CaltechTHESIS
  A Caltech Library Service

Defects in amorphous silicon : dynamics and role on crystallization

Citation

Shin, Jung Hoon (1994) Defects in amorphous silicon : dynamics and role on crystallization. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/TW9D-5657. https://resolver.caltech.edu/CaltechETD:etd-12052007-131414

Abstract

Defects play a crucial role in determining the properties of many materials of scientific and technological interest. With ion irradiation, it is possible to controllably inject defects, and thus carefully study the dynamics of defect creation and annihilation, as well as the effects such defect injection has on materials properties and phase transformations. Amorphous silicon is a model system for the study of amorphous solids characterized as continuous random networks. In hydrogenated form, it is an important material for semiconductor devices such as solar cells and thin film transistors. It is the aim of this thesis to elucidate the dynamics of defects in an amorphous silicon matrix, and the role such defects can play on crystallization of amorphous silicon. In the first chapter, the concept of a continuous random network that characterizes amorphous silicon is presented as an introduction to amorphous silicon. Structural relaxation, or annihilation of non-equilibrium defects in an amorphous matrix, is introduced. Also developed are the concept of the activation energy spectrum theory for structural relaxation of amorphous solids and the density of relaxation states. In the second chapter, the density of relaxation states for the structural relaxation of amorphous silicon is measured by measuring changes in electrical conductivity, using ion irradiation and thermal anneal to create and annihilate defects, respectively. A new quantitative model for defect creation and annihilation, termed the generalized activation energy spectrum theory, is developed in Chapter 3, and is found to be superior to previous models in describing defect dynamics in amorphous silicon. In Chapter 4, the effect of irradiation on the crystallization of amorphous silicon is investigated. It is found that irradiation affects crystallization even when the growth kinetics of crystal grains is unaffected, and that defects injected into amorphous matrix by irradiation probably play a role in affecting the thermodynamic quantities that control nucleation. The role of defect injection in affecting the thermodynamic quantities is investigated in Chapter 5, where we estimate the change in the free energy of amorphous silicon under the irradiation conditions of Chapter 4, using the generalized activation energy theory of Chapter 3. The experimental data and its interpretation are consistent with predictions of generalized activation energy spectrum theory.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Applied Physics
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Applied Physics
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Atwater, Harry Albert
Thesis Committee:
  • Unknown, Unknown
Defense Date:1 November 1993
Record Number:CaltechETD:etd-12052007-131414
Persistent URL:https://resolver.caltech.edu/CaltechETD:etd-12052007-131414
DOI:10.7907/TW9D-5657
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4801
Collection:CaltechTHESIS
Deposited By: Imported from ETD-db
Deposited On:06 Dec 2007
Last Modified:08 Nov 2023 00:12

Thesis Files

[img]
Preview
PDF (Shin_jh_1994.pdf) - Final Version
See Usage Policy.

4MB

Repository Staff Only: item control page