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ABSTRACT

An analytical investigation was made of incompressible potential
flow fields in which the velocity componentis are homogeneous of order
zero. Superpositions of such fields were then made and expressions were
derived for the flow fields associated with constant=strength source
and vortex sheets of finite extent,

The constant strength source-sheets were then a.ppliéd to the
construction of aerodynamic models of thin non-lifting wings of polygonal
planform and airfoil section,

By use of the constant strength vortex-sheets, several approximate
aerodynamic models were constructed for the determinaition of the pressure

distribution on thin lifting wings at small angles of atlacke
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NOMENCLAIURE

a,byc real constants

i,jsmyn,s indices

P - %l pressure coefficilent

o] free stream velocity

r \J x2+y2+22 = radial distance from origin in xyz space

t wing thickness per unit chord

u,v,W complex velocity functions

u R1(U); the real perturbation velocity component parallel to
the x axis

v R1{V); the real perturbation velocity component parallel to
the y axis

W R1(W); the real perturbation velocity camponent parallel to
the z axis

u In(0)

vt In(V)

W Im(W)

X,¥s% Cartesian coordinates in physical space

o wing angle of attack

€ (y+iz)/ (x+r)

g Rl{(¢) = y/(x+r)

7 In(e) = z/(x+r)

A dimensionless spanwise coordinate

e dimensionless chordwise coordinate



i. INTRODUCTION

This work is concerned with the properties of those solutions to
the subsonic three~dimensional potential flow equations which are homo-
geneous of order zero,

Donkinl has shown that the general homogeneous solution of order
zero to the Laplace equation may be written in the form

S = F(e) + G(Z) 1)

y iz

vwhere € =
x+ [ x2 + 32+ 2°

€ is the complex conjugate of ¢ ,

and G and F are arbitrary functions,

Jones2

and Lamperb3 have studied subsonic potential flow fields
iﬁ Wﬁich the velocity components (u, v, w) are homogeneous of order Zero,
and by superposing certain of these fields, were able to obtain flows
satisfying certain of the boundary conditions for a finite body, Their
basic solutions were improper however, due to the presence of extraneous
sidewash and/or downwash discontinuities s and as a result some of their
finite body solutions fail to satisfy the correct boundary conditions
far upstream of the body.

Flow fields in which the velocity components. are'homogeneous of
order zero, so-called ‘conical' flows, are characterized chiefly by the
appearance of sheet disturbances (e.g., source sheets or vortex sheets)

which cover infinite planar sectors in space, and line disturbances (eegey

line sources or vortices) which have a linear variation of strength and



extend to infinity, Their direct physical significance is questionable
since the absence of a characteristic Jength permits no insight into the
nature of the flow at 'large! distances from such disturbances,

It can be shown however, that under certain circunstances, proper
superposition of such flows, in which a characteristic length is- intro-
duced, reduces the extent of the disturbances and allows a discussion
of the flow at large distances from such disturbances. In these cases,
the appropriate boundary conditions can be applied,

In the present itreailment, complex conical !'velocity functions?
(U, V, W) are defined, the real parts of which represent the physical
velocity components (u, v, w). Relations goveming U, V, and W are
derived, restrictions are discussed on the types of singularitieé these
functions may have, and technigues are developed for the superposition
of conical fields to obtaln non=conical, physically significant flows,
Several specific conical fields are discussed, and superpositions of
these fields are made to provide examples of three-dimensional fields of
interest to the aercdynamicist. Two of these examples afe then used to
construct models of 1lifting wings and techniques f_or handling these

models are discussed,
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II. THE CONICAL VARIABIE €

Before proceeding to a discussion of specific conical solutions
to the subsonic flow equations, it will be of interest to examine certain

features of the conical variable

Referring to Fige 1, we have

2 2
‘e’a u_ﬁ"_

arge = tan™r @) =@ ; 0P <27

y

Thus, considered as a mapping of the xyz space onto the
€ =& + 177 plane, half-rays emanating from the origin in the xyz space
are mapped onto points in the ¢ plane, Furthemore, for each half-ray
there exists a unique pair (8 , ¢ ) for which 0< B <7 and 0S4 < 275
and consequently, since tan g is single valued on this range, each half-
‘ray is mapped onto a unique point in the € plane, The inverse transfor-
mation |
B = 2 tanYe| OsB<a

¢ = arge 0= P< 297
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is one~valued by the restricted ranges on 8 and  and consequently for
every point in the ¢ plane (including the point at infinity) there is a
corresponding half-ray in the xyz space., Therefore the transformation
is one~to-one in both directions in the sense that for each half-ray in
xXyz space there corresponds one and only one point in the e plaﬁe, and
conversely, for each point in the e plane there corresponds one amd
only one half-ray in the Xyz space, In particular it is noted (Fig. 2)
that

(a) The plane 2z = 0 is mapped onto the real axis of €

(v) The plane y = O is mapped onto the imaginary axis of €

(¢) The plane x = 0 is mapped onto the unit circle in the ¢ plane.
The one-to-one nature of the transformation allows, in the folloﬁing 3
the treatment of the variable € indiscriminately as representing either

a point in the complex plane or a half-ray in the xyz space.



III, THE COMPATIBILITY RELATIONS

Suppose now that U(€ ), V(€), W(€E) are analytic functions of € ,

and that they are separated into their real and imaginary parts as

U(E) = u(%,?])-biu*(g’,?])
v(e) = V(§,7)+iV*(§,77)
Wie) = w(g,n7)+im(E,7)

Then by Eq. (1)

where

and we ask under what conditions (u,v,w) may be interpreted as the

velocity components of a three-dimensional incompressible field, A

necessary and sufficient condition for this is that

20 , 9V , W _

EE ay =Y

=28 . 2v

oy 9%

(2)

20 . 2

Q% X

=2V . ¥

0% Iy

The real parts of these equations are the physical conditions of irrotation-
ality and continuity. The necessity of Eqe. (2) is due to the require-
ment of analyticity on U, V, and W, and may be shown by a direct appli-
cation of the Cauchy-Riemann equations in the € - plane to each of the

complex velocity functions U, V, and W, separatelys
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Since VZU b V2V = V2W = 0, and since the velocity functions
are homogeneous of order zero, the first expression of Eq, (2) is satisfied

if the last three are, Suppose then that

20 _ v
y X
Then
AU dv %
de oy d€ ax
but
o€ z*iz €
——— 2 e (1 — B -
X (x+r) r r
and
€ . 1 _ (y+iz)y
3y X+ (x+r)2r
- - 1 2(y2+ixg>-2r(x*r)J
2r | (x+r)2
.. 1 gy"’+zm>-<r2-y2)~(r2+am)]
2r (x+r)2
- - 1 12+2iy2)-(x2+22)-(r2+2m)}
21' L (x*r)z
S 5 -_(xi'- :'.z)2 -_((:ac-*r)2
2r (x + 1)
. _g2-1
2r
30U _ IV
Therefore 33 =% implies

or



du _ 26 dv
“d€ £2-1 d¢
Similarly, since
€ _ _i _ zly+iz)
2z X +r r(x + r)é
_ A4 28z (y + iz) + 2r(x + v)
2r | (x + )¢
. A (Ziyz-zz)+(r2-zz)+(r2+2xr)
2r | (x + r)é
. il yn -+ P ey®) ¢ (2o 2mr)
or | (x + r)®
B
- i (y+iz)2+(x+r)2
2r | (x + r)¢
i
= 5= (€2+1)
the condition
2U _ W
o0z - oX%
implies
dy _ 2i€  dw
¢ €21 d¢
and
2Y _ 21
232 QY
implies
dv . €2-1 4w
de €Ty 1 de

Since the derivatives %%: €., Qaf.-z_ are single valued the above

o¥

|



arguments may be inverted, and it may be concluded that a necessary and

sufficient condition for the fulfillment of Egqs. (2) is that

au 21¢€ daw

(3)
au 2€ dv
e €2 -1 dE

These relations are referred to as the compatibilitj relations
and they replace the irrotationality and continuity equations, Egs. (2),
for incompressible conical flow, By use of the Prandtl-(lauvert trans-

formation they may be used for linearized subsonic flow,



IV. OSOURCE FIELDS

We now proceed to a discussion of a basic solution to Eq, (3)
that may be interpreted as a particular distribution of sources in the

xy plane, This basic sclution is

€ €= €
U - o “o (3
1(€) Me2+) log(éd—..].". )
0
2 . € =€ i
Wo Eo =~ 1 o
Vl(E) - = —6—0-2-:-; log ("'E:—':-je_i:-) + log €J (4)

[

Wl(E) e e—— 3

v, (€ +L£)(€ - &)
7 log

where € o 3d W o 2re positive real constants, The associated real

velocity field is

2w € €~ €
- - o) o )
Yy Rl (Ul) 7@ 2 D log P
° €
[s)

R (v, = Yo |G- ' (4a)

n O A = reuh heu i A e
Eo'
w, (E+&) (€ €
wl = m_(wl) = _7,;_ arg 06 ]

In order to make w, single-valued, the € plane is cut as shown in Fig, 3a.
' The corresponding cuts in X,y,% space are shown in Fig. L, Since U and
vl are single valued, it is nol necessary to construct a specific cut
systen for Ul and Vl, however, a convenient system of cuts for these two
functions is shown in Fig, 3be These cuts are not significant in the
real velocity field and are deleﬁed from Fig. It for claritys Use has

been made of the general relation
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1
70 M

80 that the half-ray € = - -g'- is the extension through the origin of
)
the half-ray € = €°.

If € is made to approach a point on the cut to the right of the

origin from atove, it is seen from the expression for w in Eq, (ha) that

lin w w
€~ ¢ +1i0 °
0 <& <€q

whereas if approached from below

lim w = -y

€ > = ai0 °
0<Cg( €o
The same values of w occur on the cut to the left of - —é‘-—- s and else-
o

where on the £ axis w has the value zero.

The field of Eq. (Lha) is then the field associated with a uniform
source sheet of strength W, distributed over a double-secior in the xy
plane, This field is represented schematically in Fige 5, where the
valves of w are shown in the xy plane, approached from above,

We shall refer to this particular field symbolically as Fy(x,y,z; €,),
where Fl may be thought of as a complex vector with components (U,V,W),

Formally, fields of the type Fl(x,y,z; €°) may be superimposed to
produce fields of finite extent, Such a superposition is one which gives
a triangular source~sheet and may be expressed as

Gl(xﬂhzi QO,C) = % [Fl(x,y,z; eo) - Fl(x"c;Y"b’zi Eo) )

& Fl(x-c,y-b,z;l) - Fy (x-c,y,251) ]

where ¢ is a real positive constant and



11

. 2€,c

This superposition is shown graphically in Fige 6, where the values
of w in the xy plane, approached from above, are given for the component
fields and the resultant field. The values of w on the xy planeb approached
from below are the negative of those showmn.

It should be noted that b as defined above may be either
positive or negative, depending on the magnitude of € , and in
particular, = Gl(x,y,z; "E]:' s €) is the reflection of Gl(x,y,z; € 45¢)
across the x-axise

The question is raised at this point as to whether such a
superposition is proper, since the function G(x,y;z;&;o, c) is not
strictly defined along the half-rays associated with the singularities
of the conical field Fy. (These half-rays are indicated by the dashed
lines of Fige. 66.) Certain general statements will be made with respect

to this question in the following section .
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V. SUPERPOSITION OF CONICAL FIELDS

The general requirement in superposing conical fields is the
reduction of disturbances of infinite extent to disturbances of finite
extents The procedure, as indicated in the formal superposition abové,
is to superpose identical conical fields in pairs, one of the pair being
displaced, in xyz space, from the other along a half-ray that is a
singularity of the particular conical field, Thus the first two conical
fields in the superposition above (a2 and b of Fig. 6) are identical, the
second one (b) being displaced from the first along the singular half-
ray €= EO s and the superposition is a subtractive one,

Consider now a conical field F(x,y,z) = £(€ ) say, and suppose
it is desired to superimpose this field on itself by the procedure
indicated above, For convenience, we shall suppose that the xyz axes
are oriented so that the singular half-ray in which we are interested
lies along the negative x axis, corresponding to € = <, The

superposition may then be expressed as
G(x,y,3¢) = F(x,y,2) = F(x - ¢,¥,3) (6)

or equivalently

g(€ ;35 ) = £(€) - £(%)

| where T (xyy7,2) =  €(x - c,y,2)

= + iz
X + ;;(x-c) + y§ + z§ ’

and the notation g( € 3 § ) is used to emphasize the fact that € and

' are not independent variables, their values being uniquely detemined
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by the specification of the variables (x,y,z) and the parameter c.

The geometry associated with this superposition is shown in Fig,
7, and it is seen that the half-rays € and § intersect at the point
(x,7,2), the € ray emanating fram the origin (0,0,0) and the ¥ ray
emanating from the point (¢,0,0), Now suppose that the point (x,¥,2)
is not on the x axis and that the value of € is fixed, If‘ the point
(x,y,2z) is allowed to move out on the € ray, ¥ will vary continuously,
and it is clear from the geometry that

lim & = €

T oo
€ = constant

If the point (x,y,2z) is on the x axis, there are three possibilitiess:

for y =z = 0z

le x>¢c we have € = § = 0; all x > ¢

2 0<Kx<c wehave € = 0 and § = ;allx, 0<x<¢C

3 <0 we have € = § = ¢© 3311 x <0

It should be noted in comnection with the third possibility, however,
that 7
lim (€ -7 )

Y2 —> 0
x <0

does not exist, for, letting p = y2 + 32 > 03

‘ n . n
Lim €% - 1e™ | = 1im P - P
¥:2 > 0 p~>0 \/XZ"'pz - 1x (x=-c)“4p© = | x-c)
x< 0 x <0 ' '




U

n-(\/xe+p2 + x| )n _ (u(:c»c)2 + p2 +| x=c| )n
i p? -

5

p—>0 P2
X<0
= lim "g"r'i ( xa*pz +1x)t - (:c-c)2 + p2 #Hxecl )
- i

and this limit does not exist for n > 0, For n £ 0O, howéver,’ ‘the
linit does exist and is zero.
It is also of interest to note, in connection with the three

possibilities above, that

la, forx>c¢

in (€/¢&) = lim  (x=c)? + p? + (x—-c)')

p>0 P>0\ (fx"#p2 +x
= £2 [ x>e¢

20, for 0<x <Ke

1m  (€/¢)
p>0

]
(&)

32, forx <90

/ 2 2
lim  (€/¢) = lim (x-c)© + p° ~lx-c| )
p—~>0 p =0 X p© - Ixi
= ( x? + p ) by L'Hospital's rule
P”O Vx—c)

x .
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Retuming to the fields F and G of Bq. (5) it is seen, as a
consequence of the geometrical properties discussed above, that if €

is a point of regularity of £(€), then

lin Glx,y,250) = Lim (£(€) - £(5)) = o0
r—> oo : &€
€ = const.

For the particular case where (x,y,z) is on the x axis, the value of G
is defined as

G(x,0,03¢c) = lim (F(x,y,z) - F(x-c,y,z))

p—=>0 ‘ '
where this limit exists, _

It was assumed to begin with that F(x,y,z) was singular on the
negative x axis ( € =20 ); and since
moeth n>0
does not exist, G(x,0,03¢c) will not exist if the singularity of F on
the negative x axis is in the nature of a pole or an isoléted essential
singularity of‘f( € Yat € =00,

On the other hand if £( €) has a branch poiht at € =0 such that
£(©0 ) can be made to exist by introducing suitable cuts, or if £(€)
has a logaritimic singularity at € = oo , then G(x,0,0;¢) will exist for
x < 0, provided that the proper cuts are introduced.

The case of a logarithmic singularity is of particular interest
and if we put

£(E) = Alog € +£(€)

where f;(€) is regular at € = ©° and the € plane is assumed cut to
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€= oo s along the real axis, say, then for x< 0

a(x,0,03c) = lim A log (E.) + 1lim fl(é) - £,(S ))

p>0 < lads

x<0 €>o0
- X * <

A log (x—“-c)’ x40

Consequently G(x,0,0;c) does exist on the negative x axis even
though the component conical fields are singular there,

The above discussion was carried out for the case of a singularity
along the negative x axis, however the results are quite general and may
be applied to any other half-ray since any half-ray may be made to coincide
with the negative x axis by a simple rotation of the space,

It is to be noted that, in the example given above, G is singular
on the segment 0 < X <c which corresponds to € = QO and ¥ = oo,

This result is general and the effect of superpositions of the type
discussed is to cancel all but a finite segment of the singular half-
ray of the conical field Fo '

A simple construction serves to illustrate the character of a
field obtained by superposing singularities which .are poies in the
€ plane,

Consider a conical field in which one of the velocity functions,

W say, is given by
- . €5
wo(e) = -:_alog(..é._)

with § real and positive, Then
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. A $ $
lim W =3ilim 82 + o(s > = ik

S>0° §> 0 ( € () E
a$ = constant as =k

Now consider the superposition
W, (x,7525¢) = W (€) - W (&)

This superposition is shown in Fig, 8, which is a unifom source sheet
of width he The limit
- 3 1 1
lim Wl ik( = = )

5§+ 0 [
as =k

is the same field as that obtained by

Lim W,  where o= 2tan 1S
0"—)0

ah = constant

since for small §

o

andh =~ ¢ == 26¢

The resvlting downwash field is thus obtained by the coélescing
of the edges of a source~sheet in the mammer shown, at the same time
keeping the total flux (corresponding to ah) fixed, and the result is a
-semi-infinite source whose sirength is a function of x,‘ increasing
linearly from zero at x = 0 to the value ah at x = ¢ and constant for
X > ce In particular the resulting disturbance does not die out for

large values of X,
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As indicated previously, this result is characteristic of
superposition of poles of any order, and consequently conical fields in
which any of the velocity functions have poles can not be superposea to
obtain fields in which disturbances die out at large distances from a body.

Since in general a given conical field will have more than one
singularity, several superpositions must be made in order to provide
proper cancellation of all singularities; however, the linear nature of
the process pemmits the superposition to be carried out in any order,

As an example, consider the field Fl(x,y,ZQ € ) of Eq. (b) and
the superposition indicated by Eqe (5) and Fig, 6: Since the field Fy
possesses only logarithmic singularities, it qualifies for superposition
by the procedure outlined above, Referring to Fig. 6, it is seen that
the combination of (a) and (b) provides proper cancellation along the
singularity € = €o, (a) and (d) provides proper cancellation aiong the
x axis, (b) and (c) provides proper cancellation along the line y = b,
and (¢) and (d) provides proper cancellation along the line i = ¢, Thus
the resultant field (e) is non singular except on the boundaries of the
triangle, and the resultant velocities (u,v,u_r) become arbitrarily small

at large distances from the triangle.
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Vi. NON-LIFITING THIN WINGS

The conical field Fl(x,y,z 3€,)s Eqe (L), and superpositions of
the type Gy (x,¥,%; €yyc) of Eq. (5) may be used to construct fields
associated with a particular class of physically interesting bodies,
They are symmetrical wings at zero angle of attack whose maximum thick-
ness is small enough that the boundary conditions on the surface of the
wing may be replaced by houndary conditions in the chord-piane of the
winge

Although an infinite superposition, or integration, of such
fields may be used, in principle, to obtain the field associated with a
thin wing of arbitrary planform and thickness distribution, the technique
is particularly suitable for determining the flow about thin wings of
polygonal planform and airfoil section, such as are common in much of
present day supersonic wing designe. The subsonic characteristics of
such wings are important, since invariably these wings must aécelemte
through the subsonic regime before attaining supersonic speeds,

To illustrate the technique, consider the superposition

GQ(X:Y:Zi € o9 62,0)
G (7525 €50) = O1(%,7,35 2= 50
- l(x"c]_:Y:zi 61:0"01) + Gy (x"cl’Y:zi -é'i- » c"cl)
* Gy (x-cp,¥,25 €9, c-cz) - Gy (x=cp, 7,23 _61-._ , c-cz)
where 2
0 < €g< 6y <1
and 2
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260 c

1- ¢ °
(o]

b =

This superposition is shown graphically in Fig. 9, and it is
seen that the resulting planform is that of a symmetrical delta wing
with a re-entrant trailing edge, and that the values of w on the surface
are those associated with the perturbation field of a thiﬁ double=
wedge airfoil section with a leading edge half-angle equal to 2.2 where
q is the free stream velocity. The real velocity components of the field

G, are therefore the perturbation velocities due to this delta-wing, and

2
in particular the x-component, u(x,y,z) evaluated on the wing is
proportional to the pressure on the wing, according to the general
linearized wing theory.

Since the field for this wing was determined solely by super=-
positions of the conical field Fy(x,y,z3€,), given in Eq. (L), the
pfesSure on the surface, in any actual case, may be computed by super-

imposing values of U, calculated fram Eq. (Lha)e

As another example, consider the field
GB(Xsy:zi 603‘31302) = 3 [Fl(xsy’:zieo) - Fl(x‘01,Y‘b:ZS 60) |

(1)
- Fl(x-cz,y,z; €°) + Fl(x-cl = Co,¥=by2; 60)]

where, as before,

- 2%
1
1-€2
and ©15C5s and €, are real positive constants.

This field, illustrated in Fig. 10, represents the flow past a

swept thin wedge of finite chord and span, followed by a constant
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thickness, infinite chord plate,

The reflection of this field across the x axis is given by

-G (st:zi—L;c c,)
3 €, ¥ 2

and the superposition

- - . - . 1 ‘
GB(x Cq5Ys23 € 0,01,02) * 33(1‘ 03,Y:Z:-é-;, €13y,

provides the perturbation field for a swept, consﬁant chord m.ng with a
modified double~wedge airfoil section (Fige 11)s As before, the pressure
at any point on the surface may be calculated by a superposition of values
of u, computed from Eq. (ha).

Values for the pressure coefficient along the mid-chord line
and dlong the half-panel chord=line are plotted in Fig, >12 for the wing

above, for the case

Gl 7"‘ 3 \/_3—;‘32 = -3—%]-303 and €Q= \/-—%—-

This corresponds to a sweep angle of 30° and an aspect ratio of 6,
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VII. VORTEX FIEIDS -« CONSTANT PRESSURE WINGS

We now turn to a more interesting, however, much more complex,
area; namely a discussion of lifting wings of zero thickness.

As in the non-lifting case, the boundary conditions on the flow
will be linearized, That is, the angle of attack :is assxﬁned émall
enough to allow the boundary conditions on the wing itself to be satisfied
in the plane of the wing (i.e., on the xy plane), and the pressure
perturbations are assumed to vary linearly with the sireamwisest velocity
perturbation, u. #s a consequence of these approximations, the stream-
wise velocity perturbation u must be an odd function of z, as shown by
general linearized potential wing theory, and consequently u must be
zero on z = 0 except on the wing itself, where it will be of the same
magnitudé on top of the wing and on the bottom, bubt of opposite signe

A further consequence of the linearization of the boundary
conditions is that the vorticity vector must lie in the xy plé.ne and,

since wu = O off the wing, this implies that, off the wing,

v
<

= 0 for Z

w

L]
|
o

That is, the sidewash, v, in the wake is independent of x. If, then,

v is a function only of the conical variable € , we must have

x de * ox r d

onz =90

# In this discussion, the wing will always be assumed to lie
tin' the xy plane and the streamwise direction will be assumed
coincident with the positive x axis,
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and consequently

in the wake (z = 0).

The results above may be expressed in general as:

In any conical field, the wake due to a lifting surface has
constant strength (vorticity) in both the spanwise and streamwise
directions. |

As a consequence of this, no finite superposition of conical
fields can yield a flow in which the wake duve to a 1lifting surface varies
continuously in the spanwise direction. _

The first of these statements leads to the interesting conclusion
that the field associated with a lifting sector that possesses both a
leading and a trailing edge (Fige 13) is not conical, The reason for
this is that the integral expression for the downwash, w(x,y,%),
obtained by applying the Biot-Savart law to the vorticity fieid illus=~
trated, does not converge, Attempis to describe such a field with
conical variables result in the appearance of singularities elsewhere
in the flow, and it is this fact which led Lamperb3 to the erroneous
results mentioned earlier,

We now consider superpositions of conical fields which may be
used to approximate the real fields which were ruled out above.

Consider first the conical field F2(x,y,z 3 € ) defined by

€=-€,
E+€°

g
Uz B~ o 1og
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Vo= e [ (€2-1) 108 (€2 - eo"’)+2loge]

where € is a real comstant, 0 < Eo {1, u, is a real positive constant,
and the € -plane is cut from € = Eo to the left through real negative
values of € to co. The logarithm is assumed to have its principal value,
with its value being assumed on the cut approached from above.

The real velocity components are

S €- €,
B = e (o)

% (c2_1 2 2y, 2 ’
V2 T TWC, o ~H el €= € arg €

u
- o 2 2 2
WIS N [( €+ D log |- €| - oe 'QJ
This field was discussed by Lampert and consists of vortex-sheets
in the xy plane as illustrated in Fig. 1L, where the values of u and v
shown are those on the xy plane approached from above.

The superposition
Gy (%7525 € 5¢) = Fp(x,7525 €,) - Fylx=c,¥,2;5 €)

yields the perturbation field for an infinite span swept wing with con-
‘stant pressure everywhere on the surface (Fig. 15). Thé reader is
referred to Lampert's paper for a discussion of the camber distribution
associated with this wing.

In order to construct finite-span wings, it is necessary to

consider the field F3(x,y,z; € o) defined by
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fju (1 -€)) €+q 1+E€ -1
Uy = — > [log (-g‘:g;)+r:—tflog(-g:'z;)
2
iu l1-¢C €

= o ._0O "]
Vg p- ey log (-—--—-e_eo)
W - uo (l-Eoz) € + EO €_l
"3 7 €q 1°g(e-eo) 1_‘6;’2'1°8 (e51)

2 2

€o € -1 '
2 2 H
1- 6 [6-60] o

where the € plane is cut on the real axis between € =1 and € = - 1,
This field consists of vortex sheets in the xy plane as shown in

Fig., 16, The reflection of this field across the x axis is given by
-F3(x,y,z; - €°)

and is illustrated in Fig. 17.

The superposition
Gg(x,¥523 €,5¢) = F3(%,3,25 €,) = F3(x=c,y=by2; €)
where

€, ©

bgw
1-¢€2
O

and ¢ is a real positive constant, gives the field indicated in Fig, 18.

" The reflection of this field across the X axis is given by

"G6(X:Y:ZS - eosc)‘

Now consider the superposition defined by
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6, (55725 €450)

= %‘ Gé(x:Y:ZS Eo:c)
(9)

-3 Gs(x:Y:zi - Eosc)

+ € Gs(x,y,z; i,c)e

This field is shown in Fig. 19 and is the perturbation field for a
constant pressure delta winge The surface shape necessary to support
this pressure distribution is a highly cambered one and is characterized
by logarithmic infinities in slope at the leading and trailing edges
and along the centerline,

The reverse-delta constant pressure wing is obtained by ﬁle

superposition

GS(X’Y’Z; eo,c) = = % Gg(x,y+b,25 € ,¢) + % Gglx,yo32; =€ ,c)

(10)
- €, GS(x,y,zsl,c)

where care must be taken to adhere to the strict definition of b as
given in Eqe. 8. This field is indicated in Fig. éO.

Since any polygonal planform which does not have streamwise
tips (parallel to the x axis) can be partitioned into isosceles triangles
like those of Figs, 19 and 20, these fields may be combined to obltain a
constant pressure wing of such a planforms In such a superposition, the
singularities in downwash in the component flows will cancel except on
the boundaries of and downstream of the vertices of the resultant winge
A more interesting superposition of these fields is discussed in the

next sectione
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VIITI., APPROXIMATE SOLUTION TO THE FIAT PLATE WING

The concepts develeoped in the previous section may be applied to
the construction of approximate models of real wingse

A technique using one such model is essentially due to Fallmer)"’S
and consists of the following steps: |

1, The velocity perturbation u on the wing is assumed to have a

series expansion of the fom

u(—ﬂzd = ‘T“jchg V1= }3 [(aoo + L) )\2 + aoh )P’ + eee) cot-g-

* (a9 * a2 f\z*alh N+ i) sine (1)

+(a20+a22 )\2+a2h }\h+...)sin29

+ OOOQJ

vwhere b is the wing semi-span,

SE:

’

¢(\) is the wing chord at spanwise position y = Ab s

A 2(x = xy )
8 = cos (1~ =) ) I

X =Xy is the chordwise coordinate of a point on the wing, measured
from the leading edge,

This assumed form for u(x,y) is due to B:Lenk6 and essentially represents
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an expansion from the two-dimensional wing solution.

2. The above series is terminated so that a specified finite
number of coefficients 35 remain,

3. An approximate model of the wing is constructed which enables
the detemination of the coefficients aij‘

The technique proposed here differs from that of Falkner in
step 3.

Falkner's model (Fig. 21) consists of a finite set of finite
strength horseshoe vortices distributed systematically over the wing
planform, The lift due to each of these horseshoe vortices is distributed
over a rectangular region in the neighborhood of the vortex and the
resulting pressure is required to satisfy Eq. (11). This yields a
linear relation between the unknown coefficients aij and the undetermined
vortex strengths, The downwash at any point on the model of the wing is
a linear function of the horseshoe vortex sirengths and hence of the
coefficients 33 3¢
the value of the downwash at as many points on the wing as there are

The coefficients aj 4 are then solved for by specifying

unknowns ay ge

One of the chief objections to the model of Falkner is the presence
of concentrated vortices and the associated singularities in downwash
on the wing,

The model proposed here is constructed by covering the wing
planform with a finite number of the constant pressure triangles of Figse
19 and 20, This model does not remove entirely the objectionable features
of Falkner's model, but it does alleviate them somewhat in that the
order of the down-wash singularities (logarithmic) is lower than in

Falkner's case and as a result a more accurate detemination of a given
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number of the coefficients 354 should result.

The procedure is as follows:

1. Teminate the series (Eq. 11) so that n coefficients a5 3
remain,

2. Cover the wing planform with m triangles (Fig. 22) of the
type of Figs. 19 and 20, Overlapping may occur in general, and for a
curved planform the covering is only approximate,

3. Establish a pressure control point on each of the m triangles,

i, The pressure at each of these m control points is required
to satisfy the teminated series, Eq. (11), giving an expression of the
fom

i+j=n
W= > a5 (8, A) k=12, (12)
i=]
j=1
where the summation is over i and j, and (Gk,- /\k) are the dimensionless
coordinates of the k™ control point,

5. Pickann-membered set of downwash control points and compute
the downwash at each of these n points due to the m constant-pressure
triangles, utilizing Egs. (9) and (10). Note that due to the singularity
on the x axis of Figs. 19 and 20, these points must not lie on the

centerline of any of the triangles,

This gives
m
LA Z hgy v 8§ = 1,2,40ey I (13)
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where h s is the downwash at the s™! control point due to the kth

k
triangle with a unit valuve of u, Substituting Eq. (12) into Eq. (13)

yields
m i+j=n
W T By ._Z a;5 £44 (8ys >‘k)
k=1 i=
=1
i+j=n n
cD ay D e, Gy @)
i= k=1
J=1
i+j=n
= A =1,2,0¢¢
E sij 43 indnddidd
i=
=1
where
m
Asij = E By T35 (G Ay
k=1

Equation (1li) represents an n*® order linear system in a3 3 and wg, and
may be solved for the unknowns 2 j in terms of the specified downwash
~on the winge.

This technique was applied to the solution of a low=aspect ratio,
flat delta wing and the resulis were generally unsatisfactory,

difficulties being associated with the fact that the series (11) is not
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directly applicable to the region downstream of the break in the leading
edge,

Falkner was able to overcome this difficulty in his solutions by
the application of somewhat arbitrary and semi-empirical modifications to
the expression for u(x,y) and, although similar modifications could
apparently be applied to the present technique, it was felt that the
development of such procedures was beyond the scope of this work,

Another model may be constructed by approximabting the planfom
of the given wing with a network of iscoceles triangles, as above, the
pressure on each triangle being assumed constant but undetermined., The
downwash field duve to each constant pressure triangle is knoun fronm
Egse (9) and (10) and consequently the total downwash at any point on
the model may be expressed as

n
wixg, v;) = % k5 9y

where uy is the streamwise perturbation velocity on the jth triangle and
hy 4o the influence coefficient, is the downwash at (x;, _Yi) due to the
presence of the :jth triangle with unit streamwise perturbation velocity,
Since hy 5 is completely defined by either Eq. (9) or Eq. (10), a deter-
minant system of linear algebraic equations is formed by specifying the

~value of downwash at n points (x;, y;) on the model:

n
Wi = Z hij uj i =1,2,ooo’n

i=1l

The solution of this system for uy in terms of the specified values of

L then yields an approximate pressure distribution for the wing,
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Attempts to apply this method to a delta wing, using a 16 triangle
network, were not successful, the chief difficulties apparently being
associated with the use of too coarse a network and with the fact that
for any finite n, the model is covered with a latticework of downwash
singularities (the boundaries of each triangle and the lines ema.izating
downstream from the vertices of each of the triangles), It is also to be
noted that the Kutta condition is meaningless for such a technique since
the requirement that the downwash be continuous at the trailing edge
would be difficult to justify on a model which has singularities in
downwash elsewhere on the winge.

A model is now suggested which does not have some of the objection-
able features of those above, The basic element of the model is an
“isosceles triangle, as before, on which the pressure is allowed to vary
linearly, with undetemined values (u,, W, u,) of streamwise pertur-
bation velocity at each of the three vertices (Fige 23). Such elements
may be constructed by a suitable integration of the constant pressure
triangles of Fige 19 and Fige 20, The wing planform is 'bhen covered by
a network of such elements with the requirements that the pressure must
be continuous within the boundaries of the wing, and must be zero at the
trailing edge as prescribed by the Kutta condition, Such a model is
shoun in Fige 2.

Fror preliminary investigation it appears that this model has the
characteristic that the downwash field is continuous everywhere except
at the leading edge and downstream of a break in the leading edge. It
would seem therefore that treatment of this model is a manner similar

to the second model mentioned above should yield a fair approximation
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to the actual pressure distribution on a lifting wing, Since it was
felt that this model represented a considerable deviation from the

basic concept of conical flows, the matter was not investigated further,
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€ Plane € Plane

(a) Cut system for W, (b) Cut system for U and V,

FIG.3 — REPRESENTATION OF " F, (x,¥,2365) IN THE € PLANE

FIG.4 - F (x,y,z;Go) IN xyz SPAGE



FIG.5 - F, (x,y,2;6,) IN THE xy PLANE
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FIG. 7 — CONICAL SUPERPOSITION IN xyz SPAGCE

FIG. 8 — SEMI - INFINITE SOURGE SHEET
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FIG. Il — SWEPT WING WITH MODIFIED DOUBLE-WEDGE AIRFOIL
SECTION



<o

-0.4

~ 1 - L
Section A-A' { 3

4

|

AN

\_// \ Section B-B' !

i

| !

| |

i \ !

N\
0 / 0. 0.4 0.6 0.8 .0
/ X=X e. y l

/ C ‘30

FIG. 12— PRESSURE DISTRIBUTION AT ZERO LIFT ON A
SWEPT WING WITH MODIFIED DOUBLE WEDGE

AIRFOIL SECTION



iy

u=0
v = const.

FIG. I3 —LIFTING INFINITE SECTOR .



/
Ve
A
u=0 u=Q0
VU6, 4 v=0
>y
~€o / 6
A
U3 Ug j U=u,
(eozﬂ)' y (I-Goz)
V= Ug 260 \/:-uo 260
Y
X

FIG. 14 = Fo (x,y,23€,)

u=0
vz=0
> )
v
.oo0_ ve. %

o’v%; "
PN

< c
u
O O

—-
-

FIG. 15 — INFINITE SPAN
CONSTANT 'PRESSURE

SWEPT WING



i

© O

us
v

y
u=-uy(l+6,)

v=0 2 v=0
A
A €
j )
1 u=ugll-6,)
A 2
A . |"60
V= uo< c, )
Y
X

FIG.16 — F3(x,y,2;64)

/,
v
': U'—"UQU'C o)
/ N
v=0
u=ugll=E€o) g
IS
v ”°( €o |
Y
X

FIG. 17 — -Fs(x,vy;z‘;—eo)

<



Ll L L Ll

u=0
vz=0

u=ug(l-€4) 2

v=0

VTV IT NIV IIDONIIIIIIRRY
us-uy, (1+€,) |
\
v=0 !

u=uy(l-€,) C

A
A
A
]
A
A |
3 . I'Gf
:Vo"'UO 6 ¢
p 0 ;
LLL L L VOV.VII Lkl Lk //V
A
uz=0 ; u=0 -2 4 u=0
v=0 4 v--uo(——o) 7 v=0
4 60 4
] 7
A - - b,_ e ]
Y,
FIG. 18 = Gg (x,y,2;6,,G)
4 ;y
u=0 g u=0
) 4
v=0 1 v=0
b g
U=Up % U=Ugq
- 1 y=
V=Vo T V:~Ve
r

LAl LLLL L Ll L s gt2d

LLALL L4t d 824l

B M N N e S Ny
°<

u-=
V = Vg

A
N

0O u=0

VE=-vg

LR
B

o -
n

N

(3]

(=
N
O
o

o
N

n
M
o

FI1G. 19 -CONSTANT PRESSURE DELTA WING



L8

u=v =0

T YT I T I T T T T T IT 7T >y

Mg

T oo
e T
R s

I
\

Ja
.

FIG. 21 — FALKNER'S HORSESHOE VORTEX MODEL



L9

” AR
R

AVAVA

FIG. 22— CONSTANT PRESSURE TRIANGLE MODEL



- -u=u
UsUg Y ;

LAEAVAV A A AN AV I S AN AV AV A iy iV o 4

~

S

LiL L 0L Ll Lty L Lot lile 2

c

1

[
A N N N N

PR N N N N

v
4
/ - - .
¥ Vwake = V ()’Wovupug) f Vwake = V (¥3Uq,u;,u2)
Y
v 4 |
4 {
4 g i
( Y
X X
(a) Delta wing (b) Reverse delta wing

FIG. 23— TRIANGULAR WINGS WITH LINEAR PRESSURE DISTRIBUTION

=
/,«’/ y

-—-Wing planform

FIG. 24 - LINEAR -PRESSURE TRIANGLE CONSTRUCTION OF
WING MODEL ’



