = A(α)θ

→ ΦT (y − ψ̂ −BΦ(θ − θ̂)) = A(α)θ

→ θ = (ΦTBΦ + A(α))−1ΦT (y − ψ̂ + BΦθ̂)

→ θ = Σ̂ΦTBŷ (B.6)

where Σ̂ = (ΦTBΦ + A(α))−1 proved shortly and ŷ = ΦT (B−1(y − ψ̂) + Φθ̂) ∈ RN .

The inverse covariance matrix is Σ̂−1(α) = −∇θ∇θ ln p(θ|DN , α) evaluated at

θ̂(α):

∂2 ln[p(θ|DN , α)]

∂θj∂θk

= −
N∑

n=1

τ(xn)j
∂φn(θ)

∂θk

− αk

= −
N∑

n=1

τ(xn)j · φn(θ){1− φn(θ)} · τ(xn)k − αk (B.7)

which gives,

Σ̂−1(α) = −∇θ∇θ ln p(θ|DN , α) = (ΦTBΦ + A(α)) (B.8)
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Appendix C

Bayesian Model Class Selection

C.1 Hyperparameter Optimization

In this section, detailed procedure for optimizing hyperparameters, in other words,

Bayesian model class selection is presented. In this study, the most plausible hyper-

parameter α ∈ A and σ2 (in regression only) based on data DN is selected by finding

α̂ and σ̂2 that maximizes p(DN |α, σ2), equivalently L(α, σ2) = ln p(DN |α, σ2), con-

sidering a uniform prior on α and σ2 as explained in Chapter 2.

L(α, σ2) = ln p(DN |α, σ2)

= ln

∫ ∞

−∞
p(DN |θ, σ2)p(θ|α)dθ

= −1

2

[
N ln 2π + ln |σ2I + ΦA−1ΦT |+ yT (σ2I + ΦA−1ΦT )−1y

]
= −1

2

[
N ln 2π + ln |C|+ yTC−1y

]
= −1

2

[
N ln 2π + ln |C−i|+ yTC−1

−i y

− lnαi + ln(αi + τT
i C−1

−i τ i)−
(τT

i C−1
−i y)

2

αi + τT
i C−1

−i τ i

]
= L(α−i, σ

2) +
1

2

[
lnαi − ln(αi + τT

i C−1
−i τ i) +

(τT
i C−1

−i y)
2

αi + τT
i C−1

−i τ i

]
= L(α−i, σ

2) +
1

2

[
lnαi − ln(αi + Si) +

Q2
i

αi + Si

]
= L(α−i, σ

2) + l(αi, σ
2) (C.1)
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where Si = τT
i C−1

−i τ i and Qi = τT
i C−1

−i τ i.

The hyperparameters α̂ and σ̂2 to maximize (C.1) can be estimated analytically

by equating the derivative of (C.1) with zero. Since only l(αi, σ
2) is related with αi,

∂L(α, σ2)

∂αi

=
∂l(αi, σ

2)

∂αi

=
1

2

[ 1

αi

− 1

αi + Si

− Q2
i

(αi + Si)2

]
=

α−1
i S2

i − (Q2
i − Si)

2(αi + Si)2
(C.2)

Equating (C.2) = 0 gives two stationary points such as:

α̂i =

 ∞
S2

i

Q2
i−Si

(C.3)

with the constraint of Q2
i > Si for αi should be positive as a variance.

The second derivative of (C.1) provides more information on the nature around

the two stationary solutions in (C.3). Differentiation of (C.1) with respect to αi once

more gives:

∂2L(α, σ2)

∂α2
i

=
−α−2

i S2
i (αi + Si)

2 − 2(αi + Si)[α
−1
i S2

i − (Q2
i − Si)]

2(αi + Si)4
(C.4)

For αi =
S2

i

Q2
i−Si

,

∂2L(α, σ2)

∂α2
i

=
−S2

i

aα2
i (αi + Si)2

(C.5)

Since this is always negative, L(α, σ2) in (C.1) has a maximum, with the constraint

of Q2
i > Si.

For αi = ∞, not only the second derivative in (C.4), but also further derivatives

give zero. The sign of the first derivative in (C.2), however, depends on −(Q2
i − Si),

such as:

• If Qi > Si, then the first derivative is negative which leads that L(α, σ2) has a

maximum at αi =
S2

i

Q2
i−Si

.
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• If Qi < Si, then the first derivative is positive, meaning that L(α, σ2) has a

maximum at αi = ∞.

• If Qi = Si, L(α, σ2) has a maximum at αi = ∞, since two stationary points in

(C.3) becomes identical.

Therefore, the optimized hyperparameters for Bayesian model class selection can

be summarized as (Faul and Tipping, 2002):

α̂i =

 ∞, if Q2
i ≤ Si

S2
i

Q2
i−Si

, if Q2
i > Si

(C.6)

C.2 Noise Variance Optimization

For the noise variance σ2, a re-estimation equation can be derived as follows. Using

the determinant identity (C.7) (Mardia et al., 1979) and Woodbury inversion identity

(C.8),

|σ2I + ΦA−1ΦT | = |A−1||σ2I||A + σ−2ΦTΦ| (C.7)

(σ2I + ΦA−1ΦT )−1 = σ−2I− σ−2Φ(A + σ−2ΦTΦ)−1ΦTσ−2 (C.8)

with

|σ2I| = (σ2)N |I| = (σ2)N (C.9)

L(α, σ2) in (C.1) becomes,

L(α, σ2) = −1

2

[
N ln 2π + ln |σ2I + ΦA−1ΦT |+ yT (σ2I + ΦA−1ΦT )−1y

]
= −1

2

[
N ln 2π − ln |A|+N lnσ2 + ln |A + σ−2ΦTΦ|

+σ−2yTy − σ−4yTΦ(A + σ−2ΦTΦ)−1ΦTy
]

= −1

2

[
N ln 2π − ln |A|+N lnσ2 − ln |Σ̂|+ σ−2yT (y −Φθ̂)

]
= −1

2

[
N ln 2π − ln |A|+N lnσ2 − ln |Σ̂|+ σ−2||y −Φθ̂||2 + θ̂

T
Aθ̂

]
(C.10)
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using

σ−2yT (y −Φθ̂) = σ−2(y −Φθ̂ + Φθ̂)T (y −Φθ̂)

= σ−2||y −Φθ̂||2 + σ−2yTΦθ̂ − σ−2θ̂
T
ΦTΦθ̂

= σ−2||y −Φθ̂||2 + (σ−2yTΦΣT )Σ−1θ̂ − σ−2θ̂
T
ΦTΦθ̂

= σ−2||y −Φθ̂||2 + θ̂
T
Σ−1θ̂ − σ−2θ̂

T
ΦTΦθ̂

= σ−2||y −Φθ̂||2 + θ̂
T
Aθ̂

where Σ̂ = (σ−2ΦTΦ + A)−1 and θ̂ = σ−2Σ̂ΦTy.

The derivative of (C.10) with respect to σ−2 (for simplicity, differentiate with

respect to σ−2 instead of σ2) is (Tipping, 2001):

∂L(α, σ2)

∂σ−2
=

∂L1(σ
2)

∂σ−2

=
1

2

[
Nσ2 − ||y −Φθ̂||2 − tr(ΣΦTΦ)

]
=

1

2

[
Nσ2 − ||y −Φθ̂||2 − σ2

∑
i

γi

]
(C.11)

using

Σ−1 = A+ σ−2ΦTΦ

→ tr(ΣΦTΦ) = σ2tr(I−ΣA) = σ2
∑

i

γi (C.12)

Equating (C.11) to zero gives an equation for updated σ̂2 after each iteration:

(σ̂2) =
‖y −Φθ̂‖2

N −
∑

i γi

(C.13)

where γi = 1− αiΣii and Σii is the ith diagonal element of Σ computed with current

α and σ2.

For the classification problem, substitute C = B−1 + ΦA(α)−1ΦT with B =

diag(φ1(θ){1 − φ1(θ)}, ..., φN(θ){1 − φN(θ)}) and Σ̂−1 = (ΦTBΦ + A(α)) with no
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noise variance.


