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Abstract

In most quantum descriptions of chemical reactions, the Born-Oppenheimer (BO)

approximation is invoked that separates the motion of light electrons and heavy nuclei,

thereby restricting the motion of those nuclei to a single adiabatic electronic state.

Intersections between neighboring electronic states are more common in molecular

systems of interest to chemistry and biology than in diatomic molecules. The picture

is further complicated due to nonadiabatic couplings which can be present in these

systems even in the absence of intersections between electronic states. These couplings

are solely responsible for all nonadiabatic effects in chemical and biological processes.

For understanding these nonadiabatic effects, the BO picture needs to be replaced by

the general Born-Huang (BH) description, in which the nuclei can sample an arbitrary

number of electronic states.

A general BH treatment is presented for a polyatomic system evolving on n adi-

abatic electronic states. All nonadiabatic couplings are considered in this adiabatic

representation. These couplings can be singular for electronically degenerate nuclear

geometries. The presence of these nonadiabatic couplings (even if not singular) can

lead to numerical inefficiencies in the solution of the corresponding nuclear motion

Schrödinger equation. This problem is circumvented by going to a diabatic representa-

tion, in which these couplings are not only never singular but are also minimized over

the entire dynamically important nuclear configuration space. This BH description

is applied to the benchmark triatomic system H3 by obtaining an optimal diabatic

representation of its lowest two adiabatic electronic states. A two-electronic-state

quantum dynamics formulation is also presented, which, in addition to providing re-

action cross sections over a broad energy range, will also enable a quantitative test of

the validity of the BO approximation.
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Chapter 1 Introduction

Electronic transitions (excitations or deexcitations) can take place during the course of

a chemical reaction and have important consequences for its dynamics. The motions

of electrons and nuclei were first analyzed in a quantum-mechanical framework by

Born and Oppenheimer [1], who separated the motion of the light electrons from that

of the heavy nuclei and assumed that the nuclei moved on a single adiabatic electronic

state or potential energy surface (PES). This Born-Oppenheimer (BO) approxima-

tion can break down due to the presence of strong nonadiabatic couplings between

degenerate electronic states (due to conical, parabolic or glancing intersections be-

tween those states) or between the near-degenerate ones (due to avoided crossings).

These couplings allow for the motion of nuclei on coupled multiple adiabatic electronic

states, with the BO approximation replaced by the Born-Huang expansion [2, 3] in

which an arbitrary number of electronic states can be included. A recent volume of

Advances in Chemical Physics [4] deals with understanding the issues surrounding

the role played by degenerate electronic states in determining the mechanism and

outcome of many chemical processes.

These nonadiabatic couplings that give rise to electronic transtions can be classi-

fied into two categories: (a) Radial couplings, which have been treated by Zener [5],

Landau [6] and others [7–12], arise due to translational, vibrational and angular mo-

tions of the atomic or molecular species involved in the chemical process. These cou-

plings allow for transitions to occur between electronic states of the same symmetry.

(b) Rotational couplings, which have been studied by Kronig [13] and others [14–20],

arise as a result of a transformation of molecular coordinates from a space-fixed (SF)

frame to a body-fixed (BF) one due to the conservation of total electron plus nuclear

angular momentum. These couplings allow for transitions between electronic states

of the same as well as of different symmetries.
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An important consequence of the presence of degenerate electronic states is the

geometric phase effect. For a polyatomic system involving N atoms, where N ≥ 3,

any two adjacent adiabatic electronic states can be degenerate for a set of nuclear

geometries even if those electronic states have the same symmetry and spin multi-

plicity [21]. These intersections occur more frequently in such polyatomic systems

than in the diatomic world. The reason is that these systems possess three or more

internal nuclear motion degrees of freedom, and only two independent relations be-

tween three electronic Hamiltonian matrix elements (in a simple two-electronic-state

picture) are sufficient for the existence of doubly degenerate electronic energy eigen-

values. As a result, these relations can easily be satisfied explaining thereby the

frequent occurrence of intersections. If the lowest order terms in the expansion of

these elements in displacements away from the intersection geometry are linear (as is

usually the case), these intersections are conical, the most common type of intersec-

tion. Assuming the adiabatic electronic wave functions of the two intersecting states

to be real and as continuous as possible in nuclear coordinate space, if the polyatomic

system is transported along a closed loop in that space (a so-called pseudorotation)

that encircles one conical intersection geometry, these electronic wave functions must

change sign [21, 22]. This change of sign requires the adiabatic nuclear wave func-

tions to undergo a compensatory change of sign, known as the geometric phase (GP)

effect [23–27], to keep the total wave function single-valued. This sign change of the

nuclear wave function, which is a special case of Berry’s geometric phase [26], is also

referred to as the molecular Aharonov-Bohm effect [28] and has important conse-

quences for the structure and dynamics of the polyatomic system being considered,

as it greatly affects the nature of the solutions of the corresponding nuclear motion

Schrödinger equation [27].

The dynamics of chemical reactions on a single ground adiabatic electronic PES

has been studied extensively over the last few decades using accurate quantum-

mechanical time-dependent and time-independent methods. These studies have been

successfully applied to triatomic [29–31] and tetraatomic [32–34] reactions in the ab-
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sence of conical intersections. In the last decade or so, these studies have included

indirectly the effect of the first-excited adiabatic electronic state, that intersects coni-

cally with the ground state, by introducing the GP effect through appropriate bound-

ary conditions on the adiabatic nuclear wave function corresponding to the ground

electronic state [35–41]. The reaction rates (products of initial relative velocities

by integral cross sections) for the D + H2 reaction, obtained with the GP effect in-

cluded [37], were in much better agreement with the experimental results [42–45] than

those obtained with the GP effect excluded. Although the GP effect is certainly more

pronounced at resonance energies [46], its importance for differential cross sections

has been the topic of hot debate recently [40, 41].

Many studies have appeared in the last few years that include two or more excited

electronic states and nonadiabatic couplings between them to study nonadiabatic be-

havior in chemical reactions. The effect of spin-orbit couplings on electronically nona-

diabatic transitions has been demonstrated for many chemical systems [47–56]. The

photodissociation of triatomic molecules like O3 and H2S has been studied on their

conically intersecting potential energy surfaces (PESs) [57, 58]. The benchmark H +

H2 reaction has also been studied on its lowest two conically intersecting PESs, but

only for total angular momentum quantum number J = 0 [59]. Most of these studies

have been made possible due to the availability of realistic ab initio electronic PESs

and their nonadiabatic couplings [60]. These nonadiabatic couplings have very inter-

esting properties that have a forebearing on the behavior of molecular systems and are

currently the topic of active interest [61]. The singular nature of these couplings at the

conical intersections of two adiabatic electronic states introduces numerical difficul-

ties in the solution of the corresponding coupled adiabatic nuclear motion Schrödinger

equations. These difficulties can be circumvented by transforming the electronically

adiabatic representation into a quasi-diabatic one [62–74], in which the nonadiabatic

couplings still appear but are not singular.

In this thesis, a rigorous quantum-mechanical formalism is introduced for studying

the dynamics of a polyatomic system (comprising of N atoms) on n electronically
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adiabatic states, interacting due to the presence of nonadiabatic couplings. The

spin-spin and spin-orbit interactions are not considered. These interactions can be

introduced subsequently as perturbative corrections, if they are not too large. This

formalism is then applied to a triatomic system in a two-electronic-state Born-Huang

approximation. The overview of the thesis is as follows.

In Chapter 2, the adiabatic n-electronic-state coupled nuclear motion Schrödinger

equations are presented for an N -body system and the properties of first-derivative

and second-derivative nonadiabatic couplings are discussed. The presence of first-

derivative couplings, that may be singular at electonically degenerate nuclear configu-

rations, can lead to numerical inefficiencies in the solution of the adiabatic Schrödinger

equations. A diabatic representation is defined through an adiabatic-to-diabatic

transformation that minimizes the magnitude of the first-derivative nonadiabatic cou-

plings in the diabatic nuclear motion Schrödinger equations. This formalism is ap-

plied in Chapters 3 through 5 to a triatomic system in the presence of two interacting

electronic states.

In Chapter 3, accurate first-derivative nonadiabatic coupling vectors are presented

for H3 system that exhibits a conical intersection between its ground (1 2A′) and its

first-excited (2 2A′) electronic states. These coupling vectors, which are singular at the

conical intersection geometries, and the two electronic states they couple are fitted us-

ing their ab initio data and compared with their approximate analytical counterparts

obtained by Varandas et al. [75] using the double many-body expansion (DMBE)

method. Contour integrals of the ab initio first-derivative couplings, calculated along

closed loops around the abovementioned conical intersection, contain important prop-

erties of these couplings besides information about possible interactions between the

2 2A′ and the second-excited (3 2A′) states. The second-derivative couplings are ap-

proximated by using the abovementioned accurate first-derivative coupling vectors in

a two-electronic-state model.

These coupling vectors between the corresponding electronically adiabatic states

can be decomposed into longitudinal (removable) and transverse (nonremovable)
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parts. This property is used in Chapter 4 to obtain a diabatic representation for

the lowest two adiabatic electronic states of H3, in which singular nonadiabatic cou-

plings are replaced by non-singular ones. The adiabatic-to-diabatic transformation is

achieved by solving a three-dimensional Poisson equation over the entire internal nu-

clear configuration space. The boundary conditions imposed on this solution minimize

the magnitude of the nonremovable couplings that survive in the diabatic represen-

tation. This makes the diabatic language a convenient one for studying quantum

reactive scattering on more than one interacting electronic states.

In Chapter 5, an electronically nonadiabatic reactive scattering formalism is pre-

sented for triatomic reactions involving two coupled adiabatic electronic states in adi-

abatic and diabatic languages. This formalism is an extension of the time-independent

coupled-channel hyperspherical coordinate method [18] used in the past to study such

reactions on a single adiabatic Born-Oppenheimer (BO) electronic state. Both adia-

batic and diabatic representations lead to a set of coupled nuclear motion Schrödinger

equations that can be solved to obtain scattering matrices, which then furnish the

differential and integral cross sections. The advantages and disadvantages of the two

languages are discussed. This formalism will not only provide reaction cross sections

over a broad energy range (including those energies where the BO approximation

breaks down), but will also enable a comparison with the cross sections obtained us-

ing only the ground adiabatic PES (with the geometric phase included), to estimate

the validity of the one-electronic-state BO approximation as a function of energy.
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Chapter 2 Born-Huang treatment of an

N-body system

2.1 Introduction

Consider a polyatomic system consisting of Nnu nuclei (where Nnu ≥ 3) and Nel elec-

trons. In the absence of any external fields, we can rigorously separate the motion of

the center of mass G of the whole system as its potential energy function V is indepen-

dent of the position vector of G (rG) in a laboratory-fixed frame with origin O. This

separation introduces, besides rG, the Jacobi vectors R′
λ ≡ (R′

λ1
,R′

λ2
, ...,R′

λNnu−1
)

and r′ ≡ (r′1, r
′
2, ..., r

′
Nel

) for nuclei and electrons, respectively [1]. These Jacobi vec-

tors are simply related to the position vectors of those nuclei and electrons in the

laboratory-fixed frame. λ refers to an arbitrary clustering scheme for the Nnu nu-

clei [2,3] and helps specify different product arrangement channels during a chemical

reaction.

The kinetic energy operator T̂G of the center of mass G can be omitted, since no

external fields act on the system. The internal kinetic energy operator T̂ int is given

by

T̂ int = T̂ int
nu + T̂el, (2.1)

where T̂ int
nu and T̂el are respectively internal nuclear and electronic kinetic energy

operators in the Jacobi vectors mentioned above. If these Jacobi vectors R′
λi

(i =

1, 2, ..., Nnu − 1) and r′j (j = 1, 2, ..., Nel) are transformed to their mass-scaled coun-

terparts [3] Rλi
and rj, the kinetic energy operators have relatively simple expressions

given by

T̂ int
nu = −

~
2

2µ
∇2

Rλ
and T̂el = −

~
2

2ν
∇2

r (2.2)
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where

∇2
Rλ

≡
Nnu−1∑

i=1

∇2
Rλi

and ∇2
r ≡

Nel∑

j=1

∇2
rj

(2.3)

with the laplacians on the left of these equivalence relations being independent of

the choice of the clustering scheme λ. The transformation of Jacobi vectors to the

mass-scaled ones is defined by

Rλi
=

(
µλi

µ

)1/2

R′
λi

and rj =
(νj

ν

)1/2

r′j, (2.4)

where

µ =

(
1

M

Nnu∏

i=1

Mi

)1/(Nnu−1)

and ν = mel

(
M

M +Nelmel

)1/Nel

(2.5)

are the effective reduced masses of the nuclei and electrons, respectively, with Mi

being the mass of the ith nucleus. µλi
and νj in Eq. (2.4) are the effective masses [1]

associated with the corresponding vectors R′
λi

and r′j, with

νj =
[M + (j − 1)mel]mel

M + jmel
(2.6)

In Eqs. (2.5) and (2.6), M is the total mass of the nuclei and mel is the mass of one

electron. Using Eq. (2.2), the system’s internal kinetic energy operator is given in

terms of the mass-scaled Jacobi vectors by

T̂ int = −
~

2

2µ
∇2

Rλ
−

~
2

2ν
∇2

r (2.7)

If V is the total coulombic potential between all the nuclei and electrons in the

system, then, in the absence of any spin-dependent terms, the electronic Hamiltonian

Ĥel is given by

Ĥel(r;qλ) = −
~

2

2ν
∇2

r + V (r;qλ), (2.8)

where qλ is a set of 3(Nnu − 2) internal nuclear coordinates obtained by removing

from the set Rλ three Euler angles which orient a nuclear body-fixed frame with
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respect to the laboratory-fixed (or space-fixed) frame. Due to the small ratio of the

electron mass to the total mass of the nuclei, ν ≈ mel. This approximation is used

in the ab initio electronic structure calculations that use the electronic Hamiltonian

given in Eq. (2.8) but with the ν replaced by mel. Figure 2.1 illustrates for a three-

nuclei, 4-electron system, the corresponding non-mass-scaled Jacobi vectors. The

nuclear center of mass G is distinct from the overall system’s center of mass G. This

distinction of the centers of mass and the difference between ν and mel is responsible

for the so-called mass polarization effect in the electronic spectra of these systems

that produces relative shifts in the energy levels of 10−4 or less. In actual scattering

calculations, these differences are normally ignored as they introduce relative changes

in the cross sections of the order of 10−4 or less [1].

The electronically adiabatic wave functions ψel,ad
i (r;qλ) are defined as eigenfunc-

tions of the electronic Hamiltonian Ĥel with electronically adiabatic potential energies

εad
i (qλ) as their eigenvalues:

Ĥel(r;qλ)ψ
el,ad
i (r;qλ) = εad

i (qλ)ψ
el,ad
i (r;qλ) (2.9)

The electronic Hamiltonian and the corresponding eigenfunctions and eigenvalues are

independent of the orientation of the nuclear body-fixed frame with respect to the

space-fixed one and hence depend only on qλ. The index i in Eq. (2.9) can span both

discrete and continuous values. The ψel,ad
i (r;qλ) form a complete orthonormal basis

set and satisfy the orthonormality relations

〈ψel,ad
i (r;qλ)|ψ

el,ad
i′ (r;qλ)〉r =





δi,i′ for i and i′ discrete

δ(i− i′) for i and i′ continuous

0 for i discrete and i′ continuous or vice versa

(2.10)

These electronic wave functions are used in a Born-Huang expansion of the electronu-

clear wave function, as presented in the next section.
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2.2 Born-Huang expansion

The total orbital wave function for this system is given by an electronically adiabatic

n-state Born-Huang expansion [4, 5] in terms of this electronic basis set ψel,ad
i (r;qλ)

as

Ψo(r,Rλ) =

∫∑

i

χad
i (Rλ)ψ

el,ad
i (r;qλ), (2.11)

where

∫∑

i

is a sum over the discrete and an integral over the continuous values of i.

The χad
i (Rλ), which are the coefficients in this expansion, are the adiabatic nuclear

motion wave functions. The number of electronic states used in the Born-Huang

expansion of Eq. (2.11) can, in most cases of interest, be restricted to a small number

n of discrete states, and Eq. (2.11) replaced by

Ψo(r,Rλ) ≈

n∑

i=1

χad
i (Rλ)ψ

el,ad
i (r;qλ) (2.12)

where n is a small number. This corresponds to restricting the motion of nuclei to

only those n electronic states. In particular, if those n states constitute a sub-Hilbert

space that interacts very weakly with higher states [6], this would be a very good

approximation. The orbital wave function Ψo satisfies the Schrödinger equation

Ĥ int(r,Rλ)Ψ
o(r,Rλ) = EΨo(r,Rλ) (2.13)

where

Ĥ int(r,Rλ) = T̂ int(r,Rλ) + V (r;qλ) (2.14)

is the internal Hamiltonian [Eq. (2.7)] of the system that excludes the motion of its

center of mass and any spin-dependent terms and E is the system’s total energy. The

Eq. (2.12) through (2.14) are used next to get the n-electronic state nuclear motion

Schrödinger equation.
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2.2.1 Adiabatic nuclear motion Schrödinger equation

Let us define χad(Rλ) as an n-dimensional nuclear motion column vector, whose

components are χad
1 (Rλ) through χad

n (Rλ). The n-electronic-state nuclear motion

Schrödinger equation satisfied by χad(Rλ) can be obtained by inserting Eqs. (2.12)

and (2.14) into (2.13) and using Eqs. (2.7) through (2.10). The resulting Schrödinger

equation can be expressed in compact matrix form as [1]

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(Rλ) · ∇Rλ

+ W(2)ad(Rλ)
}

+
{
εad(qλ) − EI

}]
χad(Rλ) = 0 ,

(2.15)

where I, W(1)ad, W(2)ad, and εad are n × n matrices and ∇Rλ
is the column vec-

tor gradient operator in the 3(Nnu − 1)-dimensional space-fixed nuclear configuration

space. I is the identity matrix and εad(qλ) is the diagonal matrix whose diagonal

elements are the n electronically adiabatic PESs εad
i (qλ) (i = 1, ..., n) being consid-

ered. All matrices appearing in this n-electronic state nuclear motion Schrödinger

equation [Eq. (2.15)] are n-dimensional diagonal except for W(1)ad and W(2)ad, which

are respectively the first- and second-derivative [1, 7–13] nonadiabatic coupling ma-

trices discussed below. These coupling matrices allow the nuclei to sample more than

one adiabatic electronic state during a chemical reaction and hence alter its dynam-

ics in an electronically nonadiabatic fashion. It should be stressed that the effect of

the geometric phase on Eqs. (2.15) must be added by either appropriate boundary

conditions [1, 25] or the introduction of an appropriate vector potential [1, 14, 15].

2.2.2 First-derivative coupling matrix

The matrix W(1)ad(Rλ) in Eq. (2.15) is an n × n adiabatic first-derivative coupling

matrix whose elements are defined by

w
(1)ad
i,j (Rλ) = 〈ψel,ad

i (r;qλ) | ∇Rλ
ψel,ad

j (r;qλ)〉r i, j = 1, ..., n (2.16)
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These coupling elements are 3(Nnu − 1)-dimensional vectors. If the cartesian compo-

nents of Rλ in 3(Nnu−1) space-fixed nuclear congifuration space areXλ1, Xλ2, ..., Xλ3(Nnu−1),

the corresponding cartesian components of w
(1)ad
i,j (Rλ) are

[
w

(1)ad
i,j (Rλ)

]
l
= 〈ψel,ad

i (r; qλ) |
∂

∂Xλl

ψel,ad
i (r; qλ)〉r l = 1, 2, ..., 3(Nnu − 1) (2.17)

The matrix W(1)ad is in general skew-hermitian due to Eq. (2.10) and hence its

diagonal elements w
(1)ad
i,i (Rλ) are pure imaginary quantities. If we require that the

ψel,ad
i be real, then the matrix W(1)ad becomes real and skew-symmetric with the

diagonal elements equal to zero and the off-diagonal elements satisfying the relation

w
(1)ad
i,j (Rλ) = −w

(1)ad
j,i (Rλ) i 6= j (2.18)

As with any vector, the above non-zero coupling vectors (w
(1)ad
i,j (Rλ), i 6= j) can

be decomposed, due to an extension beyond three dimensions [1] of the Helmholtz

theorem [16], into a longitudinal part w
(1)ad
i,j,lon(Rλ) and a transverse one w

(1)ad
i,j,tra(Rλ)

according to

w
(1)ad
i,j (Rλ) = w

(1)ad
i,j,lon(Rλ) + w

(1)ad
i,j,tra(Rλ), (2.19)

where by definition, the curl of w
(1)ad
i,j,lon(Rλ) and the divergence of w

(1)ad
i,j,tra(Rλ) vanish:

curl w
(1)ad
i,j,lon(Rλ) = 0 (2.20)

∇Rλ
·w

(1)ad
i,j,tra(Rλ) = 0 (2.21)

The curl in Eq. (2.20) is the skew-symmetric tensor of rank 2, whose k, l element is

given by [1, 17]

[
curl w

(1)ad
i,j,lon(Rλ)

]
k,l

=
∂

∂Xλl

[
w

(1)ad
i,j,lon(Rλ)

]
k
−

∂

∂Xλk

[
w

(1)ad
i,j,lon(Rλ)

]
l

k, l = 1, 2, ..., 3(Nnu−1)

(2.22)
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As a result of Eq. (2.20), a scalar potential αi,j(Rλ) exists for which

w
(1)ad
i,j,lon(Rλ) = ∇Rλ

αi,j(Rλ) (2.23)

At conical intersection geometries, w
(1)ad
i,j,lon(Rλ) is singular because of the qλ-

dependence of ψel,ad
i (r;qλ) and ψel,ad

j (r;qλ) in the vicinity of those geometries and

therefore so is the W(1)ad(Rλ) · ∇Rλ
term in Eq. (2.15). As a result of Eq. (2.19),

W(1)ad can be written as a sum of the corresponding skew-symmetric matrices W
(1)ad
lon

and W
(1)ad
tra , i.e.,

W(1)ad(Rλ) = W
(1)ad
lon (Rλ) + W

(1)ad
tra (Rλ) (2.24)

This decomposition into a longitudinal and a transverse part, as will be discussed in

Sec. 2.3, plays a crucial role in going to a diabatic representation in which this singu-

larity is completely removed. In addition, the presence of the first-derivative gradient

term W(1)ad(Rλ) · ∇Rλ
χad(Rλ) in Eq. (2.15), even for a non-singular W(1)ad(Rλ)

(e.g., for avoided intersections), introduces numerical inefficiencies in the solution of

that equation.

2.2.3 Second-derivative coupling matrix

The matrix W(2)ad(Rλ) in Eq. (2.15) is an n×n adiabatic second-derivative coupling

matrix whose elements are defined by

w
(2)ad
i,j (Rλ) = 〈ψel,ad

i (r;qλ) | ∇
2
Rλ
ψel,ad

j (r;qλ)〉r i, j = 1, ..., n (2.25)

These coupling matrix elements are scalars due to the presence of the scalar laplacian

∇2
Rλ

in Eq. (2.25). These elements are, in general, complex but if we require the

ψel,ad
i to be real, they become real. The matrix W(2)ad(Rλ), unlike its first-derivative

counterpart, is neither skew-hermitian nor skew-symmetric.

The w
(2)ad
i,j (Rλ) are also singular at conical intersection geometries. The decompo-

sition of the first-derivative coupling vector, discussed in the preceding section, also



18

facilitates the removal of this singularity from the second-derivative couplings, as will

be shown in Sec. 2.3. Being scalars, the second-derivative couplings can be easily

included in the scattering calculations without any additional computational effort.

It is interesting to note that in a one-electronic-state Born-Oppenheimer approxima-

tion, the first-derivative coupling element w
(1)ad
1,1 (Rλ) is rigorously zero (assuming real

adiabatic electronic wave functions), but w
(2)ad
1,1 (Rλ) is not and might be important

to predict sensitive quantum phenomena like resonances that can be experimentally

verified.

2.3 Adiabatic-to-diabatic transformation

2.3.1 Electronically diabatic representation

As mentioned at the end of Sec. 2.2.2, the presence of the W(1)ad(Rλ) · ∇Rλ
χad(Rλ)

term in the n-adiabatic-electronic-state Schrödinger equation [Eq. (2.15)] introduces

numerical inefficiencies in its solution, even if none of the elements of the W(1)ad(Rλ)

matrix is singular.

This makes it desirable to define other representations in addition to the elec-

tronically adiabatic one [Eqs. (2.9) through (2.12)], in which the adiabatic electronic

wave function basis set used in the Born-Huang expansion Eq. (2.12) is replaced by

another basis set of functions of the electronic coordinates. Such a different electronic

basis set can be chosen so as to minimize the abovementioned gradient term. This

term can initially be neglected in the solution of the n-electronic-state nuclear motion

Schrödinger equation and reintroduced later using perturbative or other methods, if

desired. This new basis set of electronic wave functions can also be made to depend

parametrically, like their adiabatic counterparts, on the internal nuclear coordinates

qλ that were defined after Eq. (2.8). This new electronic basis set is henceforth

referred to as “diabatic” and, as is obvious, leads to an electronically diabatic repre-

sentation that is not unique unlike the adiabatic one, which is unique by definition.
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Let ψel,d
n (r;qλ) refer to that alternate basis set. Assuming that it is complete in r

and orthonormal in a manner similar to Eq. (2.10), we can use it to expand the total

orbital wave function of Eq. (2.11) in the diabatic version of Born-Huang expansion

as

Ψo(r,Rλ) =

∫∑

i

χd
i (Rλ)ψ

el,d
i (r;qλ), (2.26)

where the ψel,d
i (r;qλ) form a complete orthonormal basis set in the electronic coordi-

nates and the expansion coeffecients χd
i (Rλ) are the diabatic nuclear wave functions.

As in Eq. (2.12), we also usually replace Eq. (2.26) by a truncated n-term version

Ψo(r,Rλ) ≈

n∑

i=1

χd
i (Rλ)ψ

el,d
i (r;qλ) (2.27)

In the light of Eqs. (2.12) and (2.27), the diabatic electronic wave function column

vector ψel,d(r;qλ) (with elements ψel,d
i (r;qλ), i = 1, ..., n) is related to the adiabatic

one ψel,ad(r;qλ) (with elements ψel,ad
i (r;qλ), i = 1, ..., n) by an n-dimensional unitary

transformation

ψel,d(r;qλ) = Ũ(qλ) ψ
el,ad(r;qλ) (2.28)

where

U†(qλ) U(qλ) = I (2.29)

U(qλ) is referred to as an adiabatic-to-diabatic transformation (ADT) matrix. Its

mathematical structure is discussed in detail in Sec. 2.3.3. If the electronic wave

functions in the adiabatic and diabatic representations are chosen to be real, as is

normally the case, U(qλ) is orthogonal and therefore has n(n − 1)/2 independent

elements (or degrees of freedom). This transformation matrix U(qλ) can be chosen

so as to yield a diabatic electronic basis set with desired properties, which can then be

used to derive the diabatic nuclear motion Schrödinger equation. Using Eqs. (2.27)

and (2.28) and the orthonormality of the diabatic and adiabatic electronic basis sets,

we can relate the adiabatic and diabatic nuclear wave functions through the same
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n-dimensional unitary transformation matrix U(qλ) according to

χd(Rλ) = Ũ(qλ) χ
ad(Rλ) (2.30)

In Eq. (2.30), χad(Rλ) and χd(Rλ) are the column vectors with elements χad
i (Rλ)

and χd
i (Rλ), respectively, where i = 1, ..., n.

2.3.2 Diabatic nuclear motion Schrödinger equation

We will assume for the moment that we know the ADT matrix of Eqs. (2.28) and

(2.30) U(qλ) and hence have a completely determined electronically diabatic basis

set ψel,d(r;qλ). Replacing Eq. (2.27) into Eq. (2.13) and using Eqs. (2.7) and (2.8)

along with the orthonormality property of ψel,d(r;qλ), we obtain for χd(Rλ) the

n-electronic-state diabatic nuclear motion Schrödinger equation

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)d(Rλ) · ∇Rλ

+ W(2)d(Rλ)
}

+
{
εd(qλ) − EI

}]
χd(Rλ) = 0

(2.31)

which is the diabatic counterpart of Eq. (2.15). εd(qλ) is an n×n diabatic electronic

energy matrix which in general is nondiagonal (unlike its adiabatic counterpart) and

has elements defined by

εd
i,j(qλ) = 〈ψel,d

i (r;qλ) | Ĥ
el(r;qλ) | ψ

el,d
j (r;qλ)〉r i, j = 1, ..., n (2.32)

W(1)d(Rλ) is an n×n diabatic first-derivative coupling matrix with elements defined

using the diabatic electronic basis set as

w
(1)d
i,j (Rλ) = 〈ψel,d

i (r;qλ) | ∇Rλ
ψel,d

j (r;qλ)〉r i, j = 1, ..., n (2.33)

Requiring ψel,d
i (r;qλ) to be real, the matrix W(1)d(Rλ) becomes real and skew-

symmetric (just like its adiabatic counterpart) with diagonal elements equal to zero.

Similarly, W(2)d(Rλ) is an n × n diabatic second-derivative coupling matrix with
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elements defined by

w
(2)d
i,j (Rλ) = 〈ψel,d

i (r;qλ) | ∇
2
Rλ
ψel,d

j (r;qλ)〉r i, j = 1, ..., n (2.34)

An equivalent form of Eq. (2.31) can be obtained by inserting Eq. (2.30) into

Eq. (2.15). Comparison of the result with Eq. (2.31) furnishes the following relations

between the adiabatic and diabatic coupling matrices:

W(1)d(Rλ) = Ũ(qλ)
[
∇Rλ

U(qλ) + W(1)ad(Rλ)U(qλ)
]

(2.35)

W(2)d(Rλ) = Ũ(qλ)
[
∇2

Rλ
U(qλ) + 2W(1)ad(Rλ) · ∇Rλ

U(qλ) + W(2)ad(Rλ)U(qλ)
]

(2.36)

It also furnishes the following relation between the diagonal adiabatic energy matrix

and the nondiagonal diabatic energy one:

εd(qλ) = Ũ(qλ)ε
ad(qλ)U(qλ) (2.37)

It needs mentioning that the diabatic Schrödinger equation [Eq. (2.31)] also con-

tains a gradient term W(1)d(Rλ)·∇Rλ
χ(Rλ) like its adiabatic counterpart [Eq. (2.15)].

The presence of this term can also introduce numerical inefficiency problems in the

solution of Eq. (2.31). Since the ADT matrix U(qλ) is arbitrary, it can be chosen

to make Eq. (2.31) have desirable properties that Eq. (2.15) doesn’t possess. U(qλ)

can, for example, be chosen so as to automatically minimize W(1)d(Rλ) relative to

W(1)ad(Rλ) everywhere in internal nuclear configuration space and incorporate the

effect of the geometric phase. Next we will consider the structure of this ADT matrix

for an n-electronic-state problem and a general evaluation scheme that minimizes the

magnitude of W(1)d(Rλ).
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2.3.3 Diabatization matrix

In the n-electronic-state adiabatic representation involving real electronic wave func-

tions, the skew-symmetric first-derivative coupling vector matrix W(1)ad(Rλ) has

n(n− 1)/2 independent non-zero coupling vector elements w
(1)ad
i,j (Rλ), (i 6= j). The

ones having the largest magnitudes are those that couple adjacent neighboring adi-

abatic PESs, and therefore the dominant w
(1)ad
i,j (Rλ) are those for which j = i ± 1,

i.e., lying along the two off-diagonal lines adjacent to the main diagonal of zeroes.

Each one of the w
(1)ad
i,j (Rλ) elements is associated with a scalar potential αi,j(Rλ)

through their longitudinal component (see Eqs. (2.19) and (2.23)). A convenient and

general way of parametrizing the n× n orthogonal ADT matrix U(qλ) of Eqs. (2.28)

and (2.30) is as follows. Since the coupling vector element w
(1)ad
i,j (Rλ) couples the

electronic states i and j, let us define an n × n orthogonal i, j-diabatization matrix

(ui,j(qλ), with j > i) whose row k and column l element (k, l = 1, 2, ..., n) is desig-

nated by uk,l
i,j(qλ) and is defined in terms of a set of diabatization angles βi,j(qλ) by

the relations

uk,l
i,j(qλ) = cos βi,j(qλ) for k = i and l = i

= cos βi,j(qλ) for k = j and l = j

= − sin βi,j(qλ) for k = i and l = j

= sin βi,j(qλ) for k = j and l = i

= 1 for k = l 6= i or j

= 0 for the remaining k and l

(2.38)

This choice of elements for the ui,j(qλ) matrix will diabatize the adiabatic electronic

states i and j while leaving the remaining states unaltered.

As an example, in a 4-electronic-state problem (n = 4) consider the electronic

states i = 2 and j = 4 along with the first-derivative coupling vector element

w
(1)ad
2,4 (Rλ) that couples those two states. The ADT matrix u2,4(qλ) can then be
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expressed in terms of the corresponding diabatization angle β2,4(qλ) as

u2,4(qλ) =




1 0 0 0

0 cos β2,4(qλ) 0 − sin β2,4(qλ)

0 0 1 0

0 sin β2,4(qλ) 0 cos β2,4(qλ)




(2.39)

This diabatization matrix only mixes the adiabatic states 2 and 4 leaving the states

1 and 3 unchanged.

In the n-electronic-state case, n(n − 1)/2 such matrices ui,j(qλ) (j > i with i =

1, 2, ..., n− 1 and j = 2, ..., n) can be defined using Eq. (2.38). The full ADT matrix

U(qλ) is then defined as a product of these n(n− 1)/2 matrices ui,j(qλ) (j > i) as

U(qλ) =
n−1∏

i=1

n∏

j=i+1

ui,j(qλ) (2.40)

which is the n-electronic-state version of the expression that has appeared earlier [18,

19] for three electronic states. This U(qλ) is orthogonal, as it is the product of

orthogonal matrices. The matrices ui,j(qλ) in Eq. (2.40) can be multiplied in any

order without loss of generality. A different multiplication order leads to a different

set of solutions for the diabatization angles βi,j(qλ). However, since the matrix U(qλ)

is a solution of a set of Poisson-type equations with fixed boundary conditions, as will

be discussed next, it is uniquely determined and therefore independent of this choice

of the order of multiplication, i.e., all of these sets of βi,j(qλ) give the same U(qλ) [19].

It should be remembered, however, that these are purely formal considerations, which

are useful for the truncated Born-Huang expansion as discussed after Eq. (2.46).

We want to choose the ADT matrix U(qλ) that either makes the diabatic first-

derivative coupling vector matrix W(1)d(Rλ) zero if possible or that minimizes its

magnitude in such a way that the gradient term W(1)d(Rλ) ·∇Rλ
χd(Rλ) in Eq. (2.31)

can be neglected. Rewriting the relation between W(1)d(Rλ) and W(1)ad(Rλ) of
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Eq. (2.35) as

W(1)d(Rλ) = Ũ(qλ)
[
∇Rλ

U(qλ) + W(1)ad(Rλ)U(qλ)
]

(2.41)

we see that all elements of the diabatic matrix W(1)d(Rλ) will vanish if and only if

all elements of the matrix inside the square brackets in the right-hand side of this

equation are zero, i.e.,

∇Rλ
U(qλ) + W(1)ad(Rλ)U(qλ) = 0 (2.42)

The structure of W(1)ad(Rλ) discussed at the beginning of this section, will reflect

itself in some interrelations between the βi,j(qλ) obtained by solving this equation.

More importantly, this equation has a solution if and only if the elements of the

matrix W(1)ad(Rλ) satisfy the following curl-condition [1,20–23] for all values of Rλ:

[
curl w

(1)ad
i,j (Rλ)

]
k,l

= −
[
w

(1)ad
k (Rλ),w

(1)ad
l (Rλ)

]
i,j

k, l = 1, 2, ..., 3(Nnu − 1)

(2.43)

In this equation, w
(1)ad
p (Rλ) (with p = k, l) is the n×n matrix whose row i and column

j element is the p cartesian component of the w
(1)ad
i,j (Rλ) vector, i.e., [w

(1)ad
i,j (Rλ)]p,

and the square bracket on its right-hand side is the commutator of the two matrices

within. This condition is satisfied for an n × n matrix W(1)ad(Rλ) when n samples

the complete infinite set of adiabatic electronic states. In that case, we can rewrite

Eq. (2.42) using the unitarity property [Eq. (2.29)] of U(qλ) as

[∇Rλ
U(qλ)] Ũ(qλ) = −W(1)ad(Rλ) (2.44)

This matrix equation can be expressed in terms of individual matrix elements on both

sides as
∑

k

(
∇Rλ

fi,k[β(qλ)]
)
fj,k[β(qλ)] = −w

(1)ad
i,j (Rλ) (2.45)

where β(qλ) ≡ (β1,2(qλ), ..., β1,n(qλ), β2,3(qλ), ..., β2,n(qλ), ..., βn−1,n(qλ)) is a set of all
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unknown diabatization angles and fp,q[β(qλ)] with p, q = i, j, k are matrix elements

of the ADT matrix U(qλ), which are known trigonometric functions of the unknown

β(qλ) due to Eqs. (2.38) and (2.40). Equations (2.45) are a set of coupled first-order

partial differential equations in the unknown diabatization angles βi,j(qλ) in terms of

the known first-derivative coupling vector elements w
(1)ad
i,j (Rλ) obtained from ab initio

electronic structure calculations [7]. This set of coupled differential equations can be

solved in principle with some appropriate choice of boundary conditions for the angles

βi,j(qλ).

The ADT matrix U(qλ) obtained in this way makes the diabatic first-derivative

coupling matrix W(1)d(Rλ) that appears in the diabatic Schrödinger equation [Eq. (2.31)]

rigorously zero. It also leads to a diabatic electronic basis set that is independent of

qλ [23], which, in agreement with the present formal considerations, can only be a

correct basis set if it is complete, i.e., infinite. It can be proved using Eqs. (2.35),

(2.36) and (2.42) that this choice of the ADT matrix also makes the diabatic second-

derivative coupling matrix W(2)d(Rλ) appearing in Eq. (2.31) equal to zero. As a

result, when n samples the complete set of adiabatic electronic states, the corre-

sponding diabatic nuclear motion Schrödinger equation [Eq. (2.31)] reduces to the

simple form [
−

~
2

2µ
I∇2

Rλ
+
{
εd(qλ) − EI

}]
χd(Rλ) = 0 (2.46)

where the only term that couples the diabatic nuclear wave functions χd(Rλ) is the

diabatic energy matrix εd(qλ).

The curl-condition given by Eq. (2.43) is in general not satisfied by the n × n

matrix W(1)ad(Rλ), if n doesn’t span the full infinite basis set of adiabatic electronic

states and is truncated to include only a finite small number of these states. This

truncation is extremely convenient from a physical as well as computational point of

view. In this case, since Eq. (2.42) does not have a solution, let us consider instead

the equation obtained from it by replacing W(1)ad(Rλ) by its longitudinal part:

∇Rλ
U(qλ) + W

(1)ad
lon (Rλ)U(qλ) = 0 (2.47)
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This equation does have a solution, because in view of Eq. (2.20) the curl condition

of Eq. (2.43) is satisfied when W(1)ad(Rλ) is replaced by W
(1)ad
lon (Rλ).

We can now rewrite Eq. (2.47) using the orthogonality of U(qλ) as

[∇Rλ
U(qλ)] Ũ(qλ) = −W

(1)ad
lon (Rλ) (2.48)

The quantity on the right-hand side of this equation is not completely specified since

the decomposition of W(1)ad(Rλ) into its longitudinal and transverse parts given by

Eq. (2.24) is not unique. Using that decomposition and the property of the transverse

part W
(1)ad
tra (Rλ) given by Eq. (2.21), we see that

∇Rλ
· W

(1)ad
lon (Rλ) = ∇Rλ

· W(1)ad(Rλ) (2.49)

and since W(1)ad(Rλ) is assumed to have been previously calculated, ∇Rλ
·W

(1)ad
lon (Rλ)

is known. If we take the divergence of both sides of Eq. (2.48), we obtain (using

Eq. (2.49))

[
∇2

Rλ
U(qλ)

]
Ũ(qλ) + [∇Rλ

U(qλ)] ·
[
∇Rλ

Ũ(qλ)
]

= −∇Rλ
· W(1)ad(Rλ) (2.50)

Using the parameterization of U(qλ) given by Eqs. (2.38) and (2.40) for a finite n,

this matrix equation can be expressed in terms of the matrix elements on both sides

as

∑

k

[(
∇2

Rλ
fi,k[β(qλ)]

)
fj,k[β(qλ)]+

(
∇Rλ

fi,k[β(qλ)]
)
·
(
∇Rλ

fj,k[β(qλ)]
)]

= −∇Rλ
·w

(1)ad
i,j (Rλ)

(2.51)

where fp,q are the same as defined after Eq. (2.45). Equation (2.51) is a set of coupled

Poisson-type equations in the unknown angles βi,j(qλ). For n = 2 this becomes

Eq. (4.30), as shown in Chapter 4. The structure of this set of equations is again

dependent on the order of multiplication of matrices ui,j(qλ) in Eq. (2.40). Each

choice of the order of multiplication will give a different set of βi,j(qλ) as before but
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the same ADT matrix U(qλ) after they are solved using the same set of boundary

conditions.

Using the fact that for a finite number of adiabatic electronic states n, we choose a

U(qλ) that satisfies Eq. (2.47) (rather than Eq. (2.42) that has no solution), Eq. (2.35)

now reduces to

W(1)d(Rλ) = Ũ(qλ)W
(1)ad
tra (Rλ)U(qλ) (2.52)

This can be used to rewrite the diabatic nuclear motion Schrödinger equation for an

incomplete set of n electronic states as

[
−

~
2

2µ

{
I∇2

Rλ
+ 2Ũ(qλ)W

(1)ad
tra (Rλ)U(qλ) · ∇Rλ

+ W(2)d(Rλ)
}

+
{
εd(qλ) − EI

}]
χd(Rλ) = 0

(2.53)

In this equation, the gradient term Ũ(qλ)W
(1)ad
tra (Rλ)U(qλ)·∇Rλ

χd(Rλ) = W(1)d(Rλ)·

∇Rλ
χd(Rλ) still appears and, as mentioned before, introduces numerical inefficiencies

in its solution. Even though a truncated Born-Huang expansion was used to obtain

Eq. (2.53), W
(1)ad
tra (Rλ), although no longer zero, has no poles at conical intersection

geometries (as opposed to the full W(1)ad(Rλ) matrix).

The set of coupled Poisson equations [Eq. (2.50)] can, in principle, be solved

with any appropriate choice of boundary conditions for βi,j(qλ). There is one choice,

however, for which the magnitude of W
(1)ad
tra (Rλ) is minimized. If at the boundary

surfaces Rb
λ of the nuclear configuration space spanned by Rλ (and the corresponding

subset of boundary surfaces qb
λ in the internal configuration space spanned by qλ),

one imposes the following mixed Dirichlet-Neumann condition (based on Eq. (2.48)),

[
∇Rb

λ
U(qb

λ)
]
Ũ(qb

λ) = −W(1)ad(Rb
λ) (2.54)

it minimizes the average magnitude of the vector elements of the transverse coupling

matrix W
(1)ad
tra (Rλ) over the entire internal nuclear configuration space and hence the

magnitude of the gradient W(1)d(Rλ) · ∇Rλ
χd(Rλ), as will be shown for the n = 2

case [24] in Chapter 4. To a first very good approximation, this term can be neglected
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in the diabatic Schrödinger Eq. (2.53) resulting in a simpler equation

[
−

~
2

2µ

{
I∇2

Rλ
+ W(2)d(Rλ)

}
+
{
εd(qλ) − EI

}]
χd(Rλ) = 0 (2.55)

In this diabatic Schrödinger equation, the only terms that couple the nuclear wave

functions χd
i (Rλ) are the elements of the W(2)d(Rλ) and εd(qλ) matrices. The

− ~
2

2µ
W(2)d(Rλ) matrix does not have poles at conical intersection geometries (as op-

posed to W(2)ad(Rλ)) and furthermore it only appears as an additive term to the

diabatic energy matrix εd(qλ) and doesn’t increase the computational effort for the

solution of Eq. (2.55). Since the neglected gradient term is expected to be small, it

can be reintroduced as a first order perturbation afterwards, if desired.

In the following chapters, this theory will be applied to a two-electronic-state

triatomic problem and results presented for the H3 system.
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Figure 2.1: Jacobi vectors for a three-nuclei, four-electron system. The nuclei are P1,
P2, P3 and the electrons are e1, e2, e3, e4.
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Chapter 3 Accurate first-derivative

nonadiabatic couplings for H3 system

3.1 Introduction

For any polyatomic system involving three or more atoms, the ground and the first-

excited adiabatic electronic PESs can intersect even if the corresponding states have

the same symmetry and spin multiplicity [1]. These intersections, which are usually

conical, occur quite frequently in polyatomic systems. The reason is that these poly-

atomic systems possess three or more internal nuclear motion degrees of freedom, and

only two independent relations between three electronic Hamiltonian matrix elements

are sufficient for the existence of doubly degenerate electronic energy eigenvalues. As

a result, these relations between those matrix elements are easily satisfied and explain

the frequent occurrence of conical intersections. Assuming the adiabatic electronic

wave functions to be real and as continuous as possible in the nuclear coordinate

space, if the polyatomic system is transported around a closed loop in that space

(a so-called pseudorotation) that encircles a conical intersection geometry, these elec-

tronic wave functions must change sign [1,2]. This change of sign has consequences for

the structure and dynamics of the polyatomic system, as it requires the correspond-

ing nuclear wave functions to undergo a compensatory change of sign, known as the

geometric phase (GP) effect [3–7], to keep the total wave function single-valued. This

sign change is a special case of Berry’s geometric phase [6], and is also referred to as

the molecular Aharonov-Bohm effect [8]. It greatly affects the nature of the solutions

of the corresponding nuclear motion Schrödinger equation [7, 9]. Accurate quantum-

mechanical reactive scattering calculations (on the ground electronic PES), with and

without the GP effect included, have been carried out for the H + H2 system and



33

its isotopic variants (D + H2 and H + D2) [9–13] to obtain differential and integral

cross sections. The cross sections obtained with the GP effect included were in much

better agreement with the experimental results [14–17] than those obtained with the

GP effect excluded. Hence, the GP effect is an important factor in accurate quantum

scattering calculations done on the ground adiabatic electronic PES.

A review of the one- and two-electronic-state Born-Huang [18, 19] (also usually

called Born-Oppenheimer) approximations has been given in detail elsewhere [7] and

only the features pertinent to this chapter are summarized here. In the one-electronic-

state approximation, the GP effect has to be imposed on the adiabatic nuclear wave

functions in order to obtain accurate results at low energies. At energies above the

conical intersection energy, when this approximation breaks down, the effect of the

first-excited electronic PES has to be included explicitly in the scattering calculations

to obtain accurate results. In the adiabatic representation, the GP effect still has to be

imposed on each of the two state nuclear wave functions. In this two-electronic-state

approximation [7], the nuclear motion Schrödinger equation for an N -atom system

[Eq. (2.15)] becomes

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(Rλ) · ∇Rλ

+ W(2)ad(Rλ)
}

+
{
εad(qλ) − EI

}]
χad(Rλ) = 0,

(3.1)

where Rλ is a set of 3(N − 1) nuclear coordinates (remaining after the removal of the

center of mass coordinates), and qλ is a set of 3(N − 2) internal nuclear coordinates

obtained by removing from the set Rλ three Euler angles which orient a nuclear body-

fixed frame with respect to a space-fixed one. As an example, for a triatomic system

Rλ can be a set of principal axes of inertia body-fixed symmetrized hyperspherical

coordinates (ρ, θ, φλ, aλ, bλ, cλ) [7, 9], and qλ is then comprised of ρ, θ, and φλ since

the remaining aλ, bλ, cλ, are Euler angles. It is shown in Appendix 3.A that for a

triatomic system, W(1)ad(Rλ) ·∇Rλ
of Eq. (3.1) can be replaced by W(1)ad(qλ) ·∇Rλ

.

The matrix W(2)ad(Rλ) can also be replaced by W(2)ad(qλ) as the electronic wave

functions don’t depend on the three Euler angles mentioned above. So Eq. (3.1)
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becomes

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(qλ) · ∇Rλ

+ W(2)ad(qλ)
}

+
{
εad(qλ) − EI

}]
χad(Rλ) = 0

(3.2)

In addition, I is a 2 × 2 identity matrix,

χad(Rλ) =




χad
1 (Rλ)

χad
2 (Rλ)


 (3.3)

is a 2×1 column vector whose elements are the ground (χad
1 (Rλ)) and the first-excited

(χad
2 (Rλ)) adiabatic nuclear motion wave functions, and

εad(qλ) =




εad
1 (qλ) 0

0 εad
2 (qλ)


 (3.4)

is a diagonal matrix whose diagonal elements are the ground (εad
1 (qλ)) and the first-

excited (εad
2 (qλ)) adiabatic electronic PESs.

W(1)ad(qλ) and W(2)ad(qλ) are respectively the first-derivative [20–23] and second-

derivative [20,24,25] nonadiabatic coupling matrix elements between the ground and

first-excited adiabatic electronic PESs. For the two-electronic-state approximation

they are 2 × 2 matrices, whose elements are defined by

W(1)ad
m,n (qλ) = 〈ψad

m (r;qλ) | ∇Rλ
ψad

n (r;qλ)〉r and (3.5)

W(2)ad
m,n (qλ) = 〈ψad

m (r;qλ) | ∇
2
Rλ
ψad

n (r;qλ)〉r, (3.6)

where r is a set of electronic coordinates, and m and n refer to the ground or the first-

excited electronic PESs. ψad
n (r;qλ) is an eigenfunction of the electronic Hamiltonian

and satisfies the electronic Schrödinger equation

[
Ĥel − εad

n (qλ)
]
ψad

n (r;qλ) = 0. (3.7)
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ψad
n (r;qλ) and εad

n (qλ) depend only on the internal nuclear coordinates qλ because

the coulombic interaction potential between the (N -atom) system’s particles (nuclei

and electrons), which appears in Ĥel, depends only on their relative distances and

hence these quantities depend on qλ but not on the three Euler angles which orient

the nuclear frame with respect to a space-fixed one. This introduces small rotational

coupling terms that are two orders of magnitude or more smaller than the remaining

coupling terms and can be neglected. This leads to a subtle but important point im-

plicit in Eqs. (3.5) and (3.6): although the right-hand sides of these equations contain

Rλ, the left-hand sides contain only qλ. Also, since ∇Rλ
and ∇2

Rλ
are respectively

the gradient and laplacian operators, W
(1)ad
m,n (qλ) is a vector quantity and W(2)ad

m,n (qλ)

is a scalar quantity.

The matrix W(1)ad(qλ) is skew-hermitian, and if we choose ψad
1 (r;qλ) and ψad

2 (r;qλ)

to be real, it is skew-symmetric and W
(1)ad
1,1 (qλ) and W

(1)ad
2,2 (qλ) are identically zero.

Furthermore, the off-diagonal elements, W
(1)ad
1,2 (qλ) and W

(1)ad
2,1 (qλ), satisfy the rela-

tion

W
(1)ad
1,2 (qλ) = −W

(1)ad
2,1 (qλ). (3.8)

The presence of the first-derivative term W(1)ad(qλ) ·∇Rλ
in Eq. (3.2) introduces in-

efficiencies in the numerical solution of this equation. A diabatic representation [7,26]

of this equation is introduced to circumvent this problem, since in that representa-

tion the first-derivative coupling element is minimized. It has been shown [27, 28]

that in general a perfect diabatic basis that makes that first term vanish for all nu-

clear geometries does not exist for a polyatomic system, and hence a finite part of

the first-derivative coupling cannot be totally removed even in the diabatic represen-

tation. This part is referred to in literature as the nonremovable part. For systems

having a conical intersection, W
(1)ad
1,2 (qλ) has a singularity at conical intersection ge-

ometries [29]. This singularity along with some finite part of the coupling is removable

upon an adiabatic to diabatic transformation and is hence referred to as the removable

part. Mead and Truhlar [28] have shown how to calculate the removable part, but

their approach is difficult to implement [30]. Over the years, a number of formalisms
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involving (quasi-)diabatic basis have also been put forward [30–40].

This chapter focuses on the calculation of high-quality ab initio ground and first-

excited electronic energies and the first-derivative couplings between them. The

second-derivative couplings are generally assumed to be negligible as compared to

the other terms in the Hamiltonian [Eq. (3.2)], except at the conical intersection [41].

These accurate energies and first-derivative couplings will be used for transforming

the two-state adiabatic problem expressed by Eq. (3.2) to a (quasi-)diabatic represen-

tation and will be incorporated into the quantum scattering formalism to calculate

the effect of conical intersections on the dynamics of the chemical reactions at energies

for which a minimum of two electronic states is required to obtain accurate results.

The H + H2 system is being used for this work because it is the simplest of the

chemical reactions for which the concurrent bond breaking and bond formation can

be studied in detail both experimentally and theoretically. Many quantum scattering

calculations have been performed on this system [9,10,42–45]. The equilateral triangle

(C3v) configuration of H3 corresponds to a conical intersection between the ground

and the first-excited electronic states of the system. This conical intersection induces

a GP that is important in studying the reactive scattering in the ground state [7,

9–13, 46, 47]. With the breakdown of the one electronic state Born-Oppenheimer

approximation near 2.75 eV, which corresponds to the minimum of the first-excited

PES [48], both surfaces must be used in a scattering calculation for an accurate result

to be obtained. Such two-state calculations should be performed and compared with

the recent quantum scattering calculations [9,10] done with and without the inclusion

of the GP effect. This comparison is expected to provide an upper limit to the energy

at which the ground state PES by itself, with an incorporation of the GP effect, is

capable of furnishing a quantitative description of the reaction dynamics of the H3

system and its isotopomers.

In this chapter, we present the first-derivative nonadiabatic couplings between the

ground and the first-excited PESs for the H + H2 system obtained from high-quality

ab initio wave functions and analytic gradient techniques over the entire nuclear
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internal configuration space. We also present a fit to the corresponding ground and

first-excited electronic PESs and analyze the regions of that space for which the

first-derivative couplings could affect the dynamics of the H + H2 reaction. For

comparison, we also present the first-derivative couplings and the lowest two electronic

PESs obtained analytically from the double many-body expansion (DMBE) method

of Varandas et al. [49], as the DMBE couplings are designed to be accurate only in

the vicinity of the conical intersection.

In Sec. 3.2, we describe the methods used to obtain the first-derivative couplings

and introduce their contour integrals. In Sec. 3.3, we present a fit to the ab initio

energies corresponding to the lowest two electronic PESs and compare them to the

DMBE ones. We present and compare the ab initio and DMBE first-derivative cou-

plings in Sec. 3.4, which is concluded by an analysis of the contour integrals of the

ab initio couplings.

3.2 Theory and numerical methods

3.2.1 Ab initio couplings and electronic energies

The first-derivative couplings are determined using an analytic gradient technique

summarized in Ref. [50]. This technique is a significant improvement over the finite-

difference techniques introduced previously [20,51–54] and has been used recently in

a number of problems to obtain electronic energies and first-derivative couplings [37,

55–58]. Using it, the first-derivative couplings are first evaluated in terms of six

atom-centered displacements [50] in the H3 molecular plane and then transformed

to standard internal mass-scaled Jacobi coordinates (Rλ, rλ, γλ). In addition to the

derivative couplings associated with these coordinates, the coupling due to rotation

in the molecular plane is also determined. This rotational coupling must equal the

interstate matrix element of the z component of total electronic orbital angular mo-

mentum operator, Le
z [59, 60]. This equivalence provides a measure of the precision
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of the derivative couplings presented in this chapter and the two approaches agree to

1 × 10−6 bohr−1.

In this work, the first-derivative couplings and the ground (E1) and first-excited

(E2), electronic PESs for H3 were determined on a grid of 784 geometry points picked

in the symmetrized hyperspherical coordinates (qλ:ρ, θ, φλ) used previously [7,9] and

defined in detail in Sec. 3.3. The adiabatic wave functions, first-derivative couplings,

and electronic energies were determined from second-order CI [61–63] wave functions

based on a three-electron, three-orbital, active space. The molecular orbitals were

determined from a complete active space [64–66] state-averaged multiconfiguration

self-consistent field procedure [67, 68], in which two 2A′ states were averaged with

weights (0.505,0.495) based on (6s3p1d) contracted Gaussian basis sets on the hydro-

gens.

After being evaluated in nuclear mass-scaled Jacobi coordinates as mentioned

above, the first-derivative couplings are transformed to the qλ coordinates (ρ, θ, φλ)

to obtain the first-derivative coupling vector

W
(1)ad
1,2 (qλ) = 〈ψad

1 (r;qλ) | ∇qλ
ψad

2 (r;qλ)〉r, (3.9)

whose components in the ρ, θ and φλ unit vector directions are defined as

W
(1)ad
1,2,ρ (ρ, θ, φλ) = 〈ψad

1 (r; ρ, θ, φλ) |
∂

∂ρ
ψad

2 (r; ρ, θ, φλ)〉r, (3.10)

W
(1)ad
1,2,θ (ρ, θ, φλ) = 〈ψad

1 (r; ρ, θ, φλ) |
1

ρ

∂

∂θ
ψad

2 (r; ρ, θ, φλ)〉r, and (3.11)

W
(1)ad
1,2,φλ

(ρ, θ, φλ) = 〈ψad
1 (r; ρ, θ, φλ) |

1

ρ sin θ

∂

∂φλ
ψad

2 (r; ρ, θ, φλ)〉r. (3.12)

The values of the qλ coordinates (ρ, θ, φλ) are limited to the ranges

0 ≤ ρ <∞ 0 ≤ θ ≤ π/2 0 ≤ φλ < 2π (3.13)

θ = 0◦ corresponds to conical intersection geometries. As seen from Eq. (3.12) and the
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behavior of ψad
1 (r; ρ, θ, φλ) and ψad

2 (r; ρ, θ, φλ) in the vicinity of the conical intersection

(see Eq. (116) of Ref. [7]), W
(1)ad
1,2,φλ

has a pole at those geometries.

A three-dimensional cubic spline [69] interpolation of the components of the first-

derivative coupling vector is performed using all 784 geometries. The vector resulting

from this interpolation is presented and discussed in Sec. 3.4. The adiabatic electronic

energies for the ground and first-excited states are fitted by a method that will be

described in Section 3.3.

According to Mead and Truhlar [28], the first-derivative coupling vector can be

partitioned (using the Helmholtz decomposition theorem [70]) as

W
(1)ad
1,2 (qλ) = W

(1)ad
1,2,lon(qλ) + W

(1)ad
1,2,tra(qλ) (3.14)

where W
(1)ad
1,2,lon(qλ) is the curl-free longitudinal (removable) part and W

(1)ad
1,2,tra(qλ) is

the divergence-free transverse (nonremovable) part of the coupling vector. Although

W
(1)ad
1,2 (qλ) is singular, the Helmholtz theorem is still valid in this case because the

singularity can be removed analytically [71] from W
(1)ad
1,2,φλ

. For a strictly diabatic two-

electronic-state basis, W
(1)ad
1,2,tra(qλ) is identically zero. In the present two-adiabatic-

electronic-state approximation, W
(1)ad
1,2,tra(qλ) is not zero due to the presence of con-

tributions to W
(1)ad
1,2 (qλ) from other non-negligible derivative couplings with states

outside this two-state space (see Eq. (28) of Ref [28]). Since W
(1)ad
1,2,lon(qλ) is curl-free,

an angular potential β(qλ) exists for which

W
(1)ad
1,2,lon(qλ) = ∇qλ

β(qλ) (3.15)

This equation can be solved by integration along paths L in the nuclear configuration

space [27, 37, 72]

β(qλ) =

qλ∫

L q0λ

W
(1)ad
1,2,lon(q′

λ) · dq
′
λ (3.16)

where q0λ is a point along L at which we take β(q0λ) = 0. β defined in this way

is a particular diabatization angle that transforms an adiabatic basis to a diabatic
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basis. It should be noted that because of Eq. (3.15), this integral depends on qλ and

q0λ, but not on the path L. In addition, if the integral in Eq. (3.16) is carried along

a closed loop enclosing one or no conical intersections, due to the geometric phase

theorem β should change by π or zero, respectively [6,37,55]. We can define another

angular potential Φ(qλ,q0λ;L) corresponding to the W
(1)ad
1,2 (qλ) analog of Eq. (3.16)

by

Φ(qλ,q0λ;L) =

qλ∫

L q0λ

W
(1)ad
1,2 (q′

λ) · dq
′
λ (3.17)

This angle is called the open-path phase if qλ 6= q0λ [73]. It is also convenient to

define the corresponding closed path phase ΦT, called the topological phase [74]:

ΦT(L) =

∮

L

W
(1)ad
1,2 (q′

λ) · dq
′
λ (3.18)

Since W
(1)ad
1,2 (qλ) does not in general satisfy Eq. (3.15), these path integrals are no

longer independent of the path L. It is also convenient to define the angle η(L) by

η(L) = ΦT(L) − pπ (3.19)

where p = 0 if L does not enclose any conical intersection and p = 1 if it encloses one

conical intersection. This angle is the closed path integral of the transverse part of the

first-derivative coupling. A necessary but insufficient condition for the first-derivative

coupling to be purely longitudinal is that η(L) should vanish [71]. Since conical

intersections produce large derivative couplings, large η(L) have been interpreted in

the past as indicating the existence of conical intersections with the first excluded

state [37] or even to locate such intersections [75]. In Sec. 3.4, we present values

of the topological phase between the first two states of H3 over the entire nuclear

configuration space and discuss the results.
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3.2.2 DMBE couplings and electronic energies

Varandas et al. [49] have reported an analytical representation of the lowest electronic

PES (1 2A′) of H + H2 based on the DMBE method. For the DMBE fit, they used 267

ab initio points of Liu and Siegbahn [76,77], 31 points from Blomberg and Liu [78] and

18 new ab initio points. Their ab initio calculations employed a primitive (9s3p1d)

basis set contracted to [4s3p1d]. They first perfomed a complete-active-space-self-

consistent-field (CASSCF) calculation [64] with the three active orbitals to obtain

eight configurations. It was followed by a multireference CI calculation with all single

and double excitations out of that eight configuration reference space (MR-CISD).

The fundamental form used for the DMBE fit has correct analytical properties [79–82]

for a PES exhibiting a C3v conical intersection and is analytically continued to the

first-excited electronic PES (2 2A′). In the process, it yields a good representation

of the first-derivative couplings in the vicinity of the conical intersection. In fact,

it gives the leading terms of the longitudinal part of the first-derivative coupling

vector, W
(1)ad
1,2,lon(qλ). Varandas et al. [49] also mention that these leading terms (of the

longitudinal part) can be determined from the adiabatic PESs, but the transverse part

(W
(1)ad
1,2,tra(qλ)) cannot be completely determined. Besides, in the vicinity of the conical

intersection, W
(1)ad
1,2,lon(qλ) diverges but the W

(1)ad
1,2,tra(qλ) part stays finite and small.

Hence, the leading terms that provide the longitudinal part give a good representation

of the first-derivative couplings in the vicinity of the conical intersection.

Using the DMBE method, it has been shown [49,80] that the longitudinal part and

hence the total DMBE first-derivative coupling vector can be approximated (assuming

the transverse part to be zero over the entire configuration space) as

W
(1)ad,DMBE

1,2 (qλ) ∼ W
(1)ad,DMBE

1,2,lon (qλ) = ∇qλ
βDMBE(qλ) (3.20)

where

βDMBE(qλ) =
1

2

[
φλ − tan−1 g0(ρ) sin θ sin 3φλ

f0(ρ) + g0(ρ) sin θ cos 3φλ + f1(ρ) sin2 θ

]
(3.21)
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Eqs. (3.20) and (3.21) have been obtained in our hyperspherical coordinates by re-

placing s by sin θ and φ by our φλ in Eq. (48) of Ref. [49]. g0(ρ), f0(ρ), and f1(ρ)

are some factors that depend only on the hyperradius ρ. The original DMBE code

was used in this work to obtain these longitudinal couplings and the two lowest PESs

for H3. In the vicinity of the conical intersection, these longitudinal couplings are

expected to be quite close to the ab initio first-derivative couplings. Using this crite-

rion, a systematic mismatch in sign was found in those couplings and was removed by

flipping the sign of g0(ρ) in the DMBE code. These DMBE couplings are presented

and compared with the ab initio ones in Sec. 3.4. In Sec. 3.3, the two lowest DMBE

PESs for H3 are compared to the PESs obtained from the fits of the ab initio energies.

3.3 Ab initio and DMBE electronic energies

3.3.1 Fitting method

Any PES fitting procedure is expected to be reasonably simple, result in good agree-

ment with the ab initio data and have a physically realistic mathematical form to

minimize the number of ab initio geometries needed to obtain a surface with cor-

rect features and topology [83, 84]. We have used a DMBE plus single-polynomial

(DSP) fitting method based on the recent [85] generalized London-Eyring-Polanyi-

Sato double-polynomial (GLDP) method as it satisfies most of the abovementioned

criteria for fitting methods. The DSP method uses data from the DMBE fit to the

lowest two adiabatic electronic PESs for H3. Since the original DMBE fit is explained

in detail in Ref. [49], we will only describe the DSP method here.

The DSP mathematical form used for the lowest two PESs for H3 is the sum of

two terms

EDSP

n = EDMBE

n + EPOLY

n , (3.22)

where n = 1 or 2 for the ground or first-excited PES, respectively. The first term

is the DMBE potential [49], as it gives a good physical description of the two PESs.
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The second term is a single high-order polynomial multiplied by a switching function

and modifies the initial DMBE potential to provide greater accuracy. With the three

H atoms in H3 labelled Aα, Aβ, or Aγ , this polynomial term is defined by

EPOLY

n = Sn(qλ)

(
tn∑

i+j+k=0

cn,ijk(Rαβ − an)i(Rβγ − an)j(Rγα − an)k

)
(3.23)

where Rλν is the distance between Aλ and Aν (λν = αβ, βγ, γα). The cn,ijk are

coefficients and Sn(qλ) are the switching functions. The switching function S is used

to turn the single polynomial in EPOLY

n on and off in different regions of the internal

nuclear configuration space. Terms up to fifth-order (t1 = 5) are used in the above

polynomial for the ground state PES and up to sixth-order (t2 = 6) for the first-

excited PES. The sum extends over all possible sets of i, j, k satisfying the condition

i+ j + k ≤ tn. The switching function S is defined by

Sn(qλ) = s(yn,αβ)s(yn,βγ)s(yn,γα) (3.24)

where

s(yn,λν) = 1 − tanh(yn,λν) (3.25)

in which

yn,λν = γn(Rλν − an), λν = αβ, βγ, γα (3.26)

The cn,ijk, an, and γn are variational parameters determined by the fitting method.

The s(yn,λν) terms in Eq. (3.25) turn the EPOLY

n term off for the asymptotic geome-

tries. As a result, the asymptotic regions of the PESs have the correct diatomic

behavior, included in the EDMBE

n term. The slope parameter, γn, having dimensions

of a reciprocal length controls how rapidly EPOLY

n is made to vanish, whereas an is a

reference internuclear distance.

The DSP mathematical form is fitted to the ab initio data using a linear least-

squares method to obtain the set of variational parameters (an and γn) that minimize

the root-mean-square (rms) error. Using an initial estimate of the parameters, the
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cn,ijk and the corresponding root-mean square (rms) error ε are determined by a linear

variational procedure. an and γn are then varied and the determination of cn,ijk and

ε is repeated until that error is minimized. This procedure is carried out for both the

ground and first-excited PESs, and the resulting PESs are examined with the help of

equipotential contour plots in the corresponding two-internuclear-distance cartesian

space at fixed bond angles for any spurious features in these PESs. No such features

were detected. The fitted ground PES 1 2A′ (EDSP

1 ) has an rms error with respect to

the ab initio data of 0.31 kcal/mol and the corresponding error for the fitted first-

excited PES 2 2A′ (EDSP

2 ) is 1.12 kcal/mol. The optimized parameters (an and γn)

are given in Table 3.I and the corresponding optimized coefficients (cn,ijk) are given

in Table 3.II. These fitted DSP PESs are also examined in hyperspherical coordinates

with the help of equipotential contour plots at fixed hyperradii, as discussed in the

next subsection and compared with the corresponding contour plots for the DMBE

PESs.

3.3.2 DSP and DMBE potential energy surfaces

Equatorial projection plots (Figs. 3.1 and 3.2) of potential energy surfaces in internal

symmetrized hyperspherical coordinates (ρ, θ, φλ) [7, 9, 86] provide useful informa-

tion for reactive scattering calculations that use these coordinates. These plots are

obtained as follows. Let the arrangement channel Aλ + AνAκ be called the λ ar-

rangement channel, where λνκ is a cyclic permutation of αβγ. Let R′
λ, r

′
λ be the

Jacobi vectors associated with this arrangement channel, where r′λ is the vector from

Aν to Aκ and R′
λ the vector from the center of mass of AνAκ to Aλ. Let Rλ, rλ be

the corresponding mass-scaled Jacobi coordinates [86–90] defined by

Rλ =

(
µλ,νκ

µ

)1/2

R′
λ rλ =

(
µνκ

µ

)1/2

r′λ (3.27)
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where µνκ is the reduced mass of AνAκ, µλ,νκ the reduced mass of the Aλ,AνAκ pair,

and µ the system’s overall reduced mass given by

µ =

(
mαmβmγ

mα +mβ +mγ

)1/2

mλ being the mass of atom Aλ (λ = α, β, γ). We now define a set of symmetrized

hyperspherical coordinates ρ, ωλ, γλ [86, 91] by

ρ =
(
R2

λ + r2
λ

)1/2
(3.28)

and

Rλ = ρ cos ωλ

2
rλ = ρ sin ωλ

2
0 ≤ ωλ ≤ π (3.29)

where ρ is independent of the arrangement channel [87,88]. The corresponding inter-

nal configuration space cartesian coordinates are defined by

Xλ = ρ sinωλ cos γλ (3.30)

Y = ρ sinωλ sin γλ (3.31)

Zλ = ρ cosωλ (3.32)

where γλ is the angle between Rλ and rλ (or R′
λ and r′λ) in the 0 to π range and

ωλ, γλ are the polar angles of a point in this space. The alternate internal configuration

space symmetrized hyperspherical coordinates θ, φλ are defined as the polar angles

associated with the interchanged axes OXλ = OZλ, OY λ = OXλ, and OZλ = OYλ

for which we have

Xλ = Zλ = ρ sin θ cos φλ (3.33)

Y λ = Xλ = ρ sin θ sinφλ (3.34)

Z = Y = ρ cos θ (3.35)

with θ and φλ limited to the ranges given in Eq. (3.13).
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The coordinates used for Figs. 3.1 and 3.2 correspond to a mapping [86,92] of the

points P of a constant ρ hemisphere in the OXλY Zλ space onto a plane tangent to

that hemisphere at the intersection T of the OY axis with it (Fig. 3.3). Let Txλ and

Tyλ be respectively the intersection of the OZλY and OXλY planes with that tangent

plane. The corresponding xλ and yλ of the map Q of the point P onto the tangent

plane are then

xλ = ρ θ cosφλ (3.36)

yλ = ρ θ sin φλ (3.37)

This mapping of P onto Q is not a perpendicular projection, but is one in whch the

length of the arc PT of the circle of center O on the constant ρ hemisphere is equal

to the length of the straight line TQ on the tangent plane.

To obtain such maps, we start out with a configuration of the molecule defined by

the 3 internuclear distances Rαβ, Rβγ , and Rγα and then calculate R′
λ (the magnitude

of R′
λ), r

′
λ (the magnitude of r′λ), and γλ. From the first two we calculate the mass-

scaled distances Rλ and rλ and then, with the help of Eqs. (3.28) and (3.29) we obtain

ρ and ωλ. Using Eqs. (3.30) through (3.35) and (3.13) we then calculate θ and φλ

and finally we obtain xλ and yλ from Eqs. (3.36) and (3.37), respectively.

This mapping of the PES onto the xλ, yλ tangent plane is called the equatorial

view because it corresponds to a non-perpendicular arc-length preserving projection

of the constant hyperradius hemisphere on a plane tangent to it at the point on its

equator defined by ωλ = γλ = π/2. This permits the viewing of all three possible

atom-diatom arrangement channels (for the triatomic reaction) as well as the regions

for which the three atoms are at comparable distances from each other, for a fixed

hyperradius ρ. Maps of this kind have been used before [85, 86, 93].

In Figs. 3.1 and 3.2, we present the equatorial views for the lowest two PESs for H3

obtained by the DSP and DMBE fits. The plots display the C3v symmetry of the H3

system. Also, the circle at the edge of each plot corresponds to collinear geometries
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(θ = π/2) and the center of each plot corresponds to a conical intersection geometry

(θ = 0). Figs. 3.1 (a) through (d) show the equatorial views of the equipotential

contours of the 1 2A′ surface for the DSP fit (EDSP

1 ) to the ab initio data at constant

values of the hyperradius ρ. Figs. 3.1 (e) through (h) show the corresponding contours

for the DMBE fit (EDMBE

1 ). Figs. 3.2 (a) through (h) show the corresponding equatorial

views for the first-excited (2 2A′) surface. The DSP and DMBE fits are extremely

similar for the ground PES (1 2A′), but show some differences in the first-excited PES

(2 2A′).

For the ground PES (1 2A′) at ρ = 2 bohr (Fig. 3.1 (a)), there are no contours

below 3.5 eV suggesting that at energies below 3.5 eV regions for which ρ is smaller

than 2 bohr will not be dynamically important. For all other ρ (Fig. 3.1 (b, c, d)),

contours as low as 0.5 eV exist suggesting the dynamical importance of these higher

ρ regions. In going from ρ = 4 bohr (Fig. 3.1 (b)) to ρ = 6 bohr (Fig. 3.1 (c)) to ρ =

8 bohr (Fig. 3.1 (d)), we are considering triatomic configurations whose overall size is

increasing. For ρ = 4 bohr the region near to the center of the figure corresponds to

E1 between 2.5 eV and a value less than 4.0 eV, whereas for ρ = 6 bohr that energy

lies between 4.0 eV and a value close to the dissociation limit of 4.75 eV and for ρ =

8 bohr it is between 4.5 eV and that dissociation limit. This indicates that for large

ρ and stretched configurations of the system, which those regions correspond to, the

system approaches dissociation, as expected. The first-excited PES (2 2A′) is similar

for both the DSP and DMBE PESs at ρ = 2 bohr (Figs. 3.2 (a) and (e)) and at ρ

= 8 bohr (Figs. 3.2 (d) and (h)). At ρ = 4 bohr, the DSP PES (Fig. 3.2 (b)) has a

6 eV contour that spreads over the entire surface, whereas this contour is closed for

the DMBE PES (Fig. 3.2 (f)). On the other hand at ρ = 6 bohr, the 5 eV contour

spreads over the entire surface for the DMBE PES (Fig. 3.2 (g)) but is closed for the

DSP one (Fig. 3.2 (b)).

For the ground PES, DSP fit (EDSP

1 ) has a rms deviation of 1.15 kcal/mol relative

to the Liu-Siegbahn-Truhlar-Horowitz (LSTH) PES [94] (ELSTH

1 ) and of 1.03 kcal/mol

relative to the DMBE one (EDMBE

1 ) for energies below 5 eV. For the first-excited
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PES, DSP fit (EDSP

2 ) has a rms deviation of 1.19 kcal/mol relative to the DMBE one

(EDMBE

2 ) for energies below 5 eV and of 2.97 kcal/mol for energies below 10 eV. EDSP

1

stays greater than ELSTH

1 and EDMBE

1 for most geometries (except for large geometries

with ρ greater than 6 bohr near the conical intersection with θ smaller than 10◦) in

the internal nuclear configuration space, whereas EDSP

2 stays greater than EDMBE

2 only

for compact geometries (ρ less than 4 bohr) near and slightly away from the conical

intersection (θ less than 40◦). This is due to the fact that ab initio electronic structure

calculations were performed to obtain good representative ground and first-excited

state energies used in the EDSP

1 and EDSP

2 fits. This leads to a slightly higher EDSP

1 than

it would be, if the basis set used was chosen to optimize the ground state energies

only. Since EDMBE

2 PES is an analytic continuation of the EDMBE

1 PES, EDSP

2 PES is

lower than EDMBE

2 for most nuclear geometries.

Overall, for the ground PES, the DMBE PES is accurate over the entire internal

configuration space, but for the first-excited state PES, the similarities between DSP

and DMBE PESs at ρ = 2 bohr and 8 bohr and the differences between them at ρ

= 4 bohr and 6 bohr indicate that the DMBE PES is accurate in the compact and

asymptotic regions, but not in the strong interaction regions.

3.4 Results and discussion

3.4.1 Ab initio and DMBE first-derivative couplings

The first-derivative coupling vector (W
(1)ad
1,2 (qλ)) obtained using Eq. (3.9) had its

three components defined in the ρ, θ, and φλ unit vector directions by Eqs. (3.10)

through (3.12). These internal hyperspherical coordinates (qλ: ρ, θ, φλ) defined in

Sec. 3.2 are identical to ordinary spherical polar coordinates except for the range of

θ which is 0 to π/2 for the former [Eq. (3.13)] compared to 0 to π for the latter.

These internal hyperspherical coordinates span half a sphere (compared to the full

sphere spanned by ordinary spherical polar coordinates). This property facilitates



49

the visualization of the first-derivative coupling vector in the associated internal 3-D

cartesian coordinate configuration space. The transformation of this vector into its

cartesian counterpart, which has components W
(1)ad
1,2,x , W

(1)ad
1,2,y , and W

(1)ad
1,2,z in the x, y,

and z unit vector directions, is defined as




W
(1)ad
1,2,x

W
(1)ad
1,2,y

W
(1)ad
1,2,z




=




sin θ cosφλ cos θ cosφλ − sin φλ

sin θ sin φλ cos θ sinφλ cosφλ

cos θ − sin θ 0







W
(1)ad
1,2,ρ

W
(1)ad
1,2,θ

W
(1)ad
1,2,φλ




(3.38)

In the central panels of Figs. 3.4 through 3.7, we present a perpective view of

the three-dimensional ab initio first-derivative coupling vector at points in this space

with varying values of the hyperangle φλ, for fixed values of the hyperradius ρ and

hyperangle θ. In cartesian language, this is equivalent to varying x and y and keeping

z fixed, as indicated by the dotted horizontal circles in those figures. The cartesian

components of this vector were obtained from Eq. (3.38). The leftmost panels contain

the corresponding DSP ground state electronic energies plotted as vertical lines such

that the energies can be read off from the length of those vertical lines. The rightmost

panels contain the DSP first-excited state electronic energies plotted in the same

way as the ground state electronic energies. Figs. 3.8 through 3.11 present the same

physical quantities but obtained by the DMBE method. The cartesian components of

the longitudinal part of the DMBE first-derivative coupling vector are also obtained

from Eq. (3.38). Figs. 3.4, 3.5, 3.6, and 3.7 correspond to the fixed hyperradii of

2 bohr, 4 bohr, 6 bohr, and 8 bohr respectively. The same is the case for Figs. 3.8,

3.9, 3.10, and 3.11. In all figures (3.4 through 3.11), panel (a) (the first row of plots)

corresponds to θ = 1◦ (a value very close to the conical intersection geometries of

θ = 0◦), panel (b) corresponds to θ = 30◦, panel (c) to θ = 60◦, and panel (d)

to θ = 90◦ (collinear geometries). The tail end of the vectors lies on a circle that

corresponds to a fixed θ on the hemisphere in hyperspherical coordinate space defined
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by a fixed hyperradius ρ. This circle maps the full φλ range of 0◦ to 360◦ and is shown

on the bottom face of all E1 and E2 panels. The coupling vectors shown in the central

panels correspond to the configurations being mapped by this circle. Above each of

these central panels two scales are given. The one in units of bohr corresponds to

the internal nuclear configuration space corresponding to the full 0◦ to 360◦ φλ range

spanned on the xy plane. The second one in units of bohr−1 corresponds to the three-

dimensional space sampled by the x, y, and z components of the coupling vector.

The two spaces co-exist on the xy plane. In addition, in all figures the ground-state

energies (E1) have been cut off at 10 eV and the first-excited state electronic energies

(E2) at 15 eV.

The first-derivative coupling vector plots at θ = 1◦ (panel (a) in all figures) have

been included to show their behavior near the conical intersection. The θ = 90◦ (panel

(d) in all figures) case has been included, as it corresponds to collinear geometries for

the triatomic system. This case is important for lower energies due to the collinear

dominance of the H + H2 reaction at those energies, as will be discussed in the next

subsection. The θ = 30◦ and θ = 60◦ cases (panels (b) and (c) respectively in all

figures) have been included to gauge the importance of the coupling vector away

from the conical intersection as well as the collinear geometries.

For the DMBE case, the total first-derivative coupling vector (W
(1)ad,DMBE

1,2 (qλ)) is

equal to its longitudinal part (W
(1)ad,DMBE

1,2,lon (qλ)) because the transverse part (W
(1)ad,DMBE

1,2,tra (q)λ)

was neglected over the entire internal configuration space. Figs. 3.8 through 3.11

show the DMBE’s total (or longitudinal) first-derivative coupling vector and the cor-

responding ground and first-excited DMBE energies for comparison with the ab initio

first-derivative coupling vector plots. In the next subsection, the comparison between

DMBE and ab initio first-derivative coupling vectors is discussed, based upon their

magnitudes and the corresponding ground and first-excited energies. This discussion

will help locate the regions of the internal hyperspherical configuration space for the

H + H2 reaction, for which the first-derivative couplings may affect the dynamics of

that reaction.
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3.4.2 The topological phase

In Sec. 3.2.1 we mentioned how we can get some qualitative indication of possible

non-negligible derivative couplings between the 2 2A′ and 3 2A′ PESs of H3. This

involves calculating the topological phase ΦT(L) from Eq. (3.18) along closed loops

around the conical intersection between the 1 2A′ and 2 2A′ states. A non-zero η(L)

(defined by Eq. (3.19)) is indicative of such non-negligible couplings (see Sec. 3.2.1).

In our symmetrized hyperspherical coordinates, qλ is a set of the three coordinates

ρ, θ, and φλ. The abovementioned original conical intersection between the 1 2A′ and

2 2A′ states lies along θ = 0◦ for all values of ρ. φλ is undefined at θ = 0◦. To evaluate

the integral in Eq. (3.17) along an open loop around that conical intersection, we take

a circular path L given by a fixed value of θ 6= 0◦, a fixed ρ, and φλ varying along

that path from 0 to an arbitrary value, according to

Φ(φλ, 0; ρ, θ) =

∫ φλ

0

W
(1)ad
1,2,φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ (3.39)

where W
(1)ad
1,2,φλ

(ρ, θ, φ′
λ) is defined in Eq. (3.12). These integrals are evaluated using

the standard Simpson numerical integration quadrature. From here on, we will drop

the 0 in Φ(φλ, 0; ρ, θ) and just refer to it as Φ(φλ; ρ, θ).

In Fig. 3.12 we show the open-path phase Φ(φλ; ρ, θ) as a function of φλ evaluated

using Eq. (3.39) for four values of ρ (2, 4, 6, and 8 bohr) and four values of θ (1◦,

30◦, 60◦, and 90◦). For each ρ and θ we then calculate the closed-loop integral (or

the topological phase) ΦT. This corresponds to a complete loop around the conical

intersection (φλ = 2π in Eq. (3.39)) and is expressed as

ΦT(ρ, θ) =

∮
W

(1)ad
1,2,φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ (3.40)

In Fig. 3.13 we display this topological phase as a function of ρ and θ for the entire

(ρ, θ) space considered in this chapter.
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3.4.3 Discussion

As mentioned in Sec. 3.4.1, Figs. 3.4 through 3.7 display the ab initio first-derivative

coupling vector and the corresponding DSP ground and first-excited electronic state

energies for ρ = 2 bohr through 8 bohr, in steps of 2 bohr. Each of the figures has

4 sets of panels: (a) θ = 1◦ (triatomic geometries near conical intersection), (b) θ =

30◦, (c) θ = 60◦, and (d) θ = 90◦ (collinear triatomic geometries).

Fig. 3.4 (a) (ρ= 2 bohr and θ = 1◦) corresponds to a very compact set of geometries

near the conical intersection. Being near the conical intersection (where the two

electronic states are degenerate), the ground (E1) and the first-excited (E2) state

energies are close to each other and stay around 3.3 eV as a function of φλ. The first-

derivative coupling vector has a large magnitude (between 10 and 15 bohr−1) but its

z-component is very small compared to its length, due to a singularity at the conical

intersection geometries. This dominance of the x- and y- components translates into a

strong dominance of the φλ-component of the first-derivative coupling vector near the

conical intersection. Fig. 3.4 (b) (ρ = 2 bohr and θ = 30◦) corresponds to a compact

set of geometries further away from the conical intersection (but with the largest bond

angle in the range 106◦ to 120◦ and the smallest bond length around 1.5 bohr, as seen

in Table 3.III). This manifests itself in the fact that for this θ the E1 and E2 energies

are quite different from each other, the former staying above 3.1 eV and varying slowly

between 3.1 and 3.5 eV as a function of φλ with the latter staying around 6 eV and

varying even more slowly with φλ. The coupling vector is smaller in magnitude (with

a maximum around 1 bohr−1 and an average around 0.5 bohr−1) than for Fig. 3.4 (a)

due to its greater distance from the conical intersection configurations.

Fig. 3.4 (c) (ρ = 2 bohr and θ = 60◦) corresponds to compact geometries (with

the largest bond angle in the range 140◦ to 150◦ and the smallest bond length in the

range 0.56−1.14 bohr, as seen in Table 3.III) even further removed from the conical

intersection. The E1 and E2 energies are again quite different from each other, and

vary more rapidly with φλ than before (Fig. 3.4 (b)). The E1 energies vary between

4 eV and some value higher than 10 eV as a function of φλ, while the E2 energies
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vary between 7 eV and some value higher than 15 eV with φλ. Both E1 and E2

display maxima at φλ = 0◦, 120◦, and 240◦. The coupling vector is again smaller in

magnitude (with a maximum around 0.5 bohr−1 and averaging around 0.3 bohr−1)

than for θ = 1◦ (Fig. 3.4 (a)) but varies more rapidly with φλ as compared to the θ =

30◦ case (Fig. 3.4 (b)). The x-, y-, and z-components are comparable with each other

contrary to the θ = 1◦ (Fig. 3.4 (a)) and θ = 30◦ (Fig. 3.4 (b)) cases. Fig. 3.4 (d) (ρ

= 2 bohr and θ = 90◦) corresponds to compact collinear geometries with the smallest

bond length in the range 0 to 1 bohr. The E1 and E2 energies are again quite different

from each other, and vary even more rapidly with φλ than before (Fig. 3.4 (c)) with

minima around 5 eV and 8 eV, respectively. Both E1 and E2 have maxima at φλ =

0◦, 120◦, and 240◦ as for the θ = 30◦ case (Fig. 3.4 (c)), as at these configurations

two out of three atoms are superimposed on each other. The coupling vector is small

(averaging around 0.5 bohr−1) as compared to the θ = 1◦ case (Fig. 3.4 (a)), and

has a negligible z-component compared to the θ = 30◦ (Fig. 3.4 (b)) and θ = 60◦

(Fig. 3.4 (c)) cases. Both E1 and E2 energies over the entire ρ = 2 bohr configuration

(compact geometries) space are 3.1 eV or higher and are expected to be of dynamical

importance only at energies slightly below that value or higher.

Figure 3.5 presents the first-derivative coupling vector and the E1 and E2 energies

for ρ = 4 bohr. This hyperradius is of dynamical importance for energies significantly

below the lowest conical intersection energy of 2.75 eV (which occurs at ρmin ≡ 2.6

bohr for the DMBE PES [49]), and is also expected to be of importance at that

energy and above since the conical intersection energy increases rather slowly with

with ρ above ρmin. The θ = 1◦ case (Fig. 3.5 (a)) is similar to the one for ρ = 2 bohr

(Fig. 3.4 (a)). E1 and E2 are close to each other and are approximately equal to 3.6 eV.

The coupling vector has large x- and y-components (10 bohr−1) and a negligible z-

component, again translating into a strong dominance of its φλ-component near the

conical intersection. At θ = 30◦ (Fig. 3.5 (b)), E1 is as low as 1.5 eV, E2 is 5 eV

or larger, and the coupling vector has a smaller magnitude than for θ = 1◦ (Fig. 3.5

(a)). At θ = 60◦ (Fig. 3.5 (c)), E1 is as small as 0.25 eV, E2 is 6 eV or larger, and the
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coupling vector has about the same magnitude as that at θ = 30◦ (Fig. 3.5 (b)). At

θ = 90◦ (Fig. 3.5 (d)), which corresponds to collinear geometries, E1 can be as low as

0.2 eV and varies rapidly with φλ than for smaller values of θ and E2 is again 6 eV

or larger. The coupling vector has a larger z-component than for the lower values of

θ discussed. Collinear geometries are important for low collision energies [42]. Their

importance at energies close to and above conical intersection energies is likely to

be significantly smaller or perhaps negligible but this remains to be determined by

future scattering calculations.

For the ρ = 6 bohr (Fig. 3.6) and 8 bohr (Fig. 3.7) cases, which correspond to

triatomic large sized geometries (see Table 3.III), the electronic energies are fairly

similar to the ρ = 4 bohr case (Fig. 3.5). In both these cases, E1 can be as low as

0.2 eV. The coupling vector magnitudes on the the other hand are smaller on average

and have sharper maxima compared to the ρ = 4 bohr case at around φλ = 60◦, 180◦,

and 300◦. They all have negligible z-components, but their maxima occur in low

energy regions. The coupling vectors presented in Figs. 3.6 and 3.7 may also affect

the dynamics of the H + H2 reaction depending on their magnitudes.

A similar detailed analysis of the DMBE first-derivative coupling vectors (Figs. 3.8

through 3.11) leads to the following conclusions. For ρ = 2 bohr (Fig. 3.8), the

coupling vector has a z-component which is negligible in the vicinity of the conical

intersection (θ = 1◦) and at the collinear geometries (θ = 90◦) but non-negligible in

the intermediate regions. For all other values of the hyperradii (ρ = 4 bohr, 6 bohr,

and 8 bohr), that z-component is negligible over the entire θ, φλ space (Figs. 3.9,

3.10, and 3.11), which indicates the dominance of the φλ-component. This stems

from the fact that the DMBE coupling vector is purely longitudinal and given by

Eqs. (3.20) and (3.21). A comparison of the DMBE first-derivative coupling vectors

with the corresponding ab initio couplings confirms the previously stated fact that

the DMBE’s coupling vector has the right physical and quantitative behaviour in the

vicinity of the conical intersection. The differences between these two vectors, which

occur even at low energies, stem mainly from the fact that the ab initio couplings
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include both a longitudinal part and a transverse part, whereas the DMBE couplings

only include a longitudinal part, which is a good approximation to the ab initio

longitudinal part in the vicinity of a conical intersection.

Fig. 3.12 shows the open-path phase Φ(φλ; ρ, θ) for four values of θ (1◦, 30◦, 60◦,

and 90◦) and four values of ρ ((a) 2 bohr, (b) 4 bohr, (c) 6 bohr, and (d) 8 bohr)

as a function of φλ as defined by Eq. (3.39). It shows how the open-path phase Φ

increases with φλ along a loop around the conical intersection between the 1 2A′ and

2 2A′ electronic states. For the θ = 1◦ case (solid line in all four panels), to a very

good approximation (0.2 % or smaller difference) Φ is equal to φλ/2 for all values of

ρ considered. This is clearly expected because θ = 1◦ is a region very close to the

conical intersection and the φλ/2 is a leading term of the diabatization angle in that

region. For other values of θ, Φ fluctuate around some mean value proportional to

φλ. The deviation of this mean value from φλ/2 is dependent both on ρ and θ. Also,

Φ returns to its mean value at regular intervals of 60◦ in φλ. As a result, we can

approximate Φ by a sum of two terms, the first one being proportional to φλ and

the second more complicated one possessing the C3v symmetry (of H3) via a sin 3φλ

dependence. The fluctuations in Φ about the mean value arise only from this second

term and have an amplitude which increases monotonically with ρ between ρ = 2 bohr

and ρ = 8 bohr. This seems to stem from the fact that for a large value of ρ, the

length of the circular loop around the conical intersection is large, which leads to a

large phase accumulation in these fluctuations.

Fig. 3.13 shows the topological phase ΦT(ρ, θ) (defined by Eq. (3.40)) as a function

of ρ and θ over the ρ space of 2 bohr to 10 bohr and the θ space of 1◦ to 90◦. ΦT =

180◦ values correspond to a purely longitudinal first-derivative coupling vector. Any

deviation of ΦT(ρ, θ) from this value suggests a non-zero transverse (nonremovable)

part of the coupling vector [37,56]. On the bottom part of Fig. 3.13 we show contours

corresponding to fixed values of ΦT(ρ, θ) ranging from 150◦ to 225◦ every 15◦. The

180◦ contour has been shown in bold lines and its different segments labelled S1, S2,

and S3. For small values of θ and all ρ, the values of ΦT(ρ, θ) stay reasonably constant
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and equal to 180◦. This is expected because these small values of θ correspond to

regions near the conical intersection, where the transverse component of the first-

derivative coupling vector is expected to be negligible. This flat portion of the ΦT

surface is quite narrow at small ρ and gets wider as ρ increases. Also, for small values

of ρ (< 6 bohr) ΦT(ρ, θ) first increases and then drops as a function of θ. Beyond ρ

= 6 bohr, ΦT(ρ, θ) first drops somewhat and then increases slightly to a value under

180◦ as a function of θ.

The phase ΦT(ρ, θ) plotted in Fig. 3.13 gives an indication of the presence of non-

negligible derivative couplings in the regions of (ρ, θ) space where it is different from

180◦. In the present work, we have computed this phase over the entire dynamically

important part of configuration space. In the absence of additional electronic state

calculations, no method exists, to the best of our knowledge, that quantitatively cor-

relates the deviation of this phase from 180◦ (over the whole configuration space)

with the non-negligible derivative couplings that arise from nonadiabatic interactions

involving states outside the two-adiabatic-state space. The 180◦ contour segments

S2 and S3 in Fig. 3.13 are embedded in regions of (ρ, θ) configuration space, where

ΦT(ρ, θ) deviates substantially from 180◦ and hence are not expected to contain in-

formation about any glancing interaction or conical intersections between the 2 2A′

and 3 2A′ states of H3. Such is not the case for the S1 segment. In Fig. 3.14, we

display this segment in two representations. Fig. 3.14 (a) shows it in the XλY plane

of Fig. 3.3 and Fig. 3.14 (b) in the regular ρ-θ plane. The points corresponding to

ρ greater than 8 bohr have been indicated as dashed lines because they are a result

of an extrapolation of the computed couplings and hence should not be used to draw

any conclusions. Points below the solid curves correspond to extended regions of con-

figuration space for which ΦT(ρ, θ) deviates from 180◦ and indicates that the value

of W
(1)ad
1,2,tra is non-negligible in those regions. These solid curves seem to suggest the

presence of intersection lines or avoided intersections between the 2 2A′ and 3 2A′

PESs in the (ρ, θ, φλ) space, where φλ might correspond to three possible sets of C2v

configurations. It can either be the (0◦, 120◦, 240◦) set or the (60◦, 180◦, 300◦) set, or
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even both. A possible conical intersection between the 2 2A′ and 3 2A′ states was

suggested by Yarkony [37] earlier for H3. An alternate explanation may be that, at

the values of ρ of relevance to Fig. 3.14, the curl of W
(1)ad
1,2 (or, equivalently, of its

transverse part) is large [95].

Calculations of the energy of the 3 2A′ state of H3 and of its first-derivative

couplings with the 2 2A′ state are needed to help establish a quantitative correlation

between possible conical intersections involving those two states and the topological

phase between the 1 2A′ and 2 2A′ states. The regions of nuclear configuration space,

where the effect of nonadiabatic couplings (between the 2 2A′ and 3 2A′ states) is

being felt, have many low energy regions, suggesting that the nonremovable part of

the nonadiabatic couplings (between the 1 2A′ and 2 2A′ states) cannot be ignored

and may play a significant role in the dynamics of the H + H2 reaction, due to its

presence in the diabatic nuclear motion Schrödinger equation [7].

The vector w(1)ad(qλ) (or w
(1)ad
1,2 (qλ)) can also provide a good first approximation

to the second-derivative coupling matrix W(2)ad(qλ), which in a two-electronic-state

approximation is given by

W(2)ad(qλ) =




w
(2)ad
1,1 (qλ) w

(2)ad
1,2 (qλ)

w
(2)ad
2,1 (qλ) w

(2)ad
2,2 (qλ)


 (3.41)

In the two-electronic-state Born-Huang expansion, the full Hilbert space of adiabatic

electronic states is approximated by the lowest two states and furnishes for the cor-

responding electronic wave functions the approximate closure relation

| ψel,ad
1 (r;qλ)〉〈ψ

el,ad
1 (r;qλ) | + | ψel,ad

2 (r;qλ)〉〈ψ
el,ad
2 (r;qλ) | ≈ 1 (3.42)

Using this equation and the fact that for real electronic wave functions the diagonal
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elements of W(1)ad(qλ) vanish, it can be shown that

w
(2)ad
1,1 (qλ) = w

(2)ad
2,2 (qλ) = − w

(1)ad
1,2 (qλ) · w

(1)ad
1,2 (qλ)

w
(2)ad
1,2 (qλ) = w

(2)ad
2,1 (qλ) = 0

(3.43)

For the H3 system, since w
(1)ad
1,2 (qλ) is known over the entire qλ space [96], Eq. (3.43)

can be used to obtain the two equal non-zero diagonal elements of the W(2)ad(qλ)

matrix. Since this matrix appears with a multiplicative factor of (−~
2/2µ) in the

adiabatic nuclear motion Schrödinger equation giving it the units of energy, both

(−~
2/2µ) w

(2)ad
1,1 (qλ) and (−~

2/2µ) w
(2)ad
2,2 (qλ) can be labelled as ε(2)ad. In Fig. 3.15,

this quantity is displayed in units of kcal mol−1 for several values of ρ as a function

of θ and φλ. It shows the singular behavior of the diagonal elements of W(2)ad(qλ) at

conical intersection geometries (θ = 0◦). Being a repulsive correction to the adiabatic

energies, this singular behavior would prevent any hopping of the nuclei from one

electronic state to another at and extremely close to the conical intersection.
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Appendix 3.A - First-derivative coupling vector for triatomic

reactions

As discussed in Sec. 2.1, the adiabatic electronic wave functions ψel,ad
i and ψel,ad

j

depend on the nuclear coordinates Rλ only through the subset qλ (which in the

triatomic case consists of a nuclear coordinate hyperradius ρ and a set of two internal

hyperangles ξλ), this permits one to relate the six-dimensional vector w(1)ad(Rλ) to

another one w(1)ad(qλ) that is three-dimensional. For a triatomic system, let aIλ ≡

(aIλ, bIλ, cIλ) be the Euler angles that rotate the space-fixed cartesian frame into the

body-fixed principal axis of inertia frame Iλ, and let ∇
Iλ
Rλ

be the six-dimensional

gradient vector in this rotated frame. The relation between the space-fixed ∇Rλ
and

∇
Iλ
Rλ

is given by

∇Rλ
= R̃(aIλ) ∇

Iλ
Rλ

(3.44)

where R(aIλ) is a 6×6 block-diagonal matrix whose 2 diagonal blocks are both equal

to the 3 × 3 rotational matrix R(aIλ). The ∇
Iλ
Rλ

operator can be written as [97]

∇
Iλ
Rλ

= GIλ(ξλ)p̂
Iλ(qλ) + HIλ(ξλ)Ĵ

Iλ(aIλ) (3.45)

In this expression, GIλ and HIλ are both 6×3 rectangular matrices whose elements are

known functions of the internal hyperangles ξλ. p̂Iλ is a 3×1 column vector operator

whose elements contain first-derivatives with respect to the three qλ coordinates and

ĴIλ is the 3 × 1 column vector operator whose elements are the components ĴIλ
x ,

ĴIλ
y and ĴIλ

z of the system’s nuclear motion angular momentum operator Ĵ in the Iλ

frame. From these properties it can be shown that

w(1)ad(Rλ) = R(aIλ)G̃Iλ(ξλ)w
(1)ad(qλ) (3.46)

and that

W(1)ad(Rλ) · ∇Rλ
χad(Rλ) = G̃Iλ(ξλ)W

(1)ad(qλ) · ∇
Iλ
Rλ
χad(Rλ) (3.47)
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where

w(1)ad(qλ) = 〈ψel,ad
1 (r;qλ) | p̂

Iλ(qλ)ψ
el,ad
2 (r;qλ)〉r (3.48)

is a three-dimensional column vector and W(1)ad(qλ) is a 2×2 skew-symmetric matrix

whose only non-zero element is the w(1)ad(qλ) vector. The effect of GIλ(ξλ) can be

built into the ∇
Iλ
Rλ

operator leading to

W(1)ad(Rλ) · ∇Rλ
χad(Rλ) = W(1)ad(qλ) · ∇Rλ

χad(Rλ) (3.49)

where

∇Rλ
= p̂Iλ(qλ) + G̃Iλ(ξλ)H

Iλ(ξλ)Ĵ
Iλ(aIλ) (3.50)

Using the symmetrized hyperspherical coordinates defined in Sec. 3.3 for a triatomic

system, the elements of p̂Iλ are the spherical polar components of the three-dimensional

gradient associated with the polar coordinates ρ, θ, φλ [96]:

p̂Iλ =




∂
∂ρ

1
ρ
∂
∂θ

1
ρ sin θ

∂
∂φλ




(3.51)

The corresponding cartesian gradient ∇qλ
is given by

∇qλ
=




sin θ cosφλ cos θ cosφλ − sin φλ

sin θ sin φλ cos θ sinφλ cosφλ

cos θ − sin θ 0




p̂Iλ (3.52)

in a space whose polar coordinates are ρ, θ, φλ.
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Table 3.I: Switching Function Parametersa

parameter 1 2A′ 2 2A′

an/bohr 0.00 2.00

γn/bohr−1 0.17 0.20

a These parameters are used for Sn, as described in Eqs. (3.23)-(3.26)
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Table 3.II: Coefficientsb c1,ijk and c2,ijk corresponding to EDSP

1 and EDSP

2 ,

respectively (as defined in Eq. (3.23))c

i j k c1,ijk c2,ijk

0 0 0 0.3699 -0.2274

1 0 0 -0.4927 0.0255

2 0 0 0.4726 0.0996

1 1 0 0.0237 0.2025

3 0 0 -0.2590 -0.2606

2 1 0 0.1258 0.1934

1 1 1 -0.4795 -1.2400

4 0 0 0.0398 0.0845

3 1 0 -0.0156 0.0075

2 1 1 0.0299 0.2397

2 2 0 -0.0162 -0.2428

5 0 0 -0.0018 -0.0070

4 1 0 0.0006 -0.0155

3 2 0 0.0005 0.0332

2 2 1 -0.0006 -0.0378

3 1 1 -0.0009 -0.0044

6 0 0 - 0.0000

5 1 0 - 0.0013

4 2 0 - -0.0015

3 3 0 - -0.0013

3 2 1 - -0.0001

4 1 1 - 0.0006

2 2 2 - 0.0062

bc1,ijk = c1,jki = c1,kij and c2,ijk = c2,jki = c2,kij

c With these cn,ijk coefficients used in Eq. (3.23) and RAB , RBC , andRCA given in

bohr, the EDSP

n are given in eV and are referred to the minimum of an isolated H2

molecule as the origin of energy.
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Table 3.III: Range of the largest and smallest internuclear distances and largest

bond angle over the full 0 to 2π range of φλ

ρ = 2 bohr ρ = 4 bohr

θ γmax
λ Rmin

λν Rmax
λν Rmin

λν Rmax
λν

1◦ 90.5-91.0◦ 1.50-1.51 1.52-1.53 3.01-3.03 3.05-3.07

30◦ 106.1-120.0◦ 1.07-1.32 1.70-1.86 2.15-2.63 3.40-3.72

60◦ 130.9-150.0◦ 0.56-1.14 1.82-2.08 1.11-2.29 3.64-4.15

90◦ 180.0-180.0◦ 0.00-1.07 1.86-2.15 0.00-2.15 3.72-4.30

ρ = 6 bohr ρ = 8 bohr

θ γmax
λ Rmin

λν Rmax
λν Rmin

λν Rmax
λν

1◦ 90.5-91.0◦ 4.52-4.54 4.58-4.60 6.03-6.05 6.11-6.13

30◦ 106.1-120.0◦ 3.22-3.95 5.10-5.58 4.30-5.26 6.80-7.44

60◦ 130.9-150.0◦ 1.67-3.43 5.46-6.23 2.23-4.58 7.28-8.30

90◦ 180.0-180.0◦ 0.00-3.22 5.58-6.45 0.00-4.30 7.44-8.60
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FIGURE CAPTIONS

Fig. 3.1 Ground electronic state (E1) energy contours in eV for the H3 system in an

equatorial view (see text for definition): (a) DSP E1 at ρ = 2 bohr, (b) DSP E1 at ρ =

4 bohr, (c) DSP E1 at ρ = 6 bohr,(d) DSP E1 at ρ = 8 bohr, (e) DMBE E1 at ρ = 2 bohr,(f)

DMBE E1 at ρ = 4 bohr (g) DMBE E1 at ρ = 6 bohr,(h) DMBE E1 at ρ = 8 bohr. The

solid circle depicts collinear geometries (θ = 90◦) and the dotted circles are lines of constant

θ. The radial dotted lines correspond to the constant values of φλ, in degrees, displayed

outside the solid circle.

Fig. 3.2 First-excited electronic state (E2) energy contours in eV for the H3 system in an

equatorial view (see text for definition): (a) DSP E2 at ρ = 2 bohr, (b) DSP E2 at ρ =

4 bohr, (c) DSP E2 at ρ = 6 bohr,(d) DSP E2 at ρ = 8 bohr, (e) DMBE E2 at ρ = 2 bohr,(f)

DMBE E2 at ρ = 4 bohr (g) DMBE E2 at ρ = 6 bohr,(h) DMBE E2 at ρ = 8 bohr. The

solid circle depicts collinear geometries (θ = 90◦) and the dotted circles are lines of constant

θ. The radial dotted lines correspond to the constant values of φλ, in degrees, displayed

outside the solid circle.

Fig. 3.3 Mapping of the point P of a constant ρ hemisphere in the OXλY Zλ space onto a

point Q on a plane tangent to that hemisphere at the intersection T of the OY axis with

it, such that the length of the arc(TP) = TQ. The point P has θ, φλ polar angles in the

OXλY Zλ space and ωλ, γλ in the OXλY λZ space. P is the projection of point P on the

OXλY plane.

Fig. 3.4 Ab initio nonadiabatic coupling vector, W
(1)ad
1,2 , ground state energy (E1) and

first-excited state energy (E2) for ρ = 2 bohr and (a) θ = 1◦; (b) θ = 30◦; (c) θ = 60◦; (d)

θ = 90◦ (collinear). The scale in bohr−1 refers to coupling vectors, and that in bohr to the

cartesian coordinates associated with the middle column plots (see Sec. 3.4.1).

Fig. 3.5 Same as Fig. 3.4 for ρ = 4 bohr.

Fig. 3.6 Same as Fig. 3.4 for ρ = 6 bohr.

Fig. 3.7 Same as Fig. 3.4 for ρ = 8 bohr.
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Fig. 3.8 DMBE nonadiabatic coupling vector, W
(1)ad,DMBE

1,2 , ground state energy (E1) and

first-excited state energy (E2) for ρ = 2 bohr and (a) θ = 1◦; (b) θ = 30◦; (c) θ = 60◦; (d)

θ = 90◦ (collinear). The scales have the same meaning as in Fig. 3.4.

Fig. 3.9 Same as Fig. 3.8 for ρ = 4 bohr.

Fig. 3.10 Same as Fig. 3.8 for ρ = 6 bohr.

Fig. 3.11 Same as Fig. 3.8 for ρ = 8 bohr.

Fig. 3.12 Phase Φ(φλ; ρ, θ) as a function of φλ evaluated using Eq. (3.39) for four values of

θ: 1◦ (solid line), 30◦ (dashed line), 60◦ (dotted line), and 90◦ (dash-dotted line) for each

of the four values of ρ: (a) 2 bohr, (b) 4 bohr, (c) 6 bohr, and (d) 8 bohr.

Fig. 3.13 Topological phase ΦT(ρ, θ) as a function of ρ and θ evaluated using Eq. (3.40).

The contours on the bottom face correspond to ΦT(ρ, θ) values ranging from 150◦ to 225◦

every 15◦. The three 180◦ contours have been shown in bold and labelled as S1, S2, and

S3.

Fig. 3.14 (a) The 180◦ S1 contour of Fig. 3.13 shown in the XλY plane of Fig. 3.3. (b) The

same contour shown in the regular (ρ, θ) plane. (The dashed points correspond to values of

ρ greater than 8 bohr).

Fig. 3.15 Second-derivative coupling term ε(2)ad(qλ), defined after Eq. (3.43), for the H3

system at: (a) ρ = 2 bohr, (b) ρ = 4 bohr, (c) ρ = 6 bohr, and (d) ρ = 8 bohr. The following

contours are displayed: 0 to 0.1 kcal mol−1 every 0.01 kcal mol−1, 0.1 to 1.0 kcal mol−1 every

0.1 kcal mol−1 and 1.0 to 10.0 kcal mol−1 every 0.5 kcal mol−1.
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Figure 3.3:
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Chapter 4 An optimal diabatization of

the lowest two states of H3

4.1 Introduction

A detailed review of the adiabatic and diabatic representation of polyatomic molecules

is given in Chapter 1 and we will only summarize below the main aspects needed for

the present chapter. We neglect all spin-spin and spin-orbit terms in the molecular

Hamiltonian. Consider a polyatomic system with electronic coordinates r and nuclear

coordinates Rλ. The total wave function for this system is given by the Born-Huang

expansion [1, 2]

Ψ(r;Rλ) =
∑

n

χad
n (Rλ)ψ

ad
n (r;Rλ) (4.1)

where ψad
n (r;Rλ) are the adiabatic electronic wave functions satisfying the electronic

Schrödinger equation

Ĥel(r;Rλ)ψ
ad
n (r;Rλ) = εad

n (Rλ)ψ
ad
n (r;Rλ), (4.2)

n is a complete set of quantum numbers needed to specify them and χad
n (Rλ) are the

adiabatic nuclear wave functions. εad
n (Rλ) are the electronically adiabatic potential

energy surfaces (PESs). If two of these surfaces, labelled n = i and n = j, exhibit a

single conical intersection and the ψad
n are required to be real, then according to the

geometric phase (GP) theorem [3–7],

ψad
n (r;Rλ) → −ψad

n (r;Rλ) n = i, j (4.3)
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and

χad
n (Rλ) → −χad

n (Rλ) n = i, j (4.4)

when the polyatomic system traverses a closed loop in nuclear configuration space

Q around that conical intersection (a so called pseudorotation). As a result, the

ψad
n (r;Rλ) are not single-valued functions of Rλ. Alternatively, if the electronic wave

functions are allowed to be complex, they may be required to be single-valued [8].

For example, we may express them as

ψ
ad

n (r;Rλ) = eiAn(Rλ)ψad
n (r;Rλ) n = i, j (4.5)

and require that the eiAn(Rλ) (n = i, j) change sign (i.e., that An(Rλ) change by

π) upon a pseudorotation. The An(Rλ) are the geometric phases that appear in the

corresponding modified adiabatic nuclear motion Schrödinger equation [7–11]. In this

chapter, we will require the electronic wave functions to be real.

In a two-electronic-state representation of the system involving electronically adi-

abatic states i and j, Eq. (4.1) is written as

Ψ(r;Rλ) = χad
i (Rλ)ψ

ad
i (r;Rλ) + χad

j (Rλ)ψ
ad
j (r;Rλ) (4.6)

Let us define χad(Rλ) as a two-dimensional column vector whose components are

χad
i (Rλ) and χad

j (Rλ). The Schrödinger equation satisfied by χad(Rλ) is

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(qλ) · ∇Rλ

+ W(2)ad(qλ)
}

+
{
εad(qλ) − EI

}]
χad(Rλ) = 0

(4.7)

where qλ represents a set of internal nuclear coordinates of the system, whereas Rλ

includes both qλ and the external coordinates that orient the system in space, but

excludes the system’s center of mass coordinates. The Rλ symbol represents a set

of nuclear coordinates that locate the N nuclei of the molecule in a center of mass

frame, and µ is an overall reduced mass. I, W(1)ad, W(2)ad, and εad are 2×2 matrices

and ∇Rλ
is a gradient operator in the 3(N − 1)-dimensional nuclear configuration
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space. I is the identity matrix and εad is the diagonal matrix whose diagonal elements

are the potential energy surfaces εad
i and εad

j of the two electronically adiabatic states

being considered. The matrices W(1)ad and W(2)ad are the the first- and second-

derivative [9, 12–17] 2 × 2 coupling matrices whose elements are defined by

W
(1)ad
m,n (qλ) = 〈ψad

m (r;qλ) | ∇Rλ
ψad

n (r;qλ)〉r

W(2)ad
m,n (qλ) = 〈ψad

m (r;qλ) | ∇
2
Rλ
ψad

n (r;qλ)〉r




m,n = i, j (4.8)

and are respectively 3(N−2)-dimensional vectors (W
(1)ad
m,n (qλ)) [18] and scalars (W(2)ad

m,n (qλ)).

The matrix W(1)ad is in general skew-hermitian and, due to the requirement that the

ψad
n be real, is real and skew-symmetric and can be written as

W(1)ad(qλ) =




0 W
(1)ad
1,2 (qλ)

−W
(1)ad
1,2 (qλ) 0


 (4.9)

For a triatomic system, W
(1)ad
1,2 is a three-dimensional vector that from here on will be

labeled w(1)ad. As any three-dimensional vector, it can be expressed, according to the

Helmholtz theorem [19], as a sum of a longitudinal part w
(1)ad
lon (qλ) and a transverse

one w
(1)ad
tra (qλ) according to

w(1)ad(qλ) = w
(1)ad
lon (qλ) + w

(1)ad
tra (qλ) (4.10)

where by definition, the curl of w
(1)ad
lon (qλ) and the divergence of w

(1)ad
tra (qλ) vanish:

∇qλ
× w

(1)ad
lon (qλ) = 0 (4.11)

∇qλ
· w

(1)ad
tra (qλ) = 0 (4.12)

As a result of these equations, a scalar potential β(qλ) and a vector potential A(qλ)

(not to be confused with the scalar geometric phase An(qλ) of Eq. (4.5)) exist for
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which

w
(1)ad
lon (qλ) = ∇qλ

β(qλ) (4.13)

and

w
(1)ad
tra (qλ) = ∇qλ

× A(qλ) (4.14)

At conical intersection geometries, w
(1)ad
lon (qλ) is singular because of the qλ dependence

of ψad
i (r;qλ) and ψad

j (r;qλ) in their vicinity and therefore so is the W(1)ad(qλ) ·∇Rλ

term in Eq. (4.7). For the same reason, W
(2)ad
1,1 (qλ) and W

(2)ad
2,2 (qλ) are also singular at

such geometries. Replacing Eq. (4.10) into Eq. (4.9), W(1)ad can be written as a sum

of the corresponding skew-symmetric matrices W
(1)ad
lon and W

(1)ad
tra . In addition, the

presence of a first-derivative term of this type, even if not singular (for intersections

that are not conical or for nearly avoided intersections), introduces inefficiencies in the

numerical solution of that equation. This makes it desirable to switch to a diabatic

electronic basis [9, 20, 21], ψd
n(r;Rλ), which in the two-electronic-state case is given

by 


ψd
i (r;Rλ)

ψd
j (r;Rλ)


 = Ũ[β(qλ)]




ψad
i (r;Rλ)

ψad
j (r;Rλ)


 (4.15)

where Ũ[β(qλ)] is the transpose of the matrix

U[β(qλ)] =




cos β(qλ) − sin β(qλ)

sin β(qλ) cos β(qλ)


 (4.16)

and β(qλ) is called the diabatization or mixing angle. In terms of the diabatic elec-

tronic basis, Eq. (4.6) becomes

Ψ(r;Rλ) = χd
i (Rλ)ψ

d
i (r;Rλ) + χd

j(Rλ)ψ
d
j (r;Rλ) (4.17)

where the relation between the χad
n (Rλ) and χd

n(Rλ) is

χd(Rλ) = Ũ[β(qλ)]χ
ad(Rλ) (4.18)
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where in analogy to χad(Rλ), χ
d(Rλ) is the two-dimensional column vector whose

two elements are χd
i (Rλ) and χd

j (Rλ). Replacement of Eq. (4.18) into Eq. (4.7) yields

the diabatic nuclear motion scattering equation

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)d(qλ) · ∇Rλ

+ W(2)d(qλ)
}

+
{
εd(qλ) − EI

}]
χd(Rλ) = 0.

(4.19)

where

W(1)d(qλ) = W
(1)ad
tra (qλ) (4.20)

The elements of the first-derivative W(1)d(qλ) and second-derivative W(2)d(qλ) cou-

pling diabatic matrices are analogous to their adiabatic counterparts and given by

Eq. (4.8) with the ψad
n (n = i, j) replaced by the ψd

n. In addition, εd(qλ) is the 2 × 2

matrix defined by

εd(qλ) = Ũ[β(qλ)] ε
ad(qλ) U[β(qλ)] (4.21)

The adiabatic to diabatic transformation eliminates the poles in both the first- and

second-derivative coupling matrices. W(1)d(qλ) does not appear explicitly in Eq. (4.19)

but is equal to W
(1)ad
tra (qλ), as can be shown by using Eq. (4.15) in the definition of

W(1)d(qλ) together with Eqs. (4.10) through (4.14). Elements of the diabatic matrix

W(2)d are usually small in the vicinity of a conical intersection and can be added to

εd to give a corrected diabatic matrix. An approximate estimate of the magnitude of

the elements of this matrix is made at the end of the results section. As can be seen,

whereas in Eq. (4.7) W(1)ad contains both the singular matrix W
(1)ad
lon and the non-

singular one W
(1)ad
tra , Eq. (4.19) contains only the latter. Nevertheless, the residual

first-derivative coupling term W
(1)ad
tra · ∇Rλ

does not vanish.

A “perfect” diabatic basis would be one for which the first-derivative coupling

W(1)d vanishes [22]. From the abovementioned considerations, we conclude, as is well

known [9,23,24], that a “perfect” diabatic basis cannot exist for a polyatomic system

(except when the complete infinite set of electronic adiabatic functions is included [23,

27]), which means that W(1)ad(qλ) cannot be transformed away to zero. As a result,

the longitudinal and transverse parts of the first-derivative coupling vector are referred
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to as removable and nonremovable parts respectively. Over the years, a number of

formulations of approximate or quasi-diabatic or “locally rigorous” diabatic states [20,

25–33] have appeared. Only very recently [34–39] have there been attempts to use

high-quality ab initio wave functions to consider the magnitude of the nonremovable

part of the first-derivative coupling vector. In one such attempt [38], a quasi-diabatic

basis was reported for the HeH2 system by solving a two-dimensional Poisson equation

on the plane in three-dimensional configuration space passing through the conical

intersection configuration of smallest energy. It seems that no attempt has been made

to get an optimal diabatization over the entire configuration space for a triatomic

system, to facilitate accurate two-electronic-state scattering dynamics calculations.

Conical intersections being omnipresent, such scattering calculations will permit a

test of the validity of the one-electronic-state Born-Oppenheimer approximation as a

function of energy in the presence of conical intersections, by comparing the results

of these two kinds of calculations.

We report here an approach to obtain an optimal diabatic basis over the entire

internal nuclear configuration space, based on the knowledge of the first-derivative

coupling vector over the entire dynamically important part U of that space and appro-

priately chosen boundary conditions. We have applied this approach to the simplest

triatomic system, H3, which has a conical intersection between the 1 2A′ and 2 2A′

electronic potential energy surfaces (PESs) at equilateral triangle geometries. The

corresponding conical intersection line induces a geometric phase effect, important

for the reaction properties of the ground electronic state [9, 40–46]. The lowest coni-

cal intersection configuration energy occurs at 2.75 eV [47]. As a result, for energies

in the vicinity of this value and above, the one-electronic-state Born-Oppenheimer

approximation breaks down and a scattering calculation involving both these states

and their couplings must be used to obtain accurate scattering results for this system.

In this approach, first an adiabatic to diabatic transformation is obtained by calculat-

ing the diabatization angle β(qλ) (appearing in Eq. (4.16)) from the first-derivative

couplings (W(1)ad(qλ)). This calculation involves solving a three-dimensional Poisson
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equation with boundary conditions that minimize the average value of the magnitude

of W
(1)ad
tra over U. This will allow an initial neglect of the term containing W

(1)ad
tra

in Eq. (4.19) and a later reintroduction of this term followed by a solution using

perturbative or other methods.

Another check of the existence of a non-zero transverse part (W
(1)ad
tra or equiv-

alently w
(1)ad
tra ) is the evaluation of line integrals of first-derivative couplings w(1)ad

along loops around conical intersection geometries. If these integrals are carried

along open paths L in nuclear configuration space, an angular potential Φ(qλ,q0λ;L)

with qλ = q0λ can be defined by [18, 23, 34, 48]

Φ(qλ,q0λ;L) =

qλ∫

L q0λ

w(1)ad(q′
λ) · dq

′
λ (4.22)

where q0λ locates the initial point on L. This angle is called the open-path phase [49].

It is also convenient to define the corresponding closed path phase ΦT, called the

topological phase [50]:

ΦT(L) =

∮

L

w(1)ad(q′
λ) · dq

′
λ (4.23)

In light of Eq. (4.10), we can define two more angular potentials Φlon(qλ,q0λ;L) and

Φtra(qλ,q0λ;L), by replacing w(1)ad in Eq. (4.22) by w
(1)ad
lon and w

(1)ad
tra , respectively.

The corresponding topological phases ΦT,lon(L) and ΦT,tra(L) can be likewise defined

using Eq. (4.23) in lieu of Eq. (4.22):

ΦT,lon(L) =

∮

L

w
(1)ad
lon (q′

λ) · dq
′
λ (4.24)

ΦT,tra(L) =

∮

L

w
(1)ad
tra (q′

λ) · dq
′
λ (4.25)

According to the geometric phase theorem [6, 34, 35]

ΦT,lon(L) = pπ (4.26)
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where p = 0 if L does not enclose any conical intersection and p = 1 if it encloses one

conical intersection. Using this and Eq. (4.10), we have

ΦT,tra(L) = ΦT(L) − pπ (4.27)

As a result, a necessary but insufficient condition for the first-derivative coupling to

be purely longitudinal is that ΦT,tra(L) vanish [38]. Non-zero ΦT,tra(L) and hence

a non-zero w
(1)ad
tra correspond to the existence of non-zero derivative couplings in-

volving electronic states outside the two-electronic-state sub-Hilbert space [24] being

considered in the present chapter.

In Sec. 4.2, we present an approach to obtain an optimal diabatic basis by using a

Poisson equation obtained from Eqs. (4.10) through (2.21), similar to that used pre-

viously [38], and a special set of boundary conditions. The present Poisson equation

differs from the latter, however, in that it extends over the entire three-dimensional

U domain of configuration space and uses very different boundary conditions. In

Sec. 4.3, we present the results of the diabatization angle calculation and the longitu-

dinal as well as transverse parts of the first-derivative coupling vector and discuss the

possible implications of dropping the transverse part in two-electronic-state quantum

scattering calculations. The open-path phases Φlon and Φtra and topological (closed-

path) phases ΦT,lon and ΦT,tra are evaluated, which confirm the presence of a non-zero

transverse part. We also present the diabatic PESs (elements of the 2 × 2 diabatic

energy matrix εd(qλ)) corresponding to this optimal diabatic basis and discuss their

features.

4.2 Methodology

4.2.1 Coordinate system

For any triatomic system, the internal nuclear coordinate space Q spanned by qλ

is three-dimensional. We adopt the symmetrized hyperspherical coordinates qλ ≡
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(ρ, θ, φλ) used previously [9,42–46,51]. The ranges of these coordinates are as follows:

0 ≤ ρ <∞ 0 ≤ θ ≤ π/2 0 ≤ φλ < 2π (4.28)

For a constant hyperradius ρ, these coordinates span a hemisphere whereas ordinary

spherical polar coordinates span a full sphere.

The H3 system exhibits a conical intersection between the 1 2A′ and 2 2A′ elec-

tronic PESs for equilateral triangle geometries, which corresponds to θ = 0 and all

values of ρ and φλ. Collinear geometries of H3 are mapped by θ = π/2 for all values

of ρ and φλ.

Projection plots of physical quantities in internal configuration space cartesian

coordinates (Xλ, Y, Zλ), which are related to these symmetrized hyperspherical co-

ordinates, provide valuable information for reactive scattering calculations that use

these physical quantities and hyperspherical coordinates. As mentioned above, for a

constant hyperradius ρ the hyperspherical coordinates span a hemisphere. Fig. 4.1

shows this hemisphere for a constant ρ (the radius of this hemisphere) and a point P

on this hemisphere which has θ, φλ polar angles in the OXλY λZ frame and another

related set of polar angles ωλ, γλ in the associated OXλY Zλ frame. γλ is the angle

between mass-scaled jacobi coordinates. γλ = 0◦ or 180◦ (equivalent to θ = 90◦) cor-

responds to collinear configurations of the H3 system and γλ = 90◦ to configurations

for which the H atom is on the perpendicular bisector of the H−H line. All these

coordinates and their interrelations have been discussed elsewhere [18, 52–58].

4.2.2 The Poisson equation

Replacing Eq. (4.13) into Eq. (4.10) results in

w(1)ad(qλ) = ∇qλ
β(qλ) + w

(1)ad
tra (qλ), (4.29)
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Taking the divergence of both sides of this equation and using Eq. (4.14) together

with the known property that the divergence of a curl of a three-dimensional vector

vanishes, we get

∇2
qλ
β(qλ) = σ(qλ) (4.30)

where

σ(qλ) = ∇qλ
· w(1)ad(qλ) (4.31)

is known because w(1)ad(qλ) has been accurately calculated and fitted over the en-

tire Q space of interest [18]. Eq. (4.30) is the Poisson equation for β(qλ). Once the

boundary conditions associated with it are chosen, this equation can be solved numer-

ically. Replacing the solution into Eq. (4.29) then furnishes w
(1)ad
tra (qλ) and therefore

the first-derivative transverse coupling matrix

W
(1)ad
tra (qλ) =




0 w
(1)ad
tra (qλ)

−w
(1)ad
tra (qλ) 0


 (4.32)

which appears in the diabatic nuclear motion scattering Eq. (4.19). As a result, the

flexibility provided by the selection of these boundary conditions injects an element

of flexibility in the determination of W
(1)ad
tra (qλ).

In the next section we discuss the nature of the effect of the boundary conditions

on this determination and how to select these conditions so as to result in an optimal

diabatization.

4.2.3 Boundary conditions for solving the Poisson equation

The Poisson equation [Eq. (4.30)], being a second-order partial differential equation,

has an infinite set of solutions because of the infinite choice of boundary conditions

that can be imposed on it. Any of these solutions results in a β(qλ) that removes the

singularity in W(1)ad(qλ) at the conical intersection geometries upon the adiabatic to

diabatic transformation defined by Eqs. (4.18) and (4.16). If σ(qλ) goes to zero at
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infinity, a formal solution that also goes to zero at infinity is [9, 19, 59]

β(qλ) = −

∫
σ(q′

λ)

4π|qλ − q′
λ|
dq′

λ (4.33)

This is, however, not the only boundary condition possible. To pick an optimal set of

boundary conditions we need to look at the individual terms in the diabatic nuclear

motion Schrödinger equation [Eq. (4.19)].

It is customary in two-electronic-state problems to introduce two approximations

into this equation. The first is to assume that the W(2)d(qλ)χ
d(Rλ) term is negli-

gible compared to the remaining ones. This term vanishes for a complete diabatic

electronic basis set but not for a two-diabatic electronic basis set. The second is to

assume that the W
(1)ad
tra (qλ) ·∇Rλ

χd(Rλ) term is negligible compared to the remain-

ing ones. This assumption is justifiable if W
(1)ad
tra (qλ) is sufficiently small in the entire

internal nuclear configuration space Q and, in particular, in the neighborhood of the

conical intersection. This suggests that we select the boundary conditions satisfied

by Eq. (4.30) so as to minimize as much as possible this transverse part in this space.

We will select a domain V in configuration space Q, enclosed by a boundary

surface S, within which the Poisson equation is to be solved. This domain includes the

dynamically important part of Q. The definitions of V and S are given in Sec. 4.2.4.

As shown in that section, the choice of a reference surface at which the adiabatic

and diabatic wave functions are equal, together with the condition that the adiabatic

to diabatic transformation should reflect the P3 permutation symmetry of the H3

system, as well as the change of sign under pseudorotations given by Eq. (4.4), fixes

the value of β(qλ) on parts of S. On the remaining parts, we pick the following

boundary condition (using Eq. (4.29)),

[∇qλ
β(qλ)]S =

[
w(1)ad(qλ)

]
S

(4.34)

The reason for this choice is that if we make the transverse part zero on some parts

of the boundary surface S, Eq. (4.29) leads directly to Eq. (4.34) on those parts. This
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equation corresponds to a Neumann boundary condition for the Poisson equation

and, as proved in Appendix 4.A, minimizes the average value of the magnitude of

this transverse part over the domain V. Using this condition tends to decrease the

magnitude of the W
(1)ad
tra (qλ) · ∇Rλ

χd(Rλ) term in Eq. (4.19). This is therefore an

optimal boundary condition. It is quite different from setting β(qλ) = 0 at the

boundary, as will be shown in Sec. 4.2.4. In order to assess the effect of W
(1)ad
tra on

the dynamics, one can first solve Eq. (4.19) omitting that term and then reintroduce

it using perturbation theory or other methods.

4.2.4 Numerical solution of the Poisson equation

We express the Poisson equation in terms of the internal hyperspherical coordinates

ρ, θ, φλ as

[
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
λ

)]
β(ρ, θ, φλ) = σ(ρ, θ, φλ) (4.35)

For the H3 system, we change the dependent variable β to γ by the transformation

β(ρ, θ, φλ) =
φλ

2
− γ(ρ, θ, 3φλ). (4.36)

The dependence of γ on 3φλ (rather than on φλ simply) is due to the P3 permutation

symmetry of the H3 system. It should be noted that although the P3 group is iso-

morphic with C3v , the configurations we are considering are only equilateral triangles

for θ = 0◦. The term φλ/2 is responsible for the singularity in the first-derivative

coupling vector at conical intersection (θ = 0◦) configurations. When φλ changes by

2π radians during a pseudorotation (which encircles the conical intersection), γ does

not change but β changes by π. As pointed out in the beginning of the introduc-

tion, under such a pseudorotation χad changes sign and as a result of Eqs. (4.18) and

(4.16) χd is unchanged and is single-valued. This is a useful property of the diabatic

representation. An approximate analytical expression for β(ρ, θ, φλ) was obtained by

Varandas et al [47] using a double many-body expansion (DMBE) of the two lowest
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electronic PESs for H3, and is given by

βDMBE(ρ, θ, φλ) =
φλ

2
− γDMBE(ρ, θ, 3φλ) (4.37)

where

γDMBE(ρ, θ, 3φλ) =
1

2
tan−1 g0(ρ) sin θ sin 3φλ

f0(ρ) + g0(ρ) sin θ cos 3φλ + f1(ρ) sin2 θ
(4.38)

and g0(ρ), f0(ρ), and f1(ρ) are functions that depend only on the hyperradius ρ.

βDMBE(ρ, θ, φλ) is accurate close to conical intersection geometries, i.e.,

βDMBE(ρ, θ, φλ)−→
θ→0

β(ρ, θ, φλ) (4.39)

In the DMBE treatment, the transverse part of the first-derivative coupling vector is

assumed to be negligible (especially near the conical intersection) as compared to the

longitudinal part. In this approximation w
(1)ad
tra,DMBE

(qλ) is required to vanish at all qλ,

i.e.,

w
(1)ad
DMBE(qλ) = ∇qλ

βDMBE(qλ). (4.40)

To test the validity of Eq. (4.39), since we know βDMBE(ρ, θ, φλ) analytically, we com-

pared w
(1)ad
DMBE(qλ) with our ab initio first-derivative coupling vector w(1)ad(qλ) in re-

gions near the conical intersection and found a systematic mismatch in sign that was

removed by changing the sign of g0(ρ) in the DMBE code. After making this change

these first-derivative coupling vectors agreed quite well in these regions. Rewriting

the Poisson Eq. (4.35) in terms of γ(ρ, θ, 3φλ) by using Eq. (4.36), we get

−

[
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
λ

)]
γ(ρ, θ, 3φλ) = σ(ρ, θ, 3φλ).

(4.41)

This equation was solved using the MUDPACK [60, 61] library of subroutines. This

library permits the solution of two- and three-dimensional linear elliptic partial differ-

ential equations with any combination of periodic, Dirichlet (for which the unknown
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function is specified on the boundary), Neumann (for which a derivative of the un-

known function at the boundary is specified) and mixed Dirichlet-Neumann boundary

conditions. The solution of Eq. (4.41) was obtained on the following restricted domain

V of nuclear configuration space:

1.5 bohr ≤ ρ ≤ 10 bohr 0.1◦ ≤ θ ≤ 90◦ 0◦ ≤ φλ ≤ 60◦ (4.42)

The full domain U ≡ 6V has the same ρ and θ ranges as in Eq. (4.42) but the

full φλ range of 0◦ to 360◦. The solution over V leads directly to a solution over U

with the help of the P3 symmetry properties of the system. The use of 1.5 bohr for

the minimum value of ρ required a small extrapolation of the ab initio first-derivative

couplings available in the 2 bohr to 8 bohr interval. At 2 bohr, the lowest energy point

on the ground adiabatic DSP PES [18] is about 3 eV. The corresponding lowest energy

point for ρ = 1.5 bohr is greater than 5 eV and hence regions of configuration space

for which ρ < 1.5 bohr (very compact nuclear geometries) will not be important for

scattering dynamics at energies less than 5 eV, approximately. The 10 bohr value was

chosen as the maximum ρ because at this hyperradius the H + H2 interaction energy

is too small to affect reaction cross sections of interest to this chapter. The lowest

value used for θ was 0.1◦ because the Poisson equation solver in MUDPACK library

for spherical polar coordinates is unstable for values of θ below that value. Besides, at

such small values of θ, both β and γ are known since the DMBE representation [47]

[Eqs. (4.37) and (4.38)] is quite accurate in these regions.

Let us consider the internal configuration space frame OXλY λZ of Fig. 4.1 in

which an internal nuclear configuration qλ is represented by a point whose spherical

polar coordinates are ρ, θ, φλ. Fig. 4.2 depicts in this frame the boundary surface S

that encloses the domain V defined by Eq. (4.42). It is comprised of 6 pieces:

a) S1, the surface defined by φλ = 0◦, 0.1◦ ≤ θ ≤ 90◦ and 1.5 bohr ≤ ρ ≤

10 bohr. It lies on the positive Xλ and Z quadrant of the OXλZ plane.

Its vertices are points A, B, C and D.
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b) S2, the surface defined by φλ = 60◦, 0.1◦ ≤ θ ≤ 90◦ and 1.5 bohr ≤

ρ ≤ 10 bohr. It is analogous to S1, but lies on a plane containing the

OZ axis and making an angle of 60◦ with the OXλZ plane (measured

counterclockwise from the latter as viewed from a point on the latter

having Z > 0). Its vertices are points E, F, G and H.

c) S3, the surface defined by θ = 0.1◦, 0◦ ≤ φ ≤ 60◦ and 1.5 bohr ≤ ρ ≤

10 bohr. It is a piece of a narrow conical surface whose vertices are B, C,

H and E.

d) S4, the surface defined by θ = 90◦, 0◦ ≤ φ ≤ 60◦ and 1.5 bohr ≤ ρ ≤

10 bohr. It lies on the OXλY λ plane. Its vertices are A, D, G and F.

e) S5, the surface defined by ρ = 1.5 bohr, 0.1◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤

60◦. It is a portion of a spherical surface of radius 1.5 bohr having as

edges the intersections with S1, S2, S3 and S4. Its vertices are C, D, G and

H.

f) S6, the surface defined by ρ = 10 bohr, 0.1◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 60◦.

It is a portion of a spherical surface of radius 10 bohr having as edges the

intersections with S1, S2, S3 and S4. Its vertices are A, B, E and F.

The boundary conditions adopted on S were the following:

a) On S1,

β(S1) = γ(S1) = 0 (4.43)

for all points on this surface. From Eqs. (4.16), (4.18) and (4.36), this

condition results in the relation

χd(S1) = χad(S1) (4.44)

In other words, S1 is chosen as the surface on which the diabatic and

adiabatic representations coincide. This is a natural Dirichlet boundary

condition.
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b) On S2,

β(S2) = π/6 and γ(S2) = 0 (4.45)

for all points on this surface. This condition is a consequence of Eq. (4.43)

and the P3 symmetry of the H3 system and forces γ to be single valued

upon a pseudorotation of the system around the conical intersection line

between the 1 2A′ and 2 2A′ states of H3, i.e., to have the same value

at φλ = 0◦ and φλ = 360◦. This in turn forces β(ρ, θ, φλ) [Eq. (4.36)]

to change by π upon such a pseudorotation, as required. This is also a

natural Dirichlet boundary condition that follows from the one on S1.

c) On S3,

β(S3) = φλ/2 and γ(S3) = 0 (4.46)

for all points on this surface. This is a consequence of the fact that, close to

the conical intersection (θ = 0.1◦ in the present case), the electronic wave

functions ψad
i (r;qλ) and ψad

j (r;qλ) are, to first order in θ, independent

of θ and depend on qλ only through ρ and φλ [9]. This is a mandatory

Dirichlet boundary condition.

For boundary surfaces S4 through S6 we chose Neumann boundary conditions

which force the θ-component of w
(1)ad
tra to vanish at the S4 boundary and the ρ-

component of this vector to vanish at the S5 and S6 boundaries. As proved in Ap-

pendix 4.A, these choices minimize the average value of the magnitude of w
(1)ad
tra over

the space enclosed by S. Specifically, the boundary conditions on S4 through S6 are

as follows:

d) On S4,

(
∂β

∂θ

)

S4

= −

(
∂γ

∂θ

)

S4

= ρ w
(1)ad
θ (ρ, θ = 90◦, φλ) (4.47)
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for all points on this surface. This condition results in the property

w
(1)ad
tra,θ (ρ, θ = 90◦, φλ) = 0 (4.48)

i.e., the θ-component of w
(1)ad
tra is forced to vanish on this surface.

e) On S5,

(
∂β

∂ρ

)

S5

= −

(
∂γ

∂ρ

)

S5

= w(1)ad
ρ (ρ = 1.5 bohr, θ, φλ) (4.49)

which results in

w
(1)ad
tra,ρ (ρ = 1.5 bohr, θ, φλ) = 0 (4.50)

f) On S6,

(
∂β

∂ρ

)

S6

= −

(
∂γ

∂ρ

)

S6

= w(1)ad
ρ (ρ = 10 bohr, θ, φλ) (4.51)

which results in

w
(1)ad
tra,ρ (ρ = 10 bohr, θ, φλ) = 0 (4.52)

The calculation using the boundary conditions above will henceforth be designated

as b0.

The number of grid points used in the ρ, θ and φλ directions in the MUDPACK

equation solver was 513, 257 and 65, respectively, for a total of about 8.6 million grid

points. The relative number of points for the three variables was found to optimize the

accuracy of the solution. The grid spacings associated with ρ and θ were smaller than

that associated with φλ because the Neumann boundary conditions for S4 through S6

and the associated evaluation of numerical derivatives required such finer grids.

γ(ρ, θ, 3φλ), obtained by the solution of the Poisson equation [Eq. (4.41)] with the

boundary conditions just described, was used in Eq. (4.36) to obtain the diabatization

angle, β(ρ, θ, φλ). This angle was then used in Eq. (4.29) to obtain the transverse

part of the first-derivative coupling vector. As a check of the self-consistency of the
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calculations performed, we also employed the values of γ obtained at the boundary

surfaces S4 through S6 as Dirichlet starting conditions in a new solution of the Pois-

son equation involving only Dirichlet conditions. As expected, the new results were

identical to the previous ones within the numerical accuracy of the calculation.

To obtain a quantitative estimate of the sensitivity of the solution of the Poisson

equation to the boundary conditions used, we generated solutions for the following

additional sets of boundary conditions:

1. Neumann conditions on S3 through S6 and Dirichlet conditions on S1

and S2. The Neumann condition on S3 is given by

(
∂β

∂θ

)

S3

= −

(
∂γ

∂θ

)

S3

= ρ w
(1)ad
θ (ρ, θ = 0.1◦, φλ) (4.53)

which results in the property

w
(1)ad
tra,θ (ρ, θ = 0.1◦, φλ) = 0 (4.54)

This property is consistent with the boundary condition Eq. (4.46) (at

θ = 0.1◦ but not necessarily at other small θ) and as a result we should

expect this calculation to yield results very close to those obtained in the

b0 calculation. That did indeed turn out to be the case, the results of the

two calculations differing only slightly near the conical intersection (for

θ . 3◦) and being identical (within calculation accuracy) away from it.

The ratio ξ1 defined by Eq. (4.56), differed from unity by less than 10−4.

2. Dirichlet conditions γ = 0 on all six boundaries S1 through S6. This

calculation without any Neumann boundary condition is expected to give

results that most differ from the optimal b0 (3 Dirichlet and 3 Neumann)

boundary conditions.

3. Neumann conditions on S4 and S5 and γ = 0 Dirichlet conditions on

the other Si.
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4. Neumann conditions on S4 and S6 and γ = 0 Dirichlet conditions on

the other Si.

5. Neumann conditions on S5 and S6 and γ = 0 Dirichlet conditions on

the other Si.

6. Neumann conditions on S4 and γ = 0 Dirichlet conditions on the other

Si.

7. Neumann conditions on S5 and γ = 0 Dirichlet conditions on the other

Si.

8. Neumann conditions on S6 and γ = 0 Dirichlet conditions on the other

Si.

The Neumann conditions referred to in 3. to 8. above are those given by Eqs. (4.47),

(4.49) and (4.51). The calculations specified in 1. through 8. above will henceforth

be designated as b1 through b8, respectively. They were all performed using the same

grid parameters as for b0, described after Eq. (4.52).

In order to compare results of calculations b0 through b8, we calculated for each

the corresponding root-mean-square average magnitude of the transverse coupling

vector, over the full domain U of configuration space, defined by

〈w
(1)ad
tra 〉i =

[∫
U
|w

(1)ad
tra (qλ)|

2dqλ∫
U
dqλ

]1/2

i = 0 through 8 (4.55)

where dqλ is the volume element of the domain U. We also obtained the ratios

ξi =
〈w

(1)ad
tra 〉i

〈w
(1)ad
tra 〉0

i = 0 through 8 (4.56)

which will be useful for comparing the results of these bi calculations. The larger

ξi is, the larger is the deviation of the corresponding 〈w
(1)ad
tra 〉i from the minimum

value 〈w
(1)ad
tra 〉0. These quantities will permit an assessment of the magnitude of the

minimization achieved in the latter and of the relative importance of using Neumann
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boundary conditions on S4, S5 and S6.

In the next section, we present the results obtained for the diabatization angle as

well as those for the longitudinal and transverse parts of the first-derivative coupling

vector. We will also discuss the magnitude of the transverse part in the dynami-

cally relevant regions of nuclear configuration space, the importance of the Neumann

boundary conditions used in its determination, and its possible effect on scattering

calculations upon its reintroduction as a perturbation.

4.3 Results and discussion

4.3.1 Diabatization angle

The function σ(ρ, θ, 3φλ), needed to solve the Poisson equation, is displayed in Fig. 4.3,

with a multiplicative factor of sin2 θ, as a function of θ and φλ for ρ = 2 bohr,

4 bohr, 6 bohr and 8 bohr. This factor is used to cancel out the pole behavior

of σ associated with its 1/ sin2 θ dependence. This source term also displays the

permutation symmetry of the H3 system. For ρ = 2 bohr (panel (a)), it (sin2 θ σ)

has sharp minima of about 0.75 bohr−2 at φλ = 0◦, 120◦ and 240◦ while displaying

small oscillations around a flat value in other regions. For ρ = 8 bohr (panel (d)),

it displays sharp maxima of about 0.45 bohr−2 at φλ = 60◦, 180◦ and 300◦ while

staying flat with no oscillations in other regions. Both these extrema (sharp minima

for ρ = 2 bohr and sharp maxima for ρ = 8 bohr) occur for all values of θ with

the most pronounced behavior occuring at θ = 90◦ (collinear configurations). Its

characteristics at ρ = 4 bohr (panel (b)) are midway between those at ρ = 2 bohr

and ρ = 8 bohr, with no sharp features. Besides, at this hyperradius it has oscillations

which show minima around φλ = 0◦, 120◦ and 240◦ and maxima around φλ = 60◦,

180◦ and 300◦. At ρ = 6 bohr (panel (c)), its behavior is similar to that at ρ = 8 bohr.

In panels (e) through (h) we depict equatorial views of sin2 θ σ(ρ, θ, 3φλ) contours and

their mapping onto the x̄λȳλ tangent plane of Fig. 4.1. This mapping is called the



107

equatorial view because it corresponds to a non-perpendicular arc-length-preserving

projection of the constant hyperradius hemisphere on a plane tangent to it at the

point on its equator, defined by ωλ = γλ = π/2. This permits the viewing of all three

possible atom-diatom arrangement channel regions (for the triatomic reaction) as well

as the regions for which the three atoms are at comparable distances from each other,

for a fixed hyperradius ρ. Maps of this kind have been used before [18, 52, 65, 66].

This view of sin2 θ σ(ρ, θ, 3φλ) contours confirms the sharp minima behavior for ρ =

2 bohr and sharp maxima behavior for ρ = 8 bohr in different regions of the φλ

space. They also confirm the flat regions of 0 bohr−2 for ρ = 6 bohr and ρ =

8 bohr around φλ = 0◦, 120◦ and 240◦ regions of configuration space. Analysis

of w(1)ad at these hyperradii (using their plots from Chapter 3) shows that in and

around these regions of configuration space the coupling vector is about two orders of

magnitude smaller than in the regions of space around φλ = 60◦, 180◦ and 300◦. This

is also evident in the corresponding plots of w
(1)ad
lon (Fig. 4.9) and w

(1)ad
tra (Fig. 4.10)

discussed in Sec. 4.3.4, since their sum gives the total coupling vector w(1)ad. In the

three φλ regions mentioned above, the dominant w
(1)ad
lon is much smaller than in other

regions. This negligibly small magnitude of the coupling vector leads to its negligible

divergence as indicated by the source term σ(ρ, θ, 3φλ) plotted in panels (c), (d), (g)

and (h) of Fig. 4.3.

Solution of the Poisson Eq. (4.41), subject to the boundary condition of Eq. (4.43)

and Eqs. (4.45) through (4.52) and the source term discussed above, furnishes γ(ρ, θ, 3φλ)

in the domain of internal nuclear configuration space defined by Eq. (4.42), which is

the entire ρ and θ space but one-sixth of the full φλ space due to the P3 symmetry of

H3. This can be extended to the full 0 ≤ φλ < 2π space by symmetry considerations.

The diabatization angle β(ρ, θ, φλ) is then obtained over the full domain U by using

γ(ρ, θ, 3φλ) together with Eq. (4.36).

Fig. 4.4 (panels (a) through (d)) depicts the diabatization angle β(ρ, θ, φλ) as

a function of θ and φλ for four different hyperradii. Panels (a), (b), (c) and (d)

correspond to the fixed hyperradii of 2 bohr (tight geometries), 4 bohr, 6 bohr, and
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8 bohr (asymptotic geometries), respectively. Panels (e) through (h) display the

equatorial views of β contours corresponding to panels (a) through (d) through their

mapping onto the x̄λȳλ tangent plane of Fig. 4.1. Since near conical intersection

geometries and even at other geometries β(ρ, θ, φλ) is dominated by the φλ/2 term,

we plot in Fig. 4.5 (panels (a) through (d)) γ(ρ, θ, 3φλ) as a function of θ and φλ for

the same hyperradii as before and the corresponding equatorial views in panels (e)

through (h), respectively. In each of the panels in Figs. 4.4 and 4.5, the hyperradius

ρ is kept fixed and the hyperangle φλ is varied from 0 to 2π along the circle shown at

the bottom. In addition, the hyperangle θ is varied from 0 to π/2, from the center

of that circle (corresponding to θ = 0 or conical intersection geometries) to its edge

(corresponding to θ = π/2 or collinear geometries).

Panels (a) through (d) of Fig. 4.6 display cuts of the γ(ρ, θ, 3φλ) plots shown in

panels (a) through (d), respectively of Fig. 4.5 at three values of θ (5◦, 45◦, and 90◦)

for the same four values of ρ. The corresponding DMBE angle, γDMBE(ρ, θ, 3φλ), is

displayed in panels (e) through (h) of Fig. 4.6 for the same θ cuts and hyperradii.

Since γDMBE(ρ, θ, 3φλ) is accurate in the vicinity of the conical intersection, a quantity

∆γ is defined as the maximum difference between γ and γDMBE over all values of φλ,

keeping the values of ρ and θ fixed:

∆γ(ρ, θ) = max [γ(ρ, θ, 3φλ) − γDMBE(ρ, θ, 3φλ)]φλ
(4.57)

In Fig. 4.7, ∆γ is depicted as a function of θ for the same four values of the hyperradius

ρ, since it provides an indication of the ρ-dependent difference between γDMBE and γ as

a function of θ. As the latter increases from 0◦ to 90◦, the corresponding configuration

moves away from the conical intersection. Fig. 4.8 depicts γ6D obtained from the 6

Dirichlet boundary conditions calculation b2 described in Sec. 4.2.4. Figs. 4.4 through

4.8 are further discussed in Sec. 4.3.4.
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4.3.2 Longitudinal and transverse parts of the first-derivative

coupling vector

The gradient of β(ρ, θ, φλ) furnishes w
(1)ad
lon (qλ), and Eq. (4.29) then gives w

(1)ad
tra (qλ).

We have calculated in Chapter 3 the components of w(1)ad(qλ) in the directions of the

unit vectors associated with ρ, θ, and φλ. We can now calculate the corresponding

hyperspherical components of w
(1)ad
lon and w

(1)ad
tra . The corresponding Q space cartesian

components of w
(1)ad
lon are given by




w
(1)ad
lon,x

w
(1)ad
lon,y

w
(1)ad
lon,z




=




sin θ cosφλ cos θ cosφλ − sin φλ

sin θ sinφλ cos θ sin φλ cosφλ

cos θ − sin θ 0







w
(1)ad
lon,ρ

w
(1)ad
lon,θ

w
(1)ad
lon,φλ




(4.58)

and those of w
(1)ad
tra by an analogous expression.

In Fig. 4.9, we present perspective plots of the longitudinal part of first-derivative

coupling vector (w
(1)ad
lon ) as a function of the hyperangle φλ, at a fixed hyperradius ρ

(4 bohr, 6 bohr and 8 bohr) and a fixed hyperangle θ. In cartesian language, this

is equivalent to varying x and y on a circle and keeping z fixed. The correspond-

ing adiabatic ground state and first-excited state electronic energies are displayed in

Figs. 3.5 through 3.7 of Chapter 3. Fig. 4.10 presents the corresponding perspective

plots of the transverse part (w
(1)ad
tra ) of the first-derivative coupling vector. In both

Figs. 4.9 and 4.10, the panel (a) corresponds to θ = 1◦ (a value very close to the con-

ical intersection geometries of θ = 0◦), panel (b) to θ = 30◦, panel (c) to θ = 60◦, and

the panel (d) to θ = 90◦ (collinear geometries). The origin of the coupling vectors lies

on a circle that corresponds to a fixed θ on the hyperspherical coordinate hemisphere

for the indicated value of ρ. This circle maps the full φλ range of 0◦ to 360◦. The

coupling vectors shown in these two figures correspond to the hyperspherical space

being mapped by this circle. Above each of the panels two scales are given. The one

in units of bohr corresponds to the internal nuclear configuration space corresponding
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to the full 0◦ to 360◦ φλ range spanned on the xy plane. The second one, in units

of bohr−1, corresponds to the three-dimensional space sampled by the x, y, and z

components of the coupling vector. The two spaces co-exist on the xy plane.

The w
(1)ad
lon and w

(1)ad
tra plots at θ = 1◦ (panel (a) in Figs. 4.9 and 4.10) have been

included to show their behavior near the conical intersection. The θ = 90◦ case (panel

(d) in these two figures), corresponds to collinear geometries for the triatomic system.

This case is important for lower energies due to the collinear dominance of the H +

H2 reaction at those energies, as will be discussed in Sec. 4.3.4. The θ = 30◦ and

θ = 60◦ cases (panels (b) and (c), respectively) have been included to gauge the

importance of the coupling vector away from the conical intersection as well as from

the collinear geometries. Fig. 4.11 displays the corresponding perpective plots of the

w
(1)ad
tra,6D vector, obtained in the b2 calculation described in Sec. 4.2.4 using 6 Dirichlet

boundary conditions, at ρ = 4 bohr, 6 bohr and 8 bohr. It has been provided to

permit a comparison of the magnitude of this vector with that obtained from the

optimal calculation (shown in Fig. 4.10).

We can now check whether the w
(1)ad
lon and w

(1)ad
tra described above satisfy Eq. (4.26)

and Eq. (4.27), which are consequences of the geometric phase theorem. This is a

numerical self-consistency check. Writing Eq. (4.26) explicitly in terms of w
(1)ad
lon and

the symmetrized hyperspherical coordinates, and taking for path L a closed loop

around the conical intersection between the 1 2A′ and 2 2A′ states of H3, we get for

the longitudinal topological phases [Eq. (4.25)] the expression

ΦT,lon(ρ, θ) =

∮
w

(1)ad
lon,φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ (4.59)

where w
(1)ad
lon,φλ

is the φλ-component of w
(1)ad
lon vector. Similarly, the transverse topolog-

ical phase [Eq. (4.25)], can be written in terms of w
(1)ad
tra as

ΦT,tra(ρ, θ) =

∮
w

(1)ad
tra,φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ (4.60)

where w
(1)ad
tra,φλ

is the φλ-component of w
(1)ad
tra vector. The corresponding longitudinal
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and transverse open-path phases associated with Eq. (4.22) can be expressed in the

symmetrized hyperspherical coordinates as

Φlon(φλ; ρ, θ) =

∫ φλ

0

w
(1)ad
lon,φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ (4.61)

and

Φtra(φλ; ρ, θ) =

∫ φλ

0

w
(1)ad
tra,φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ

=

∫ φλ

0

w
(1)ad
φλ

(ρ, θ, φ′
λ) ρ sin θ dφ′

λ − π (4.62)

where p = 1 is used along with Eq. (4.27), since L encircles the one conical intersection

mentioned above. The relation between these open-path phases and the corresponding

topological phases is obviously

ΦT,lon(ρ, θ) = Φlon(2π; ρ, θ) (4.63)

ΦT,tra(ρ, θ) = Φtra(2π; ρ, θ) (4.64)

In Fig. 4.12 (panels (a) through (d)), we display Φlon(φλ; ρ, θ) as a function of φλ

evaluated using Eq. (4.61) for four values of ρ (2 bohr through 8 bohr every 2 bohr,

respectively) and four values of θ (1◦, 30◦, 60◦, and 90◦). In Fig. 4.12 (panels (e)

through (h)) we depict Φtra(φλ; ρ, θ) as a function of φλ evaluated using Eq. (4.62)

at the same values of ρ and θ. The values of the corresponding topological phases

ΦT,lon(ρ, θ) and ΦT,tra(ρ, θ) can be read off these panels by taking the open-path phases

at φλ = 2π (or 360◦). The results shown in Figs. 4.9 through 4.12 are analyzed in

Sec. 4.3.4.

4.3.3 Diabatic potential energy surfaces

Once the diabatization angle β(qλ) is known from the solution of Poisson equation,

the diabatic energy matrix εd(qλ) can be evaluated using Eq. (4.21) which in extended
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form is:

εd(qλ) =




εd
11(qλ) εd

12(qλ)

εd
21(qλ) εd

22(qλ)


 = Ũ[β(qλ)]




εad
1 (qλ) 0

0 εad
2 (qλ)


U[β(qλ)] (4.65)

where U[β(qλ)] is given by Eq. (4.16). εad
1 (qλ) and εad

2 (qλ) are respectively the

adiabatic ground and first-excited PESs which have been fitted earlier to the ab intio

energies using the DMBE-Single-Polynomial (DSP) method [18]. From this expression

we get

εd
11(qλ) = cos2 β(qλ) ε

ad
1 (qλ) + sin2 β(qλ) ε

ad
2 (qλ)

εd
22(qλ) = sin2 β(qλ) ε

ad
1 (qλ) + cos2 β(qλ) ε

ad
2 (qλ)

εd
12(qλ) = εd

21(qλ) = cos β(qλ) sinβ(qλ)
[
εad
2 (qλ) − εad

1 (qλ)
]

(4.66)

Fig. 4.15 and panels (a) and (b) of Figs. 4.13 and 4.14 show the adiabatic and

diabatic PES contours in the XλZλ plane of Fig. 4.1, which corresponds to the γλ = 0◦

and 180◦ cuts. Panels (c) and (d) in Figs. 4.13 and 4.14 show these contours in the

Y Zλ plane of Fig. 4.1 corresponding to the γλ = 90◦ cut. Fig. 4.16 depicts the

conical intersection energies, corresponding to equilateral triangle configurations, as

a function of ρ for four sets of electronically adiabatic ab initio PES calculations:

DSP [18], LSTH [62–64], DMBE [47] and EQMC [66]. The DSP curve corresponds to

the Zλ = 0 energies in panels (c) and (d) of Fig. 4.13. Figs. 4.17 through 4.19 show

equatorial views (described in the first paragraph of Sec. 4.3.1) of the PES contours

through their mapping onto the x̄λȳλ tangent plane of Fig. 4.1. In the next section

we will discuss the features of the adiabatic and diabatic PESs through their contours

displayed in Figs. 4.13 through 4.15 and 4.17 through 4.19.
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4.3.4 Discussion

Fig. 4.4 (panels (a) through (d)) displays the diabatization angle β(ρ, θ, φλ) for four

fixed values of the hyperradius ρ. In all these panels, the dominance of the φλ/2

part of β is clearly visible: as φλ increases from 0 to 2π, β varies from a value close

to 0 to a value close to π. Besides this behavior, some small variations are visible

in the φλ-dependence of β. Due to the dominance of the φλ/2 term, it is hard to

distinguish the β at ρ = 2 bohr (corresponding to a compact set of geometries) from

that at ρ = 8 bohr (corresponding to a near-asymptotic set of geometries), except

for the small variations mentioned above which become slightly more prominent as ρ

increases from 2 bohr to 8 bohr.

Panels (e) through (h) of Fig. 4.4 depict the equatorial view of the contours

corresponding to the β panels (a) through (d). In these equatorial views, the three

atom-diatom arrangement channels lie along the φλ = 0◦, 120◦ and 240◦ lines. These

panels show that their contour lines are mainly radial, independently of the value

of ρ. This is a consequence of having set γ = 0◦ at φλ = 0◦ and 60◦ (the S1 and

S2 boundary surfaces), for the reasons given in Sec. 4.2.4. They also show clearly

the φλ/2 dependence of β with the contour values increasing with an increase in φλ.

Hence, although in this view the β contours seem to have P3 symmetry they actually

don’t, due to this φλ/2 dependence. The feature that is clear in these contours of β

that was not very obvious in panels (a) through (d) of Fig. 4.4 is that β increases

sharply with an increase in φλ around the φλ = 60◦, 180◦ and 300◦ lines and increases

slowly in other regions. This sharp increase becomes sharper with an increase in ρ

as we go from panel (e) (ρ = 2 bohr) to panel (h) (ρ = 8 bohr). In each panel, the

line corresponding to φλ = 0◦ and 180◦ is interesting because on the φλ = 0◦ line β

is zero and on the 180◦ line it is 90◦. This has the following effect on the behavior

of diabatic surfaces εd
11, ε

d
22 and εd

12 (using Eqs. (4.66) discussed in Sec. 4.3.3) and on

the diabatic nuclear wavefunctions χd
1 and χd

2 (using Eqs. (4.18) and (4.16) discussed

in the introduction section): (a) the coupling PES εd
12 is zero on both these φλ lines;

(b) on the φλ = 0◦ line, εd
11 = εad

1 and εd
22 = εad

2 which means that the adiabatic and
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diabatic nuclear wavefunctions coincide on this line; and (c) on the φλ = 180◦ line,

εd
11 = εad

2 and εd
22 = εad

1 which means that the adiabatic nuclear wavefunctions are

switched in the diabatic representation on this line with one of them switching the

sign also, i.e., χd
1 = χad

2 and χd
2 = −χad

1 . This provides good physical insight into the

behavior of the diabatic PESs and diabatic nuclear wavefunctions in terms of their

adiabatic counterparts on the φλ = constant half-planes in configuration space just

considered. Other interesting φλ half-planes are those corresponding to 45◦ and 135◦

because along them εd
11 and εd

22 coincide.

It is hard to see any quantitative variation in β as a function of the hyperangle θ.

To make this and previously mentioned distinctions clear, panels (a) through (d) of

Fig. 4.5 display the γ(ρ, θ, 3φλ) part of the diabatization angle, which doesn’t contain

the dominant φλ/2 term. In all these panels, the P3 symmetry is visible, as γ repeats

itself every 2π/3 radians. For ρ = 2 bohr, γ fluctuates as a function of φλ between -5◦

and +5◦. As a function of θ (looking from the center of the bottom circle to its edge),

it starts from 0◦ at θ = 0◦ and increases (or decreases) to its maximum (or minimum)

value at θ = 90◦. For ρ = 4 bohr (which is dynamically an important region), the

oscillations of γ with φλ are sharper (as compared to the ρ = 2 bohr case), and have

a larger amplitude staying between -16◦ and +16◦. As θ is varied, γ has the same

behavior as that for the ρ = 2 bohr case. For ρ = 6 bohr and 8 bohr γ displays

sharper oscillations and amplitudes that stay between -20◦ and +20◦. This indicates

that it is approaching the asymptotic limit as ρ increases. Their θ-dependence of γ

is similar to that for the ρ = 2 bohr and 4 bohr cases. Since the diabatization matrix

U[β(qλ)] elements are sines and cosines of β (see Eq. (4.16)), the dominance of the

φλ/2 term manifests itself as a change in the sign of the electronic and the nuclear

adiabatic wave functions and forces the diabatic wave functions to be single-valued, as

discussed previously after Eq. (4.36). The γ term in that equation will be important

in determining the characteristics of the diabatic PESs that appear in Eq. (4.19).

Panels (e) through (h) of Fig. 4.5 depict equatorial views of γ contours corre-

sponding to panels (a) through (d), respectively. These panels show the expected P3
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symmetry. Again, the contour lines have a strong radial behavior for all values of ρ

due to the choice of boundary conditions on S1 and S2 just mentioned. In addition,

the sharp rise observed in the β panels discussed earlier around φλ = 60◦, 180◦ and

300◦ lines is manifested in these γ contours with the sharpness rising with an increase

with ρ as we go from panel (e) (ρ = 2 bohr) to panel (h) (ρ = 8 bohr). Across these

φλ lines γ goes from a large positive value to a large negative value, the absolute value

of which also increases with ρ.

Three constant-θ cuts of γ plots in Fig. 4.5, which provide additional insight

into the features of γ, are shown in Fig. 4.6 (panels (a) through (d)). In each of

these panels, the θ = 5◦ cut (shown as a solid line) depicts the behavior of γ in

the vicinity of equilateral triangle geometries. θ = 90◦ cut (dotted line) shows it for

collinear geometries and 45◦ cut (dash-dotted line) shows it for a set of intermediate

geometries. For all three cuts the amplitude of the oscillations in γ is smallest for ρ =

2 bohr and increases as ρ increases to 8 bohr. The increase in this amplitude is largest

in going from ρ = 2 bohr to 4 bohr and tapers off by 8 bohr. Another interesting

feature not very clear in the γ plots of Fig. 4.5 is that γ, which repeats itself every

2π/3 radians with a maximum in the first half and a minimum in the second half

of any 2π/3 radians period in φλ, doesn’t display that maximum (or minimum) at

the exact middle of those halves but is skewed towards the middle of those full 2π/3

radians periods. The corresponding cuts for γDMBE are shown in Fig. 4.6 (panels (e)

through (h)) for comparison. For ρ = 2 bohr, γDMBE shows a maximum, where γ shows

a minimum and vice versa. For all other ρ, it shows the qualitatively correct behavior

but with the absolute value of its maximum (or minimum) always smaller than that

of γ. Also, for all ρ, the agreement between γDMBE and γ gets worse as θ is increased.

To make this comparison more quantitative, we show in Fig. 4.7 the quantity ∆γ(ρ, θ)

defined by Eq. (4.57) as a function of θ for fixed values of ρ. As expected, γDMBE agrees

in general with the present optimal γ only close to the conical intersection (θ = 0◦).

In the vicinity of ρ = 4 bohr, this agreement is very good up to about θ = 30◦.

This analysis shows that even if the transverse part of the ab initio first-derivative
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coupling is ignored, as was done in the DMBE treatment [47], γDMBE and hence βDMBE

agrees with the current γ only in the vicinity of the conical intersection, as expected,

and should not be used to construct diabatic states and nuclear wavefunctions for

accurate two-electronic-state scattering calculations.

Fig. 4.8 displays γ6D obtained from the Poisson equation solution using only

Dirichlet boundary conditions. Comparison of panels (a) through (d) of this fig-

ure with panels (a) through (d) of Fig. 4.5 shows that the maximum magnitude of

γ6D is on average half that of the optimal γ. This can be qualitatively explained

by the fact that γ6D is made to be zero at all six boundaries and hence it doesn’t

increase enough in magnitude inside the enclosed region to become smaller than the

corresponding optimal γ. In addition, the maxima and minima in γ6D occur in the

same φλ regions as those of the corresponding optimal γ. Comparing the contours of

γ6D (Fig. 4.8 panels (e) through (h)) with those of the optimal γ (Fig. 4.5 panels (e)

through (h)) highlights the qualitative similarity in the sharp rises around φλ = 60◦,

180◦ and 300◦.

As mentioned in Sec. 4.3.2, Fig. 4.9 displays the longitudinal part (w
(1)ad
lon ) of the

first-derivative coupling vector for ρ = 4 bohr, 6 bohr and 8 bohr. It has four sets of

panels: (a) θ = 1◦ (triatomic geometries near the conical intersection), (b) θ = 30◦,

(c) θ = 60◦, and (d) θ = 90◦ (collinear triatomic geometries). Fig. 4.10 displays the

corresponding plots for the transverse part (w
(1)ad
tra ) of that coupling vector.

The panels in the leftmost column of Fig. 4.9 present the w
(1)ad
lon vector for ρ =

4 bohr, which is expected to be of high dynamical importance for the H + H2 reaction.

For the θ = 1◦ case (Fig. 4.9 (a), ρ = 4 bohr), the longitudinal vector has a magnitude

of about 5 bohr−1 and a negligible z-component, translating into a strong dominance

of its φλ-component near the conical intersection. The adiabatic energies (E1 and E2,

see Fig. 3.5 in Chapter 3) are comparable and stay around 3.6 eV in this region. At

θ = 30◦ (Fig. 4.9 (b), ρ = 4 bohr), values of E1 as low as 1.5 eV occur, E2 is 5 eV or

larger and w
(1)ad
lon has a smaller magnitude as compared to the θ = 1◦ case (Fig. 4.9

(a), ρ = 4 bohr). At θ = 60◦ (Fig. 4.9 (c), ρ = 4 bohr), values of E1 as low as 0.25 eV
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occur, E2 is 6 eV or larger, and w
(1)ad
lon shows a sharper variation with φλ than before

(Fig. 4.9 (b), ρ = 4 bohr) around φλ = 60◦, 180◦, and 300◦. At θ = 90◦ (Fig. 4.9

(d), ρ = 4 bohr), which corresponds to collinear geometries, E1 energies as low as

0.2 eV occur and this PES varies more rapidly with φλ than for the smaller values

of θ, and E2 is again 6 eV or larger. w
(1)ad
lon is comparable to the previous θ = 60◦

case. For the ρ = 6 bohr (panels in the central column of Fig. 4.9) and 8 bohr (panels

in the rightmost column of Fig. 4.9) cases, which correspond to triatomic large sized

geometries, the electronic energies as well as the longitudinal vectors have general

characteristics that are analogous to the ρ = 4 bohr case. In both these cases, E1

energies as low as 0.2 eV occur and w
(1)ad
lon has comparable or larger magnitudes with

maxima around φλ = 60◦, 180◦, and 300◦.

The panels in the leftmost column of Fig. 4.10 display w
(1)ad
tra , the transverse part of

the coupling vector for ρ = 4 bohr, where we observe very small absolute magnitudes

near the conical intersection (θ = 1◦, Fig. 4.10 (a)). For this value of ρ, as we move

away from the conical intersection, the magnitude of w
(1)ad
tra increases to between

0.05 bohr−1 and 0.1 bohr−1. There is also an initial increase (up to around θ = 60◦,

Fig. 4.10 (c)) and a final decrease in the relative magnitude of its z-component.

The θ-component (w
(1)ad
tra,θ ) of the transverse coupling vector at θ = 90◦ should be

zero (due to the Neumann condition imposed at this boundary by Eq. (4.48)). This

should manifest itself in the z-component of the transverse vector being zero (due

to Eq. (4.58)). Fig. 4.10 panel (d) (for ρ = 4 bohr) shows that it is close to zero

(less than 0.001 bohr−1) everywhere except at φλ = 0◦, 120◦ and 240◦, where it is of

the order of 0.030 bohr−1. This is due to the Dirichlet boundary condition imposed

on γ at φλ = 0◦ (due to Eq. 4.43)) and by symmetry at 120◦ and 240◦. A look

at the adiabatic energies in these regions (see Fig. 3.5 in Chapter 3) indicates that

these energies remain higher than 10 eV in these regions, so these regions will not be

accessible for scattering at or below 5 eV. For ρ = 6 bohr (central column of Fig. 4.10)

and ρ = 8 bohr (rightmost column of Fig. 4.10), nothing unusual happens except for

the fact that away from the conical intersection the magnitudes of w
(1)ad
tra increase to
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the 0.01 bohr−1 to 0.02 bohr−1 range.

A comparison of the transverse coupling vectors (Fig. 4.10) with their longitu-

dinal counterparts (Fig. 4.9) leads to the following conclusions. For all hyperradii

shown, the transverse vectors have similar magnitude x, y, and z components, where

the x and y components are smaller in general than their longitudinal counterparts.

Comparing Figs. 4.9 (a) and 4.10 (a) for ρ = 4 bohr, both of which correspond to

θ = 1◦ (near-conical intersection geometries), the transverse (or nonremovable) vec-

tor is three orders of magnitude smaller than its longitudinal counterpart, a typical

situation near the conical intersection. Analogously, comparing Figs. 4.9 (d) and 4.10

(d) for this hyperradius, both of which correspond to θ = 90◦ (collinear geometries),

the magnitudes of the transverse and longitudinal vectors are similar to each other

but at least an order of magnitude smaller than the magnitude of the longitudinal

vector near the conical intersection. These conclusions are valuable due to the dy-

namical importance of ρ = 4 bohr. Near the conical intersection (θ = 1◦), ground

(E1) and first-excited (E2) adiabatic PESs are very close to each other (see Fig. 3.5

in Chapter 3), so one expects that there will be maximum hopping of the nuclei be-

tween these PESs. In this region, the transverse (nonremovable) part is quite small

(around 0.005 bohr−1 or less) and so this part is expected to have only a small effect

on the reactive scattering. Near the collinear geometry regions, θ = 90◦, the E1 and

E2 adiabatic PESs are separated by around 5 eV, so although the transverse vector

is not that much smaller than the longitudinal vector, the separation between the

surfaces is big enough that it should prevent any noticable hopping of nuclei from one

surface to the other. The same analysis for ρ = 6 bohr and 8 bohr leads to similar

conclusions. The main points of difference are as follows. As we go from the conical

intersection region, θ = 1◦, to the collinear region, θ = 90◦, the transverse vector re-

mains at least an order of magnitude smaller than the longitudinal vector, whenever

the two surfaces are closer than 5 eV. The transverse part becomes comparable to

the longitudinal part only in regions where the two surfaces are separated by 5 eV or

more.
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Fig. 4.11 depicts the transverse vector w
(1)ad
tra,6D obtained by the all-Dirichlet Poisson

equation calculation b2 described in Sec. 4.2.4. Its leftmost column (ρ = 4 bohr)

compared with the optimal w
(1)ad
tra (leftmost column of Fig. 4.10) shows that the

magnitudes of the former are 2 to 4 times those of the latter. The middle column of

Fig. 4.11 (ρ = 6 bohr), compared with the corresponding column of Fig. 4.10, shows

that w
(1)ad
tra,6D is 5 to 10 times larger in magnitude than w

(1)ad
tra . A similar comparison

of the rightmost column (ρ = 8 bohr) shows its magnitude to be 10 to 50 times

larger than that of the optimal w
(1)ad
tra vector. To make this comparison quantitative

over the full domain U we evaluated, using Eq. (4.55), the average magnitude of

both transverse parts and found them to be 0.0208 bohr−1 for the optimal transverse

vector and 0.0981 bohr−1 for the full-Dirichlet w
(1)ad
tra,6D transverse vector, resulting

in a value of the ratio defined by Eq. (4.56) of ξ2 = 4.7, i.e., the w
(1)ad
tra,6D vector

is in average nearly five times larger than the optimal one. This shows that the

minimization provided by the three-Neumann boundary conditions of the optimal

calculation b0 is very significant. Since it is the transverse part that is retained in

the diabatic equations describing the nuclear motion, and has been minimized over

the entire important domain U of nuclear configuration space, it will be interesting

to determine by a perturbative treatment how and in what regions of that space it

will affect the scattering dynamics for the H3 system at energies of the order of 5 eV

and below.

The values of the 〈w
(1)ad
tra 〉i for the calculations b3 through b8 were 0.0856 bohr−1,

0.0236 bohr−1, 0.0683 bohr−1, 0.0863 bohr−1, 0.0978 bohr−1 and 0.0687 bohr−1, re-

spectively, resulting in corresponding values of ξi of 4.1, 1.1, 3.3, 4.1, 4.7 and 3.3.

Two important conclusions are as follows:

a) The b4 calculation (Neumann conditions on S4 and S6 and Dirichlet conditions

γ = 0 at other Si) is almost as good as the optimal b0 calculation.

b) The order of importance of using Neumann boundary conditions to minimize

〈w
(1)ad
tra 〉 is S6 first, followed by S4 and S5.

Fig. 4.12 shows the longitudinal Φlon(φλ; ρ, θ) and transverse Φtra(φλ; ρ, θ) open-
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path phases as a function of φλ for four values of θ and four values of ρ evaluated using

Eqs. (4.61) and (4.62). For the θ = 1◦ case, to a very good approximation (0.2 %

or smaller difference) Φlon is equal to φλ/2 for all the values of ρ considered. This is

clearly expected because this value of θ corresponds to a region of configuration space

very close to the conical intersection and φλ/2 is a leading term of the diabatization

angle β, γ being very small in that region. For other values of θ, Φlon fluctuates around

this φλ/2 value and returns to it at regular intervals of 60◦ in φλ. As a result, we

can approximate Φlon by a sum of two terms, the first one being φλ/2 and the second

more complicated one possessing the P3 symmetry (of H3) via a sin 3φλ dependence.

This second term is the γ term of the diabatization angle β given by Eq. (4.36), since

from Eqs. (4.13) and (4.61) we have Φlon ≡ β. The fluctuations in Φlon about φλ/2

are due to this second term and have an amplitude which increases monotonically

with ρ between ρ = 2 bohr and ρ = 8 bohr. This seems to stem from the fact that

for a large value of ρ, the length of the circular loop around the conical intersection is

large, which leads to a large phase accumulation in these fluctuations. As mentioned

in Sec. 4.3.2, the corresponding topological phases (closed-loop line integrals, ΦT,lon)

can be read off these panels by looking at the value of Φlon at φλ = 2π. It can

be seen that for all values of ρ and θ considered in Fig. 4.12 (panels (a) through

(d)), ΦT,lon = π, satisfying the condition given by Eq. (4.26) for p = 1 since we are

encircling only one conical intersection, the one between the 1 2A′ and 2 2A′ states of

H3.

The transverse open-path phase Φtra(φλ; ρ, θ) was evaluated as a function of φλ

by using both the middle part and the right-hand side of Eq. (4.62) for the same four

values each of ρ and θ, used for Φlon. Both evaluations give identical result, which is

shown in panels (e) through (h) of Fig. 4.12. This again is consistent with the fact

that we are encircling one conical intersection. For the θ = 1◦ case, Φtra is nearly zero,

which, is expected due to the dominance of w
(1)ad
lon over w

(1)ad
tra in this region close to

the conical intersection. In general, for each θ, Φtra is the sum of a linear term in φλ,

whose slope can be positive, negative or zero, plus an oscillatory term of period 2π/3.
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Also, the corresponding topological phases ΦT,tra (Φtra at φλ = 2π) show a value close

to zero not only for θ = 1◦ and all four values of ρ, but also for θ = 90◦ (i.e., collinear

geometries) at ρ = 4 bohr. Examination of the w
(1)ad
tra vector (Fig. 4.10) at these

geometries shows that its magnitude is comparable to its value at other geometries

where ΦT,tra is significantly different from zero. We conclude that the vanishing of

ΦT,tra is a necessary but insufficient condition for the the first-derivative coupling

vector to be purely longitudinal.

Using the diabatization angle β obtained as described in Sec. 4.3.1 and discussed

in the first two paragraphs of the present section, and the adiabatic ground and first-

excited DSP PESs obtained previously [18], we have calculated, using Eq. (4.65), the

diagonal and off-diagonal elements of the diabatic energy matrix εd. Fig. 4.13 shows

the cuts of the adiabatic ground (εad
1 ) and first-excited (εad

2 ) PESs with the XλZλ

and Y Zλ planes as explained in Sec. 4.3.3. Panels (a) and (b) correspond to collinear

configurations and show the three atom-diatom channels. For such configurations,

the lowest value of εad
1 is 0.013 eV (close to the H + H2 limit) and that of εad

2 is

4.62 eV (close to the H + H + H limit). In addition, since the intersection between

these two PESs occurs for equilateral triangle (θ = 0◦) geometries, the collinear

(θ = 90◦) cuts of these panels do not intersect. Panels (c) and (d) correspond to

perpendicular configurations, which for Zλ = 0 are equilateral triangles and hence

conical intersection configurations. Therefore, the dashed horizontal lines in these

panels (at Zλ = 0) correspond to the conical intersection lines for which εad
1 = εad

2 . The

minimum value of this conical intersection energy for the DSP PESs [18] also used in

the present calculation is 2.85 eV and occurs for ρ = Y =2.6 bohr. The corresponding

point is located in panel (d) inside the 3 eV contour. The hyperspherical coordinates

don’t span negative values of Y , but these are nevertheless included for convenience.

The highest energy contour for εad
1 depicted in panel (c) is for 2.4 eV and the lowest

energy contour for εad
2 depicted in panel (d) is for 3.0 eV. The conical intersection

energies (corresponding to Zλ = 0 in panels (c) and (d)) are displayed in Fig. 4.16

as a function of ρ for the DSP, DMBE, LSTH, and EQMC PESs. The minima of
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the latter three are 2.75 eV, 2.76 eV and 2.73 eV, respectively. The minimum DSP

conical intersection energy of 2.85 eV mentioned above is slightly higher than that for

the latter three PESs. This is due to the fact that ab initio electronic energies used

for fitting the DSP PESs were gotten from calculations performed to obtain good

representative ground and first-excited state energies. This leads to a slightly higher

DSP energy than it would be, if the basis set used was chosen to optimize the ground

state energies only [18].

Fig. 4.14 depicts the diagonal elements (εd
11 and εd

22) of the diabatic energy matrix

on the same cuts as Fig. 4.13. For the collinear configurations (panels (a) and (b)),

lowest εd
11 and εd

22 contours occur for 0.5 eV but in different regions of the internal

configuration space. The εd
11 minimum occurs in the positive Zλ region for some

values of Xλ at which εad
1 contours also show a minimum. The εd

22 minimum however

occurs in the negative Zλ region for some values of Xλ at which εad
1 contours also

show a minimum. Interestingly, the saddle point at Xλ = 0 in εad
1 (Fig. 4.13(a))

transforms to a well roughly 2.0 eV deep for εd
22. The behavior of εd

11 in this region is

very similar to that of εad
2 (Fig. 4.13(b)). The εd

11 and εd
22 PESs display an intersection

at collinear geometries at about 4.5 eV. No intersection is present for such geometries

between the εad
1 and εad

2 PESs. For the perpendicular configurations (panels (c) and

(d)), the relation of εd
11 and εd

22 with εad
1 and εad

2 is similar to that for the collinear

case. Also for these configurations, the εd
11 and εd

22 PESs display an intersection at

around 2.85 eV, similar to the one between the adiabatic PESs. Fig. 4.15 shows the

off-diagonal element εd
12 of the diabatic energy matrix for collinear configurations.

This element vanishes for perpendicular configurations. From Eqs. (4.66) and (4.36)

it can be easily shown that in general εd
12 is antisymmetric with respect to φλ = 0◦

and φλ = 180◦, i.e., the Y Zλ plane, for which Xλ = 0. Fig. 4.15 corresponds to

Y = 0. As a result, this antisymmetry manifests itself in that figure with respect to

the Xλ = 0 axis. This translates into εd
12 being attractive for Xλ > 0 and repulsive for

Xλ < 0. Since εd
12 is of the same order of magnitude as εd

11 and εd
22 and it is the largest

term that couples the two nuclear motion scattering equations in the two-electronic-
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state diabatic representation of Eq. (4.19), it should be of major importance for the

dynamics of the H + H2 reaction at energies for which the two PESs participate.

Fig. 4.17 displays the adiabatic PESs in equatorial views for four values of the

hyperradii ρ (2, 4, 6, and 8 bohr). These PESs have been discussed in the last

chapter and are repeated here only for comparison with the corresponding views of

the diabatic PESs. Fig. 4.18 depicts the diagonal εd
11 and εd

22 PESs in the equatorial

view for the same four values of ρ. The P3 symmetry of the adiabatic PESs is lost in

the diabatic representation due to the φλ/2 term in β (see Eq. (4.36)) which doesn’t

have the required 3φλ dependence. For ρ = 2 bohr, the lowest contour displayed for

both the εd
11 and εd

22 PESs is the 3.5 eV contour. For ρ = 4 bohr, 6 bohr and 8 bohr

it is the 0.5 eV contour. A close look at all panels in Fig. 4.18 indicates that the top

half circle of εd
11 looks like εad

1 and the bottom half looks like εad
2 . Similarly, the top

half of εd
22 looks like εad

2 and the bottom half looks like εad
1 . This is closely related

to the discussion involving Fig. 4.4, where for the φλ = 0◦ line (lying in the top half

circle) β = 0◦ making εd
11 = εad

1 and εd
22 = εad

2 and for the φλ = 180◦ line (lying in the

bottom half circle) β = 90◦ which makes εd
11 = εad

2 and εd
22 = εad

1 . Fig. 4.19 shows the

off-diagonal εd
12 term of the diabatic energy matrix in an equatorial view for the same

four values of ρ. As in Fig. 4.15, the contours are antisymmetric with respect to the

φλ = 0◦, 180◦ (i.e., the Y Zλ plane), one half of the εd
12 PES being repulsive and the

other half attractive. It displays a large flat region of 0 eV around the φλ = 0◦, 180◦

lines suggesting negligible coupling in these regions. It will be interesting to see how

this antisymmetric property of εd
12 affects the scattering dynamics in the regions for

energies of interest (less than 5 eV).

Using the diabatic version of the closure relation [Eq. (3.42)], and Eq. (4.20), the

elements of the diabatic second-derivative coupling matrix W(2)d(qλ) of Eq. (4.19) can

be expressed as

w
(2)d
1,1 (qλ) = w

(2)d
2,2 (qλ) = − w

(1)ad
1,2,tra(qλ) · w

(1)ad
1,2,tra(qλ)

w
(2)d
1,2 (qλ) = w

(2)d
2,1 (qλ) = 0

(4.67)



124

where both (−~
2/2µ) w

(2)d
1,1 (qλ) and (−~

2/2µ) w
(2)d
2,2 (qλ) can be labelled as ε(2)d(qλ).

The values of this (approximate) ε(2)d(qλ) calculated from this equation, using the

w
(1)ad
1,2,tra(qλ) vector obtained in this chapter, are smaller than 0.08 kcal mol−1 over the

entire nuclear configuration space involved, and to a very good approximation can be

neglected.

We conclude, from the discussion in this section, that neglecting the transverse

(nonremovable) part of w(1)ad in the diabatic nuclear Schrödinger equation should be

a good approximation in the first step of an accurate two-state scattering calculation.

As we have already computed this nonremovable part, we can add it as a perturbation

to the scattering results in a second step. Use of the global optimal diabatic basis

reported here is underway in the implementation of a two-electronic-state scattering

calculation for H3.
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Appendix 4.A - Optimal boundary conditions for the diabati-

zation angle Poisson equation

Consider the Helmholtz decomposition of the first-derivative coupling vector w(1)ad(q)

given by Eq. (4.29) after dropping the subscript λ from qλ, as the following discussion

doesn’t depend on it:

w(1)ad(q) = ∇qβ(q) + w
(1)ad
tra (q) (4.68)

where the diabatization angle β(q) is the solution of the Poisson equation [Eq. (4.30)]

∇2
qβ(q) = σ(q) (4.69)

the source term σ(q) being defined by

σ(q) = ∇q · w
(1)ad(q) (4.70)

Let β0(q) and β1(q) be solutions of Eq. (4.69) subject to boundary conditions

specified by the functions B0(qS) and B1(qS), respectively and to be given in greater

detail below. qS designates values of q on the boundary surface S that encloses the

domain V in which Eq. (4.69) is to be solved. In the symmetrized hyperspherical

coordinates q (ρ, θ, φλ), that domain is given by ρmin ≤ ρ ≤ ρmax, θmin ≤ θ ≤ θmax

and φλmin ≤ φλ ≤ φλmax. S is comprised of 6 parts Si (i = 1 through 6) described

in Sec. 4.2.4. Dirichlet conditions are used on the S1, S2 and S3 parts of S for the

reasons described after Eqs. (4.43), (4.45) and (4.46). As a result of these equations

and Eq. (4.36) we have

β0(S1) = 0 β1(S1) = 0

β0(S2) = π/6 β1(S2) = π/6

β0(S3) = φλ/2 β1(S3) = φλ/2

(4.71)
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This leaves the three remaining boundary surfaces S4 through S6 on which Neumann,

Dirichlet or mixed boundary conditions may be adopted.

Let us define a residue function E(β(q)) that measures the square of the average

magnitude of w
(1)ad
tra (q) over the domain V

E(β(q)) =

∫

V

[
w(1)ad(q) − ∇qβ(q)

]2
dq (4.72)

In addition, let

∆β(q) = β1(q) − β0(q) (4.73)

We now impose the condition that β0(q) be the solution of the Poisson equation that

minimizes the average value of |w
(1)ad
tra (q)| over V. This condition can be expressed as

{
∂

∂ε
E [β0(q) + ε∆β(q)]

}
(ε = 0) = 0 (4.74)

This minimization condition will result in a specification of the boundary function

B0(qS) and of the nature of the associated boundary condition (Neumann, Dirichlet

or mixed), as described below.

In light of the Dirichlet conditions represented by Eqs. (4.71), the quantity ∆β(q)

is given by

∆β(S1) = 0

∆β(S2) = 0

∆β(S3) = 0

(4.75)

on the two φλ boundary surfaces S1 and S2 and the minimum θ boundary surface S3.

Replacement of Eq. (4.72) into Eq. (4.74) results in

{
∂

∂ε

∫

V

[
w(1)ad(q) − ∇qβ0(q) − ε∇q∆β(q)

]2
dq

}
(ε = 0) = 0 (4.76)

Since q and ε are independent variables, we can interchange the order of differentiation
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and integration in this expression to get

∫

V

[
w(1)ad(q) − ∇qβ0(q)

]
· ∇q∆β(q)dq = 0 (4.77)

With the help of the identity

u · ∇qv = ∇q · (vu) − v(∇q · u) (4.78)

where v and u are arbitrary scalar and vector functions of q, Eq. (4.77) furnishes

∫

V

∇q·
{
∆β(q)

[
w(1)ad(q) − ∇qβ0(q)

]}
dq−

∫

V

∆β(q)
[
∇q · w

(1)ad(q) −∇2
qβ0(q)

]
dq = 0

(4.79)

Using the Gauss divergence theorem in the first term and Eq. (4.70) in the second

term of this equation, we get

∫

S

∆β(q)
[
w(1)ad(q) − ∇qβ0(q)

]
· ds −

∫

V

∆β(q)
[
σ(q) −∇2

qβ0(q)
]
dq = 0 (4.80)

where the integral over the boundary surface S is the sum of six individual integrals

evaluated on the six boundary surfaces Si, i = 1 through 6. The quantity inside

square brackets in the second term of Eq. (4.80) is equal to zero since β0(q) is a

solution of the Poisson equation [Eq. (4.69)]. We now expand the surface integral in

the first term of that equation and write

I(S) =

∫

S

∆β(q)
[
w(1)ad(q) − ∇qβ0(q)

]
· ds =

6∑

i=1

I(Si) = 0 (4.81)

where

I(Si) =

∫

Si

∆β(qSi
)
[
w(1)ad(qSi

) − ∇qβ0(qSi
)
]
· dsi (4.82)

are the surface integrals of interest on the six parts of the closed surface S. They can
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be expressed as

I(S1) = −

∫ ρmax

ρmin

∫ θmax

θmin

∆β(S1)

[
w

(1)ad

φλ
(ρ, θ, φλmin) −

(
1

ρ sin θ

∂β0(q)

∂φλ

)

φλmin

]
ρ dρdθ

I(S2) =

∫ ρmax

ρmin

∫ θmax

θmin

∆β(S2)

[
w

(1)ad

φλ
(ρ, θ, φλmax) −

(
1

ρ sin θ

∂β0(q)

∂φλ

)

φλmax

]
ρ dρdθ

I(S3) = −

∫ ρmax

ρmin

∫ φλmax

φλmin

∆β(S3)

[
w

(1)ad

θ (ρ, θmin, φλ) −

(
1

ρ

∂β0(q)

∂θ

)

θmin

]
ρ sin θmin dρdφλ

I(S4) =

∫ ρmax

ρmin

∫ φλmax

φλmin

∆β(S4)

[
w

(1)ad

θ (ρ, θmax, φλ) −

(
1

ρ

∂β0(q)

∂θ

)

θmax

]
ρ sin θmax dρdφλ

I(S5) = −

∫ θmax

θmin

∫ φλmax

φλmin

∆β(S5)

[
w(1)ad

ρ (ρmin, θ, φλ) −

(
∂β0(q)

∂ρ

)

ρmin

]
ρ2

min sin θ dθdφλ

I(S6) =

∫ θmax

θmin

∫ φλmax

φλmin

∆β(S6)

[
w(1)ad

ρ (ρmax, θ, φλ) −

(
∂β0(q)

∂ρ

)

ρmax

]
ρ2

max sin θ dθdφλ

Because of the Dirichlet conditions on S1, S2 and S3 that resulted in Eqs. (4.75),

I(S1), I(S2) and I(S3) vanish. Eq. (4.81) requires that the sum of the remaining I(Si)

terms should vanish. Given the arbitrariness of the ∆β(Si) for i= 4 through 6, in

order for that to happen, it is necessary that each of its terms vanish. This results in

(
∂β0(q)

∂ρ

)

ρmin

= w(1)ad
ρ (ρmin, θ, φλ) (4.83)

(
∂β0(q)

∂ρ

)

ρmax

= w(1)ad
ρ (ρmax, θ, φλ) (4.84)

(
∂β0(q)

∂θ

)

θmax

= ρ w
(1)ad
θ (ρ, θmax, φλ) (4.85)

These are the Neumann boundary conditions used at the ρ and θ boundaries as de-

scribed in Sec. 4.2.4 in Eqs. (4.47) through (4.51). Together with Eqs. (4.71) they

specify the boundary functions B0(qS) and the nature of the associated boundary

conditions, as indicated after Eq. (4.74). This physically acceptable choice of bound-

ary conditions minimizes the average value of the magnitude of the coupling vector

w
(1)ad
tra (q) over the important domain V and hence the extended domain U of internal

nuclear configuration space.



129

Bibliography
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FIGURE CAPTIONS

Fig. 4.1 Mapping of a point P of a constant ρ hemisphere in the OXλY Zλ space onto

a point Q on a plane tangent to that hemisphere at the intersection T of the OY axis

with it, such that the length of the arc(TP) = TQ. The point P has θ, φλ polar angles

in the OXλY λZ space and ωλ, γλ in the OXλY Zλ space. P is the projection of point

P on the OXλY plane.

Fig. 4.2 Boundary surface S for solving the Poisson Eq. (4.35) in the OXλY λZ space

of Fig. 4.1. The surface is not drawn to exact scale. Arc(DG) is part of a circle

of radius 1.5 bohr; Arc(AF) is part of a circle of radius 10 bohr; ∠AOF = 60◦; and

∠BOK = ∠EOK = 0.1◦. The surface S is composed of 6 parts: ABCD surface S1

(φλ = 0◦, 0.1◦ ≤ θ ≤ 90◦, 1.5 bohr ≤ ρ ≤ 10 bohr); EFGH surface S2 (φλ = 60◦,

0.1◦ ≤ θ ≤ 90◦, 1.5 bohr ≤ ρ ≤ 10 bohr); BCHE surface S3 (θ = 0.1◦, 0◦ ≤ φλ ≤ 60◦,

1.5 bohr ≤ ρ ≤ 10 bohr); ADGF surface S4 (θ = 90◦, 0◦ ≤ φλ ≤ 60◦, 1.5 bohr ≤ ρ ≤

10 bohr); CDGH surface S5 (ρ = 1.5 bohr, 0.1◦ ≤ θ ≤ 90◦, 0◦ ≤ φλ ≤ 60◦); and ABEF

surface S6 (ρ = 10 bohr, 0.1◦ ≤ θ ≤ 90◦, 0◦ ≤ φλ ≤ 60◦).

Fig. 4.3 The quantity sin2 θ σ(ρ, θ, 3φλ), in units of bohr−2, with σ defined by

Eq. (4.31), for the H3 system as a function of θ and φλ, at: (a) ρ = 2 bohr, (b)

ρ = 4 bohr, (c) ρ = 6 bohr, and (d) ρ = 8 bohr. The circles on the bottom face of

each of the panels are constant θ circles, with the solid circle corresponding to θ = 90◦,

and radial lines are constant φλ lines whose values are displayed on the periphery of

the solid circle. Equatorial views of sin2 θ σ(ρ, θ, 3φλ) contours at: (e) ρ = 2 bohr, (f)

ρ = 4 bohr, (g) ρ = 6 bohr, and (h) ρ = 8 bohr. See the first paragraph of Sec. 4.3.1

for the definition of the equatorial view.

Fig. 4.4 The diabatization angle β(ρ, θ, φλ), in degrees, for the H3 system at: (a) ρ

= 2 bohr, (b) ρ = 4 bohr, (c) ρ = 6 bohr, and (d) ρ = 8 bohr. The bottom face of

the panels are similar to those of the corresponding panels of Fig. 4.3. The equatorial

view of β contours is also given at: (e) ρ = 2 bohr, (f) ρ = 4 bohr, (g) ρ = 6 bohr,
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and (h) ρ = 8 bohr.

Fig. 4.5 Same as Fig. 4.4 for the γ(ρ, θ, 3φλ) part of the diabatization angle β(ρ, θ, φλ)

defined by Eq. (4.36).

Fig. 4.6 Cuts of γ(ρ, θ, 3φλ) (shown in Fig. 4.5) at three values of θ: 5◦ (solid line),

45◦ (dash-dotted line), and 90◦ (dotted line) for: (a) ρ = 2 bohr, (b) ρ = 4 bohr, (c)

ρ = 6 bohr, and (d) ρ = 8 bohr and the corresponding cuts of γDMBE(ρ, θ, 3φλ) at the

same three values of θ for: (e) ρ = 2 bohr, (f) ρ = 4 bohr, (g) ρ = 6 bohr, and (h) ρ

= 8 bohr.

Fig. 4.7 Plots of ∆γ , defined by Eq. (4.57), as a function of θ for four values of ρ:

2 bohr (solid line), 4 bohr (dashed line), 6 bohr (dash-dotted line), and 8 bohr (dotted

line).

Fig. 4.8 Plots of γ6D, the γ angle obtained from the solution of a Poisson equation

using Dirichlet boundary conditions at all six boundaries. Panels (a) through (d) show

the three-dimensional plots and panels (e) through (h) show the equatorial view of

its contours similar to Fig. 4.4.

Fig. 4.9 Longitudinal (removable) part of the ab initio first-derivative coupling vec-

tor, w
(1)ad
lon (ρ, θ, φλ) as a function of φλ for ρ = 4 bohr, 6 bohr and 8 bohr and (a) θ

= 1◦ (near-conical intersection geometries), (b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦

(collinear geometries).

Fig. 4.10 Same as Fig. 4.9 for transverse (nonremovable) part of the ab initio first-

derivative coupling vector, w
(1)ad
tra (ρ, θ, φλ).

Fig. 4.11 Same as Fig. 4.9 for transverse (nonremovable) part of the ab initio first-

derivative coupling vector w
(1)ad
tra,6D(ρ, θ, φλ), obtained using the same Dirichlet bound-

ary conditions as in Fig. 4.8.

Fig. 4.12 Longitudinal Φlon(φλ; ρ, θ) and transverse Φtra(φλ; ρ, θ) open-path phases
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as a function of φλ for four values of θ: 1◦ (solid line), 30◦ (dashed line), 60◦ (dotted

line), and 90◦ (dash-dotted line) for each of the four values of ρ: (a) and (e) 2 bohr,

(b) and (f) 4 bohr, (c) and (g) 6 bohr, and (d) and (h) 8 bohr.

Fig. 4.13 (a) Adiabatic ground state (εad
1 ) energy contours in the XλZλ plane of

Fig. 4.1 for a collinear approach (γλ = 0◦or180◦) of the H atom to the H2 molecule;

(b) Corresponding contours for the first-excited state (εad
2 ) energies; (c) εad

1 contours

in the Y Zλ plane of Fig. 4.1 for a perpendicular approach (γλ = 90◦) of the H atom

to the H2 molecule; (d) Corresponding contours for εad
2 . All contour energies shown

are in eV and correspond to the DSP fit to ab initio energies described in Chapter 3.

The dashed lines in panels (c) and (d) correspond to conical intersection geometries.

Fig. 4.14 Same as for Fig. 4.13 except that the displayed energy contours correspond

to the diagonal diabatic energies εd
11 and εd

22.

Fig. 4.15 Contours corresponding to the off-diagonal diabatic energy εd
12 in the XλZλ

plane of Fig. 4.1 for a collinear approach (γλ = 0◦ or 180◦) of the H atom to the H2

molecule. All contour energies shown are in eV.

Fig. 4.16 Conical intersection energies as a function of ρ for DSP (crosses), DMBE

(circles), LSTH (squares), and EQMC (triangles) PESs. The DSP curve corresponds

to Zλ = 0 energies in panels (c) and (d) of Fig. 4.13.

Fig. 4.17 Adiabatic ground state (E1) energy contours in an equatorial view (see

text for definition) for: (a) ρ = 2 bohr, (b) ρ = 4 bohr, (c) ρ = 6 bohr, and (d) ρ =

8 bohr; and corresponding adiabatic first-excited state (E2) energy contours for: (e)

ρ = 2 bohr, (f) ρ = 4 bohr, (g) ρ = 6 bohr, and (h) ρ = 8 bohr. All contour energies

shown are in eV.

Fig. 4.18 Same as for Fig. 4.17 except that the displayed energy contours correspond

to the diagonal diabatic energies εd
11 and εd

22.

Fig. 4.19 Contours corresponding to the off-diagonal diabatic energy εd
12 in the equa-
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torial view for: (a) ρ = 2 bohr, (b) ρ = 4 bohr, (c) ρ = 6 bohr, and (d) ρ = 8 bohr.
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Figure 4.1:
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Chapter 5 A two-electronic-state

nonadiabatic quantum scattering

formalism

5.1 Introduction

In most quantum descriptions of chemical reactions, the Born-Oppenheimer (BO)

approximation [1] is invoked that restricts the motion of nuclei, during the course of

the reaction, to a single electronically adiabatic state. Intersections (conical, parabolic

or glancing) between neighboring adiabatic electronic states are very common in

nature and nonadiabatic couplings between these states cannot be ignored in general.

The past few years have witnessed a significant increase in theoretical interest aimed

at understanding the nature of these nonadiabatic couplings and studying chemical

reactions by invoking the Born-Huang (BH) expansion [2, 3] and using two or more

degenerate electronic states to describe the reactions. A recent volume of Advances in

Chemical Physics [4] deals with understanding the issues surrounding the role played

by these degenerate electronic states in determining the mechanism and outcome of

many chemical processes.

The presence of these degenerate electronic states is very common in polyatomic

systems containing N atoms, where N ≥ 3. A large majority of these states exhibit

conical topologies in the internuclear geometric space in the vicinity of their degenera-

cies. Assuming the adiabatic electronic wave functions to be real, if the polyatomic

system traverses a closed loop around a conical degeneracy in that geometric space,

then the electronic wave function changes sign [5,6]. This requires that the adiabatic

nuclear wave functions also change sign to keep the total wave function single-valued
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in the process inducing a geometric phase (GP) effect [7–9] into the system. This

change of sign of the nuclear wave function, which is a special case of Berry’s geomet-

ric phase [10], affects the nature of the solutions of the corresponding nuclear motion

Schrödinger equation [11] and hence has important implications for the dynamics of

the polyatomic system being considered.

The quantum-dynamical studies of chemical reactions on a single electronically

adiabatic state have successfully covered triatomic [12–14] reactions over the last few

decades and tetraatomic [15–17] reactions over the few years. In the last decade or so,

these studies have included indirectly the effect of the first-excited adiabatic electronic

state, that intersects conically with the ground state, by introducing the GP effect

through appropriate boundary conditions on the adiabatic nuclear wave function cor-

responding to the ground electronic state [18–24]. The reaction rates (products of

initial relative velocities by integral cross sections) for the D + H2 reaction, obtained

with the GP effect included [20], were in much better agreement with the experimen-

tal results [25–28] than those obtained with the GP effect excluded. Although the

GP effect is certainly more pronounced at resonance energies [29], its importance for

differential cross sections has been the topic of hot debate recently [23, 24].

Many studies have appeared in the last few years that include two or more excited

electronic states and nonadiabatic couplings between them to study nonadiabatic be-

havior in chemical reactions. The effect of spin-orbit couplings on electronically nona-

diabatic transitions has been demonstrated for many chemical systems [30–39]. The

photodissociation of triatomic molecules like O3 and H2S has been studied on their

conically intersecting potential energy surfaces (PESs) [40, 41]. The benchmark H +

H2 reaction has also been studied on its lowest two conically intersecting PESs, but

only for total angular momentum quantum number J = 0 [42]. Most of these studies

have been made possible due to the availability of realistic ab initio electronic PESs

and their nonadiabatic couplings [43]. These nonadiabatic couplings have very inter-

esting properties that have a forebearing on the behavior of molecular systems and are

currently the topic of active interest [44]. The singular nature of these couplings at the
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conical intersections of two adiabatic electronic states, introduces numerical difficul-

ties in the solution of the corresponding coupled adiabatic nuclear motion Schrödinger

equations. These difficulties can be circumvented by transforming the electronically

adiabatic representation into a quasi-diabatic one [45–57], in which the nonadiabatic

couplings still appear but are not singular.

In this chapter, we present a detailed two-electronic-state time-independent quan-

tum reactive scattering formalism in both adiabatic and diabatic languages, to study

the dynamics of a triatomic reaction. This approach, which has been briefly out-

lined elsewhere by us [58], is an extension of the one-electronic-state hyperspherical

coupled-channel approach of Kuppermann and co-workers [18], used in the past for

H + H2 reaction and its isotopic variants with and without the inclusion of the GP

effect [18–22]. A comparison of the cross sections obtained by this two-electronic-

state formalism with the ones obtained using the one-electronic-state method is ex-

pected to provide for the first time an estimate of the energy range of validity of the

one-electronic-state BO approximation. The first system that we plan to apply this

formalism to is the prototypical H + H2 reaction. Even though this simple reaction

is the hydrogen atom of chemical reactions, it contains conically intersecting lowest

two adiabatic electronic states that are degenerate for equilateral triangle geometries.

This makes it an ideal case for the application of the formalism being presented for

testing the validity of the BO approximation. Many ab initio PESs have appeared

for its ground electronic state over the years [59–64]. Double many-body expan-

sion (DMBE) analytical forms are available for its lowest two adiabatic electronic

sheets [61] in addition to recent DMBE plus single polynomial (DSP) fits [65] to

corresponding ab initio energies. Nonadiabatic first-derivative couplings and diabatic

representations are also available in analytical [61] and fitted-ab initio [56,65] versions

for H3 system. Availability of lowest two adiabatic PESs, nonadiabatic couplings be-

tween them and a good diabatic representation [56] will facilitate the application of

this formalism to H + H2 reaction. The formalism being presented is a general one

applicable to any triatomic reaction, but some details will be derived for the this



159

H3 system utilising its symmetry with respect to the permutation of three identical

nuclei.

A detailed review of the adiabatic and diabatic representations for polyatomic

systems is given elsewhere [11, 58] and we will only mention the aspects needed for

the discussion of the formalism. In Sec. 5.2, we introduce symmetrized hyperspherical

coordinates for a triatomic system and the corresponding nuclear kinetic energy op-

erator. In Sec. 5.3, we present in detail a method for solving the two-electronic-state

version of the adiabatic nuclear motion Schrödinger equation with the GP effect in-

cluded; since the GP effect needs to be built into the adiabatic language but not the

diabatic one. In Sec. 5.4, we present its diabatic counterpart and discuss the various

advantages and disadvantages of the two languages. Next chapter summarizes the

work presented in the previous chapters along with the formalism discussed here.

5.2 Symmetrized hyperspherical coordinates

Consider a triatomic system with the three nuclei labelled Aα, Aβ and Aγ . Let the

arrangement channel Aλ + AνAκ be called the λ arrangement channel, where λνκ is

a cyclic permutation of αβγ. After the separation of the center of mass coordinates,

let R′
λ1
,R′

λ2
be the Jacobi vectors associated with this arrangement channel λ, where

R′
λ1

is the vector from Aν to Aκ and R′
λ2

the vector from the center of mass of AνAκ

to Aλ. Let Rλ1
,Rλ2

be the corresponding Delves mass-scaled coordinates [66, 67]

defined by

Rλ1
=

(
µνκ

µ

)1/2

R′
λ1

and Rλ2
=

(
µλ,νκ

µ

)1/2

R′
λ2

, (5.1)

where µνκ is the reduced mass of AνAκ, µλ,νκ the reduced mass of the Aλ,AνAκ pair,

and µ the system’s overall reduced mass given by

µ =

(
mαmβmγ

mα +mβ +mγ

)1/2

,



160

mλ being the mass of atom Aλ (λ = α, β, γ). Let us define Rλ as the union of Rλ1

and Rλ2
. So the nuclear motion kinetic energy operator in the six-dimensional Rλ

space is given by

T̂nu(Rλ) = −
~

2

2µ
∇2

Rλ
(5.2)

So, the motion of the triatomic system in three-dimensional space gets replaced by

that of a single particle of mass µ in a six-dimensional space.

It has been shown [68–73] that symmetrized hyperspherical body-fixed coordinates

derived from Rλ are well suited for three-dimensional triatomic reactive scattering as

these coordinates treat all three arrangement channels (λ, ν, κ) democratically. One

frame of these hyperspherical coordinates include ρ, ωλ, γλ [74, 75] besides the three

Euler angles (δλ, ηλ, ζλ), that rotate this body-fixed frame with respect to space-fixed

one, and are given by

ρ =
(
R2

λ1
+ R2

λ2

)1/2
(5.3)

and

Rλ1
= ρ sin(ωλ/2) Rλ2

= ρ cos(ωλ/2) 0 ≤ ωλ ≤ π (5.4)

where ρ is independent of the arrangement channel [66, 67].

The corresponding internal configuration space cartesian coordinates are defined

by

Xλ = ρ sinωλ cos γλ

Y = ρ sinωλ sin γλ

Zλ = ρ cosωλ

(5.5)

where γλ is the angle between Rλ1
and Rλ2

(or R′
λ1

and R′
λ2

) in the 0 to π range

and ωλ, γλ are the polar angles of a point in this space. In an alternate internal

configuration space frame, symmetrized hyperspherical coordinates θ, φλ are defined

as the polar angles associated with the interchanged axes OXλ = OZλ, OY λ = OXλ,
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and OZλ = OYλ for which

Xλ = Zλ = ρ sin θ cosφλ

Y λ = Xλ = ρ sin θ sinφλ

Z = Y = ρ cos θ

(5.6)

The cartesian components of Rλ1
and Rλ2

in this body-fixed frame are given by

Rλ1X = −ρ sin(π/4 − θ/2) cos(φλ/2)

Rλ1Y = 0

Rλ1Z = ρ cos(π/4 − θ/2) sin(φλ/2)

Rλ2X = ρ sin(π/4 − θ/2) sin(φλ/2)

Rλ2Y = 0

Rλ2Z = ρ cos(π/4 − θ/2) cos(φλ/2)

(5.7)

The coordinates ρ, θ and φλ are limited to the ranges

0 ≤ ρ <∞ 0 ≤ θ ≤ π/2 0 ≤ φλ < 2π (5.8)

The hyperangles θ and φλ describe the shape of the molecular triangle. Besides, θ = 0

corresponds to symmetric top geometries and θ = π/2 to collinear ones. The relation

between θ, φλ and ωλ, γλ is (using Eqs. (5.5) and (5.6))

sin θ cos φλ = cosωλ

sin θ sin φλ = sinωλ cos γλ

cos θ = sinωλ sin γλ

(5.9)

Let GxIλyIzIλ be a body-fixed frame Iλ, whose axes are the principal axes of

inertia of the three nuclei and whose Euler angles with respect to the space-fixed

frame Gxsfysfzsf are aλ, bλ, cλ with G being the center of mass of the three nuclei.

The senses of these axes are chosen to result in a one-to-one correspondence between

ρ, θ, φλ, aλ, bλ, cλ coordinates and the space-fixed cartesian coordinates of Rλ1
and
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Rλ2
. In addition, the Iλ axes are labelled so as to order the corresponding principal

moments of inertia according to

Iλ
z ≤ Iλ

x ≤ Iy (5.10)

Furthermore, let Υλ refer collectively to the five hyperangles (θ, φλ, aλ, bλ, cλ), qλ to

the three internal coordinates (ρ, θ, φλ) and Rλ to all six hyperspherical coordinates.

The coordinates ρ,Υλ are called the principal axes of inertia symmetrized hyper-

spherical coordinates. They are very suitable for describing nuclear motion in the

strong interaction regions as for any value of λ they treat these regions equally and

basis sets based on them are very efficient. The nuclear kinetic energy operator in

these coordinates is given by

T̂nu(Rλ) = −
~

2

2µ
∇2

Rλ
= T̂ρ(ρ) +

Λ̂2(Υλ)

2µρ2
(5.11)

where T̂ρ(ρ) is the hyperradial kinetic energy operator

T̂ρ(ρ) = −
~

2

2µ

1

ρ5

∂

∂ρ
ρ5 ∂

∂ρ
(5.12)

and Λ̂2(Υλ) is the grand canonical angular momentum operator

Λ̂2(Υλ) = Λ̂2
o(θ, φλ) +

4ĴIλ2

z

cos2 θ

+
2

1 + sin θ

[
Ĵ2 − ĴIλ2

z

2
+
ĴIλ2

+ + ĴIλ2

−

4
− ĴIλ2

z

]

+
1

sin2 θ

[
Ĵ2 − ĴIλ2

z

2
−
ĴIλ2

+ + ĴIλ2

−

4

]

− 2~
cos θ

sin2 θ

(
ĴIλ

+ − ĴIλ
−

) ∂

∂φλ
(5.13)

where

Λ̂2
o(θ, φλ) = −4~

2

(
1

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
λ

)
(5.14)
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and

ĴIλ
± = ĴIλ

x ± iĴIλ
y (5.15)

ĴIλ
x , ĴIλ

y and ĴIλ
z are the components of the total orbital angular momentum Ĵ of the

nuclei in the Iλ frame. The Euler angles aλ, bλ, cλ appear only in the Ĵ2, ĴIλ
z and ĴIλ

±

angular momentum operators. We do not need their explicit expressions in terms of

the partial derivatives of those Euler angles because we use Wigner rotation functions

to expand our nuclear wave functions and the results of the effect of those operators

on these rotation functions is analytically known [76]. This expansion is considered

in the next section in detail.

The use of ρ,Υλ coordinates becomes inefficient for large values of ρ where the

interaction between λ, ν, and κ arrangement channels becomes very weak. In these

regions, the coordinates ρ and Ξλ, where Ξλ ≡ (ωλ, γλ, δλ, ηλ, ζλ), have been used

because it has been shown [70, 71] that basis sets based on these coordinates are

very efficient. In this body-fixed Jacobi frame called bfλ, Λ̂2(Υλ) the grand canonical

angular momentum operator mentioned above is given by

Λ̂2(Ξλ) = L̂2(ωλ) +
ĵ2
λ

sin2 ωλ

+
l̂2λ

cos2 ωλ

(5.16)

where

L̂2(ωλ) = −4~
2 1

sin2 ωλ

∂

∂ωλ
sin2 ωλ

∂

∂ωλ
(5.17)

and ĵ2
λ and l̂2λ are the angular momentum operators corresponding to Rλ1

and Rλ2

respectively. The angular momenta associated with these operators are related to the

total orbital angular momentum Ĵ of the nuclei by

Ĵ = ĵ + l̂ (5.18)

It is convenient to express Λ̂2(Ξλ) in terms of ∂/∂γλ and Ĵ instead of ĵ and l̂ using
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their properties as

Λ̂2(Ξλ) = L̂2(ωλ) +
4

sin2 ωλ

[
−

~
2

sin γλ

∂

∂γλ

sin γλ
∂

∂γλ

+
1

sin2 γλ

Ĵbfλ2

z

]

+
1

cos2(ωλ/2)

{
Ĵ2 − 2Ĵbfλ2

z +

[
cot γλĴ

bfλ
z − ~

(
cot γλ +

∂

∂γλ

)]
Ĵbfλ
−

+

[
cot γλĴ

bfλ
z + ~

(
cot γλ +

∂

∂γλ

)]
Ĵbfλ

+

}
(5.19)

where

Ĵbfλ
± = Ĵbfλ

x ± iĴbfλ
y (5.20)

Ĵbfλ
x , Ĵbfλ

y and Ĵbfλ
z are the components of Ĵ in the bfλ frame. This Eq. (5.19) is used

in place of Eq. (5.16) because the Euler angles δλ, ηλ, ζλ of the bfλ frame appear only

in Ĵ2, Ĵbfλ
z and Ĵbfλ

± and the action of these operators on the previously mentioned

Wigner rotation functions are analytically known [76].

5.3 Adiabatic formalism

In a two-electronic-state approximation of the Born-Huang [2, 3] representation for

a triatomic system involving electronically adiabatic states 1 (ground state) and 2

(first-excited state), system’s total wave function is written as

Ψo(r,Rλ) = χad
1 (Rλ)ψ

el,ad
1 (r;qλ) + χad

2 (Rλ)ψ
el,ad
2 (r;qλ) (5.21)

where r and Rλ are respectively the electronic and nuclear coordinates of the triatomic

arrangement channel λ [11]. ψel,ad
1 (r;qλ) and ψel,ad

2 (r;qλ) are the adiabatic electronic

wave functions satisfying the electronic Schrödinger equation

Ĥel(r;qλ)ψ
el,ad
n (r;qλ) = εad

n (qλ)ψ
el,ad
n (r;qλ) n = 1, 2 (5.22)

and χad
n (Rλ) (n = 1, 2) are the corresponding adiabatic nuclear wave functions.

εad
n (Rλ) (n = 1, 2) are the electronically adiabatic potential energy surfaces (PESs)
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corresponding to the ground (n = 1) and first-excited (n = 2) adiabatic electronic

states. If these surfaces exhibit a single conical intersection and the ψel,ad
n are required

to be real, then according to the geometric phase (GP) theorem [5–10],

ψel,ad
n (r;qλ) → −ψel,ad

n (r;qλ) n = 1, 2 (5.23)

and

χad
n (Rλ) → −χad

n (Rλ) n = 1, 2 (5.24)

when the polyatomic system traverses a closed loop in nuclear configuration space Q

around that conical intersection (a so called pseudorotation). As a result, the nuclear

wave functions χad
n (Rλ) are not single-valued functions of Rλ, but behave in a way

to make the total electro-nuclear wave function single-valued.

Let us define χad(Rλ) as a two-dimensional column vector whose components are

χad
1 (Rλ) and χad

2 (Rλ) such that

χad(Rλ) =


 χad

1 (Rλ)

χad
2 (Rλ)


 (5.25)

The Schrödinger equation satisfied by χad(Rλ) is

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(qλ) · ∇Rλ

+ W(2)ad(qλ)
}

+
{
εad(qλ) − EI

}]
χad(Rλ) = 0

(5.26)

where qλ represents the subset ρ, θ, φλ of the six-dimensional set Rλ of nuclear coordi-

nates. I, W(1)ad(qλ), W
(2)ad(qλ), and εad(qλ) are 2×2 matrices and ∇Rλ

is a gradient

operator in the six-dimensional nuclear configuration space mentioned earlier. I is the

identity matrix and εad(qλ) is the diagonal matrix whose diagonal elements are the

PESs εad
1 and εad

2 mentioned earlier. The matrices W(1)ad(qλ) and W(2)ad(qλ) are the

the first- and second-derivative [11,43,77–82] 2× 2 coupling matrices whose elements
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are defined by

W
(1)ad
m,n (qλ) = 〈ψel,ad

m (r;qλ) | ∇Rλ
ψel,ad

n (r;qλ)〉r

W(2)ad
m,n (qλ) = 〈ψel,ad

m (r;qλ) | ∇
2
Rλ
ψel,ad

n (r;qλ)〉r




m,n = 1, 2 (5.27)

and are respectively three-dimensional vectors (W
(1)ad
m,n (qλ)) [56] and scalars (W(2)ad

m,n (qλ)).

The matrix W(1)ad(qλ) is in general skew-hermitian and, due to the requirement that

electronic wave functions ψel,ad
n (r;qλ) be real, is real and skew-symmetric and can be

written as

W(1)ad(qλ) =




0 W
(1)ad
1,2 (qλ)

−W
(1)ad
1,2 (qλ) 0


 (5.28)

We can now write Eq. (5.26) in explicit form as


− ~2

2µ






 1 0

0 1


∇2

Rλ
+ 2W

(1)ad
1,2 (qλ)


 0 1

−1 0


 · ∇Rλ

+


 W

(2)ad
1,1 (qλ) W

(2)ad
1,2 (qλ)

W
(2)ad
2,1 (qλ) W

(2)ad
2,2 (qλ)







+






 εad

1 (qλ) 0

0 εad
2 (qλ)


− E


 1 0

0 1










 χad

1 (Rλ)

χad
2 (Rλ)


 =


 0 0

0 0


 (5.29)

In this two-electronic-state adiabatic nuclear motion Schrödinger equation, the nu-

clear wave functions corresponding to ground (χad
1 (Rλ)) and first-excited (χad

2 (Rλ))

adiabatic electronic states are coupled by two terms: one containing the first-derivative

coupling vector W
(1)ad
1,2 (qλ) and the other containing the second-derivative coupling

elements W
(2)ad
1,2 (qλ) and W

(2)ad
2,1 (qλ). Depending on the total energy of the system,

these nonadiabatic coupling terms can allow the nuclei to sample the first-excited

electronic state during the course of the reaction and affect its mechanism and final

outcome. It should be stressed that the effect of the geometric phase (if present) on

Eqs. (5.29) must be added by either appropriate boundary conditions [11, 18] or the

introduction of an appropriate vector potential [8, 11, 83]. It is interesting to point
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out that in one-electronic-state BO approximation, Eq. (5.29) reduces to

[
−

~
2

2µ

{
∇2

Rλ
+ W

(2)ad
1,1 (qλ)

}
+
{
εad
1 (qλ) − E

}]
χad

1 (Rλ) = 0 (5.30)

This equation contains a second-derivative self-coupling term W
(2)ad
1,1 (qλ) which is

generally assumed to be small and dropped in all one-electronic-state dynamical cal-

culations. Only recently has any interest been shown in studying the effect of this

term on dynamical properties of molecules. This term appears as an additive term in

Eq. (5.30), and even though small it can alter the PESs of reactive systems by tens or

even hundreds of wavenumbers [84]. It can become especially important when trying

to predict dynamical phenomenon that can be verified experimentally.

5.3.1 Partial wave expansion

We can rewrite the adiabatic two-electronic-state nuclear motion Schrödinger equa-

tion [Eq. (5.26)] as

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(qλ) · ∇Rλ

}
+
{
εad(qλ) − EI

}]
χad(Rλ) = 0 (5.31)

where we have added the second-derivative coupling matrix W(2)ad, which is just an

additive term, to the adiabatic energy matrix εad(qλ) using

εad(qλ) = εad(qλ) −
~

2

2µ
W(2)ad(qλ) =


 εad

11(qλ) εad
12(qλ)

εad
21(qλ) εad

22(qλ)


 (5.32)

where

εad
11(qλ) = εad

1 (qλ) −
~2

2µ
W

(2)ad
11 (qλ)

εad
12(qλ) = − ~

2

2µ
W

(2)ad
12 (qλ)

εad
21(qλ) = − ~

2

2µ
W

(2)ad
21 (qλ)

εad
22(qλ) = εad

2 (qλ) −
~2

2µ
W

(2)ad
22 (qλ)

(5.33)

The two adiabatic nuclear wave functions χad
1 (Rλ) and χad

2 (Rλ), which are the
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components of the column vector χad(Rλ) (see Eq. 5.25), can be expressed as linear

combinations of auxiliary nuclear wave functions χad,JMΠΓ
1 (Rλ) and χad,JMΠΓ

2 (Rλ),

respectively as


 χad

1 (Rλ)

χad
2 (Rλ)


 =

∞∑

J=0

M=J∑

M=−J

CJM
λ

1∑

Π=0

∑

Γ


 χad,JMΠΓ

1 (Rλ)

χad,JMΠΓ
2 (Rλ)


 (5.34)

If χad,JMΠΓ
1 (Rλ) and χad,JMΠΓ

2 (Rλ) are defined as components of the column vector

χad,JMΠΓ(Rλ), then we can write Eq. (5.34) as

χad(Rλ) =

∞∑

J=0

M=J∑

M=−J

CJM
λ

1∑

Π=0

∑

Γ

χad,JMΠΓ(Rλ) (5.35)

The linear combinations are referred to as partial wave expansions and the individ-

ual wave functions χad,JMΠΓ
1 (Rλ) and χad,JMΠΓ

2 (Rλ) are referred to as partial waves.

χad,JMΠΓ is a simultaneous eigenfunction of the adiabatic nuclear motion Hamiltonian

matrix Ĥad(Rλ) given by

Ĥad(Rλ) =

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(qλ) · ∇Rλ

}
+ εad(qλ)

]
, (5.36)

of the square of the total nuclear orbital angular momentum Ĵ, of its space-fixed

z-component Ĵz and of the inversion operator Î of the nuclei through their center of

mass according to the expressions

Ĥadχad,JMΠΓ = Eχad,JMΠΓ

Ĵ2χad,JMΠΓ = J(J + 1)~2χad,JMΠΓ

Ĵzχ
ad,JMΠΓ = M~χad,JMΠΓ

Îχad,JMΠΓ = (−1)Πχad,JMΠΓ

(5.37)

In these equations, J and M are quantum numbers associated with the angular mo-

mentum operators Ĵ2 and Ĵz, respectively. Π = 0, 1 is a parity quantum number

that specifies the symmetry or antisymmetry of the χad,JMΠΓ(Rλ) column vector
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with respect to the inversion of the nuclei through their center of mass. Note that

the same parity quantum number Π appears for χad,JMΠΓ
1 (Rλ) and χad,JMΠΓ

2 (Rλ) in

Eq. (5.34). Also, the same irreducible representation symbol Γ in these two com-

ponents of χad,JMΠΓ(Rλ) appears. This does not mean that these adiabatic nuclear

wave functions transform according to the irreducible representation Γ. Its meaning

instead is as follows. The electronuclear Hamiltonian of the system is invariant under

the group of permutations of identical AλAνAκ atoms. For A3 it is the P3 group,

for A2B it is the P2 group and for three distinct atoms ABC it is the trivial iden-

tity group. As a result, the Ψo(r,Rλ) that appears in Eq. (5.21) must transform

according to an irreducible representation Γ of the corresponding permutation group.

The superscript Γ signifies that the transformation properties of χad,JMΠΓ are such

that when taken together with the transformation properties of ψel,ad(r;qλ), they

make Ψo(r,Rλ) belong to Γ. The separate factors χad,JMΠΓ
i and ψel,ad

i (r;qλ) may

not individually belong to Γ but their product does. In addition, it is important

to stress that this adiabatic nuclear wave function vector χad,JMΠΓ(Rλ) may not be

single-valued, due to the GP effect mentioned in the introduction. We will use this

boundary condition to chose appropriate basis functions, in the absence or presence

of the conical intersection, for the expansion of the nuclear wave functions as will be

discussed next. The procedure mentioned next will be applied to H3 system as an

example to obtain Π,Γ basis sets in the next section.

As mentioned in Sec. 5.2, we will use ρ,Υλ coordinates in the strong interaction

region and ρ,Ξλ in the weak interaction and asymptotic regions. For the following

discussion, we will refer to the five-dimensional Υλ set or the Ξλ set of coordinates us-

ing the symbol ξλ. Let us now expand the two nuclear motion partial waves χad,JMΠΓ
1

and χad,JMΠΓ
2 according to the following column vector equation


 χ

ad,JMΠΓ,n′

λ
Ω′

λ

1 (ρ, ξλ)

χ
ad,JMΠΓ,n′

λ
Ω′

λ

2 (ρ, ξλ)


 = ρ−5/2

∑

Ωλ

DJΠ
MΩλ

(ξ
(1)
λ )



∑

n1λ
b
ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)Φad,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄)

∑
n2λ

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)Φad,ΠΓ
2,n2λ

,Ωλ
(ξ

(2)
λ ; ρ̄)




(5.38)

where ξ
(1)
λ refers to one of the two sets of three Euler angles and ξ

(2)
λ refers to one
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of the two sets of two hyperangles (θ, φλ) or (ωλ, γλ). Ωλ is the absolute magnitude

of the quantum number for the projection of the total angular momentum onto the

body-fixed GzIλ axis, such that

Ωλ = 0, 1, ..., J for J + Π even

= 1, 2, ..., J for J + Π odd (5.39)

Furthermore, the DJΠ
MΩλ

(ξ
(1)
λ ) are the parity-symmetrized Wigner rotation functions

defined as [18]

DJΠ
MΩλ

(ξ
(1)
λ ) =

{
2J + 1

16π2[1 + (−1)J+ΠδΩλ,0]

}1/2 [
DJ

MΩλ
(ξ

(1)
λ ) + (−1)J+Π+ΩλDJ

M,−Ωλ
(ξ

(1)
λ )
]

(5.40)

where DJ
MΩλ

(ξ
(1)
λ ) is a Wigner rotation function of the Euler angles ξ

(1)
λ [76]. The

symmetrized Wigner functions have been orthonormalized according to

∫
DJ ′Π′

M ′Ω′

λ
(ξ

(1)
λ )DJΠ

MΩλ
(ξ

(1)
λ )dτ = δ

J ′Π′M ′Ω′

λ

JΠMΩλ
(5.41)

where dτ is the volume element for the Euler angles ξ
(1)
λ .

In Eq. (5.38), Φad,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄) and Φad,ΠΓ

2,n2λ
,Ωλ

(ξ
(2)
λ ; ρ̄) are the adiabatic two-dimensional

local hyperspherical surface functions (LHSFs) that depend parametrically on ρ̄ and

are defined as the eigenfunctions of an adiabatic reference Hamiltonian matrix ĥΩλ

ad (ξ
(2)
λ ; ρ̄).

This matrix can be chosen to be block diagonal, i.e.,

ĥΩλ

ad (ξ
(2)
λ ; ρ̄) =

Λ̂2
1(ξ

(2)
λ )

2µρ̄2


 1 0

0 1


+


 εad

11(ρ̄, ξ
(2)
λ ) 0

0 εad
22(ρ̄, ξ

(2)
λ )


 (5.42)

or have the off-diagonal nonadiabatic couplings built in, i.e.,

ĥΩλ

ad (ξ
(2)
λ ; ρ̄) =

Λ̂2
1(ξ

(2)
λ )

2µρ̄2


 1 0

0 1


+


 εad

11(ρ̄, ξ
(2)
λ ) εad

12(ρ̄, ξ
(2)
λ )

εad
21(ρ̄, ξ

(2)
λ ) εad

22(ρ̄, ξ
(2)
λ )


 (5.43)
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In Eqs. (5.42) and (5.43), Λ̂2(ξ
(2)
λ ) refers to

Λ̂2
1(θ, φλ) = Λ̂2

o(θ, φλ) +
4Ω2

λ~
2

cos2 θ

= −4~
2

(
1

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
λ

)
+

4Ω2
λ~

2

cos2 θ
(5.44)

in the strong interaction region of the potential or to

Λ̂2
1(ωλ, γλ) = L̂2(ωλ) +

4

sin2 ωλ

[
−~

2

sin γλ

∂

∂γλ

sin γλ
∂

∂γλ

+
Ω2

λ~
2

sin2 γλ

]
(5.45)

= −4~
2 1

sin2 ωλ

∂

∂ωλ
sin2 ωλ

∂

∂ωλ
+

4

sin2 ωλ

[
−~

2

sin γλ

∂

∂γλ
sin γλ

∂

∂γλ
+

Ω2
λ~

2

sin2 γλ

]

in the weak interaction and asymptotic regions [18, 72].

For the ĥΩλ

ad (ξ
(2)
λ ; ρ̄) matrix in Eq. (5.42), Φad,ΠΓ

1,n1λ
,Ωλ

(ξ
(2)
λ ; ρ̄) and Φad,ΠΓ

2,n2λ
,Ωλ

(ξ
(2)
λ ; ρ̄) are

solutions of uncoupled second-order partial differential equations, whereas for the

ĥΩλ

ad (ξ
(2)
λ ; ρ̄) matrix in Eq. (5.43), they are solutions of coupled differential equations

and therefore their calculation requires a larger computational effort than to obtain

the former. Since, however, that reference Hamiltonian matrix is independent of the

total energy E of the system, the LHSFs need to be evaluated only once whereas the

resulting scattering equations given by Eq. (5.71) (derived later on) must be solved

for many values of E. As the off-diagonal couplings are built into Eq. (5.43), a smaller

number of the corresponding LHSFs will be needed for convergence of the solutions of

the scattering equations, as opposed to the ones resulting from Eq. (5.42), which don’t

have these terms built in. Given the fact that the computational effort for solving

those scattering scattering equations scales with the cube of the number of LHSFs

used, it is desirable to use LHSFs obtained from Eq. (5.43) rather than Eq. (5.42).

With either of these adiabatic reference Hamiltonians, the LHSFs satisfy the eigen-

value equation

ĥΩλ

ad (ξ
(2)
λ ; ρ̄)


 Φad,ΠΓ

1,n1λ
,Ωλ

(ξ
(2)
λ ; ρ̄)

Φad,ΠΓ
2,n2λ

,Ωλ
(ξ

(2)
λ ; ρ̄)


 =


 εad,ΠΓ

1,n1λ
,Ωλ

(ρ̄)Φad,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄)

εad,ΠΓ
2,n2λ

,Ωλ
(ρ̄)Φad,ΠΓ

2,n2λ
,Ωλ

(ξ
(2)
λ ; ρ̄)


 (5.46)
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The adiabatic LHSFs are not allowed to diverge anywhere on the half-sphere of fixed

radius ρ̄. This boundary condition furnishes the quantum numbers n1λ
and n2λ

, each

of which is two-dimensional since the reference Hamiltonian ĥΩλ

ad has two angular

degrees of freedom. The superscripts n′
λ,Ω

′
λ in Eq. (5.38), with n′

λ referring to the

union of n′
1λ

and n′
2λ

, indicate that the number of linearly independent solutions of

Eqs. (5.37) is equal to the number of adiabatic LHSFs used in the expansions of

Eq. (5.38).

In the strong interaction region, the adiabatic functions Φad,ΠΓ
i,niλ

,Ωλ
(θ, φλ; ρ̄), (i =

1, 2), which are eigenfunctions of the reference Hamiltonian given by Eqs. (5.42)

or (5.43) and Eq. (5.44), are obtained by expanding them in a body-fixed basis

Φ
ad,ΠΓ

i,niλ
,Ωλ

(θ, φλ) constructed from direct products of simple analytical functions [18,72]

Φ
ad,ΠΓ

i,niλ
,Ωλ

(θ, φλ) = fΩλ
niθλ

,niφλ
(θ) gad,ΠΓ

i,niφλ
Ωλ

(φλ) (5.47)

where niλ ≡ (niθλ
, niφλ

). gad,ΠΓ
i,niφλ

Ωλ
are chosen to be simple trigonometric functions of

φλ and fΩλ
niθλ

,niφλ
are chosen as Jacobi polynomials in cos 2θ, such that the resulting

adiabatic nuclear wave functions transform under the operations of the permutation

symmetry group of identical atoms in the way described after Eqs. (5.37). Eqs. (5.46)

are then transformed into an algebraic eigenvalue eigenvector equation involving the

coefficients of these expansions, which is solved numerically by linear algebra meth-

ods. Appendix 5.A describes the procedure to obtain trigonometric functions in φλ

needed to obtain adiabatic electronuclear functions with P3 permutation symmetries,

in the presence and absence of the conical intersection, which correspond to different

boundary conditions.

The reference Hamiltonian in the strong interaction region given by Eqs. (5.42)

and (5.44) contains the kinetic energy operator piece Λ̂2
1(θ, φλ), which has singularities

at θ = 0 (symmetric top geometries) and at θ = π/2 (collinear geometries). The full

Hamiltonian given by Eqs. (5.36), (5.11) and (5.13) contains the Λ̂2(θ, φλ, aλ, bλ, cλ)

part that also shows similar singularities at θ = 0 and θ = π/2. The choice of
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Jacobi polynomials for fΩλ
niθλ

,niφλ
mentioned above for expanding the adiabatic surface

functions should in principle be a good one as it will make the adiabatic surface

functions and hence the nuclear wave functions behave properly at those singularities.

In reality, it is not a good choice for the singularity at θ = 0, if niφλ
= 0 is an allowed

value. Since we have built the second-derivative couplings, that diverge at this value

of θ as 1/ sin2 θ, into the reference Hamiltonian given by Eqs. (5.42) or (5.43), the

abovementioned choice of Jacobi polynomials still might turn out to be appropriate.

This remains to be tested. An alternate approach to solve this problem is to replace

the reference Hamiltonian by one that contains the full Λ̂2(θ, φλ, aλ, bλ, cλ) operator

and the associated hyperspherical harmonics, which have been obtained recently for

tetraatomic [85] and triatomic systems [86].

In the weak interaction region, where the coordinates (ρ, ωλ, γλ) of Eq. (5.5) are

used, the adiabatic LHSFs Φad,ΠΓ
i,niλ

,Ωλ
(ωλ, γλ; ρ̄), (i = 1, 2) are eigenfunctions of the

reference Hamiltonian given by Eqs. (5.42) or (5.43) and Eq. (5.46). These weak

interaction region LHSFs are expanded in a body-fixed basis Φ
ad,ΠΓ

i,niλ
,Ωλ

(ωλ, γλ) con-

structed from the direct product of special functions

Φ
ad,ΠΓ

i,niλ
,Ωλ

(ωλ, γλ) = fΩλ
niγλ

(γλ)g
ad,ΠΓ
i,niωλ

,Ωλ
(ωλ) (5.48)

where fΩλ
niγλ

(γλ) are the associated Legendre functions of cos γλ and gad,ΠΓ
i,niωλ

,Ωλ
(ωλ) are a

set of functions of ωλ determined by the numerical solution of a one-dimensional eigen-

function equation in ωλ using Gegenbauer polynomials [87] in cosωλ. The Λ̂2
1(ωλ, γλ)

operator in Eq. (5.46) has singularities at ωλ = 0 and ωλ = π. The Gegenbauer

polynomials are well behaved at ωλ = 0 and the ωλ = π region is not accessible in

the weak interaction region. The γλ = 0 and γλ = π singularities don’t affect the

LHSFs either, as the abovementioned associated Legendre functions of cos γλ are well

behaved at these nuclear configurations.

Once the adiabatic LHSFs are known, they provide the basis of functions in terms

of which the expansion in Eq. (5.38) is defined. The adiabatic nuclear wave function

column vector of that equation is then inserted into the first equation of Eqs. (5.37)
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to yield

Ĥad
∑

Ωλ
DJΠ

MΩλ
(ξ

(1)
λ )



∑

n1λ
b
ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)Φad,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄)

∑
n2λ

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)Φad,ΠΓ
2,n2λ

,Ωλ
(ξ

(2)
λ ; ρ̄)


 =

E
∑

Ωλ
DJΠ

MΩλ
(ξ

(1)
λ )



∑

n1λ
b
ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)Φad,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄)

∑
n2λ

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)Φad,ΠΓ
2,n2λ

,Ωλ
(ξ

(2)
λ ; ρ̄)




(5.49)

where Ĥad is the adiabatic Hamiltonian matrix operator of Eq. (5.36). Use of the

orthonormality of the symmetrized Wigner functions [Eq. (5.41)] and integration over

the two-dimensional adiabatic LHSFs in θ, φλ hyperangles for the strong interaction

region yields a set of coupled hyperradial second-order ordinary differential equa-

tions (also called coupled-channel equations) in the coefficients b
ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄) and

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄) given by


− ~2

2µ


 1 0

0 1


 ∂2

∂ρ2 +


 Aad,ΠΓ,Ωλ

11,n1λ
(ρ; ρ̄) 0

0 Aad,ΠΓ,Ωλ

22,n2λ
(ρ; ρ̄)






 b

ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)




+



∑

n′

1λ

[
Bad,ΠΓ,Ωλ

11,n1λ
,n′

1λ

(ρ; ρ̄) + Cad,ΠΓ,Ωλ

11,n1λ
,n′

1λ

(ρ; ρ̄)
]
b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄)

∑
n′

2λ

[
Bad,ΠΓ,Ωλ

22,n2λ
,n′

2λ

(ρ; ρ̄) + Cad,ΠΓ,Ωλ

22,n2λ
,n′

2λ

(ρ; ρ̄)
]
b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)




+



∑

n′

1λ

[
Dad,ΠΓ,Ωλ

11,n1λ
,n′

1λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ±1 (ρ; ρ̄) + Ead,ΠΓ,Ωλ

11,n1λ
,n′

1λ
,Ωλ±2(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ±2 (ρ; ρ̄)

]

∑
n′

2λ

[
Dad,ΠΓ,Ωλ

22,n2λ
,n′

2λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ±1 (ρ; ρ̄) + Ead,ΠΓ,Ωλ

22,n2λ
,n′

2λ
,Ωλ±2(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ±2 (ρ; ρ̄)

]




+




∑
n′

2λ

[
Fad,ΠΓ,Ωλ

12,n1λ
,n′

2λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄) + Gad,ΠΓ,Ωλ

12,n1λ
,n′

2λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ±1 (ρ; ρ̄)

]

−
∑

n′

1λ

[
Fad,ΠΓ,Ωλ

21,n2λ
,n′

1λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄) + Gad,ΠΓ,Ωλ

21,n2λ
,n′

1λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ±1 (ρ; ρ̄)

]




+



∑

n′

1λ

Had,ΠΓ,Ωλ

11,n1λ
,n′

1λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄) +
∑

n′

2λ

Had,ΠΓ,Ωλ

12,n1λ
,n′

2λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)

∑
n′

1λ

Had,ΠΓ,Ωλ

21,n2λ
,n′

1λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄) +
∑

n′

2λ

Had,ΠΓ,Ωλ

22,n2λ
,n′

2λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)




+




∑
n′

2λ

J ad,ΠΓ,Ωλ

12,n1λ
,n′

2λ

(ρ; ρ̄)∂b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)/∂ρ

−
∑

n′

1λ

J ad,ΠΓ,Ωλ

21,n2λ
,n′

1λ

(ρ; ρ̄)∂b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄)/∂ρ


 = E


 b

ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)




(5.50)
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where for i, j = 1, 2 and in θ, φλ coordinates denoting Φad,ΠΓ
i,niλ

,Ωλ
(θ, φλ; ρ̄) simply as

Φad,ΠΓ
i,niλ

,Ωλ
,

Aad,ΠΓ,Ωλ

i,niλ
(ρ; ρ̄) =

15~
2

8µρ2
+
ρ2

ρ2
εad,ΠΓ
i,niλ

,Ωλ
(ρ̄) (5.51)

Bad,ΠΓ,Ωλ

ii,niλ
,n′

iλ

(ρ; ρ̄) = 〈Φad,ΠΓ
i,niλ

,Ωλ
|εad

i (ρ, θ, φλ) −
ρ2

ρ2
εad

i (ρ̄, θ, φλ)|Φ
ad,ΠΓ
i,n′

iλ
,Ωλ

〉 (5.52)

Cad,ΠΓ,Ωλ

ii,niλ
,n′

iλ

(ρ; ρ̄) = ~2

2µρ2

[
J(J + 1)〈Φad,ΠΓ

i,niλ
,Ωλ

|
(

1
1+sin θ

+ 1
2 sin2 θ

)
|Φad,ΠΓ

i,n′

iλ
,Ωλ

〉

−Ωλ
2〈Φad,ΠΓ

i,niλ
,Ωλ

|
(

3
1+sin θ

+ 1
2 sin2 θ

)
|Φad,ΠΓ

i,n′

iλ
,Ωλ

〉
] (5.53)

Dad,ΠΓ,Ωλ

ii,niλ
,n′

iλ
,Ωλ±1(ρ; ρ̄) = ~

2

µρ2

[
−ζ+(J,Ωλ)

NJ,Ωλ+1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| cos θ
sin2 θ

|∂Φad,ΠΓ
i,n′

iλ
,Ωλ+1/∂φλ〉

+ζ−(J,Ωλ)
NJ,Ωλ−1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| cos θ
sin2 θ

|∂Φad,ΠΓ
i,n′

iλ
,Ωλ−1/∂φλ〉

]

(5.54)

Ead,ΠΓ,Ωλ

ii,niλ
,n′

iλ
,Ωλ±2(ρ; ρ̄) = ~2

4µρ2

[
ζ+(J,Ωλ)ζ+(J,Ωλ + 1)

NJ,Ωλ+2

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| 1
1+sin θ

− 1
2 sin2 θ

|Φad,ΠΓ
i,n′

iλ
,Ωλ+2〉

+ζ−(J,Ωλ)ζ−(J,Ωλ − 1)
NJ,Ωλ−2

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| 1
1+sin θ

− 1
2 sin2 θ

|Φad,ΠΓ
i,n′

iλ
,Ωλ−2〉

]

(5.55)

Fad,ΠΓ,Ωλ

ij,niλ
,n′

jλ
,Ωλ±2(ρ; ρ̄) = −

~
2

µ
〈Φad,ΠΓ

i,niλ
,Ωλ

|Ŵ
ad(1)
1,2 (ρ, θ, φλ)|Φ

ad,ΠΓ
j,n′

jλ
,Ωλ

〉 (5.56)

Gad,ΠΓ,Ωλ

ij,niλ
,n′

jλ
,Ωλ±1(ρ; ρ̄) = ~

2

µρ

[
ζ+(J,Ωλ)

NJ,Ωλ+1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| cot θ W

ad(1)
1,2,φλ

(qλ)|Φ
ad,ΠΓ
j,n′

jλ
,Ωλ+1〉

−ζ−(J,Ωλ)
NJ,Ωλ−1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| cot θ W

ad(1)
1,2,φλ

(qλ)|Φ
ad,ΠΓ
j,n′

jλ
,Ωλ−1〉

]

(5.57)

Had,ΠΓ,Ωλ

ij,niλ
,n′

jλ

(ρ; ρ̄) = −
~

2

2µ
〈Φad,ΠΓ

i,niλ
,Ωλ

|W
ad(2)
i,j (ρ, θ, φλ)|Φ

ad,ΠΓ
j,n′

jλ
,Ωλ

〉 (5.58)

J ad,ΠΓ,Ωλ

ij,niλ
,n′

jλ

(ρ; ρ̄) = −
~

2

µ
〈Φad,ΠΓ

i,niλ
,Ωλ

|W
ad(1)
1,2,ρ (ρ, θ, φλ)|Φ

ad,ΠΓ
j,n′

jλ
,Ωλ

〉 (5.59)

In Eq. (5.56), Ŵ
ad(1)
1,2 (ρ, θ, φλ) is the operator defined as

Ŵ
ad(1)
1,2 (ρ, θ, φλ) = −

5

2ρ
W1,2,ρ(ρ, θ, φλ)+

1

ρ
W

ad(1)
1,2,θ (ρ, θ, φλ)

∂

∂θ
+

1

ρ sin θ
W

ad(1)
1,2,φλ

(ρ, θ, φλ)
∂

∂φλ

(5.60)

In this equation, W
(ad(1)
1,2,ρ , W

ad(1)
1,2,θ and W

ad(1)
1,2,φλ

are the ρ, θ and φλ components of the

first-derivative coupling vector W
ad(1)
1,2 [65]. In Eqs. (5.54), (5.55) and (5.57), NJ,Ωλ

is

the normalization constant of Eq. (5.40), and ζ±(J,Ωλ) are coupling constants given
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by

ζ±(J,Ωλ) = [J(J + 1) − Ωλ(Ωλ ± 1)]1/2 (5.61)

We can follow the same procedure for the weak interaction region by integrating

over the two-dimensional adiabatic LHSFs in ωλ, γλ hyperangles to obtain the corre-

sponding coupled-channel equations in the coefficients b
ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄) and b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)

to obtain


− ~2

2µ


 1 0

0 1


 ∂2

∂ρ2 +


 Aad,ΠΓ,Ωλ

1,n1λ
(ρ; ρ̄) 0

0 Aad,ΠΓ,Ωλ

2,n2λ
(ρ; ρ̄)






 b

ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)




+



∑

n′

1λ

[
Bad,ΠΓ,Ωλ

11,n1λ
,n′

1λ

(ρ; ρ̄) + Cad,ΠΓ,Ωλ

11,n1λ
,n′

1λ

(ρ; ρ̄)
]
b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄)

∑
n′

2λ

[
Bad,ΠΓ,Ωλ

22,n2λ
,n′

2λ

(ρ; ρ̄) + Cad,ΠΓ,Ωλ

22,n2λ
,n′

2λ

(ρ; ρ̄)
]
b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)




+



∑

n′

1λ

Dad,ΠΓ,Ωλ

11,n1λ
,n′

1λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ±1 (ρ; ρ̄)

∑
n′

2λ

Dad,ΠΓ,Ωλ

22,n2λ
,n′

2λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ±1 (ρ; ρ̄)




+




∑
n′

2λ

[
Fad,ΠΓ,Ωλ

12,n1λ
,n′

2λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄) + Gad,ΠΓ,Ωλ

12,n1λ
,n′

2λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ±1 (ρ; ρ̄)

]

−
∑

n′

1λ

[
Fad,ΠΓ,Ωλ

21,n2λ
,n′

1λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄) + Gad,ΠΓ,Ωλ

21,n2λ
,n′

1λ
,Ωλ±1(ρ; ρ̄)b

ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ±1 (ρ; ρ̄)

]




+



∑

n′

1λ

Had,ΠΓ,Ωλ

11,n1λ
,n′

1λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄) +
∑

n′

2λ

Had,ΠΓ,Ωλ

12,n1λ
,n′

2λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)

∑
n′

1λ

Had,ΠΓ,Ωλ

21,n2λ
,n′

1λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄) +
∑

n′

2λ

Had,ΠΓ,Ωλ

22,n2λ
,n′

2λ

(ρ; ρ̄)b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)




+




∑
n′

2λ

J ad,ΠΓ,Ωλ

12,n1λ
,n′

2λ

(ρ; ρ̄)∂b
ad,JΠΓn′

λ
Ω′

λ

2,n′

2λ
,Ωλ

(ρ; ρ̄)/∂ρ

−
∑

n′

1λ

J ad,ΠΓ,Ωλ

21,n2λ
,n′

1λ

(ρ; ρ̄)∂b
ad,JΠΓn′

λ
Ω′

λ

1,n′

1λ
,Ωλ

(ρ; ρ̄)/∂ρ


 = E


 b

ad,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)

b
ad,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)




(5.62)

where for i, j = 1, 2 and in ωλ, γλ coordinates denoting Φad,ΠΓ
i,niλ

,Ωλ
(ωλ, γλ; ρ̄) simply as

Φad,ΠΓ
i,niλ

,Ωλ
,

Aad,ΠΓ,Ωλ

i,niλ
(ρ; ρ̄) =

15~
2

8µρ2
+
ρ2

ρ2
εad,ΠΓ
i,niλ

,Ωλ
(ρ̄) (5.63)

Bad,ΠΓ,Ωλ

ii,niλ
,n′

iλ

(ρ; ρ̄) = 〈Φad,ΠΓ
i,niλ

,Ωλ
|εad

i (ρ, ωλ, γλ) −
ρ2

ρ2
εad

i (ρ̄, ωλ, γλ)|Φ
ad,ΠΓ
i,n′

iλ
,Ωλ

〉 (5.64)
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Cad,ΠΓ,Ωλ

ii,niλ
,n′

iλ

(ρ; ρ̄) = ~
2

2µρ2

[
J(J + 1)〈Φad,ΠΓ

i,niλ
,Ωλ

| 1
cos2 ωλ/2

|Φad,ΠΓ
i,n′

iλ
,Ωλ

〉

−2Ωλ
2〈Φad,ΠΓ

i,niλ
,Ωλ

| 1
cos2 ωλ/2

|Φad,ΠΓ
i,n′

iλ
,Ωλ

〉
] (5.65)

Dad,ΠΓ,Ωλ

ii,niλ
,n′

iλ
,Ωλ±1(ρ; ρ̄) = ~2

2µρ2

[
ζ+(J,Ωλ)

NJ,Ωλ+1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
|D̂Ωλ

1 (ωλ, γλ)|Φ
ad,ΠΓ
i,n′

iλ
,Ωλ+1〉

+ζ−(J,Ωλ)
NJ,Ωλ−1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
|D̂Ωλ

2 (ωλ, γλ)|Φ
ad,ΠΓ
i,n′

iλ
,Ωλ−1〉

]

with D̂Ωλ

1 (ωλ, γλ) = 1
cos2 ωλ/2

{
(Ωλ + 2) cot γλ + ∂

∂γλ

}

and D̂Ωλ

2 (ωλ, γλ) = 1
cos2 ωλ/2

{
(Ωλ − 2) cot γλ −

∂
∂γλ

}

(5.66)

Fad,ΠΓ,Ωλ

ij,niλ
,n′

jλ
,Ωλ±2(ρ; ρ̄) = −

~
2

µ
〈Φad,ΠΓ

i,niλ
,Ωλ

|Ŵ
ad(1)
1,2 (ρ, ωλ, γλ)|Φ

ad,ΠΓ
j,n′

jλ
,Ωλ

〉 (5.67)

Gad,ΠΓ,Ωλ

ij,niλ
,n′

jλ
,Ωλ±1(ρ; ρ̄) = −~2

2µρ

[
ζ+(J,Ωλ)

NJ,Ωλ+1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| 1
cos2 ωλ/2

W
ad(1)
1,2,γλ

(qλ)|Φ
ad,ΠΓ
j,n′

jλ
,Ωλ+1〉

−ζ−(J,Ωλ)
NJ,Ωλ−1

NJ,Ωλ

〈Φad,ΠΓ
i,niλ

,Ωλ
| 1
cos2 ωλ/2

W
ad(1)
1,2,γλ

(qλ)|Φ
ad,ΠΓ
j,n′

jλ
,Ωλ−1〉

]

(5.68)

Had,ΠΓ,Ωλ

ij,niλ
,n′

jλ

(ρ; ρ̄) = −
~

2

2µ
〈Φad,ΠΓ

i,niλ
,Ωλ

|W
ad(2)
i,j (ρ, ωλ, γλ)|Φ

ad,ΠΓ
j,n′

jλ
,Ωλ

〉 (5.69)

J ad,ΠΓ,Ωλ

ij,niλ
,n′

jλ

(ρ; ρ̄) = −
~

2

µ
〈Φad,ΠΓ

i,niλ
,Ωλ

|W
ad(1)
1,2,ρ (ρ, ωλ, γλ)|Φ

ad,ΠΓ
j,n′

jλ
,Ωλ

〉 (5.70)

In Eq. (5.67), Ŵ
ad(1)
1,2 (ρ, ωλ, γλ) is the ωλ, γλ equivalent of Eq. (5.60). In Eqs. (5.68)

and (5.70), W
ad(1)
i,j,ρ and W

ad(1)
1,2,γλ

are the ρ and γλ components of the first-derivative

coupling vector in ρ, ωλ, γλ coordinates.

Now if we define the column vectors b
ad,JΠΓn′

λ
Ω′

λ

i (ρ; ρ̄) (i = 1, 2) as the vectors

whose elements are scanned by niλ,Ωλ considered as a single row index. Let us also

define a matrix Bad,JΠΓ(ρ; ρ̄) whose n′
λ,Ω

′
λ column vector is obtained by stacking the

vector b
ad,JΠΓn′

λ
Ω′

λ

2 (ρ; ρ̄) under the vector b
ad,JΠΓn′

λ
Ω′

λ

1 (ρ; ρ̄). These vectors, for different

n′
λ,Ω

′
λ, are then placed side-by-side thereby generating a square matrix Bad,JΠΓ whose

dimensions are the total number of LHSFs (channels) used. The coupled hyperradial

equation satisfied by this matrix has the form

[
−

~
2

2µ
I
d2

dρ2
+ Vad,JΠΓ(ρ; ρ̄)

]
Bad,JΠΓ(ρ; ρ̄) = EBad,JΠΓ(ρ; ρ̄) (5.71)

using either Eq. (5.50) or (5.62) and ignoring its J ad,ΠΓ,Ωλ

ij,niλ
,n′

jλ

(ρ; ρ̄) term given by Eq. (5.59)



178

or (5.70) as it appears with a first derivative with respect to ρ of the expansion co-

efficients and is expected to be small. It can be introduced later in a perturbative

treatment to assess its effect. Vad,JΠΓ(ρ; ρ̄) is the interaction potential matrix ob-

tained by this derivation procedure and which encompasses εad(ρ̄) and the matrices

with parts defined in Eq. (5.51) through Eq. (5.59) or Eq. (5.63) through Eq. (5.70):

Vad,JΠΓ(ρ; ρ̄) =


 Vad,JΠΓ

11 (ρ; ρ̄) Vad,JΠΓ
12 (ρ; ρ̄)

Vad,JΠΓ
21 (ρ; ρ̄) Vad,JΠΓ

22 (ρ; ρ̄)


 (5.72)

Its dimensions are those of Bad,JΠΓ(ρ; ρ̄).

5.3.2 Propagation scheme and asymptotic analysis

The strong and weak interaction regions of the internal configuration space is divided

into a certain number of spherical hyperradial shells. The two-dimensional adiabatic

LHSFs are determined at the center ρ̄i of each shell i, whose boundaries are given by

ρ̄i,i+1. These LHSFs are then used to obtain the coupling matrix Vad,JΠΓ(ρ; ρ̄i) given

above in Eq. (5.72). The continuity of the nuclear wave function and its first derivative

with respect to ρ is imposed at the boundary ρi,i+1 with the help of the overlap matrix

OΠΓ defined below. The corresponding continuity conditions on Bad,JΠΓ and its ρ

derivative are

B
ad,JΠΓm′

λ
Ω′

λ

nλΩλ
(ρi,i+1; ρ̄i+1) =

∑

n′

λ

B
ad,JΠΓm′

λ
Ω′

λ

n′

λ
Ωλ

(ρi,i+1; ρ̄i)[O
ΠΓΩλ]

n′

λ
nλ

(ρ̄i+1, ρ̄i) (5.73)

and

(
∂B

ad,JΠΓm′

λ
Ω′

λ

nλΩλ
(ρ; ρ̄i+1)

∂ρ

)

ρ→ρ+
i,i+1

=
∑

n′

λ


∂B

ad,JΠΓm′

λ
Ω′

λ

n′

λ
Ωλ

(ρ; ρ̄i)

∂ρ




ρ→ρ−i,i+1

[OΠΓΩλ]
n′

λ
nλ

(ρ̄i+1, ρ̄i)

(5.74)
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The overlap matrix OΠΓ has elements defined as

[OΠΓΩλ]
n′

λ
nλ

(ρ̄i+1, ρ̄i) = 〈Φad,ΠΓΩλ
nλ

(ξ
(2)
λ ; ρ̄i+1)|Φ

ad,ΠΓΩλ

n′

λ
(ξ

(2)
λ ; ρ̄i)〉 (5.75)

where Φad,ΠΓΩλ
nλ

(ξ
(2)
λ ; ρ̄i) is a column vector

Φad,ΠΓΩλ
nλ

(ξ
(2)
λ ; ρ̄i) =


 Φad,ΠΓΩλ

1,n1λ
(ξ

(2)
λ ; ρ̄i)

Φad,ΠΓΩλ

2,n2λ
(ξ

(2)
λ ; ρ̄i)


 (5.76)

whose two components are defined in Eq. (5.46). At the switchover hyperradius

(ρs) that separates the strong and weak interaction regions, the overlap matrix is

calculated by first projecting the two-dimensional (θ, φλ) LHSFs in the last sector of

the strong interaction region onto the ωλ, γλ space and then computing its overlap

with the two-dimensional (θ, φλ) LHSFs in the first sector of the weak interaction

region.

The coupled hyperradial equations in Eq. (5.71) are transformed into the coupled

first-order non-linear Bessel-Ricatti logarithmic matrix differential equation

dFad,JΠΓ(ρ; ρ̄)

dρ
+ [Fad,JΠΓ(ρ; ρ̄)]2 +

2µ

~2
[EI − Vad,JΠΓ(ρ; ρ̄)] = 0 (5.77)

where

Fad,JΠΓ(ρ; ρ̄) = [(d/dρ)Bad,JΠΓ(ρ; ρ̄)][Bad,JΠΓ(ρ; ρ̄)]−1 (5.78)

is the logarithmic derivative matrix and associated with Bad,JΠΓ. Eq. (5.77) is inte-

grated from the beginning of each sector to its end using a highly efficient fourth-order

logarithmic-derivative method [90–92], and matched smoothly from one shell to an-

other by using

Fad,JΠΓ(ρ; ρ̄i+1) = [OΠΓ(ρ̄i+1, ρ̄i)]
−1Fad,JΠΓ(ρ; ρ̄i)O

ΠΓ(ρ̄i+1, ρ̄i) (5.79)

which is obtained by using Eqs. (5.73), (5.74) and (5.78).
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Using this method, the Fad,JΠΓ matrix is propagated from a very small value of

ρ = ρo, where a WKB solution is applicable, through a value ρs which separates the

strong and weak interaction regions, to an asymptotic value ρ = ρa where the in-

teractions between different arrangement channels λ have become negligible. At this

asymptotic ρa, the adiabatic χad,JMΠΓ is matched to the asymptotic atom-diatom

wave functions. This asymptotic analysis furnishes the reactance matrix RJΠΓ and

from it the scattering matrix SJΠΓ [69–71]. For total energies E at which no electroni-

cally excited states of the isolated atoms or diatomic molecules are open, the elements

of the open parts of these matrices correspond to the ground electronic atom and di-

atom products only. This is done for all Γ and both parities (Π = 0, 1) and for

a sufficiently large number of values of J (i.e., of partial waves) for the resulting

differential and integral cross sections to be converged.

5.4 Diabatic formalism

Total orbital electronuclear wavefunction of Eq. (5.21) can also be expanded in terms

of two diabatic electronic wave functions ψel,d
1 (r;qλ) and ψel,d

2 (r;qλ) as

Ψo(r,Rλ) = χd
1(Rλ)ψ

el,d
1 (r;qλ) + χd

2(Rλ)ψ
el,d
2 (r;qλ) (5.80)

where the coefficients of the expansion are the diabatic nuclear motion wave functions

χd
1(Rλ) and χd

2(Rλ). The diabatic electronic wave functions can be obtained from the

uniquely known adiabatic ones through a unitary transformation




ψd
i (r;Rλ)

ψd
j (r;Rλ)


 = Ũ[β(qλ)]




ψad
i (r;Rλ)

ψad
j (r;Rλ)


 (5.81)
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where Ũ[β(qλ)] is the transpose of the adiabatic-to-diabatic transformation matrix

U[β(qλ)] =




cos β(qλ) − sin β(qλ)

sin β(qλ) cos β(qλ)


 (5.82)

and β(qλ) is called the diabatization or mixing angle obtained by solving a Pois-

son equation [56, 58, 88] involving the first-derivative nonadiabatic coupling vector

W
(1)ad
1,2 (qλ). Diabatization is done in most cases to avoid the singular nonadiabatic

couplings of the adiabatic representation. An ideal diabatic basis would be one in

which the first-derivative coupling vanishes [89]. This can happen only if the complete

set of electronic states are included in the Born-Huang expansion of the electronuclear

wave function, which is not a practical proposition. The solution is to include only a

few excited electronic states and follow an optimal diabatization procedure [56, 58],

which minimizes the magnitude of the first-derivative couplings in the diabatic rep-

resentation over the entire internal nuclear configuration space.

The diabatic nuclear wave functions are related to their adiabatic counterparts by

χd(Rλ) = Ũ[β(qλ)]χ
ad(Rλ) (5.83)

where χd(Rλ) is the two-dimensional column vector whose two elements are χd
1(Rλ)

and χd
2(Rλ) and is written as

χd(Rλ) =


 χd

1(Rλ)

χd
2(Rλ)


 (5.84)

Replacement of Eq. (5.83) into Eq. (5.26) yields the diabatic nuclear motion scattering

equation

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)d(qλ) · ∇Rλ

+ W(2)d(qλ)
}

+
{
εd(qλ) − EI

}]
χd(Rλ) = 0.

(5.85)

The elements of the first-derivative W(1)d(qλ) and second-derivative W(2)d(qλ) cou-
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pling diabatic matrices are analogous to their adiabatic counterparts. In particular,

W(1)d(qλ) is equal to the transverse part W
(1)ad
tra (qλ) of the adiabatic coupling vector

W(1)ad(qλ) [56,88]. If the adiabatic couplings display a singularity for special nuclear

geometries, e.g., displayed at the equilateral triangle geometries for H3, their dia-

batic counterparts (both first- and second-derivative couplings) don’t display these

singularities. This is one of the main advantages of using a diabatic representation.

In Eq. (5.85), εd(qλ) is a 2 × 2 diabatic energy matrix which is obtained from the

adiabatic one εad(qλ) using

εd(qλ) = Ũ[β(qλ)] ε
ad(qλ) U[β(qλ)] (5.86)

We can now write Eq. (5.85) in explicit form similar to its adiabatic counterpart

[Eq. (5.29)]


− ~2

2µ






 1 0

0 1


∇2

Rλ
+ 2W

(1)d
1,2 (qλ)


 0 1

−1 0


 · ∇Rλ

+


 W

(2)d
1,1 (qλ) W

(2)d
1,2 (qλ)

W
(2)d
2,1 (qλ) W

(2)d
2,2 (qλ)







+






 εd

11(qλ) εd
12(qλ)

εd
21(qλ) εd

22(qλ)


− E


 1 0

0 1










 χd

1(Rλ)

χd
2(Rλ)


 =


 0 0

0 0


 (5.87)

In this two-state diabatic nuclear motion Schrödinger equation, the nuclear wave

functions are coupled by the first-derivative and second-derivative couplings and the

diabatic energy matrix. Since all diabatic representations are obtained by some type

of mixing of the adiabatic states, the diabatic nuclear wave functions are expected to

be intrinsically coupled to each other. The diabatization procedure mentioned earlier

also gaurantees that the diabatic electronic wave functions are single-valued upon a

pseudorotation and the GP effect is not required to be imposed on diabatic nuclear

wave functions.
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5.4.1 Partial wave expansion

As we did in the adiabatic case, we can write the diabatic nuclear motion Schrödinger

Eq. (5.85) as

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)d(qλ) · ∇Rλ

}
+
{
εd(qλ) − EI

}]
χd(Rλ) = 0 (5.88)

The modified diabatic energy matrix εd(qλ) that appears in Eq. (5.88) is given by

εd(qλ) = εd(qλ) −
~

2

2µ
W(2)d(qλ) =


 εd

11(qλ) εd
12(qλ)

εd
21(qλ) εd

22(qλ)


 (5.89)

where

εd
ij(qλ) = εd

ij(qλ) −
~

2

2µ
W

(2)d
ij (qλ) i, j = 1, 2 (5.90)

The two diabatic nuclear wave functions χd
1(Rλ) and χd

2(Rλ) can be expressed as

linear combinations of auxiliary nuclear wave functions χd,JMΠΓ
1 (Rλ) and χd,JMΠΓ

2 (Rλ)

respectively similar to their adiabatic counterparts (the linear combinations referred

to as partial wave expansions and the individual χd,JMΠΓ
1 and χd,JMΠΓ

2 referred to as

partial waves),


 χd

1(Rλ)

χd
2(Rλ)


 =

∞∑

J=0

M=J∑

M=−J

CJM
λ

1∑

Π=0

∑

Γ


 χd,JMΠΓ

1 (Rλ)

χd,JMΠΓ
2 (Rλ)


 (5.91)

If χd,JMΠΓ
1 (Rλ) and χd,JMΠΓ

2 (Rλ) are defined as components of the column vector

χd,JMΠΓ(Rλ), then we can write Eq. (5.91) as

χd(Rλ) =
∞∑

J=0

M=J∑

M=−J

CJM
λ

1∑

Π=0

∑

Γ

χd,JMΠΓ(Rλ) (5.92)
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If we define another nuclear wave function column vector

χd,JMΠΓ(Rλ) =


 χd,JMΠΓ

1 (Rλ)

χd,JMΠΓ
2 (Rλ)


 (5.93)

then χd,JMΠΓ is a simultaneous eigenfunction of the diabatic matrix Ĥd(Rλ) expressed

as

Ĥd(Rλ) =

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)d(qλ) · ∇Rλ

}
+ εd(qλ)

]
, (5.94)

of the square of the total nuclear orbital angular momentum Ĵ, of its space-fixed

z-component Ĵz and of the inversion operator Î of the nuclei through their center of

mass according to the expressions

Ĥnuχd,JMΠΓ = Eχd,JMΠΓ

Ĵ2χd,JMΠΓ = J(J + 1)~2χd,JMΠΓ

Ĵzχ
d,JMΠΓ = M~χd,JMΠΓ

Îχd,JMΠΓ = (−1)Πχd,JMΠΓ

(5.95)

In these equations, J,M,Π,Γ carry the same definitions as they did in the adiabatic

language. The irreducible representation Γ again refers to the fact that χd,JMΠΓ leads

to an electronuclear wave function which transforms according to that representation

of the system’s permutation group.

Let us now expand the two nuclear motion partial waves χd,JMΠΓ
1 and χd,JMΠΓ

2

according to the following vector equation


 χ

d,JMΠΓ,n′

λ
Ω′

λ

1 (ρ, ξλ)

χ
d,JMΠΓ,n′

λ
Ω′

λ

2 (ρ, ξλ)


 = ρ−5/2

∑

Ωλ

DJΠ
MΩλ

(ξ
(1)
λ )



∑

n1λ
b
d,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄)Φd,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄)

∑
n2λ

b
d,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄)Φd,ΠΓ
2,n2λ

,Ωλ
(ξ

(2)
λ ; ρ̄)




(5.96)

In Eq. (5.96), Φd,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄) and Φd,ΠΓ

2,n2λ
,Ωλ

(ξ
(2)
λ ; ρ̄) are the diabatic two-dimensional

local hyperspherical surface functions (LHSFs) that depend parametrically on ρ̄ and

are defined as the eigenfunctions of a diabatic reference Hamiltonian matrix ĥΩλ

d (ξ
(2)
λ ; ρ̄).
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Similar to the adiabatic langiage, this matrix can be chosen to be block diagonal, i.e.,

ĥΩλ

d (ξ
(2)
λ ; ρ̄) =

Λ̂2
1(ξ

(2)
λ )

2µρ̄2


 1 0

0 1


+


 εd

11(ρ̄, ξ
(2)
λ ) 0

0 εd
22(ρ̄, ξ

(2)
λ )


 (5.97)

or have the off-diagonal nonadiabatic couplings built in, i.e.,

ĥΩλ

d (ξ
(2)
λ ; ρ̄) =

Λ̂2
1(ξ

(2)
λ )

2µρ̄2


 1 0

0 1


+


 εd

11(ρ̄, ξ
(2)
λ ) εd

12(ρ̄, ξ
(2)
λ )

εd
21(ρ̄, ξ

(2)
λ ) εd

22(ρ̄, ξ
(2)
λ )


 (5.98)

In Eqs. (5.97) and (5.98), Λ̂2(ξ
(2)
λ ) refers to angular operators in θ, φλ coordinates

[Eq. (5.44)] in the strong interaction region or ωλ, γλ coordinates [Eq. (5.46)] in the

weak interaction and asymptotic regions [18, 72].

For the ĥΩλ

d (ξ
(2)
λ ; ρ̄) matrix in Eq. (5.97), Φd,ΠΓ

1,n1λ
,Ωλ

(ξ
(2)
λ ; ρ̄) and Φd,ΠΓ

2,n2λ
,Ωλ

(ξ
(2)
λ ; ρ̄) are

solutions of uncoupled second-order partial differential equations, whereas for the

ĥΩλ

d (ξ
(2)
λ ; ρ̄) matrix in Eq. (5.98), they are solutions of coupled differential equations.

Like their adiabatic partners, their calculation requires a larger computational effort

than to obtain the former and as the off-diagonal couplings are built into Eq. (5.98),

a smaller number of the corresponding LHSFs will be needed for convergence of the

solutions of the scattering equations, as opposed to the ones resulting from Eq. (5.97),

which don’t have these terms built in. Here also it is desirable to use LHSFs obtained

from Eq. (5.98) rather than Eq. (5.97).

With either of these diabatic reference Hamiltonians, the LHSFs satisfy the eigen-

value equation

ĥΩλ

d (ξ
(2)
λ ; ρ̄)


 Φd,ΠΓ

1,n1λ
,Ωλ

(ξ
(2)
λ ; ρ̄)

Φd,ΠΓ
2,n2λ

,Ωλ
(ξ

(2)
λ ; ρ̄)


 =


 εd,ΠΓ

1,n1λ
,Ωλ

(ρ̄)Φd,ΠΓ
1,n1λ

,Ωλ
(ξ

(2)
λ ; ρ̄)

εd,ΠΓ
2,n2λ

,Ωλ
(ρ̄)Φd,ΠΓ

2,n2λ
,Ωλ

(ξ
(2)
λ ; ρ̄)


 (5.99)

The diabatic LHSFs are not allowed to diverge anywhere on the half-sphere of fixed

radius ρ̄. This boundary condition furnishes the quantum numbers n1λ
and n2λ

, each

of which is two-dimensional since the reference Hamiltonian ĥΩλ

d has two angular
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degrees of freedom. The superscripts n′
λ,Ω

′
λ in Eq. (5.96), with n′

λ referring to the

union of n′
1λ

and n′
2λ

, indicate that the number of linearly independent solutions

of Eqs. (5.95) is equal to the number of diabatic LHSFs used in the expansions of

Eq. (5.96).

In the strong interaction region, the diabatic functions Φd,ΠΓ
i,niλ

,Ωλ
(θ, φλ; ρ̄), (i =

1, 2), which are eigenfunctions of the reference Hamiltonian given by Eqs. (5.97) or

(5.98) and Eq. (5.44), are obtained using the same body-fixed basis Φ
d,ΠΓ

i,niλ
,Ωλ

(θ, φλ)

used in the adiabatic representation,

Φ
d,ΠΓ

i,niλ
,Ωλ

(θ, φλ) = fΩλ
niθλ

(θ) gd,ΠΓ
i,niφλ

,Ωλ
(φλ) (5.100)

where niλ ≡ (niθλ
, niφλ

). gd,ΠΓ
i,niφλ

,Ωλ
are again chosen to be simple trigonometric func-

tions of φλ and fΩλ
niθλ

are chosen as Jacobi polynomials in cos θ, such that the resulting

diabatic nuclear wave functions transform under the operations of the permutation

symmetry group of identical atoms in the way described after Eqs. (5.95). Eqs. (5.99)

are then transformed into an algebraic eigenvalue eigenvector equation involving the

coefficients of these expansions, which is solved numerically by linear algebra meth-

ods. As was the case in the adiabatic treatment, the singularities in the Λ̂2
1 operator of

Eq. (5.97) or Eq. (5.98) at θ = 0 and θ = π/2 need to be handled carefully. With the

reference Hamiltonian mentioned above, the Jacobi polynomials are unable to handle

the pole at θ = 0. Besides, in the current diabatic case, the second-derivative coupling

element, that has been added to the diabatic energies [see Eq. (5.89)], is not singular

at θ = 0. This might require using the full Λ̂2 operator and related hyperspher-

ical harmonics [85, 86]. Appendix 5.A describes a method to obtain trigonometric

functions in φλ that provide diabatic electronuclear functions with P3 permutation

symmetries, in the presence and absence of the conical intersection.

In the weak interaction region, where the coordinates (ρ, ωλ, γλ) of Eq. (5.5) are

used, the diabatic LHSFs Φd,ΠΓ
i,niλ

,Ωλ
(ωλ, γλ; ρ̄), (i = 1, 2) are eigenfunctions of the

reference Hamiltonian given by Eqs. (5.97) or (5.98) and Eq. (5.46). These weak in-
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teraction region diabatic LHSFs are expanded in a body-fixed basis Φ
d,ΠΓ

i,niλ
,Ωλ

(ωλ, γλ),

used in the adiabatic language and constructed from the direct product of the asso-

ciated Legendre functions of cos γλ and at a set of functions of ωλ determined by the

numerical solution of a one-dimensional eigenfunction equation in ωλ using Gegen-

bauer polynomials [87] in cosωλ. As in the adiabatic case, the ωλ = 0 singularity in

Λ̂2
1 operator is compensated by the well-behaved Gegenbauer polynomials.

Once the diabatic LHSFs are known, they provide the basis of functions in terms

of which the expansion in Eq. (5.96) is defined. The diabatic nuclear wave function

vector of that equation is then inserted into the first equation of Eqs. (5.95). Use of

the orthonormality of the symmetrized Wigner functions [Eq. (5.41)] and integration

over the two-dimensional diabatic LHSFs, yields a set of coupled hyperradial second-

order ordinary differential equations (also called coupled-channel equations) in the

coefficients b
d,JΠΓn′

λ
Ω′

λ

1,n1λ
,Ωλ

(ρ; ρ̄) and b
d,JΠΓn′

λ
Ω′

λ

2,n2λ
,Ωλ

(ρ; ρ̄) analogous to the adiabatic Eq. (5.50).

Let us define the diabatic column vectors b
d,JΠΓn′

λ
Ω′

λ

i (ρ; ρ̄) (i = 1, 2) as the vectors

whose elements are scanned by niλ,Ωλ considered as a single row index. Let us also

define a matrix Bd,JΠΓ(ρ; ρ̄) whose n′
λ,Ω

′
λ column vector is obtained by stacking the

vector b
d,JΠΓn′

λ
Ω′

λ

2 (ρ; ρ̄) under the vector b
d,JΠΓn′

λ
Ω′

λ

1 (ρ; ρ̄). These vectors, for different

n′
λ,Ω

′
λ, are then placed side by side thereby generating a square matrix Bd,JΠΓ whose

dimensions are the total number of LHSFs (channels) used. The coupled hyperradial

equation satisfied by this matrix has the form

[
−

~
2

2µ
I
d2

dρ2
+ Vd,JΠΓ(ρ; ρ̄)

]
Bd,JΠΓ(ρ; ρ̄) = EBd,JΠΓ(ρ; ρ̄) (5.101)

where Vd,JΠΓ(ρ; ρ̄) is the interaction potential matrix obtained by this derivation

procedure and which encompasses εd(ρ̄):

Vd,JΠΓ(ρ; ρ̄) =


 Vd,JΠΓ

11 (ρ; ρ̄) Vd,JΠΓ
12 (ρ; ρ̄)

Vd,JΠΓ
21 (ρ; ρ̄) Vd,JΠΓ

22 (ρ; ρ̄)


 (5.102)

Its dimensions are those of Bd,JΠΓ(ρ; ρ̄).
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5.4.2 Propagation scheme and asymptotic analysis

The strong and weak interaction regions of the internal configuration space is divided

into a certain number of spherical hyperradial shells. The two-dimensional diabatic

LHSFs are determined at the center ρ̄ of each shell. These LHSFs are then used

to obtain the coupling matrix Vd,JΠΓ(ρ; ρ̄) given above in Eq. (5.102). The coupled

hyperradial equations in Eq. (5.101) are transformed into the coupled first-order non-

linear Bessel-Ricatti logarithmic matrix differential equation

dFd,JΠΓ(ρ; ρ̄)

dρ
+ [Fd,JΠΓ(ρ; ρ̄)]2 +

2µ

~2
[EI − Vd,JΠΓ(ρ; ρ̄)] = 0 (5.103)

where

Fd,JΠΓ(ρ; ρ̄) = [(d/dρ)Bd,JΠΓ(ρ; ρ̄)][Bd,JΠΓ(ρ; ρ̄)]−1 (5.104)

is the logarithmic derivative matrix and associated with Bd,JΠΓ. Eq. (5.103) is inte-

grated from the beginning of each sector to its end using a highly efficient fourth-order

logarithmic-derivative method [90–92], and matched smoothly from one shell to an-

other.

Using this method, the Fd,JΠΓ matrix is propagated from a very small value of

ρ = ρo, where a WKB solution is applicable, through a value ρs which separates

the strong and weak interaction regions, to an asymptotic value ρ = ρa where the

interactions between different arrangement channels λ have become negligible. This

diabatic log-derivative matrix is transformed smoothly from one sector to the next

and across the switchover hyperradius ρs in the same way that the adiabatic one is

transformed as discussed in Sec. 5.3.2. At this asymptotic ρa, the diabatic χd,JMΠΓ is

transformed to its adiabatic representation using the adiabatic-to-diabatic matrix and

matched to the asymptotic atom-diatom wave functions. This asymptotic analysis

furnishes the reactance matrix RJΠΓ and from it the scattering matrix SJΠΓ [69–71].

For total energies E at which no electronically excited states of the isolated atoms

or diatomic molecules are open, the elements of the open parts of these matrices

correspond to the ground electronic atom and diatom products only. This is done for
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all Γ and both parities (Π = 0, 1) and for a sufficiently large number of values of J

(i.e., of partial waves) for the resulting differential and integral cross sections to be

converged.

5.4.3 Adiabatic vs. diabatic approaches

We recall the adiabatic and diabatic nuclear motion Schrödinger Eqs. (5.26) and

(5.85):

Adiabatic:

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)ad(qλ) · ∇Rλ

+ W(2)ad(qλ)
}

+
{
εad(qλ) − EI

}]
χad(Rλ) = 0

(5.105)

Diabatic:

[
−

~
2

2µ

{
I∇2

Rλ
+ 2W(1)d(qλ) · ∇Rλ

+ W(2)d(qλ)
}

+
{
εd(qλ) − EI

}]
χd(Rλ) = 0

(5.106)

In the molecular systems that exhibit a conical intersection for some special ge-

ometries between their neighboring adiabatic electronic states, both first-derivative

(W(1)ad(qλ)) and second-derivative (W(2)ad(qλ)) nonadiabatic coupling terms are sin-

gular at those geometries. Even in the cases where singularities are absent, the pres-

ence of the gradient term (W(1)ad(qλ) · ∇Rλ
) in Eq. (5.105) makes its numerical

solution inefficient and requires a special treatment of the pole in W(1)ad at conical

intersection geometries. These problems can be avoided by constructing a diabatic

representation, in which the coupling terms (W(1)d(qλ) and W(2)d(qλ)) do not contain

singularities. If the optimal diabatization procedure is followed [56], the magnitude

of W(1)d(qλ) over the entire dynamically important internal nuclear configuration

space can be minimized. This enables the dropping of the gradient containing term

(W(1)d(qλ) ·∇Rλ
), to a good first approximation, from the diabatic Schrödinger equa-

tion and facilitates the use of efficient propagation methods available in the absence

of such a gradient term. To test the quality of this approximation, this term can be
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reintroduced perturbatively into the scattering equations to assess its effect on the

reaction cross sections.

In the adiabatic representation of a system containing singular couplings at the

conical intersection geometries, the second-derivative couplings have a second-order

pole compared to the first-derivative couplings. In energy units this translates to

nuclear wave functions not sampling the conical intersection geometries or their very

near vicinity where the second-derivative coupling might still be large. These second-

derivative couplings decay faster than the first-derivative ones as we move away from

the conical intersection point, and the presence of the first-derivative couplings in the

gradient term mentioned above will still make the solution of the adiabatic equations

inefficient. A quantum scattering study using both representations can resolve these

issues more quantitatively.
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Appendix 5.A - Geometric phase boundary conditions for the

adiabatic and diabatic nuclear wave function basis sets

Consider a triatomic nuclear geometry described by a point P in the six-dimensional

hyperspherical coordinate space ρ, θ, φλ, aλ, bλ, cλ. If this point P is taken along a

closed loop that encircles a conical intersection geometry, its coordinates change to

ρ, θ, φλ +2π, (π+aλ) mod 2π, π−bλ, (π−cλ) mod 2π. This is called a pseudorotation.

The Wigner rotation functions given by Eq. (5.40) undergo the following change upon

this pseudorotation:

DJΠ
MΩλ

((π + aλ) mod 2π, π − bλ, (π − cλ) mod 2π) = (−1)ΠDJΠ
MΩλ

(aλ, bλ, cλ) (5.107)

Since the only other piece of the nuclear wave function that undergoes a change upon

this pseudorotation is the gΠΓ
i,niφλ

,Ωλ
(φλ) piece, we can incorporate its effect on Wigner

functions mentioned above into boundary conditions on gΠΓ
i,niφλ

Ωλ
(φλ).

In the absence of a conical intersection, the adiabatic or diabatic nuclear wave

functions don’t change upon a pseudorotation, as the corresponding electronic wave

functions are single-valued. This leads to the following no-geometric-phase (NGP)

boundary conditions for the adiabatic and diabatic φλ functions:

gad,ΠΓ
i,pλΩλ

(φλ + 2π) = (−1)Πgad,ΠΓ
i,pλΩλ

(φλ) (5.108)

gd,ΠΓ
i,pλΩλ

(φλ + 2π) = (−1)Πgd,ΠΓ
i,pλΩλ

(φλ) (5.109)

where i = 1, 2 and pλ = niφλ
.

In the presence of a conical intersection, the adiabatic nuclear wave functions

change sign upon a pseudorotation [see Eq. (5.24)] leading to the following geometric-

phase (GP) boundary condition on adiabatic φλ functions:

gad,ΠΓ
i,pλΩλ

(φλ + 2π) = −(−1)Πgad,ΠΓ
i,pλΩλ

(φλ) (5.110)
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The diabatic nuclear wave functions, on the other hand, are constructed such that

they don’t change upon the pseudorotation leading to the following GP boundary

condition for diabatic φλ functions:

gd,ΠΓ
i,pλΩλ

(φλ + 2π) = (−1)Πgd,ΠΓ
i,pλΩλ

(φλ) (5.111)

For H3 system, which belongs to the P3 permutation group, in the absence of a

conical intersection, the ground (i = 1) adiabatic electronic wave function belongs

to the A1 irreducible representation and the first-excited (i = 2) one belongs to the

A2 representation of the P3 group. In the presence of a conical intersection, these

adiabatic states belong to the E irreducible representation of the P3 group. Using

projection operators from group theory [93] and symmetry operations of this P3 group,

different φλ functions can be obtained that belong to A1, A2 or E representations

and satisfy the boundary conditions given by Eqs. (5.108) through (5.111). These

functions are given in Tables 5.I and 5.II for adiabatic basis sets and Tables 5.I and

5.III for diabatic basis sets for different choices of Π and Ωλ quantum numbers.
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Table 5.I: Adiabatic (gad,ΠΓ
i,pλΩλ

) and diabatic (gd,ΠΓ
i,pλΩλ

) basis sets in φλ for P3

permutation group in the absence of a conical intersectiona

Ωλ Γ gad,0Γ
1,pλΩλ

or gd,0Γ
1,pλΩλ

gad,1Γ
1,pλΩλ

or gd,1Γ
1,pλΩλ

Even A1 cos[3pλφλ] cos[(3pλ + 3/2)φλ]

A2 sin[3pλφλ] sin[(3pλ + 3/2)φλ]

E cos[(3pλ ± 1)φλ] cos[(3pλ ± 1/2)φλ]

Odd A1 sin[3pλφλ] sin[(3pλ + 3/2)φλ]

A2 cos[3pλφλ] cos[(3pλ + 3/2)φλ]

E sin[(3pλ ± 1)φλ] sin[(3pλ ± 1/2)φλ]

Ωλ Γ gad,0Γ
2,pλΩλ

or gd,0Γ
2,pλΩλ

gad,1Γ
2,pλΩλ

or gd,1Γ
2,pλΩλ

Even A1 sin[3pλφλ] sin[(3pλ + 3/2)φλ]

A2 cos[3pλφλ] cos[(3pλ + 3/2)φλ]

E sin[(3pλ ± 1)φλ] sin[(3pλ ± 1/2)φλ]

Odd A1 cos[3pλφλ] cos[(3pλ + 3/2)φλ]

A2 sin[3pλφλ] sin[(3pλ + 3/2)φλ]

E cos[(3pλ ± 1)φλ] cos[(3pλ ± 1/2)φλ]

a pλ ≥ 0, 3pλ − 1 > 0 and 3pλ − 1/2 > 0
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Table 5.II: Adiabatic basis sets gad,ΠΓ
i,pλΩλ

(i = 1, 2) in φλ for P3 permutation

group in the presence of a conical intersectionb

Ωλ Γ gad,0Γ
1,pλΩλ

gad,1Γ
1,pλΩλ

Even A1 cos[(3pλ + 3/2)φλ] cos(3pλφλ)

A2 sin[(3pλ + 3/2)φλ] sin(3pλφλ)

E cos[(3pλ ± 1/2)φλ] cos[(3pλ ± 1)φλ]

Odd A1 sin[(3pλ + 3/2)φλ] sin(3pλφλ)

A2 cos[(3pλ + 3/2)φλ] cos(3pλφλ)

E sin[(3pλ ± 1/2)φλ] sin[(3pλ ± 1)φλ]

Ωλ Γ gad,0Γ
2,pλΩλ

gad,1Γ
2,pλΩλ

Even A1 sin[(3pλ + 3/2)φλ] sin(3pλφλ)

A2 cos[(3pλ + 3/2)φλ] cos(3pλφλ)

E sin[(3pλ ± 1/2)φλ] sin[(3pλ ± 1)φλ]

Odd A1 cos[(3pλ + 3/2)φλ] cos(3pλφλ)

A2 sin[(3pλ + 3/2)φλ] sin(3pλφλ)

E cos[(3pλ ± 1/2)φλ] cos[(3pλ ± 1)φλ]

b pλ ≥ 0, 3pλ − 1 > 0 and 3pλ − 1/2 > 0
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Table 5.III: Diabatic basis sets gd,ΠΓ
i,pλΩλ

in φλ for P3 group in the presence of

a conical intersectionc

Ωλ Γ gd,0Γ
1,pλΩλ

gd,1Γ
1,pλΩλ

Even A1 cos[(3pλ + 1)φλ] cos[(3pλ − 1/2)φλ]

A2 sin[(3pλ + 2)φλ] sin[(3pλ + 1/2)φλ]

E cos[{(3pλ + 1) ± 1}φλ] cos[{(3pλ + 1) ± 1/2}φλ]

Odd A1 sin[(3pλ + 1)φλ] sin[(3pλ − 1/2)φλ]

A2 cos[(3pλ + 2)φλ] cos[(3pλ + 1/2)φλ]

E sin[{(3pλ + 1) ± 1}φλ] sin[{(3pλ + 1) ± 1/2}φλ]

Ωλ Γ gd,0Γ
2,pλΩλ

gd,1Γ
2,pλΩλ

Even A1 sin[(3pλ + 1)φλ] sin[(3pλ − 1/2)φλ]

A2 cos[(3pλ + 2)φλ] cos[(3pλ + 1/2)φλ]

E sin[{(3pλ + 1) ± 1}φλ] sin[{(3pλ + 1) ± 1/2}φλ]

Odd A1 cos[(3pλ + 1)φλ] cos[(3pλ − 1/2)φλ]

A2 sin[(3pλ + 2)φλ] sin[(3pλ + 1/2)φλ]

E cos[{(3pλ + 1) ± 1}φλ] cos[{(3pλ + 1) ± 1/2}φλ]

c pλ ≥ 0 and 3pλ − 1/2 > 0
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[2] M. Born, Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. Article No. 6, 1 (1951).

[3] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University

Press, Oxford, 1954), pp. 166-177 and 402-407.

[4] The Role of Degenerate States in Chemistry: A Special Volume of Advances in

Chemical Physics, eds. M. Baer and G. D. Billing (Wiley-Interscience, New York,

2002), Vol. 124.

[5] G. Herzberg and H. C. Longuet-Higgins, Discussion Faraday Soc. 35, 77 (1963).

[6] H. C. Longuet-Higgins, Proc. R. Soc. London A 344, 147 (1975).

[7] H. C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961).

[8] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 70, 2284 (1979).

[9] C. A. Mead, Chem. Phys. 49, 23 (1980).

[10] M. V. Berry, Proc. Roy. Soc. London, Ser. A 392, 45 (1984).

[11] A. Kuppermann, in Dynamics of Molecules and Chemical Reactions, edited by

R. E. Wyatt and J. Z. H. Zhang (Marcel Dekker, New York, 1996), pp. 411-472.

[12] Theory of Chemical Reaction Dynamics Vols. I and II, edited by M. Baer (CRC

Press, Boca Raton (Florida), 1985).

[13] Dynamics of Molecules and Chemical Reactions, edited by R. E. Wyatt and J.

Z. H. Zhang (Marcel Dekker, New York, 1996).

[14] G. Nyman and H.-G. Yu, Rep. Prog. Phys. 63, 1001 (2000).



197

[15] J. Z. H. Zhang, J. Q. Dai, and W. Zhu, J. Phys. Chem. A 101, 2746 (1997).

[16] S. K. Pogrebnya, J. Palma, D. C. Clary, and J. Echave, Phys. Chem. Chem.

Phys. 2, 693 (2000).

[17] D. H. Zhang, M. A. Collins and S. Y. Lee, Science 290, 961 (2000).

[18] Y.-S. M. Wu, A. Kuppermann, and B. Lepetit, Chem. Phys. Lett. 186, 319

(1991).

[19] Y.-S. M. Wu and A. Kuppermann, Chem. Phys. Lett. 201, 178 (1993).

[20] A. Kuppermann and Y.-S. M. Wu, Chem. Phys. Lett. 205, 577 (1993).

[21] Y.-S. M. Wu and A. Kuppermann, Chem. Phys. Lett. 235, 105 (1995).

[22] A. Kuppermann and Y.-S. M. Wu, Chem. Phys. Lett. 241, 229 (1995).

[23] B. K. Kendrick, J. Chem. Phys. 112, 5679 (2000); 114, 4335 (2001) (E).

[24] A. Kuppermann and Y.-S. M. Wu, Chem. Phys. Lett. 349, 537 (2001).

[25] D. A. V. Kliner, K. D. Rinen, and R. N. Zare, Chem. Phys. Lett. 166, 107

(1990).

[26] D. A. V. Kliner, D. E. Adelman and R. N. Zare, J. Chem. Phys. 95, 1648 (1991).

[27] D. Neuhauser, R. S. Judson, D. J. Kouri, D. E. Adelman, N. E. Shafer, D. A. V.

Kliner and R. N. Zare, Science 257, 519 (1992).

[28] D. E. Adelman, N. E. Shafer, D. A. V. Kliner and R. N. Zare, J. Chem. Phys.

97, 7323 (1992).

[29] F. Fernandez-Alonso and R. N. Zare, Ann. Rev. Phys. Chem. 53, 67 (2002).

[30] M. Gilbert and M. Baer, J. Phys. Chem. 98, 12822 (1994).

[31] G. C. Schatz, J. Phys. Chem. 99, 7522 (1995).



198

[32] C. S. Maierle, G. C. Schatz, M. S. Gordon, P. McCabe, and J. N. L. Connor, J.

Chem. Soc. Faraday Trans. 93, 709 (1997).

[33] G. C. Schatz, P. McCabe, and J. N. L. Connor, Faraday Discuss. 110, 139 (1997).

[34] A. J. Dobbyn, J. N. L. Connor, N. A. Besley, P. J. Knowles, and G. C. Schatz,

Phys. Chem. Chem. Phys. 2, 549 (2000).

[35] T. W. J. Whiteley, A. J. Dobbyn, J. N. L. Connor and G. C. Schatz, Phys. Chem.

Chem. Phys. 2, 549 (2000).

[36] M. H. Alexander, H.-J. Werner, and D. E. Manolopoulos, J. Chem. Phys. 109,

5710 (1998).

[37] M. H. Alexander, D. E. Manolopoulos and H.-J. Werner, J. Chem. Phys. 113,

11084 (2000).

[38] T. Takayanagi and Y. Kurosaki, J. Chem. Phys. 113, 7158 (2000).

[39] V. Aquilanti, S. Cavalli, D. De Fazio, and A. Volpi, Int. J. Quant. Chem. 85,

368 (2001).
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Chapter 6 Summary and conclusions

A general Born-Huang treatment of quantum dynamics for multiple interacting elec-

tronic states is considered for a polyatomic system. In the adiabatic representation,

the n-electronic-state nuclear motion Schrödinger equation is presented along with

the structure of the first-derivative and second-derivative nonadiabatic coupling ma-

trices. In this representation, the geometric phase must be introduced separately

and the presence of nonadiabatic couplings introduces numerical inefficiencies for the

solution of that Schrödinger equation, even if those couplings are not singular at

electronically-degenerate nuclear geometries. This makes it desirable to go to a di-

abatic representation, which incorporates automatically the geometric phase effect.

In addition, appropriate boundary conditions can be chosen so as to impart desired

properties on the diabatic version of the n-electronic-state nuclear motion Schrödinger

equation. One such property is the minimization of the magnitude of the nonadia-

batic couplings. If a complete (infinite) set of adiabatic electronic wave functions is

used in a Born-Huang expansion of the system’s electronuclear wave function (which

is not possible in practice), this term vanishes automatically. In practice, a finite

number n of adiabatic states are included for the treatment of chemical reactions.

For this case, a residual coupling term survives in the diabatic representation as a

nonremovable coupling term, which however does not diverge at conical intersection

geometries. A general method is presented that minimizes this nonremovable cou-

pling term over the entire internal nuclear configuration space, leading to an optimal

diabatization. As a very good first approximation, this term can be ignored in the

diabatic nuclear motion Schrödinger equation. Since that term is obtained as a part

of the diabatization process, its effect on the reaction cross sections can be studied

subsequently by perturbative or other methods. This treatment is then applied to

the benchmark H3 system in the presence of its lowest two adiabatic electronic states
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1 2A′ and 2 2A′.

The results of accurate calculations of the first-derivative coupling vector between

these two states of H3 are presented. These calculations are performed over the en-

tire internal nuclear configuration space of this system of possible importance for its

reactive scattering, up to total energies of about 5 eV. In addition, a fit (DSP) to its

ground and first-excited electronic energies obtained by ab initio methods is given.

The couplings are found to be non-negligible even away from the conical intersection

between these states, and can be used to obtain their longitudinal (removable) and

transverse (nonremovable) parts. We have also compared our results with the analyt-

ical ones, obtained by a double many-body expansion (DMBE) method [Varandas et

al. J. Chem. Phys. 86, 6258 (1987)], which have built into them the right physical

behavior in the vicinity of the conical intersection geometries. The DMBE ground-

state electronic energies agree well with the DSP fit to the ab initio energies, while the

first-excited ones show some significant differences. The DMBE couplings are purely

longitudinal and hence fully removable upon an adiabatic to diabatic transformation.

They compare well with the ab initio ones only in the neighborhood of the conical

intersection, as expected.

We have also investigated the line integrals (along closed paths around the conical

intersection between these electronic states) of the ab initio couplings over the entire

nuclear configuration space considered. We found large deviations of the topological

phase ΦT(ρ, θ) from π suggesting the existence of conical intersections between the

2 2A′ and 3 2A′ states and/or the presence of non-negligible derivative couplings

involving excluded electronic states. Electronic energy calculations for the 3 2A′ state

and its first-derivative couplings with the 2 2A′ state could lead to a quantitative

correlation between the topological phase between the 1 2A′ and 2 2A′ states and the

locus of possible intersection geometries between the 2 2A′ and 3 2A′ states.

We have reported the first global optimal diabatic basis, obtained from accurate

ab initio first-derivative couplings between the 1 2A′ and 2 2A′ adiabatic PESs of

H3. These couplings were used in a three-dimensional Poisson equation for the dia-
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batization angle, over the entire dynamically important domain U of internal nuclear

configuration space, together with a combination of Neumann and Dirichlet bound-

ary conditions. These conditions were chosen so as to minimize the average value of

the magnitude of the transverse (nonremovable) part of the first-derivative coupling

vector over that domain. Since that is the only part of that vector that appears in

the diabatic nuclear motion Schrödinger equation, the result is an optimal diabatic

basis. The minimization was measured quantitatively by solving the Poisson equation

with only Dirichlet boundary conditions and comparing the average magnitude of the

transverse coupling vector obtained from this solution with that obtained from the

optimal solution. The transverse vector was found to be about 80 % smaller than

the original first-derivative vector, indicating that the minimization provided by the

Neumann boundary conditions used in the latter was very significant.

The diabatization angle was calculated over the full U domain. The resulting

diagonal and off-diagonal components of the diabatic potential energy matrix were

obtained and their importance for the reactive scattering process was discussed. The

longitudinal and transverse parts of the full first-derivative coupling vector were calcu-

lated and a detailed analysis of their relative magnitudes in the dynamically important

regions of nuclear configuration space was presented. In a first but good approxima-

tion to the nuclear motion diabatic scattering equations, the transverse part can be

neglected (as well as the small second-derivative diabatic coupling matrix correction

to the diabatic PESs). Since, however, it is now known, it can be introduced pertur-

batively at a later stage to assess its importance for the two-electronic-state scattering

calculations. It is expected to have only a small effect on the scattering dynamics,

but just how small remains to be determined.

A quantum scattering formalism for a triatomic reaction on two interacting elec-

tronic states is presented in both adiabatic and diabatic representations. Advantages

and disadvantages of the two approaches are discussed and compared. This formal-

ism is an extension of the time-independent coupled-channel hyperspherical method

for one adiabatic electronic state. The extended formalism involves obtaining adia-
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batic or diabatic local hyperspherical surface functions (LHSFs) for each hyperradial

shell. The partial wave adiabatic or diabatic nuclear wave functions are expanded

in terms of these surface functions and the coefficients of the expansion propagated

to an asymptotic value of the hyperradius. Here the adiabatic nuclear wave function

is directly matched to asymptotic diatom rovibrational states, whereas the diabatic

nuclear wave function needs to be first transformed to its adiabatic counterpart and

then matched to asymptotic diatom rovibrational states. This asymptotic analysis of

the nuclear wave function gives the partial wave scattering matrices needed to obtain

the desired differential and integral cross sections. This formalism enables the calcu-

lation of these cross sections over a broader energy range that sample the first-excited

adiabatic electronic sheet in particular. It also allows for a comparison of the cross

sections obtained using this two-electronic-state formalism with those obtained using

only the adiabatic ground electronic state (with the geometric phase included), which

should provide an estimation of the energy range of validity of the one-electronic-state

Born-Oppenheimer approximation.


