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ABSTRACT

The boundery layers at the test section walls of a tramsonic wind
tuhnel are kﬁown to réduce the wall interference. In the present paper this
effect is studied by means of small perturbation theory, assuming viscosity
to be negligible when perturbing & turbulent boundery layer. An approxima-
tion for thin boundary layers leads to a modified boundary condition at the
wall of the test section, expressing the normal streamline slope induced by
changes in mess flow density and crossflow within the boundary layer. This
boundary condition is applied to the linearized equations of subsonic flow
and to the non-linear transonic equations at choking, the cases of plane and
circular test sections only being treated in detail.

The results of linear theory show that &1l corrections excepf the
three-dimensional angle-of-attack correction are considersbly reduced by the
presence of the boundary layers at Mach numbers greater than 0.9, the essential
patt 6f their influence being due to the change of mass flow density with
pressure. In the case of choking the anelysis indicates that the presence
of boundary layers will increase the maximum model size for which the flow
can be interpreted as corresponding to Mach number one in free flight.
Finally, the technique of using artificial thickening of fhe well boundary
layers for reduction of wall interference 1s considered, though without

reaching a definite conclusion as to its value compared to other techniques.
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1. INTRODUCTION

1.1 The experimental background

Wall interference in the closed test section of a wind tunnel econsti-
tutes a severe limitation to the model size at high subsonic Mach ‘numbers.
For a given model size there is a largest attainable Msch number in front of
the model, the choking Mach number, which is smaller than one. The highest
Mech number at vwhich measured data can be corrected for wall interference is
still smeller. Even for very smsll models, to the stemdards of low speed and
supersonic tests, there is a Mach number range where the wall corrections are
large, complicated to compute and not even well defined (References 1 and 2).

Recently it was noted by Petersohn (Reference 3) thet the bbundary
layers at the walls of the test section might contribute to the wall imter-
ference at high subsonlc Mach numbers. By artificially thiekening the bound-
ary layers of a given test section he demonstrated that they work to decrease
the well interference snd to increase the choking Mach number. It was evident
from the tests that the effect might be considerable st Mach numbers close
to the choking Mach number, and thet there is no essential difference in this
respect between the flow about two-dimensional prefiles and the flow about
bodiee of small aspect ratio. Petersohn suggested that the artificial thicken~
ing of the boundary layers could be systematically used as & mesns of reducing
the wall interference.
| Although the effect found was rather strong considering the compars-
tively thin boundary lsyers investigated, its existence and general character
should not surprise. The following argument used in Reference 3 is enlighten~
ing. When the wall boundary lasyer is very thick the situation is much .Iike
that for an open test section. It is well known that in this case the dlockage
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correction, say, is of the same magnitude but of opposite sign as for a closed
test section of the same form - if only the corrections exist and can be cal=-
culated from linear theory. Hence one concludes, assuming continuity and
monotony, that thin boundary layers should reduce the correction, and that
for some boundary layer thickness there should by no correction at all.

A somewhat deeper insight might be obtained from the following reason-
inge The wall interference may be thought of as caused by the walls straight-
ening the streamlines of the unbounded flow. Following the flow along an un-
disturbed streamline (assuming subsonic speed) at the locus of the wall one
first moves away from the model in & region of decreasing pressure and then
approaches the model in a region of increasing pressure. The' important point
now is that a given pressure change produces a larger relative cha.nge of mass
flow denmsity within the boundary layer than just outside it, since the bound-
ary layer flow at an aversge is farther from the maximum of mass flow density
corresponding to sonic velocity. As a result there is a displg.cing effect
of the boundary layer for incressing pressure and conversely for decreasing
pressure. The pressure distribution at the wall has essentially the same
form as in unbounded flow, and hence it is seen that the wall boundary layers
tend to reduce the straightening effect of the wall and to produce a stream-
line shape similar to that of unbounded flow. Thus a reduction of the wall
influence should be expected from the boundsry layers.

From essentially the same argument it was concluded by Oswatitsch in
Reference 4 that strong boundary layer effects are likely to occur at transonic
speeds+. He suggested that in many cases one would not be able to apply the
classical iteration procedure - where the displacement effect of the boundery

layer 1s computed from an approximate pressure field and used to compute &

*Several other authors have discussed this point, generally in connection with
the problem of shock-wave boundary-layer interaction or the problem of shock=-
free locally supersonic flow.
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- new pressure field etc. - but that the equations for the outer flow field and

the boundary layer would have to be solved simultaneously. He showed that the
flow field in the throat of a Laval nozzle is influenced by the boundary
lgyers, and estimated this influence by application of one-dimensional theory
and a simple hypothesis for the veriation of the displecement thickness with
free stream velocity. In addition to the principal aspects, this case is of
specific interest in the present context since the flow field in question

is very similar to that about a large model at choking (see also Reference 5).

1.2 The boundary lsyer perturbation problem

The problem of relating in a simple but adequate mamner the displace~
ment effect of the boundery layer to the pressure perturbation dus to the
model .evidently is of basie importeance for the understanding of the wall
boundary layer Influence. The present study will treat only such cases where
the model is sd.tnated far from the walls. It is then thought sufficient to
consider only the following restricted problem: to determine the small pertur-
bation of a given stable boundary layer caused by a steady pressure perturba-
tion acting over a length which is amall compared to the upstream length of the
boundery layer.

The models used for transonic tests in closed test sections are neces-
sarily small, and in addition they usually are slenders. Thus the pressure
perturbation at the well is small and so is the boundary layer perturbatiom
éxcept where shock waves reach the wall. In the latter case, however, the
influence is felt only in a downstream region which is likely to be completely
behind the reglon of dependence of the model. Furthermore, it is characteristic
for transonic fields that perturbations penmetrate not very far in the upstream

direction. Consequently the pressure perturbation at the wall .sta-rts not very
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far ahead of the model, and only such boundary layer perturbstions, as occur
closely behind or in front of the rear end of the model, contribute mach to
the boundary layer influence at the model. The length of this eritical region
of the wall is expected to be small compared to the upstream length of the
boundary layer except when the boundary lsyer is very thin'.

These arguments in favor of considering only the restricted perturbation
problem are of course rather erude, and they should be reconsidered in each
specific case of application. Only if they are accepted, however, will the
anglysis be reasonebly simple. The simplificstions: mede possible are essen-
tislly the following:

(1) A linear perturbstion theory may be used, except that a non~
linear term of the tramsonic type might have to be kept.

(i1) The wmperturbed boundary layer may be taken to have constant
thickness independent of the sireamwise coordinate.

(iii1) Viscous effects may be neglected, except possibly in the ime
rediste neighborhood of the wall.

The last point requires soms clarification. When the boundary leyer
enters the perturbing pressure field (here we take a Lsgrangien point of
view), #n scceleration field is set up which counteracts fhe pressure gradient.
The perturbation of the viscous stress is not believed to contribute to the
force balance until the velocity gradient has been essentially changed (that
mesns a second order contribution), execept in the immediate nevighborhood
of the wall, where the acceleration is forced to be small. The viscous stress
(or rather the vorticity) produced at the wall diffuses into the boundary
layer but will not penetrate it until further dowmnstresm, since the length
required is of the order of the upstreeam length. The argument put forward
is designed for the laminar case, but there is no obvious reason why it should
not apply to the turbulent case as well.

*For an artificlally thickened boundaxry layer e properly defined effective
upstream length is understood to be used.
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The simplifications (1), (ii) and (iii) are commonly introduced also
when dealing with the very similar problem of weask shock-wave boundary-
leyer interaction, and meny ideas can be taken over from the comprehensive
literature on thet probleme & rather complete and up to date survey of it
was given in Reference 6 by ILighthill, and the elose similarity of the two
problems mgy be appreciated from comparing pertinent parts of thaﬁ paper
with the comment to point (iii) given above or with References 18 and 7, where
the viscous effects close to the wall were investigated in some detail.

A simple case arises when viscosity is completely neglected. To per—
mit this the i:onndary layer velocity distribution must not approsch zero at the
wall but a value which is not too small, compared to the free. stream velocity.
This is of course not a physically possible type of boundary layer, but it
might be a reasonable approximation for turbulent boundary layers where the
low-speed layer close to the wall is very thin.

For special Mach mumber profiles it is possible to find explieit
solutions of the nonviseous linear perturbation probleme The most primitive
choice is to take _the Mach number to be constant within the boundery layer,
as was done by Tsien and Finston (Reference 8) in the shock wave case. An
application to the present problem was reported in Reference 9. _ The result
was in qualitstive agreement with experiments but left the question open how
to correlate the discontinuous boundery layer with a real one. Bsrlier
Vandrey (Reference 10) had studied by a similsr method the use of discon-
tinuities in the veloeity distribution of the test section as a means of re-
ducing wall interference.

&n obvious source of information on the displacement effects of the
wall boundary layer is boundary layer theory. It is fundamental for this
theory that pressure is constant through the boundary layer, and consequent-
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ly one has to restrict the appliéation- to cases where the thickmess is suf-
ficiently small compared to the size of the model and the test seetion.
Oswatitsch in Reference / applied the Kz'irman momentum integral to a one-
parameter family of laminar boundery layers, and thus derived an expressiom
for the displacement thickness as & function of the velocity distribution
outside the boundary layer. It was evident from the result that viscous:
effects contribute essentially. For the turbulent case he concluded on
the other hand that viseosity is negligible, and susteined this by experi-

mental evidence.

1.3 Outline of the present study

An investigation of the influence of wall boundary layers in tran-
sonic test sections should aim at the solution of the following two problems:
I. To what extent 1s the influence appreciable for those boundary
layers which exist in current tumnels, and how cen corrections

be determined? _

ITI. 1Is it possible fo choose the wall boundary layers to give a con-
siderable reduction of the wall interference, and how can the
proper choice be accomplished?

The present study will not provide the answere. The problems are difficult
to solve by analytical methods since a non-lineer differentisl equstion has
to bé used when the flow is transonic, and in the end one will have to re-
sort to comprehensive experiments. The intention of the present study
rather is to find out whether such an experimental investigation will be
w'orth while or not, and to provide a basis for pla.nnﬁxg and interpreting the
experiments.

Two restricted cases wlll be considered in some detail, namely the

case when linearized theory is aspplicable and the case of éhoked flow. They

correspond to the upper and lower bounds of the Mach number renge in which
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wall interference makes tests difficult in a closed test section. The
problem for the intermediate part of the range, which is thought too compli-
cated to be treated at this stage, will be discussed in the concluding
chapter.

In both cases en approximetion for thin boundary layers is used, which
is essentially equivalent to that of boundary lsyer theory, although viscosity
is neglected. In developing this approximation a somewhat broader attitude is
taken than 1s strictly necessary for the present needs, the intention being
to provide a basis for future study of less restricted problems. However,
from the very beginning the influence of viscosity on the boundary layer
perturbation is neglected, and the result consequently is appii_.cable at
most for turbulent boundary layers. Only under very special circumstances:
are the wall boundary layers likely to be laminar (as for example in Reference
11), so the restriction might not be serious.
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II. EQUATIONS FOR TRANSONIC SHEAR FLOW

2.1 Basic assumptions

As was argued in the Introduction, the vliscous stress is negligible in

the essential part of the perturbation field set up by a slender model in

the test section of a wind tummnel at trensonic speeds. It is the purpose of

the present chapter to derive the differential equations and the boundary

conditions for that part of the field.

The test seetion is taken to be
bounded by a cylindrical surface ', within
vwhich the unperturbed flow 1is everywhere
parallel to the generators. We choose &
Cartesian coordinate system Oxyz with
the x-axis in the flow direction (see Figure
1). The Mach mmber M and density R are
assumed to be constent along a given stream-
line. Thus they are functions of y and 32

only; we postulate them to have continuous

first derivatives. The pressure has the same

conétent value P everywhere. The veloecity
distribution U(y,z) is determined by the
formula

U=/ ¥=Co,

where [ is the ratio of specific heats.

—— — =

Fig. 1. The unperturbed flow.

(2.1)

There is a central region Go within the eylindrical boundary /70,

where the Mach number has the constant value Mo (see Figure 1). Since

trensonic flow fields are the subjects of this study, Mo will be close to
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one. Outside G is the wall boundary layer', through which M continuous-
ly and monotonously decreases from M S to M =0 at the wall. The boundary
layer profile should be stable to small perturbations. The viscous subleyer
G' next t_o the wall, within which viscous stress is not negligible, may be
thought of as defined by the condition M/M°< 1/3 (see also the fourth footnote
of the next section): = The region between G  and G will be denoted by
G, and its inner boundary by /” 1© In what follows G, will be called
simply the boundary layer. Thus, the perturbation field to be studied by
means of non~viseous theory occupies the region Gfo + Gl within the boundary

7
/71

2.2 Perturbation equations

Iet a slender model of finite upstream length be introduced in the central
region Go' It shall be assumed that no separation occurs, and that the
veloclity perturbation is everywhere steady and small compared to the undis-
turbed velocity, local exceptions being permitted in the immediate neighbor-
hood of the model and its wake (see also paragraph 2.4).

Denoting the velocity perturbations in the direction of the x- y-
and z-axes by u,v and w respectively, and the perturbed values of the
pres‘sure and density by p and @, we have the following system of first
order quasi-linear differential equations for the unknown functions u, v, W,

gand pin G, + G, (except at shock waves):

D(U+u3+§L—j—X=O}

o

\i

Dv+—+4 g6 =0 I( | (2.2)

L P
DW’“(? oZ

e here consider the Mach number boundary layer, which, however, in practice
is not much different from the velocity boundary layer.
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Df— 20/6 o
(2.2 cont'd.)
/7( +—‘4 29y +p pPzo

D stands for the differential operator
o Z B
DE(0+4) 5%+ v VZ el 57
end a is the local speed of sound:

as=\v B 7__2_ (2.3)

The equations express the conservation of momentum, mass and entropy along
a streamline .

It is well known that linearizing the system (2.2) does not provide
a good approximation for those parts of the perturbation field where the
flow is of transonic character. Physicelly this is closely connegted with
the fact that the mass flow density has a maximm at the speed of sound.
Mathematically it shows up in the fact that the system (2.2) chénges from
elliptic’" to hyperbolic type when the speed of sound is attained, & be-
havior which is reproduced by the spproximate equations only if ce:ftain
quadratic terms are kept. '

With the system (2.2) there is associated a charaeteristie form C(%)
(see Reference 12, ps 141), which is of the fifth degree in three independent
variables, ¢ 1? %0 and & 3 Say. Using the notatidn ‘

D)= (0+u0 8, +VE, +W 5,

+ The entropy change through a wesk shock wave is negligible in the approx-
imation to be presently used.

¥ We here call the equations elliptic if they have no other characteristic
curves than the stream lines.

1t might be argued that linearization is not permitted where M/M, is small,

since the velocity perttn'bat:.on mey be large compared to U. However, by

definition we have M/M 1/3 in G, + Gy



we have . v ,

1 ¢($H=| o) o ) o _j‘g_ ¢ |= Dg(f)[ 1 - 5,7_ ¢ 5; (2.4)
2 e %) o o —/;— ¢,

3 | © o & o F

b 0 o o D koo

sl re FE w9 o

The circumscribed symbols indicate how the determinant has been formed from:
the coefficients of the derivatives of u, v, W, 9s and pe. If 6/93 (g)
is a definite form, then the system (2.2) is elliptic. The neéeséazy condition
is seen to be (L'f-b'u)2 v+ 2%, i.e. subsonic speed. |

We now form a system of spproximate equations from the equations (2.2)
by dropping or adding in the coefficients terms which are of first of higher
degree with respéc‘b to the non-;dimensional perturbstions % : —}]—/ , -C?—‘/, ﬁ'ﬁg s and
_2'—55 . The approximate system has a new characteristic form C! (g) giving a
condition for the system to be elliptic. This condition requirés an approx-
imate value for local Mach number to be less than ome. If only zero order
terms are kept in the coefficients - giving linear equations - the condition
is U<4, and the approximete equations connot repi'esent & field of mixed
character. We then have to look for the simplest system for which C! gives

a one step better approximation to the local Mach number, nemely*

(T u) s
a 2

2 2
vZiw :MZ(/MUﬂH;'/;_/?__%E) (2.5)

Inspecting the determinant in equation 2.4 one realizes that it is sufficient
to keep a first order perturbation in the position @ @ s and we make this

ViZ . w2
TIn deriving this expression it has been assumed that (77) eand ( 1’—[}/—-) are
negligible compared to _g_ s 1%’3 s> and fil.;f o The assumption seems reasonable

for the greater part of the field, but local exceptions may exist, for ex-
ample close to a body of revolution (see Reference 13) or free vortices.
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~our choice. There are other possibilities which are equally simple, but they

are all equivalent with the one chosen. The resulting system is

U;j%? —,?L’d‘éJ'UYV-:L U, W=0 ]
L JE _
Ua‘z\“/ R ?5“0 ‘
VR4 LE =0 , (2.6)
U%-%(uz—- el A )%fi:o
J /
R(EYL('{'Z\:—;— dM)J'UJ(\/—O
Tt has the characteristic form
l( = g3 Z +2-g/. -R - 2
U [tz L5 2epyee g2 g2 o3

showing thet the system 2.6 is elliptic for 1/2/ /)y 24y j’ R o0 2
as required by the condltion (2.5).

2.3 The perturbation potential

To simplify the equations (2.6) we introduce a pertur‘bation potential
7 (x,y,2) such that

DY . 1 pp, DL pME
()x_-wz__ S5 - MM(\Z/Z}\/

2P M) W .
Oivp  5F+ M}/ )U(W) (2.7)

thereby satisfying identically the second and third of the equations. (For U

and M constant 7” reduces to the usual velocity potential.) By elimination

of 9 ena j X the follouing equation for ¢ is obtained's

[t v 9.2 2:B) 524 12 S0 2954) »7/%29*0

*In Reference 14 Lighthill showed for the linear case in two dimensions that
the pressure perturbation satisfies a comparatively simple equation where

M appears but not U or R separately. The "pressure potential® 7” in-
troduced above was inspired by this fact.



| To express the coefficient of % xx BY ¢ further approximations are

necessary. Along a steamline we have

.l
gy, 7){ ﬁ(x,w)J X

R{Y 2D P
£LiX,Y. 7) Wiyviiw? ¥ { P(X,YZ) P }_O/»
208N T aNUT 9y RONZLTT

Uy z)

where Y,Z are the streamline coordinates far upstream. In a linear approx-

imation this gives

j—_gﬁ_z7=7/ ﬁ};—& G_fgiﬁ—.m\nu) a
M2 X *
(A4Y, AZ)=W_/% Grad $(§,¥.2)d § ’ @

AL 4

NSNS Al

v T rMmr P ME X
The differential operator Grad is,for a given value of x, défined with
respect to the y- and 3z~ axes as the symbolie vector ( 5—)/ » 7")2) The
vector (4y, 4 z) has as components the streamline perturbations Ay =y - ¥
and 42 =2 -Z 1in the y- and z-direction respectively for a given value

of x.

For the local Mach mmber we then have in the same approximation

2T 232 st 0] S SlBasd) 2

where the perturbation terms are of essential importance only where M~1,
i.e. in Gb and the neighboring part of Gl. But here -é";—a/ﬁ. (4y,42)
is very small under the reasonable assumption that the stagnation temperature

does not vary much between the streamlines'. We shall therefore neglect the

*since EEAL Ko XolGny a2 L GrAo M (for air vith V= 1.4).
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term of equation (2.9) and put the factor 1- ?;;%-(1 - M?) of the second
term equal to one. As an-:.a.ddi‘bional argument may be used the fact that the
vectors Grad R and (4y, s z)are essentially orthogonsl in the neighborhood
of the wall, where the two vectors asre not neeeSéariiy'small-*

The differentiel equation for ¢ in the region G, + G, (with shock

waves excluded) finally takes the form

Pk DL )

[/ M%/z)] S 2% (59 ) 4 o ﬁéﬁ):%?ﬁw)gf 9 (2.10)

It is seen to be a straightforward gemeralization of the well kunown transonie

equation when the undisturbed flow is uniform.

2./ Boundary conditions

The perturbation potentisl has to satisfy boundary conditions at the
model and its wake, at the shock waves, far upstream and downsfream, and
finally at the wall boundary /7y (see Figure 1).

The theory to be developed aims at studying the wall intei‘ference
under such conditions for which the flow in the immediate neighborhood of
the model can be interpreted as belonging to some unbounded flow field.
We will have to introduce this requirement by applying approximate boundary
conditions at the boundary of this neighboring region, and _theréfere we can
leave .ou'b a detailed analysis of the boundary conditions at the model and
its associated shock and wake systemfﬂ The approximate boundary conditions
will be discussed later.

* In the free jel case, which will be treated subsequently, ‘/ xx is negligible

at /73, and the non-linear term of the differential equatlon can be neglected
altogether.

This is the condition for a model test to be significant.

+++For the same reason we permitted locally strong perturbations within the
region mentioned in deriving the perturbation equations.
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The shock polar in a proper approximation furnishes a condition for
the velocity jump through = shock wave. Denoting the velocity vectors in
front of and behind the shock respectively by v 1 and \S/Z the shock polar
has the following equation.

24, N, — 2 v
VN8 550 (2 yyg) e — an | (2.11)
—= 2
v Y =YY, ko
vhere 8. is the critical speed defined by
2oy o~ L2 =)
Oy Y, 2) = YRCYZ) [/ v

Introduction of the perturbation potential / by equations (2.7) and of the

(1-r1%Y, z>)]

spproximations of equations (2.8) lead to the following approximate shock
polar (see References 15 and 16)

(- G- D) 5 (G- e (Gl e nt ) Bt B 9, ) (2022)
where % . - 0“ is the jump of %Xf ete.

Since the up’s‘bréam length of the model is finite the upstream condition
is %_: ‘/g/:é/;:o for X —-00 + The presence of awal;e makes it
difficult to give a simple downstream condition’. We will have to return to
this problem later. .

The boundary condition at the wall boundary /~ 1 1s taken to be

(X:Ysz) — [7

| ]

2F _ ' -‘
28 =0 (2.13)

where (]—dn is the derivative along the inward normel. In the ..'_!.aminar case
viscous effects within the sublayer G' might be taken into account by pre-
seribing % as a suitable linear functionel of (/ on /74 (see References
6 and 7)"".

* In addition the assumption of an essentially nonviscous perturbation
mechanism for the wall boundary layer is not a realistic one far downstream.

++The laminar sublayer is too thin to permit the use of the same approach to a
turbulent boundary layer, although this was possible in shock wave inter—
action case (see Reference 6), where the length of the perturbed region is
very small. An extension to include the perturbation of the turbulent
stress seems difficult.
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If the test section is not bounded by a wall but is a free jet, then

the boundary condition at [~ 1 can be taken to be

(yz)—>ry 2 =0 (2.14)

The condifion is still applicable if only part of the boundary isr free; this
part must, however, be cylindrical to permit M +to be independent of x .

It is by no means certain that the differentisl equation (2.10) together
with the boundary conditions discussed defines a mathematicaily ’correét bound-
ary value problem for the perturbation potential ‘ﬁalthough this seems to be
the case if the flow is everywhere subsonie. Since the problem is non-linear,
there is no genersl analytie method of solution. We therefore will have to
restrict the present theory to serve as a starting point for further simpli-

fications, and as a tool for phenomenological study.

2.5 Approximations for thin boundary layers

When the boundary layer at a wall is sufficiently thin conipared to
some characteristic length for the pressure perturbation then - as is known
from boundary layer theory - the pressure J
is essentially constant through the bound-

ary layer Gl+' This fact can be used

to integrate the perturbation equation
in G; approximately. In the free jet

case it is rather the streamline slope

that should be taken constant to make : , : : ,
Fig. 2. Orthogonal coordinates

possible an approximate integration. for the bound layer.

Let us introduce new orthogonal coordinates x, V,s within the boundary

*The situation then is somewhat controversisl since we have earlier assumed
the length of the perturbed part of the boundary layer to be short. It will
be seen later that there is enough room left for the present spproximation
to be applicable.
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; layer G]_. surfaces )~ = constant being the cylinders of constant Mach
number M, and s being the arc length along /7 1 in a plane x = con-
stant (see Figure 2). For simplicity we assume the form of the Mach number
profile tq be the same in all surfaces s = constant, although the boundary
layer thickness & may be a function of s. Not only /7, but also /7,

are then surfaces y’= constant; we chose ¥ = 0 for [7 ;1 and Y =1 for 7 o
We furthermore assume & to be smaller than the local radius of curvature

of /71, in fact small enough to meke the following metric form valid

: 1z
Ay dy?s o= dx%y 57(57471274[ /~7);K(6)} ds ? (2.15)
Since evidently K is the curvature of /7 1 We have [5(3) K(S)J <1l If
/'7o and /7 are concentric cireles the form (2.15) is exactly valid.

With the new coordinates the differential eguation (2.10) fo1; 7/ takes
the following form in Gy (i.ee for 0 £ v< 1)

__9_{ 1=VIN 1 D4

p) et 2 vl 24
ox [8(=vpxy 2= BT 27 g I¢ 5 T ol

me IX “91)

(2.16).

)[5 /2;&]20

tJ3 [FOSK mME IS
where
$(x. ». =8 [X Y05, 200, 9], N =ghmr [Vore), 2v9)]  (2a7)

When ¢, and hence ¢ _ and ¢, do not depend upon -0, equation (2.16)
can be integrated with respect to 1> . Using the boquary‘ condition (2.13) at
f"l one obtains a value for % ( =5—L%) on f7° which is 0(5). Hence one
concludes that

¢ (¥ 1, 8)- $(X,0, 8= 0(52)
‘and thus the hypothesis of constant pressure for & small is seen to be con-

sistent.
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The expression for %‘f; on /7, could be used as a new boundery condition
for ¢ in Go' It would however be ummecessarily complicated, being non-
linear and epplying at a changing boundery. We will therefore derive a con-
dition on '} by continuing ¢ from G, through the boundary leyer accord-

ing tothe @ifferential equation valid in G_ *,

2 92 :
(/- ~, )J—j}ﬂ JYQ + 3‘2{ /‘7 G4/) 35 :}Tf (2.18)

We thus substitute for #(x,»s) in G, a new function #(x,2,s) satisfying
the differential equation

[ $C=0§R)(1-ny2 JFAIEELE ;«?-1_/77)_55 ”]ws (}_vs jij 20 (2.19)
(obtajned from (2.16) for m = 1) and the boundary conditions
‘L>=! . 4;: ¢/ 9; = _;)Z)o%é (2020)

in some consistent approximation. If the difference is taken between equations

(2.16) and (2.19) one obtains the expression

. 2 - P /

D[ 1mpS¥, L 24y y 2] 3 (m®of ~'_
v [ /_3)'/‘—“(%12—52{?— oV jJ * 08 {/-véﬂ'[l——’%’L _% (¢- ¢}} 9(2.21)

which we will integrate with respect toJunder the conjecture that

F(X ~), 50 d(x,v, ) =008

"The conditions for the continuation to be possible are essentia.‘lly the same
as these permitting the present approximation for thin boundary layers.
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S:ane the variation of ¢ through the 'bcundary layer is O(S ) the seme

has to be true for ¢, and equation (2.21) simplifies to

Al L e

s (5v oo V§K>’”’¢(Xos>]

=5 [5(+95K) 5

1+0(87)  (2.22)

As a further spproximstion the term MOZ—”—E*—/ gZX here has been neglected
against unity. Using the boundary conditions (2.13) and (2.20’) the integra-

tion gives
Vo FEees(Gneie 2D dts K i xy?”f/s Sk
to(8y (2.23)
vhere
v, £2=L/”m’qu/w2) B o (2.2)

The result is seen to be consistent with the initial ¢onjéé‘ture. ‘We therefore

propose to use (2.23) as a boundsry condition for ¢ om /7, with the transla-

1
tion from (,Z to 7’ as defined in equatiom (2.17), teking 7ﬂ to satisfy the
diffémntial equation (2.18) not only im G, but in &, as well

The parameters & 1 and &, describing the form of the Mach mumber
distribution of the umperturbed boundary layer, are defined oniy if m = o(»)
for 71/ —> 0. This of course ris closely related to the fact that the viscous
stress is more important than the mass forces at the walle In restricting

ourselves to turbulent boundary layers we assumed n(o) to be greater than

zero (we even proposed the value m(o) = 1/3) and thus ¢ 1 end ¢ o exist

This boundary condition is not convenient for supersonic outer flow (see e.g.
Reference 33). A modified condition is proposed in Appendix C.
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1/6

'iﬁ the present case. Taking m = as a typical profile+ the following

values sre obtained

&=15 (0484) E,= Y (0499) (2.25)
The corresponding values when the integration is started at m(>) = 1/3 ere
given within parentheses. The contribution from the immermost part of the

1/6

profile m =, evidently is very small, and this fact supports the
assumption that perturbation of the viscous sublayer does not contribute
mach to the displacement effect.

Tarning to the case of a free jet we introduce in the same way an
approximate continuation @ of f into G, by equations (2.719) and (2.20).
From the boundery condition (2.14) we guess that # and ¢ arve 0(S). It

then follows from equation (2.16) and (2.19) that

-2 -5 )
'Div;’”z //-jg); [jf}q)ﬂ*o(‘ga)

- S 53 > S , (2.26)
D W at 3
ji': //~u§% [ 9_’?}’/”4 °(d7)

Integrating once more with respect to ) and introducing the boundary

conditions (2.14) and (2.20), one obtains: after some menipulations
Devse 4N le,-47) $=0057) (2.27)
where
/ /
=L (-mdv zz_—f {/-mZ)d/@f) (2.28)

This, then, is the approximate boundary condition to be applied at p = %
to the continued perturbation potential sﬂ « It is noteworthy that the new

s natural turbulent boundery layer is considered. For artificislly produced
boundary layers £] and £ 2 seem to be able to take values much different
from those of (2.25).
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boundary condition is of the same form as the original ome, only it is to
be applied at a slightly perturbed boundary (since o < v<1) which is
uniquely determined by the boundary layer profile m(»). Consequently the
influence of the boundery layer on the boundary interference commot be great
in the case of a free jet .

The approximate boundary conditions derived are not valid in ;bhé neigh=-
borhood of sherp corners of the test section. It does not seem too difficult,
however, to estimate the errors which are introduced by &pplying‘ them there.

If the test section is partly closed, partly open similar errors are bound to
occur in the neighborhood of the edges. One should for example not apply the
approximate boundary conditions at a wall which is open along .s_treamwise slots,
unless their width and mutusl distance are mch larger than the baﬁndary layer
thickness.

2.6 Transonic similarity

For & thin boundary layer the perturbation problem has been reduced to
that of finding a solution ¢ which in G_ + G, satisfies the classical
transonic equation (2.18) and on the boundary /7 ; satisfies the boundary
condition (2.23) or (2.27). It is well known how a group property of solu-
tioné to the transonic equation can be used as the basis for deriving simi-
larity rules for transonic flow fields. An application to wind tunnelv flow
is found in Reference 17. _

Let ¥ (x,y,2) be a solution, and transform to new coordinates 5 , 7{ s
5 by putting

F’ ’ Moz (T

X:S , Y=% 4 -5 7”/)(/3/12): 52/) ?(gloz) g) (2.29)

+’Ihis is not surprising since the zero pressure perturbation at /"1 forces
the mass flow density to stay essentially constant within the boundary layer
- in contrast to the wall case.
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where / is an arbitrary parameter if M, =1 and 4 =V/(1:§;% it M # 1.
The new function ¢ (§,7, () satisfies a differential equation which contains
no other parameter than sign (l-MS). The same istrue for the transformed
shock polar of equation (2.12) (see Reference 15). A solution Yy for a
given set of boundary conditions in the ¢, 7 s § =space then accordnng to
eqnatlon (2.29) generates in the physical space a group of solutions @
with the two parameters /5 and ¥ . If the transformed boundsry conditions
correspond to physically reasonable solutions %7, we will séy that the
generated flow fields are similar.

To extend the similarity concept we evidently have to find out if the
form of the boundary conditions is invariant under the trensformation (2.29).
In the wall case (equation 2.23) a necessary condition is seen to\be that
one can neglect the crossflow terms (i.e. terms containing derivatives with
respect to s ) since 5%— and —<- D transform dlfferently Then the generated
group of fields are similar if they have the same value for ;g-ij o and 5282
(the curvature X transforms like 3%7 . The most interesting case occurs
if the Sz-terms can be neglected, since then there exist §imilar’fields with
a fixed boundary lsyer profile m(v).

The free-jef case is simpler in several respects. There are no cross-
flow terms in the boundary condition (2.27). Similar fields are seen to
have £he same values for 91}38 and e, §252, and thus similarity permits
preservation of m(») and of boundsry layer thickness,rglative to test

section size.

2.7 The linearized equations

There are transonic wall interference problems for which the dif-

"It should be noted that the streamwise terms express the essential part of
the change of mass flow density in the boundary layer, since cross flow
leaves unchanged the average mass flow density in a given eross section.



-23 -
_f.ei'ential equation (2.10) can be linearized (see next chapter). If in
addition the boundary lsyers are thin enough for the approximate boundary
conditions to be valid, then one has (after a Prandtl-Glsuert transformation)
a problem for either the laplace equation (Mo< 1) or the wave equation
(M°> 1) In any case there are availsble powerful methods of solution =
analytical as well as numerical. Since the boundary conditioﬁs are some-
what unusual there might be some guestion as to existence and uniqueness of
solutions. In the subsonic enalysis of Chapter III exiatence wiil be proved
by actually constructing the solutions wantede Two relevant uniqueness:
theorems for the subsonic case are given in Appendix B. A diseussion of the
supersonic case is given in Appendix C. |
When the approximete boundary conditions cannot be applied one will

have to solve the complete equation

(/‘/V/z) 9-_{)(; Y{M—/_ '0;—\?)‘{' ’\/ QZ(MZ 3_{) o v (2.30)

where M is a function of y and 2. Only for simple functions M and
for simple boundaries o and /’71 will analyticel methods of solutions be
useful. In many cases it will be convenient to express the solution as a
Pourier integral with respect to x, and this might be true even when
mnneﬁ.c_:al or similar methods are used. As an example we will sketech an
application of an electric analogy due to G.I. Taylor (Reference 19).
Teking M < 1, let the Fourier transform of ¢ in the x~direction
exist and be F (kiy,2z), where k is the wave number. The transformed

equation for F iss

JFE

2 1 o, I /: - 122
DY(M?W) 7—(,\/

)= M? /( /C . (2031)

which for -co<K:oohas to be solved within the projection of /7 1 on
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the ¥ z=-plene. It shall be assumed that we know particular solutions
g(k; y,z) which are everywhere positive in the region under considera’ciof.
Writing P in the form F =g . G (k3 y,z), the new unknown function G
has to sa:bisfy the differential equation

2, 9% o¢ 2, 9" J¢ g}
iR S0 7 700 - e

which is of the form required by the analogy. |

The analogue to be considered is the approximately plané electric
field in a thin conducting layer spread over the y z-plane. The thickness
of the layer is a function of y and 3, and it shall be determined in
such a way that either the continuity equation or the condition of irro-
tationality of the current field is of the seme form as equation (2.32).
In the first case G is taken proportional to the electric poteh*;iai {or
rather the mean value of the potential through the layer), and the proper
thickness of the layer is found to be proportional to [g(k; y,z)/M(y,z)] 2,
In .the. second case G is taken to be proportional to the stream fumction,
leading to a thickness distribution which is inversely proportional to (g/M)z.

In practice the analogue is realized as a thin layer éi‘ conductiﬁg
fluid between a free surface and a properly shaped bottom of insulating
material. The boundery conditions sre imtroduced by eontrolling the po-
tential and current of properly arranged electrodes at the 'Eounda:ries. In
each specific gpplication solutions G have to be determinéd for a series
of values for k. Since the thickness distribution depeﬁds upon k, this

nmeans thet a series of different bottoms will have to be used.

+S’ince the solutions are not required to be analytically given, nor to
satisfy any specific boundary conditions, the problem of determining
them is likely to be simpler than the original one.



ITI. LINEAR CORRECTIONS

3«1 Introduction

To a limited extent linear theory mey be used for computing the wall
interference at transonic tests. An essentisal condition would ber:‘that the
flow is of transonic character only around the model in & limited regionm,
the lateral extension of which is small compared to its distance from the
walls. When linear corrections can be determined, they often - ‘but not
elways - are so small that the influence of the wall boundary layers may be
neglected (Problem I of paragraph 1.3). This tends of course to limit the
practical importance of a linear theory for the boundary 1ayei- influence.

On the other hand, artificial thickening of the boundary layers nﬁ.éht pernit
1ineaf corrections to be used at higher Mach numbers where the contribution
of the wall boundery lsyers is not negligible (Problem II).

The linear theory permits solutions at the lower limit of a Mach
number range where boundary layer effects are likely to be large, and where
there are no‘ solutions to hope for. It seems possible to discuss boundery
layer effects also at the upper limit - i.e. at choking - in comparstively
simple terms (see Chapter IV). The results of linear theory may therefore
be i@oﬁmt as a tool for interpolation in the Mach number range mentioned.
This point as well as other points related to Problems I and II will be more
closely examined in the concluding chapter. |

The simple cases of plene and circular closed test sections with centrally
located models will be treated, accounting for the wall boundary layers by
means of the approximate boundary condition of paragraph 2.5;

The linear method for computing wall corrections is wéll developed for
practical use in the case of negligible boundary layer influence. For a

survey the reader is referred to References 1 and 2.
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3.2 The correction procedure

In correcting wind tumnel tests for w§11 interference one has to in-
troduce the basic hypothesis that in some neighporyood of the model th?
flow agrees sufficiently well with the corresponding part of the umbounded
flow field about the same model for some values of free~stream Mach number
and angle of attack. |

One might imagine technically sensible wind tunnel flows to be set
up in the following way. Starting with the wnbounded flow field at free=-
stream Mach number M, < l around the given model at angle of attack .<__,
one introduces an initially large test section which zmifom]‘y' decreases
in size (together with its boundary layers) towards a final configuration.
During this process the model is fixed in space, and the relative position
of the test section with respect to a point in the model is kept the same,
while the Mach number M, far upstream and the angle { o between the
wall generators and the model are successively adjusted %o leave the field
in the neighborhood of the model in some sense unchanged. As a criterion
one can for ‘example choose to keep the drag and the 1lift constat (i‘or a
given stagnation pressure). As long as the criterion is not violated the
wall correction A Mo and A”/o cen be defined by put‘bihg

M=t +ar, | A=A tA, (3.1)

If the size of the test section is further decreased it finaliy reaches a
émalles‘t value consistent with the ceriterion for unchanged flow at the
model. Test results from a smaller test section can not be interpreted
as belonging to the given values of M_.and < . |

In & test section of the minimm size the region of uﬁchanged flow at

the model probably is small, but it is bound to increase with the size of
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 the test section. When the test section is sufficiently large, that part

of the field where linear theory is not applicable will be situated completely
within the region of unchanged flow. The linear theory then can be used for
computing fbhe wall interference.

Thus we have defined two lower bounds for the test section size: below
the first one corrections do not exist, and below the second one the corrections
cannot be computed by linear theory. The two bounds may be equal. Both of
them increase s‘trongly for M., approaching one. ‘

We now restrict ourselves to the case where the linear theory and the
approximate boundary condition at the wall are applicable. lLet ¥ o (x,752)
be the perturbation potential for a given model at the angle of attack { o
in a test section with the upstream Mach number M°4 1. Here ﬁ,y,z are
Cartesian coordinates as defined in Figure 1. For simplicity the model and
the test éectio:a are assumed to be symmetrical with respeet to the plane z = O.
Let ¢..(X,y.2) be the perturbation potential for the same model in unbounded
flow with the corrected values M,_ and ~<.. of free-stream Mach number and
angle of attack respectively. We define cfo_a like 50 o to deseribe the per-
turbation of a uniform flow of Mach number Mo parallel to the test section
(see equation (2.7) and paragraph 2.5)"". A similerly defined perturbation
poteﬁtia;l %W(x,y,z) for the wall interference is introduced by putting

‘fﬂf 7&)# 70W | - (3.2)

within the test section. The arbitrary additive constant is fixed to make
f w = 0 at some representative point at the model.

"It is supposed to occupy a neighborhood of the model and the leading part of
the wake. Further downstream in the wake linear theory may not be strictly
applicable, but no errors should be introduced at the model by applying ite

*"he errors introduced by not referring 7000 to the unbounded uniform flow
are of second order, otherwise linear theory could not be used for computing
4 Mo and 4 ¢ o' '



According to the initial assumptions 7& o and 7@0 satisfy the linear

differential equation

(/-%2)%+ 229, ‘9243:0 (3.3)

IY? 2%

except in a neighborhood of the model and the leading part of the wake, where
they are practically identical. Thus their difference ‘/ w can be taken to

satisfy equation (3.3) everywhere in the test section (Go + Gl).

Ir fx, is known in the neighborhood of the wall a boundarj condition
for CF v at f"l is obtained by introducing equation (3.2) into the boundary

condition (2.23) for . likewise the conditions - = =0 for
) ox oy oz

x —~-oo give & set of upstream conditions for 70 w °©

. - / 4 Mo z a = ‘ 3'4
(v el 5 Gy s frree O
. Z ' 2 ,
These are not necessarily valid for x—+>9, gince there is a wake down=

stream. A sensible choice seems to be

X oo %Wxx = ﬁﬂwYx =3§sz =0 - ' G.5)

The boundary conditions thus specified should be sufficient for determining
‘P v 288 function of the corrections 4 Mo and A4 o These two parameters
ccnséquently are the only ones at our disposal for fulfilling the condition
of zero perturbation at the model.. The simplest way of specifiying this con=-

dition is to require that

X=Y=27=0 : #WX:QDW‘{:O (3.6)

taking as origin a suitable point at the model (where 70 = 0). By symmetry

one automatically has 70 g = O

After having determined 4 M and 4.{, from the cond:.tions (3.6) one
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; will have to establish the applicability of the correction procedure by
checking that ?ﬂwx ﬁﬂwy and 70 yp ore sufficiently smsll in the transonic
region around the model.

From the preceding' analysis it is seen that the corrections can be
computed if one knows 7@0 and its normal derivative at the wall. When the
flow at the model is not of transonic character 9{0 can be computed by linear
theory, but in the present case we will have to estimate it from the pressure

distribution at the wall, which easily can be measured.

3.3 Plane flow

Iet the field be independent LLLL S/ LY é . y=!
b

— — — — — — ——— — .

of the z-coordinate, and take the

plenes y = % 1 to be the walls

Mo
(see Figure 3), carrying identical o
boundary layers of thickness o . S
The model is situated at the origin, | TG 18

. 77777777777 7777777 7777 v Y B )
which is that representative point L

Fig. 3. Plane test section
where the wall interference vanishes.

The equations for the wall perturbation potential §ﬂ w‘(x,y) as derived

in the preceding paragraph may be summarized in the following way:

U-13) Vst Gy =0 in - G G, )
oo e 4arf A
X P A A ‘pwv:‘fj;_z"”(a
X——7 [S I ﬁpl/\/,\b(:o ]z %ny:() . be (37)
YEdl s (5256832 Perdi) = o
X:\,/:o.- 7&:0 , %VX:O , %Y:O
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With no loss of generality the perturbation potential %ﬁ(x,y) for

unbounded flow may be taken to be given in the form

V= Mud 4 M, ’
sﬂoo:/.p?’,v/oz ~, v 0(§/Y)+9/o(§/y)+

2
Moo of .
/
e AYrT (8 g e v [ S (3.8)
Vo= M2
where the functions gmn are odd or even with respect to 5 for m=20
and m =1 respectively, and with respect to y for n=0 and n=1

respectively. They are harmonic functions outside a region vhere y<< 1.

The function gll has a jump along the x-axis, but its derivatives are

continuous there.

It is well know that for large values for R2 = 3 24 y2 the following

estimates can be made:

j00: 0 (109 R) )
1o _
= o(i
g / A\’; ) L (3.9)
9 olzz)
" _
ﬂ = 0(7277’_5_)

For gll the principal value of tan‘l is taken iﬁ the upper half plane.
these ésymp‘bo‘bic fields in order correspond to the followiﬁg singularities
at the origin : a source, a doublet in the f ~direction, a doublet in the
y-direction, and a vortex. |

Similarly the wall perturbation potential shall be written in the
following form

7p i/ M,* 4

!+ 72" MZ

Mj /700(5\{)_/_/7/0(5:\’/)‘

Mo: o N / ‘
7 2y A s A6 (3.10)
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where the functions h'" are harmonic for | ¥ « 1. Their properties
of symmetry as indicated by the superscripts are similar to those of gmn
Introduction of the expressions (3.8) and (3.10) into the equationms
(3.7) gives a set of boundary value problems for B™ in the half strip
0 £fco0 , O2y=1:

mn mn

frgg 4 hyy -
/@ Py
j oo /)fg—o f f’_ fY“O /75: -0
§=0 h;';o, H o Bm,n=0gndl (3.11)
= 2 & n i
Y"/ : (b—Y-/__JA_i.’EQc‘)Z m )-"—'C)
Y:O: /‘IYMO:O , /1M/:CJ

These equations would permit the functions ™ to be determined separately,
were it not for the connection between n°° and th in the condition for

5 —+oo . The separation can however easily be completed. Since 1°° is

harmonic in the half strip considered y N gl
s > s ) -
the line integral j 25 /’ 4 ‘taken : { ' Y
A n o
around the closed path of Figure 4 < '3

1/700 ' o fq

is zéro. This means, since —,; =0 ,
Fig. 4 Path of integration

on the coordinate axes, that

/ o _go 0o
Jo B vdy = [ B d |
Using the boundary condition for y = 1, this can be written

f he(§,y)dy = / 9,5, 1)ds - &2, [hf <§,,\/;435 7¢, \/)J

In the limit g 0 o the result becomes

/75 “(oo, V)—/vf Yoo yrs — L /+_‘_ f 9°%¢, 1y dg - _Z_/_({g'(voo)/) (3.12)
-1
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" o0 _ )
~ since h - O and g =0 (log R) for { —»oo . This completes the
separation. ‘
The condition of eguation (3.7) for zero perturbation at the origin

gives the following expressions for the correction A Mo and Ap(o 3

Tl 2 ,°
AMy =g 28 10 Ady= —
00

Tz g (@9

/7 (o o) ‘ (3.13)

which do not contain 1% or hll. As a test of the correction procedure

it might however be worth while to compute also the following quantities

/+_ELM' z 2

Brlart] er, B pr 000

) (3.14
b T ¢ (O o) )

[ "("J /qa g)’

the operator B% denoting the rate of change due to a translation in j -
direction of the representative point. One will have to require’ 'i:l;at »those
test quantities multiplied by some characteristic model length are much
smaller than the corresponding correctione.

| To determine the functions b as required by eq_uatlons (3. 13) and
(3.14) we express the functions g'* in the neighborhood of the walls by

means of Fourier kermels G © (k) in the following ways

CI-YIY K

g (em) =) G700 e Cos § Kok

10 ®© o (/=Y1K
jf (5,7/)—“]; G (K)e cos § KdK S (3.15)

o/ . @
IEN 2590 [T ol cpy LITVK i

/ &0
Te" (512 590y [[76 k) o MWK g ¢ s ak

This is possible since gmn are harmonic functions which for {--co behave
according to the estimates (3.9). The kernels ™ are continuous and

exponentially decreasing for k —cc . For k — o we have ™ =0 ( 1k|)
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 since g°° and glo are O(é-) for {—>o

Formally the solutions then are

400 mGao(/()
¢ ,]0 K C(/()COSAYKCo55’%a‘K

/o / oo el v :
A :“75‘*/,, 9 ENIS+ [T k) coshyn cos $K K

dvr
=M > (3.16)
o © Lo
N A SR I SIS LI L PP PP
/ 2
/7’___/ G’///()_;(A/) :5_/"_//&(./)_//_/_(_ca5 5’/(@’/(
where
CRr=p— LM 65K <
(I-rMZ2)Sinh K+ & SKcosh K
> /(30
Sh= K AL E T K o (3.22)
(=M %) cosh Kt £ SK sk K

The functions C(k) and S(k) are continuous everywhere (éince 618 = 0

and 1-M°2 >0), and are .~ ke X for k-»cos Hence there is no difficulty

in showing that the solutions obtained satisfy the equatiﬁns of the problem.
To conclude the analysis we have to express ad by the éfressure dis-

tribution at the wall. We therefore put ‘ﬁ ¢ ($,1) 4in the form
L= £70 5, ’””’({)zy;"(;/)vc he (51) (3.18)

It follows from equations (3.15) and (3.16) that the functions 0 can be

expressed by means of Fourier kernels F (k) as followss

06( =_/° , ——-f—.__ ”, 7 /
=58 () /5*17‘[ FoK)Sinskd X (3.19)
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£ =7’f£;(oo,/)+ faw/:/"(/() cos §KIN

a/ @« ol
LY FleK v $K dX 3
Foes ] ) s 3 (3.19)
cont'd.

{///f):/ow;'//(/() Ces f/\/c//(

After inverting the Fourier integrals the kernels 2 are obtained as
Fourier transforms of functions which can be experimentally dete,rminedq'.
Finally the following formulae for G are derived by combining equations
(3.15)s (3.16) and (3.19) with the defining equations (3.18) for = :

G"‘f__}/( 7TL§€§(°°/l)KK(/()+K/:"M/K)‘ 6’0—/( F/O//()

K] K20 (3.20)

K+C(K). cosh K 7 U Kb eckycosh
/
oo £k , £k

74
K+SKrsiwhi ¢ = K+Skr15,8h K

It is easy to show that G (k) are continuous if F (k) are.

Now the corrections can be expressed in their final form

1+ Zhmt - ESKy =K
A%=/\407)—_7\;}_2—.2_c£§(w1’)+ I’: (/()(/- /-"Mz)’e a’/(

(%4

(4

(3.21)

__ ME(® K
4‘040-——/;3/0 FoCK (- /f_'fﬁ%/:)z 4K

end so can the test quantities of equation (3.14) :

+ G5

D V. - 00 £SK K
0—5*{4%}*'%-‘/7_—/7 ] [#—5@5(0@/)#(,(#)#(}' (/()J(/——/l_—gj)x 4K

D M,

x
[44) = 55 f Flenn (- £3589k (3.22)

*Phe factor 3/ V41 ? + 1 in the expression for £°° has been introduced to
avoid F°° becoming the Fourier transform of a discontinuous function.
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3.4 Circular test seetion y

To desceribe the flow in a circular
test section we introduce polar coordinates
X,r;0 as defined in Figure 5. The plane

® =0 and 7 coincides with the plane of

symmetry of the flow (z = 0). The radius of
Fig. 5. Circular test seetion
the test sectlon is the unit of length.

The thickness © of the boundery layer is taken to be constant. The
model is situated at the x-axls, thus permitting the origin to be taken as
characteristie point for zero perturbation.

For determining the wall interference potential fw(x, r,8) we have at

our disposal the following equations:

(1= 1, )/evxx ﬂ/rr va wr 7&00" for r<J
2
- / ar, O __ M,
)(‘—'—-m QZ/X_— /+ %/_M"? % ) V\//"— ——/\—4——?4]0/0 0059
2
rl W@:%?’Ao(oSM/&
— L (3423)
X — oo : L/DW)()(:O’ C?QNXF:O) —[-‘LWN)(@__O
-2 * L2 % 1 Y2 o
=l : 15}—-64.5(372*9‘9?)‘#2 £ s ox? 3_'2) (Yt T

, . ; | - - / —
X=r=0 - '-QN:O) [2\/\/)('0 ! (’pwr"o; //M V‘/“"'o

The potential “ﬂm (x,r,0) for the unbounded flow is assumed to be given at

the walls as a Pourier series in 0 (f=x/,/ 1M %) :

J - Vi-AL2  aM. MZA,;( FC059+Z[3 ()ﬁ p)+5 (g cosna (3.24)

g /+12:1Mj M,



The coefficients gmn are even with respect g for m=0 and odd for
= ]J.

Similarly 7”  will be written in the form

R LY S Yo AP ,
w H. 1— \//2 7, g %2 AX&FCOSQT
(4

oo

+ = (A5 5 0] cosne, 02 ral (3.25)
Z 4 |

o
where the coefficients hmn have the same symmetry as gmn. The pogsibility
of the developments (3.24) and (3.25) is evident from the assumptions initially
made for fw and ¢ .

The functions h'( ¢,r) are harmonic for r<l. In particular they
can be developed in power series with respect to r, from which it is
readily concluded that h'" = O(r") at the ¥ -axis. Thus all functions

on

h™ for n > 1 are seen to disappear from the condition at x=r =0

of equation (3.23). But the functions h™" for n < 1 should be inde-

pendent of all functions g = for n > 1. Consequently it is sufficient

in the correction problem toc consider only the four unknown functions

B™ and W™ as determined by ¢"° and g™ . The analogy with the plane

case is evident, and we therefore can proceed rapidly towards the solution.
Corresponding to equations (3.11) and (3.12) in the pleme case we obtain

for B (m,n = 0 and 1) the following boundary value problem within the half

cylinder r =1, 0 £ ¢§< <o 3

»r M 2
/’) +AW+_L/7 Lhmﬂ:o

/"2

§5

J(__,,og-’ /‘);0:;7/0” Z(/ M ) [ g /)4/51 /_’a/:/)ll

§ 1M +2££ g5 (3.26)

ol 7
/7§ zAg =0



o hg=o, h'7=0 |

T o e DS Py O
(A7"+g77)=0 c(i;%?g.

/=0 A %20, 70

To estimate gmn for large values of Rz = 5 2 4 r2 we note to

begin with that g01(00 ) = gll (2 ,r) since there is no upstream counter-

part to the trailing vortices. For r > 0 the following estimates are avail-

able:
90020(_/5/_) 1
510:0/%>
/ | . (3.27)
o - 3
j_{ :0(—R—§>
91/= 0/?/__%) |

They correspond to a source at the origin (g°°), a dublet at the origin

with the axis in the f -direction (glo), 2 uniform distribution along the:

§ =axis of double‘l;,s in the y~direction plus a discrete one at the origin (gol),
and finally a distribution, wniform on each half of the j -gxis, of doublets:

in 'Ehe y=direction (gll). It follows from the last of the estimates that

3al(w,F) =9”(oo,r) =ﬁ”(oo,/)7l‘ ' (3.28)

To arrive at a complete separation of the problems for 2™ we have
to determine hll(oo,r). Since hll(vo sT) =0 and gg'l(w sv) = 0 the problem

§

(3.26) for hll in the Trefftz plane reduces to
/7r.lr/- -+ ’I‘A //__/2 /7 ,/= 0
rel /2+5§+ £,5(h"3") =0
Q= //:_
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_ with the solution

/)r/(oo,l‘)= /- 55—“55

It EStEz 5 7", 1)r (3.29)

It is evidently possible to express the function gmn in the neighbor-

hood of r =1 by means of continuous Fourier kernels as follows.

) 'oo: = vo /(a//_/() N
25 faé (K PATS Cos § KK ,

éo:ij/O(K) _%_}Cojj’/(a//(

(3.30)

ol 9%Na, @ lrk
_9 = __':—)_*/b' GO/(/() /(}(1/;/(}) cosj’/(ﬂ//( ?

s
\75 :[) c ey kl/'(u()) cos §KAK

The kernels are exponentially decreasing for {— o , and in additiozr G°
O(k ) and ¢l - 0(ikl) for k — 0. Hence the following solutions are

easily verified:

00.—_- %Goﬁ/()
gr :

PE KL (rky cos Sk dK

/0_ 2(_/\4”2) e oo
/7} — /mf I (5">°/5+[ ‘k)c(/().r (r/oc,s;’ko//(
o , " ° 0
‘ 5 (3.31)
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/7/:] 6/{(/(5)5(/(7 T‘;F/()Cos fK&/K




 where
ClKky=- K- er?) KK +(£.5- 26,8k K k) ;
DE TR () 10+ (85 #6,59K LK)
5 (3¢32)
/ 2 .
S(K)=— K?/FM;MKaw+uﬁ#éaiﬁzom+(a&ézA%ﬁMM)
KK (M Ik HES+E£,5D T (K] +H§85-4 £ 8K 1K)

The functions C(k) and S(k) are everywhere continuous since ¢ 18 > 5282 Z 0,
and for k 1large they decrease like kB/ 2K,

We now introdﬁce the pressure distribution at the wall by writing

%/g ($,1, & =m§ f””(j) Cosmo f’""(g) = j;?;l,)jt. /7}:""(51 1) (3.33)

where the coefficients £° are taken to be given in the form

o0 { o ou .
]C (g7=_ZL7po§’(oo’/1_é'T)\/§2+/ +f FrekrsiNS§KAK

% =4 7@“’0/ /, g—TH] FoK) coss xd X
. (3.34)

aQ
6

£ =T Flk) sk dx

f”(f) =/w F'/(/{JCDQfK&/K

S/

The functions G (k) then can be expressed by the Fourier transforms F O

as followss
Gao=/(2 ’%“%;(w, /,7772)}(/(,()(7;-/(/500/% . C/‘):/(Z F/o(/(7 \
KE#+ k) 5,(K) / sz‘é’_[_/(_)‘l—ﬂ)
e! K FV/(K) y /(2 F//(/()v D<e°(3-35)
C =K s ) 6K iz
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and the corrections are obtained in their final form:

AM = ‘_/_4_’(‘2-.}__/‘12 .L— (CD ] IZ) [00 /OK [K/((/K)‘ &5"?2252/(2/(0()}6”(
o 0\//_%2 2765 /,Z'f'o)r() 1 W o’

7’-/ -
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E%—(Ao(,):—zi%j F’{/(){K Ki(K)+(1-£8-4 ¢ 5% _(d_/jg_)xy(@J

3.5 HNumerical examples

To get an idea of the boundary layer influence on the ‘(correciiOns a
few typical examples have been investigated. For simplivity the perturbation
potentials gm for unbounded flow are assumed to be know rathe.i' than the |
pressure distributions £ which should be used in practiée.. .

The theory developed offers approximate solutions when the wall
boundary layers are thin. The first example of plane flow serves to indicate
the maximum thickness for which the approximation is good.k This: is achieved
by comparison with a case for which accurate solutions are available, to be
specific the case of constant undisturbed Mach number M( < Mo) in the boundary
layer. In Reference 9 such solutions have been obtained for the subsonic

flow around symmetrical parabolic arc profiles when the boundary layer profile



is the following:
' —;jg\/?— for 1-§ £«

////////y//////Y//J/ y= | A= (3.37)

S Ep——
3 M, for |Y|<1§

For this profile one has 2’, = 1,

—————————— yz—- which value is to be used in com-
TTTT7 7777777777777
Fig. 6. Symmetric parabolic paring accurate and approximate
are profile. solutions.

The functions gm of the first plane example accordingly corresponds

1o the subsenie flow+ around a symmetric parabolic arc profile at zero angle

10

of attack (see Figure 6). Only g  is different from zero; the associated

Fourier transform as defined by eguation (3.15) is

Gmm@ﬂmc(—ﬂﬁ—>'W, G(g)y= $ing-Fcos g (3.38)
Viergz /5 E
vhere 2¢ is the length of the chora™".

As a typical value is taken ¢ = 1/4 with half of the tummel height as
unit of length. Figure 15 shows how the computed values of the correction
A Mo depend upon the boundary layer thickness for some values of Mo. The
fuli curves were obtained by the approximate theory while the broken curves -
taken from Reference 9- give the accurate result for the specific boundary
layer profile of equation (3.37). One concludes that in the present case
'Ehe approximation for thin boundary leyers is good for d&<0.1 and reason-
gble for 0.1<6<0.2 Thicker boundary layers are not likely to oceur in

practice.

Tk given set of functions g?m can be made to produce a subsonlc field by
taking the relative thickness - of the model sufficiently small. Since
the theory is lineer g™ and ¢ will decrease in the same proportion.
Equation (3.38) corresponds to = = (l-Moz)/cz.

"Note that G(q) is contimuous st q = O.
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The influence of the wall boundary layers as shoun by Figure 15 for
the specific case under consideration will be seen to have as essentially
universal character'. From the value at 6=0 AMO decrgases with increasing
6. For M,= 0.85 the boundery layer thickness & = 0.2 (for €, = 1/2)
brings 4 Mo down to half the initial value, and for higher Mach mmber&
still thimmer boundary layers are sufficient to produce this effect. For
M = 0.95 the thickness & = 0.3 gives AM_ =0. Roughly speeking the
thickness required for reduction by half is of the order & = 0.8 (14 %)
and for complete reduction & = 2.5 (1—M°2). Altogether there is a con-
siderable influence of the boundary layers in the range of practically
attainable values of 6. |

From Reference 9 it can be concluded that the influence just »d..is-
cribed does not change eppreciably with the length 6f the chord. However,
for long models AMO is not independent of the choice of representative
point. This is evident from Figure 16, where AMO st Mo = 0.90 as a
function of £,8 has been plotted for two different chord lengths (c=0.25
and 0.375) and two different representative points (leading edge and mid-
chord). The important conclusion to be drawn from Figure 16 (and from other
results of Reference 9) is that thevariation of A M with the position of
the representative point is slmost cencelled for a certain boundary-layer
thickness, which is of the same order of magnitude as that required for
reducing 4 M to half its value for & = O.

~ To be sble to discuss in simple terms more general types of plane

models, we note that if the estimates (3.9) for g™ are taken to be

valid everywhere at the wall then there is a very simple relationship

*The correction A My has been divided by its value for b = 0. This norma-
lization is thought to bring out the essential features of the boundary
layer influence even when linesr theory cannot be used to determine 4 Mo
from the form and size of the model.
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- between the transforms G (k)

G e G"’cclKlG’o’oc1K1¢:”(ocnk}4“K') (3.39)

When in practice the chord and the transonic region a:ce‘ not small enough
to make the estimates good, the difference involved may roughly be thought
of as ar commonr change of length scale for the functions g;m“:l | at ﬁhe' central
part of the wall. The relations (3.39) then remain spproximately valid.

Thus teking G°°cc G'C the results for our specific choiee (3.38) of

620 may be reinterpreted. From comparing equations (3.13), (3.14) and
(3.16) it becomes evident 'ﬁha.t the curves of Figures 15 and 16 might as
well be taken to represent the boundary layer influence on the cerré.etion
gradient 5% [M,] - In this comnection one should remember that % (M)
is large for halfbcdies* while for finite bodies it is essentially due to
the wake snd consequently is small’ . The same is of course true for the

g”° contribution to 2 M_ (see equation (3.16)). For & plane halfbody with
negligible glO one simply has

AM, ) / B |
CEATS o (3. 40)

1+ %5 _
/=,

This rela’cionshiﬁ has been plotted in Figure 17, from which it is seen that

§=o

the ‘boundery layer influence on the Mach number correction is not quite as
strong for a halfbody as for & finite body, although it has the same genersl
character.

Finally in the case of a 1lifting profile we choose as a typical example

GGI=GII=G(/%3)z-/KI i el | (3. 41)

following equations (3.38) and (3.39). The resulting corrections are plotted

ta halfbody is understood to extend to downstream infinity as a cylinder
parallel to undisturbed flow.

+ .
*Except when the flow is highly separated.
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in Figure 18 - the boundary layer influence being identically the same for
Ax, and .,% [4d o] * The difference between corresponding curves of Figures
15 and 18 is remarkably small. Thus the boundary layer influence in plane
flow follows a universal pattern independent of thickness distribution,

angle of attack, or camber.

Turning now to the three-dimensional case we choose 6°° = 0 and

/ ~I) Sing - )
G U= —EK )KO(K) . Heg= (3-¢ )5/qc;;_ 39¢cos ¢ (3.42)

(vhere H (q) is continuous at q = 0! ). In subsonic flow having rotational
symmetry this choice corresponds to a symmetrical body of revolution with
& parsbolic contour (as in Figure 6). For ¢ = 0.4 the Mach number correc-
tion 4 Mo is found to depend upoﬁ the boundary layer thicknessf‘és Vshown
by Figure 19. There is no essential difference from the corresponding plane
case, onlj the boundary layer influence is slightly smaller for large values
of & . The thickness required for reduction by half is & 0.7 (1—M°2) and
for complete reduction $= 4.4 (l-Moz). |

Even in three dimensions it makes sense: ‘_bo"iﬁtei"changé..:',the assumed
forms for G°° and G'° when considering a halfbody instead of a finite body.
Thus Figure 19 can be interpreted as showing the boundary’ layer »
infiuence on —-‘-7—(AM°). For the Mach number correction one obtains the simple

D¢
result

AMo /= #15°
[am]., /~~%+2£5-6,8°

(3.43)

which hasbeen plotted in Figure 20. The influence is twice as large as in
the plane case.
When & three-dimensional model carries 1ift the interference picture

is somewhat complicated by the presence of trailing vortices. Howéver, the

*Note that the 62-'berm, arising from the wall curvature, is negligible in
Figures 19 to 21.



vinterference dve to 1lift as calculated by linear theory remains smsll even
for Hc—vl in contrast to the blockage interference. Furthermore the con-

tributions of G°F and Gt

to 1%%(0,0) and 1™1(0,0) in equation (3.31)
are negligibie except for exceptionally long models (see Reference 2'7)- and
in addition they are expected to decrease with inereasing © in much the
same way as in the plane case. A1l in all it seems sufficient to cénsider
only the "lifting-line correction® A obtained from the g ~(c0,1)-

term of equation (3.31). The simple result is

A Ko . /’515—'2/_5252 ) ‘ (3*41!-)

[a 0(0]5___0 It €6+ 4E,8°

which has been plotted in Figure 21. Thus the boundary layer. influence on
Ao, s small and independent of M. Surprising as this result might be,
it could have been anticipated from the fact that the pressure perturbation
due to a lifting line has fore-snd-aft symmetry (in linear approximation),
permitting only crossflow but not streamwise changes in mass flow density

to contribute to A (compare footnote to sectiom 2.6). .
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IV. WALL INTERFERENCE AT CHOKING

4el Introduction

When the Mach mumber Mo in front of the model in = closed test
section increases, the transonic region at the model readily comes so close
to the walls that the linear correction theory ié no longer appIicabie. If
corrections exist at all at higher Mach numbers (compare paragigph 3.2) they
seem to increase steadily until choking occurs. ‘

Choking constitutes an upper limit M

¢h

M= Mp,<1 | (4e1)

to Mo=_

corresponding to the greatest possible mass flow through the test section.
The flow field established has a section of sonic speed between the model
and the wall. For z very small model compared to the test section, it
gseems reasonable to expect this flow field to approach, in the neighborhood
of the model, the unbounded field for Mw—* I+. Furthermore, there is some
theoreticalb and experimentsl evidence to the effect that the choked flow |
field at the model may be interpreted as belonging to some:unbounded field
of Mach number M_ with |

My<M < 1 )

even fbr reasonably large models (see for example References 21 and 22). If
this is the case one might try to determine the correctionAMO =M "Mch'
However, this would require comprehensive experiments or caleulations, and
therefore it might in practice be pessible to consider oniy cases where
M~ 1.
o0

In the present chapter the correction problem for choked flow will

be studied with special attention to the boundary layer influence. A4is a

+In fact, this hypothesis ecan be taken as a definition of sonic flow (see
Reference 20).



basis will serve to a large extent theoretical results for sonic flow

obtained by Guderley and his collasborators (References 20-26).

4e2 Unbounded sonic flow.

An essentisl festure of
the flow about a simple body
in an unbounded stresm of sonic

veleceity is the existence of

a surface with sonic velocity

(the "sonic line") extending

Fig. 7. Sonic flow

leterally from the model to
infinity. The flow in the upstream region of this surface is subsonic,
while it is supersonic in a downstream region bounded by one or more
shocks (see Figure 7). The outgoing characteristic surfaces reach the
sonic surface if they are far enough forward, otherwise they extend to in-
finity or reach the trailing shock system. The boundary between the two
families of characteristic surfaces is called the limiting Msch wave.

The flow in front of the limiting Masch wave is in principle independent

- of the form of the body behind it. For a simple body as shown by Figure

7 tﬁe limiting Mach wave seems to start at the body in front of the
position of the maximmm thickness.

In subsonic flow the asymptotic field far from the body is easily
6btained: corresponding to a halfbody one takes a source, and to a finite
body a doublet, to be situated within the body, the strength being propor-
tional to the cross sectional area or the volume of the body respectively.
If the flow field at sonic velocity similarly can be appré:d_mated in a
universal form there should, imr & large part of the field, be no difference

for the two body types, since those are different only behind the limiting
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Mach wave. Now Guderley and his coworkers have found such a basic solution
(or rather two solutions: ome for plane flow and snother for three-dimen—
sional flow) using the classical transonic approximation+. A presentation
follows next.
In the plane case let the basic perturbation potential be ¢ p(x.y),
satisfying the differential equation

ﬁ =(7+1)-—B(P ——jﬂ—az

2Y? OX  IXZ o (4e3)

The condition for universality is expressed y 4>_b(_?l_"_,_4 L= const.
by requiring 4 %o be similar to itself | |

in the following semse. For all positive

yl

' —

O

values of the parameter c¢ it should be

true that o
- Fig. 8. Similarity pattern
‘Vp[b(c)x,cy] = a(c)fP(x,y)

of basic solution
where a and b are continuous
functions of ¢ satisfying the transi-
tivity conditions

ACC) alc)= ace ;D

bee)bic,)=5b¢ ¢

‘It follows that & and b have to be powers of ¢, and henée that
the 106:1 ofy similarly situated points, in the sense of the gimilarity in-
troduced, have to satisfy equations of the form xy-n = constant. One there-
fore introduces |

= (T+I7-‘3LX v (4.4)

as a new coordinate in order to determine C/ P in the form

1o (XY) =Y £,0$) (45)

*It. is, however, easy to show that the basic solutions are asymptotic
solutions of the exact potential equation, thus providing a valusble
verification of the transonic approximation.
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Introduction of this expression into the differential equation (4e3)
shows m tobe m= 3n - 2, and fP(}’) to fulfill the following ordi-
nary differential equation

(%2 £)) o #8n (=g =30/~ (3n-2)fp=0 (4+6)

For the perturbstion velocity to vanish at infinity n has to be:smaller
than unity. |

The resulting problem then is to find such a solution of equation
(4+.6) that the corresponding flow field has the structure initially de-
seribed. To begin with there should be a sonic line. Since the condition
for sonic velocity is £'= 0, the sonic line has to be & curve € = constent,
say § =¢ o For the sonic line to have the .form required one must have
n>0, ¢ >0. For << f' ought to be negative (i.e. subgonic upstresm
flow), while for ¢ >¢ o positive values are expected (giving supersonic
flow at least up to a limiting Mach wave). |

In the supersonic region let an outgoing characteristic curve have
the equation y = ¥(x). Its slope then is determined by

day

ax =(r+1) 1/3‘/

\f’ 7205)

For a curve § = constant the corresponding expression is

dy _ -l/3 /h_l.
X @+ 7Y ne

Hence .imediately behind the sonic line the outgoing cherscteristics cut
across the curves ¥ = constant in direction towards the sonic line and

this remains true ss long as f,<n°¢ % It might them be concluded that

a limiting Mach wave 3 = constent is reached if f£; = n°¢ > for some

value of ¥ . Without loss of generality ¢ = 1 is chosen to be the limiting
Mach wave, corresponding to selection of one specific solution out of the:

group generated according to the transonic similarity rule.
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For the limiting Mach wave the differemtial equation (4.6) has a
singular point. The solution must however be regular there, and it is seen
that this condition determines a unique solution in a neighborhood of
3=1 (for m given: O<n<1). Similarly for § —- the condition
f; — 0 (zero perturbation velocity at infinity) determines a solution
which i1s unique except for an arbitrary factor. By choosing the ﬁroper
values for this factor and for the parameter n one finally is able to
make the two solutions coincide and form,in the interval —054 £ < 1,
the solution fp required. The value n = 4/5 has been found to do the
trick (References 23 and 2). The result for £p (§) (o< ¥ ) 1a plotted
in Figure 9. In Figure 10 is shown the deformation 4 ¥ of the undisturbed
streamline y = Y. |

Limiting Mach Wave
f——

L
v
-]

Fig. 9. longitudinal perturbation velocity of"
basic solutions (C=1).

The same analysis cen be performed in the case of rotational symmetry.

One assumes the basic potential Cf R(x,r), satisfying the equation

2 2
shek gt 3L @
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%o have the form
To=r2" (8, fs(?ﬂ)—//j)(f‘-h (4.8)

A solution of the required type is obtained for n = 4/'7+ (Reference 25).
The longitudinal velocity perturbation f; and the streamline deformation

AR for the undisturbed streamline r = R are given in Figures 9 and 10.

0.5 -

4/3 - /3 57
Ly #1773 V8 ARG+ RTAR
¢
-3 -2 -l 0 |

Fig. 10. Streamline shapes of basic solutions (C=1).

It is possible to continue fP and fR scross 3§ =l:, but the result
does not give undisturbed flow for {—w. This is of course related to
the fact that one or more shocks are needed for the tranéition. It was
shown in Reference 24 that it is possible to fit uniquely a shock slong
a surface § = constant In such a way that the perturbation velocity behind
1t continously approaches zero for {—ws It also seems possible to fit
several shocks in the same way, although uniqueness then is lost. | However,
for the present problem the shock weve pattern will be seen toc be unimportent.
The functions £,(§) end £p(f) combined with the transcnic simi-

larity rule give two groups of basic solutions depending upon a positive

*This valne has been obtained by numerical integration of the differential
equation for fR, and it is therefore not necessarily exact (see Reference 24).
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Parameter C in the following way:
YooM= ¢ B corrnoxy 5]
e (e crr= ¢ % £, [C(zr+/)~l/3)</‘-4/7 } “.9)

A fundamental hypothesis of Guderley's, and one to be extensively
used here, assumes that the perturbation potential due to an arbifrary
body at sonic speed is asymptotically given by the expressions (4.9) at
a large distance from the body in fromt of the shock system. In the plame
case ¢ p and in the three~dimensionel case (also without rotational symmetry)
q g Should be used, in any case with a suitably chosen value for C. Those
sonic perturbation fields which are known- from computations or experiments -
verify the hypothesis, and indicate the approximation to be good also so
close to the body as wind tummel wells may be situated at transonic tests
(see Reference 22)°.

To arrive at a complete picture of the flow field far from the body -
the asymptotic field - we must know how to determine the parameter C from
the size and form of the body. Ilet us consider, to begin with, only families
of affine symmetric bodies, the .
members of which are defined by _ /
a length ¢ in the streamwise e
direction end & slenderness e

T-C
ratio 7", for example as in~

diceted in Figure 11. If, in ' — — ——

the plane case, the perturbation

potential for e =7'= 1, ¥=01is
_ Fig. 11. Body parameters
f (x,y), then the potential for

"The approximation is of course not good when the walls really are situsted
there.



arbitrary values of ¢, v and v is’

z Y
‘/(XA/) =¢cT /3mr+n 1/34’[7)(/7://3(”/)%—}] (4.10)

/

let us furthermore assume that for ¢ =T=1, =0 ome has to choose G = Cp
inequation (4.9) to describe correctly the asymptotic field. We then have

J{X/\T/7f/—: ﬁpPC)// Y)‘ C’P70)
and consequently
2 Uy — X i/ % ,
YY) ¢t /35,”) ’/34/;,[ =i )P X C’F,O} ,
Hence one concludes that

SN 2 dy(x,¥;0,9);  C=c s T kg 1 ’//5CP (4.11)

Similarly one obtains in the case of rotational symmetry (see Referenée 28)

$xm =e TP F, vovn) b L) (4 12)

and _
P, P K1 OF) 5 @ =Yg~ ) e, (4013)
vhere ? and Cp correspond to ¢ =1'=1,¥ =0 (see Figure 11).
| from equations (4.11) and (4.13) it is seen that affine bodies have
the same asymptotic fields if they have equal values for c1%/3**. Now
Barish (Reference 22) has made it likely that in the plane case this con-
clusion is valid also for arbitrary symmetrical bodies (i,e. not neces-
sarily affine) if ¢ and T refer to that part of the body which is in
front of the point of sonic velocity as shown in Figure 11.‘ Hence there
+

seems to be a more or less universal value of CP for symmetrical bodies’ " H

data in Reference 22 give Cp = 1.15. However, the difficult problem of

Here the boundary condition for the body is assumed to be specified on
both sides of the x-axis, not at the contour.

™ For halfbodies at subsonic speed the corresponding condition is cl=
constant.

" Restricted of course to bodies which are thin enough for the transonic
approximation and the simplified boundary condition at the model to be
valid.
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finding the point of somic velocity remains.

In the axisymmetric case the information avelilable is not sufficient
to deeide whether or not G’R is independent of the form of the body for
the specigl chelce of ¢ and T« One specific body investigated in Referemce
25 has €y = 0.9, |

Using these values of Cp and €y one should be able to estinate the
asymptotic fields of ﬁrofﬂes and three-dimensional bodies: when they: are
symmetrical with respect to the x-axis. The restriction to éymﬁetrical
flow may not be too important however. In Reference 26 the influence of
asymmetry on the asymptotic field was investigated in the plame case, and
1t was found to be negligible as long as the angle of attack and camber ave
much smagller than the slenderness ratio v. In the three-dimens_foﬁai csse
the restriction is still smaller. It was stressed by Oswatitsch in Refer-
ence 29 'bhat three-dimensional transonic fields show a very strong trend
towards rotational sMetw once one is outside the immediate neighborhood
of the bpdy+. He therefore proposed to consider the outer fieid as gener-
ated by a fictitious body of revolution along the x-axis - the Yequivalent
body of revolution". The problem of determining the asymptotic field of
en arbitrary body thus is the same as that of finding its equivalent body
of revolution. For slender bodies, like delta wings of small aspect ratio,
the equivalent body of revolution is obtained by changing each cross section

x = constant Into a cirele of unchanged areaﬂ.

Le3 Asymptotic fields at choking

Turning now to the ease of choking, we consider the plane flow about a

* The seme trend also appears at high subsonic speeds as ‘shown in Reference
30.

"™This should be viewed against the fact that linear theory gives finite
values st Mo = 1 for the influence of such changes of the bedy form
vhich leave invariant the distribution of cross-sectional area.



model which is symmetrically situated

/
////}//////_/_ e
in & wind tunnel with the wells at Sonic /i -imiting
i ach wa
y = X 1. At blockage there is a sonic Mch ine 7’/ h wave
- ¢/
line and a limiting Mach wave between l\/ X

the model and & common polnt at the -
well (see Figure 12). As long as the Fig. 12. Flov st choking
model is sufficlently small it is to
be expected that the flow field in a neighborhood of the model neerly coin—
cides with the unbounded field for M _= 1. At the ocuter boundary of this
neighborhood it should be possible to approximate the perturbation poten-
tial by ¢ P(x,y;C,’d) according to equation (4.9) with & suitable value for
C. The problem of finding an asymptotic approximation for the choked flow
around a small model then reduces to the problem of finding a basic solu-
tion §p(x,y5C,7) of equation (4.3) (regular from upstreem infinity to the
limiting Mach wave), which for x,y—0 in some sense approaches 'P(x,y;C)T),
and at the wall (y = % 1) satisfies the condition %{)P -0

Assuming that such a solution exists we write it for :G = 1 in the
form

o (XY L,Y) =Fp (Y, 4 - (4e14)

where ¥ is defined by equation (4.9). For arbitrary values of C the

solution then is

&0y e V=CTRLY, corny By

as is evident from a comparison with equation (4.4).

The same approach in the axisymmetric case leads to the following form
for & basic perturbation potential &, which (with the well at r = 1)
equals {p at the origin:

F (X, ric,M=C klr, ciryBxr 4] (4-16)
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Far upstream the potentials i’P and ¢y ought to give uniform sub-
sonic flow of Mach number Mch’ the condition for this being that the § -
derivetives of Fp and Fp be finite and proportional to yl"/‘)' and rl’/'i
respectively for ¥ ——-c0. We therefore assume the existence of the fol-
lowing 1i.mits for { —--oc0

lim y'l’/s %Fk(vm =fp
(4.17)
un + 7 2 p =

The constants FPOO and FR°° thus defined are negative since they give

Mch = which is smaller than one - by the following expressions:

[t dtven™ 2R
M, = (4.18)
ch P cr e .
1+ F B el R,

Using equations (4.11) and (4.13) to express C in terms of the model pa-
rameters, one obtains for the choking Mach number in the plane case

-4/10
. L - Y
Men= 47 ZFPOOWHTZL(’L"C)Z [cT o) 3] (4.19)
and in the three-dimensional case
. - RNl
M, = /+'éI—CR2FRw(7+!)’/Z/CC et oren ] (4.20)

‘Ihe result, which essentially is due to Guderley (Reference 21) shows
how the choking Mach number depends upon the size and form of the model when
this is small. The corresponding result for a large model, obtained by one-
dimensional theory (see Reference 5), is
7

My =1 -(%”)7(4:@

in plane flow, and

M

L
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in three-dimensional flow. Here c¢ and still are defined with respect
to the sonic point (see Figure 11), which however has moved downstream to
the position of the maximum thickness. It follows from the transonic simi-
larity rules (see equations 4.10 and 4.12) that c1?1/3( v+1)'1/3' and
ctfl(‘x+1)1/2 are the characteristic lengths for deciding, in the plaﬁe and
three-dimensional cases respectively, whether a given model is small or
large enough for the approximate expressioms for Méh to be valide Only
small powers of the characteristic lengths are seem to comtribute to the
difference in form between the expressions, so the influence of chord
length on M may still be smell (for T ¢ fixed).

The discussion of asymptotic fields at choking is readil& extended to
include the influence of thin wall boundary layers. Let us for a change
begin with the three-dimensional case. 4&s boundary condition for the per-
turbation.potential at the wall (r = 1) we have from equetion (2.23)

2 3L V-es-tgse - (4e21)
It is importent that this boundary condition - as well as the corresponding
one for plane flow - permits transonic similarity (as was shown in Section
2.6), since we are using similarity arguments extensively.

~We are led to ask for a basic solution §R(x,r; C,7s) of equation

(4.7) (reguler up to a limiting Mach wave) which for x,y— 0 approaches
QQR(x,r; C,¥) eand for r =1 satisfies the condition (4.21)s Assuming the
existence of such a solution for € =1, y=0, and denoting it by FR(r,f 39),

the general solution is

. -1/3 =4/ -2/ T
~<P,Z(X,rfc,3r, E,S—Z-széz)zc 3/—',2[1‘. C(r+1) / Xr 7; sz/) 3(5.6-%5252), (4e22)

The analogous result for plane flow is

2/3

- -1 -4/ - c
&0 Cr 659 = ¢ m [ Y, corn Py T Crn ™ o) (40 23)

The limiting values Fp and FR"" as defined by equation (4+17) now become
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functions of W, Fp (V) and Fg~ (V) say, the equations (4.18), (419),

and (4.20) remaining valid for U= 02518 and VY= 62( ¢ 16 - 1/22262) respec-
tively, i.e. with

B2 = e [ CF (ve 2wy ¢ 5 e B ™2 ) V0] 2)
(4e 24
_1 = _ - ZB
/‘R"°=pﬁ"°[cﬂzfy+/) /Z(zc) (E8-46 80 et ‘Ca+) é} 7]

Since experiments (Reference 3) show that Mch increases with the boundary
layer thickness it might be conjectured that -F"Pw and -FROO decrease
vhen UJ increases from zero.

For large models one-dimensional theory gives

R, % ¢’s? ‘.
By =1 =% o)? ’*T'w"ﬁ?c t7 68

+ H o (4e25)

REL

in two and three dimensions respectivelye It is seen that when the bound-
ary layer thickness is so small that only linear terms in b have to be
kept, then 'bhe inerement in Mch due to the wall boundary layer is inde-
pendent of the size and form of the model. Furthermore, the same conclus
siow is valid in the case of smell models if only Fp” (V) and Fp (V)
eve tulce differentisble at 1= 0, since then we have from equstions (419),

(4.20) and (4e24):

M, = [Mcé +§LFP°°'(0755+0(52>
- = Q

[ l}ézo <o)£5+o(§27

Now this is in qualitative agreement with the experimental results of

(4o 26)

Petersobn (Reference 3), who explicitely noted that the boundary layer in-
fluence on choking Mach number was the same for several models having

different values of ¢ and ¢ *.

Wy quantitative comparison between theory and the experiments of B.eferegce 3
is not pessible, however, since the values of 618 are not known for the bound-
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4ol The correction problem

In the preceding paragraph we have studied the flow at choking under
the assumption that the perturbation field at the model approaches that of
unbounded sonic flow. We do not lmow, however, how small the model has to
be to justify this assumption. Knowing that, we would solve the correetion
by choosing the largest model compatible with interpretation of the pressure
distribution as belonging to ¥, = 1. The object of the present paragraph
is to discuss this choice as influenced by the wall boundary layers.

Suppose that the structure LLLLL ‘///4/4(_/,,/{_____
of a field et choking may be de- l; AN /I'
| /e
scribed in the following terms. 118 ,,,']1? _
i1 AL
In a region I (see Figure 13) 1 AI /// \
, / \
next to the model the perturba- M Al /7 _ \ B
_C_’l I P — LN X

4

tion potential is the same - in S T
Fig. 13. Structure of flow field

et choking

some reasonable sense - as would
be there in unbounded sonic flow,
while outside I it mey be approximated by a basic solution associated with
the boundary layer presemt. At the wall the potential of course is dif-
ferent from the asymptotic field pertaining to unbounded sonic flow, but
it 1is assumed that the difference is limited to a region II which dces

not reach the region ‘I. Then there is a region between I and II, where the
basic solution for unbounded sonic flow provides a good approximation.

For increasing model size the regions I and IT will eventually get

into contact with each other. Only contact between those perts of I and

IT will eventually get into contact with each other. Only contact between
those parts of I and II wﬁch are situated between the limiting Mach wave

and a plane A, located a short distance in front of the model (see Figure 13),
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have to be considered. Errors: introduced behind the limiting Mach wave can-
not propagate upstream of the Mach wave B of Figure 13. In particular, the
shock wave system lies completely outside the interference picture (except
for very long models). The errors in front of the plane & are of the order
of megnitude 1-M, , but their influence at the model may be negligible; This
is so, since one-dimensional theory should be suffieient for determining a
correcting wall deformation, the isobars at & being essentially perpen-
dicular to the x-axis when 1"Mch is large. ‘

For still larger models it masy be, that there is no zero-interference -
region at the model, although this capnot a priori be taken for granted.
Playing it safe, we shall here not consider larger models thag_ those
corresponding to contact between I and IT. N

Iet & T and 4 1T be the latersl extensions of the regions I and I1,
defined in such & way that 4 g *“41r =1 means contact (see Figure 13).
We are then sble to estimate from the similarity considerations of the
preceding parasgraphs how A T and AII depend upon the form and size of
the model. From equations (4.10) and (4e12) it follows that

3 -l
CKp (7410 3.1
A= ) : ‘ (4.27)

K (very Ve

vhere the constants of proportionslity KP and KR’ for plane and three-
dimensional flow respectively, depend upon the form of ‘the model. The
perameter ) determines the basic solutions §p and §p uniquely, and hence

4 1 in the form

L - ) Yo
hP[ CPZ(Y‘H) 2(/Cc>‘?L 2,5[C/C 3(71‘/) 1/3} ]

Aﬂ: by (4' 28)

L -/
/’z,?[ CRZ(T#/) ST e) (5,5-% fngM'C/C/’( 7”7'2"} K



‘where the functions h,(.f) and hp() apply to plane and circular test
sections respectively.
To determine the functions hy(V) and hp(V) comprehensive com-
putations (or experiments) are required. Sonic line = '
A Limiting Mach wave -~
An overall picture of their form can
however be surmised from the following

reasoning. Figure 14 shows, how one

has to reshape the wall in the critical O

region between x = 0 and the limlting
Fige 1l4. Wgll contours for

Mgch wave to have no interferemce with zero interference

the basic potential ¢ p(x,y;1,0) for

unbounded plane flow. The conmtour with B

no boundary layer (V/=0) coincides of course with the streem line of
Figure 10; In the general case the wall deformation 2 Y(x) is com-
puted by integrating the boundary conditlion at the wall

=1 24 _ d 9

with respect to x. The comtours of Figure 14, obtained in this wey, have
been normalized to pass through the point x =0, y = 1. Since hp(ﬁ) in
a sense measures the wall interference of the undeformed well on f pr one

would expect a small vaelue of hy to correspond to a slightly deformed wall

and vice versa. From Figure 10 it is seen that %;ffz:m_, 2%-0, and

hence that a small positive value of LY means an everywhere reduced wall
deformation as compared to the case J =0. For specific value V= 1J

the slope at the sonic line becomes zero ( = the slope of the undeformed wall),
data from Reference 24 giving J o = 0s483. For 0 < f <z s o ‘the slope is

everywhere positive. When U/ increases beyond 7, the slope becomes nega-
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 tive, first next to the sonic line only, but then everywhere and with
ever incressing magnitude. This behavior indicates hP to have az minimm
at Y =k V> where k; is a positive comstant not much different
from one.

The three-~dimensional case is not eséen'bially differenct. Zero siope
at the sonic line is obtained for L% = 0.645, and hg(L’) is expected
have & minimm for )J=lkp v , where kp is close to one.

Recalling equations (4.27) and (4.28) for 4 1 and A II; let us con-
sider a model of given form and relative thickness. When the model is very
small the region I does not reach the region I, and furthermore a thin
boundary leyer is sufficient to give A ;; its minimm value. The model
growing, A increases while 4 1y still cen be kept constant at its
minimm by increasing the boundary layer thickness. In practice there is
however an upper limit to the boundary layer thickness attainable. There-
fore, while increasing the model size until 24 + A 7y =1, there are
two possibilities: either & yy still has its minimm value, Acr 4 11 hes
& greater value corresponding to the thickest boundary layer svailable. In
any case the model is larger than would be possible without a boundary lsyer,
the gain in model size being greater in the first case than in second.

‘ If we however maké the relative thickness -+ smaller, while keeping
Ag * A 11 = 1+, then the optimm boundary layer becomes thinner. There-
fore - for a given family of affine models - there is a limft t0/T below
which the gain in model size is constant but above which the gain decreases
with increasing ¢ .

Up to now terms like small and large have been used without any re-

ference to practicel values of model size and relative thickness. It is

however possible to make them somewhat more precise. For a particular medel

*Note that this condition requires a reduction of ¢ .
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Barish in Reference 22 gives data from which it might be concluded that
the constent Kp imequation (4427) is K;~4. In Figure 22 vhat es-
sentially amounts to the optimum boundary layer thickness (for which
Vs kp - u_o) has been plotted against the thickness of the model, with
the relative thickmess 7 as a parameter. A necessary condition for
our censiderations to be velid is, that we stay within the reg:lon ;where
AI< l. In Pigure 22 ﬁhis region is situasted to the left of a curve
Ay =1, and & few such curves have been plotted cbrrespOndiﬁg to typical
values of KP' It is seen that if the scale factor 6‘1,2 ElK;l is not much
smaller than one - our previous estimstes indicating it to be between 1/2
and 1 - then an essential part of the Te-field is covered byieasonable
values of the boundary layer thickness. |

The corresponding diasgrsm for a circular test section in Figure 23
may permﬁ the same conclusion to be drawn. However, the magnitude of the
constant Kp for 4 I is quite uncertain in this case. Not even for
bodies of revolution is there any information available permitfing a
good estimate. ‘

In conclusion the analysis performed - loose as it may be = indicates
that by choosing fhe thickness of the wall boundary layers in a proper way
one \should be sble to increase the maximum model size for which test re-
sults at choking can be interpreted as belonging to unbounded sonie flow.
just how large the gain in model size may be is a problem for further in-

vestigation.



V. CONCLUSIONS

5.1 Boundexy layer problems

Throughout the present study it has been assumed that viscosity can
be neglected when establishing a relationship between the displacement
effect of the wall boundaery layers and the pressure perturbation due to
the model. The evidence brought forth for the validity of thi"ksb basic
assumption applies to the case of turbulent boundary layers only. It
rests essentially on the fact that the low speed part of the boundery
layer next to the wall, where the viscous stress perturbation is bound
to be important, is very thin. If we supplementthis argument by noting
that conclusions derived from the zero-viécosity assumption are reasonable
and show qualitative agreement with experimental results, the reason should
be only te emphaéize that conclusive experimental evidence is not available.

Assuming the undisturbed flow to be eylindrical (i.e. the Mach number
to be constant along streamlines) it is possible to define a potential for
the perturbaﬁion due to the model when within the wall boundary layers.
Approximate integration - in the spirit of boundary layer theory - of the
differential equation for the perturbation potential in the boundary layer
leads to a simple boundary conditiom for the outer flow, valid if the
boundary layer thickness is sufficiently small. This approximate boundary
condition expresses the change of mess flow density due to the pressure
ﬁer‘burbation and also the redistribution of mass flow due to crossflow with-
in the boundary leyer. The condition permits an extension of the transoniec
similarity rules only if the crossflow is negligible. |

The application to Ilineer wall interference theory indicates that |

boundary layers likely to oceur in practice are within the rangé of validity
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of the epproximate boundary condition. Moreover, at high subsonic Mach
numbers, where the boundary layer influence is large, crossflow seems to
stand for & minor contribution only.

The assumption of the undisturbed flow being cylindrical is Justi-
fied only if the boundary layer thickness is nearly independent of the
streamwise coordinate over that part of the wall which eontributes most
to the interference. Although no attempt has been made to fbrmulate this
condition more precisely, the following comment might be relevanf. The
boundary layer influence is large if the Mach number is close tc one, or
if the boundary layers sre thick, or both. In the first case the critical
part of the wall is situsted immediately in front of the SOnié line
approaching or reaching the wall, and it is thought to be comparatively
ghort. In the second case the effective upstream length of the boundary
layer is large and therefore the relastive change of boundary layer thick-
ness over the critical part of the wall might be small.

A simple and adequate way of checking the applicability of the
approximations adapted might be to investigate in some detail the bound-
ary layer perturbation at choking for a typlcal test body. The case of
rotational symmetry should provide a clean experimental setup. If a satis—
facfory correlation is established between the theoretical and experimental
values of the choking Mach number Méh’ it might then be possible to adapt
measurement of M, as a routine method for determining the "effective"
boundary layer thickness €1 6 in any test section (instead of measuring
at several positions the Mach number distribution of the wall boundary
lsyers).

Only little information having been given earlier in this study on

the properties of wall boundary leyers occurring in practice, a brief
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éemment might be appropriate here. The decisive factor for the relstive thick-
ness of a natural turbulent boundary leyer is the ratio of upstream length to
the lateral extension of the test section, current differences in Reynolds
nunber being only of minor importance. Taking the semi-height of the test-
section as the unit of length one finds the thickness likely to have a value
between 1/20 and 1/10. To obtain thicker boundary layers some'disfurbing
deviece has to be introduced in the upstream part of the boundary layer (see
References 3 and 35). It is to be required from the device that the boundary
layer produced has a very thin low-speed wall layer and an almost constant
value of £ § over the critical part of the wall, that the streamlines in
the boundary layer are parallel to the test section, and that'the flow in
the test section is steady and uniform. It seems conservative tc‘éssume
that one can design such a device to increase 21 & by at least aﬂfactcr of
two. However, for a given tummel the upper limit for 81‘6 may be set by
the power available; since the pressure losses of the tummel flow are bound
to increase with the boundary layer thickness. A careful redeéign of the
diffuser for minimum pressure loss may be necessary to reach reasonably high‘

: 2 .
values of 7 S an§ Mb

5.2 \Interference problems

In the Introduction two fundamental problems were formulated to be the
subject of any study of the influence of wall boundary layers in transonic
test sections, and it is thought proper to repeat them st this point:

I. To what extent is the influence appreciable for those boundary

layers which exist in current tummels, and how can corrections
be determined? |
II. 1Is it possible to choose the wall boundary layers to give a con~

giderable reduction of the wall interference, and how can the
proper choice be accomplished?
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As ‘far as linear theory is applicable for the determination of wall cor-
rections, the results of Chapter III should provide the answers to both
questions. With the exception of 1ift corrections in three-dimensional
flow all corrections were found to decrease rapidly with increasing bound-
ary layer thickness for the free-stream Mach number Mo approaching one.
Ag typical figures may be quoted that the boundary layer thicknesg found
necessary for reducing the corrections by half is of the order 1/5 (the
gemi-height of the test section having unit length) at Mo = .0. 85, and of
the order 1/10 at M_ = 0.93.

Iet us begin with Problem I. Since natural wall boundary layers
usually will be slightly thinner than 1/10, the boundary layer influence
on the corrections thus is likely to be relastively large only at_?{lécﬁ
numbers greater than M L, = 0.9. However, although it should not be dif-
ficult to ‘specify conditions under which accurate knowledge of the linear
corrections for the boundery layer influence is important, the situation
might in meny cases be as follows. To make certain that useﬂ:i data are
obtained at the highest Mach numbers to be tested, the model is chosen
so small that linear correction theory for zero boundary layer thickness
still is valid. At those high Mach mumbers where the relative comtribution
from the boundary leyers is large this means very small models, and the
corrections might then be so small -~ compared to the accuracy of the measure-
ments -~ that they are negligible. |

Now, the situation described calls for the following comment, which
may well contain the final answer to Problem I. As was noted in Section -
3.5 the wall boundary layers do not only work to decrease the corrections
but also to extend the zero-interference region at the quel, thus permit~
ting larger models to be used. In fact, the results indicate that the bound-
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ary layer thickness giving the largest zero-interference region is approxi-
mately the same as that reducing the corrections by half. If advantage
is taken of this fact by choosing a larger model, one may arrive at a
situation where the corrections for the influence of the wall boundary
layers are no longer negligible.

The comment just given may also contain an answer to Problém IT as
far as linear correction theory is concerned. When choosing the boundary
layer thickness to minimize the wall interference for a giv;en model one
should try to reach as high a value as possible for the corrected Mach
number My without violating the conditions for linear theory to be
applicable. It seems reasonable to assume that the optimmm .'bhick\ness is
approached by increasing Mo until the limit for linear theory is reached
while adjusting simultaneously the thickness to make the regiom of zero
interference as large as possible. The data of Section 3.5 indicate
that for Mo7 0.85 the optimm thickness for a natural boundery layer
is not greater than 1/5. How much M, can be increased for a given model
by a proper choice of the boundery layer thickness (or how much the size
of the model can be increased for a given meximum of M, ) is a problem
for experimential investigation.

leaving linear theory we have material for a discussion of Problem
IT only in the case of choked flow. In Chapter IV the application of
gimilarlty considerations to the basic sonic solutions of Guderley et al.

‘mede it possible to formulate vague conditions for the choked flow at the
model to be interpreted as corresponding to unbounded sonic flow (M_= 1).
The analysis indicates that the maximum model size permitting this inter-
pretation might be increased by choosing the thickness of the wall boundary
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layers properly, although no conclusion can be drawn as to the gain made
possible. Furthermore, the optimum thickness seems to be well within the
region of practically avellable boundary layers. It is only in the case
of plane flow, however, that it has been made probable that the results
obtained apply to models of reasonable size, the three~dimensional analy-
sis possible applying only to very small models. A somewhat more refined
approach, involving small perturbation analysis of the basic potential
along the lines followed by Guderley in Reference 21, may ﬁravé useful.
In any case, considerable experimental work will be required to make
possible an optimum choice of model size and wall boundary layer thickness
at choking. |

The attitude taken in defining the optimm wall boundery layer in
the sense of Problem II in the case where linesr correction theory is
applicaﬁle as well as in the case of choking may be described as the
principle of minimizing interference rather then corrections. If an ex-
perimental investigation of the choking cese proves successfﬁl the next
step would be to look into the range of intermediate Mﬁch numbers where
no reasonably simple theory is available. One would the, following the
principle stated, try to establish criteria for the model size and the
boﬁndary layer thickness, which would ensure that to & given unbounded flow
field of Mach number M, there always corresponds z tumel flow field with
approximately the same pressure distribution at the model. Still in ac-
 cordance with our principle we could then be perfectly satisfied to know
that in the intermediate range the mapping between the two families of
fields is one-~one, the actual magnitude of the corrections being of no
greater importance since they are limited to the narrow range determined
by the known corrections at the endpoints of the intermediate range.

To conclude this discussion of interference problems, it should be
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- noted that although the quantitative analysis of the present study has
been applied to plane and circular test sections only, there is reason
to believe the results for the circular test section to be qualitatively
valid also for other three-dimensionsl test sections. This is so, since
at transonic speeds the perturbations decay only slightly in transversal
directions, this fact constituting an averaging process of fhe perturbae
tions over the cross section of the tunne1+. Finally., the( linear theory
of Chapter III can easily be extended to provide precise infox;ma'bi‘on for
rectangular test sections (an approximate analysis of the boundary layer

flow in the corpers may be necessary).

5.3 Outlook

In the preceding paragraph we have discussed problems associated
with the use of thick wall boundary layers in closed test sections as
a means of increasing the largest model size permitting tests in the
complete range of subsonic Mach numbers (including choking)s The prob-
lens were ‘seen to be both many and complicated, and thus the following
question arisesi in a natural and unavoidable way. Would it not « for
the purpose specified - be simpler to use the modern technique of slot-
'béd ws;lls (on which data recently have been made publie), thus, in addi-
tion, getting the possibility of performing tests at low supersonic Mach
numbers? In the opinion of the present author the answer will in most
" cases be in the affirmative, although under special circumstances, as
for example where an existing wind tumel does mot provide sufficient
space for a redesigned test sections it could have been préferable to
use thick boundery layers. Therefore many of the pro'blems just dis-

cussed may not be worth while being pursued any further.

*In ‘Section 4.2 essentially the same argument was used to extend
results for bodies of revolution to arbitrary slender bodies.
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However, even when using a slotted test section, the influence of
the wall boundary layers may be important. One would for example expect
that the slot area to be used depends upon the thickness of boundary
layers present. When using halfmodels the boundary layer at the reflec-
tion plate might cause trouble at transonic Mach mubers. Vhen making
tests with oseillating models in closed tumnels the wall interference
may become very large even for low frequencies if the Mach number is
close to one (see References 31 and 32), and it seems likely that in &
slotted test section the same phenomenon of resonence may occur even
when the interference at steady flow is negligible. If this is the
case the wall boundary layers are likely to form an importaﬁt part of
the interference picture.

The examples cited define problems that should be investigated
experimentally. They do also define theoretiesl problems which could

be treated by methods similar to those developed in the present paper.
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APPENDIX A. LIST OF SYMBOLS

local speed of sound; equation (2.3)

characteristic model length In streamwise direction;
Figures 6 and 11

parameter of basic solutions; equation (4.9)
equations (3.17) and (3.32)

form parameters of models; equations (4.11) and (4.13)

derivative with respect to position of zero-interference
point; equation (3.14)

form parameters for jet boundary layer; equation (2.28)

odd and even parts of wall pressure distribution;
equations (3.18) and (3.33)

equations (4.5) and (4.8)
Fourier kernels for £ 3 equations (3.19) and (3.34)

equations (4.15) and (4.16); superscript oo indicates
upstream values as defined in equation (4.17)

odd and even parts of ¢ oo’ eduations (3.8) aﬁd (3.24)
Fourier kernels for g ; equations (3.15) and (3.30)

Regions of undisturbed flow in test section: Figure 1

odd and even parts of ¢ s equations (3.10) and (3.25)

equation (4.28)

wave number in Fourier trensform with respect to x;
equation (3.15)

coefficlents for optimum boundary layer thickness at
choking

coefficients for & I

= In=2
M

Mo

Mach number of tunmel flow; Figure 1

Mach number of unbounded flow
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choking Mach number

derivative in direction of inward normal

= 4/5 for plane flow, and = 4/7 for three-dimensional flow;
equations (4e4) and (4.8)

pressure of perturbed flow

pressure of undisturbed flow

radius perpendicular to x-axis; Figure 5
=f2+y2 or =§2+r2

radial coordinate of streemline far upstream
density of air in undisturbed flow

arc length on 13 Figure 2

equations (3.17) and (3.32)

components of perturbation veloeity; equation (2.2)
velocity of undisturbed flow; equation (2.1)
Cartesliasn coordinates; Figure 1

upstream coordinate of streamline

engle of attack of model in test section end in unbounded
flow respectively '

thickness of wall boundery layer

well corrections; equation (3.1)

lateral extension of regions I and II as shown in Figure 13
form parameters for wall boundary leyer; equation (2.4)
ratio of specific heats; equation (2.1)

cylindrical surfaces bounding test section; Figure 1
equations (4.4) and (4.8); subseript o indicates sonic line

= 02&16 or = 02( &18-1/2 2262) 3 subseript o indicates
value giving deformed wall of zero slope at sonic line; Figure

curvature of [’ 15 equation (2.15)



coordinate normel to boundary with © as unit of length;
Figure 2

density of air in perturbed flow; equation (2.2)

r{uo(m%

relative thickness of model; Figure 11

§ (%,¥752)s {(xs1se) perturbation potentials; equation (2.7); subseripts
' 00, 0 and w as defined in equation (3.2)

¢ (xs58)s P (xy¥s8) ( per!);urba‘bion potentials; vequations (2.17)5 (2.19) and
2:20

1/7 P’ ‘yﬂR basic perturbation potentials in unbounded, sonic flow;
equations (4¢5)s (4.8) and (4.9)

P o basic perturbation potentials at choking; equations (4.15)
P R
and (4.16)
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APPENDIX B. UNIQUENESS THEOREMS

The a.ppiica'bion of the approximate boundary condition for a thin wall
boundary layer to the linear subsonic flow problems of Chapter III raises
the question of uniqueness of the solutions found. Two simple uniqueness
theorems will therefore be given, one for plane flow and another for the
flow in a circular test section.

The following terminology will be used in the case of plane flow. In

Euclidean space with Cartesian coordinates xy +there is an open rectanguler

region G. The four gides, y

making up the boundary /7 of IO,V YY, yu
G, are parsllel to the axes, T Ty 1-, o

- G +
the two sides parallel to the X
° )
T o

x-axis being denoted by /7, | /,/{///.[,//7'/////_/_/ — Y,
and Fu with y,>7, (see figure), =T+ Iy + T+ r'u o

the two others by 7 end /’7*.
By 52 ve denote the class of functions which are harmcm:'tcj in G and Twice
continuously differentiable in G + /%

_Theorem I : If ¥ (x,y) belongs to the class H° end satisfies the
following boundary conditions:

(1) 4,=0 on r_endf,
(ii) Llpy - A,QLPXX on [10
(114) o = A on 1y

where 4 4 and A  are non-negative constants, then ¢ 1s & constant in G.

Proof: The following identity is valid in G

Z 2 —a -5 9 . . vy
R L R AL LALE ML ALY



if < has continuous third-order derivatives, as is the case for 9” belong~
ing to H (the last term then dropping out). If </ galso satisfies the con-
ditions (i),.(ii) and (iii) integration over G gives:

(4 ety [ it | 4o
c y fu

Since &, O, A, = 0 this is possible only if § _ =pr7 =0 4in G, i.e.
if ¢ is a linear function of x and y. The boundary conditions permit <
to be a constant only, end thus the proof is complete.

For the circular test seetion we consider in three-dimensional Euclidean

space an open region G bounded by a surface of revolution [, consisting

oi‘apa.r’c/"w of a cireular cylinder oo
and of two plane surfaces /7 and /7 Fw |

(see figure) perpendicular to the 5 G | X
generators of the cylinder. In- I~ T, T4+
trédueing cylindrical coordinates TTTTTTTATT T

X700 with the x-axis coinciding r-r _+ T w + 1"4_

with the axis of symmetry of l"w. we consider the class H2 of functions
4 (x,7,8) which are harmonic in G and twice continuously diffevemtiable
in G + I (in the sense of the Euclidesn metric). We then have the follow-
ing theorem. |

Theorem II : If f»/ (x»1,0) belongs to the class e and satisfies
the following boundary conditions |

@) f,.=0 on _eandr ,

(11) {,=4ad _ +BYoon M, A and B being non-negative constants,
then 7” is & constant in G.
Proof: For A =B =0 +the theorem is well known; 1t expresses the fact

thet a2 harmonic function in G with zero normal derivative at [ is a econstant.



We may therefore assume that A + B> 0. Integration of the following
identity

2 2 2 z 2 2
AChls it e fo)+B (fot Prgt e 45 =

=5l Al e = UL 4B, o) - [ (4 B ¢
F/ae[ 9, Gyo* Brid A 6€<x7}+(4ﬂx+5§%91(%+ ,,‘+rqﬁr+_pLz_7ﬂeg

over G gives for ¢ satisfying the requirements of the theorem 'bhe follow=
ing result:

2 2
M[A(%XZ‘L %PZ‘FFIZ“%;)“B(%G" r;*;%‘éﬁeg)} rdidrde =
G
2
= a/ -:7’
I, g

For A>0, Bi= 0. this is possible only if # has the form¥= Dx + £(r,0).
But cenditions (i) and (ii) then require D to be zero and f tobea
eonstant (since it is a barmonic function in G with zerc normal deriva-
tive on [7 ). ‘ ‘

For A =0, B>0, ¥ mst be of the form ¢ = EO + £(x,r). For/to be
regular at the axis E has to be zero, and furthermore £, having zero
normal derivative at /7, has to be a constant. ‘

Finally, for A4>0, B>0, ¢ takes the form ¢ = Dx + E0 + f(r), and
the same arguments as above require D and E to be zero and f to be a
constant. This completes the proof.

The theorems given apply to test seetions of finite length. To extend
them to the case of infinite length one has to restrict oneself to harmonie

funetions having square~integrable second derivatives in G + [ .
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APPENDIX C. AN APPROXIMATE BOUNDARY CONDITICHN
FCOR SUPERSONIC FLOW

The approximate boundary condition of equation (2.23), expressing
the influence of a thin wall boundary layer on the outer flow, is ;aot con-
venient when the free-stream Mach number Mo is supersonic (see for example
Reference 33)s One would rather have a condition where the coefficient of
4.7 - is non-negative and the coefficient of <—P ss still is negative. It
is possible to achieve this if Mo is sufficiently large by a slightly
changed application of the technique of paragraph 2.5. As a matter of fact
the coefficient of &xx can be made zero. |

The physical background of this application is roughly the fc;llbwing.
A positive Mach number perturbation means that the mass flow denSi'by is in-
creased in the subsonic part of the boundary layer and decreased in the
sup.ersénic part of the boundary layer. If the supersonic pai‘b is thick
enough these contributions might cancel, thus leaving only a small ﬁet con=-
tribution due to change of mass flow density in boundary léyer.

We obtained the subsonic boundary condition by subst:’;tuting for the
perturbation potential ¢ (x,»,s) within the boundary layer a potential ¢,
which is an spproximate continuation up to the wall of the potential outside
the boundary layer by means of the differentisl equation (2.18) valid there.
In the present case the continuation will not be carried as far as the wall
but only up to a cylindrical surface within the boundary layer.

Let this surface be given in the form

Y =D(S) ; 0% V<) ' (C.1)
Integration with respect to o between )= 0 and /= D of the differen-

tial equation (2.16) for ¢ gives
v=1: [TLSK 2¢ _

“me on

Xzsj”(/ véK)/—""ﬂ’dv [ sj (/+v5)<) ]+0(5)(C.2)
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the non-linear transonic term being dropped. Integration of the equatiocn
(2.22) for & between V="V and v =1 similarly gives:

7. D¢ -2 8K /_
V=V (l-’p&}{}jﬁ—= 2 aai’ oW 6} (1-v§k a’v—
. (c.3)
-2 [ ]+o(&3

Combining this with equation (C.2) and using the estimste ¢ -¢ = 0(62) one
obtains '

,-\
o
o~
x
Vi)
Sy
h
1
[NV
~
S

é[E,—é"‘é}‘fz-(MDZ__”(U'_%éX))z)]_ (c 4)

_ ais_{g—?-é[f, +58KE vV ¢ -2/—-6 kj/z]} +0(8%)
It is seen that for M  sufficiently large the coefficient of ¢ e Wil
be positive for i, < 1. The simplest choice of »>, is the cne making the
coefficient zero:
Dilfz'_, 2/,3;4,(/_42’—52)5 ozv=l (C. 5)
For the values ¢ 1= 1/2, ¢ 5 = 1/5 and X =0 this choice is seen to be

possible for M 2y/ 1.5 =~ 1.23. The wall curvature term is zero for M =1e5.

Introduction of U so determined into equation (C.4) gives:

= . 29| 24 KE25% iz 2
V=Yl an“/%l-/{as[ ( +4,° 55+M2/ 027}455)4,

(c.6)

+}(£5—S—(§—§L’-Ma £, §>} F0(8%

This expression then, is proposed to be taken as a boundary condition for the
perturbation potential of the supersonic outer flow, the potential satisfying
a differential equation with constant coefficients (M = Mo) up to the cylin-

drical surface 1= « As it stands the condition looks rather complicated,

but in the practically importsnt case of negligible &°-terms it tekes the
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following much simpler form

= 24 _ A T A R~
=y —a.—n'— fzé’ /\402_/ (952-’- s 25 /¢ (0'7)

Since O £V £y, one is led to the conclusion that, except for cross—
flow effeéts, the influence of turbulent wall boundary layers on a supersonic
outer flow is not large, unless the Mach number is close to one. : It should
be noted; however, that according to the basic assumptions introduced, the
approximate boundary condition is valid only if the thickness & - withoub
being too small compared to the streamwise length of the perturbed region=—
is small compared to the small-secale length of the pressure gradient. For
example, it can not be applied in case of shock waves reaching the boundary
layer, although in this case experiments indicate the qualitetive conclusion
of small influence to be valid for weak shocks (Reference 34). o
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Figure 15. Boun&ary layer influence on blockage correction for a
body in plane flow (linear theory, ¢ = 1/4).
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Figure 16. Boundary layer influemce on blockasge corrections at two
different representative points for two different finite
bodies (¢ = 0.25 and 0.375) in plane fiow (linear theory).
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