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ABSTRACT

A theory for distributed feedback lasers in transversely bounded
structures is developed. The space harmonics approach is used to
discuss the general properties of periodic structures. The coupled
mode approach is used to develop expressions for the threshold gain,
longitudinal mode structure, and electromagnetic field distribution
for distributed feedback lasers.

Three basic structures are considered for distributed feedback
lasers--thin film waveguides, diffusion waveguides, and fiber wave-
guides.

Equations for the amplification of a waveguide mode that extends
transversely over both regions with and without gain are derived.

Analytical expressions are derived for coupling between modes
in periodically perturbed dié]ectric waveguides. Sinusoidal pertur-
bations of the electric permittivity and of the waveguide boundary
are considered.

Theoretical results indicate that an optimum design of distri-
buted feedback lasers can be achieved by an appropriate choice of
geometrical parameters. Regions of optimum design are illustrated
in numerous plots of normalized threshold gain versus normalized

laser frequency.
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Chapter 1
INTRODUCTION

This dissertation is a theoretical investigation of active
periodic dielectric waveguides. Such structures are known as dis-
tributed feedback (DFB) lasers. The principal requirements of any
Taser source are an optical cavity, feedback, and an active medium to
provide optical gain. Conventional Taser sources sandwich a material
with gain between mirrors. The mirrors provide feedback and the op-
tical cavity is the resulting Fabré-Perot etalon.

For distributed feedback lasers, the optical cavity is a sec-
tion of a waveguide. The feedback is provided by a periodic perturba-
tion of a waveguide parameter such as the waveguide width or dielectric
constant. The periodic perturbation provides a distributed scattering
mechanism that couples a forWard waveguide mode to a backward waveguide
“mode. The gain medium can be included inside the waveguide or in the
substrate or cladding adjacent to the guiding region. A gain medium is
a material that amplifies an electromagnetic wave propagating in the
medium. The gain of a medium is defined (see Chapter III) as the
natural 1ogakithm of the amplitude growth of the electromagnetic field
per unit length.

Distributed feedback lasing structures offer several advantages
over conventional lasers. The small size of the optical waveguiding
structure reduces pump power and facilitates heat transfer. Addition-
ally, this efficient, stable, compact device is capable of being con-
structed along with other optical elements on a single block of

semiconductor material. The field of integrated optics is concerned
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with the development and fabrication of such optical circuits.

DFB structures also have important applications in high power
and high frequency lasers, A serious problem with several high power

conventional Tasers is mirror burm’ngm’14

due to high energy density
at the mirrors. DFB lasers do away with mirrors, as thousands of period-
ic perturbations provide the feedback. High frequency lasers, such as

a proposed vacuum ultraviolet SOOR superfluid helium laser under con-
sideration at the Jet Propulsion Laboratory, may require mirrors with
reflectivity greater than present day materials can provide at the
desired lasing wavelength. Of course it is only natural to consider
periodic crystals as a cavity for future X-ray lasers, since periodic
crystals played a large role in the development of X-rays. In particu-
lar, the utilization of naturally occurring minerals and new synthetic
analogues of the zeolite class have been proposed as DFB Tlaser and

L 5
monochromator cav1t1es] .

The zeolite class has a porous honeycomb
structure of long channels with atomic spacing from 7-8&. Such struc-
tures appear ideal for neon Ka radiation at 14.618.

The first DFB laser was developed by Kogelnik and Shank68 in
1971, and since then a number of researchers have reported the develop-
ment of different types of distributed feedback lasers>2209-73,
The first theoretical analysis of DFB lasers was that of

Kogelnik and Shank]

for a transversely infinite and homogeneous medium.
Marcuse2 then suggested using distributed feedback in capillary gas

lasers, and calculated coupling coefficients between "guided" modes of
a hollow dielectric waveguide to estimate the laser threshold based on

the analysis of Kogelnik and Shank. The optical cavity of a capillary
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gas laser is unlike a conventional dielectric waveguide where the
refractive index is larger in the core than in the surrounding medium.
In a conventional optical waveguide it is possible to confine light to
the core region by making use of total internal reflection of rays
that are reflected from the core-cladding interface. In capillary
lasers the core region is a gas with a low index of refraction rela-
tive to the refractive index of the surrounding medium. No total
internal reflection is possible at the core cladding interface and
all modes of such a structure are radiation modes. In Chapter V, a
scheme to support conventional guided modes in a capillary laser by
diffusing impurities into the cladding to provide a guiding structure

is studied4.

Other researchers have proposed analyses for dielectric slab

waveguide DFB lasers. Wangs’6

considered thin film waveguides and
used the waveguide structure to calculate a reduced value of the
coupling constant derived by Kogelnik and Shank. DeWames and Ha117
used a space harmonics method and derived solutions identical to those
of Kogelnik and Shank with analytic expressions for the reduction of
both the coupling and threshold gain coefficients due to field pene-
tration beyond the active medium.

Both the above analyses require the forward and backward waves
to be the same mode, and the active medium is considered to be in the
guide.

Applications of the distributed feedback principle have been

theoretically applied to hybrid laser structures. Chinn8 has extended
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the analysis of Kogelnik and Shank for the case of mirror reflectivity

at the end faces of a DFB structure. Shubert and Andersong, Wang6,

10,25 have considered nonuniform distributed feedback lasers

and Shubert
where the distributed feedback and gain regions are nonuniform over the
laser structure.

The treatment in this dissertation begins in Chapter II with a
different formulation of the coupled mode theory for DFB lasers that
allows the forward and backward waves to experience different gain (or
attenuation) and travel with different group velocities. This approach
is especially applicable to cases where the forward and backward waves
are different modes of the guiding structure.

The third chapter calculates the effective gain of a waveguide
mode. For practical DFB devices, the gain medium is either in the
guiding region or in the substrate or cladding surrounding the guiding
medium, The energy of a waveguide mode, however, is spread over por-
tions of both regions. Solving the dispersion relations of the wave-
guide with complex dielectric constants allows solving for an effective
gain for the mode. The effective gain is a function of mode number and
frequency and is used to calculate the gain of the forward and backward
waves considered in Chapter II.

The fourth chapter treats coupling between modes of a wave-
guide due to a periodic perturbation of a waveguide parameter. The
analytical expressions derived for the coupling coefficients are good
for all frequencies and wavequide dimensions with the constraints that
the periodic boundary perturbation (nW) be small (< 10%) compared to

the laser oscillation wavelength, and the permittivity perturbation (ne)
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be much less than €.

In Chapter V, theoretical results are obtained for three basic
types of DFB dielectric waveqguide lasers. The first waveqguide struc-
ture considered is a thin film or dielectric slab. A thin film DFB
laser would be an ideal source of radiation for planar waveguide optics
in the emerging field of integrated optics.

The next structures considered are optical waveguides formed
by diffusion. Considerable interest has been expressed recently in
such waveguides, as the diffusion process circumvents the difficulty of
growing suitable thin single-crystal layers.

The final structure analyzed is an optical fiber wavegquide. If
a region of a fiber incorporated a laser source, the complicated problem
of coupling light from an external source vanishes.

A major result of Chapter V is that for a given waveguide struc-
ture and lasing wavelength thére is usually an optimum choice of

geometric parameters that result in a minimum required threshold gain]].
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Chapter II

Distributed Feedback Laser Theory

The study of distributed feedback lasers is in large part a
study of electromagnetic wave propagation in periodic structures.
Propagation of waves in periodic media was discussed as early as 1887
by Lord Ray]eigh48and later by Strutt49 and Van der Pol and StruttSO.

A detailed and comprehensive review of the work on waves in periodic

structures as of the Tate 1940's can be found in Wave Propagation in

Periodic Structures47 by Leon Brillouin. The work concerning waves

in periodic structures has not been limited to optical waves, but
covers the electromagnetic spectrum from microwaves to X-rays as well
as mechanical waves, vibrational waves, and electrons in crysta1551.

Two major approaches are used in the study of periodic struc-
tures: the exact space harmonics (Floquet) approach and the approximate
coupled mode approach. In this chapter we begin with a review of the
space harmonics approach to discuss the general properties of periodic
structures.

The space harmonics formalism provides exact solutions but is
somewhat cumbersome. For this reason, in Section B we use the coupled
mode approach to obtain coupled wave equations for DFB lasers in guid-
ing structures. The coupled wave equations are then solved in Section
C to obtain general equations for the required threshold gain (i.e.,
the gain the material is required to have before there is any oscilla-

tion or light output), longitudinal mode distribution, and longitudinal

field distribution.
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In Appendix D, the relation between space harmonics and

coupled mode theory is explored. We find that for the applications
considered in this dissertation, the approximations required by the
coupled mode approach are valid. This result is not surprising because
coupled wave formalism has been successfully employed to describe X-ray

16 17,33

diffraction’", 1light diffraction by acoustic waves

18

, and electro-

19,52

optic gratings ~, and the properties of thick film holograms

A,  Space Harmonics

To illustrate the principles of the space harmonics formalism,
we consider the problem of propagation of a transverse electric wave
(E = gyEy and H=¢eH +eH) along a dielectric waveguide where
the permittivity in the guiding region is periodically perturbed (see
Fig. 21b).

We begin with Maxwell's equations:

o

VxE=-u 5 (2.7a)
= 9

VxH =2 (eE) 4 ) (2.10)

VeH=0 (2.1¢)

VeeE=p (2.1d)

and the medium constants are

-
1

My o the free space magnetic permeability

m
—

N
~

]

8061(1‘+ﬂ cos Kz) (perturbation region) (2.2a)
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e(z) = €,€p (homogeneous region) (2.2b)

where
e = free space electric permittivity

€169 = relative permittivity of the undisturbed dielectric
in the perturbation region or homogeneous region

n = amplitude of the relative permeability change
K = 2n/A , the wave vector of the periodic disturbance

A = the wavelength of the periodic disturbance

Equation (2.2a) is the expression for the electric permittivity in the
guiding region, and (2.2b) the expression outside the guiding region.

36 by

We reduce Maxwell's equations to the monochromatic state
choosing exp(-iwt) for the time dependence.
Maxwell's equations give the wave equation in a current and

source-free periodic medium for TE waves as

°E. o%E o%E ) |
2y + 2¥—+ Zy + Ere](z) KE. = 0 (2.3)
X 3y 3z Y
where
2 _ 2 _ 2,2
k= = w HoEp = W /c (2.4)
¢ is the speed of light in vacuum, and
EreT(Z) = E(Z)/eO
By (2.2a)
e(z + n) = e(z) (2.5)

and therefore (2.3) is a partial differential equation with periodic
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coefficient e(z) and can be solved with the help of a representation

37'40. This theorem is

commonly referred to as Floquet's theorem
actually a generalization to Tinear partial differential equations of
a theorem in ordinary linear differential equations with periodic co-

efficients established by F1oquet42. Such generalizations have been

carried out by B]och43, and more recently by Odeh and Ke]]er4].

Applied to (2.3), Floquet's theorem may be stated as fo]]ows37: A
time harmonic electromagnetic field Ey(x,y,z) of a normal mode guided

along an axially periodic structure possesses the property
E (x,y,2+0) = 16 Ey(x,y,z) ' (2.6)

The Floquet wave vector B 1is referred to as the fundamental propaga-
tion constant. |

For the sake of simplicity, we consider the guiding structure
to depend transversely only on the x coordinate, and assume the struc-
ture infinitely homgeneous in the y coordinate. We can therefore
assume no Ey dependence on y .

If we define P(x,z) by
Ey(x,z) = o1z P(x,z) (2.7)
we verify from (2.6) that
P(x,z+A) = P(x,2) (2.8)

Equations (2.7) and (2.8) constitute an equivalent statement of
Floquet's theorem for axially periodic structures, and says that the

cross sectional field distribution of a periodic structure remains
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unchanged under an axial translation of the observation point through
a distance A , while the mode amplitude multiplies itself by a con-
stant eiBA .

Hesse]37 distinguishes P(x,z) as the local "microscopic" field
structure within a period, and Ey(x,z) given by (2.7) as the guided-
wave field at any point on an infinite periodic structure.
We now expand P(x,z) 1in a Fourier series
P(x,z) = ni da (x) e (2.9)

and substitute into (2.7):

o

_ iBz ikz _ i(R+nK)z
Ey(x,z) = e L da(x)e L da(x)e

n=-co n=-o (2.]0)

The expansion (2.10) indicates the field is expressible as an infinite
sum of travelling waves of the form dnan(x) exp[i(B + nK)z]. These
travelling waves are commonly called space harmonics. The wave vectors
B+nK represent the spatial harmonic Tongitudinal propagation constants
while dn denotes the corresponding spatial harmonic amplitudes, and
an(x) denotes the normalized (at the boundary) transverse dependence.
If we write (2.2a) in the exponential form
eiK

e(z) = e e[l + e’ 4 g—e_1KZ] (2.11)

we can insert (2.10) into (2.3) and obtain
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o ; d a, (x)

2
"y {d, -—-—z—+ [-(8+nK)? + e k™1 d a (x)
n 2 n .2 i(g+nK)z _
tey g Kdyqanq(x) +ep 2 K0d qa, (0} e 0
(2.12)
inside the perturbation region and
® ( ) B‘H’\K)
Y {d n ——-—7—~'+ [- (B+nK) e k 1da (x)} e’ =0 (2.13)
n=-co
outside the perturbation region.
Solutions of equations of the form (2.12) and (2.13) with
boundary conditions have been discussed by Chu and Tam1r33, Elachi

20,22 37,38,39,40

and Yeh , Dabby et a]53, and others The method re-
quires the variables an(x) and dn to be solutions of the infinite

set of homogeneous equations

Doa (x)d +a (x)d 4+ a, _4(x)d ;=0 (2.14a)
where 2
d"a, (x) 5 )
———7?-—— (x)- (g+nK)“ + ek |
D =2 (2.14b
n €, né?
inside the guiding region, and
2
d“a_(x)
—-I‘—-Z—/an(x) - (k2 + e = 0 (2.15)
dx

outside the guiding region. Equations (2.14a,b) and (2.15) follow by
requiring (2.12) and (2.13) to be satisfied for all values of z .

In principle, the ratios d /d , the an(x) and the dispersion relation



-14-
for the guiding structure may be determined from the infinite set of
three-term recurrence relations resulting from (2.12) and (2.13) and
the requirement at the boundary between the perturbation region and
the homogeneous region that the tangential electric and magnetic
fields be continuous. For the case of distributed feedback lasers

in a periodic guiding structure, the term dO is ultimately deter-
mined from the incident pumping power that provides population inver-
sion in the gain medium.

For clarity, let us consider the simple case of a wave

propagating in a transversely unbounded periodic mediumZ] (Fig. 2.2).
Equations (2.14a,b) become
Dd +d,q*d ;=0 (2.16a)
and
D, =400 - (EnK) 2 (2.16b)
N k/e—]_

This system of equations is the basic result of the space harmonics
approach. It shows that each space harmonic n 1is coupled to the
two neighboring space harmonics n-1 and n+1 . Using matrix nota-

tion, we can write

D-A =0 (2.17a)
where .
d_q
A =| 4 (2.17b)
d]

and
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X E.M. Wave

/’\\\//fa\ib

Y4

- A >

€ (2) = € (1+7 cos 2

~ Fig. 2.2 Electromagnetic wave propagating in an infinite, unbounded

periodic medium.



D= 0 1 D 1 0 (2.17¢)

As there are no boundaries in our simple infinite periodic media case,
the relative amplitudes dn/do can be determined from (2.17a)2]. The

nontriviality condition
det(D) = O (2.18)

is the dispersion relation and gives the value of B as a function of
k or w.

Equation (2.18) in general must be solved numerically. How-
ever, we can obtain an understanding of the properties of the solution
by introducing the periodic perturbation in an infinitesimal fashion
so that the original guiding structure is really unperturbed. The
effect of these negligible periodic perturbations is to introduce the -
infinite number of space harmonics but to leave undisturbed the shape
of the initial dispersion curve,

For n infinitesimally small, equation (2.16b) reduces to

nDn = (== R = i/ET k - nK (2.19)

The corresponding Brillouin diagram (Fig. 2.3) consists of an infinite

number of “subdiagrams" which correspond to the different space har-

monics, and each is identical to the diagram of the homogeneous case.
If we take n finite but small (n << 1), we can write the

electric field expression approximately asZ]
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£, = (dy + q L d_y e 'K7) e'P (2.20)

where we neglect all other space harmonics. The system of equations

(2.16a) becomes

Did, *+Fdy+73d =0 (2.21a)

Djd; +5d, = 0 (2.21b)

D!yd_q + 7 d =0 (2.21c)
where

D, =30, =1- (f—}g'ﬂﬁ)z (2.22)

1

For most values of k , D:1 and D1 are large compared to n , and
therefore from (2.21b,c) we see that d] and d_] are small compared

with d_, and to satisfy (2.21a) we must have
D0 = 0 (2.23)

which gives the same dispersion equation as in the unperturbed medium:

B = /5‘1‘ k (2.24)

However, it is possible that not only Dé = (0 , but simultaneously

D

such that

or D:] = 0 . Let us suppose the parameters of the problem are

Dé =0 = B =Kk € (2.25)



-19-
and

D5y = 0 = (8-K)% = ke, (2..26)

From (2.25) and (2.26) this occurs if

g2~ 28K + K2 = g? (2.27)

which requires

B = K/2 (2.28)

In this case we still have d] << d but we can no Tonger

O ?
say d_] << dO . The system of equations for the region around the

interaction point (ko = w,/Cs By = VE;'ko, B, = K/2) becomes

d ,= 0 (2.29a)

Dy dy + Fd_

n
0 0 2

I T A_ ‘
Diydq +Bd = 0 (2.29b)

The nontrivial solution of (2.29a,b) requires

2

DD, = (2.30)

In the neighborhood of the intersection point we can write

™
1}

B, + 4B (2.31a)

-~
1

k0 + Ak (2.31b)

to give
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B8 2 -8t 48 'n2
= [ -(———————) - (——1-% (2.32)
(k +ok) Ve (k rok)vVey
Expanding and using
(1 + 5]/(1 R P (2.33)

for g],gz small, we obtain

(Ayz - (4 ) = (B° (2.34)
0
For [Am/woi < n/4 , we write equation (2.34) as
AB _ L m2 _ (Awy2
S J@? - & m (2.35)

which is the equation of an ellipse. This region is called a stop-
band interaction and it corresponds to an exponential energy transfer
between the two interacting waves as AR 1is imaginary. For

IAw/mol > n/4 , equation (2.34) may be written as

B _ ., Y AY
- G- @ (2.36)

0

O‘CD‘ >

which corresponds to a hyperbola with asymptotes corresponding to the
unperturbed (n = 0) medium. The Brillouin diagram near an intersec-
tion region is shown in Fig. 2.4.

Using equation (2.29a), we can calculate the ratios of the

amplitudes of the space harmonics:



=21~

: et

Bo B

Fig. 2.4 w-p diagram near an interaction region. The solution for
g is complex. The dashed curve is the imaginary part of
g and the solid curve is the real part of 8.
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d
_.l = .g. 1 = ié.g_ - _A_E)_
ld n Do‘ ln [Bo (2.37)

Using (2.34), we see that for Aw =0

d_
IT -1 (2.38)
0

To summarize our discussion of a plane wave propagating in an
infinite, unbounded periodic medium, we conclude that the complete
field solution is seen to consist of an infinite number of space har-
monics, and the complete dispersion curve of an infinite number of
branches. Except near the stop bands, the amplitude of the n =0
space harmonic is dominant. At the stop bands, the amplitudes of the
two space harmonics which cross to produce the stop band are large and
equal, and can be physically interpreted as producing the standing
wave (dw/dB = 0 at the band edges) associated with the stop band.

Near the stop bands, the amplitudes of the other space harmonics gen-

38 and Hesse]54 have computed numerically the

erally increase. Cassedy
re]atfve harmonic amplitudes dn/dd in and around the stop band regions.
For n = 0.4, fd_]f/{dol:rl , throughout the stop band region, and the
next largest ratio Id1l/ldol is about 0.1. Of the remaining har-
monics, only the d,, d_,, dj, d_; have amplitude ratios greater than
1074,

If we now consider the case of a bounded periodic medium, by
analogy with the unbounded case, the Brillouin diagram for a periodic

dielectric waveguide consists of an infinite number of "subdiagrams"

as illustrated in Fig. 2.5. Strong couplfng occurs at the intersection
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points between different harmonics, ieading to energy transfer between
modes. Two types of coupling can occur, depending onthe choice of K,
the wave vector of the perturbation (Fig. 2.6). As illustrated in Fig.
2.6a, the group velocities of the two coupled harmonics can be
parallel. In this case the energy is transferred back and forth be-
tween two harmonics propagating in the same direction., This type of
coupling is termed codirectional. Contradirectional coupling, where
the group velocities are antiparallel (Fig. 2.6b) provides the feedback
mechanism for DFB lasers. In Chapter IV the contradirectional mode
coupling indicated in Fig. 2.6b is calculated using an approximate
analytical method rather than the numerical method of space harmonics.
In the infinite medium case only a forward and backward mode
exists in the n = 0 or central curve of the Brillouin diagram. A
dielectric waveguide can support several discrete guided modes and a

20’33. [For a discussion of the radiation

29

continuum of radiation modes

modes of a dielectric waveguide, see the treatment by Collin and

20,33 of the dispersion relations for a

Marcuse34.] An exact solution
periodic dielectric waveqguide gives rise to guided and radiation

modes as in the homogeneous dielectric guide, as expected. We are con-
cerned only with perturbations which couple guided modes and therefore
the radiation modes are neglected. As illustrated in Fig. 2.7, when
the wave vector K of the perturbation is chosen to couple guided
modes, there is no interaction with the region of radiation modes.

With this consideration, the field expression given by (2.10) can be

written to show explicitly the guided mode behavior:
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o R i(B_tnK)z
E (x2) = ] Y d (x)e T (2.39)

a
n-eo p=-Rp N M

where B.. is the (r—l)th solution of the dispersion relations discussed

h

previously, d is the corresponding amplitude of the n*™ harmonic

n,r
th

of the r~ guided mode, and a_ _(x) the corresponding transverse

th

nsr
dependence of the nth harmonic of the r* guided mode. The summation
over r extends over the 2R gquided modes (counting a forward and
the corresponding backward wave as two modes) that exist at a given
frequency w .

In this section we have only discussed periodic perturbations
of the dielectric constant. Dielectric waveguides having periodically

20,53 and

corrugated surfaces follow a similar space harmonics analysis
have the same characteristic stop bands and pass bands. In Chapter
IV the stop band regions due to periodic surface perturbations of

dielectric waveguides are analyzed.

B. Coupled Mode Theory

B
We consider a forward wave ap(x) dp(z) e
-iB_z
wave aq(x) dq(z) e 9% to be travelling in a dielectric waveguide

z
PO and a backward

with a periodic perturbation of the electric permittivity. In this
section we deviate from the convention in other sections and consider

both Bpo and qu to be positive. The coefficient ar(x) is the

transverse field distribution of the rth

th

guided mode, dr(z) is the

amplitude of the r
t

guided mode, and Brro is the Tongitudinal wave

vector of the r h mode at the Bragg frequency W, (see Fig. 2.5a). The
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resulting electric field can thus be written

iB_ z -ig_ z

Epq(X:2) = ap(x) dp(z) e PO 4 aq(x) dq(z) e 90 (2.40)

To formulate the coupled mode theory, we begin by ignoring the
effect of the electric permittivity perturbation on the transverse mode
behavior. This effect is later considered in Chapter IV where first
order correction terms to the transverse mode functions are calculated.

From our discussion of space harmonics we know that strong
contradirectional mode coupling due to Bragg scattering can occur
if K= Bpo + qu . Since we desire the coupled mode theory for dis-
tributed feedback lasers, we must consider the dielectric waveguide
medium to be active. Thus a wave travelling in this medium is ampli-
fied (or "experiences gain"). Mathematically we can represent an active
medium with an imaginary component of the dielectric constant. Physi-
cally, the relative imaginary component is very small, only as large
as 10'3 for high gain lasers (see Chapter III), and because the relative
real component of the dielectric constant is always greater than or
equal to one, the effect of gain can be treated as a perturbation. If
we consider the region of inhomogeneous permittivity and the active
region to be in the guiding region of a waveguide structure, equations
(2.2a,b) become

eoe](1 + 1 cos Kz) - ie € (guiding region)
e(z) = (2.41)

€2 (homogeneous region)

Using (2.40), (2.47a,b) in the wave equation (2.3), and defining
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51,2 = gy h(x) + ez(] - h(x)) (2.42)
where
1 guiding region
h(x) = (2.43)
: 0 homogeneous region
we obtain
2 . 2 .
d"a_(x) iz da_(z) -iB_ z
———1%;—- d(z)e PO + ———5%5—— d(z)e 9
dx P dx 9
2
dd(z) d°d(z) iB_.z
_g2 - P q po
+ ap(x)[ Bpodp(z) + 216p0 I5 + d22 ] e

) _ d dq(z) dqu(z) -ig z
tag(x)l-8d(2) - 218 ) —p—+ —5—] e

dz
. .
+ kz[e1,2— ieih(x)][ap(x)dp(z)e1 pOZ+ aq(x)dq(z)e 1quz]
2 . |

hix) & (B +K Kk

— (:) L ap(x)dp(z)(e1 po )Z+ e1(8p0 )z)
-1(BgoKlz  ~1(B K
+ag(x) d (2)(e TP, T e )z)] =0 (2.44)

From the solutions of the unperturbed waveguides (see Appendices A,B,C)

dza (X) 2 2
—-—-;—‘wz——-/ar(x) + K2 (ey ) = 62 (2.45)
X

g +B = K (2.46)

and using

F (x,2) = a_(x) d (z) (2.47a)
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Bq(X.Z) = aq(x) dq(z) (2.47b)

we can write (2.44) as

oF ]nh(x) 2 iB_ Z

o F

i 2 2 2 . po

[EZQE'+ [-iesh(x)k" + (Bp - Bpo)]Fp + 21Bp0 =+ ———— kB ]e
2°B ‘ s 2 o B enh(x) i
+ [—5;§-+ [-ie;h(x)k™+ (Bq —qu)]Bq— 21qu Tt — k Fp]e
(28 +8_ )z -i(28 )z
n 2 po ~qo n 2 qo PO -
> h{x)k Fpe * ey ?-h(x)k qu =0

(2.48)

The last two terms in (2.48) correspond to higher order (n=2) space

harmonics and are neg]ected]’]g’zg. This point is discussed further

in Appendix D. For even high gain lasers, the wave amplitude growth

26,27

per wavelength only approaches 2% Additionally, we consider

n << 1 . Therefore the wave amplitudes Fp(x,z) and Bq(x,z) are
expected to vary slowly along z so that their second derivatives
asz/az2 and aZBq/az2 can be neglected compared to terms of order
A']aFr/az R x‘anr, and x'zaiFr appearing in (2.48). With these
approximations, we can write a set of coupled wave equations by equat-

ing terms of equal z dependence:

2 2 .2 .
oF e.h(x)k B, -8 ie;nh(x)
e S e e S e Lt (2.49a)
o0 o P 9
By h(x) _ B§ ~B§O ieqnh(x) ,
St o 2 By ==z _— 1, (2.495)

Considering the term (82 -830)/25r0 in (2.49a,b), we write

Y
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2 2

B. - B (B,-8. ) (B + 8. )
r ro r ro’*r “ro
= :B-B ﬁCl]) (k) Ak (2'50)
zsro Zero r ro r
9B,
where wr(k) is the reciprocal of the group velocity (wr(k) ook T

B

I th
o ) for the r

mode of the waveguide, and Ak 1is related to the

departure of the oscillation frequency w from the Bragg frequency Wy

= - = 0
Ak = k k0 z (2.51)

where ¢ 1is the speed of light in vacuum. As the frequency departures
are assumed to be small we have put Sr/sro = 1 and wr(k) = wr(ko)
in the derivation of (2.50).

The gain term eih(X)kZ/(ZBro) and the coupling term
e]nh(x)kz/(48r0) in (2.49a,b) are nonzero by (2.43) only in the guiding
region where the gain medium and periodic perturbation are assumed lo-
cated, We can generalize (2.49a,b) to be coupled wave equations inde-
pendent of x 1if we introduce the concepts of effective gain and ef-
fective coupling. Geff’ the effective gain per unit length experienced
by the waveguide modes Fr and Br can be related to the actual gain
per unit length of the active material in the guiding region by an
efficiency coefficient Cr(k):

Geff = Cr(k) G (2.52)

The coefficient Cr(k) js frequency dependent as the efficiency is
almost zero near the cutoff frequency of the dielectric waveguide (the
mode energy is mostly in the substrate or cladding) and approaches one

well above cutoff as all the mode energy becomes confined to the guiding
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region that contains the active medium. Chapter IIIl is devoted to cal-
culating the CY(k)IS for the various waveguide configurations.

Similar considerations apply to the coupling term. The detailed
coupling between modes Fp and B_ is solved in Chapter IV using the
2/

(4Bro) in (2.49a,b) can therefore be replaced by a coupling coefficient

perturbed transverse mode functions. The coupling term € h(x)k

qu(k) . Expressions for qu(k) and the reciprocal of the group velo-
city wr(k) for the various waveguide configurations are given in
Chapter IV.

Incorporating all of the above considerations, and using
qu = qu (see Chapter IV), we write the coupled wave equations in

their final form:

oF (x,
__B~f_il - [Cp(k)G + 1cwp(k)Ak]Fp(x,Z)

ix. (k) B (x,z) (2.53a)

0z ol¢] q

3B _(x,z)

- =9 _ [cq(k)e + 1‘c¢q(k)Ak]Bq(x,Z)

5z (k) Fp(x,z) (2.53b)

" pq
The derivation of (2.53a,b) considers both the active material

and the periodic dielectric constant to be in the guiding region.

However, the coupled wave equations have a general physical interpre-

tation. A wave changes in amplitude along z because of coupling to

he other s i k)GF_, k)G B ). F

the o wave (quBq quFp) or gain (cp( ) 0 cq( )G q) or

small deviations from the Bragg condition, the feedback due to mode

coupling in the stop band region remains significant and the phase term

(cy_(k)akF

p p
dition. Pierce

. cwq(k)AkBq) is required in calculating the oscillation con-

45,46 has shown the concept of coupled modes to apply to
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various systems where the coupled wave equations are of the general
form of (2.53a,b). Based on the physical interpretation of (2.53a,b)
we can generalize our coupled equations to general structures with
periodic perturbations and regions of gain if we calculate the cr(k)‘s,
qu(k)'s, and wr(k)'s specifically for each configuration (as we do in
Chapters III and IV). Different combinations of gain regions and
parameter perturbations to be considered in this thesis are illustrated

in Fig. 2.1,

C. Solutions of the Coupled Wave Equations

The coupled wave equations (2.53a,b) describe wave propagation
in a guiding structure in the presence of gain and a periodic perturba-
tion of a waveguide parameter. Because our model is that of a self
oscillating device, the internal waves Fp and Bq start with zero
amplitudes at their corresponding longitudinal boundaries, receiving
their initial energy via scattering from the counterruning wave. This
is illustrated in Fig. 2.8. Considering a structure of length L ex-
tending from z = -L/2 to z = L/2, the boundary conditions for the

wave amplitudes become

Bq(x,L/Z) = Fp(x,-L/Z) =0 (2.54)

The solutions to the coupled wave equations with the boundary condi-
tions (2.54) give the laser oscillation conditions. A finite signal
output results with no signal input, which is the definition of an
oscillator.

If we now take the partial derivative with respect to z of

(2.53a) and use (2.53b), we obtain
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relative amplitude
vy)

-L/2 O L/2
distance Z —»

Fig. 2.8 Sketch of the amplitudes of the left traveling wave B
and the right traveling wave Fp versus distance.

q
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2

3°F_(x,2) oFp (.2}
‘“ﬁz—x {(ep(k) - e (kDG + ic(y (k) -y, (k) ak}— =

+ {ng(k) + (cq(k)G + icwq(k)Ak)(cp(k)G + icwp(k)Ak)} Fp(x,z) =<2 5

Fp(X;Z) and Bq(x,z) are defined in (2.47a,b) as a product ar(x)dr(z).
Dividing (2.55) through by ap(x) we obtain an ordinary linear differ-

ential equation and the solutions to (2.53a,b) become23

Fp(x,z) = ap(x) dp(z) (2.56a)
Bq(x,z) = aq(x) dq(z) (2.56b)
where
- Y1 Yol
dp(z) =fle +f, e (2.56¢)
Y]Z YZZ
dq(z) = b] e + b2 e (2.56d)
and

v (k) - y_(k)
,2 7 ¢ ? )6+ ic(-P——pd

) Ak

(k) + ¢ (k) v (k) +y (k) 2
il/xgq(k) i )6 + ic(-F—m—t—)ak] (2.57)

The transverse field distributions ar(x) in (2.56a,b) are closely
approximated by the corresponding unperturbed approximations given in
Appendices A, B, and C. Corrections to the unperturbed transverse field

distributions are used in Chapter IV in the derivation of coupling
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coefficients
Writing
c (k) - c_(k) v (k) - v (k)
apq = (2 > 9 )G + jc(-2 5 9 ) ak (2.58a)
5 c, (K +e (k) 9 (K *y (k)
= k + .
bog \/%pq( ) + [( 5 )G +ic( 2 )ak1®  (2.58b)
the boundary conditions give
-b_L
f, = -f e PI (2.59a)
b L
b, = -b e Pq (2.59b)

Substituting (2.56¢,d) and (2.59a,b) into (2.53a,b) and comparing terms

of equal exponential =z dependence we find

(k) b, (2.60a)

-b_L b L

PafY  + = - b, e P9 2.60
fre PV 4 b ) = -ix (k) by e (2.60b)

Multiplying (2.60a) and (2.60b), and using (2.58b), we have

-b_ L

b, = e P (2.61)

We can now write (2.56¢c,d) as

b L/2 a_ z
dp(z) =:f, e Pq e P9 sinh bpq(z*—L/Z) (2.62a)

-b L/2 a_z
dq(z) = :f, e Pq e P9 sinh bpq(z -L/2) (2.62b)
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To solve for the required threshold gain G and phase mis-
match Ak from the exact Bragg frequency, we use (2.53a) to write
-b_L/2 a_z
f]e P9 / e P4

dq(z) - X

” [{apq— (cp(k)G + ic wp(k)Ak)}

. L L
h b +=) + hb + = 2.63
sin pq(z 5) bpq cos pq(z 2)] ( )

The boundary condition Bq(x,—L/Z) = 0 requires

_ 2 2 2 2
qu = /qu(k) + qu coth /qu(k) + qu L (2.64)
where
c (k) + c¢_(k) P (k) +y_(k)
Yog = P 5 49 G+ ic(-L 5 ) Ak (2.65)

The required threshold gain for laser oscillation is given by

_ 2
q .
and the corresponding phase mismatch by
Ak = 2 In {Y_} (2.66b)
C(wp(E) + wq(k)) Pq

The qu that solve (2.64) are generally complex valued, with differ-
ent values corresponding to different branches of the complex hyper-
bolic cotangent function., The various qu correspond to the different
longitudinal modes of the DFB resonator, just as a conventional Fabre-

Perot interferometer has longitudinal modes spaced at Ak = m/(nL)
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where L s the mirror spacing and n the index of refractibn24.

Since

coth(z + imm) = coth(z) m any integer (2.67)

we see from (2.64) and (2.66b) that the DFB resonator modes are spaced
approximately n/(navL) for small coupling qu(k), where we have

defined an average index of refraction as

ey, (K) + 3 (K)

av > (2.68)

The coupling coefficient x_ (k), gain efficiencies cp(k),

pq
cq(k), and reciprocals of the group velocities wp(k), wq(k) are fixed

by the waveguide geometry. Therefore the transcendental equation (2.64)
can be solved for qu given the waveguide parameters, and (2.66a,b)
can be used to obtain the required threshold gains and corresponding
longitudinal mode spacings for a waveguide of length L . G and

, al ith th k), k), k), k),
Ak , along with the parameters cp( ) cq( ) wp( ) wq( ), and qu(k)

determine y; and vy, from equation (2.57), or similarly, and

%pq

bpq from equations (2.58a,b). Thus the mode amplitudes dr(z) are

specified by (2.62a,b) and the electric field for the p-q configuration

is given by
iB oZ -iB o2
E (z) = F(x,z) e PO + Bq(x,z) e (2.67)

As this is a linear threshold calculation, the absolute field ampli-
tudes remain unspecified. An accounting of the "pump" or input power
and the nonlinear effect of gain saturation77’78 would allow specifying

f, 1in (2.6a,b).

1
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We have now obtained general equations for the threshold gain,
longitudinal mode distribution, and longitudinal field distribution.
In Chapter V, these general equations are applied to specific guiding

structures,

D. Comments

In (2.40) of Section C, we arbitrarily chose a forward p mode
coupled to a backward q mode. However, as our model is symmetric, an
equally valid choice would be a forward q mode coupled to a backward
p mode. By equations (2.64)-(2.68), both configurations have the same
threshold gain and phase mismatch. This point is also discussed in
Appendix D, and is illustrated in Fig. 2.5 and Fig. D.1, where opera-

tion at a frequency w corresponding to the interaction region of a

Pq
p and a g mode is shown to generate forward and backward waves of both
modes.

The analysis up to this point and in the rest of this thesis
considers only transverse electric waves, For isotropic media the
theory of periodic perturbations of dielectric waveguides predicts28
that there is no scattering from transverse electric (TE) to transverse
magnetic (TM) modes, and vice versa, Thus in isotropic media, DFB
lasing could occur between corresponding pairs of TM modes or corres-
ponding pairs of TE modes depending upon the choice of parameter556
For a laser oscillation frequency Wng? and a fixed perturbation wave
vector K , only one pair of modes are strongly coupled (see Fig. 2.5).
However, if a medium exhibits gain over a relatively broad frequency

region, it is possible that a perturbation wave vector K could couple

two pairs of modes at various frequencies as indicated in Fig. 2.9.



-40-

d
e
£

=

X

Fig. 2.9 o-p diagram illustrating three scattering processes. The
perturbing wave vector K has the same length for each process.
Backward scattering between modes 1-1, 1-2, and 2-2 occurs
at frequencies Wys Wps and Wo s respectively.
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In this case the active region must have significant gain over the fre-

quency range W < W< Wy, where 0, and w, are frequencies indi-
cated in Fig. 2.9.

If DFB lasers are constructed using anisotropic material, it
is possible to orient the optic axis so as to guide only TE modes or
only TM modes. Additionally, it is possible to orient the optic axis

57,58,59,60

to allow coupling of TE to TM modes DFB lasers have been

constructed by Bjorkholm et a1.59

using an organic dye gain medium
(which characteristically exhibits gain over a relatively broad fre-
quency spectrumG]) on anisotropic substrates. Simultaneously, the three
frequencies indicated in Fig. 2.9 were observed. In this experiment
the modes corresponding to 181 were TE-1ike modes and those corres-
ponding to iBz were TM-1ike modes and the frequencies observed
indicated that all three processes shown in Fig. 2.9 occurred due to
the broad gain spectrum. The analysis presented in this thesis could

be extended in a straightforward manner to apply to TM-TM and TE-TM
mode interactions.

A method of obtaining a periodic medium remains, which has not
been discussed. If a medium is pumped by two coherent beams, the in-
terference fringes generate a periodicity of the gain in the medium.
This gain periodicity can be accounted for if n in (2.41) is con-
sidered imaginary]. However, for the purposes of this thesis, only
perturbations of the real part of the dielectric constant and surface
perturbations are considered, and n remains real.

Finally, it should be mentioned that the results of this

chapter could be extended to any type of periodicity which can be
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expanded in a Fourier series. The waveguide parameters could be written

as

e(z) eg1(1 +n f,(2))
or

W(z)

W(1+ 0 £,(2)

In this case, n has to be multiplied by the coefficient of the Fourier
component of f1(z) or f2(z) used for phase matching. A complication

arises, however, in that other existing Fourier components could couple

competing processes at the same frequency.
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Chapter III

The Effective Gain Coefficients

The purpose of this chapter is to calculate the effective gain
(or gain efficiency) of a waveguide mode for the case where the mode
energy is spread transversely over both regions with and regions with-
out gain. Figure 3.7a illustrates such a case. In practical dis-
tributed feedback lasers, it is expected that the gain medium will be
either in the guiding region or outside the guiding region in the
cladding of a fiber or substrate of a thin film or diffusion waveguide.

The method employed to calculate the effective gain is that of
solving the dispersion relations of the guiding structure with complex
dielectric constants (Erel = Ere” iei) and solving for the resulting
complex transverse and longitudinal wave vectors. The complex wave
vectors of the guiding structure are then related to the gain of the
mode,

The task of solving the dispersion relations with complex
dielectric constants can be simplified by realizing E{],Z) << 8(]’2)

1 re
(m)

even for high gain lasers. (We use the notation ¢ to designate

the relative dielectric constant in the guiding region (m=1) or in the

substrate or cladding (m=2). €§1,2) can be shown to be much smaller

(1,2)
€

than 2 if we represent a gain medium of infinite extent with a

. . . 2 .
complex index of refraction n = Nee = 10y (e = n°) and a consider a

plane wave propagating in the medium to experience gain G :

i(n_ - in;)kz in_kz n.kz
Ep e I€ ! = Ep e & ol (3.1)

where Ep is the amplitude of the plane wave at z = 0 and by



Fig. 3.1

€5 ~ ie(iZ)
€5 ie(iz)
(a)
T //\\\ ///\\\
A¢ ~N // N
e 1 \\// ~
(b)

(a) Representation of an active waveguide with gain in
the guiding region (1) and gain in the substrate region (2).
(b) The effective gain of a thin film waveguide mode is
the ratio of the power inside the waveguide mode to the
total mode power, multiplied by the ray trajectory
length (T) per unit length of the waveguide (t).
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definition
_ 2m
G = n, S- (3.2)
so that
n. = G\/2r (3.3)

i

Typically, the highest gain lasers are semiconductor lasers

1 26,27

where G can approach 200 cm ' at wavelengths around 0.9 microns

For such a case, n; =3 x 1073 and is in general much smaller. Values
of nre are always greater than or equal to one, so the condition
n. <<n i . << i isfied.

i e OF equivalently €; €pre is always satisfied

A. Effective Gain Coefficients for Thin Film Waveguides

We consider the dielectric waveguide of width 2w illustrated
in Fig. A.1 of Appendix A. From Appendix A where € and €, were

assumed real,

s? = e kP 8 (3.4)

N L (3.5)
tan (sw) (even modes)

6 =s (3.6)
-cotan(sw) (odd modes)

If the dielectric constants become complex

€y = eﬁé) - ieg]) (3.7a)
e, = sii) - 1e§2) (3.7b)

the transverse andlongitudinal wave vectors in the guiding structure
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become complex. As €§],2) << eié’z) , we can consider egl’z) to be
a small perturbation giving rise to imaginary wave vector correction

terms Sis di, and Bi » where

s=s5. % isi (3.8a)
§ = 6re + 161 (3.8b)
B=Bet 1Bi (3.8¢)

and Spa? ére’ and Bre are the unperturbed real wave vectors. Ex-

panding (3.4) and (3.5) and keeping only first order terms in S5 G4

and Bi , we have

2 _ (1,2 2

See = Ere k= - Bre (3.9a)

B 1 (1),2 .

Si = - ?-S—r—e—{s_i k™+ ZTBY‘eBi] (3.9b)
2 _  (2),2 2

Gre = €ra k™ + Bre (3.10a)
5. = i [e2)% 28 8.1 (3.10b)

i Zére i re”i :

Expanding (3.6) in a Taylor series and again retaining only first

order terms,

tan(srew)

Spe = Spe (3.11a)

—cotan(srew)
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2S. W
re
tan(srew)[1 s S eV ]
S§. = 5. (3.11b)

2
SV

'COtan(SreW)[] - ETHTQE—*WT

re

From (3.10b)

R. . :
i (3.12b)
re B 282
re re

(2) (nm
I I S 3% e I
B = ?’ 7 T < o (3.]3)

re Bre t.f
where
2s W
2 re
tan (srew)[] * sin S eV ]

o g T (3.14)

5 25rew
-cotan (SreW)[] ~ ETETEE;;W)]

The unperturbed wave vectors s § ., and Bre are the mul-

re’ “re
tiple solutions of the dispersion relations (A.6) and (A.7). MWe

therefore use the notation Bgr) and Bﬁg) to indicate the imaginary

component of the longitudinal wave vector and the real component of the

th

Tongitudinal wave vector of the r™ waveguide mode.

A plane wave travelling in an unbounded medium with gain

(e = €ra ~ 181) propagates as
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. ik/E_z e.k/(2/e )z i(B_+ iB.)z
e182 - e re” 1 rt e re i (3.15)
where we have used s << €., SO that v%re— 181 = V%re(] -iei/Zere).

From (3.15), we see that the gain or growth of the plane wave is given
by 'Bi and is equal to the gain constant G of the unbounded medium,

where
Eik
G_

= (3.16)
2&;‘

However, in a wavequide structure where the simple relation B = /£ k
no Tonger holds, and the gain is localized to a specific region of the

structure, we can define a function Cr(k) called the effective gain

as the gain of the rth waveguide mode ~B§r) divided by the medium
gain:
2ve B(r)
- _alr) e o re i
C.(k) = -8y /6= - — T (3.17)

i
From (3.17) we can also define the effective gain as the ratio of an

effective imaginary part of the dielectric constant to the actual

imaginary part of the dielectric constant

(e.)
c.(k) = =t (3.18)
1
where
glr) g Br)
S S re 1
" (elerr = 25 T T PSR T (3.19)
re

Using the expression for BEF)/Bﬁg) in (3.13), we write the gain
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efficiency for the case of an active guide (EEZ) = 0) as

1) k %, f.
c (k) = /el (3.20)
r re )1+ o
p({r)T+ay ¢,
and for the case of an active substrate (e(]) = 0),

i

c k) = [e(2) _k 1 (3.21)
r re 5&2) ]'+at.f.

We note from equation (A.15a,b) of Appendix A that the term
“t.f/(]*'at.f) in (3.20) is the ratio of the mode power inside the
guide to the total mode power. The factor esg) k/Bre can be in-
terpreted as 1/(cos ¢) where ¢ is the angle between the optical
ray representing the waveguide mode and the z axis. As illustrated
in Fig. 3.1b, the gain efficiency coefficient given by (3.20) can be
physically explained as the ratio of the mode power in the guide to
the total mode power multiplied by 1/(cos ¢). The factor 1/(cos ¢)
accounts for the longer path length in the gain medium due to the zig-
zag path the mode follows compared to a straight Tine path down the
guide.

Figure 3.2 is a plot of equations (3.20) and (3.21) for the

first two waveguide modes as a function of the normalized free space

wave vector.

B. Effective Gajn_ Coefficients for Diffusion Waveguides

In this section we derive the gain efficiency coefficients for

the two diffusion waveguides shown in Fig. B.la,b of Appendix B. W is
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the channel half-width of the channel diffusion guide, and d, 1is the

diffusion depth for both waveguide structures.

From Appendix B, we find for both geometries

2
v

(2do)2 (8°- e]kz) (3.22)

2 2 2

52 = g% _ (3.23)

and for the channel diffusion geometry,

tanh(SW) JG(Z/a kdo) (even modes)
) = ~/o K ——— (3.24a)
cotanh(sW) Jv(zﬁi kdo) (odd modes)
and for the half-space diffusion geometry,
JQ(ZJE kd )
§ = -/ak 0 (3.24b)

Jv(ZJE kdo)

The primes in (3.24a,b) indicate differentiation with respect to the
argument 2/o kd of the Bessel function. As in Section IIIA, we let
e; and e, become complex (see (3.7a,b)) creating complex transverse

and Tongitudinal wave vectors in the guiding structure. Again we con-

sider €§1,2) to be small perturbations giving rise to imaginary cor-

rection terms v,

i 61, and Bi’ where

vEV Lt v, (3.25a)
§ = dre + i&i (3.25b)
=g 1+ 1p8 (3.25¢)
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and vre(Zdo),d » and B are the unperturbed wave vectors,

re
Expanding (3.24a,b) in a Taylor series and keeping terms only

up to first order in Vs and ai s

tanh(drew) Jé (2/a kdo)

s = o) k —re (channel (3.26a)

re c
J (2/% kd_) guide)
cotanh(arew) Ve 0

3! (2/5 kd)

§ e = -Ja k —X& (half-space diffusion) (3.26b)
J,, (2Vo kdo)
re
and
8, = -viﬁi k S(J) (channel guide) (3.27a)
85 = ~v/a K F(J) (half-space diffusion) (3.27b)
where
2 "]
tanh(@rew) sech (érew)
S(J) = F(J) + 8w (3.28)
re 2
cotanh(érew) ~csch (6rew)
and
9d od 9d
Vre! ) Vpe’] 3 - Vre((d . ))
F) = Nye Wy Zvre Mo vre'] Vre+]
2J
Ve (3.29)

In general, we can write (3.26a,b) as

85 = ~v.Va kA(J) (3.30)
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where A(J) = S(J) for the channel diffusion waveguide and A(J) = F(J)
for the half space diffusion waveguide,

We now expand (3.22) keeping only first order terms in v, and

B
2 2 g2 _ ()2
Vre = (2d )% (Blm £pg K (3.31a)
2
(2d ) 2
- "o (1) k
vy T e (880t &5 " (3.31b)

Subtracting (3.23) from (3.22) we obtain

W = (2d0)2[62- (eq- €,)K?) (3.32)

and expanding as before

VB, = (2402162~ (el1)- () (3.332)
(2d )% 2y (1) K
\)i = _—\T(:;— [Sredi - (€$ )- E“i ) ?-—] (3.33b)
Using (3.30) in (3.33b),
(24 )2 2
o [0, v k AW - (2 el (5.5

and simplifying,

_(Egz)_ egl))kz(Zdo)z

i " (T ¥ ap) (3.35)

where we define
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a5 ks, d

re o
— =2 A@J) (3.36)
D Vre

o

From (3.31b) and (3.35)

(2) (1) 2 (1) ,2
i - (ei - €5 k € k (3.37)
Bre 282 (1 + o) 282 '
re Bre % Bre

Using (3.37) in (3.19) and (3.18) of Section IITA, we write the gain
efficiency for the case of gain in the inhomogeneous regions (€§2)= 0)
as

C (k) = [e k__D_ (3.38)
r re BZrS ]4-aD :
re

Similarly, for the case of gain in the channel of a channel diffusion

guide or gain in the homogeneous half space of a half space diffusion

guide (e§])= 0), the gain efficiency is
_ [ (2) _k 1
CY‘(k) = Ere ——(}-)-'-]—j'_—ag' (3.39)
re

Equations (3.38) and (3.39) are the gain efficiency coefficients for
the diffusion waveguides and are plotted as a function of the normal-
ized free space wave vector for the case of a half-space diffusion wave-

guide in Fig. 3.3.

¢, Effective Gain_ Coefficients for Fiber Waveguides

In this section we derive the gain efficiency coefficients
for the fiber waveguide of radius w shown in Fig. C.1 in Appendix C.

From Appendix C,
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J (sw) K (8w)
sw 0 = - 8w 0
J]ZSWS K]iéwi

%]
]

2 2
e]k - B
and

B2_ c k2

(o2
1]

2

(3.40)

(3.41)

(3.42)

As in previous sections, we let € and e, become complex (see (3.7a,b))

creating complex transverse and longitudinal wave vectors in the guiding

(1,2)

structure. The small perturbations €; give rise to imaginary wave

vector correction terms Sis Si, and Bi’ as defined by equations

(3.8a,b,c) in Section IIIA. As (3.41) and (3.42) are the same equations

as (3.4) and (3.5) of Section IIIA, equations (3.9a,b) and (3.10a,b) are

valid for both dielectric slab and fiber waveguides. Expanding (3.40)

in a Taylor series and keeping only first order terms in and 6? ,
s Jo{Spe) = -6 W o{Ope) (3.43a)
re J](srewi re K1(6rew5 ’
SiW B(J) = - S;W D(K) (3.43b)
where
_ Jo(srew) J1(Srew)dé(srew)"Jo(srew)di(srew)
B(Y) = T w) - Sre? 2
1*7re 37 (speW) (3.44)
and
D(K) = Ko(ﬁrew) 5w Kl(ﬁrew)Ko(érew)"Ko(érew)K1(5rew)
K. (8 w) re 2
1*7re SECI) (3.45)

The primes in (3.44) and (3.45) indicate differentiation with respect
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to the arguments oW and Grew of the Bessel functions J and K.

SY‘
Subtracting (3.10b) and (3.9b) and using (3.43b)

5; = - —2l) (3.46)
Gre B(J) - sre D(K)
From (3.10b)
£
. i
Brefi = 7 kT 668 (3.47)
and we can write
Bi L1 k2 (‘Em% - Egz)) (.48)
Bre 2 Bre T+ o
where we define
s.  B(J)
ap = - == (3.49)
F Sre D(K) :
Using (3.48) in (3.19) and (3.18) of Section IIIA, we write the gain
efficiency for the case of gain in the fiber (€§2) = 0) as
_ [ k OF
Cr‘(k) =JEre (7}7) T+a (3.50)
8 F
re
For the case of gain in the cladding surrounding the fiber (€§1)= 0)
the gain efficiency becomes
_[02) ke y ]
Cr.(k) =J Epe (W) T_"T"OTF— (3.51)
re

The gain efficiency coefficients given by (3.50) and (3.51) are plotted

in Fig. 3.4 as a function of the normalized free space wave vector.
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Chapter IV

Coupling Coefficients

In this chapter mode conversion in periodically disturbed
dielectric waveguides is studied. In particular, we are interested in
the contradirectional coupling of a pth waveguide mode to a qth wave-
guide mode. For the case of the thin film waveguide, we consider the
three types of periodic structures shown in Fig. 2.1 of Chapter II:
waveguides with a periodic inhomogeneity in the guiding region, wave-
guides with a periodic inhomogeneity in the substrate, and waveguides
with periodic boundaries. For the case of diffusion and fiber wave-
guides, we limit our study to the case of waveguides with periodic
boundaries. In all cases, the method of analysis is that developed by
Elachi and Yeh22 in their study of mode conversion in periodically and
randomly disturbed thin film waveguides. The method is a perturbation
analysis that considers a periodic disturbance (assumed small, i.e.,

n<<1in (4.1a))to modify the transverse and longitudinal wave vectors

of the unperturbed solutions,

A. Coupling Coefficient for a Periodically Inhomogeneous

Thin Film Wavequide

We consider first the case of a periodically inhomogeneous

guide imbedded in a homogeneous substrate, where

8061(]'+ﬂ cos Kz) Ix] <w (4.7a)
e(z) =
€42 [x] > w (4.1b)

and n is the amplitude of the relative permittivity change and K
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is the wave vector of the perturbation as defined in Chapter II. We
consider the interaction between a forward p mode and a backward q
mode where the requirement for strong interaction was found in Chapter

II to be
R 1 -
lepl teql K (4.2)

The condition (4.2) is referred to as longitudinal phase matching, and
occurs at a frequency wpq as indicated in Fig. 2.7.

To formulate the coupling mechanism we consider the pth wave-
guide mode of frequency w = mpq + Aw and write the corresponding
electric field as

Ep(x,z) = dp aé(x) exp(iBéz) (4.3)

The mode amplitude is %) and the transverse behavior aé(x) is given

by (see Appendix A, (A.3))

~ cos(s'x)
ST even modes  |x| <w (4.4a)
sin(s'x) N : )
odd modes X < w 4.4b

\ _ sin(s'w =
ap(X) < p
exp(8'w-8"[x]) even modes [x| >w (4.4c)
sign(x) exp(8'w-8"|x|) odd modes Ix| > w (4.4d)
-

The transverse wave vectors sé and 65 and the longitudinal wave

vector 86 are the wave vectors of the perturbed waveguide defined by
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s' = + As (4.5a
pp )
8' =8 + AS 4.5b
b= % ( )
‘o= + 4.5

Bp Bp AB (4.5¢)

where sp, ép, and Bp are the (p+1)th solution of the dispersion
relations for the unperturbed waveguide. From Appendix A, the unper-

turbed dispersion relations are

2

2 _ 2

sp = E]k - Bp (4.6)

2 _ 2 2

Sp = ezk + Bp (4.7)
tan(s_w) even modes

dp = s P (4.8)
—cot(spw) odd modes

The terms As, AS, and AR are small perturbations (as n << 1 in
(4.1a)) caused by the inhomogeneity.
Inserting the perturbed solution (4.3) into the wave equation

(2.3) using (4.7a,b) gives

2 2 2 2

3 9 ) W
[&— + =5+ e, =] E (X,2) = -n = e,E _(x,2)cos (Kz) (4.9a)
ol a2 12 P 2
x| < w
32 82 wz
[$m + S5t €, 5] Ep(x,z) = 0 Ix| > w  (4.9b)
X ay C

We can identify the perturbation term on the left hand side of (4.9a)

with a spatially periodic convection current JC where
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Jc = -imeoe]rlEp(x,z) cos(Kz) h(x) (4.10)
and
{:1 Ix] < w
h(x) = (4.11)
0 Ix] > w

Writing cos(Kz) in exponential form and using (4.3)

€ € i(B'+K)z i(Bé—K)z

J_ = -iuwn _%Tl da'(x) h(x)[e P + e

. 22 ] (4.12)

Considering the case of contradirectional longitudinal phase matching
(see (4.2)), we see that the current J. has a term of phase
exp(-i|B'qlz) and is therefore able to excite a backward q mode accord-

ing to the wave equation

2 N 2 -1]8gl2
+ ey ?] Eq(x,z) = - 2 2 e]cpa;)(x)e h(x)(4.13)

r._.,
WJW
x nNo
+
@ |as
‘<N'N

where, as in (2.43) of Chapter II,

€. = e]h(x) + &:2(1 - h(x)) (4.14)

Using an expression similar to (4.3), we write the backward g mode as

ig'z
Eq(x,2z) = dqaé(x) e d (4.15)

To determine the effective excitation current for the new qth

mode, we must expand JC as a function of the transverse modes.
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Using
as(x) h(x) = § 63 25(x) (4.16)
where - W
| .J.aé(x) h(x)aj*(x) dx f aé(x) aj(x) dx
ba3 = 3 = ‘Vr“m - (4.17)
J a3 (x) al(x) dx [ aj(x) a3 (x) ax

we write (4.13) as

2 2 2 2

) ) ) 1 _ nw g
[+ =5+t ¢ ] da'(x) = - 5 = ¢e,d z ¢'7 at(x) (4.18)
8x2 822 1,2 c2 qq 2 CZ 17p 1 pj

For j = q, (4.18) is independent of x and is said to be transversely
phase matchedzz. For j # q, the driven term (left hand side) is not

synchronized in space with the source term (right hand side). Thus the
current terms corresponding to the ¢6g aé(x)'s (3 # q) are not effec-

tive in exciting the backward q mode. We can now write (4.18) as

(w_ + Aw)
- E_I __.EH.T__] d
c

[(sgt 1)? + (8 18)° .

(w_ + Aw)2

= £ 'g
1 _EQ.;?.____dp ¢pq (4.19a)

(w_ + Aw)

2 2
[-(sq + 28)%+ (By* 28)° - &, —ﬂCT—] dg

(w_ + Aw)z

= %e]——p—q—?——— d, %8 (4.19b)
C
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Expanding (4.19a,b), neglecting second order terms, and using

(4.6) and (4.7), we have

w_ _Aw

2
ne; w
.._29,2_:1 g
[sq ASs + BqAB €1 - ]dq _z_._Eg-dp ¢pq (4.20a)

EpW Aw ney w

-8 AS + B AR -
-4 e ~§§-qu

(4.20b)

H]
-b'
N
.
o]
-
T
O

where
2
~ 28 cos"(s w)
4 g p # qs p even, q even (a)
§ +8 1+6
(8,+8,)(1+6w)
6pw-+sin2(s W)
W T+3W) p=gq3; peven, q even (b)
* p
f ap(x)aq(x)dx
. 2
- 2
¢gq - g - < 6q sin (sqw)

G 6 7(]_+6~§D p# Qs p odd, q odd (C)
a (x)a;(x)dx P 9 9

. 2
S w+
AEW sin“(s w)

T+ 5.w) P =4g; p odd, q odd (d)
p
i p odd, q even; or
0 q odd, p even (e)

(4.21)

In (4.20a,b) we have used a first order Taylor series expansion

fx+Ax) = f(x) + Ax f'(x) (4.22)

on the transverse functions aé(x) to obtain the unperturbed trans-
verse functions ap(x) given by (4.4a,b,c,d) with As, AS , and AB

equal to zero.
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Equations (4.20a,b) require that

w_ Aw w_Aw

qus - €y —Eiz—-= -anG - € —EE%T— (4.23)

C

Equation (4.23) relates the perturbed and unperturbed wave vectors in
the perturbed waveguide, Due to the currenf J. (see (4.10)), the
unperturbed relations (4.6) and (4.7) do not hold for the perturbed
wave vectors 56, 66, and Bé . However, the dispersion relation (4.8)
results from the boundary condition at x = #w (see Appendix A) and

remains valid for the perturbed wave vectors. Hence we can use (4.22)

and (4.8) to obtain

tan(sqw) secz(sqw)
AS = As + s w (4.28)

q 2
-cot(s w CSC (S W
L Lreot(sgw) (sqw)

Combining (4.23) and (4.24) we write

w_ Aw
(e4- &) &2
As = 2 (4.25)
r tan(sqw) sec (sqw) }
+ § / + S W I
*a" “q\ eny O 20 3
t}_-co sqw csc sqw ]
We use (4.8) to write the product
f/ cosz(s w)
(6= €,)w_Aw 5 9
T 7277pq | sin“(s_w)
s Ag = = 9 (4.26)
q 1+ 6qw

and (4.20a) becomes
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_ sinz(sqw) 5 cosz(sqw) _
€ + ¢ W £
a .c052(s.w) 19 2 sinf(sw) \ 0 Au
A8 - g q Pq
B _AB + Vi d
q 1+ éqw 1+ dqw c q
_ J
w2
=N g
7 € —»Z—% d, oo (4.27)

Multiplying (4.27) through by (BqK)'] and rearranging, we have

B W
0B (Qyp Mgy N (P21 14 49
- (D 8 827 4 - F ey (B2 g a4 (4.28)
Pq q
where
{jsinz(sqw) {jcosz(sqw)
€ + .8 W £
w2 1 cosz(s W) 1°q 2 sinz(s w)
B, = o 9. + =l (4.29)
+ 1+
c Bq 1 Sqw dqw

At the same time, as expected by symmetry considerations, a
qth mode generates a convection current which excites a pth mode;

therefore the coefficients dq and dp are also related by

(292 L Ly 49 (4.30)

B
AR (Thyg Mw gy - D 1
[ (B ]dp §1\7¢ Bp K g "qp

Kpmpq 4
where B_ and ¢gp are equivalent to B

P q
interchanged. As the qth mode is travelling in the -z direction,

g ; d
and ¢pq with p and ¢

Bq = -]Bql . To satisfy both equations (4.35) and (4.37), we must have
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' g .4
18| e IBL ne; o0 4 Yap ¥pg
E%§'+ —'g"'Bq é?L'][%g'- Kp Bp gw 1= = 4])2(“EEJ Ta 1l v
K pq pq IBPIIBqIK
(4.31)
and therefore
AB _ Aw 2,80 \2  _2;.9 2
=L = (g - 28 ow Ve 4,32
&= (6, 8) wpq—/‘ep* o) (G i (egy) (4.32)
where
8, | )
6, = ¢ lBrl . r = p.q (4.33)

g .4
€, W o7 ¢
9 -1 ’p9y2 1 [®pq *gp_
&34 (=) ¢ ,/pr!qu! (4.34)

Equation (4.32) giVes the normalized change of the longitudinal wave
vector for an operating frequency equal to wpq-+ Aw and a ber-
turbation amplitude n .- Equations (2.35) and (2.36) (see Chapter II,
Section A) are the corresponding equations for a transversely unbounded
medium. The choice of the + sign in (4.32) corresponds to ABP/K as

th mode loses energy as it excites a qth mode. Similarly, the

the p
choice of the - sign in (4.32) corresponds to ABq/K . Using (4.26)
and (4.23) we can solve for Asp, Asq, Aap, Adq and then use (4.3)
and (4.4a,b,c,d) to completely express the transverse and Tongitudinal
behavior of the guided modes.

As in the unbounded infinite case (Chapter II, Section A), the
solution for the longitudinal wave vector is complex in a frequency

band (called a stop band region) centered at Bhq and of total width



-68-

Q=2 4.35
N g Epg/ (pteg) (4.35)

The corresponding Brillouin diagram is shown in Fig. 2.4 . For an in-
teraction where p =q, AR 1is pure imaginary. Otherwise, for
Aw # 0, AB has a real component as indicated in Fig. 2.6b.

The imaginary component of the Tongitudinal wave vector has a

maximum value

(k) = 53 (B = o T (CByy? /¢Sq fo (4.36)
Equation (4.36) is the required coupling coefficient analogous to

eqn h(x)kz/(48ro) in (2.49a,b) to be used in (2.53a,b) for the case of
a periodic dielectric constant in the guiding region. The normalized
coupling coefficient ng(k)L’ where L 1is the length of the perturba-
tion region, is plotted in Figs. 4-1 and 4-2. As we expect from phys-
ical reasoning, the value of ng(k)L is small near cutoff as most of
the mode energy is in the substrate where there is no perturbation. As
the frequency increases, more optical energy is enclosed into the
periodic guide Teading to stronger coupling. This trend continues for
coupling between p = q modes (Fig. 4.1). However, for coupling be-
tween p # q modes (Fig. 4.2), after a certain optimal frequency,
ng(k)L drops off as the overlap term ¢gq goes to zero.

The reciprocal of the group velocity for an unperturbed (n=0)

thin film waveguide can be obtained from (4.28) as

8 B
- %% LY (4.37)
Pq

1

r
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B. Coupling Coefficients for a Homogeneous Thin Film

Waveguide with a Periodic Substrate

The same method used in the previous section can be applied
directly to the case where the waveguide is homogeneous and the sub-
strate has a periodic dielectric constant. The analogous equation to

(4.1a,b) is

€551 [x] < w

(4.38)
8082(1 + ncos Kz) [x] > w

In this case the source convection current is in the substrate, and

equation (4.32) remains valid with ggq replaced by

s .S
€ w ¢ ¢
s -2 (p9y2 1
£pq T R IBpHBq
where w ©
* + *
ap(x) aq(x) dx f ap(x) aq(x) dx
s _ = W
¢Pq @
*
[ aq(x) aq(x) dx
4 268 cosz(s W)
9 9 q even (4.39a)
+ 6 +
) (cSp q)(1 éqW)
28 sinz(s W)
9 9 q odd (4.39b)
g (6p+ 5q)(1+6qw)

The coupling coefficient for the case of a periodic dielectric constant

in the guiding region is thus given by



; € Bpa2 ¢Sq 6>
Xpg(k) = n 7 (£1° [ B (4.40)
ENEN

The normalized coupling coefficient xgq(k)L is plotted inv
Figs. 4.1 and 4.2. 1In this case, the coupling coefficient increases
rapidly to a maximum close to the cutoff frequency of the waveguide, and
then drops off with increasing frequency as the mode energy becomes
confined to the unperturbed guide region and no longer "feels" the per-

turbation in the substrate region.

C. Coupling Coefficijent for a Homogeneous Thin Film

Waveguide with Periodic Boundaries

An approach similar to that used in sections A and B of this
chapter can be used to study the case where the boundary between the

waveguide and substrate is given by
X =+ w(l + n cos Kz) (n << 1) (4.41)

We will determine the coupling by using a surface current to represent
the surface perturbation. We assume in this and the two following sec-
tions that nw < A/10 so that the Rayleigh assumption for scattering
from periodic surfaces is va?id74’75’76.

In Fig. 4.3a we have sketched a perturbed boundary of a wave-
guide and in Fig. 4.3b we have sketched an equivalent configuration

consisting of an unperturbed waveguide boundary with a surface current

gs = J(z) §(x) éy . The function &(x) 1dis the Dirac delta function.
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Stokes's theorem states that

f)z Frau- [ (xp)-as

(4.42)

where F is a vector field and d2 is a line element of the closed

curve bounding the open surface S . Using (2.1b),

5% E)+d

anre1

we can use Stokes's theorem to write
§ Hedt = -iwe e .o J E-dS + f J - dS
S

Applying (4.44) to Fig. 4.3a, we have

Similarly, considering Fig. 4.3b, we find

§ He-dg = -iwe e, f E-dS + f J(z) G(X)ey- ds
S

2 S

Thus
f J(z) 8(x) ey «+dS = -ie (81—52)w J E-dS
S S

which yields

J(z) Az = -130(51— ez)w Ax Az El(x,z)

X=wW

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Using Ax = nw cos Kz and considering E(x,z) to be the pth wave-

guide mode of frequency w = mpq + Aw we can write

ig'z
J(z) = -ie, nw(€1-€2)m cos(Kz) dp e P (4.49)
This surface current can excite a backward q mode if the contradirec-

tional phase matching condition (4.2) is satisfied. The boundary

condition for this new g mode is

Hzl(x,z) - Hzl(x,z) = Js(z) (4.50)
x=w" X=w"
where
- €q-€ -1]8&]2
Js(z) = -1eor1w( 5 Y dp e (4.51)

is the component of the surface current J(z) 1in phase with the gen-
erated wave.

Using (2.1a) for TE modes we have

oF
X = 3
5% Tugw Hy

and using (4.4a,b,c,d) we can write (4.50) as

(222 (4.52)
T]W 2 p .

B " tan(s'w)
S' q _6’ d = (..L.o_.
a1 g c
-cot(séw) )

)2

This relation for the perturbed wave vector is analogous to the dis-
persion relation (4.8) resulting from the boundary condition of the

unperturbed waveguide, and couples the two modes p and q through
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the perturbation of the boundary. From the wave equation (2.3), we
see that the dispersion relations (4.6) and (4.7) remain valid for the
perturbed wave vectors sé, 66, and 86 .

We now use (4.5a,b), (4.8), and (4.22) with (4.52) to obtain

tan(s w) secz(s w)
As q + s w q - A8 dq
—cot(sqw) cscz(sqw)
w E4—E
= (P92 (12
(=" nwl==) 4, (4.53)

As the dispersion relations (4.6) and (4.7) hold for the perturbed

wave vectors, we can use (4.5a,b,c) to yield, neglecting second order

terms.,
As = L—(E kak - B AB) (4.54)
sq 1 q
1

With (4.54) and (4.55) we can write (4.53) as

S g °g q

w 2 £4-€

- (_Pq 1.2
= () nwl—==) d, (4.56)

where
2

tan(s w) sec (s w)

A = T & 5w q (4.57)

-cot(sqw) cscz(sqw)
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By algebraic manipulation and use of (4.8)

A . T+ 8w
2+ 1 - q (4.58)
S § 2
q q cos (s w)
Sq¢ . 2, "
sin
| (qu)
and
sinz(s W) (Eosz(s W)
el Zq)+e]6qw € 2q
e, A e, A -1 t cos“(s w sin“(s w
L I
e "q “q °q 1+ 68w TH8W  (a.59)
Therefore, multiplying (4.56) through by (qu)'](Aq/sq + 1/5q)’1 and
rearranging, we have
B Ww. 2 €q-€
A8 _ (ZQyp Dwyy = (P4 12y b 1
[ - (g8 53dg = (9 nl==) 65 4, 7¥ (4.60)
where
IV P 2
Pq S S cos (s w)
a 9 4 q
. 2
9 ) sin“(s w)
= g (4.61)
+ 6§
1 qw
and Bq, as in (4.29), is given by
/ sinz(s W) ’cosz(s W)\
2 [ o, Vo st 5 9
W cos“ (s _w) sin“(s w)
Bq=—2£‘21{' 9. - 9 ! (4.62)
‘ 1+6 1+ 6
€ Pq | q" q" /

By the same analysis that developed (4.60), a qth mode will excite a

pth mode leading to the relation



~78-

. B . W . .€q=E
BB (yp Awyy = (292 (L b g ]
[ - ( K18y 5 3dp = (557 nl—="e, 4 s (4.63)

Multiplying (4.60) and (4.63) gives

b b
[48 4 -.QL_IB | B éﬁ*’_][é.g_.. ___E._ls | g 4w - _nz(gl‘ez)z(f_p_q_)zu ...¢._9.E¢_B§L
K K "quw K K P w 2 c 2
Pq Pq SEENIEN
(4.64)
Equation (4.64) is similar to (4.31) and the solution for AB/K
has the same form:
DB _ fn A 7 tw 2 2,52
= (o 8g) G Jesre) (G - 'ty (4.65)
where
Gr = —Q-K-—- [BY‘[ r = pPsq (4.66)
Eq4=E, W ¢b ¢b
e = (LA (B g —PAgR (4.67)
P 8,118,

From (4.65) we obtain expressions for Asp and ABq and
therefore, using (4.54) and (4.55), obtain Asp, Asq, A@p, and A@q.
Thus with (4.3) and (4.4a,b,c,d) we can express the complete transverse
and longitudinal behavior of the guided modes in a thin film waveguide

with periodic boundaries.

The maximum value of the imaginary component of the longitudinal

wave vector is

. S 2 s ¢b“
o (k) = n(—9) (=) [P (4.68)
P 8,118,
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The normalized coupling coefficient ng(k)L is plotted in Figs. 4.1

and 4.2. We see that near cutoff, where most of the mode energy is in
the substrate, the coupling is weak. At high frequency when the mode

energy is inside the waveguide, the field at the boundary is small and
the coupling is reduced. The strongest coupling occurs at an optimum

frequency somewhere in between.
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D, "Coupling Coefficients for Diffusion Waveguides
with Periodic Boundaries

In this section we derive the coupling coefficients for the
two diffusion waveguides (shown in Fig. B.la,b of Appendix B) for the
case of periodic boundary perturbations.

The channel diffusion guide indicated in Fig. B.la has per-

turbed boundaries given by
x =+w(1 + n cos(Kz)) (4.69a)

The half space diffusion guide (Fig. B.1b) has a perturbed boundary

given by
x =+ n' cos(Kz) (4.69b)
Both boundaries have the appéarance sketched in Fig. 4.3a. For this

reason, as explained in Section C, a forward pth mode can excite a

backward qth mode through the boundary conditions (4.50)

Hz!(x,z) - Hzt(x,z) = Js(z) (channel guide) (4.70a)
x=wt X=W~
Hzl(x,z) - Hzl(x,z) = Js(z) (half-space guide) (4.70b)

x=0% x=0"~

As in previous sections, we consider a pth waveguide mode of frequency

w = wpq + Aw with a corresponding electric field,

Ep(x,z) = dpaé(x) exp(iﬁﬁz) (4.71)

The mode amplitude is dp and the transverse behavior aé(x) is given
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by (see Appendix B)

x| -w
’ 2d
J, (@akde ° )
vy , .
3y 2/ kd_) channel guide |x] >w  (a)
p
cosh(8'x)
<osh(5 W (even modes) channel guide |[x|<w (b)
P
sinh(§'x)
ﬁ STARTE T (odd modes) channel guide |x| <w (c)
P
ay(x) =
NELR
2d
J, (2 kde )
P half-space guide |[x| >w (d)
3, (273 kd,) .
p
M
e P half-space guide [x| <w (e)

(4.72)

The transverse wave vectors vé/(Zdo) and 66 and the longitudinal wave

vector 86 are the wave vectors of the perturbed waveguide defined by

v = v o+ Ay .
p b (4.73a)
§' =& + AS .73b
b D (4.73b)
LI + A .7
By = By * 08 (4.73c)
where v_, 6 and Bp are the (p+1)th solution of the dispersion

p* p’
relations for the unperturbed diffusion waveguides. From Appendix B,
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the unperturbed dispersion relations are

2
v
P - g (4.74)
(2d.) e
)
2 2 2
§- = - .75
. Bp €2k (4.75)
for both geometries, and
e
RS = -0 k —=———r (4.76a)
P 1_coth(6 W) JV(ZJE kdo)
p
for the channel diffusion waveguide, and
e J¢(2%§ kdo)
6 = . k PR AR
P TN (27 kd) (4.76b)

for the half space diffusion waveguide, The primes in (4.76a,b) indi-
cate differentiation with respect to the argument 2/ kdo of the
Bessel function J . In the above equations, dO is the depth of
diffusion. The terms Av, A8, and AR are small perturbations (as
n<<1 in (4.69a), n' << d in (4.69b)) caused by the boundary perturb-
ation. 7

We can now use (4.48) and (4.51) to write (4.70a,b) in the

form

Ay

thanh(é'w)
J'. (2/a kd )Va k + & J . (2/a kd )] d
: Yq " o g L‘coth(ééw) Vg e
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_ 2 F17E2 >
= (D) (=) 9, (2 kd ) d (4.77a)
q

[J\')(.J(Zx/&' kdo)Va k + 8 Jvé(z,/a kd,)1 dg

- (@2 (L3 I (25 4) ¢ (4.77b)
Equations (4.77a,b) for the perturbed wave vectors are analogous to the
dispersion relations (4.76a,b) of the unperturbed waveguide, and couple
the two modes p and g through the boundary perturbation. From the wave
equation (2.3), the dispersion relations (4.74) and (4.75) are seen to
remain valid for the perturbed wave vectors Vé/(Zdo)’ §', and Bé .

q
We now use the first order Taylor series expansion

- of of
Fx+Ax,y+ay) = f(x,y) + = Mx + 5y Ay (4.78)
w_+ Aw
and (4.73a,b,c) along with k = -Pﬂ.c-—-— = kg * Bk towrite (4.77a,b)
neglecting second order terms, as
I BJQ tanh(épw) SJv \
{ e e 6y T A
\ th(s /
L q coth(8w)
sechz(épw) {'tanh(épw)
Vp P -csch (dpw) coth(épw)_} P

' 7 tanh(s_w))
2Ed, g f b 2/&dO>A']

;’!//‘ 2 J 5 J d
+ /0 J" + —=J' + ON w
\ ¢V c c Vv ﬂ\coth(SPWX) pv ¢ J q
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= W 7 ( P42 5 g (channel guide) (4.79a)
c vq p
fp_‘l BJ\‘) aJ\)
Yo (—1) = ap—P—a Av + vaAa
W 2v/a d 2v/o d
_Pg: n 0 ._‘/E_ @ .
+(/&( )J\)p = + CJ\)p+<SpJ = )Aw dq

€q= €, W
=n'( ]2 2)(—2992 J,, dp (half space guide)  (4.79b)

The suppressed argument of the Bessel function Jv is understood to be
2V kpqd0 . In obtaining (4.79a,b) we have used the dispersion rela-
tions (4.76a,b) for the unperturbed wave vectors. As the dispersion
relations (4.74) and (4.75) hold for the perturbed wave vectors, we

can use (4.73a,b,c) to give, neglecting second order terms,

2

(2d ) €0
_ Yo 1
Av = (Bqu - -——Cgﬂ Aw) (4.80)
and
ISP N}
AS = Ja" (8,08 - —-2—‘%-9'130)) (4.81)
q c

With (4.80) and (4.81) we can write (4.79a,b) as

£.=£ ()
(6 DF 08 + 03 au)d, - n"(J—é——z—)(—Eﬂ)z 3, 4 (4.82)
q

where
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2 )5 EN) tanh(8 w) Sad
pd = )7 7% Tpg _Pq | —4]
: Vq ¢ 8\)q 4 coth(éqw) Vg
sechz(éqw) tanh(dqw)
+ %—-[6 W » +4d, (4.83a)
q 9 q | -csch (qu) q coth(éqw)

(channel guide)

J! ad
(2d )2 Jaw_ v v
q . 0 jelel qg -9
DB vq c Bvq * aq Bvq 1+ qu/éq (4.83b)
(half space guide)
2
e sech (qu) tanh(@qw) 8d,,
R ALY 2 iy o]
S, ¢ g q | -csch®(s _w) q L coth(s w)) °7q
q q q
tanh(S w)
2d ow q 2/x s d
+——9——2-99~J\'; +—‘{§-J\')+ ———-—C——C‘——J\') (4.84a)
c q q coth(ﬁqw) q
(channel guide)
q EoW aJ\)ﬂ 2d0c>cwpEL 5 2V 6do
Dy = - g by ™o F 7 dy Tl f c J
‘5qc q q C q q q
(half space guide)
(4.84b)
and
nw (channel guide) (4.85a)
nll =

n' (half space guide) (4.85b)
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Multiplying (4.82) through by (BK)"](Dg)f], we have

J
+ (Km') (1) AU} = n"(E]ZEZ)(qu)Z q d (4.86)
"q 0} .

q P
K BqDB

By the same analysis that we used to derive (4.86), a qth mode will

excite a pth mode resulting in the relation

oP J,
28 + (29 % oy d) = (B2 B (4.87)
p DB “pq KBpDB
Multiplying (4.86) and (4.87) gives
AB A Dp A
== - ( )ii = ][ (o) 288
K K{e [ Dg Unq K{e | DZ Ung
€2 w 4 J\) J\)
= -(n") L (4.883)
K718,1184] Dg D

Equation (4.88) is similar to (4.31) and the solution for ag/K has

the same form:

AB 2, 0w, 2 a2 D \2
= (6.-6 ) 22 + [(a+a )(EH)°- (nM)° (2)) (4.89)
p q wpq V/ P q qu Pq
where
r = p,q (4.90)

- (_T_jﬁL_

Uaxlg



. Ea=E W \Y
£, = (02 ] "o g (4.91)

Pq K q pP
(8,118, Dg Dg

The maximum imaginary value of AR 1is given by

J Jv

€4-€ W AY
XD (k) = n(1-2) (-9y? P4 (4.92)
BpttFq! T 78

The normalized coupling coefficient qu(k)L is plotted in Fig.
5.1 abcd.As shown in Figs. B.4ab, the electric field at the boundary
of a diffusion waveguide increases as the waveguide frequency is in-

D
q(k)L

creased above cutoff, explaining the monotonic increase of Xp

with frequency.
The reciprocal of the group velocity for the unperturbed dif-

fusion waveguides (n" = 0) can be obtained from (4.82) as

r
DLO

B D

R r = p,q (4.93)
B

The expressions for Asp,'ABq obtained from (4.89) can be used with
(4.80) and (4.81) to obtain Avp, Avq, Asp, and Asq . Thus, using
(4.71) and (4.72a,b,c,d,e) we can express the complete transverse and
longitudinal behavior of the guided modes in diffusion waveguides with

periodic boundaries.
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E. Coupling Coefficient for a Fiber Waveguide with
Periodic Boundaries

In this section we derive the coupling coefficients for TE
modes of a fiber waveguide with a boundary (Fig. 4.4) between the core

and cladding described by a periodic radius pB(z) where

pB(z) = W(1 + n cos(Kz)) , n << 1 (4.94)

A fiber waveguide with a periodic boundary can be considered equivalent
to an unperturbed waveguide with a periodic surface current as indicated
in Fig. 4.3a,b and discussed in Section C of this chapter. For this
reason, a forward pth mode can excite a backward qth mode through the

boundary condition (4.50):

Hol(esz) - H,|(es2) = J.(2) (4.95)
p=w" p=w"

As in previous sections, we consider a pth waveguide mode of frequency

w = Onq + Aw with a corresponding electric field

I

inz
Ep(p,Z) = dpap(p) e (4.96)

The mode amplitude is dp and the transverse behavior aé(p) is given

by (see Appendix C)

- o Hy JClJ<S[I)p) p<W (4.97a)
a'(p) = P
p s J](é‘w) ,

Zlwp Ko (600) —P 0> W (4.97b)
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where

p = x2+ y (4.98)

The z component of the magnetic field intensity vector is, from

Appendix C,

' iBéz
Jo(spp) e o<W (4.99a)
HZ(D,Z) = 6! J-I(SW)
. gﬁ. K] = Ko(app) 0> W (4.99b)

Primes, as in (4.97b), are used to indicate differentiation with res-
pect to the arguments sép and Sép of the Bessel functions J and
K. The transverse wave vectors sé, 65, and the longitudinal wave
vector Bé are the wave vectors of the perturbed waveguide defined,

as in previous sections, by

56 =S, + As (4.100a)
''= 8§+ AS 4,100b

6P p ( 0b)
] = + A .

Bp Bp B (4.100c¢)

where sp, 6p, and Bp are the (p+])th solution of the dispersion

relations for the unperturbed fiber waveguide given in Appendix C:

2 _ 2 2
sp = S]k - BP (4.101)
2 _ .2 2
6p = Bp - €2k (4.102)
J (s w) Ko(é W)

0
SpW j-l—(-S—EWT-*. 6pW -KTS-E-W = 0 (4.]03)
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The terms As, A8, and AB are small perturbations (as n << 1 in
(4.94)) caused by the boundary perturbation.
We now use (4.48) with (4.99a,b) to write (4.95) as

8 (s w) 2
-ﬁL- R¢X?Q&U-K (8:w) + (5o 1d = - B (e <)) ET-JA(séw)dp (4.104)

p

Multiplying (4.104) through by K](déw)sé and using Jé(x) = -J](x),

we have

[6q Jo(sqw) K (8 éw) + séK](ééw) JO(SéW)] dq

Sq f17%2,,2
= mw o3 (—)k 3y (sw) K](Géw)dp (4.105)

Equation (4.104) or (4.105) for the perturbed wave vectors is analogous
to the dispersion relation (4.103) of the unperturbed waveguide, and
couples the two modes p and q through the boundary perturbation.
From the wave equation (2.3), the dispersion relations (4.101) and
(4.102) are seeh to remain valid for the perturbed wave vectors sé s
66 and Bé .
We now use (4.22), (4.100a,b,c) and (4.103) to write (4.105),

neglecting second order terms, as
[AS(6qJ](SqW)Ko(5qW) + K](Sqw)Jo(sqw) - qu1(6qw)J](sqw))
+ Aé(qu}(qu)Jo(sqw) + J](sqw)KO(éqw) - 6qJ](sqw)K](6qw)]dq

> 1"82 2
= g (kg (K (sn)d, (4.106)
p
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As (4.101) and (4.102) hold for the perturbed wave vectors, we can use

(4.100a;b,c) to write, neglecting second order terms,

i

AS = (e.kAk - B AB) (4.107)
L sq 1 q

and

1
5 (Bqu - ezk Ak) (4.108)

q

I

With (4.107) and (4.108), (4.106) becomes

8'8

[a )

s
W 59-(

{8 28 F9 + aw F9}
q" g w )

_jﬁl
2) (29 Jy(s o w) K (dqw)dp (4.109)

1

where

q._.1_ ' -
F 5 [squ1(6qw)Jo(sqw) f J1(SqW)Ko(6qW) aqw J](sqw)K](d w)]

B q q
1 '
- g—-[éqw J](sqw)Ko(éqw) + K](éqw)do(sqw) - sqw K1(6qw)J](sqw)]
(4.110)
q e1k
Fo = E—-[6 wd. (s w) (qu) + K](éqw)do(sqw) - SQW K](éqw)d1(sqw)]
ezk .
—-755 [sqw K](ﬁqw)Jo(sqw) + J1(sqw)KO(6qw) -Sqw J](sqw)K](6qw)]
(4.111)
Multiplying (4.109) through by (BK)'](FE)"], we have
r4 S €47, w__ 2 Jd.(s.w) K, (s.w)
A8 . (Upqy | w Aw w4 (1 2y pg 1"p’ 179
[+ &g o5 o34 — (=) () d, (4.112)

g 9
q Fg7pq P KBq Fg
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th

By the same analysis that resulted in (4.112), a q mode will excite

a pth mode described by the relation

p
A8 SEQ. Fm Aw i EE. €17€, wquz.J](sqw)K1(6pw)
[7(' + (KB ) ;B'Zr“qdp = Mw S ( 2 )( C ) D dq
P Fp pa q K &, Fg
(4.113)

Multiplying (4.12) and (4.113) gives

P

4
A A
_(_]_E%) g; : w][ (KIB L F‘; w‘;’q]
8 B8

€4-€ w4 J.(s w)d (s w)K;(8 w)K; (S w)
- ( )2 ( 1 2)2 (—ESJ 1'°p 1'7q 1'"p 1'7q
™ z c Kleplqul Fb £

(4.114)
g

Equation (4.114) is similar to (4.31) and the solution for AB/K has

the same form:

Aw 2 Aw 2 2, F \2
=(g. -6 ) —=* J(6+86 ) ()" -n"(g ) (4.115)
P q wpq p q wpq Pq
where
W Fr

Y = p,q (4.116)

. (81—82)(f2202 l_\/J1(spw)J1(s.q\,¢)1<](<sqw)t<1(apw)

pq 2 C P q
811841 Fg Fg (4.117)

The maximum imaginary value of A8 1is given by
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Eq- J. (s w)d (s w)K, (8 w)K, (8 w)
Eol0 = w2 (AT LT 1 d (ag)
P
1Byl 18q1 i P

The normalized coupling coefficient XEq(k)L is plotted in Fig. 4.5.
The physical behavior is similar to that of the thin film waveguide with
a periodic boundary. Near cutoff, the field strength is small as the
mode energy is spread over the cladding region. With increasing fre-
quency, the mode energy becomes localized around the waveguide core and
the increased field strength at the core-cladding boundary results in
increased coupling. At very high frequencies (with respect to cutoff),
the mode energy becomes confined well inside the core region, and the
negligible field strength at the perturbed boundary results in neglig-
ible coupling.

The reciprocal of the group velocity for the unperturbed (n = 0)
fiber waveguides can be obtained from (4.109) as

i

- AB _ =
L i r = pig (4.119)
r B

The expressions for ABp, ABq obtained from (4.115) can be
used with (4.107) and (4.108) to obtain Asp, Asq, Adp, and Aﬁq.
Thus, using (4.96), we can express the complete transverse and longi-
tudinal behavior of the TE guided modes in a fiber waveguide with

periodic boundaries.

F. Comments

The use of the boundary condition (4.50) for the thin film

waveguide with periodic boundaries (Section C) and the channel diffusion
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waveguide (Section D) assumes that both waveguide boundaries are sym-
metrically perturbed as given by (4.41) and (4.69a). By symmetry
considerationsGZ, such a waveguide only couples even-even and odd-odd
mode pairs. The physical reason for this is that the mode coupling is
proportional to the field strength of the two modes at the boundary
multiplied by the equivalent surface current at each boundary. For a
symmetric guide with an even-odd mode pair, the excitation is propor-
tional to Idpllap[[dqllaqids at one boundary and
-]dpllap!ldqllaqlds at the other, which cancels each other. By the
same considerations, an antisymmetric waveguide (see Fig. 4.6b) only
couples even-odd mode pairs. If only one boundary is perturbed, all
types of coupling are possible. In this case, the boundary condition
(4.50) remains the same at x = w , but the unperturbed boundary con-
dition holds at x = -w. This has the effect of halving the effective
excitation current, and all results hold with n replaced by n/2.
Similarly, if only one of the substrate regions (see Fig. 2.1)
is periodically perturbed, n in (4.40) should be replaced by n/2.
Finally, it should be mentioned that for the case p=q , the
results of Sections A, B, and C are identical to the ones derived by
Elachi and Yeh20 using the exact space harmonics method to solve the

wave equation.
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(c)

Fig. 4.6 Possible periodic boundary perturbations of a thin film
waveguide. (a) couples only even-even and odd-odd modes;
(b) couples only even-odd modes; and (c) can couple all
combinations of modes. The corrugations are highly
exaggerated for clarity.
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Chapter V

Theoretical Results

In this chapter, we use the equations derived in Chapters II,

III, and IV to study distributed feedback lasers in dielectric wave-

guides.

The required threshold gain for laser oscillatjon is given by

(2.66a):

- 2

and the corresponding phase mismatch by (2.66b):

- 2
S O (A () R

. (fa(k) + cq<k)> s c<"’P(k) A ¢q<k>) .

where

ole} 2

is a solution of

2 2 [in 2 2 *
= + Y k th k) + Y k) L
qu prq(k) pq( ) co prq( ) pq( )

and L is the Tength of the laser.

A. Thin Film Distributed Feedback Lasers

(5.1)

(5.2)

(5.3)

(5.4)

In this section a detailed study of thin film DFB lasers is

made. The effects of geometry and use of different waveguide modes

to provide feedback is investigated. The gain region is considered

to be either in the guide or in the substrate.

The coupling coefficient xgq(k) in (5.4) is derived in
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C hapter IV for a thin film waveguide with a periodic permittivity

variation in the guide region as

T 9
gy L. Cd (“’pq) 2 { %pq %qp

Ffor a periodic substrate as

s (1 =0 2 (%) [ g ?
Xpqlk) = n 5\ =2 Wﬁ- (5.6)

and for a periodic boundary as

Eq~E w_ \2 b b
B () () e e

where the longitudinal wave wectars of the p and q waveguide modes

satisfy the phase matching condition ]8p| + qu] = K. The coefficients

g s b . . boc.d b
¢nq* ¥pq’ and ¢pq are given by equations (4.21a,b,c,d,e), (4.39a,b),

and (4.61). The reciprocal of the group velocity wr(k) in (5.3)

is given by (4.37) and (4.29) as
sinz(srw) cosz(srw)
€ + g,8 W >
1 cosz( 1T"°r 2

srw) sinz(srw) (5.8)

w
p (k) =
r czsr 1+ 5w 1+ 8w

The gain efficiency coefficient Cr(k) in (5.3) is given by (3.20)
and (3.21) as

k “t.f.
c (k) = Veq °— 5"t (5.9)
r 1 By b “t.f.
for an active guide, and as
r r Ot f
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-where ¢ is given by (3.14).

t.f.

Using (5.5)s (5.6), or (5.7), we can solve (5.4) for the qu

that correspond to various perturbed thin film waveguides. The qu
are complex and multi-valued, with different values corresponding to
the different branches of the complex hyperbolic cotangent function.
The unperturbed thin film waveguide wave vectors s, &, and g used
in (5.5) through (5.10) are solutions of the dispersion relations
(A.6) and (A.7) of Appendix A. A generalized Newton's method63
approach was used to numerically solve (A.6) and (A.7) and also (5.4)
on a computer.

In Figs. 5.1 through 5.10 the normalized threshold gain GL
required for oscillation and the wave vector mismatch is plotted as
a function of the normalized free space wave vector for a number of
cases and for different longitudinal modes. Some of these curves
show that there are optimum regions where the gain is at a minimum.
These regions correspond to an optimum design. To illustrate let us
consider the case of a surface corrugated thin film DFB laser with
gain in the guide and 0-0 mode coupling (Fig. 5.8). The minimum
threshold gain occurs at 2mw/x = 3.2. The laser oscillation fre-
quency w, = 2wc/x0 is fixed by the choice of the gain medium. Thus
the optimum waveguide width is fixed at W 3.2)/(2n). The ratio of
parameters nlL/w = 25 requires the product nL 225 (3.2 Ao)/Zn
to obtain a threshold gain GL 5 1.9.

If we arbitrarily consider X = 0.9, 2w = 1.2y, L = 1 mm
and n = 1.5 x 10‘2, the threshold gain required for the first

three longitudinal modes with 0-0 mode coupling is, from Fig. 5.8,
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Fig. 5.6 Threshold gain curves for coupling between various

waveguide modes of a thin film waveguide with periodic
(a) and (b), active guide; (c) and (d),

nL/M = 25, ¢ = (3.6)2, and ey = (3.5)%.

boundaries.
active substrate.
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1

G] = 20 cm

G, = 27 cm” )
2

G, = 30 cm']
3

If the period of the surface perturbation is chosen to couple 0-1

modes, the threshold gain required is (Fig. 5.9);

1

G] = 12 cm

G, = 20 cn” !
2

G, = 25 cm']
3

For coupling between the 0-2 modes, the threshold gain required is
even Tower (Fig. 5.10).

The threshold gain curves can be explained by the behavior of
the gain efficiency coefficients (see Chapter III) and the coupling
coefficients (see Chapter IV). In Figs. 5.1, 5.3, 5.4, and 5.5a,
the threshold gain is plotted versus the normalized free space wave
vector for coupling between 0-0, 1-1, and 2-2 modes in a waveguide
where the electric permittivity varies periodically in the guide
region. In this case, the effective gain and coupling coefficient
are near zero around cutoff resulting in a very large threshold
gain. As the transverse wave vector increases above cutoff, the
effective gain increases approaching one. The coupling coefficient
similarly increases because the mode energy becomes more and more
confined to the perturbation region. Thus, the threshold gain

monotonically decreases with increasing transverse wave vector
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(or frequency). This is not true for coupling between 0-2 modes of
a similar structure (Fig. 5.2, 5.5a). If the coupled modes are not
identical, the coupling coefficient reaches a maximum and then goes
to zero because the overlap integral ¢gq in (5.5) vanishes at high
frequency (i.e., the mode distributions inside the guide become
orthogonal). For this reason, the threshold gain has a minimum
value, increasing as the coupling coefficient decreases. If the
gain medium is in the substrate region and the periodic permittivity
is in the guide region, there is always a minimum value of threshold
gain because the effective gain coefficient is one near cutoff and
decreases to zero at frequencies well above cutoff. In Fig. 5.5c,
the threshold gain for the 0-2 configuration is increasing more
rapidly than that of the 0-0, 1-1, 2-2 configurations because the
coupling coefficient and the effective gain coefficient are both
decreasing.

Fig. 5.5b,d is a plot of threshold gain versus the normalized
free space wave vector for a thin film structure with a periodic

electric permittivity in the substrate. For coupling between dif-

ferent modes, ¢;q = ¢gq (see 4.21 a,c and 4.39 a,b) and therefore
s €2 g
= — 5.11
pqk) = g0 (pra) (5.11)

Thus the threshold gain curves have the same form indicated by the
0-2 mode coupling in Fig. 5.5a,c. Physically, the threshold gain
increases in Fig. 5.5b at high frequencies (with respect to the cutoff

frequency of the waveguide) because the mode energy becomes confined
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to the homogeneous guide region and no longer feels the periodicity
in the substrate. In Fig. 5.5d, the threshold gain increases at
high frequencies because both the coupling coefficient and the gain
efficiency are falling off.

Figures 5.6 through 5.10 are plots of threshold gain and
wave vector mismatch for thin film waveguides with boundary perturba-
tions. The resulting coupling coefficients have a maximum value at
intermediate frequencies because near cutoff the energy is spread
mostly in the substrate region and the mode amplitude at the boundary
is very small. With increasing frequency the mode energy becomes
confined to the guide region and the mode amplitude at the boundary
increases. At very high frequencies, the mode energy becomes well

confined inside the guide region and the small mode amplitude at the
boundary perturbation results in reduced coupling. For thin film

DFB lasers with boundary perturbations and gain in the guide region,
the threshold gain is high near cutoff because both the gain efficiency
and coupling coefficient are small. As the gain efficiency and
coupling coefficient increase with increasing frequency, the threshold
gain decreases. Eventually, the effective gain coefficient approaches
one, the coupling coefficient starts decreasing, and the threshold
gain begins increasing. If the gain is in the substrate region of

a thin film waveguide with boundary perturbations, the different
effective gain (Eq. 5.10) moves the threshold gain minimum in the
direction of the cutoff frequency because the effective gain is about
unity near cutoff. At frequencies moderately above cutoff, the

threshold gain begins to rise rapidly due to the decrease in both
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the gain efficiency and the coupling coefficient.

Equation (2.67) describes the electric field distribution which
represents an oscillating mode of the DFB structure. The relative
F (w,Z)F*(w,z) + B (w,z)B*(w,z) represents

P p q q
the Tongitudinal intensity envelope (or "mode pattern") of the modal

intensity distribution

standing wave pattern at the waveguide boundary. By symmetry, the
structure also supports an independent solution giving rise to the
relative intensity distribution Fq(w,z)F:(w,z) + Bp(w,z)B;(w,z).
The complete mode pattern at the waveguide boundary is therefore the

sum

I(z) =FF +BB +FF +BB.
207 Tp'p 9°q qq pop
(512)

« cosh[(cp—cq Gz]{ls1nh(b [z+L/2] | |s1nh(b [z L/21)| }

Intensity distributions are plotted in Figs. 5.11-5.14 for various
waveguide modes and longitudinal modes of thin film DFB lasers.

For some configurations, the intensity varies appreciably as a
function of 2z suggesting that for operation above threshold, where
saturation plays a role, the field distribution has to be accounted
for in the original coupled equations leading to a nonlinear system

of equations.

B. Diffusion Waveguide Distributed Feedback Lasers

In this section we study the application of optical waveguides
formed by diffusion for distributed feedback lasers. This type of

waveguide is of considerable interest because it is simple to
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fabricate. Two configurations are considered: a planar half-space

diffusion guide which is of importance in integrated optics and a
channel guide with an inhomogeneous substrate. The channel diffusion
guide (Fig. B.la) provides a simplified model of a cylindrical
diffused structure (Fig. 5.15) which can be applied to capillary gas
lasers. The inhomogeneity will mainly play the role of guiding the
wave and therefore eliminate the losses encountered in hollow
capillary guides due to transmission at the boundaryz.

The coupling coefficient qu(k) in (5.4) is derived in Chapter

IV for diffusion waveguides with periodic boundaries as

J J o
Eq=En\ [ W_ \2 VooV
o 172 Pq P g
% (k) = 1 (—ea) (5.13)
pq" ( 2 ) c s | |e ]Dqu
: p q' BB

where the longitudinal wave vectors of the p and q waveguide

modes satisfy the phase matching condition ]Bpi+|6ql= K and n

and Dg are given by (4.85a,b) and (4.83a,b). The reciprocal of the

group velocity wr(k) in (5.3) for a diffusion waveguide is given by

DY‘
v(k) = 2 (5.14)

r
By Dg

where DZ is given by (4.84a,b). The gain efficiency coefficient
Cr(k) in (5.3) for a diffusion waveguide is given by (3.37) and
(3.38) as

k %D (
= 5.15)
r 1 Br ]+aD

for gain in the diffused region, and as
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Fig. 5.15 Diffused capillary waveguide. (a) electric
permittivity profile across the waveguide; (b) cylindri-
cal gas filled region is surrounded by an exponentially
inhomogeneous cladding. -
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¢ (k) = ’/;2'2';??1‘7{ (5.16)
for gain in the half space or channel region. The coefficient o
is given by (3.36).

Using (5.13), we can solve (5.4) for the qu that correspond
to diffusion waveguides with periodic boundaries. The unperturbed
diffusion waveguide wave vectors &, v/(ZdQ), and B8 wused in (5.13)
through (5.16) are solutions of the disperéion relations (B.11)
and (B.10) (channel guide), or (B.11) and (B.14) (half space guide)
and are obtained numerically using a generalized Newton's method
approach on a computer. To evaluate the partial derivative of the
Bessel function with respect to order (used in (5.13) through (5.16)),

. . . .30
a special subroutine was written using

aJv(z)

vl Jv(z) Qn(%—z)

(5.17)
Z)k

® 1
_(_]2__ Z)\) Z (_)k \P(\)"}'k‘*‘])(zr Z
k=0 r(vtk+1) k!

where y(z) 1is the logarithmic derivative of the gamma function and

30’64. The subroutine to compute

65,66

r(z) 1is the gamma function
aJv/av reproduced tabulated values
The threshold gain is computed using (5.1) and is plotted in
Fig. 5.16 for channel diffusion guides with o = 0.1 and o = 0.025.
In Fig. 5.17 the coupling coefficient, gain efficiency, and threshold

gain is plotted versus normalized transverse wave vector for half
space and channel diffusion guides. Because the mode energy becomes

localized at the perturbed diffusion boundary, the coupling
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GL, «L
Gi, <L

Gl, «L

Fig. 5.17 Coupling coefficient,
effective gain coefficient, and
threshold gain for channel

1/2-space gain (b) and (d),
and substrate ga1n (e

[nL/de ) (1.5)2,
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9 guides (active channel) in
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coefficient increases with frequency. When the gain is in ihe
inhomogeneous region (Fig. 5.17e), very low threshold gain results
at high frequencies because the effective gain approaches unity. To
illustrate, let us consider » = .63y, d0 = 1y, n = .015p, and

L = 0.5 cm. The threshold gain coefficient required for the active

inhomogeneous case is:

6=0.8cn
for the 0-0 mode coupling, and
6=3 om

for the 0-1 mode coupling. These gains are well below the Tlimits
of many active materials such as organic dyes or semiconductors.

From Fig. 5.17c we can estimate the threshold gain of a diffused
capillary gas laser. Let us take A = 10y, dO = 33u, 2w = 20y,

and n = 0.5u. The threshold gain required is

e

GL = 1.8
Such a gain can be achieved in capil]ary structures where the high
pressure results in a high gain.

The longitudinal mode pattern of a channel diffusion DFB laser

is compared to the longitudinal mode patterns of fiber and thin film

DFB Tasers in Fig. 5.23.

C. Fiber Waveguide Distributed Feedback Lasers

Large scale optical communications networks using optical fibers

are expected to be a reality before the end of this decade67.
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Presently, the light energy is coupled to the fiber from an outside

source by directing it to the end of the fiber. However, this
scheme leads to coupling losses and a desirable alternative would be
direct generation of light in the fiber. In this section, we study
the possibility of developing a fiber distributed feedback laser which
could be incorporated in a section of an optical fiber communication
channel.

The coupling coefficient qu(k) in (5.4) 1is derived in Chapter

IV for a fiber waveguide with a periodic boundary as

0 - (81-82 (fEﬂ)z J](spw)J](sqw)K1(6pw)K](qu)
Xpq(k) = W= c P-q
8.1 8.1 FaFs
LA (5.18)
where the longitudinal wave vectors of the p and q waveguide modes
satisfy the phase matching condition lep!+58q}= K and Fg is given
by (4.110). The reciprocal of the group velocity wr(k) in (5.3)

for a fiber waveguide is given by
Er
(k) .
1 = r
r Br FB

(5.19)

where F: is given by (4.111). The gain efficiency coefficient

cr(k) for the fiber waveguide in (5.3) is given by (3.50) and (3.51)

as
c (k) = /ey (%;N]igF (5.20)
for gain in the fiber, and as
c. (k) = /Eé-g—-T%;~ (5.21)
r F

for gain in the cladding. Equation (3.49) gives the expression
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for ap-

Using (5.18) we can solve (5.4) for the qu that correspond
to fiber waveguides with periodic boundaries. The unperturbed fiber
waveguide wave vectors s, &, and B8 used in (5.18) through (5.21)
are solutions of the dispersion relations (C.25) and (2.26) and
are obtained using a generalized Newton's method63 approach on a
computer.

The threshold gain for fiber waveguide DFB lasers is computed
using (5.1) and (5.4) and is plotted in Figs. 5.18, 5.19 and 5.20
for various waveguide modes and Tongitudinal modes. The physical
explanation of the threshold gain curves for boundary perturbation
fiber waveguide DFB lasers is the same as for boundary perturbation
thin film waveguide DFB lasers. The main distinction is that the
coupling coefficients (see Figs. 4.1, 4.2, and 4.5) for the fiber
waveguide fall off more rapidly with frequency than those of the
similarly perturbed thin film waveguide. Thus the minimum threshold
gain region for fiber DFB lasers is more pronounced than for thin
film DFB lasers with boundary perturbations.

To obtain an idea of the physical dimensions involved, let us
consider i = lu. Operation near the minimum threshold gain occurs
at approximately A/w 2 1.2 for both an active cocre and an active
cladding (Fig. 5.18a,b). Thus if w = 0.83u, we can choose
A= 4,15 X 10"3 and L =1 cm. The corresponding threshold gain

coefficient is
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for an active fiber, and

G = 4.2 cm']

for an active cladding. These gains could be achieved with many
active materials.
Longitudinal mode patterns for fiber DFB Tasers are plotted

in Figs. 5.21, 5.22, and 5.23.
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Chapter VI

Conclusion

To study distributed feedback lasers, we have investigated
electromagnetic wave propagation in active, periodic waveguides.

The waveguide structures considered were thin film waveguides, half-
space diffusion waveguides, channel diffusion waveguides, and fiber
waveguides. The periodicity of the waveguide structure was considered
to be a sinusoidal perturbation of either the electric permittivity

or the waveguide boundary.

The basic properties of periodic media were obtained for an
infinitenediunusihg the Floquet theorem in conjunction with the
principle of superposition to solve the wave equation. Coupled mode
theory was used to derive equations for the threshold gain, longi-
tudinal mode structure, and electromagnetic field distribution for
transversely bounded distributed feedback lasers.

The amplification of a waveguide mode that extends transversely
over regions with and without gain was calculated.

Analytical expressions were derived for coupling between modes
in periodically perturbed dielectric waveguides.

Theoretical results indicated that an optimum design of
distributed feedback lasers could be achieved by an appropriate
choice of geometrical parameters. Regions of optimum design were
illustrated for eleven distributed feedback laser configurations
in numerous plots of normalized threshold gain versus normalized

laser frequency.
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Appendix A
THIN FILM WAVEGUIDES

This appendix derives the dispersion relations, field distributions,
and power distribution for the TE guided modes of the thin film (dielectric
slab) waveguide of width 2W illustrated in Fig. A.1. e assume that there
is no variation of either the waveguide geometry or the field in the y

direction. Assuming €y < & and considering
E,(x,2) = df(x)e! (Bz-ut) , (A1)

Eq. (2.3) Chapter II becomes

’

Q_fi§l-+ (a]k2~82) f(x) =0 [x] < U , (A.2a)
dx
2

ELiI%l-+ (gzkz—Bz) f(x) =0 [x] > W . (A.2b)
dx

Requiring even and odd oscillating solutions inside the guide, an
exponentially decaying behavior outside the guide, and continuity of

the E field at the boundary,

cos(sx)

Cos (sw) even modes, |x| < W , (A.3a)

sin(sx) < W

STlsw] odd modes, |x| < ¥ , (A.3b)
fx) =<

exp(sW-8]x|) even modes, |X, > W , (A.3c)

sign (x) exp(8W-&]x|) odd modes, |x| > W , (A.3d)

L

where
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i

52 eIk2-82 . (A.4)

O
i

2 —52k2+32 . (A.B)

The field amplitude at the boundary is d, the waveguide thickness is 2W,
B 1s the longitudinal component of the wavevectors, s and § are
respectively the transverse component of the wavevector inside and out-

side the waveguide, and k = w/c where ¢ is the speed of light in vacuum.

oE
Requiring the H field (HZ = -1/ (wp) SEXJ to be continuous at the
boundary,
tan (sW) even modes
§ = S (A.G)
-cotan (sW) odd modes

Combining (A.4) and (A.5),

2 2

ST+ § = (e] - ez)kz

(A.7)

The different solutions of (A.6) and (A.7) correspond to the
different modes which can be supported by the dielectric waveguide. A
graphical solution to Egs. (A.6) and (A.7) 1is illustrated in Fig. A.2a
and the resulting Brillouin diagram in Fig. A.2b.

The normalized power inside the waveguide is given by

&

2
p. = J‘ EQ§?£§519§ (even modes) s (A.8a)
m y COs (sw)

{7 o
sin“(sx)dx

_
m sinz(sw)

a

(odd modes) , (A.8b)
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and the normalized power outside the waveguide is given by

oo

p = 2 J. e~28X 20w 4y (a1l modes) , (A.9)
out
W

Integrating (A.8 a,b) and (A.9), we find

1
p., = S

SW +'Sin(SW)C°S(SW)] (even modes) (A.10a)

L cosz(sw)

p. = %— SW - sinésw)cos(sw).} (odd modes) , (A.10b)
L sin“(sw)

and

P = 8 . (A.11)

The ratio of the power inside the guide to the total power can be written

P.
in . o . (A.12)
Pin * Pout T+a
where
0= [SW t sin(;w)cos(SW) (even modes) (A.13a)
S cos(sw) -
o = g. [SW —‘sihéSy)COs(swl, (odd modes) . (A.13b)
cos (sw) .

Using the trigonometric identities

cosZx = %—(cos 2x + 1) , (A.14a)
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_sin 2x
tan X = T 5o oy , (A.14b)
201 |
sin“x = §~(—cos 2x + 1) , (A.14c)
_ sin 2x
cotan X = oo o7 , (A.14d)

and Eq. (A.6),

tanz(sw) [1 + 57%T%E§WY} (even modes) (A.15a)

u:
- 2 2 sw
o = -cotan” (sw) [1 - §TﬁT7"§W71 (odd modes) . (A.15b)

Detailed treatments of thin film waveguides appear in several texts,
including those authored by Marcuse28 and Co]]inzg. Applications of thin
film waveguides to integrated data processors are discussed by Shubert

and Harris.44
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Appendix B
DIFFUSION WAVEGUIDES

This appendix derives the dispersion relations and field distribu-
tions for TE guided modes of diffusion waveguides. e consider two
separate diffusion wavequide geometries, a dielectric channel embedded
in exponentially inhomogeneous substrates (see Fig. B.la), and a half

space diffusion guide (see Fig. B.1b).

A. Channel Diffusion Guide

We consider the channel diffusion guide characterized by the

relative dielectric constant

= constant Ix] < W

Jﬁ_ﬂ) x| > W . (B.1)

e, t a exp (
1 d0

€2

n

8] (X)

where d0 is the diffusion depth, 24 is the channel width, €1 > €y » and

a is usually small relative to €q-

- Assuming no y variation of the waveguide geometry, and considering

Ey(x,z,t) = df(x)ei(gz"wt) | s (B.2)

where d is the field amplitude at the boundary, Eq. (2.3) Chapter II

becomes

d f(x) + (e k -89 f(x) = 0 x| < , (B.3a)
dx
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X - W
2 B d
d f(gl'+ (€1k2 - 88 f(x) + ke ° fx) =0 x| 2w
dx
(B.3b)
Substituting :
o Axl - W

2dO

E = e 2 )/U,— kd b (5'4)

(B.3b) transforms to the well known differential equation for Bessal

functions30:

where

(B.6)

We can write, after reguiring E field continuity at the boundary,

- Ix]-w

f(x) = d, <2 Yo kdj e 2¢o ) /3,2 Yakd)) [x| > W

, (B.7)
and
cosh (8x) /cosh(dw) (even modes)
F(x) = x| <
sinh(6x) / sinh(sw) (odd modes)
, (8.8)
where
62 = 82 - ezkz ' s (B.9)

and Jv is the Bessel function of first order..
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The H field continuity condition gives the relation

X tanh (8w)
Jv(zfaikdo)

-2Vakd —
g (2/a kd)
vV 6]

cotanh (sw) . (B.10)

where the prime in (B.10) indicates differentiation with respect to the

arqument Z/Z'kdo of the Bessel function. Combining (B.6) and (B.9),

2

62 - (\)/Zdo) = (a] - 52) k2

(B.11)

Equations (B.10) and (B.11) have multiple solutions which correspond to
the different guided modes.

The cut-off frequencies correspond to the T1imit v > 0, and in this

Timit,
B = kfs:T
§ = kVZ;tZZ; s (B.12)
J,(2/5 kd) tanh (8w)
2/o kd) | ————— ) - 2 sd,
JO(Z/a.kdo) cotanh (&w)
We can write (B.12) as
J](Z/E'kdo) tanh (arOZ/E»kdo)

a1 oL, . (8.13)
JO(Z/Q kdo) cotanh (arOZJE'kdO)
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where a = /TE;_TTT;;XZQ and r_ = w/2d0. The cut-off frequencies are
thus determined from the intersection of the two curves Y = J](Z/E'kdo)/
Jp(2/a kd ) and Y = a tanh (ar 2/a kd ) for the even modes, or Y = a
cotanh(a rOZJE'kdO) for the odd modes. From Fig. B.2a it is clear that
there are always cut-off frequencies for odd modes for all values of a
and ry: This is true for all even modes except the first one. As
“aro" decreases, the cut-off frequency of the first even mode decreases,

1

reaching zero at "ar " = 7 and for "aro“ less than %3 the first even

0
mode disappears.
In summary, the main properties of the channel diffusion guide are:
1) For w/d < a/(sl-ez), the first mode is an odd mode.
2) For w/d = d/(e]-ez), an even mode appears with a cut-off
frequency equal to zero.
3) For W/do> d/(e]—ez), the first even mode will also have
a cut-off frequency.
4) A11 odd modes and higher even modes (p > 2) always have
cut-off frequencies.

5) The higher modes (p > 2) always appear in even-odd pairs

with cut-off frequencies given by

Q < Zfa'kpdo(even) <2 /E*‘kpdo(odd) <Q

th

)St root

where @ is the (p-1 root of J; and Q' is the p

of JO'

6) For high order modes, kp(even) > kp(odd) > kp where
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J; (2/oTkpdo)_
Jo(zfo?kpdo) o

A sketch of a typical Brillouin diagram is shown in Fig. B.3a. Transverse
field distributions for the channel guide are shown in Figs. B.4, B.5,

and B.6.

B. Half Space Diffusion Guide

The above results can be easily changed for the case of é %—space
diffusion guide (Fig. B.1b). In this case, the field in the inhomogeneous

medium is given by Eq. (B.7) with W = 0. However, in the homogeneous

half space, the field is equal to de"alxl. The resulting dispersion
relation is
J(2/a kd,)
-2/ kdy, — = 2 &d, . (B.14)

J,(2/a kd )

and the cut-off frequencies are given by

1/2
J,(2/a kd ) €, =~ €
B R MY S N . (B.15)

o}

JO(Z/E'kdO)

The graphical solutions (Fig. B.2b) show that there is always a cut-off
frequency and the even-odd behavior has disappeared, as is to be
expected. The resulting Brillouin diagram (Fig. B.3b) shows each mode
of the half space diffusion guide falling in between the corresponding
mode-pair of the symmetric guide studied in previous sections. In fact,

as w ~ =, a mode pair merges (one from above and the other from below)
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with the corresponding half space diffusion guide mode.
A more detailed analysis of the channel diffusion waveguide appears

in Ref. 4 and of the half space diffusion guide in Ref. 12.
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Appendix C
FIBER WAVEGUIDES

This appendix derives the dispersion relations and field distribu-
tions for the guided modes of a round optical fiber of radius W (Fig.
c.1).

Using cylindrical polar coordinates (see Fig. C.2), the wave

equations become28
2

2 .
3°E ok . 3°E
z 12,0 " 24 4% =0 , (C.1)
802 o 9p p2 ad)z J z
and
2 2
9 H oH 9 H
iz 1z Tz @ D =0 . (C.2)
8p2 p  dp pZ 8¢2 J z
where
o = Vx% + y? . (c.3)
and
€y P> W
€J. =
e P W . (C.4)
lle assume solutions
A F(o)alVoeT(BZ-ut) o<W (C.5a)
EZ ) - -
C F(p)el Vool (BZ-ut) o > W ,  (C.5b)
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€2
€

| ) > 7

Fig. C.1 Fiber waveguide geometry.
Afy F
Fp
Fg
Fx
¢ > x

Fig. C.2 Coordinate system.
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(8 Fp)e Ve (BZ-ut) p < W (c  (C.5¢)

H =
z

JLD F(o)eiwbei(sz_wt) 6> w , (C.5d)

and require v to be a positive or negative integer to ensure that the
fields are periodic in ¢ with period 2m.
Substituting (C.5) into (C.1) gives

dF

dp2

,1d

‘Dl.._!
Q.
S

-2 2 \)2
+ (k" -87) - =51 F=0 ,  (c.6)
p 1 0

Equation (C.6) is the well known differential equation for Bessel
functions.30 e require different solutions of (C.6) for the regions
defined by p < w and p > W, The solutions inside the core must remain
finite at p = 0, while the solutions outside must decay for p » » if

we want guided modes. For p < w, the appropriate solutions are

E, = AJ(sp)e’™? | . (€)

H = BJV(Sp)e1V¢ . (c.8)
where

s2 = e k% - gl . (c.9)

and JV is the Bessel function of the first kind.

. . . . 28
From co-ordinate transformation considerations,

. oF . aH
E =———————~2—12 B———-Z + wul —Z (C.TO)
e ejk -8 % p 99

-



17"z z
B e - UM . (e

ot 7 2 \% 5% %% 0 E ., (c.
J
o 3H °F
= i 17z _Z
WL U e - (eas)
j .

Thus for p <w ,

. iwp .
_ 1 1 0 1\)¢
F_p = ———52 [Bs A Jv (sp) + 5 B J\)(Sp)jl e R (C.14)
_ i iBv _ . ive
E¢ = -—SZ [—-'p A JV(Sp) quSBJ\) (Sp):! e . (C.15)
" dweqe Vv .
_ i . _ 170 ive
Hp = —:2 [BSBJ\) (sp) — A J\)(Sp)j\ e . (C.16)
Ho= 3 ["—v—B—BJ(s)m“sAJ'(sQ) o1V (C.17)
) 52 0 y+P 170 v : .

The prime indicates differentiation with respect to the argument sp of
the Bessel function.

The fields for p > w are given by

rm
H

C Kv(ép)eiv¢ . (c.18)

H. = D K (sp)e'™? ,  (C.19)
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_ =i . . wpv ive

E > [}8 C Kv (sp) + — D Kv(ép) } e s (C.20)
E = :%. [lgﬁ-c Kv(dp) - ops D kv'(ﬁp):}e1v¢ s (c.21)
H = :%'[86 D Kv'(ﬁp) - wenE, l%-c Kv(SD)} eV > (C.22)

H¢ = é%. [igﬁ- D Kv(ép) + WEHE sC Kv'(Sp)] eiv¢ . (C.23)

Again, the prime indicates differentiation with respect to the argument

S§p. We have defined

§~ = B - ezk s (C.24)

and KV is the modified Bessel functi‘on.30

Applying the boundary conditions for the E and H field and consider-

ing the special case v = 0, we obtain the dispersion relation for TE

wave528’3]:
Jo(sw) Ko(dw) : )
SW + 8w = 0 . C.25
J]sti K116w5
and combining (C.9) and (C.24)
()2 + (sm)? = (g7 - e) (k) . (c.26)
28,31

Equations (C.25) and (C.26) can be solyed simultaneously for s and
§ for given k, w, € and €5- The resulting Brillouin diagrams are

similar to those of Figs. A.2b and B.3b. The corresponding normalized



fields for the TE modes are (E_ = E_ = 0)

z r
H, = J,(sp) (p < w) (C.27)
Ecb = :—;- wh JO'(Sp) (o iW) (C.28)
= j_B__ t
Ho= 5 Jy'(se) (p < w) (C.29)
and
g Jylsw)
HZ = - 'S‘m) KO(SD) (p > w) (C.30)
'imuo J1(sw) 7
E¢ = - — K1(6w) KO (8p) (o > w) (C.31)
jg plsw)
Hp S m Ko (8p) (p > w) (C.32)
where we have used the condition of continuous E¢ at o = w to give
J-(sw)
D_ & "1
B % Ky (8w (C.33)

Many detailed treatments of cylindrical dielectric waveguides are

available including those by Borgnis and Papas,3] Marcuse,28 Co111n,29

2
and Yeh“z.
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Appendix D

SPACE HARMONICS AND COUPLED MODE THEORY --
SOME COMMENTS AND OBSERVATIONS

In this appendix we discuss similarities between the methods of
space harmonics and coupled mode theory. In Chapter II, Section A,
the space harmonics approach is developed, and in Chapter II, Section B,
a coupled mode theory for DFB lasers is developed. In Chapter IV, a
coupled-mode-1ike approach is used to derive coupling coefficients.

Beginning with (2.39) (see Chapter II, Section A},
© R

1(8r+nK)z
Ey(x,z) = E E dn,r an’r(x)e (D.1)
n=-o Yy=-
and we can write (2.12) as
- : dzan,r(x) 2 pa
2 : 2 ; de - an,r(x) (Br+nK) - €1k dn,r
n:_m Y‘:_
N2 i(g +nK)z
e §'k " 1,r(x) dn 1,r an+],r(x) dn+1,r € -
(D.2)

Looking only at the n = 0 space harmonic we can write
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Similarly, for the n = 1 and n=-1 space harmonics,

R 2. Sy
d° S (x)
:z: <——i:%l£~_—'— a_1,r(X)

K\2 _ 2
(Br K) € k £> d—],r

r=-R dx
Fer il a . () d., o +a, (x)d -0 (D.4)
12 2,7 -2,r O,r O,r ’
and
:;: dzal,r(x7 2 2
2 - a]’r(x) (Br+K) - eqk d]’r
r=-R
n 2 : -
e §-k aO,r(X)dO,r + a2,r(x)d2,r =0 (D.5)
If energy is initially flowing in the waveguide structure in the
Oth harmonic of the +pth mode at a frequency w = Yng + Aw as indicated

in Fig. D.1, only the ~1th space harmonic of the -qth

mode is expected
to have significant amplitude (see Chapter IT Section A and Refs. 38 and
54). However, in a DFB laser, stimulated emission will excite equally
the +pth, -pth, +qth and -qth modes. For this reason, all eight space
harmonics indicated in Fig. D.1 will have significant amplitudes.

Equations (D.3), (D.4), and (D.5) thus become

+ e %—kz ay.q() 4y 4 = 0 (D.6a)
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w
1) (2 3) (4
Wpq
l,q
L,p
' < K -
n=| n=0 ne=

- B

Fig. D.1 For the frequency wpq’ eight space harmonics have
significant amplitudes.



I—dza'| (X) 2 2
— 1.3~ _ a5 (x) { (8 + K - g]k d]
de 1,9 q sq
2 -
tep ok ao,_p(‘x)‘ dO,-p 0 (D.6b)
a2y _q(x) e 2|l
dx2 i aO,-q(X) B—q - 0,-q
R 2 ' -
ter s k a]’p(x) d],p 0 (D.7a)
dza] (x) ) )
dx? ) ahp(x) (BP + K- ek d]’p
n 2 =
+ €-| "2" k aO’_q(X) dO,_q O (D'7b)
2
d-a
0,9 4 2 _ e ®H 4
dXZ O,Q(X) } Bq ] 0’q
n 2 =
tegpktay (x)dy =0 (D.8a)
d’a_, () ) )
__._'_z_%E. - a 1 X (8 _-K)™ - g]k d_] _
dx -1,-p -p s~P
n 2 -
tep o k ao,q(x) dO,q 0 (D.8b)
2
d®a, (x)
~ 0,p 7 2 _ k%14
dx? ao’p(x) BP “1 0,p
n 2 -
tepgk a—h—q(x) I (.9a)
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and
2
da (x)
-1,-q % 22
dx2 a_],_q(x) {(B_q K) e1k d_1,_q
fe. M2 5 ()d, . =0 (D.9b)
12 0,p 0,p ’

where g_ = -8 . Equations (D.6 a,b) describes the coupling of

the two space harmonics indicated by 1 in Fig. D.1; (D.7 a,b), (D.8a,b),
and (D.9a,b) correspond to the intersections (coupling) indicated by 2,

3, and 4. By inspection of Fig. D.1, we see that at 1,

B_p = Bq + K (D.10a)
at 2,

B_q = Bp + K (D.10b)
at 3 ,

Bq = B_p - K (D.10c¢)
at 4 ,

Bp = B_q - K (D.10d)

th

Thus all the n = + 1, +p sbace harmonics propagate with phase veloci-

h +1, i_oth space

0, ¥ pth space

it

ties of the n = 0, + qt space harmonics and the n

L]

harmonics propagate with phase velocities of the n
harmonics. Thus the starting point (Chapter II (2.4)):
iz -ig z
Eoq(x:2) = a,(x)d (2)e PO+ aq(x)dy(2) e a0 (D.11)
for the derivation of the coupled mode theory includes implicitly the

n = + 1 space harmonics. This is an important point, because for n as
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st

large as 0.4, only the n = 0 and the -1~ or st space harmonic has

38,54 Neglecting the last two terms in (2.48)

significant amplitude.
corresponds to neglecting higher order space harmonics as was done in
going from (D.3), (D.4), and (D.5) to (D.6 a,b), (D.7 a,b), (D.8 a,b).
and (D.9 a,b).

In the transversely bounded medium, (D.6 a,b) through (D.9 a,b)
correspond to (2.29 a,b) for the infinite medium; all have the same
general form as the coupled wave equations (2.53 a,b).

In Chapter II Section A and throughout Chapter IV, the symbol
AB represents the correction to the unperturbed Tongitudinal wavevector
8. For coupled mode theory (Chpater II, Section B), the corresponding
correction term is y. The dispersion relations for the various |

perturbed dielectric waveguides in Chapter IV are all of the form

(4.32):

@_}B(_= (ep—e \/(ep+eq (w q)Z— (‘«qu)2 (D.12)

A similar relation holds for the transversely infinite medium (2.35):

AB J 2 Aw 2
28 - 4 ( ) - (=) (D.13)
BO — )

o

ISE

From the coupled wave theory (2.35),

(c (k)-C_ (k) ) - (wg(k;—wg(k))Ak

C. (k C.(k k k
J (k) + [ P( ) +2 q(' )>G + ic(—P—————*———w ( );%( )> AIJZ

(D.14)
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Equation (D.14) has the form of (D.12) and (D.13) when the gain G is
equal to zero. The resulting behavior of Y1,2 (or 48) is the well known
dispersive nature of periodic structures discussed in Chapter II and
Chapter IV. When gain is introduced into the structure, we can use
(D.14) to obtain the normalized shape of the dispersion curve indicated
in Fig. D.2. For active interactions between modes where q # p , the
dispersion diagram is similar to Fig. D.2 but slanted in the manner of

Fig. 2.6b.
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tIm {7’|’2 }/XDD

Fig. D.2 Normalized plot of ak versus Im{y} for ratios of
ch/pr =0, 0.1, 0.5. (Adapted from Reference 1).
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Postscript:

I would hate to tell you what this lousy little book cost me in
money and anxiety and time...I've finished my war book now. The

next one I write is going to be fun.

Kurt Vonnegut, Jr.

Slaughterhouse--five





