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ABSTRACT

In Part I three types of symmetrical deformations of
thin cylindrical rubber tubes are discussed. In the first type a rubber
tube is deformed into another circular cylindrical tube of different
length and diameter by simultaneous inflation and extension of the tube.
This deformation is useful in determining the mechanical properties
of tube-like material and it was found that Rivlin-Saunder form of
strain-energy fitted a particular latex rubber used in our experiments.
The second and third types of deformation are a tube: deformed by a
longitudinal stx;etching or an increase in internal préssure to a curved
surface of revolution. A number of numerical exar;riples were worked
out with a view toward designing experiments to determine mechanical

properties of short cylindrical tubes.

In Part II experimental studies on the overall mechan-
ical properties of large blood vessels are presented, Two Lagrangian
stresses and two extension ratios are used to describe the stress and
strain states of the vessels subjected to symmetrical deformations.
The interested deformation range is about ten to twenty percent in the

neighborhood of the natural state,

Tests consisted of (1) a longitudinal stretching while
the diameter of the vessels was maintained, (2) a lateral distension
with the length of the vessels unchanged, and (3) repeated stretching

of the vessels at low frequency.
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The first two tests show that the stress-strain law
of the vessels tested is highly nonlinear and the vessels behave more
rigidly in the longitudinal direction than in the lateral direction. The
last test shows that the vessels are more likely to behave as a plastic-
elastic metal and a higher tangential modulus was observed for the

vessels stretched at a smaller oscillation amplitude,



PART I

LARGE ELASTIC DEFORMATION OF
THIN CYLINDRICAL TUBES
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LIST OF SYMBOLS

integration constant, Eq. (8)

physical constants (psi), W = Cl(Il - 3) + C,(I, - 3)
W = Cl(Il - 3) + f(I‘2 - 3), df/dI2 is a decreasing
function of I, as shown in Fig. 7
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respectively

3 3
_ 2 -2

strain invariants, I; = rzz 17\1' . =r2—:1)Lr
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z' is the axis of symmetry and r is the radius of S
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(r)zl - If/Z , the radius at the equator of S
middle surfaces of the undeformed and deformed
tube respectively

stress resultants per unit length in the meridional

and latitudinal directions of S respectively
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force, acting at the ends of the tube, required to
keep it in equilibrium

= T1/(2h0C1) , TZ/(?.hocl) and T/(szohocl)
respectively

strain-energy function of an isotropic incompressible
material

= C,/C

principal curvatures in the meridional and latitudinal
directions of S

principal extension ratios associated with meridians,
the lines of the latitude and the normals of S

respectively

(A, - yaE

arc length measured along a meridian of S
orthogonal curvilinear coordinates system in the
deformed state where N is the normal coordinate
of S

cylindrical polar system in the undeformed state

where z is the axis of symmetry of the undeformed

middle surface So



PART 1

LARGE ELASTIC DEFORMATION
OF THIN CYLINDRICAL TUBES

1. INTRODUC TION

We shall consider an elastic, incompressible, isotropic
material whose constitutive law is specified by a strain-energy function
W which is a function of two strain invariants and I,. In the math-
ematical theory of large deformations of axially symmetrical elastic
membranes, the governing equations are a set of nonlinear ordinary
differential equatibns. In a few cases, such as the inflation of a
circular plane sheet (Ref, 1), these differential equati‘:ons can be numer-
ically integrated for a general form of W. In other cases, e.g. the
inflation of a thin-walled tube, it has been necessary to simplify the
calculation by assuming the Mooney-Rivlin form for W

W= C(I~3)+C(I—-3) @)

where I; and I, are defined in terms of the principal extension ratios
7\1, A, and A3 by

L=XP+20+ A L= A+ A7+ A (2)

and C; and C, are physical constants.,



In this report we shall discuss three types of deformation
of thin circular cylindrical rubber tubes. In the first type a rubber
tube is deformed into another circular cylindrical tube of different
length and diameter by simultaneous inflation and extension of the
tube. Due to the simplicity in geometry, the governing differential
equations are reduced to a set of algebraic equations in terms of
the derivatives of the strain-energy function W. This simple deform-~
ation may be used in determining the strain-energy function from
experimental data. The following Rivlin-Saunder's form for W

W= c(L-3)+F(I,-3) 2)

where df/dI2 , a decreasing function of I, - 3, was found to fit a

particular latex rubber used in our experiments.

The second type of deformation considered is a
stretching of the tube without internal pressure. The third type is a
tube inflated by internal pressure, with or without a change in total
length or end diameter. In these two types, the deformed tube is a
curved surface of revolution; the analysis is more complicated, and
our calculations are restricted to the Mooney-Rivlin materials

specified by a strain-'energy function in the form of Eq. (1).

With a view toward designing experiments to determine
material properties, a number of numerical examples were worked
out, When the tubes are stretched without internal pressure,
results for CZ/Cl =0, 0,46 and some other suitable values were
obtained. It was found that the numericql solutions are insensitive
to the chosen values of CZICI' The results of calculation were

compared with measurements and good agreement was obtained.
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It is shown further, by calculation, that for each state of deformation
of the tube, the values of I1 and I, vary only slightly along the tube.
This has the effect that any slight dependence of E)W/all and 9W/9I,
on I1 and IZ’
would not be reflected in disagreement between the experimental

such as that indicated by the first type of deformation,

results and those calculated on the basis of a strain-energy function
of the form (l),’ provided CZ/C1 is given an appropriiate value for
each state of deformation of the tube. In contrast, the third type

of deformation,‘fin which the tube was fixed at the ends and was
inflated by internal pressure, a slight change in CZ/ C1 would affect
the deformation of the tube considerably. Hence an inflation

experiment is useful in determining the values of the ratio CZI Cy-
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2, THEORETICAL CONSIDERATIONS

Let us choose a set of cylindrical polar coordinates

{p, 8, Z) to be our frame of reference in the undeformed state in
which the z-axis is taken as the axis of symmetry of the tube. The
undeformed middle surface So is taken to be the surface p = Ro"
We agsume tha}t a point P(RO, 9, z)in S0 is carried by the deform-
ation to a poin't/P(r, 8, z') in the deformed middle surface S.

The deformatién is considered to be entirely symmetric with

respect to the z~axis, so that any point initially lying on the plane

0 = constant re;'pains on that plane as the deformation‘ proceeds

(Fig. 1). Théf arc length in the surface S between a point P and an
end of the tubg, measured along a meridian 6 = cons,i;ant, is denoted
by €. We take the meridians, 0 = constant, the lines of the latitude,
£ = constant, and the normals N to the deformed middle surface S
.as a set of orthogonal curvilinear coordinates to describe the
deformed state, From symmetry of the problem and the assumption
that the membrane is very thin compared with the cylinder radius,

so that the state of strain is nearly constant throughout the thickness,
it follows that the principal directions at any point in the membrane
coincide with the coordinate axes (£, 9, N) and we denote the
principal extension ratios in these directions by Rl, )\2 and 7\3
respectively. These extension ratios evaluated at a point P on the

deformed middle surface S are given by

4 R
).3‘—*2:'—'—,:' (3)

I
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where ho and h are the thicknesses of the undeformed and the
deformed tube respectively and the last equality is derived from the
incompressibility assumption of the material, i.e. 7\1 7\2 S
In these expressions 7\1, AZ’ }\3, r and z are independent of 0

and may be regarded as functions of the single independent variable

.

The components of the stress-resultants in the
directions § and 0 will be denoted by T; and T, respectively. They
are given by (Green and Adkins, Ref. 2, p. 150, where Zho is the

thickness of the membrane)

; : ; W z W
Jy = 2h (A= 2 )Kaéf/'-" Azj‘f:

(4)

7 = 2h s (A})@(g% * A Y

where I; = 7&12 + lzz + 7\32. and I, = 7k1-2 + 7\2-2 + )\3—2 are
two strain-invariants and W(Il’ IZ) is the strain-energy function of
the isotropic incompressible material. They are derived from

t he assumption that the normal stress acting on planes parallel to the
middle surface may be neglected in comparison with the other
stresses and that the normal stresses in the £ and 0-directions are
constant throughout the thickness. According to these assumptions

the extensions A;, A, and 7\3 must be treated as independent of

the normal coordinate N,



The equations of equilibrium in the absence of body
forces are ‘

f(/m) f

(5)

KT, +hl =—PF

where P is the internal pressure and K, and K, are the principal
curvatures in the meridional and latitudinal directions respectively.
The first equation of (5) gives the equilibrium condition of the
membrane in the £-direction and the second in the normal direction.
Since Ty, TZ' Ky and K, are independent of 0, the equilibrium
equation in the O-direction is automatically satisfied. The principal
curvatures are given by (Wang, Ref. 3, p. 322)

4z

i = _———“ﬁ—"/
SNY: 5l (-]

Lr o
der

(6)

A

I

/ dr27/2
- y[,+(§(§//‘)z /2 = [ f ]



With (dr)® + (dz)? = (d£)% any one of the three variables r, £ z'
may be taken as an independent variable and then the other two are
regarded as ;dependent variables, From Egs. (6), we obtain the
following relation between K1 and Ky

2L (1,1 =~/r,;,‘—;—éf ()

s

From Eqs. (6) and (7), we get

77%/&)”)—7‘-/\’2 4 (rr) =—PIL

a4 7 as

which integrates to the form

(8)

I
l

~ P T
z

#e Y

where T is the total force, acting at the ends of the tube, required
to keep the tube in static equilibrium. A positive value of T means

tension.



3. SIMULTANEOUS EXTENSION AND INFLATION WHICH
PRESERVES THE CIRCULAR CYLINDRICAL FORM

The simplest deformation of the cylindrical tube
is to elongate the tube and inflate it to one similar to its original
shape. From the geometrical consideration, we see that

-/
K= 0 , KZ:"}é :/]2470 ) (9)

where r and R are the radii of the tube in the deformed state and
undeformed state respectively. Using the above conditions, we

derive from Egs. (4), (5) and (8) the following equations.

2ho
P= " A:Ro ﬂ/ 3/\’ ) / 91/ 911)

(10)

Y N .
=2 /7\3[ /\F/ii)(%/ 3212)

T = jTﬁ\f’[zm“/{ ~AA] ——/)9”/+(/{,‘% —2A2 /\)&W]
/



where P is the pressure necessary to inflate the tube, Tl is the
longitudinal stress resultant per unit length acting on the circum-
ference of the tube and T is the force acting at the ends of the

tube to keep it in equilibrium.

Consider the case in which the diameter of the tube
is kept constant; i.e. A, is varied but A , is constant. When the
elastic properties of the ma.tena.l can be descrlbed by a strain-
energy function of the form (1), we can differentiate Eq. (10) with
respect to 2\,1 to obtain

-8 e el

Since C1 and C2 are both non-negative and not simultaneously
zero, it follows from Eq. (11) that if C1 = 0, P increases mono-
tonically with 7\1. It CZ = 0 andl < 7\ <‘ﬁ’—, then P increases
to a maximum value when Al = J3/ )\, 2% and then decreases
monotonically with Kl. IfC,= 0 and )\2>‘ﬂ—, P decreases
monotonically with A 1° When neither C; nor C, is zero,

dpP/d 7\1 = 0 when

[ ax*~ (a~T")x+ 3 =0 (12)
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where | = ?CZ/CI, a= 7\24 and x = 7\12 . If we assume,
furthermore, that T is less than one, as is true for most Mooney-
Rivlin Solids, Eq. (12) would have two positive real roots for x

if its discriminant is positive, which occurs if T lies between
zero and (7 - J/48)/a. For example, if )&2 = 1(a=1) and

0< < 7- J48 ~ 1/14, we find that when A, increases the
pressure will first rise, reaching a maximum, then it will fall,
reaching a minimum, and rises again at higher extension. For
1>T°> 7~ m, the inflating pressure again incréases mono-
tonically with increasing 7\1. On the other hand, dT/d N> 0

for any non-negative Cl and CZ'

Four rubber tubes (cf. Appendix 1) were tested
in the laboratory. Three tubes had diameters of 379” and one
tube had a diameter of 2.88". They were mounted vertically with
their ends ﬁxed on two metal cylinders, whose diar;%eter was
3.8", as shown in Fig. 2. A weight T was attached to the lower
cylinder and the corresponding extension )\1 in the vertical
direction was taken as the ratio jf/ Ly * The inflating pressure
P was measured by a manometer. Using the measured data T
and P, the normal force T1 was calculated from Eq. (8). Two
nondimensional quantities P' and Tl‘ are defined by

(13)
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The experimental data of P' with C1 =17.8 psi and Ay = lis

plotted against 7\ in Fig. 3. We can see that P' first increases
with )\1 until it reaches a maximum at about /1 = 1,9; then it
falls slightly to reach a minimum and then rises again, Curves

I, II and III of P! in Fig. 3 were calculated for the strain-energy
function W = Cl[ (I1 - 3)+ F(IZ - 3)] under the assumption that
C; =17.8 psi and] = 0, 0.065 and 0.1 respectively. These

curves show different characters as discussed before. There are
large gaps between the experimental results and these predictions.
In Fig. 4, we plotted the experimental stress resultant Tl' against
A 1+ The calculated curves I and III for 1= 0 and 0.1 respectively
are also plotted in Fig., 4 for comparison. These two curves
differ from the experimental data considerably for small )\

and the exper1mental points lie between them for large )\1 If we
choose a larger value for Cl’ we would get a better approximation

in the range of'ﬁﬁisma.ll 7\1, but worse for large )\1.

’In the simple deformation speciﬁea by (9), Eq. (10)
can be used to solve for the two unknowns E)W/BI1 and BWIBIZ as
functions of the strain invariants I; and I, from the experimental
data of P and T. If, in addition, 7\2 =1, then I1 is equal to IZ'
Some simple calculations show that the values of 8W/8]1 only vary
slightly as Il and I, increase. On the other hand, the values of

2
8W/E)I2 do drop rapidly as I1 and I, increase. The former condition
implies that we can approximate the function W(I,, IZ) by a linear
functional of Il. This suggests that we may use Eq. (2) to describe

the stress-strain relation of our rubber tubes:

W= C(L—-3)+ (I, - 3) (2)
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It turned out that Eq. (2) does give a better approximation to our
experimental data. A physical constant C1 = 17. 8 psi was obtained
from Eq. (10) by using experimental values of P and T at Al = 2.9.
The variations of I, and 1/C1 E)W/al2 are shown in Table 1 and
Fig. 7. With the values of 1/C; 8W/BI2 given in the third column
of Table 1, the values of P! and Tl were calculated according to
Eq. (10), and are listed also in Table 1, The calculated results

of P* were plotted in Fig, 3 (curve IV) and that of T,' in Fig. 4

1
(curve IV). We see that the fall of P! after it passqi the maximum

is mainly due tp the decrease of 1/C1 E)WlalZ as IZ’ increases.

When )&2 = 1,315, measured value}s of P! and Tll
were plotted in Figs. 5 and 6 respectively, P' starts at a finite
value, increages slightly as the extension increases,; The maxdimum
of P! is rea.ché{\d at 7L1 = 1.12. It decreases furthergmore and then

rises again at higher extensions.

Values of P! calculated for W in the form of (1)
and ] =0, 0.065 and 0,1 are plotted in Fig. 5 as curves I, II and III
respectively. In Fig. 6, Tl‘ so calculated was plotted against /\1
in curves I and Il for T'= 0 and 0.1 respectively. These curves
differ largely from the experimental data., On the other hand, if we
assume W in the form of Eq. (2) and calculate the strain invariant
I, at each extension ratio 7\1 and use the corresponding values for
é)W/E)IZIC1 from Fig. 7 to evaluate P',TZ' and T,', the results
of Table 2 are obtained. It gives curves IV in Figs. 5 and 6, Again
a better approximation is obtained under the form (2).

Thus we conclude that Eq. (2) gives a better
description for the elastic properties of our rubber tubes than Eq. (1).
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4., SYMMETRIC STRETCHING AND DISTENSION OF A
THIN CIRCULAR CYLINDRICAL TUBE INTO A SHELL
OF REVOLUTION

For more complicated deformation bf cylindrical
tubes the analytical difficulty is such that we have to assume the
strain energy in the form of (1) to make some progress. From
Egs. (1) and (2), we derive

77:.2/7.,@/&;5—" /\5,_3)[/—/»17)
(14)
3
=2k (G —55) (1 T

where T:CZ/CI' From the first equation of (5) and Eq. (9),

we obtain

A/gfé,_ I~ dr- + 34

bdf

2 242 Q/ Yd —
-f*]—’/ﬂf[r/\, f rj,d;)4%55{41+%%4”;_0

/ /.
//\7‘;’7—; g’f /‘ r; ‘/5(’)
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which integrates to the form

pr m Bﬁa+F/ /\;o‘ /\L ) B (15)

AIZ /‘VZ.

where B is a constant. If this equation is solved for )L as a function
of r, then the normal forces Tl’ T and the princ1pa1 curvatures

Ky and K, can all be expressed in terms of r. This suggests that
it is more convenient to use r instead of £ as the independent variable,
From Ed. (3) and the second equation of (6), we have the following
relations be&een z, z' and r for the case in which there is no

circumferential elongation at the ends of the tube and P > 0 *

L= / a’zdf //\,(/u: 2r2) 7=

(16)

—fa A
/ df //—-/4‘1'”)/?/

This kind of deformation is easier to discuss and can be
generalized to other possible cases without any difficulty.



-15~

These equations specify the deformation between the end and the
equator of the tube completely when we know the two integration

constants B and T and the pressure P,

Before discussing how to determine the unknown
constants B and T, let us examine the conditions that are appropriate
for sdlving the problem. Under the assumption of symmetric deform-
ation, no shear stress resultant acts at the ends of i:he tube., In
finite deformation, however, the slope of the membrane at the ends
is unknown andf-the direction of action of the stress’ resultant T1
at the ends is unknown., But the total force T acting at the ends
of the tube may be specified. It will be shown that by specifying T
and the initial length of the tube ’eo’ constant B can be determined.
Another possilgle set of conditions is to specify the initial length /FO
and final lengtﬁi ,Ff of the tube. The numerical mej;hod of solving

these constants is discussed in Appendix 2.

Solutions for two types of deformations, namely
the stretching of cylindrical tubes, and the distension of cylindrical
tubes, were worked out and compared with experimental results.

They will be discussed separately:

A. Stretching of Cylindrical Tubes

Thin circular cylindrical tubes were stretched
without internal pressure. The observations of the stretched
tube were made with an optical cathetometer with horizontal and
vertical travels. Rubber tubes were inked with horizontal lines

about a quarter inch apart, as shown in Fig. 2.
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One rubber tube (R =1, 895") gave the deformed
profiles as shown in Fig. 8, another tube (R = 1.44") gave the
deformed profile as shown in Fig. 9. Their initial lengths jo

were 3 times of their radii.

The meridional extension ratio A | Was readily
obtained froxff& the observed data. If £, - £; is the length of the arc
PIP2 (cf. Fig. 8) and Z, - 2z is the corresponding measured

intercept on the undeformed tube, then

_%-3 17)
roz- 2

is the mean meridional extension ratio over the intérval PIPZ' This
was taken to be the meridional elongation at the point midway between
Pl and P, in the undeformed state. The data obtained from the
measurements of the two tubes mentioned above were presented in
Figs. 10 and 11, which show Rl plotted against z-axis of the undeform-

ed state.

We discuss first the special case in which there is
no change in diameter at the ends of the tube, i.e. { lz)z' - 0,,€f= 1,
For the theoretical calculations, the initial length of the tube /eo
is taken to be 3 and the radius R, to be 1.

Four numerical solutions have been worked out. They
are calculated for R,=1, 4, =3, P' =0 and (1) jf =3.98, T = 0;
(2) £;=3.98, T =0.46; (3) £, =5.98 T =0; (4) ¢, =5.98,
17 =0.31. The values of r, ,7\1 and z' were shown in Tables 3 and 4.
We observe that the calculations are very insensitive to the chosen
values of /| . This insensitivity is caused by the flatness at the
equator such that a slight change in r__ would affect ’[o and /flargely
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and compensate for the change of Ly and s due to the change of .

In Fig. 8, are plotted deformed profiles I for Jf = 3,98, ] =0.46

and II for ,€f =5,98, [ = 0,31, The calculated values of 1 of these
two cases were plotted against the z-axis of the undeformed state in
Fig. 9. Sinc‘e the values of L and I‘2 vary only slightly along the tube,
as we can see from Fig. 12, it might be a good approximation to set
BW/&)I1 and BW/EI as constants evaluated at the mean values of L

and I,. From the discussion in Section 3 and the 8W/81 vs. I, plot

in Fig. 1, we take dW/8L, to be the constant C; and aw/ax ,/C =1"=
0.46 for,( = 3,98, where I, is about 3,25, We also take I’ = 0.31 for
,ﬂf = 5,98, yvhere I2 is about 4. 35. Therefore, curves I and II
obtained by this first order approximation for the derivatives of the
strain-energy function would still yield good agreement between

the theoretical result and nondimensionalized experiﬁental result

in this type of deformation as shown in Figs. 8 and 10, From Fig. 13,
we observe that Ty falls steadily as we progress outwards from the
equator, while T, increases steadily toward the ends. Calculated
deformation profiles and Al were plotted in Figs, 9 and 11 for

the case of an initial circumferential elongation )\2 = 1,315 at the

ends. It also shows good agreement with the experiment.

B. Distension of Cylindrical Tubes

The ends of the tube were rigidly fixed and we inflated
it by internal pressure P. ‘One tube was used for this type of
deformation. It had a diameter of 3.79'" and initial length 5, 69" (three
times of its radius). ,le and r,, were measured at the equator
for certain inflating pressures. The result is shown in Table
5. We seethat the increase of inflating pressure is followed
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by a fall as distension proceeded., The deformed profiles and the
meridional extension ratios all along the tube were measured for two
different inflating pressures. After being nondimensionalized by
PR_/2h C, where C, was again to be taken as 17. 8 psi, they are 1.24
and 1. 315, The results are plotted in Figs. 14 and 15.

For the numerical calculations, we chose R =1, ,ﬁosz
= 3 and the following sets of P'and | : (1) P! =1,315, T’ = 0.15;
(2) P'=1.24,]" =0.1; (3) P*'=1,24, ' =0.08 and (4) P* =1. 315,
I =0.1. Thé deformed profiles and the extensiog ratio /\,l are
plotted in Figs. 16 and 17 respectively. One can see immediately that
the theoretical results do depend strongly on the chosen values of I
Using a smaller I, we obtain a larger deformation at lower
inflating pressure as shown by curves I and II in Fig. 16. As
discussed earJ.ier in Section 3, the apparent value of 8W/812/C1,
which is for a Rivlin-Mooney material, does not remain constant
for the particular latex rubber used in our experirf)ent. Fig. 7 shows
that Tmay be considered as decreasing as I‘2 increase s. One
may surmise th’a.t the fall of pressure observed in the experiments is

caused by the fall of the value of I at increased deformation.

In Fig, 18, Tl‘ and TZ‘ are plotted against z and in
Fig. 19, 4 and Kk, are plotted against z. T,' and T ' decrease
steadily as we go toward the end from the equator, except that Tl
rises slightly near the ends. K, remains constant on most of the

tube, but drops near the ends.

Curves I and III in Figs. 14 and 15 were chosen to fit
the experimental deformed profiles and curves of 7\1. From Fig. 20,
we notice that the value of I, varies considerably with the axial
coordinate. Therefore the approximation that 8W/dI, /C1 is a
constant throughout the tube would not be valid in such a deformation.
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In the above calculation, F was considered as a constant parameter
chosen to fit the experimental data and it has no relation with the
considerations presented in Section 3., We see from Fig. 14 that
the calculated deformations are flatter than the experimental
deformation profiles and that the curves of A in Fig, 15 only show
a qualitative agreement with the experimental results.
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APPENDIX 1

THE PREPARATION OF RUBBER TUBES

Glass tubes of 3'" to 4" diameter were dipped in a
rubber latex dispersion (No. 74 latex molding compo}ind). The tubes
were taken out and put into coagulant (No. 541 coagultiént) to solidify
the latex. They were first washed in fluent water fgi' 2 to 3 hours,
dried at room temperature, then for 2 hours at 160° F and finally
vulcanized for 25 to 35 minutes at 220° F in a hot air oven. A layer
of thickness 0, 015" to 0, 025" was obtained and its variation over the
rubber tube is less than 2.5 percent.
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APPENDIX 2

A NUMERICAL METHOD OF SOLVING EQUATION (16)

Suppose that £ and ¥ ¢ are glven, We obtain from
Eq. (16)

(A.1)

Y G Kar-ar
-2 [
f P (/__/\/"/"-)Vz.

where r is the maximum radius at the equator z' = ,éf/z .

The integrands of Eq., (A.l) are very complicated
functions of r, and the integrals cannot be expressed in closed form.,
An iteration method can be used. First, certain values for )Ll and
r at the equator of the tube are assumed and designated as A’lm and
r respectively, Since dr/df = 0 at the equator, Eq. (6) implies
that ( KZ) - /[f/Z, rex_ =-1/ r e The constants B and T can then
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be obtained from Eqs, (8) and (15), and the integrals (A.l) can be
evaluated numerically by a high~speed computer, Readjusting the
values of Alm and T and repeating the numerical procedure,
we can make these integrals to have the given values ,ﬂo and /ef
respectively. When ’éo and T are given, Eq. (8) provides a
relation between le and T and numerical solution can be
found by assuming a suitable set of zlm and r ., that satisfy the
given relation and proceed with the iteration me thod as in the

previous case,

Near the equator, there is a square root singularity
and we calculate A from the following Taylor expansion

AF" (A, 2)

where A§ must be a sifficiently small value to insure the rapid
convergence of Eq. (A.2). Substituting Eq. (A.2) into Eq, (A.l)
we obtain two approximate formulas for ¢ and Ly

by, —-ar di"‘

(A. 3)

T 2
_ ~fardr ar
'Zf =2 [ (i—miro s * 2 [[,

If A and r/Ro are large throughout the whole tube, we may neglect
the term R 3/(1 3 %) in Eq. {15) in comparison with AR /r and
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r/ AjR,+ For example, when ,'{1 = r/R0 = 2, Ro37()\_13r3)= 1/64
may be considered as a negligible quantity. In this case, the
following approximate stress-strain relations hold:

7= 246 M (15 LLT)

(A.4)

z = 2/); Cl./\/);b [/_.f. PA{?—)

A substitution of (A.4) into the first equation of (5) and an integration
yields the relation

A7 = BRI+ r* (A. 5)
RS>+

where B! is a constant, Eq., (A.5) can be obtained also by neglecting
the higher order terms in Eq, (15). Using Eqs. (A.4) and (A.5), we
derive from Eq, (8)

Prez TR | A 6)
2[(R+Tra) (B +r> ]

Gl = -

where P! = PR/(ZhOCl) and T' = T/{Z-rrhoCIR) . Eqgs. (16) now
become for 0 < = <,%/2 and 0 < z! s[f/Z
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Z = / 2R+ Tr?) &r
/ f((AT—P>r:—D](r-— ")]/2
} e
(A.7)

4 (Pris 27R> )dr

e [(F-POr D] (r=rm»}%

—
—

where D = 4(B' - '1"'2)1{.04/1'1,1,]2 and r, is the known radius at the
ends of the tube, These two equations can be transformed into
elliptical integrals of the first and second kind when’all the constants
are given, After setting r = r . into Eq, (A.7), we obtain two
transcendental equations to determaine r and Alm when ,éo and

jf are given.

When there is tangential elongation at the ends of the
tube, a slight modification of the numerical procedure will provide

a solution of the problem,
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TABLE 1

The variations of (1/C1)/8W/812) , P' and Tl‘ with 7\1,

for a tube of constant diameter uniformly stretched longitudinally.

T
N 2 é1 %% h' mc%c P %1
1.15 3,079 0.500 0.739 0.352
1.3 3,282 0.465 1,238 0.561
1. 45 3.578 0.416 1.589 0.678
1.6 3. 951 0. 365 1, 851 0.737
1.9 4,887 0.279 2,244 0.773
2.2 6. 047 0.213 2.555 0.732
2.5 7.410 0.173 2,858 0.699
2.8 8. 968 0.149 3.165 0.676
3.1 10, 71 0.130 3. 465 0. 650
3.4 12, 65 0.114 3. 759 0.623
3.7 14. 76 0.110 4,085 0.628
4.0 17. 06 0.107 4,411 0. 636




The variation of (1/Cl)/ (aWIGIZ), T,", P
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TABLE 2

1

" with 7\1

for a circular tube uniformly stretches both longitudinally and
circumferentially with A 2 =1.315,

A L Lo AT S
1772 _ 1 ol
1.0 3,308 0.465 0.579 1. 282
1.15 3,621 0.410 1. 000 1. 318
1.3 4,092 0. 349 1. 264 1.290
1.45 4. 690 0.293 1, 444 1,233
1.6 5.396 0. 243 ‘1,576 1.159
1.9 7.098 0,179 1.808 1. 034
2.2 9,154 0.147 2,047 0.952
2.8 14, 26 0.111 2, 511 0,837
3.4 20. 65 0. 0845 2. 951 0.743
3.7 24, 32 0. 075 3,169 0.703
4.0 28. 32 0,072 3,413 0.693
4,3 32, 61 0,074 3,682 0. 71
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TABLE 3

Calculated values of r, 7\1 and z' for a circular tube
stretched longitudinally without internal pressure jo = 3, ,éf = 3,98,
P'=0, R=1 '

[ =0.0 | T =0.46

T' = 0,8023, B = -1.1380 T' =1,1017, B = - 1.8239

r /7\1 z' r 7\1 z!
1.0 1.2901 0,0 1.0 1.2696 0,0
0.9925 1.2924  0,0327 0.9909 1.2744  0.0353
0.9850 1.2948  0.0673 0.9818  1.2793  0.0730
0.9759  1.2979  0,1117 0.9708 1.2854  0.1221
0.9699  1.3000  0,1433 0.9589  1.2922  0.1810
0.9515  1.3068 0, 2517 0.9451  1.3005  0.2584
0.9423 1.3105 0. 3145 0.9359  1.3062  0.3170
0.9331  1,3143  0,3848 0.9267 1.312L  0.3828
0.9239  1,3183  0.4646 0.9175  1.3181  0.4578
0.9147  1.3225  0.5573 0.9083 1.3243  0.5452
0.9055 1.3268  0.6677 0.8991  1.3306  0.6500
0.8963  1.3313  0,8047 0.8899  1.3372  1.7813
0.8871  1.3360  0.9865 0.8807 1.3439  0.9578
0.8779  1.3408  1.2648 0.8715  1.3508  1.2347
0.9726  1.3437  1.5458 0.8662 1.3549  1.5228

0.8699 1.3452 1.9852 0.8635 1. 3570 1.9903
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TABLE 4

Calculated values of r, 7\1 and z' for a circular
tube stretched longitudinally without internal pressure 10 = 3,

£;=5.98 R=1, P'=0,
"= 0.0 I" =o0.31
T' =1.7994 , B = 2.1949 T* = 2,1207 , B =2,1716
r Aq z! r N z!

1.0 1.9884 0.0 1.0 '1.8740 0,0
0.9836  1.9869  0.0637 0.9808 1.8821  0,0546
0.9590  1.9855  0.1659 0.9520  1.8952  0.1433
0.9344 1.9850  0.2778 0.9231  1.9093  0,2418
0.9098 1,9855  0,4014 0.8943  1.9247  0.3526
0.8852 1.9870  0.5398 0.8655 1,9414  0.4797
0.8606  1.9897  0.6976 10.8366  1.9595  0,6289
0.8360 1.9935  0.8817 0.8078  1.9793  0.8105
0.8222 1,9962  1.0005 0.7940 1.9894  0.9138
0.8084  1.9992  1.1343 0.7802  1.9999  1l.0321
0.7900  2.0040  1.3452 0.7618  2.0146  1,2232
0.7762 2.0081  1,5393 0.7480  2.0262  1.4049
0.7624 2.0126  1,7847 ~0.7342  2.0383  1.6439
0.7486 2.0175  2,1324 0.7204 2.0510  2,0034
0.7414  2.0203  2,4196 0.7132 2.0578  2,3194
0.7374 2.0219  2,6941 0.7092 2.0616  2,6352

0,7360 2.0025 2, 9888 0.7078 2.0630 2. 9836




Measured internal pressure P!, radius rm/R and
the extension ratio 7\1m at the equator of a circular tube which is

inflated by P' while its ends are fixed with no circumferential elong-

ation,C; = 17.8 psi.

w30~

TABLE 5

Pt= —Z—E-E%I r /R A 1m
0,724 1.2 1,023
i. 09 1.37 1,035
1.23 1,39 1. 05
1,352 1,475 1.08
1,38 1.54 1.13
1, 385 1. 665 1,215
1. 315 1.82 1,355
1.24 2,14 1,815
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Fig. 1 Middie Surface Defining the Deformed Tube,



32

Z yal
To Manometer I
. f“’\Me’roICylinder e
. | ] l 1
] Inked —_— A
I |~ Lines i
Zo . "m ‘Zf
[ . ! ) |
A\ = R Y
Thin
Cl
amp ‘Rubber Tube A 4 ,
Undeformed State Deformed State

Fig. 2 Mounting of Rubber Tube for Inflation.



-33-

ox _ 0O
<q <
Q O
a2y
e
qaf* 0
| y H\ H -
/> ~<
Yo
o -Hoa
[ o
\ X
o
'4
q.0
q (J
Q
P a
q
L | | 1 o
® 0 < N o~
o o o o O
i~n0
oy
dd

Fig. 3 Variation of pressure P as function of Ay for A, = L.
Curve LT = 0; Curve ILT = 0.065; Curve IIL,T = 0.1;
Curve 1V, (L/C){(dw /dL,) varying in manner of Fig. 7
and the experimental result (cf. Fig. 4).



—34_:-

40 b
X
(o)
A
- ~ °
3.0 A
o]
faY
A o X I
by A
Oo o X
Fle 20— b
N X
o
A
o R= 1.895" X, =i
12} T 1
X 2ho = 0.0278"% £, =57"
10— ©o 2ho = 0.0296" 4, =5.7"
A 8 2ho = 0.0435", 4y =4.4"
i i J
1O 20 30 40

A

Fig. 4 Variation of longitudinal stress resultant T1 as function of

)\1 for ]\z =1, Curvel,T =0, Curve III,] = 0.1; Curve IV,
(_‘1/C1)(8w/8]‘.2) varying in manner of Fig, 7 and the nondi- -

mensionalized experimental result with G, = 17.8 psi,



o) -35-
40
¢
o]
Jo
[ap]
40
N
* o
0 o~
- o
oy z
HdoX
Fig. 5

Variation of pressure P as function of A; for A, = 1. 315,
Curve I, | = 0; Curve I,T = .065, Curve IlI, = 0.1, Curve IV,

(1/Cy)|(dw/d1,) varying in manner of Fig. 7and experimental
result.



-36~ o
—Tm
(0] =
o
oJ
E - = N
0 Q o
<t O A
T _+¢
o o ©
[ ond
N~
§ 8
V:rf)
—
o o
r <
o
o -
T L
Q
1
N
O\
o)
o,
[6)
(J
l | | | >~ Ke}
S) o o o o=
< (1 0] V] - O
9%z
st

Fig. 6 Variation of longitudinal stress resultant T as function of
for 7\2 =1,315., Curve I, T = 0; Curve II[,T = 0,1, Curve IV,
(1/C1)(8w/812) varying in manner of Fig. 7 and the nondimen-
sionalized experimental result with Cl =17, 8 psi.



37 -

l
21

|
19

|
17

15

l
13

0.6 —
0.5

Fig, 7

04
0.2

|
\p)
o
°re o
me

Variation of (8W/GIZ)/ C, versus I

ge)

00 N o

20

0.0



(3xed g Jo + ‘V

“ied ¥ yo x ‘0) s3nssx ejuswiradxs Jurpuodssixo)d °1¢°0 = _[‘86°G = MW\ I 2AanD
9% °0 = [ ‘86°¢ = HN ‘1 sAIN) ¢ = ON ‘0=d ‘1= °1 = Yy x0F sayrjoad pawirolap pajerndied)

Y4
O¢ gl o¢ Sl ol G0

1

1 I I

-3 8=

e X— F X —— + -X +

..wmmo.On Op._N .‘7!‘\.\J
.S68°1=4 ,Z

JEEN 8 $SL= 37 YU_{
g Vv

69°s=% ,

4]




“(raed g jo + ‘v

t31ed v yo x °0) simsox reiuswiredxe Surpuodsaizo)d ¢ = _]‘gZ°9 = w\ ‘IT 2AIND
¢ . ¢ W ¢ e o ¢ 4 L 3 ¢ ° ’
260 = J'e="7 ‘Teand cg= 7 ‘0=d ‘GIE°T= I ‘1= Y 10 sarpyoad powIofep pajenoTe) 6 "87I

Z
o€ oz / o'l 00
“ 00

T I

-39~

,GEPO0 = 0yZ g
bl o= Y Z
806 B, by = Yy 2
. . O
b =77 N
8 V i



)

ey o o g X e
20} +’—X:P""+ S
. x+ XJ/M
_—
1.8 -
1.6 -
<
14 I X
W oY% a 0 & 07 0
1.2
J ] J
i.0
0.0 05 (.0 1.5

Fig. 10 Calculated Al plotted against z-axis of undeformed state
(cf. Fig. 8) as compared with experimental data.



4T~

.5

I
T
]
(o

0.5

!
©

'Y

s
l

N

N

2.0
1.8}
14 f-
1.2 -
1.0
0.0

Fig. 11 Calculated )\l plotted against z -axis of the

undeformed state as compared with the exper-

imental data (cf. Fig. 9 ).



42

6 -
o~ IT
= 5
=
e
o I & S
el
I
- 1T ininininininis al
0.0 0.5 7 i.0 (.5
Fig, 12 Calculated Il(solid lines) and I2 (broken lines) plotted

against the z-axis (cf. Fig. 8).



-43-

30—
II
2.0 —
~
N
}—-
©
c
(@]
\ —
= I
10—
~
~
~
~
~ \\
T~o DN
S~ ~ . -~ -
™~ - \I - —_
— — _— N — —_——
0.0 ] e e L T e
0.0 0.5 .0 1.5
Z
Fig. 13 Calculated stress-resultants Tl'(solid lines) and 'I‘Zl

(broken lines) plotted against the z-axis (cf. Fig. 8).



44

2.2 - i
X + X
X +
1.0
A
1.8 |-
ri.e
o ./ Fﬁhzl
|.4 s
£y=L£,=5.69 <
P=0.396, 0373 psi B
|2 R=1.895"
2h,=0.032"
1.0 * * |
o) 0.5 10 | 1.5

Z/

Fig, 14 Calculated deformed profiles I and III from Fig, 16 and
) the experimental results (4, 0, P' =1,315; x, + P' =1, 24;

A, x of A part; 0, + of B part) with Cl =17.8 psi,



45 -

L7 o~
V2 R x%‘f’lp': 1315,T=0.15
b ™ :: ﬁ_—_f‘g‘:’ﬁo— ’@/
(.0 L L J
0 0.5 10 5
Z

Fig. 15 Calculated (7\1, z) Curves I and III from Fig, 17 and
the experimental results (broken lines) at corresponding

pressures (cf, Fig. 14).



wd b

2.2
2.0}
|8 |-
N
1.6 SO

IV P =1.315 I'=0.1
Lal I P'=1.24 I'=0.08
: o p=124 I'=0.1
I P=13I15T=0.15

.2

0.0 0.5 (.0

Fig. 16 Calculated deformed profiles for R =1, 10 = ff = 3,

1.5



47~

JAVA
16— T
14— I
A\ I
.2
[.O | | ]
0.0 0.5 .
ya 1.0 1.5

Fig. 17 Calculated 7\.1 plotted against the z-axis of the
" undeformed state (cf. Fig. 16).



20 -48-

7
/
0.5 »—//
!
/!
/
0.0 L 1 J
0.0, 0.5 .0 1.5
Z
Fig. 18 Calculated stress-resultants Tl‘ (solid lines) and Tz‘

(broken lines) for R =1, ,ZO = [f =3,]  =0.1, Curvel,
P' =1,24; Curve II, P* =1, 315,



~49.

K, and Kp
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undeformed tube to be unit length (cf. Fig, 16).
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EXPERIMENTAL STUDIES ON THE MECHANICAL
PROPERTIES OF LARGE BLOOD VESSELS
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LIST OF SYMBOLS

state of vessel in which the vessel diameter equals
to the mean of the outside diameters of the vessel
near the lower and upper supports

cross-sectional area of the undefo;med vessel, of
the vessel at state A and at the natural state
respectively

strain increments in the longitudinal and lateral
directions respectively, induced by an infinitesimal
deformation superimposed on a ﬁx}ite deformation
outside diameter at the mid-portion

mean of the outside diameters of fhe vessel near
the lower and upper supports

outside diameter of the vessel at the natural state
outside diameter of the vessel at the undeformed state
thicknesses of the undeformed vessel, of the vessel
at state A and at the natural state respectively
elastic constants, Eq. (9)

length of the undeformed and deformed vessel
respectively

length of the vessel at the natural state
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internal pressure

Laagrangian stresses in the longitudinal and lateral
directions respectively. They are referred to the
undeformed state for carotid arteries, jugular veins
and to the state A for mesenteries and femoral
arteries

stress resultants per unit length in the meridional
and latitudinal directions of the vessel wall respect-
ively

force, acting at the ends of the ve-ssel, required to
keep the vessel in equilibrium

= h x 1 c:m/AO

principal extension ratio referred to the undeformed

state associated with meridians. For carotid arteries

and jugular veins S 1/10

principal extension ratios, referred to the natural
length jN and the reference diameter dA . = j/,gN
and d/d,, respectively

ratio of the natural length to the undeformed length



PART 1I

EXPERIMENTAL STUDIES ON THE MECHANICAL
PROPERTIES OF LARGE BLOOD VESSELS

1. INTRODUC TION

Most works on the mechanical properties of large
arteries are confined to separate measurements of either the circum-
ferential (Ref, 1) or the longitudinal (Ref. 2) elastic behavior. These
measurements are insufficient to treat the mechanics of vessel walls,
Studies have a"lso been made on strips and rings cut from large vessels
(Ref, 3), but the interpretation of the elastic properties of these

specimens in views of the fibrous structure is questionable.

Histological studies show that the most important
elastic material in the vessel wall is net-like elastin and collagen
fibers. A model in which all fibers are arranged in the circumfer-
ential direction was used by Bergel (Ref. 1) to explain qualitatively
the lateral distensibility of vessels. However, the details of such a
model still await a full understanding of the structure and the mechanics

of these vessels.

It is the objective of the present paper to report
the measurement of the overall mechanics of the large blood vessels
of the dog. Our experiments consisted of the longitudinal stretching

test, the lateral distensibility test and the rep+ . . :l-strain test,



-2

The first two tests were designed to determine the stresses as
functions of one of the extension ratios. The last one was designed
to investigate hysteresis and the effect of strain rate. In the longi-
tudinal stretching test, the blood vessel was stretched very slowly.
in the longitudinal direction. By adjusting the internal pressure as a
vessel was stretched, the diameter of the vessel was held constant,
In the lateral distensibility test, vessels were inflated or contracted
by changing the pressure step by step while the ends of the vessels
were fixed. The relationship between stresses and strains can be
determined from these data. In the repeated-strain tests, the
vessels were stretched longitudinally as a sinusoidal function of time

while the pressure was held constant.

In the experiments named above, fresh specimens
were taken from anesthetized dogs and were immediately mounted on
the testing chamber for testing in stretching and inflation. The
chamber was temperature regulated by circulating Ringer-Tyrode
solution. An optical comparator which provides a magnification
factor ranging from 10 to 100 was used to measure the diameter change
of the vessels, The force, pressure and longitudinal strain were

recorded by an elaborate set-up to be described below,



2, EXPERIMENTAL METHOD

In this section, the method of preparing the test
specimens, the experimental procedure and the data reduction method -

are presented.

A, Preparation of the Specimen

The blood vessels used (carotid, femoral, mesenteric
arteries and jugular veins) were taken from anesthetized dogs. A
carotid artery in situ is shown in Fig. 1. Before the removal of advent
tissues, a rough estimation of the diameter of the vegsel in situ was
obtained by measurement with a caliber and by photography. This

diameter is designated the natural diameter d The vessel would

N* .
shrink to about two thirds of its natural diameter after the advent

tissue was gentl;f peeled off., Two ink marks, about 5 cm apart, were
marked on a portion of the vessel. This portion was selected on the
basis of uniformity of cross-sectional size and scarcity of side
branches. If any branches were present, they were ligated and cut
close to the parent vessel. The distance between the marks was
measured with a caliber when the neck of the dog rested on the oper-

ating table. This length is designated the natural length Z N° The

physical meaning of this natural length is clear; however, its numer-
ical value is somewhat debatable since the neck assumed different

positions, the length between the marks could be changed by 0.5 cm.
The marked segment of the vessel was then cut at points about 7 mm

beyond the marks and rinsed in a warm Ringer-Tyrode solution.



The distance between the marks and the diameter of the relaxed
vessel were measured (Fig, 2) and are designated as the relaxed or

undeformed length [0 and the relaxed or undeformed diameter d,

respectively. The length variation due to neck movement noted above
amounts to about 20 percent of the undeformed length ,@o. Because
of the small dimensions of mesenteric and femoral arteries, we had
to fasten them to the cones before cutting them out of the animal body.
The undeformed dimensions of the mesenteric and femoral arteries

were not measured,

The specimen was then mounted on cones of suitable

diameters. Fig. 3 shows the mounting device and the cones used for
c arotid arteries, mesenteries, etc, Two grooves were cut on the
cylindrical portion of the cone to secure the attachment of the vessel,
Black silk thread was used to tighten the vessel on the grooves. The
threads were tied right on the marks and served as markers of the
vessel length. The specimen was held vertically in a Lucite chamb'er
circulating with a warm Ringer-Tyrode solution (38° C). The lower
support was connected with the pressure system. During the test,
there was no circulation inside of the vessel. Fifteen minutes of time
was required to complete the transfer of the specimen from the animal

body to the testing chamber to start the test,

After each test, the average cross-sectional area

in the undeformed state was determined by weighing the specimen,

cut at the marks and bisected longitudinally, first in water and then
in air, The weight in air was weighed with the inner and outer
surfaces dried with Kimwipes paper. Questions may be raised as

to the proper degree of dryness the surface should have, but it is



estimated that with all uncertainties included, this method may entail
an error of no more than five percent in cross-sectional area. The

cross-sectional area in the natural state is then computed by assuming

the vessel wall is incompressible,

B. Testing Apparatus

‘.'I‘he tests were carried out in the specially designed
apparatus shown in Fig., 4. The position of the chamber, the location
of the specimen, etc, are indicated in Fig. 5. A light source (not
shown in Fig. 4) was situated in front of the chamber, so that any
change of dilameter could be recorded by measuring the shadow the
vessel cast on the comparator screen, The comparéfor used was a
Kodak optical cofnparator and it could provide a maghification factor

ranging from 10 to 100,

A motor was used to stretch the vessel in the long-
itudinal direction. In the normal configuration, the vessel can be
stretched at a constant strain rate. With an eccentric device, the
vessel can be stfetched sinusoidally in time at a fixed amplitude.

In most of our experiments a very small strain rate (0.05 cm/cm/min)

was imposed.

A linear differential transformer with a reliable
displacement range of 1, 25 cm was used to measure the longitudinal
translation of the upper end of the specimen. This differential
transformer consisted of a core and a casing, The core was con-

nected in series with the upper end of the blood vessel specimen.



The casing was fixed on the rigid frame. A set of flexures was
designed to center and to free the core in the casing, and thus it was
possible to eliminate any sliding friction between the core and the
casing., The electrical output of the differential transformer was
monitored by a Moseley X-Y plotter and was frequently calibrated with
a micro-comparator. An example of the linear relation between the

di splacement and the electric output is shown in Fig. 6. As the lower
end of the blood vessel specimen was fixed to the boﬁi&om of the bath,

the differential transformer provided the data on elangation.

The force needed to stretch the vessel was measured
by a force transducer which consisted of two steel arms in the form of
a horseshoe. 'On one arm of the force transducer four strain gauges
(SR-4) with a gauge factor 1. 69 were mounted on both‘k sides of a thinner
section with a thickness of about 0,03 inches. The gg.uges were con-
nected to a Wheatstone bridge. This gave the bending moment at the
section and hence the force applied on the ends of the force transducer.’
The output of the bridge was amplified by a factor of 100 to 1100 with
a Leeds and Northrup D,C, amplifier whose output was monitored on
a Brown potentiometer and the Moseley X-Y plotter., Fig. 6 also
shows the linear output of the force transducer which was calibrated

by adding weights on its ends,

The pressure changes were produced with a hand bulb
and a reservoir bottle connected to the vessel through the lower support
and were measured by a Statham pressure gauge, a mercury mano-
meter and/or a water manometer, For the carotid arteries, the
mercury manometer was used, The water manometer was sometimes
used for the jugular veins and the smaller arteries, The output of the

Statham gauge was monitored on another Moseley X~Y plotter,



In order to see if any phase lag existed in the set-up
of the force transducer and the differential transformer, the following
repeated-strain tests were carried out with two linear steel springs
in place of the test specimen, the outputs of the force and the displace=-
ment were monitored by the Moseley plotter as the Y- and X- inputs
respectively. The rigidity of the stronger spring was approximately
equal to the longitudinal rigidity of a carotid artery and that of the
weaker spring was approximately equal to the rigidi{y of the mesent-
eries and femoral arteries. The motor was driven at about 1 cycle
per minute with an eccentric amplitude of 2 mm, The responses of
these two springs and the one with open end are shown in Fig. 7,

The last one was used to measure the elagticity and the frictional
resistance of the mechanical set-up. It is seen that the outputs were

duite linear and”gthe hysteresis was negligible,

Before carrying out the tests, the differential trans-
former was calibrated by translating its core at a known distance
(0.35 cm), the force transducer by adding weights (40 gm ) on the
part R shown in Fig, 5 when the end was free and the Statham gauge

by the mercury manometer with a range of 20 cm Hg.

C. Test Procedure

C.1 Torsional Test

It is desired to determine first whether the overall
‘mechanical behavior of the blood vessel is axisymmetric, One test
in this direction is to see whether the vessel has a tendency to twist

when it is subjected to a longitudinal stretching and to an internal



inflation. We therefore replaced the part '"J" shown in Fig. 4 by a
thread (8 pound-test fishing line) which has a very low torsional
rigidity. The lower end of the blood vessel being fixed, any twist

in the blood vessel will turn the upper support through an angle. By
rotating the part R shown in Fig. 5, the torque needed to restore the
vessel back to the state of symmetrical deformation can be measured.
Experiments with four carotid arteries gave no indication of twisting
when the vessels were subjected to longitudinal extension and inflation.

Hence the axisymmetry of the test specimens may be assumed,

i

C.2 Longitudinal Stretching Test-

‘The test specimen was adjusted to have a length of
about 10 percent less than the natural length. Some vessels were

inflated to the natural or in situ diameters, d Other vessels were

inflated only to;ha.ve a diameter dA equal to thNe mean of the diameters
of the vessel néar the upper and lower supports, These diameters
were measured on the screen of the comparator. In the following
description, the state of the vessel in which this mean diameter is

obtained is called the state __.A_;_

Without pressure control, the diameter of the vessel
contracted in the lateral direction as the vessel was stretched long-
itudinally. To maintain a constant diameter, the pressure was
continuously adjusted. After the vessel was stretched to a proper
limit, it was manually and slowly relaxed back to its starting config-

uration. Without such a careful relaxation a significant deviation in



the force reading (about 10 percent of total force) at large extension

ratios would result for the next run.

Typical data of the force vs. longitudinal extension
ratio ( )\1) and the pressure vs. )\1 recorded for three successive runs
are shown in Figs. 8 and 9 respectively, In these figures the vertical
axis is shifted for each run to separate the curves more clearly. Note
the resemblance of T - 7\1 curves of the second and )the third runs and
their difference from the first run. This changing behavior at the
first few stress cycles seems to be a general behavior of blood vessels.
For this reason, the blood vessel was stretched and relaxed several
times around its natural length prior to the routine data taking, This
procedure enébled us to obtain repeatable results in T after a few |

cycles,

C.3 Lateral Distensibility Test

The léngth of vessels was set at the natural length or
5 percent less than the natural length . The vessels were distended by
changing the internal pressure. Their diameter was decreased from

the diameter dA at a proper pressure decrement to a state at which

the differential pressure is nearly zero, then increased by steps to a

certain maximum pressure, and finally decreased back to d For

A.
some vessels, only the inflation part was performed,

s .
The vessels had been stretched at different constant strain rate.
Because of the uncertainty in this relaxation technique, those data

are not presented.
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Since the force transducer was about a hundred times
stiffer than the blood vessels, the ends of the test specimen may be
regarded as fixed during the inflation test and the deformation of the
vessels in the lateral distensibility test could be regarded as an
inflation without any stretching in the longitudinal direction. Further-
more, since the length-to-~diameter ratio of the test specimens is of
order 10, the specimen is a long circular cylinder and the deformation
at the middle section may be regarded as a uniform cylindrical

inflation.

C.4 Repeated-Strain Test

Vessels were stretched longitudinally at a rate from
0.2 to 7 cycles per minute., The stretching limits could be adjusted
by changing the eccentricity of the driven motor. During the entire
test, a zero pressure level was maintained. The outputs of dis-
placement and force were monitored on a Moseley X-Y plotter. It

resulted in continuous curves as shown in Fig. 10,

As stated previously, the vessel length in situ varied’
over a range of about 20 percent of the undeformecf length. In this
repeated—strain test the vessels were stretched within these recorded
variations. At first they were stretched between the two limits of the
recorded variations, and then several successive small loops were |
tested. Each small loop had a range of about 3 percent of the unde-

formed length,



~11-

D. Method of Data Reduction

To study the blood vessel wall as a three dimensional
body in all its detail is a formidable task. Structural non-uniformity
in the blood vessel wall is well known. A detailed study to determine
the structural organization of the collagen fibers, elastin layers and
endothelial cells is in progress at the Cardio-Vascular Research
Laboratory by the method of differential enzymatic digestion. These
studies show that a proper model for the blood vessel wall is a fiber-
reinforced structure, with the collagen fibers arranged in different
directions in different layers, very much like fiber-reinforced

rocket bodies.

When the mechanical properties of each component
material (collagen, elastin, endothelial, etc. in vivo) are known,
and when the geometric relationship (relative size and architecture)
and the interaction mechanism between each of these components
(adhesion, friction, weldability, breaking strength, “Srield point etc, )
are determined, then it may be possible to compute.the overall
properties of the blood vessel. Without this detailed information one
cannot predict the overall properties. However, it is possible to
measure the overall mechanical properties. The results will be
useful for hemodynamic applications directly, and will serve as

basic information for future detailed structural studies,

With the determination of the overall properties as
our objective, the blood vessel is considered as a circular cylindrical
tube of uniform cross-section with a diameter-to-thickness ratio
ranging from 7.6 to 21. Strictly speaking, the vessels tested must be
considered as thick-walled cylinders. But the difficulty in analysis

and the lack of detailed information about fiber-structure suggest that
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at the present level, the variations of stresses and strains across

the thickness should be neglected. The blood vessel is then treated

as a thin-walled tube, with a nominal diameter taken to be the outside
diameter of the vessel, Our data analysis will be based on this model,

which must be remembered whenever our results are used,

The change of excised length before and after the
vessel was stretched and relaxed several times was not significant,
This was observed for the proximal and distal segmehts of the right
and left carotfd arteries of a god, It demonstrates that the undeformed
state, at which the vessel is free of external forces, is unique. There-
fore, it is proper to choose the excised length and diameter as the
basic reference length in the calculation of extension ratios. However,
because of the difficulty of obtaining an accurate measurement of
the diameter in the relaxed state, the diameter 4, is taken as the

A
reference diameter of the thin cylindrical tube in the data analysis.

The vessels used were rather long, with length-to-
diameter ratios of about 10, hence the fact that the ends of the vessel
are fixed on the cones introduces a negligible error if we approximate
the longitudinal extension ratio at the middle portion of the vessel by
the ratio of the total length of the undeformed vessel and the unde-
formed length. Thus the following longitudinal and lateral extension
ratios 7\1 and ]_\2 can be used to characterize the strains of the

middle portion of the vessel.

Ay

I
}

1))
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where £ is the total length of the deformed vessel and d is the outside
diameter of its mid-portion. In the longitudinal stretching test, the
diameter of the vessel was kept co.ﬁsta.nt, hence A , = constant and
the only variable in strain is the longitudinal extension ratio 7\.1. In
the lateral distensibility tests the longitudinal extension )\1 was kept
constant and the deformation of the vessel is characterized by the

ratio A,. In the repeated-strain tests the deformation was rather
complicated due to the fact that the pressure was fixed so that a lateral
extension accompanied any longitudinal extension. However, it is
sufficient to use the longitudinal extension ratio 7\1 to specify the

deformed state.

Our instruments recorded the total force T applied at
the ends of the vessel and the internal differential pressure p. The
longitudinal stress-resultant T1 acting on the cross-sectional area of

the vessel is given by the formula (cf. Eqgs. (8) and (9) of Part I)
a/a
mdl, =T + -7—7'4!}— (2)

The stress resultant T2 in the circumferential direction is the well
known hoop stress, and is given by the following formula (cf. Eq. (5)
of Part I)

provided that the small curvature Kl in the meridional plane can be
neglected. Consider an element of the deformed vessel subjected to
the forces dT; and 4T, as shown on the right hand side of Fig. 10,
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Let dA, dA be the area in the deformed tube on which dT1 and de
act respectively. Let dA  and H'A'o be the areas on the undeformed
vessel which corr espond to the areas dA, dA respectively. We
define the Lagrangian stresses as the limiting values of the ratios
dT,/dA_ and 4T,/ d_Ao after dT; and dT, have been translated
parallelly to the undeformed element as shown on the left hand side of

Fig. 9. From Eqs, (1) through (3) we obtain the folloWing relations

4 - L TP
Ao 4/40

(4)

= pMA_ L pdAxlem
2/70 ,8 Ao

where s; and s, are the Lagrangian stresses referred to the unde-

formed state (stresses based on the undeformed area) in the longitu-
dinal and lateral directions respectively, Ao and ho are the cross-
sectional area and the thickness of the undeformed vessel respectively,
and,@::hox lcm/Ao.

Because of the difficulty of measuring the undeformed
dimensions of the femoral arteries and mesenteries, the following

extension ratios and stresses are used.

5 = d
Alz‘j‘i }Azzz

(5)

;
Pl

T, 7dp -
A = Ay T 4 A/V s 2 24,
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where AN and hN are the cross-sectional area and the thickness of
small vessels in their natural state., In the above formula, the
stresses are based on the dimensions of the vessel in the natural

state and are called the Lagrangian stresses referred to the natural
state,
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3. TEST RESULTS

The results of the longitudinal stretching and the
lateral distensibility tests are presented in Tables 1 and 2 respectively,
Nine carotid arteries, four jugular veins, two mesenteries and two
femoral arteries were tested. For conciseness, only the data on
Lagrangian s’cressesﬂ< are presented. A smoothing technique on the
pressure record as shown in Fig. 9 was used in analyzing the data
of the longitudinal stretching test. In all the tests, the vessels were
either stretched from 7\1 = KIN - 0.1 to 7\1 = )\11\1 + 0.1 in the
longitudinal direction or distended in a range A 2 = 0.8 to 1. 3 in the

lateral direction,

The raw data of three other carotid arteries in a
repeated-strain test are presented in Figs. 11, 12, and 13. The
Lagrangian stress s is plotted against the longitudinal extension
ratio 7\1. Tests were performed within the recorded variations of

the vessel blength in situ.

The physical dimensions, the natural longitudinal

extension ratio A the natural diameter dN’ the mean diameter d

N’ _ A
the undeformed cross-section Ao and the thickness at the natural state

h,, of carotid arteries and jugular veins are presented in Table 3,

N

o

For most of the carotid arteries and the jugular veins, the relaxed
diameter of the vessels was not measured. Hence becomes an
unknown constant (Eq.(4)) and it is combined with s, in the data re-
duction. The values of 8 for four carotid arteries are tabulated in
Table 4 and range from 1,04 to 1, 96, For the mesentery and the
femoral arteries, the stresses are based on the reference state A

and the data of s, are presented.
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The undeformed physical dimensions, the diameter do’ and the unde-
formed thickness ho of the carotid arteries Nos. 8, 9, 11 and 12 are
presented in Table 4. For mesenteries and femoral arteries,

Table 5 shows the values of the mean diameter dA’ the cross-sectional
area AA and the thickness hA of the vessels at the state A, The
weight of the dogs where the tested vessels came from is shown in

Table 6.

Tables 1 and 2 offer the reduced raw data. If it is
desired to recover the experimental data on P and T for carotid

arteries and jugular veins, one needs only to compute

/‘b = /ﬁldl AO
Ay Xy dyxiCom

(6)

2 -

‘Tz/d,ﬂ,,—- “‘% As

4

where S0 ’8 S5 Al and X , are the values presented in Tables 1 and
2, and the values of Al and dA are presented in Table 3, For mesen-

teries and femoral arteries one has to use

(6a)
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where s S 5 7\1 and ;\Z are tabulated in Tables 1 and 2 and d

2
A, and h, are tabulated in Table 5.

A’

A A

Figs. 14 to 17 are the straightforward presentations
of the data of the carotid arteries Nos. 1 and 8 respectively. In the
figures, the Lagrangian s;tresses s and /6 s, are plotted against the
extension ratios )\1 or }\2. The paths of experiments are indicated
by arrowheads in the figures. For the longitudinal stretching test,
only the loading data are presented. On the other hand, the inflation
and contraction data of the lateral distensibility test are presented.
Hysteresis loopg were observed as shown in Fig, 15, Note that the
slopes (not closed loops) asllaiz and 352/8 7&2 are increased upon

unloading,

Figs., 11 to 13 are the data monitored on the Moseley
X-Y plotter in the repeated-strain test except that the force scale

has been modified to the stress scale by

4, = AI (6b)

where AO is the undeformed cross~-sectional area and is presented

in Table 3. This formula is obtained by setting p = 0 in Eq. (6 ).
The path of experiments is indicated by an arrowhead in the figures."
The first and third cycles of the carotid artery No. 10 are shown in
Fig. 12, Note the decrease in stress as cycling proceeds, Results
of steady-state response of the carotid arteries Nos, 11 and 12 which
were stretched at different amplitudes and frequencies are shown

in Figs. 12 and 13, One sees that the slope aslla)gl at an extension-

ratio ]\1 can depend on the cycling amplitude and the frequency.
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4. DISCUSSION

A, Stress-Strain Relationship

In the torsional test we have demonstrated the
symmetrical properties of the vessels. Since the Lagrangian stresses
s;» S, and the extensional ratio A 1 and 7\2 are sufﬁcient to pre-
scribe the stress state and the strain state of any symmetrical
deformation, a double power series of s and s, in terms of 7\1 and
A, or their combinations (e.g. 7\1 -1 and 7\2 - g, where 7\1 =1,
A,=8g describes the undeformed state) may be used as a stress-
strain law to fit the experimental data. However, one can see that
the stress-strain relation is highly nonlinear and it is difficult to
correlate the coefficients of the power series with the experimental

data.

As discussed in Part I, the Rivlin-Saunder's form
for the strain-energy function gives a good approximation for latex
rubber subjected to large deformation. However, the elastic behavior
of latex rubber differs from that of blood vessels. For most of the
vessels, the loading curves are rather flat at small extension ratios
and then sharply ascendant at large extension ratios as shown in
Figs. 14 and 15, On the other hand, the rubber has a highver tangential
modulus at small extension ratios and a smaller one at higher exten-
sion ratio. Thus the Rivlin-Saunder's form of strain-energy function
cannot be used in describing the stress-strain law for the blood

vessels, Neither can the Mooney-Rivlin form (cf, Figs. 3 and 4
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of Part I) be used. At the present stage, a stress-strain functional,
e.g. a strain energy function which is better in the tensorial pro-
perties than the previously proposed Taylor's series and which can
predict the behavior of the blood vessels as the Rivlin-Saunder's form

does on rubber-like materials, is still being sought.

B. Elastic Constants of a Deformed Vessel

Suppose a symmetrical infinitesimal deformation is
superimposed on a deformed vessel of which the fiqite deformation is
specified by the extension ratios (7\.1, 7\2). The strain increments

are

& = ai ’ ézz= 4—\—/17' (7

where A ?\1 and A iz are the increments of the extension ratios due
to the additional deformation. Up to the first order approximation of

A 7\.1 and A 5\2 the increments of the Lagrangian stresses are

— ., AW
AM = (g)_d)al, +(;i)_t2)4/12

(8)

i

%%/’63/ + %%2 €22
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A4, = jﬁ:)m + (% )AA

(8)
= 7@, e + %z €22

where

— a4, N ;
%// _A/ (;—A——:) ’ ‘éz =),2 {9‘2—%)
(9)
7@2/ = 2/[&J‘t) ’ ’éz = jz /%)

and are evaluated at (7\1, 7\2).

Using Eq. (5) of Part I and Egs. (1) to {(2), we have
the equilibrium equations of the vessel,

7€/ dé// + (_%z ﬁ/dz) V7 (43 = O

(10)
4 d'e 74:12 [
T — O A2z L
7@/ € + ('Ezz "/dz) €2 /‘3* AZ? 2A, F#A/D
where z is the axial coordinate of the deformed vessel, Ap is

the pressure increment, ,B * = /9 X dA/()\1 x 1 cm), and 'é'l ,

':52 are the Lagrangian stresses evaluated at (7\1, 7L2) .
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In this derivation one sees that the elastic constants kll’ klZ’ k21 and
k22 are a proper choice in representing the response of the vessel

to infinitesimal deformation.

To compare the rigidity of a vessel in the longitudinal
and lateral directions, it is best to choose two flat square membranes:
one membrane has the stress-strain law Eq. (8) and another one is
obtained by a 90_O rotation of the previous one, Stretching these mem-
branes to a deformation e = e and €55 = 0, where e is a small quaﬁtity,
we see that a larger longitudinal Lagrangian stress s1 is required on
the first one than that on the second one if the inequa.liity k11> k22 is
true. Therefore it is proper to say that a vessel behaves more
rigidly in the longitudinal direction than in the lateral direction, if
the elastic constants k11 and k2.2. of the vessel satisfy the inequality

k11 > k2

i

2 .

The distensibility tests of the carotid arteries Nos., 8
and 9 were done to evaluate these elastic constants at several sets of
(7\1, 712). Test results are presented in Tables 1 and 2 and in Figs.
16 and 17, Note the overall increases of slope 8s1/8]\1 and 852/8 )\1
as A, increases from 0.9 to 1.0 and then to 1.1 in the longitudinal
stretching test (Fig. 16). Similar characteristics are also seen in
Fig. 17 for the lateral distensibility test. The computed elastic con-
stants of the carotid arteries Nos. 8 and 9 are presented in Table 7.
A smoothing technique on the stress-strain curves is used in measur-
ing their slopes at points of a specific set of extension ratios. One
can see that these two arteries behave more rigidly in the longitudinal
direction than in the lateral direction in the neighborhood of the
natural state. Table 7 also presents the elastic constants for other

carotid arteries, jugular veins, mesenteries and femoral arteries.
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One can also see that the feature, the tested vessels behaving more
rigidly in the longitudinal direction, is true at certain points on the
?\1 - 7\2 plane and that their elastic constants are of the same order
of magnitude, except that for three jugular veins out of four they have

a very small k,s.

C. Repeated-Strain Test

In this sub-section we shall discuss qualitatively
some of the interesting aspects observed in the repeated-strain test.
This test is designed to investigate the dynamic response of vessels

at low frequencies.

When the carotid artery No. 10 was stretched long-
itudinally between fixed limits at a frequency of 0. 2 cycles per minute,
we observed a substantial decrease in stress from the first cycle to
the third one (Fig. 11). This test consisted of five cycles. The
largest decrease occurred in the first cycle and the fourth and the
fifth repeated the result of the third one, When we repeated the
repeated-strain test after about a five minute pause, the change in
stress was much less significant than in the previous test. The fact
that the decrease in stress after the vessel has been stretched for
several times was also observed in the longitudinal stretching test
as shown in Fig. 8. One sees that the second loading curve is lower
than the first one for large extension ratios while the third one
repeated the second one. Comparable phenomena have been recorded

in experiments on repeated-inflation tests of large blood vessels
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*
(Bergel, Ref. 1) and on repeated-strain tests of steel specimens

(Bailey, Ref. 6). The features, the stiffening (higher tangent mod-
ulus) at unloading and the decrease in stress as cycling proceeds,
are rather similar to the plasticity of métals. When the vessels
were cut out from the animal body, they contracted to about two
thirds of their natural lengths, This abnormal contraction has been
regarded as the principal cause for why a repeatable stress-strain
curve or a steady-state response in stretching or in inflation could
be achieved only after several cycles have been tested (Figs. 8 and
11). Thus it is useful if one can construct the mechanism of this
abnormal contraction on the mechanical properties of blood vessels,
e.g. a model with certain elastic-plastic properties of metals. For
a ""standard linear'" model (a viscoelastic material, cf. Appendix 1)
the phenomenon of the stress decrease could also be observed as it
is suddenly being stretched sinusoidally. However, a change of the
initial condition will result in a stress increase. For the three
carotid arteries tested the initial conditions of the suddenly imposed
sinusoidal excitation were quite arbitrary, but the stress level was
always decreased. Thus the decrease in stress of the vessels

might not be interpreted as a viscoelastic response.

After two or three cycles of repeated stretchings,
the response reaches a steady state in the sense that the hysteresis
loops overlap each other for several subsequent runs. Fig, 12

shows the steady-state response of the carotid artery No. 11.

* In his experiments, the strain limits were 0 and 6 x 10—3. The

bending moment, applied on the specimen for the first loading cycle

was increased from 0 to 120 ft, 1b. However, the extrema of the
bending moment dropped to -40 and 110 ft. 1b. for the third loading cycle.
In our test the stress level of the blood vessels is positive,
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All loops were run at a frequency of 0,2 cycles per minute. Note that
the loading curve of the large hysteresis loop is quite linear, On the
other hand, one can see that the slope 851/67\1 could be a nonlinear
function of the driven amplitude, the one with a smaller amplitude

has a higher slope. This result differs with that of the Voigt model

(a linear viscoelastic material, cf. Appendix 1) of which the force-
displacement loops would look like ellipses with parallel major and
minor axes when the model is driven at different amplitudes or
frequencies. Similar results were observed for a rubber tube as

shown in Fig. 7.

Steady state responses of the carotid'artery No. 12
stretched at different frequencies are shown in Fig, 13. The last
small loop (the one on the right hand side of the figu;fe) of the third
test had been driven at frequencies 1.1 and 7.1 cycleys per minute,
No differences on their force readings were observed. On the other
hand, when the vessel was repeatedly stretched between large limits
at frequencies of 0.2 and 1.1 cycles per minute, the loops cross

each other at large extension ratios.

In Bergel's dynamic tests (Ref. 7), he distended the
vessels laterally at frequencies from 2 to 18 cycles per second with
a mean pressure of 100 mm Hg. The radius changes were less than
3 percent for a pressure change of t 5~10 mm Hg. He showed that
the dynamic Young's modulus of the tested carotid arteries changed
insignificantly in the above frequency range and its value was about
1. 6 times the static Young's modulus which was measured at an

internal pressure of 100 mm Hg. In his static test, being similar to

our lateral distensibility test, the diameter of the carotid artery
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was increased step by step from 0,24 to 0.45 cm, Based on our
qualitative result of the carotid arteries tested in the repeated-
strain test, one realizes that the oscillation amplitude could be an
important nonlinear factor in explaining why the dynamic Young's

modulus is larger than the static one as shown in Bergel's test.
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5. CONCLUSION

The experimental results of the extensibility test
show that the vessel has a smaller tangential modulus at small
extension ratios and a higher one at larger extension ratios in both
the latitudinal and longitudinal directions., This characteristic
differs from ordinary rubber-like materials, In discussing the
response of the vessel in the neighborhood of the natural state to
infinitesimal deformations, we found that the vessels tested behaved
more rigidly in the longitudinal direction than in the latitudinal

direction.

Results of the repeated-strain test demonstrate that
the dynamic extensibility of the vessel depends more strongly on the
driven amplitude than on the driven frequency and the first may be an
important factor in explaining the increase in the dynamic modulus

over the static one,
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APPENDIX 1

RELAXATION OF A STANDARD LINEAR MODEL

The standard linear model is (1) a combination of a

Voigt Model (a linear spring and a dashpot being parallelly connected)

and a spring connected in series, or (2) a parallel combination of a

Maxwell model (a spring and a dashpot being connected in series)
and a spring. A dashpot behaves as a massless piston moving in a
viscous fluid. A sudden change of the deflection of these models

(A.1)

D sinwt t >0 .

where t is the time, «w is the frequency, and D is a constant, will

produce the following load

E_D -t/ T,

. |
P B lig- e
1+ CPw { €7

(A. 2)

%
-w( - o) coswt + (1 + 7 ’Z}u)z)sina)t J
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where Eps Te » Uy are functions of the spring constants and the
coefficient of viscosity of the dashpot. In the above formula, the
first term in the bracket is a term of exponential relaxation. If
D(T - ?V) Z0((% - % )>0 for model (1), < 0 for model (2),
and = 0 for Voigt model) hysteresis loops of the model in repeated-
strain test decay exponentially to a lower limit. Otherwise, the
loops tend to a higher limit. One can see that the decrease or
increase in the stress of the standard linear models depends on the
sign of D, and hence on the initial condition. More detail on the
governing equations of viscoelastic materials can be found in Fung,

Foundations of Solid Mechanics, Chapter 1.
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TABLE 1

Measured values of the Lagrangian stresses

s, and 'BSZ in the longitudinal stretching tests.

Carotid Artery 1l

A 2 = 1.0
Al 81 /Bsz
1. 33 .51 .35
1, 39 .75 .40
1.42 .83 o43
1.45 1.06 - .49
1.48 1,68 . 61
1,495 2,27 LTl
1,51 3, 301 .84

Carotid Artery 3

X, =1.0
Al 1 B%2
1.74 0. 65 .27
1.79 0. 85 .35
1. 84 1.28 .46
1.87 1.64 .51
1. 90 2.19 .75
1.92 2.90 .93

Carotid Artery 2

A, =10
)\1 1 PSZ
1.5 .36 .11
1.58 .54 .13
1. 65 .73 17
1. 69 .93 .24
1.72 1.45 .32
1.74 2,22 -39

Carotid Artery 4

7\2 =1,0
N °1 (352
1.59 0.84 0.71
1. 64 1.04 0.82
1. 67 1.21 0.91
1.70 1.49 1.04
1.72 1.88 1.20
1.74 2,82 1.41
1,75 3.45 1.5




~-32=

Carotid Artery 5 Carotid Artery 6
A, =10 A, =1.0
A1 8) £z A 5 £22
1.60 .19 .64 1. 67 . 61 .59
1. 68 1. 06 .15 1.73 .80 .67
1.74 1.44 .92 1.78 .91 . 74
1.78 1, 86 1. 04 1.82 1.24 .78
1,81 2.48 1.29 1.85 1,77 .87
1.83 3.13 1.52 . 1,87 2,83 1.09

Carotid Artery 7

A, =10
Al 8] £s2
1.69 . 66 .76
1.75 .88 .85
1.79 1.19 1.07
1. 82 1.90 1. 34
1.84 2.91 1.60
1.85 3.52 1.71

1. 86 4.57 1.98




Carotid Artery 8

)LZ =0.9
A1 51 £s,
1.575 .88 .13
1.600 1.09 .16
1. 626 1.31 .18
1. 651 1.55 .20
1.675 1. 85 .22
1.702 2.15 .24

X, =1.0
1.575 .90 .39
1. 600 1.10 .43
1. 626 1.35 .46
1. 651 1. 63 .49
1.675 1.96 .53
1.702 2. 39 .56
1. 727 3.24 .68

A, =11
1.575 94 1,01
1. 600 1. 20 1. 05
1. 626 1.48 1.12
1. 651 1. 86 1.19
1.675 2.42 1. 25
1. 702 3.16 1.39

33

Carotid Artery 9

l2=m9
Al 8y )
1.62 . 39 .06
1. 66 .58 .08
1.70 .75 L1
1.73 .88 .12
1.75 1,02 .13
1. 77 1.14 .14

A2=L0
1.62 .39 .16
1. 66 .57 .19
1. 70 .74 .20
1. 73 .90 .23
1.75 1.08 .29
1. 77 1. 29 .33

12=L1
1. 62 . 44 .33
1. 66 . 61 .37
1. 70 .82 .41
1.73 .99 .46
1.75 1. 20 .54
1.77 1.50 .68
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Jugular Vein 13 Jugular Vein 14
)\2 =1.0 A 5 = 1.0
)\1 8; /Bsz )\1 81 {5’32
1.80 .30 .39 1.95 .12 .1
1.90 .43 .32 ' 2,05 .18 .12
1.98 .59 .35 2.15 .26 .15
2,04 .77 . 40 2.23 .34 .19
2,08 1. 32 .51 2,29 .45 .22
2,11 2,62 .78 2.35 . 61 .26
Jugular Vein 15 Jugular Vein 16
)\ 2 = 1. 0 A 2 =1,0
A1 51 £e2 A 5] £s2
1. 66 .23 .06 1.76 .20 .02
1. 69 .31 .08 1.82 .33 .03
1.72 .39 .10 1. 86 .43 .04
1.75 .47 14 1. 90 .59 .05
1.77 .53 .16 1.92 .18 .08

1. 785 .62 024 10 93 -93 . 11




Mesentery 17

)\2 =1,0
Al 51 52
0.87 1. 40 0. 34
0.91 2,01 0.51
0.95 2.49 0.63
0.99 3.08 0.83
1.02 3.92 1.11
1.05 5.17 1.40
Femoral Artery 19
)\2 =1,0
Al ®1 %2
0. 85 . 51 0.44
o. 89 1.35 .62
0.93 2.16 .79
0.97 2.99 .99
1.00 3.73 1.09
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Mesentery 18

X, =1.0
X1 1 )
0. 91 .39 .18
0.95 .64 .65
0.99 .91 1.00
1.03 1.15 1.54
1.06 1.31 1.88
1.09 1,46 1.98
Femoral Artery 20
)[2 =1.,0
A1 5 52
0.88 .95 0.2
0.94 1. 51 0.23
1.00 2,12 .34
1.06 2,68 .47
1.10 3.08 . 64
1.14 3.47 .79
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TABLE 2

Measu red values of Liag rangian stresses 8 and
Fsz in the lateral distensibility tests.

Carotid Artery 1 Carotid Artery 2
A = 1.465 A1=1.64

A2 51 . f=2 A2 81 As,
1,008 1. 20 .43 .997 .92 0.27
. 920 . 78 .23 . 859 .83 0.09
.829 . 63 11 .983 . 91 0.27
.893 .75 .22 1.132 1. 21 0.69
. 940 1. 04 .39 1.181 1. 51 0.99
1.020 1. 50 .72 1.219 1. 80 1. 26
1.148 3.16 1.78 1.250 2,24 1. 64
1. 208 4,26 2,56 1.264 2.61 2.01
1.235 5.12 3,31 1.281 2.96 2.39
1. 265 5.94 4,1 1.309 3.62 3.17
1.238 4,40 2.62 1.320 4,25 3.94
1.188 2, 88 1. 51 1. 316 3.72 3.19
1.124 1. 69 .82 1.309 3.12 2.45
1.060 1. 09 .44 1.288 2.76 2,05
1.247 1.96 1.29

1.184 1.28 0.70

.11 2 1.014 0.41

1.039 .91 0.27
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Carotid Artery 3 Carotid Artery 4
Ay =1.86 A =1.65
)\2 81 {982 )LZ 8 {682
.993 1. 37 .68 . 997 1. 20 .79
.86 1,10 .25 . 976 1. 13 . 1
. 780 1. 03 .12 . 896 1, 07 .43
. 865 1. 09: . 25 . 822 1. 01 .29
.989 1. 36 .68 L 711 . 95 Jd1
1. 099 1. 84 1.37 . 198 1, 00 .28
1,135 2.14 1.79 . 864 1. 05 .41
1.156 2.45 2.21 . 916 1. 11 .57
1,177 2.84 2,80 .993 L2 .87
1.199 3. 30 3.49 1. 045 1. 36 1.23
1,227 3.86 4,39 1,063 1. 53 1. 64
1. 206 3.35 3.51 1,080 1. 79 2.22
1.195 2.56 2.29 1,105 2,16 2.92
1.170 2.25 1,85 1,125 2. 61 3.79
1,152 1. 93 1.44 1.122 1. 95 2,31
1.106 1. 65 1. 06 1,108 1. 65 1.71
1.164 1. 43 .73 1,087 1. 49 1.28

1.01l 1, 25 .51 1.000 1. 16 0.64




Carotid Artery 5

)\1 =1,73

Ay 8 £e2

1. 00 1. 34 .85

.93 1. 16 . 55
.84 1. 07 .35

.78 1. 05 .23

.71 1. 06 .14

.79 1. 07 .28
.90 1.13 .50
.99 1. 33 .83
1. 05 1. 57 1.25
1. 09 1. 80 1.68
1.12 2.1 2.25
1.16 2.52 3.05
1.19 3,09 4,05
1.18 2. 61 3,05
1.16 2. 26 2.39
1.13 1. 87 1. 76
1.08 1. 56 1.1 8
.99 1. 28 .68
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Carotid Artery 6

Ay =111
Az 8] Be2
.993 .73 . 61
. 927 L 67 .45
. 815 . 57 .19
. 787 . 55 .15
. 845 . 58 .27
.935 . 66 .48
1. 000 .17 . 66
1. 061 . 80 .88
1.135 . 94 1.30
1.190 1. 16 1.92
1. 215 1. 50 2.76
1,257 2.21 4.09
1. 235 1. 50 2.52
1,215 1, 24 1. 87
1.168 1. 03 1. 31
1.125 . 85 .95
1. 015 .1 .58




Carotid Artery 7

Ay =171

A2 51 £e2

1.004 .17 .85
. 860 . 59 .44
. 796 . 55 .34
.738 . 51 .25
.652 ..48 .1

. 731 . 52 .24
.792 . 56 . 36
.867 . 62 .53
1. 011 . 82 .96
1.057 1. 67 2.19
1. 090 2.55 3.38
1.118 3.23 4,30
1.111 2.7 3.45
1.090 1. 89 2.26
1.068 1. 24 1.46
1. 004 .79 .83
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Carotid Artery 8

Ay =1.577
A2 51 B2
‘94 '78 .23
.98 .82 .36
1.0l .85 .44
1. 04 .87 .52
1. 07 .93 .1
1.10 .95 .83

)kl = 1,654
.88 1. 55 .21
.93 1. 63 .34
.96 1.73 .50
1. 01 1. 92 .70
1.07 2.28 1. 06
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Jugular Vein 14 Jugular Vein 15

Ay=2.08 Ay =172
A2 51 £z X2 51 Fe2
. 990 .15 . 05 1. 000 .36 .05
.893 .14 .04 . 865 .35 .02
. 784 .14 .03 L7771 .34 .01
. 704 13 .01 . 688 .39 .00
. 811 .13 .02 . 806 .35 .02
. 924 14 .03 . 941 .36 .04
.993 .15 .04 1. 029 .37 .08
1. 083 .16 . 06 1.094 .41 .17
1.150 .17 .07 1.147 .49 .32
1. 256 .21 i 1.191 .66 .65
1.302 .26 .19 1.182 .52 .34
1. 369 .57 .52 1.150 .44 .18
1.336 .29 .20 .18 .40 .10
1.302 .22 12 1. 000 .36 .39
1.143 17 .06

0.990 .15 .04
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Jugular Vein 16

A =1.87
Ay 51 ﬁsz
1. 000 .46 .04
.926 .45 .02
. 852 .45 . 01
. 945 .45 .0l
.926 .44 .03
1. 000 .47 .04
1. 063 .48 .06
1.141 .49 .09
1,208 .52 12
1. 264 .57 17
1,317 .64 .24
1. 285 .54 .13
1,211 .49 .07
1.141 .48 . 06
1. 064 .47 .04
. 989 .46 .03
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M esentery 17 Mesentery 18
Aq=1.0 X, =0.964
A2 ! 52 A2 51 52
. 854 2,88 0.16 . 969 0.93 0.40
. 888 2.96 0.29 1,008 0.89 0.62
1.003 3.19 0.82 1.022 0.89 0.70
1.038 3. 34 1.04 1.039 0.91 0.92
1. 061 3.51 1,51
F emoral Artery 19 Femoral Artery 20
Ay = 0.907 Xy=0.989
Az Sy £2 X2 °1 2
. 963 2,26 0.28 . 936 2.73 0.1
1,011 2.47 0.73 .963 2,80 0.32
1.058 2.66 1. 06 . 982 2.86 0.47
1. 095 3. 00 1.88 1,015 2.94 0.83

1.038 2,96 0.88
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TABLE 3

Physical dimensions of the carotid arteries and

jugular veins,

Number AN dy d, A hy dy/ by
(cm) (cm) (cmz) (cm)
Carotid Arteries
L.1 1.47 0.506 0. 080
R.2 1. 64 0.40 0.462 0.092 0.05 8.0
R.3 1. 86 0.452 0.084
L.,4 1.65 0. 34 0.460 0. 069 0. 045 7.6
R.5 1.73 0. 38 0.454 0.079 0. 044 12.0
L.6 1.71 0. 36 0.442 0.076 0. 045 8.0
R.7 1. 77 0. 34 0.442 0.068 0. 041 8.3
L.8 1. 65 0.44 0.438 0. 059 0.030 15.0
R.9 1.71 0. 38 0. 378 0. 065 0.036 11.0
L.10 1,67 0.32 0. 056 0.038 8.4
R.11 1.78 0.52 0.068  0.024 22.0
L.12 1.61 0.42 0,052 0.027 16.0
Jugular Veins

“R.13 1. 96 0. 34 0.632 0.071 0.048 7.1
L. 14 1. 68 0. 84 0.754 0.21 0. 06 14,0
R.15 1.72 0.50 0.524 0.06 0.026 19.0
R.16 1.87 0. 36 0.446 0,078 0.041 8.8

L. signifies left and R. signifies right.
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TABLE 4

Undeforﬁ)ed physical dimensions of the carotid
arteries Nos., 8, 9, 1l and 12,

£ E 3
Number * d h d /h
o o) )
(cm) {cm)
L.8 0,32 0.08 4,0 1.23
R.9 0. 30 0,04 2.7 1.96
R.11 0. 32 0.096 3.3 1.42
R.12 0. 34 0. 054 6.3 1.04

*  Measured by photographic method.

*% 1., signifies left and R. signifies right.



-4 -

TABLE 5

Physical dimensions of femoral arteries and

mesenteries.
Number'  d A h d,/
umber A N A A hA
{cm) (cmz) (cm)
M 17 0.138 0.0053 0. 014 10,
M 18 0,102 0,0023 0.008 13.
FA 19 0.151 0.0039 0. 009 18.
FA 20 0.173 0. 0056 0.011 16.

* FA signifies femoral artery and M signifies mesenteries.
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TABLE 6

Weight of the experimental dogs.

Specimen Weight of the dog tested

Carotid artery 1, Carotid artery 2 50 1lbs,
Jugular vein 9

Carotid artery 3 65 1bs.
Carotid artery 4, Carotid artery 5 45 1bs,
Carotid artery 6, Carotid artery 7 45 1bs.
Jugular vein 14

Carotid artery 8, Carotid artery 9 50 1lbs,
Carotid artery 10 40 lbs.
Carotid artery 11, Carotid artery 12 54 lbs,
Jugular vein 15 39 lbs.
Jugular vein 16 40 1bs.
Mesentery 17, Mesentery 18 50 lbs.

Femoral artery 19, Femoral artery 20 45 1bs,
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TABLE 7

*

Measured values of the elastic constants.

e %
kpy ko1 kio ka2

M

¥k

Number

1.577
1.577

1 O~ <H
o ¢ & o
NN "

N0~ <H

. L] L]

1. 654
1. 654
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N o
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e o @
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<H o et

s ® o o
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-0 el
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<

<
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oo

° L)
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[Tl o

[\alTe}
s
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* All constants have the dimension IO6 dy‘ne/cmZ (cf. Eq. (9)).

** C,A., carotid artery.

J. V., jugular vein, F,A., femoral artery.

M., mesentery,

*%% For mesenteries and femoral arteries , 7\1 should read as 7\1 .
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A diagrammatical set-up of the testing apparatus.
C = chamber, CO = comparator screen, D = differential
transformer, F = force transducer, Fl = flexure,

J = joint, M = motor, P = pulley, R

joint which is free

rotate, S = shadow of the vesgsel, V = vegsel,
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OUTPUT OF DIFFERENTIAL TRANSFORMER
OUTPUT OF FORCE

/ : O.l

6 X 10" dyne

i !
FORCE AND DISPLACEMENT

Fig. 6 Static calibration of the outputs of the force transducer
{(amplified 10> times by a Leed-Northrop Amplifier) and
the differential transformer {displacement), both of which
were monitored on the Moseley plotter. The force trans-
ducer was calibrated stepwise by adding weight chips, and
the differential transformer was calibrated stepwise by a

micro~-comparator. No hysteresis was recorded.



FORCE T (10% dyne)
ugg-

ELONGATION

Fig, 7 Hysteresis loops (inciuded the elasticity of the testing apparatus) of springs and a rubber tube

in repeated-strain tests. This serves the purposc of calibrating the force~displacement system
by those of known elastic properties. The elasticity of the testing apparatus is represented by
the frec-end plot.
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FORCE T (10% dyne)
™

4 i | ]
1.6 1.65 1.7

LONGITUDINAL EXTENSION RATIO )\I

Fig. 8 Force vs. longitudinal extension ratio of the carotid artery
No. 8. These are the force=displacement curves monitored
on the Moseley X~Y plotter. For clarity the vertical axis is
shifted for each run,
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Undeformed State

Fig, 10
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Deformed State

The correspondence of force vectors in defining
Lagrgngian stresses. d’I‘1 and dT2 are p?.rallelly
translated from the deformed state to the corres~
ponding surfaces of the undeformed state,
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N

S| (108 dyne/cm?)

o Lt s z 1 |
145 1.5 .55 1.6 1.65

LONGITUDINAL EXTENSION RATIO X,

Fig. 11 Hysteresis loops of the repeated~strain test of the carotid
artery No, 10, These loops are direct readings on the
Moseley X-Y plotter,
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LAGRANGIAN STRESSES s; AND Bs, (108 dyne/cm?)
|

1.3 1.4 1.5
LONGITUDINAL EXTENSION RATIO A

Fig. 14 Lagrangian stresses vs, longitudinal extension ratio of

the carotid artery No. 1, The lateral extension ratio 7\2
was 1.,



LAGRANGIAN STRESSES s, AND Bs, (10° dyne/cm?)

Fig. 15
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LATERAL EXTENSION RATIO )\2

Lagrangiau stresses vs. latitudinal extension ratio of

the carotid artery No. 1. The longitudinal extension
ratio A 5 was 1.465,



LAGRANGIAN STRESSES s, AND gB's, (108 dyne/cm?)

Fig. 16
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LONGITUDINAL EXTENSION RATIO )\l

Lagrangian stresses vs, longitudinal extension ratio of
the carotid artery No, 8. The lateral extension ratio ]\2
was kept constant in the stretching test as shown on the

curve,
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6ciyne/cmz)
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LAGRANGIAN STRESSES s; AND Bs, (10

! i i
0
0.9 1.0 il

LATERAL EXTENSION RATIC Ao

Fig. 17 Lagrangian stresses vs, lateral extension ratio of the
carotid artery No. 8. The longitudinal extension ratio
7\1 was kept constant in the distensibility test as shown

on’ the curve,



