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Abstract

Multiscale techniques have been popular methods for image and video compres-
sion. The basic idea behind these techniques is to decompose the original signals
into several components of different scales, however the scale is defined, of different
sizes. One then applies appropriate encoding strategies to different components to
achieve compression by taking advantage of various properties. In this thesis, we
review and present several new schemes of multiscale techniques using linear and
nonlinear systems. Linear techniques, which use linear filters for decomposition,
have been thoroughly investigated and widely applied because of their simplicity
in implementation and analysis. Herein we describe how to appropriately combine
these techniques in order to process the signals more efficiently and advantageously;
moreover, the picture quality of the quantized images can be improved. The sub-
band coding technique is used as the basis for these combinations. As for the
nonlinear technique, we would like to take advantage of the nonlinear features of
images (such as edges) in compression to achieve compressing and enhancing of the
images. Herein we design several nonlinear multiresolution systems, using various
nonlinear filters, to decompose the signals in a proper form. We show that, in terms
of rate-distortion performance, where mean squared error is used as the distortion
criterion, these schemes are close to, or even better than, JPEG standard, whereas
the encoding and, especially, decoding complexity is lower than that of JPEG. We
can obtain much better image quality (in the perceptual sense), however, by apply-
ing suitable simple and fast lossless compression schemes to subimages. Simulation
results are demonstrated to show the advantages and feasibility of the proposed
scheme. In summary, we mention the current status and future trends of compres-

sion technologies.
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1.1.

Chapter 1

Introduction

Background

Still and moving image-compression techniques are becoming more important in
contemporary digital communication and storage systems because of the large po-
tential market. Digital laserdisc, CD-Interactive, CD-ROM, electronic camera,
video-phone, video conferencing, interactive image and video, HDTV, multimedia,
etc., are all important applications of the image and video compression techniques
[IEEE JSAC, 1987, [IEEE JSAC, 1989], [IEEE JSAC, 1993], [IEEE CSVT, 1993],
[Communications of the ACM, 1991], [Kunt, 1992]. It is believed that these tech-

niques will play very important roles in more and more applications.

Because of the vast amount of data for image and video signals, we need a high-
compression capability scheme to highly reduce the bit rate and save the transmis-
sion as well as storage bandwidth. For example, one proposal for HDTV has the
following specifications: bits per pixel: 24bpp, frame size: 1408 x 960, and frame
rate: 30/sec. The bit rate for this HDTV system, therefore, is over 1Gbits/sec just
for transmitting the video signals. Of course, this is too high for normal transmis-
sion channels and inefficient for high-rate channels. We need a compression scheme

to greatly reduce the bit rate.

Generally speaking, lossless compression techniques can only provide a compres-
sion ratio of about 2:1. This is certainly not enough for image and video transmis-

sion systems; therefore, we have to resort to lossy compression techniques. If we are
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granted the flexibility of allowing distortion of the original image and video signals,
then the compression ratio can be as high as several thousand to 1, depending on
the resulting distortion. Even if we apply a lossy compression scheme, however,
the perceptual quality of the quantized images can still be lossless; this means that
one can hardly tell the difference between the quantized and original images; or,
even better than that of the original ones in the medium compression-ratio region,
if we properly design the compression schemes. For example, in Chapter 3, we
will propose a nonlinear-filter-based, multiscale pyramid system for 1mage compres-
sion. We demonstrate that high compression and enhancement can be achieved

simultaneously.

Basically, the source encoder of a video transmission or storage system is com-
posed of three parts: an interframe compressor, intraframe compressor, and data
compactor (lossless data compressor). A block diagram is shown in Figure 1.1.1. Of
course, for an image-compression system, we do not need the interframe compressor.
This thesis is devoted to proposing schemes for inter- and intraframe COIpPressors

using linear and nonlinear multiscale techniques.

Interframe . Intraframe Data
compressor compressor compactor

Figure 1.1.1 The source encoder of a video compression scheme.

Multiscale techniques have been popular methods for image- and video- com-
pression systems. The basic idea behind these techniques is to decompose the
original image into several components of different scales, however the scale is de-
fined, probably with different sizes or shapes. Figure 1.1.2 shows the simple idea of
these techniques. Here the signals can be a block of any shape, one frame, or several

frames of images. The “black box” is to decompose the signals into several parts.
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One then applies appropriate encoding strategies, inter- or intraframe, to different

components to achieve compression by taking advantage of various properties.

Signals Black Box

Components

Figure 1.1.2 Basic concept of the multiscale techniques.

Linear techniques, which use linear filters for decomposition, have been thor-
oughly investigated and widely applied because of the simplicity in implementation
and analyses. The scale defined in linear multiscale techniques is usually in a certain
frequency range. The merit of these techniques is to utilize the nonuniform distri-
bution of the signals’ 2-D (images) or 3-D (videos) power spectrum and adaptively
allocate bits to various components, depending on their variance, to achieve mini-
mum distortion. Alternatively, we can first apply a motion-compensation technique
to the signals to exploit the interframe redundancy, then apply a linear multiscale
scheme for intraframe compression. Subband or wavelet transform-based coding,
Laplacian pyramid coding, and block-transform coding all belong to this category.
Most of the currently existing standards — such as JPEG [Wallace, 1991], [Pen-
nebaker and Mitchell, 1993], MPEG [Le Gall, 1991}, and H.261 [Liou, 1991] — apply

this technique.
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Recently, nonlinear multiscale techniques have aroused much research attention
for image and video compressions because of some desired characteristics that they
provide. It is well known that many important features of images are nonlinear.
Furthermore, it is believed that HVS is itself a nonlinear process. In order to obtain
good picture quality in the perceptual sense, therefore, it is natural to apply the
nonlinear techniques. Moreover, in these nonlinear multiscale techniques, higher-
order statistics (linear as well as nonlinear redundancy) may also be used to help

compression.

Scope and Outline
This thesis contains the subjects described below.

Basic Compression Concept and Problems (Chapter 2)

The performance of the quantized images strongly depends on the compression
schemes. It is important, therefore, to understand the criteria of judging a compres-
sion scheme. We address three important criteria: the compression capability (in
terms of the compression ratio), the computational complexity of the scheme, and
the distortion of the resulting images. We then discuss the distortion criterion in
detail. We show that, as HVS is a nonlinear process, the PSNR criterion, which is
still the most widely used objective criterion, can give only very rough indications
of the image quality. We demonstrate this point by showing several interesting ex-
amples. We show that, even if two quantized images of the same original image are
compared, the PSNR may serve as a bad reference if these two images are generated
by different schemes. We then review and present several implementations, taking
account of some of the features of HVS to improve the perceptual quality of the

quantized images.
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Nonlinear Multiscale Techniques for Image Compression (Chapter 3)

Because of the difficulty in obtaining a good objective distortion criterion based
on the characteristics of HVS, it is not easy to control the image quality when
using the rate-distortion (in MSE) approach. In Chapter 3, we propose an image-
compression scheme that directly exploits the features of HVS. It is well known
that edge is an important feature for HVS and that it is nonlinear. It is very
helpful to enhance the perceptual quality if the quantized images have sharp edges.
The basic idea behind the proposed nonlinear multiscale technique, therefore, is to
retain as many edges as possible during compression, although the edge pixels are
also quantized, while throwing away the points that are not perceptually important

to HVS.

We demonstrate a multiresolution pyramid system based on the nonlinear filters
for image compression. We emphasize applying the median filter in designing the
nonlinear pyramid, then mention some other nonlinear filters that may also achieve
similar performance. The original applications of the median filters are for im-
age restoration, noise reduction, and image smoothing [Arce and Stevenson, 1987,
[Gallagher and Wise, 1981], [Arce and McLoughlin, 1987]. Figure 1.2.1 shows an
example of applying the median filter to image restoration. The basic idea behind
this nonlinear multiscale system is to take advantage of the smoothing and edge-
preserving properties of the median filters to construct subimages of different scales
and sizes. Because of these characteristics, the subimages of various levels have the
following desired properties: (1) The difference subimages have energy extremely
localized to the edge points. (2) The low-resolution subimage has sharp edges and in-
creased signal correlation in the smooth areas. We then apply appropriate compres-
sion algorithms to subimages. We show that, in terms of rate-distortion (MSE) per-
formance, this scheme is close to, or even better than, JPEG standard, whereas the
encoding and, especially, decoding complexity is lower than that of JPEG. We con-
Jecture that, because higher-order statistics are used during compression, therefore,

even though this is an over-sampled system, good rate-distortion performance can

5
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Figure 1.2.1(a) The original Lenna image.

Figure 1.2.1(b) Corrupted by salt-and-pepper noise with probability 0.15.
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Figure 1.2.1(c) Restored image using the 3 x 3 median flter.

still be obtained. Moreover, by applying suitable encoding strategies, we can ob-

tain much better image quality, thus achieving high compression and enhancement

simultaneously.

Linear Multiscale Techniques for Intraframe Compression (Chapter 4)

Subband coding [Woods, 1991], [Vaidyanathan, 1993], [Vetterli and Uz, 1992],
[Vetterli, 1984], [Wickerhauser, 1992], whose block diagrams for the transmitter and
receiver are shown in Figures 1.2.2(a) and 1.2.2(b), has found successful applications
in image coding. We first pass the image signals through a set of linear filter
bank and decimators. One then allocates various number of bits to the subbands,

depending on the signal variance in that band [Soman and Vaidyanathan, 1991],

[Vaidyanathan, 1993], [Jayant and Noll, 1984]:

7
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X(ng,yny) Hiy (20, 2y) = Mz, | My, |—{ (Q+EC); |—
H12(Zxa Zy) ? Mxl l Myz ? <Q+EC)12 —
l——> Hrr(ze, 2y) = Moy | My, = (Q+EC) g |—

Figure 1.2.2(a) Block diagram of the subband coder in the transmitter.

—s EDq1 —| M., T My, || F11(24, 2y) X (Mg, Ny)
—| ED1s —| M, T My, || F12(24, 2y) F—
—> EDKL > MxK T MyL > FKL(Zxazy) —

Figure 1.2.2(b) Block diagram of the subband coder in the receiver.

bk = b + 0510g2 P Tk /KL (121)
=0
where
] KL
b= Z by (1.2.2)
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1s a given constant, »ng is the variance of the signal in kth band, and ¢2 is the
variance of the original signal. Because of the nonuniform distribution of the power
spectrum of the image signals, one can achieve compression by allocating appropri-

ate numbers of bits to subbands. There are several excellent reviews of this subband

coding technique with applications to image compression. Compared to other linear
multiscale techniques, such as DCT and Laplacian pyrafnid, subband coding has
good compression capability. Figure 1.2.3 is an example of the comparison of the
rate-distortion (in MSE) performance of DCT and 2-channel subband coding. It
can be seen that the simplest 2-channel subband coding is superior to DCT in the

rate-distortion performance.

so-
Qﬁ 40 B e
s B
73]
o P
30— —- DCT
------ 2-channel SBC
204 7
- I I | I I I
1 2 3 4 5 6

Figure 1.2.3 Rate-distortion curves of DCT and 2-channel SBC on the Baboon image.

Herein we discuss several other properties of subbanding with applications to
some other coding techniques. Specifically, we consider the advantages of combining
subband and block-coding systems. Basically, the subbanding process has the abil-
ity of (1) decorrelating the signals (removing the linear redundancy), (2) smoothing

the block effects, and (3) transmitting the data pfogressively. We can apply this
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technique to solve many difficulties of block-coding systems. We discuss combining
with VQ and DCT. In the VQ case, we show that its encoding speed is enhanced a
great deal if we apply the proposed multiscale VQ, and the quality of the quantized
images is greatly improved. Recently, several proposals were made for compressing
the HDTV video signals by applying the scheme of combining of subband coding

and DCT. We also illustrate the advantages of this combination.

Linear Multiscale Techniques for Interframe Compression (Chapter 5)

In this chapter, we show that multirate techniques can also find applications
in interframe compression [Lee, 1993b], [Lee, 1993d]. We demonstrate several in-
terframe motion-compensation schemes for video compression. The basic idea is
to use the properties of multirafe techniques, including subsampling and energy
compaction, to greatly reduce the complexity of the block search method. When
it is properly operated, the performance of the proposed scheme can be compara-
ble to the full-search method, whereas the complexity is much reduced. We also
provide some other variant systems based on this technique to achieve different
goals with higher flexibility. Simulation results are presented to show their feasibil-
ity. The MPEG system can also incorporate this technique to further improve its

performance.

Linear Multiscale Techniques for Video Compression (Chapter 6)

We develop a video-compression system by combining the intra- and interframe
compression schemes proposed in the previous two chapters. We take advantage of
the properties of the multirate techniques in both intra- and interframe operations
to greatly reduce the complexity and/or bit rate. We analyze the signal statistics
in every band before and after motion compensation, then adaptively apply com-
pression strategies. Simulation results show that high compression ratios can really
be obtained, and that the performance (in terms of MSE and perceptual quality)

is satisfactory. Extensions of this scheme are also mentioned.
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1.3. Terminology and Abbreviations

The terminology and abbreviations used in this thesis are summarized below:

1-D: one-dimensional.
2-D: two-dimensional.
3-D:three-dimensional.

BSA: block search algorithm.
bpp: bits per pixel.
CR: compression ratio.

DCT: discrete cosine transform.

EC: entropy coder.

ED: entropy decoder.

FSA: full-search algorithm.

GMBS: generalized multiscale block search.

HVS: human visual system.

JND: just-noticeable difference.

JPEG: Joint Photographic Experts Group.

LBG: Linde-Buzo-Gray algorithm for VQ codebook generation.

MAE: mean absolute error.
MBS: multirate block search.

MPEG: Motion Pictures Experts Group.
MSE: mean squared error.

PR: perfect reconstruction.
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PSNR: peak signal-to-noise ratio.
QMF: quadrature mirror filters.
SBC: subband coding.

SQ: scalar quantization.

TSS: three-step search.

VQ: vector quantization.
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Chapter 2

Basic Compression Concept

and Problems

Introduction

Before presenting image and video compression schemes, we first discuss the criteria
of judging a compression scheme. It is important to have a thorough understanding
of these because the ultimate performance of the whole system strongly depends on
these criteria. Generally speaking, there are three basic and most important criteria:

(a) The compression capability of the scheme. We usually use the compression ratio

(CR), which is defined as

No. of original bits

CR =

~ No. of compressed bits’

(2.1.1)

to represent it. (b) The distortion of the quantized pictures, however the distor-
tion is defined. (¢) The complexity, or the processing speed, of the scheme in both
encoding and decoding. Depending on different applications, we should put dif-
ferent emphases on these criteria. The performance of the resulting images also
strongly relies on how we put emphasis on these items. For example, for a real-
time, two-way transmission system, such as video-conferencing and video-phone,
both encoding and decoding complexity cannot be high to avoid too long a delay.
We have to design a low-complexity system for encoding and decoding, therefore, to

reduce the transmission delay and relax the compression capability and distortion
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constraints; i.e., sacrifice some performance for these two. For real-time decoding
systems (asymmetrical systems), however, such as storage and interactive video
systems, because on-line encoding is no longer required, we can take advantage of
this to build a higher compression capability scheme or provide pictures with better
quality. Of course, for an off-line system, we can have an even higher flexibility for
the other two criteria and obtain better performance. We feel that, at this stage,
the computational complexity is typically the most important issue in designing a
compression scheme for practical applications. This is why most of the current pop-
ular standards — such as JPEG [Wallace, 1991], [Pennebaker and Mitchell, 1993],
MPEG [Le Gall, 1991], and H.261 [Liou, 1991] — do not have high complexity. We
really need to count on the VLSI development to relax this constraint to improve

the compression schemes.

Among these three criteria, the compression capability and the computational
complexity are much easier to define. They can be explicitly indicated by some
numbers; however, it is difficult to define a good objective distortion criterion. This
is because, for most of the applications, human eyes are the ultimate viewer, and
how human eyes sense the quantization noise under various conditions should be
an important reference for us in designing the compression schemes. We have to
take account of the properties of the human visual system (HVS), therefore, to
build the distortion criterion. However, the complex behavior of HVS results in the
difficulties of building a good objective criterion. This chapter is mainly devoted to
discussing the distortion criterion and presenting several schemes that take account

of the HVS to improve the picture quality.

Chapter outline

We first evaluate the most widely used objective criterion: MSE, or PSNR,
which is defined as

2552

PSNR = 10logy, —— =
1 -~
7 2 2T = 1)’

=1 j=1

(2.1.2)
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where X X Y is the frame size, I;; is the original pixel value at position (%, j), Ej
is the quantized pixel value, and the denominator represents MSE to show when it
fails to judge pictures and when it is approximately representable. We give examples
to illustrate that MSE or PSNR can in some cases only be a very rough indication
of the image quality. From this, we also conclude some features of HVS. These
are in Section 3.2. In Section 3.3, we review and demonstrate several schemes that
take account of some of the properties of HVS to somehow enhance the picture
quality. The major applications are to the block-coding systems, such as VQ and
DCT (JPEG). We show that, by applying these schemes, the image quality caﬁ be
slightly improved. In Section 3.4, some open problems related to this are addressed.
These open issues exist mainly because the behavior of HVS is not fully understood.

Finally, in Section 3.5, we give some concluding remarks about this work.

PSNR as the Distortion Criterion

By far, the most popular and widely used objective criterion is still the MSE, or
PSNR, mainly because of its simplicity in analyses. We can formulate the rate-
distortion performance and bound by use of the PSNR criterion. Generally speak-
ing, it is a fairly good criterion. We can roughly tell the quality of the quantized
image compared to the original one from the PSNR value. This criterion, however,
cannot be totally counted on to judge pictures; otherwise, we will be very much
misled. Herein we demonstrate two occasions in which the PSNR gives us a very

bad indication about the picture quality.

Two image sets in the same compression scheme

The first interesting example occurs when two different image sets generated
by the same compression scheme are compared. The PSNR is solely used as

the criterion. Sometimes the conclusion obtained from the PSNR’s indication is

15
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Figure 2.2.1(b) Quantized image using 2-channel SBC. The PSNR is 29.9dB.
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Figure 2.2.2(a) The original Lenna image.

33.3dB.

18

2-channel SBC. The PSNR

1mage using

Figure 2.2.2(b) Quantized
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totally contrary to that from HVS. Figure 2.2.1(a) is the original Baboon image.
Figure 2.2.1(b) is the quantized image using 2-channel (resulting in four bands in
two-dimensional case) subband coding. The PSNR is 29.9dB. Figure 2.2.2(a) is
another original Lenna image (reshown of Figure 1.2.1(a) for easy comparison).
Figure 2.2.2(b) is the quantized image using exactly the same compression scheme
as in Figure 2.2.1. All of the parameters, including the filter coefficients and the
quantization stepsize, are set to be the same in both cases. The PSNR of 2.2.2(b) is
33.3dB. We can see that, although this image has a much higher PSNR than 2.2.1(b)
(3.4dB higher), perceptually it is much worse than 2.2.1(b). We can hardly tell the
difference between 2.2.1(a) and 2.2.1(b), even with such a low PSNR, whereas very
annoying distortion can be perceived in 2.2.2(b); e.g., in the face and shoulder areas.
This demonstrates that, in this situation, the PSNR criterion may cause problems

in judging the image quality.

An image set in two compression schemes

Figure 2.2.3 Quantized image of 2.2.2(a) using 4 x 4 VQ. The PSNR is 31.53dB.
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The PSNR criterion also causes problems in judging the same image set obtained
by two different compression schemes. Figure 2.2.3 is the quantized image of 2.2.2(a)
using 4 X 4 vector quantization. The PSNR here is 31.5dB. We can see that there
is another kind of distortion — namely, blocking effects — strongly visible in the
quantized image. The perceptual effect seems to be better than that of 2.2.2(b),
however, although the PSNR is lower by 1.8dB. This shows that, even if we compare
the same image set, the PSNR criterion may also serve as a bad reference for judging

pictures obtained by two different compression schemes.

From the above two examples, we see that the PSNR sometimes serves as a
bad indication of the image quality. We cannot, therefore, totally rely on it to
judge pictures. We suggest the most appropriate case to be that in which the same
image set is compared in the same compression scheme with some parameters of
the scheme being changed. Then the PSNR can be a good criterion because the
distortion patterns in the same scheme are quite similar. The PSNR can now be an

indication of how severe the distortion pattern is.

Compression Schemes Taking Account of HVS

Because the behavior of HVS has not been fully understood, we can only take

" account of part of the known properties, most of which are experimental results,

for compensation to enhance the perceptual image quality. Herein we separately
describe three schemes for this purpose. Combinations of these schemes are straight-

forward.
Intensity sensitivity

Human eyes have different intensity discrimination to noise if the values of the
pixel intensity are different [Stockham, 1972], [Nasrabadi and King, 1988], [Lim,
1990], [Schalkoff, 1989]. Experiments showed that the just-noticeable-difference
(JND) AT with respect to the intensity I behaves approximately as in Figure 2.3.1.

From this figure, we see that, for a large range of I,

AT
- = constant. (2.3.1)

19
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o7

Figure 2.3.1 The JND AT of HVS with respect to I.

This relationship is called Weber’s law. As increases, therefore, we need to increase

AT to perceive the distortion. Equation (2.3.1) can also be approximated as

# = d(log I) ~ constant. (2.3.2)
So JND with respect to I is almost constant for a wide range of I. Based on this
experiment, it was proposed that we should preprocess the image signals by taking
the logarithm of the pixel values before the compression schemes [Stockham, 1972],
[Budge et al., 1988], [Xie and Stockham, 1991}, [Bradley et al., 1992], [Baseri and
Mathews, 1992]. In the receiving end, we then restore them by taking the exponen-
tial. In this situation, the PSNR value obtained during the pre- and postprocessing

stage, considering the above factor, should be a good indicator.

Randomness sensitivity

The sensitivity of human eyes to the noise also strongly depends on the ran-

domness of the image [Lee, 1993c], [Lim, 1990, [Puri and Aravind, 1991], [Vaisey
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and Gersho, 1992]. We can see this from Figures 2.2.1 and 2.2.2. In Figure 2.2.1,
because the “average randomness” is very high (many texture regions), we cannot
perceive the quantization noise, although it is large (the PSNR is 29.9dB, corre-
sponding to root MSE of 8.16). In Figure 2.2.2, on the other hand, because there
are many smooth regions, small quantization noise can be perceived (the PSNR is
33.3dB, corresponding to root MSE of 5.5), which results in annoying visual quality.
This shows that on average, the higher the randomness of a region, the lower the

sensitivity of HVS to the noise, or the higher the quantization noise allowed.

We should take account of this factor in designing a compression scheme; other-
wise, the visual effect will be different in different regions. For example, in Figure
2.2.2, in the hat feather area, we cannot perceive much distortion partly because
of the high randomness in that area, whereas in the face and shoulder area, large
distortion can be seen. Inconsistent perceptual quality is observed, therefore, in this
image. In some sense, this is inefficient in bit rate because the annoying distortion
dominates the perceptual effect, so that we tend to ignore the regions with better
quality. This means that we waste bits in these better-quality regions. The visual

quality in every region should, therefore, be approximately the same.

We propose an adaptive quantizer to deal with this problem [Lee, 1993c]. The
basic idea is to adaptively adjust the quantization stepsize in every region so that
more quantization error is allowed in the areas where noise is less visible, whereas
less error is introduced in the more sensitive areas. In other words, we adjust the
quantization stepsize so that the perceptual distortion is roughly constant every-
where. Smooth or low-detailed regions, where noise is more visible, should have finer
stepsize, whereas high-detailed regions, such as random texture, can have coarser

stepsizes. Edge parts should have medium stepsizes. Entropy, which is defined as:

1
H=> Plog, X (2.3.3)
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is a good measurement of randomness. We should adjust the quantization stepsize
of a region depending on the entropy of the region. Herein we describe how to apply
the proposed scheme to DCT. Applying it to other block-coding systems, such as

VQ, is similar with necessary modifications.
Before applying DCT, we first decide the quantization parameter, as follows:

(1) Quantize the signals into several levels, since the HVS cannot sense all 256 pixel
values. In simulations, we divide it into 64 levels. These quantized signals are

just for computing the entropy.
(2) Compute the entropy of the block using equation (2.3.3).

(3) Divide the computed H; into several levels. For each level, assign a quantization

parameter:

If Hl'. € R, = Qi,
If Hl,- > Hlj = Qi > QJ’. (2.3.4)

(4) Apply DCT to this block.

(5) Multiply the basis quantization matrix — e.g., equation (2.3.5) — by the quantiza-
tion parameter. This new matrix is the quantization matrix for the transformed

block.

(6) Apply same entropy coding as in JPEG to the quantized signals.

(7) Entropy code the overhead for the quantization parameters of every block be-

cause they are highly redundant.

Applying this scheme, we can adaptively adjust the quantization noise of the
block, depending on the randomness of this block, thus saving some amount of
required bits, or improving the perceptual quality, with only a little sacrifice in

complexity and overhead for every block.

Next, we show simulation results of the described scheme. Figure 2.3.2 is the

quantized image using DCT. The bit rate is 0.39bpp and the PSNR is 32.93dB.
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Figure 2.3.2 Quantized image using DCT without consideration of the properties
of HVS. The bit rate is 0.39bpp, the PSNR 1s 32.93dB.

Figure 2.3.3 Quantized image using DCT taking account of randomness sensitivity

of HVS. The bit rate is 0.41bpp, the PSNR 1is 32.47dB.
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Herein we have set the quantization stepsizes of all frequency components to be the
same. Figure 2.3.3 is the quantized image using the proposed scheme. The bit rate
is 0.41bpp and the PSNR is 32.47dB. Comparing Figures 2.3.2 and 2.3.2, we can
see that the distortion — e.g., blocking effects — is indeed less visible in the latter

case, with close bit rate. This shows the feasibility of the proposed scheme.

Frequency sensitivity

Tests have also demonstrated that HVS has different sensitivity of noise in dif-
ferent frequency bands. We can also take account of this factor to design the quan-
tization parameters. For example, JPEG and MPEG suggest different quantization
stepsizes for different transformed coefficients after the discrete cosine transforma-
tion [Wallace, 1991], [Pennebaker and Mitchell, 1993], [Le Gall, 1991]. Each stepsize
should be chosen as the approximate perceptual threshold or the JND in the corre-

sponding frequency range. A proposed quantization matrix is as follows:

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
Q=113 22 37 56 68 100 103 77 | (2:3.5)
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

We can see that, generally speaking, HVS has higher sensitivity in the lower fre-
quency and lower sensitivity in the higher frequency. The JND also strongly de-
pends, however, on the spatial characteristics of the source images, displaying char-
acteristics, and viewing distance. For example, as we have described, it is also a

function of the spatial randomness of the region and the intensity of the pixels.

Some other considerations

There are certainly more factors of HVS that we can take account of to im-

prove the picture quality or reduce the bit rate [Nasrabadi and King, 1988], [Lim,
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1990], [Stockham, 1972, [Xie and Stockham, 1991]. For example, experiments have
shown that HVS is much more sensitive to the luminance component than to the
chrominance components [Lim, 1990}, [Wallace, 1991], [Pennebaker and Mitchell,
1993], [Woods, 1991]. If we compress the color signals, therefore, we can subsam-
ple the chrominance components without noticeable performance deduction. This

procedure saves large amount of bits.

Concluding Remarks

In this chapter, we have discussed some criteria of judging a compression scheme

and some characteristics of HVS related to the distortion criterion. We have also

presented several compression schemes taking account of these factors to 1mprove

the perceptual quality of the quantized images.

As stated, the behavior of HVS is so complex that it is aimost impossible for us
to use simple models to describe it. We can only apply some experimental results
in designing compression schemes to slightly improve the perceptual quality of the
quantized images. Just because of this, however, there is still great potential in this
field. Many schemes are emerging, such as the model-based coding technique [Kunt
et al., 1987], [Kunt et al., 1987], trying to directly relate their coding principles to
the features of HVS. It is strongly believed that these schemes will find success and

useful applications.

25
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Chapter 3

Nonlinear Multiscale Techniques

for Image Compression

Introduction

Nonlinear multiscale technique, which uses a nonlinear scale-space filter to decom-
pose the original image into several subimages with different scales, is a relatively
new technique. It recently has aroused much attention because of some desired prop-
erties [Wong and Lee, 1993a], [Wong and Lee, 1993b), [Crespo and Serra, 1993]. It is
well known that linear multiscale techniques, although typically with low computa-
tional complexity, suffer from the drawback of moderate to low perceptual quality of
the quantized images when the compression ratio is medium to high. For example,
in transform coding, we can see strong blocking effects in the quantized images, es-
pecially when the bit rate is low or when we zoom the image up. This phenomenon
results from the independent quantization of blocks. In subband coding, aliasing
effects [Vaidyanathan, 1993], which are caused by the signal loss in subbands, can
be seen. Part of the reason why these linear techniques cannot provide good image
quality is that they do not fully take advantage of the nonlinear properties of im-
ages and HVS. We know that many features contained in images are nonlinear, and
these features are important for HVS to judge the image quality because (as stated
in Chapter 2) HVS itself is a nonlinear process. For example, edges [Lim, 1990],

[Schalkoff, 1989], which are usually defined as the positions where abrupt intensity
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change occurs, are believed to be important characteristics for both pattern recog-
nition and HVS. Given the boundary of an object, human eyes can accurately tell
what the object is without resorting to the pixel values. Linear filters tend to blur
edges; therefore, exact edge locations cannot be detected in subimages during the
compression process to help enhance image quality. Although the MSE may still
be low, typically the perceptual picture quality is not good. Especially when the
compression ratio is high, we can perceive annoying distortion in both smooth and
edge parts. This will cause problems for later postprocessing when edge information

1s needed.

The basic idea behind this nonlinear multiscale technique is, then, to keep as
many important features, such as edges, as possible dﬁring compression to preserve
the image quality, while throwing away the data, such as nonimpulsive noise, which
are not sensible to HVS (or even deteriorate the picture quality) to help compression.
When the bit rate is high, therefore, we can not only achieve compression but
also enhance images because unwanted noises, which are imposed during image
formation, are smoothed out. When the bit rate is low, moreover, we can still

retain certain picture quality.

In this chapter, we propose a nonlinear pyramid-based coding structure [Lee,
1993e], [Lee, 1993f] to achieve this goal. We present several nonlinear filters (with
emphasis on the median filter) to decompose the images into subimages of various
scales. We show that very accurate edge locations can be detected in subimages.
One can then apply appropriate simple and fast encoding algorithms to achieve high
compression as well as enhancement by keeping the important edge information.
Furthermore, we also show that the rate-distortion (in terms of MSE) performance
of the proposed scheme is close to, or sometimes even better than, that of JPEG,
even though the encoding and, especially, decoding complexity is lower. This is
because good signal structures are created in subimages and nonlinear statistics are

used. This further strengthens the feasibility of this scheme.

27
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Chapter outline

The organization of this chapter is as follows: In Section 3.2, we first describe
the pyramid structure used in this work. The theoretical principles, characteristics,
and advantages of this structure are explained. This pyramid structure is similar to
the Laplacian pyramid [Burt and Adelson, 1983], except that we propose to use non-
linear filters for decomposition instead of a Gaussian filter. We show that, although
this pyramid structure is an oversampled system, its compression capability can be
competitive to the critically sampled systems, such as subband coding and DCT
(JPEG), by properly designing the filters. In Section 3.3, we present the nonlinear
filter — namely, the median filter — used in this work and for the decomposition
purpose. The principles of this filter are briefly discussed. We demonstrate that
this median filter has three important features: (1) preserving large-scale edges, (2)
removing the impulsive noises, and (3) highly smoothing the nonimpulsive noises.
We explain that these features are suitable and desirable for compression. In Sec-
tion 3.4, we present the interpolation filter. We propose to use the bilinear filter
for interpolation. The motivation of choosing such a simple filter is explained. In
Section 3.5, we describe the important features of the various subimages generated
by this nonlinear pyramid. We demonstrate that, because of the properties of the
nonlinear filter, the subimages of various scales have the following characteristics:
(1) The difference subimages have energy extremely localized to the edge points.
(2) The low-resolution subimage has sharp edges and increased signal correlation in
the smooth areas. These characteristics are quite different from those generated by
a linear pyramid, such as the Laplacian pyramid. In Section 3.6, we demonstrate
the rate-distortion performance of the proposed scheme. Herein MSE, or PSNR, is
used as the distortion criterion. We also compare it with JPEG. We show that the
performance of the proposed scheme is better than that of JPEG when compres-
sion ratio is approximately greater than 8:1, the more practical region. This better

rate-distortion performance is probably caused by higher-order statistics being used
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and better signal structures being created in subimages. In Section 3.7, we propose
quantization and lossless compression strategies to actually encode the subimages.
The merit of these lossless schemes is to take advantage of the well-created struc-
tures of subimages to efficiently compress the data after they are quantized. We
show that these are all simple and fast algorithms, yet high compression as well as
enhancement can be achieved simultaneously. In Section 3.8, simulation results are
demonstrated to support the feasibility of the proposed scheme. We also explain
that the proposed scheme is very suitable for compressing the images imposed by
random noises, especially those such as salt-and-pepper noises. For example, if the
image-recording equipment is not good, then the noises tend to be imposed on the
images. We illustrate this by showing several examples of compressing noisy images.
We see that compression and restoration can be achieved at the same time without
extra pre- or postprocessing. We also show results of compressing these images,
using subband coding, and demonstrate the superiority of the proposed scheme in
this case. Finally, in Section 3.9, discussions and concluding remarks about this

work are given. Some possible extensions and future works are also mentioned.

3.2. A Pyramid Structure

The pyramid structure we use to generate subimages of various scales is shown in
Figure 3.2.1, where |M,, | M, | denotes subsampling by M,, and M, in z and y
directions, respectively. Low-resolution subimages I; are created by passing I,
through usually a low-passed filter H and the decimation box. This structure is
similar to the Laplacian pyramid [Burt and Adelson, 1983]. As shown in Figure
3.2.1, in the encoder, we transmit subimages {Dy, Dy, -, Dr, 1} obtained by

D1 = I - Ih',
Dy =1, — Iy,
Dy =114 — I,

Ir, (3.2.1)
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Figure 3.2.1 The pyramid structure in the encoding side.
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Figure 3.2.2 The pyramid structure in the decoding side.

where D), is the difference subimage of the kth level, I is the low-resolution subim-
age of the kth level, and I;; is the interpolated version of Iy. In the decoding part,
we reverse equation (3.2.1) to get the original signal I. Figure 3.2.2 shows the de-
coding structure. Perfect reconstruction (PR) is, therefore, guaranteed if there is
no quantization or transmission loss, no matter how we design the filters H and G

and the decimation boxes.

Some features of this pyramid structure are described below [Burt and Adelson,

1983], [Vetterli and Uz, 1992], [Vaidyanathan, 1993):
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(a) This is an oversampled system. This means that the number of output pixels

in the transmitter is greater than that of the original image. Specifically, if the
original size is N X N and the decimation box is in every level, then the

total number of output pixels is
NN
N=> =x=. (3.2.2)
i=0

Compared to subband and transform coding, which are critically sampled sys-
tems, it seems that the compression ratios we can obtain in using this structure
are lower because we have to transmit more data. Because of property (b),

however, this is not always true.

(b) As stated, no matter how we design H and G, we can always obtain PR; there-
fore, we can incorporate good and desired filters for H and G so that the signal
characteristics in every level are better suited for compression and other pur-
poses. Thisis a great flexibility. For example, as proposed in this chapter, we can
apply a nonlinear filter for image compression or include a motion-compensated
filter for video compression. This implies that we can take advantage of some
nonlinear characteristics of images to help compression. Comparing to subband
and transform coding, which have many constraints on designing PR systems,
we can really gain many advantages here. Even though this is an oversampled

system, high compression can still be achieved by properly designing H and G.

The key point here is, then, how to design good H and G filters so as to obtain
good performance. We propose to use the median filter for H and the bilinear filter

for G.

3.3. The Median Filter

The output of median filtering a set of data x, = {z;[i = 1,- - ,n} is given by:

Z(v+1)) ifn=2v+41,
= =<1 3.
Y med(xn) §($(U) + x('u-}-l))a ifn= 21}, (3 ] 1)



32 Chapter 3: Nonlinear Multiscale Techniques for Image Compression

Figure 3.3.1(a) The output image of passing the Lenna image through the

3 X 3 nonseparable median filter.

Figure 3.3.1(b) The difference image of the original one and Figure 3.3.1(a).
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Figure 3.3.2(a) The output image of passing the Lenna image through the

5 X b nonseparable median filter.

Figure 3.3.2(b) The difference image of the original one and Figure 3.3.2(a)
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where z(,) denotes the vth order number after sorting x,. For reviews of the de-
tails, properties, and implementations of the median filters, see [Gallagher and
Wise, 1981], [Fitch et al., 1984], [Arce and Stevenson, 1987], [Arce and McLough-
lin, 1987], and [Pitas and Venetsanopoulos, 1988]. Figures 3.3.1 and 3.3.2 show
several examples of the output of passing images through the nonseparable median
filters with various Window sizes. We can see that there are three important fea-
tures in the output images: (a) Depending on the window size, large-scale edges are
still preserved very well, although some of the small-scale edges are missing. (b)
The impulsive noises are removed. (c¢) Nonimpulsive noises in the smooth areas are
highly reduced. These properties are very different from those of passing through
linear filters. Linear filters tend to smear the edges and cannot totally remove the
impulsive noises. After median filtering, therefore, we can still detect the locations

of the large-scale edges very accurately.

Because of the properties described above, the original applications of the me-
dian filters are mainly for image restoration, noise reduction, and image smoothing.
Tests have been demonstrated that for such applications, separable median filters
are generally better than nonseparable ones. This is because nonseparable filters
result in too much smoothing, which may destroy the original texture structures.
Recently, cascade, or multistage [Arce and Stevenson, 1987|, median filters have
been proposed. Compared to median filters with large window size, cascade me-
dian filters can provide higher signal resolution while meeting the noise-supression

specifications.

Herein we demonstrate that the described three features of the median filters

are also appropriate for image compression. For generating pyramid subimages with
different scales, we propose to use the 3 x 3 nonseparable filter for H. The reasons

for choosing such a small-sized nonseparable filter are as follows:

(a) If we use a larger-sized filter, then the variance of the difference subimages

D;’s will be higher because more infomation is lost in low-resolution subimages.
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Although we can save bits for the low-resolution subimage, we need to spend
more bits for D;’s, which is not worthwhile because of their much larger image
size. We would like to pass as much information as possible to the low-resolution

subimage.

(b) Because we would like to take advantage of the signal correlation to achieve
compression, we apply the nonseparable filter. It is expected that one pixel can

be best estimated by its surrounding neighborhood.

3.4. The Interpolation Filter

From Figures 3.2.1 and 3.2.2, we know that the interpolation filter is needed on
both encoding and decoding sides. Its complexity, therefore, affects both encoding
and decoding speed. Furthermore, because the quantization noise must be passed
through the interpolation filters, how the interpolation filters affect the final result-
ing quantization loss needs to be considered. We know that it is hard to describe
the noise behavior after passing the quantized signal through a nonlinear filter.
Taking account of these factors, we intentionally design a simple linear filter for
interpolation. We apply the bilinear filter here. Figure 3.4.1 shows its operation. It

can be seen that this is basically a multiplication-free process. Only simple additions

a Q) a;_bx b O
a-+c a+b+c4+d b+d
X A X
2 4 2
c+d

c O 5 % d O

(): The received data.

X, AA: The interpolated data.

Figure 3.4.1 The bilinear interpolation operation.
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and shifts are needed. Thus, this part does not increase encoding complexity much,
and the decoding speed is extremely fast. This is very desirable for real-time de-

coding systems such as storage and interactive video systems.

Although we apply such a simple bilinear filter for interpolation, because of the
desired properties provided by the median filter, we can still obtain good perfor-
mance in both rate-distortion (MSE) and visual-quality senses. We will demonstrate

this point in a later section.

The Nonlinear Pyramid

As mentioned in the previous sections, we put the 3 x 3 nonseparable median filter

in the H box and the bilinear filter in the G box. The low-resolution and difference

subimages of various scales of the Lenna image are shown in Figures 3.5.1 and 3.5.2,
respectively. Because of the properties of the median filter and the bilinear filter,

these subimages have the following characteristics:

(a) The variance of the difference subimages D;’s is small (19.50, 39.51, and 80.52
in Figure 3.5.2), and the energy is extremely localized to the edge points. Other
data have very small amplitude and look like random noises. We can, therefore,
detect the edge information of various scales from these subimages. This is very
helpful for compressing and enhémcing the image quality. We will explain this

later.

(b) The low-resolution subimages still have edges preserved very well. Owing to
the reduction of nonimpulsive noises and removal of the impulsive noises in the
smooth areas, the signal correlation among pixels is expected to be higher than
the original one. This increased correlation benefits compression greatly. We can
apply differential PCM (DPCM) [Petr, 1982], [Raulin et al., 1982], (Jayant and
Noll, 1984] to highly reduce the bit rate. Here, in order to compare with JPEG,
we apply the same DPCM scheme that JPEG does for the DC components
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Figure 3.5.1 Several low-resolution subimages generated by the nonlinear pyramid.

Figure 3.5.2 Difference subimages generated by the nonlinear pyramid.
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[Wallace, 1991], [Pennebaker and Mitchell, 1993]. We quantize the signals first,

then take the difference between the consecutive two pixels.

Note that the complexity of the whole system is low. In the encoding part, most
of the computations are spent for the median filtering, since the interpolation filter
is extremely simple. Because>on1y a small 3 x 3 median filter is applied, however, the
complexity of this part is still low. Only comparisons are needed — a multiplication-
free process. (Usually, multiplications need the most processing time compared to
additions, shifts, and comparisons.) Moreover, many fast algorithms [Ahmad and
Sundararajan, 1987], [Huang et al., 1979], [Rao and Rao, 1986] for median filtering
have previously been proposed to speed this process. Basically, then, high-speed

encoding can be achieved. As for the decoding, as stated, it is extremely fast.

Rate-Distortion Performance on Real Images

Next we investigate the rate-distortion performance of the proposed scheme. We
decompose the original imége I into {D,, Dy, I,}. We scalar quantize D; and D,,
then compute the entropy of the quantized signals. For I,, we first apply DPCM as
described above, then compute the entropy. The average entropy of Dy, D,, and I,

represents the rate. Here we use the PSNR as the distortion criterion.

Figure 3.6.1 shows the rate-distortion curves of the proposed scheme and DCT.
We have tested on several real images. They all have similar rate-distortion behav-
ior. It can be seen that, in the low-compression (high-bit-rate) region, the perfor-
mance of the proposed scheme is close to that of DCT. In the medium and high-
compression regions (bit rate lower than 1bpp and PSNR lower than 36dB), it is bet-
ter than DCT. The distortion degradation of this scheme, when the rate is decreased,
is much more graceful than that of DCT. Generally speaking, these medium and

high-compression regions are the more practical ones because, in one sense, if the
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Figure 3.6.1 The rate-distortion curves of applying DCT and the nonlinear pyramid.

PSNR of the qua.nti@d image can be as high as 34dB, then typically the picture qual-
ity is expected to be good enough, although this strongly relies on the information
content of the images. In the other sense, 10:1 compression is usually a minimum
required ratio for a lossy image-compression scheme. Taking account of these two
facts, we can say that, for practical purposes, the proposed scheme, despite its lower

complexity, performs even better than DCT even in the rate-distortion sense.
The ahove behavior is explained as follows:

(a) In the low-compression region, because the quantization stepsize is small, those
noise like signals in the difference subima.geé will not be zero even though their
average signal amplitude is small. These data cost a certain amount of bits.
Because this is an oversampled system, the total number of transmitted pixels

is much greater than that of DCT. (In this case, it is 344,064 compared to

262,144 in DCT.) Therefore, we require higher rate to transmit the data.
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(b) Starting from the medium-compression region, most of the noise like signals in
D;’s are set to zero because of the large quantization stepsize. Because of the
localization of the edge points, we do not need to spend many bits for edges.
Even though we pass much information to the low-resolution subimage, however,
owing to the high correlation in this subimage, applying a simple DPCM reduces

a large amount of variance, thus saving many bits.

This behavior also explains the advantages of this scheme over the tranditional
Laplacian pyramid. In the traditional Laplacian pyramid, even when the quantiza-
tion stepsize is large (the rate is low), because the edges are blurred and wide in
D;’s, we still need to spend many bits for these difference subimages. This results in
a much higher bit rate because of the frame size of the difference subimages being

much larger than that of the low-resolution one.

Compression Strategies

Besides the superiority of the proposed scheme in the rate-distortion sense, because
of the good data structures created in the subimages, we can apply appropriate
simple strategies to different subimages to obtain good picture quality and improve
compression. When the bit rate is high, compression and enhancement can be
achieved simultaneously. While in the low bit-rate region, we can still keep a certain
level of quality by retaining important features for HVS. Next, we describe the

schemes for this purpose.

As stated, the difference images D;’s have energy localized at the edge (high-
detail) locations. The signal looks like random noise and has small amplitudes in
the smooth areas. We observe that the small-amplitude noise does not contribute to
perceptual quality. Removing it may even improve the perceptual quality. This is
very desirable because noise is unavoidable during image formation, especially when
the quality of the recording camera is not good. For example, in a video-phone-

based transmission system, the quality of the recorded images cannot be expected
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to be good because of the imposed noise. We normally need a preprocessor and
postprocessor to reduce these imposed noises to enhance the picture quality. In-
deed, it will be demonstrated that, with designed encoding strategies for subimages
generated by this nonlinear multirescale system, we can not only save bits in coding
but also get rid of the unwanted noise to improve the image-perceptual quality, yet
without sacrificing the important information. No extra effort is needed, therefore,

for pre- and postprocessing.

We encode the first difference image D; as follows: We threshold the pixel
values to remove the aforementioned noise like signals; i.e., set di(nz,ny) = 0
if |dy(ng,ny)| < threshold. With proper thresholding, texture can be preserved.
Then we use an edge map e(n,,n,) to record the positions of these nonzero pixels
di(ne, ny),

0, if dy(ng,n,) =0

(e, 1y) = {1, otherwise. (3.7.1)

We further throw away the isolated edge points to get rid of the impulsive noise

and set the corresponding pixels to zero:

0, if e(ng,ny) =1 and e(ny—;n,_;) =0,
e(ng,ny) = -1<4,;<1,4,7#0 (3.7.2)

e(ng,ny), otherwise.
Even if these parts do not correspond to the impulsive noises, experiment shows
that the picture’s perceptual quality is not degraded, or even improved, except in
some particular texture regions. To encode the pixel values, PCM is used in which

we assign C' bits per pixel. Thus, the transmission of D; consists of two parts: We

first transmit the edge map, followed by the quantized nonzero pixel values.

Because of the high spatial redundancy in the edge map (its entropy H,, is
much less than 1 bit/pixel for normal images), we use run-length coding (see [Proc.

IEEE, 1980] for a review) to encode this bi-level image. Run-length code is a
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variable-length-to-variable-length mapping code that is appropriate for the lossless
coding of clusters or runs of like input symbols. It can lead to significant data
compression with inputs characterized by long clusters of the same symbols. One-
dimensional run-length code is used here. We scan the bitmap by rows, with the
scanning direction reversed after each row. In designing the run-length code, we
make use of the fact that, as edges are well preserved, the average run length of
the nonedge pixels is much larger than that of edge pixels; that is, runs of edge
pixels are usually short. Furthermore, in order to speed up the encoding process
and save the codebook memory, we have decomposed a run-length b as a sum of two
terms so that runs longer than 63 are broken into concatenations of shorter runs of
maximum length 63:

=64 xm+n. (3.7.3)

We use the modified Huffman coding technique to design the codebook, which is
a modified version of the CCITT-recommended variable-length coding system for

bi-level graphics.

One can, of course, apply more complex run-length schemes, such as the 2-D
prediction run-length code [Preuss, 1975], [Weber, 1975], wherein the run-length
encoding is performed on the 2-D prediction error signals instead of the original
ones, and the ordering technique [Netravali and Mounts, 1980], [Yasuda, 1980] where
data (or predicted error data) are rearranged to enhance the run-length statistics.
We intentionally choose this simple 1-D scheme, however, because we would like
to build extremely fast encoding and especially decoding systems. Because of the
small entropy of this edge map, only a small fraction of bits are needed to transmit

it. We do not expect significant saving with more complex and expensive schemes.

For the other difference images, we use even simpler compression schemes. We
first scalar quantize (uniformly) the signals. Signals with amplitude less than the

quantization stepsize are discarded. This is followed by an entropy coder to further
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reduce the bit rate. In simulations, the adaptive arithmetic coding (IBM Q-Coder)
[Witten et al., 1987], [IBM, 1988] is used. The reason why we use a different
compression scheme here from that in D, is that some of the noiselike signals may
correspond to detailed regions, such as texture. Experiment shows that throwing
away too many these data may affect the picture quality by missing too many

details.

For the low-resolution image I, the correlation among the signals in the smooth
areas is increased because of noise reduction and improved smoothing offered by
the median filter. Thus, DPCM can be used here. We use the same simple DPCM
scheme as JPEG for the DC components. This is followed by the same IBM Q-Coder
on the quantized signal. Because of the much higher variance in this subimage, we
can, of course, apply more complex compression schemes, such as DCT and VQ,
to reduce the bit rate. We expect to gain much by applying these schemes because
of high signal correlation among data. For example, if we apply DCT, then, in the
smooth areas, most of the AC components will become zero after quantization. This
will generate long runs of zeros in zig-zag scanning to help the lossless compression
greatly. For simplicity and because of the small frame size, however, we intentionally

apply such a simple scheme as that described.

We remark that the coding schemes proposed above are all very simple and fast.
Next, we show some simulation results to demonstrate that high compression ratio

as well as enhancement can be achieved.

Simulation Results

Herein we only decompose the image into two levels; i.e., Dy, D,, and I,.

The original Lenna image has been shown in Figure 2.2.2(a). Figure 3.8.1 shows
an enlarged subregion. Figure 3.8.2(a) is the quantized Lenna image corresponding
to the (1.33bpp, 39.2dB) point in the rate-distortion curve of Figure 3.6.1. We

did not apply the aforementioned encoding strategies to this one. Figure 3.8.2(b) is
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Figure 3.8.1 An enlarged subregion of Figure 2.2.2(a).

the corresponding enlarged subregion of Figure 3.8.2(a). It can be seen that, in
Figure 3.8.2(b), there are some impulsive-noise-like dots, although these dots cannot
be perceived from a large scale [e.g., in Figure 3.8.2(a)]. Getting rid of these noiselike
dots may even improve the visual quality, and a large amount of bits can be reduced.
Figure 3.8.3(a) shows the quantized image after applying the described compression
strategies. Figure 3.8.3(b) is the corresponding enlarged subpart. The bit rate is
now reduced to 0.93bpp (the PSNR is 37.1dB). Comparing Figures 3.8.2(b) and
3.8.3(b), we can see that the perceptual quality is indeed improved by applying the
proposed encoding schemes, although with much fewer bits. Also, comparing Figure
3.8.3(b) to the original Figure 3.8.1, we see that the quality is greatly enhanced.
The edges are well preserved, making the quantized image look very sharp. The
néise like signals in the other parts have been greatly smoothed, making the quality

even better. Compression and enhancement are, therefore achieved simultaneously.
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Figure 3.8.3(a) Quantized image of 2.2.2(a) at 0.93bpp and PSNR of 37.1dB.
by applying the proposed encoding strategies.

Figure 3.8.3(b) An enlarged subregion of 3.8.3(a).
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We can lower the bit rate by increasing the threshold in D; and the quantization
stepsizes. Figure 3.8.4(a) shows another quantized image of bit rate 0.85bpp and
PSNR 36.92dB. Figure 3.8.4(b) is the enlarged subregion. The image still looks
sharp because we have retained the large-scale edges (see the enlarged image); how-
ever, we start to lose some detailed information. For example, some details are lost
in the hat part. Overall, however, the picture quality is still good at this bit rate.
Figure 3.8.5 is a quantized image using DCT of similar bit rate. We can see from
Figure 3.8.5(b) that, at this bit rate, the quantized images of DCT start to exhibit
blocking effects, although not very visible here. The proposed scheme, therefore,

starts to outperform DCT in the picture-quality sense in this bit-rate range.

We have also tested this scheme on some other images. Figure 3.8.7(a) shows
the quantized image of the Peppers image. The bit rate is 0.74bpp and the PSNR is
34.0dB. Figures 3.8.7(b) and 3.8.6(b) are enlarged subregions. Similar performance
and conclusions to those in the Lenna image can be seen. Figure 3.8.9 is another
quantized image of Figure 3.8.8, the Oilfield image, with 1.1bpp and PSNR =
31.95dB. Because of the large number of edges in this image, we need more bits to
give approximately the same perceptual quality. We feel that this is very close to
the behavior of HVS because practical experience tells us that we usually use the
edge content to estimate the information amount in an image. Furthermore, it is
believed that there are specific edge detectors in human visual systems for low-level
vision tasks. As another extreme example, Figure 3.8.10 shows the quantized image
of the Baboon image in Figure 2.2.1(a). Many more edges are contained in this

image. We need 1.8bpp, therefore, to get similar perceptual quality.

In the high-compression (low-bit-rate) region, this scheme is superior to DCT,
not only in the rate-distortion (MSE) sense, as stated in Section 3.6, but also in the
perceptual quality aspect. Figures 3.8.11 and 3.8.12 show the quantized image, using
the proposed scheme and DCT, respectively, with 0.36bpp and 0.39bpp. The PSNR
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Figure 3.8.6(b) An enlarged subregion of 3.8.6(a).
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Figure 3.8.7(a) Quantized image of 3.8.6(a) by applying the proposed scheme.
The bit rate is 0.74bpp and the PSNR is 34.0dB.

Figure 3.8.7(b) An enlarged subregion of 3.8.7(a).
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Figure 3.8.8 The original Oilfield image.

Figure 3.8.9 Quantized image by the proposed scheme with 1.1bpp.
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Figure 3.8.10 Quantized image of 2.2.1(a) by the proposed scheme with 1.8bpp.

values are 32.75dB and 32.92dB, respectively. We can see very strong blocking
effects in Figure 3.8.12(b), a very annoying quality. Much higher quality can be
perceived in Figure 3.8.11(b). This further strengthens the feasibility of the pro-

posed scheme.

This scheme performs especially well if the transmitted images are already im-
posed by random noises. Compression and restoration can be achieved simulta-
neously. Figure 3.8.13 is the Lenna image corrupted by Gaussian random noise
with mean 0 and variance 30. Figure 3.8.14 is the quantized image, using the pro-
posed scheme with 1.07bpp and PSNR of 32.64dB compared to the original noisy
image. If we compare this quantized image to the original ”clean” Lenna image,
however, the PSNR is 35.21dB. Restoration is indeed obtained. Comparing Figure
3.8.13(b) and Figure 3.8.14(b), an enlarged subregion, we can see that noises are

greatly reduced. Other compression schemes tend to strengthen the random noise
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Figure 3.8.11(a) Quantized Lenna image by the proposed scheme
with 0.36bpp and PSNR 32.75dB.

Figure 3.8.11(b) An enlarged subregion of 3.8.11(a).
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Figure 3.8.12(a) Quantized Lenna image by DCT with 0.37bpp
and PSNR 32.03dB.

Figure 3.8.12(b) An enlarged subregion of 3.8.12(a).
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Figure 3.8.13 Lenna image corrupted by Gaussian noise with
zero mean and variance 30.0.

Figure 3.8.14 Quantized image of 3.8.13 by the proposed scheme with 1.07bpp
and PSNR of 32.64dB and 35.32dB compared to noisy

and clean original images, respectively.
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Figure 3.8.15 Quantized image of 3.8.13 by SBC with 1.15bpp and PSNR
of 34.50dB and 31.57dB compared to noisy and

clean original images, respectively.

because of the quantization error. For example, Figure 3.8.15 is the quantized image
of Figure 3.8.13, using 2-channel subband coding. The bit rate is 1.15 bpp and the
PSNR is 34.50dB. Compared to the original Lenna, the PSNR is 31.57dB. Noise is
increased here. Of course we can add a pre- and/or postprocessor to these schemes

to reduce the noise; however, we need extra processings to achieve this.

Discussions and Conclusions

We have presented a nonlinear multiscale system based on several nonlinear fil-
ters for image compression. The motivation, structure, and advantages have been

discussed in detail. Simulation results have also been shown to demonstrate the

system’s superiority in both rate-distortion and perceptual quality senses. This
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scheme is highly suitable for low-cost and high-picture-quality transmission and

storage systems, especially for real-time decoding systems.

We feel that the merit of the proposed system lies somewhere between the first-
and second-generation coding [Kunt et al., 1985], [Kunt et al., 1987] techniques.
First-generation coding techniques usually refer to schemes that mainly use signal
statistics (spatial redundancy) to achieve compression, plus some consideration of
the factors of HVS (see Chapter 4 for references). Schemes in this category include
subband coding, Laplacian pyramid, transform coding, and VQ. Second-generation,
or model-based, coding techniques refer to schemes that mainly use the properties of
HVS first to segment the images into several components, such as edge, texture, and
smooth parts, and then perform quantization separately by taking account of the
sensitivity of HVS to different components. Because of the difference in motivations
and goals between these two techniques, results tend to be different, especially in
terms of the perceptual quality of the quantized images. At present , first-generation
coding techniques still dominate the compression market, especially DCT, mainly
because of its simplicity in implementation and analysis. Second-generation tech-
nique is starting to attract more and more attention, however, because it is believed
that this technique matches the mechanisms of HVS more closely. Better image
quality in the perceptual sense is expected be obtained, therefore, especially when
the bit rate is low. There are many proposals for MPEG-4, a very low bit-rate
motion video compression standard, that apply this model-based coding technique.
Up to this point, the major difficulties of this scheme are its high computational
complexity and not very promising compression capability. A lot of potential for

this technique certainly exists.

In this proposed system, we actually have used the principles from both tech-
niques; namely, we not only take advantage of the signal statistics to achieve com-
pression, but also the nonlinear features of images and HVS to enhance the picture

quality. We subjectively claim that edges are important features for improving the
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image quality. During the compression process, we apply the nonlinear filter to
extract this feature and perform high compression on the other parts. Simulation
results have shown that satisfactory quality can be obtained, and the compression

capability is competitive to the JPEG standard.

Certainly there are some other nonlinear filters [Pitas and Venetsanopoulos,

1988] suitable for pyramid or some other system for image compression. Depending

on the properties of the nonlinear filters, the subjective performance will differ. For
example, we have tested by applying the clustering filter [Wong, 1993b], [Wong,
1993c], [Wong and Lee, 1993a], [Wong and Lee, 1993b] to create subimages of
different scales. The performance (in both MSE and visual quality) is indeed a
little better than that of applying the proposed median filter (but not noticeable),
partly because it can achieve even higher smoothing on the nonimpulsive noises.
Because of its very high complexity in the encoding part (decoding has exactly
the same structure as in the proposed system), however, we decided to apply the
median filter for decomposition. Recently, the morphological filters [Crespo and

Serra, 1993] have also been proposed for the pyramid systems.
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Chapter 4

Linear Multiscale Techniques

for Intraframe Compression

Introduction

Linear multiscale techniques have been popular methods for image compression.
Schemes such as subband coding, DCT, and Laplacian pyramid have been proved
to be powerful schemes, and are widely promoted at present. For example, DCT
has been applied as the basis of many intraframe compression standards, such as
JPEG, MPEG, and H.261. Thorough theoretical analyses of the various linear
multiscale techniques have also been performed and reported. Excellent reviews of
these techniques can be found in [Vaidyanathan, 1993], [Vetterli, 1984], [Vetterli and
Uz, 1992], [Jayant and Noll, 1984], [Woods, 1991}, [Wickerhauser, 1992], [Gersho
and Gray, 1991], [Netravali and Limb, 1980]. Broadly speaking, the merit of these
schemes is to model the images as two-dimensional random fields. One then uses
the spatial correlation (linear redundancy) among the symbols or takes advantage
of other structural characteristics of the signals, plus some consideration of HVS to
achieve compression (e.g., schemes as stated in Chapter 2). It is well known that
for general image signals, the power spectrum tends to be non uniform. We can use

the spectral flatness measure [Jayant and Noll, 1984], which is defined as
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where S,.(e’*) is the power spectrum density of the input signals, to indicate the
non flatness of the spectrum. Typically speaking, lower-frequency parts have higher
energy, whereas higher-frequency parts have lower energy. Figure 4.1.1 describes
the general behavior of the power spectrum of image signals. If we apply a set
of filters, or transformations, to decompose the image into subimages of different
scales, where the scale is defined in terms of a certain freqﬁency range, then we can
adaptively allocate a different number of bits to different components, depending

on the variance of, and the sensitivity of HVS to, that band.

0
2
@,

Figure 4.1.1 The behavior of the power spectrum of the general image signals.

In this chapter, we propose some other applications of the linear multiscale tech-
niques. Herein we use the subband coding technique as the basis for the linear multi-
scale decomposition. We use the properﬁies of (1) decorrelating signals and (2) pro-
gressive transmission of subband decomposition, and combine this technique with
other schemes to achieve the desired purposes. For the first property, we propose
the scheme of multiscale V@ with extremely high compression capability. The goal

is to greatly alleviate the constraint of heavy encoding computational complexity of
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VQ and greatly improve the quality of the quantized images. It is well known that
VQ is a very powerful compression technique in the rate-distortion (MSE) sense,
and has the potential of practically achieving Shannon’s rate-distortion bound for
any random process [Gersho and Gray, 1991], [Jayant and Noll, 1984], [Gray, 1984].
This is because VQ can exploit all orders of statistics (linear as well as non linear
dependence) of the random process, whereas the other linear techniques can only

remove linear redundancy.

VQ is very slow, however, in both its codebook design and encoding phases
[Gersho and Gray, 1991], [Gray, 1984], [Nasrabadi and King, 1988], [Wong, 1993a],
[Lee, 1993a]. How to find a good universal codebook for all kinds of images is
also a major problem. Moreover, like other block-coding techniques, the quantized
pictures by VQ tend to exhibit annoying blocking effects [Nasrabadi and King,
1988], [Lee, 1993a], [Wong, 1993a]. These drawbacks mean that VQ is not widely
implemented in real applications, especially when real-time encoding is needed.
Schemes that deal with the various aspects of VQ have been reported previously
[Gersho and Gray, 1991], [Nasrabadi and King, 1988], [Foster et al., 1985], [Hang and
Woods, 1985], [Kim and Lee, 1991], [Lowry et al., 1987], [Ramamurthi and Gersho,
1986], [Westerink et al., 1988], [Wu and Zhang, 1991], [Wong, 1993al, [Huang and
Huang, 1992], [Ward, 1963], [Wu, 1992]. In this chapter, we propose the scheme of
multiscale PCV(Q [Lee, 1993a] to mitigate the difficulties encountered by VQ. The
basic idea behind this scheme is to decompose and decorrelate the large blocks into
smaller blocks, using the subbanding technique before VQ. Hence, we can apply VQ
to the smaller blocks to reduce the computations greatly because the complexity
of VQ is exponentially proportional to the vector dimension. This is to use the
signal decorrelation property of the subband decomposition. Furthermore, in the
receiving end, we have a set of synthesis filters to greatly smooth out the blocking
effects, thus greatly improving the picture quality. Applying this scheme, we can

comprehensively handle the aforementioned problems simultaneously.
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An additional advantage of subband coding is that it is intrinsically progressive.
This is achieved by dividing the original images into subimages in different bands.
One then sequentially transmits subimages with (usually) increasing frequencies.
Combining with the block-coding techniques, such as applying DCT in the low-
low band, we can then have the advantages of both techniques. For example, we
have DCT with its low-complexity property to efficiently compress the low-low
subimage, but progressive transmission is still fulfilled for some other purposes; for
example data browsing and image frame conversion between signal formats, such
as HDTV and NTSC [Chen and Vaidyanathan, 1993], [Chen, 1993]. Although
DCT can also be implemented progressively [Pennebaker and Mitchell, 1993], it is
not as immediate a process. We need extra arrangement to achieve this function.
Recently, there were schemes [Argenti et al., 1993], [Kim et al., 1993] proposed
for compressing the HDTV signals by applying the above implementation; namely,
applying DCT in the low-low band followed by an entropy encoder and SQ in the

other bands followed by some other entropy‘ encoders.

The organization of this chapter is as follows: In Section 4.2, we first address
some basic properties of VQ. How it quantizes and compresses the signals and why
1t outperforms other coding techniques are explained. We also point out some draw-
backs; namely, high complexity and low picture quality of VQ. This describes the
motivations of the scheme proposed in this chapter. In Section 4.3, we briefly discuss
the codebook-generation technique, the principal component algorithm, applied in
this work. Extremely high speed (compared to the LBG algorithm) is its major
feature, but the resulting performance is not greatly sacrificed. We explain how it
works and claim that real-time codebook generation can be affordable by applying
this technique. In Section 4.4, we propose the scheme of multiscale VQ. Because we
use the product code VQ approach to build the scheme, we first briefly discuss the
principles of product code VQ. The properties and key points of this scheme are

mentioned. We then present the implementation of the proposed multiscale VQ.
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How it highly reduces the complexity of VQ is discussed in detail. We will see that,
because of the decorrelating property of the subbanding operation, we can save
many computations for encoding signals by using VQ. We also mention some other
side benefits of this scheme. We then derive the optimal codebook size allocation
strategy to different bands. Here we consider only the uniform filter banks. Finally,

in Section 4.5, we give some concluding remarks.

4.2. A Brief Introduction to VQ

Vector quantization (VQ) (see [Gersho and Gray, 1991], [Gray, 1984], and [Nasra-
badi and King, 1988] for a review) is a relatively new data-compression technique,
which has aroused much research interest during the past few years because of
its potentially high compression ability and very fast decoding. According to Shan-
non’s rate-distortion theory, we can always get better performance by coding vectors

instead of scalars, even if the source symbols are memoryless.

The procedure of prototype VQ is as follows: First we define a mapping function

Q of K-dimensional Euclidean space RY; i.e.,
Q:RF —Y

where Y = {X'|i = 1,2,---, N} is the set of reproduction vectors of dimension K
for each vector X' and N is the number of vectors. In the encoding phase, we group
a number of data to form a vector x of dimension K (usually taken from a square
block in image coding). We then find the reproduction vector X’ that is closest to
x, commonly using the minimum MSE criterion:

K-1

d(x,R) = (2 — 3})"
k=0

d(x,%7) < d(x,%"), i=1,---,N. (4.2.1)
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Finally, we transmit the index j, or the entropy encoded j, of the reproduction
vector. At the receiver, we get the reproduction vector X? by searching a look up
table (which is the same as the one in the transmitter) indexed by j. The block

diagram is shown in Figure 4.2.1.

Decision Rule J Chonnoll—s Table Look Up | A
(Nearest Neighbor) ™ (indexed by j)

N

Codebook Codebook

Figure 4.2.1 Block diagram of the VQ encoder and decoder.

There are some other subjective distortion measures [Gersho and Gray, 1991],
such as (spectrally) weighted MSE, which will result in different performance. The
choice of distortion measure, of course, depends on the criterion of judging the

quantized images.
Some properties of the prototype VQ are summarized as follows:

1. Generally speaking, the performance (quantization error) of VQ strongly de-

pends on the following:

(i) The probability density function of the input symbols. Second-order (vari-
ance) as well as higher-order statistics all affect the resulting quality of the

compressed images.

(i1) The dependence among symbols. The stronger the dependence, the fewer

bits (codevectors) are needed to get the same performance.
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(iii) The number of codevectors N (or number of bits R = 3 log, V). Of course,

we can get better compressed-image quality by using more codevectors.

(iv) The vector dimension K. Larger vector dimension means that longer-range

dependence can be included in one vector; therefore,
fewer bits are needed to get the same performance.

2. The encoding complexity per pixel of VQ is proportional to N = 2FK; therefore,
when K is large, the complexity is too high to be feasible. This is a tradeoff

between performance and complexity.

3. The compressed images using VQ exhibit a severe visible blocking effect because
the independent quantization of the blocks results in discontinuities at the block
boundaries. The same problem also exists in other block-coding algorithms,

such as DCT.

Because of the high complexity and low perceptual quality problems, VQ is still
not practically feasible. Another important restricting factor is the extremely low
speed of codebook design. In other words, VQ is slow not only in the encoding but

also in the codebook-design phase.

In the codebook-design phase, we use the principal component algorithm pro-
posed in [Wong, 1993a}, [Huang and Huang, 1992). Then, for the encoding phase,
we propose a new scheme named multiscale V@, which uses a product code VQ
approach to perform compression. Combining these two algorithms, we then build

a fast VQ encoding system and apply it to real-time image compression.

4.3. Principal Component Algorithm

Principal component vector quantization (PCVQ) intrinsically falls into the cat-
egory of tree-structured VQ (TSVQ) [Wong, 1993al, [Huang and Huang, 1992].
Unlike the TSVQ using LBG (Linde-Buzo-Gray) algorithm [Linde et al., 1980], also
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known as Generalized Lloyd Algorithm (GLA), which needs convergence opera-
tions at each stage, we continue to split the codewords until the desired number of
codevectors is obtained, thus saving a tremendous amount of computations. Even
though the convergence is not operated after splitting, it has been demonstrated
[Wong, 1993a] that the performance is comparable to that of GLA because of the

good locations of clustering centers, and the implementation speed is much higher.

Although the idea of TSVQ by splitting a codeword along the principal compo-
nents of the set of vectors it encodes has been proposed before [Lowry et al., 1987],
[Wu, 1992], [Huang and Huang, 1992], [Orchard and Bouman, 1991], in [Wong,
1993a], the author made it a straightforward and fast algorithm, capable of finding
a good codebook much faster than any other algorithm. It can be shown that PCVQ
has time complexity of O[K?*|S]|log(N)]. Thus, PCVQ scales very well with both
K and N. Simulation results show that, compared to GLA, the PSNR of PCVQ is
worse only by about 0.7dB, while the speed is almost 80 times faster or more if the

codebook size gets larger.

It is also noted in [Wong, 1993a] that the compressed images encoded by PCVQ
tend to exhibit strong blocking effects, even more blocky than that of GLA. The
author conjectured that this is because, whenever a codeword is divided into two,
the cutting plane passes through the centroid. This results in the situation that
nearby vectors get assigned to different codewords because the neighborhood of
the centroids is more likely to be densely populated. As we will see in the next
section, however, this blocking effect can be suppressed by applying the proposed

“multiscale VQ” scheme [Lee, 1993a] in the encoding phase.

Multiscale VQ

In this section, we propose the scheme of multiscale VQ that can further reduce the

complexity of PCVQ (TSVQ) in the encoding phase. This scheme can also greatly
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reduce the annoying blocking effects. As will be seen later, the blockiness becomes

almost invisible if we apply this scheme-a very great advantage.

As we use a product code VQ approach to implement this generalized multiscale

PCVQ, we briefly discuss the basic idea of product code VQ first.

Introduction of product code VQ

The idea behind the product code VQ [Gersho and Gray, 1991], [Sabin and Gray,
1984] is to use a transformation to partition the vector into several subvectors with
smaller dimensionality. Then we apply VQ (or SQ if the partitioned vector has
dimension 1) to these smaller vectors instead of the original large vectors, thus
reducing the computational complexity. Precisely,/in mathematical terms, given a
vector X of dimension K > 1,let V{,V,, .-, V,, be aset of vectors with dimensions
lower than K that are transformations of X. It is required that we can reconstruct

X by using Vi, V,, -+, V. In other words,
V¢ = hi(X), 1= 1,2,-'-,M, (4.4.1)

and

X =f(V1,Vo, -, Vu). (4.4.2)
For each V;, we then design a codebook C; with N; reproduction vectors from V;
or some training set from V,;. A product-code vector quantizer is a quantizer that
transforms the input vector X first and then applies VQ to each V;. This generates
a set of indices Iy, Iy, -+, Iy specifying the addresses of the reproduction vectors
Vi€ C; fori = 1,---, M. These are, in turn, transmitted to the decoder. At the
receiving end, we have available the same codebook C;’s as those in the transmitter.

Using these indices as well as equation (4.4.2), we can, therefore, then reconstruct

the estimate X using V; as

}2 - f(i}l, {72, e ,VM) (443)
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The block diagram of product code VQ is shown in Figure 4.4.1. Because the
dimensions of V;’s are smaller than those of X, we can save computations in en-
coding because the encoding complexity is exponentially proportional to the vector

dimension.

V;

X(nfwny> > hl(')

~

>
[NV
N
SN—’
~

l

>

=4
<
S

VQ,u —tu

Figure 4.4.1 Block diagram of product code VQ in the transmitter.

The key point (and the goal) about the partition method equation (4.4.1) is
that the functions h;(-)’s should have the ability to decorrelate the vector X so that
the decomposed subvectors V;’s are independent of each other. Once this goal is
achieved, the complexity can be greatly reduced without a significant performance

reduction.

Schemes [Gersho and Gray, 1991] for product code VQ include mean-removed
VQ [Baker and Gray, 1993], shape-gain VQ [Buzo et al., 1980], [Sabin and Gray,
1984], and mean/shape-gain VQ [Murkami et al., 1982]. These schemes, however,
still cannot achieve the ultimate goal of product code VQ; namely, decomposing and
decorrelating the vectors. The proposed “multiscale VQ has the potential ability

to achieve this.
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Building block diagram of multiscale VQ

For simplicity, we consider only the case of two-dimensional separable filters

in the following. For generality, we discuss the scheme of multiscale VQ that di-

rectly uses non uniform, maximally decimated filter banks. A block diagram of the

proposed multiscale VQ is shown in Figure 4.4.2. The decimation ratios in the z

and y directions are not necessarily the same; i.e.; M, may not equal M,,. This

means that the support of every divided frequency band may not be square-shaped.

Because the filters are separable, however, we have

X(nxany) Hll(zxazy)

N

M»’L‘1 J, Myl

Vi1

HlQ(Z:m Zy)

N~

M»'Ul l Myz

W

VQu —111

Vi2

l——) Hrr(2e,2y)

MSUK i MyL

v

VKL

Vle —112

h

VQgr ks

Figure 4.4.2 Block diagram of multiscale VQ in the transmitter.

Hkl(zza Zy) = Hk(zﬂf)Hl(Zy)y

k=1, K, 1=1,--

(4.4.4)

where K and L are the numbers of channels in f, and f, directions, respectively

(there is a total of K x L bands in two dimensions). Here the Hy(-)’s are the analysis

filters. The block represents decimating (sub sampling) by M., and M,

in z and y directions, respectively. As this is a maximally decimated system, M,
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and M, are required to satisfy [Vaidyanathan, 1990}, [Vaidyanathan, 1993]

=1
EL: ]V} =1. (4.4.5)
7j=1 Yy

The transformed signal vy(n.,n,) at scale &, can be obtained by:

(&9

vkl(nanny) = Z ( Z x Pz,Py)hk Ma:knz pw)) hl(Myzny —py)’

Py=—00 “Ppx=

k=1,.-,K, I=1--L. (4.4.6)

The transformation A(+) in equation (4.4.1), therefore, corresponds to filtering and
decimating in the proposed system. In order to satisfy the principle of product code

VQ, we use the following well-known lemma [Vaidyanathan, 1993]:

Lemma: Assume z(n) is a wide-sense stationary random process, and that z;(n)
and xo(n) are the outputs of passing z(n) through two filters H,(z) and H,(2),

respectively:

z(n) —| H1(z) —z1(n)

z(n) — Ho(2) —>z2(n)

then z1(n) is uncorrelated with z,(m) for every n and m if Hy(z) and Hj(z) do not

overlap in the frequency domain. [

We can easily prove this lemma by using / H(z)H(#z)dz = 0 and deriving

Rysy (k) = E[zi(n)as(n + k)] =0, (4.4.7)
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thus showing that z; and z, are uncorrelated.
Applying this lemma, we have the following theorem:

Theorem: An n X n block can be decomposed into several smaller blocks with size
M——”—Ik X ﬁnz; in the klth band by applying the system shown in Figure 4.4.2. These
sub blocks have no interblock correlation among them if the filters do not overlap

in the frequency domain. In other words, the sub blocks of different scales are

uncorrelated with each other if the filters are ideal. &

Note that the block sizes in different bands may not be the same and depend
on the decimation ratios. Because of this theorem, vector quantizing these smaller
M”‘;kv X E?yj blocks instead of the original n x n block saves many computations, while
sacrificing slightly in performance (we can only remove up to second-order interblock
correlation and the filters cannot be ideally non overlapping). In other words,
the resulting quantization error of applying VQ to these smaller blocks should be

comparable to that on the larger blocks, and the complexity is drastically reduced.

This precisely satisfies the goal of product code VQ.
The reconstructed signal is

[ee) (e8]

Z(ng,ny) = EL: f_:( Z ( Z Ui(Pas Py) fr(na — kapx))fz(ny - Mylpy)>,

I=1 k=1 ‘py=—-00 pp=—00

(4.4.8)

where Uy(pg, py) is the quantized version of vy(ps,py) and fi(-) is the synthesis
filter of band kl. In order to satisfy equation (4.4.2), we must choose perfect re-
construction (PR) filter banks [Vaidyanathan, 1993], [Vaidyanathan, 1990] in our
scheme. Several reports on the design of the PR filter banks have appeared. For
instance, we may decide to use a paraunitary (PU) filter bank [Vaidyanathan and

Hoang, 1988] in simulations. Then fi(n) is related to hx(n) by

feln) = hy(N =n), 1<k<K,L. (4.4.9)



Section 4.4. Multiscale VQ

It is still ambiguous, however, whether a PR system can achieve smaller quantization
error because there must inevitably be some loss in the subbanded domain caused

by quantization. In this work, we have chosen to use PU filter banks.

One type of filter bank, called the discrete-time wavelet transform [Mallat,
1989a], [Mallat, 1989b], [Rioul and Vetterli, 1991] (equivalent to the tree-structured
filter bank), can be easily included in our scheme without any modification. The
advantage of the wavelet transform is that, it is speculated, the way it decomposes
the frequency band is close to that of HVS [Mallat, 1989a], [Mallat, 1989b]. For
this kind of filter bank, the block size will be smaller in the lower-frequency band

and larger in the higher-frequency band.

 Another benefit of our proposed scheme is that the blocking effects caused by
VQ are reduced to a large extent. This is because, in the receiver end, we have
synthesis filters to smooth the blockiness between the block boundaries generated
in subbands. We can naturally remove the annoying blocking effects, therefore,
without any further postprocessing on the compressed images. We cannot gain this

advantage by using any other existing product code VQ schemes.

Optimal codebook size allocation

As stated in Section 4.1, image signals tend to exhibit different properties in
different frequency bands. In particular, typical image signals have higher variance
(or energy) in lower-frequency bands. If we can explore this characteristic and
adaptively assign the codebook size to one band, depending on the signal variance

in that band, then we can achieve more compression.

Following the above insight, we impose different bit-allocation strategies on the
signals for different bands; i.e., different codebook sizes in different bands. It can be

shown [Soman and Vaidyanathan, 1991}, [Vaidyanathan, 1993] that, in the subband

coding case (uniform SQ instead of VQ in the subbands), the optimal bit allocation
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strategy is such that the variances of all quantizer noise sources are equalized; this

means

o =o? 0<k<KL-1. (4.4.10)

qk q?

Under this condition, the number of bits allocated to the kth subband signal is
([Soman and Vaidyanathan, 1991], [Vaidyanathan, 1993])

2

o-fE
by = b+ 0.5log, — & TRL (4.4.11)
7=0
where
1 KL-1
b= — b 4.4.12
KL ; - ( )

is a given constant, ¢, is the variance of the signal in kth band, and o2 is the

variance of the original signal. Equation (4.4.11) is obtained by using the formula
olpoy = ¢ X 27 %02 (4.4.13)

where ¢ is a constant depending on the probability distribution of the input signal.

This is a model for the quantization noise after fine scalar quantization (quantization

stepsize is small).

In the VQ case, it can be shown [Gersho, 1979], [Zador, 1982, [Xie and Stock-
ham, 1991} that, for a source distribution p(x), the quantization noise variance of

an optimal R-bit K-dimensional vector quantizer asymtotically behaves as
o2, = C(K,2) 27" ||p(x)|lxc/rc42) (4.4.14)

where C(X,2) is the normalized moment of inertia of the optimal polytope for K-D

uniform quantizer, a constant depending only on the dimension K, and

1)l = ( [y dx) . (4.4.15)
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This term explains the effects on the quantization error of the variances of the
symbols and the dependence among the symbols in the vector. If the source x is

Gaussian with covariance matrix o2®,, where ®, is the cross-correlation coefficient

matrix and o2 is assumed to be the same for all z;’s, then

2\ %
Hp(X)]l[\’/([{_{,g) = 271'02, (det q)x)l/K (1 + E) . (4416)

Therefore, equation (4.4.14) can be simplified as

ol = C1(K) 27 ol f(p, K). (4.4.17)
Here
f(p, K) = (det ®,)V/K (4.4.18)
and
2\ 1tk
CUK) = 2rC(K,?2) <1 + 'i?) : (4.4.19)

where p is the normalized correlation coefficient among the symbols in one vec-
tor and f(p, K) is a decreasing function of p. Substituting equation (4.4.17) into
(4.4.10), we then have the following optimal bit-allocation strategy for multiscale

vector quantization:

KL-1 1/M?
()
=0

Note that we have assumed that the filter bank is uniform; that is, all filters

Ry = R+ 0.51og,

have the same bandwidth. In case of a nonuniform filter bank, equation (4.4.10)

has to be modified as

BO 0'2 et Bl 0'2 = s e == B]V.[—l U‘?M—- (4:.4.21)

q0 q1 1
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where B, is the bandwidth of the ¢th filter. For example, in the binary tree-
structured filter bank (dyadic discrete-time wavelet transform [Mallat, 1989a], [Mal-
lat, 1989b}, [Rioul and Vetterli, 1991]) case, the quantization noise variances are

related by [Soman and Vaidyanathan, 1991]

T T T 9
5 Ogp = Z O == WJ‘JM—Z (4422)
M=-2 2 M~3 2 6.2 2 2

=2 0 =2 Op = =20, =0, = O s (4.4.23)

Using this formula as the criterion of assigning the size of codebook, we can continue
decomposing the low-frequency part to get a smaller vector dimension. If the vector
dimension without subbanding is n X n, then the dimension can be decreased to

3r X 3¢ at the sth stage of filtering, thus reducing the complexity of VQ substantially.

Computer simulations

To demonstrate the feasibility of the proposed multiscale VQ (PCVQ), we apply
the simplest two-channel (resulting in four bands) filter banks in our simulations.
We use the algorithm developed in [Vaidyanathan and Hoang, 1988] to design the
filter banks. The coefficients are shown in Table 4.4.1.

n ho(n) fule hi(n) fo(n) fi(n)

0 0.1968892 fule —0.012578 —0.0125780 —0.1968892

1 0.5193989 fule —0.033181075 0.033181075 0.5193989

2 0.4114735 fule 0.025083632 0.025083632 —0.4114735

3 —0.03568163  fule 0.137795 —0.137795 —0.03568163
4 —0.137795 fule —0.035681629 —0.03568163 0.137795

5 0.025083632 fule —0.4114735 0.4114735 0.025083632
6 0.033181075 fule 0.5193989 0.5193989 —-0.033181075
7 —0.0125780 fule —0.1968892 0.1968892 —0.0125780

Table 4.4.1 Coeflicients of the two-channel analysis/synthesis filter bank.

We use five images as the training set in order to get a universal codebook. We

also use the bit-allocation strategy to determine the codebook size in every subband.
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Because of the difficulty of getting the variables in equation(4.4.20), becauase this
formula only describes the asymtotic behavior, and because modeling the input
signals to be Gaussian processes is not precise, however, we use the following method
to obtain the optimum allocated codebook size: Because we want the resulting
quantization noise variance in every band to be equal, we determine a final noise
variance o in advance. According to equation (4.4.10), this 0'3 is also the resulting
quantization noise variance for the whole system. Then, in the codebook design
phase, because we apply PCVQ (a form of TSVQ), we can iterate this process
and split the codevectors to increase the number of codevectors until the total
quantization variance equals, or is no less than, 03. Using this method, we can
obtain the optimum allocated codebook size. We use this method to design all four

codebooks for the four subimages.

Figure 4.4.3 An enlarged subregion of Figure 2.2.3.

Figure 2.2.3 shows the quantized image using PCVQ with 4 x 4 blocks as vee-
tors. The bit rate achieved is 0.5 bit per pixel (bpp) and the PSNR is 31.53dB. An

77
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Figure 4.4.4(a) Quantized Lenna image using 8 x 8 VQ with
0.16bpp and PSNR of 31.5dB.

Figure 4.4.4(b) An enlarged subregion of 4.4.4(a).
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Figure 4.4.6(a) Quantized Lenna image using multiscale VQ with
0.25bpp and PSNR of 32.62dB.

Figure 4.4.6(b) An enlarged subregion of 4.4.6(a).
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enlarged subregion is shown in Figure 4.4.3. Figure 4.4.4 shows another quantized
image using PCVQ. The vector size is 8 x 8, the bit rate is 0.16bpp, and the PSNR

1s 31.50dB. This demonstrates that a lower bit rate can be achieved if the vector

dimension is larger because longer-range dependence is included, although the com-
plexity is much greater. We can see that the PSNR in both cases is approximately
the same, whereas the bit rate of the latter case is only one-third of the former one.
Figures 4.4.5 and 4.4.6 show two compressed images using multiscale PCVQ. The
vector sizes are both 4 x 4 in all subbands. The bit rates are 0.23 and 0.25bpp,
respectively, and the PSNR’s are 31.53 and 32.62dB.

Comparing Figures 4.4.4 and 4.4.6, we can see that the pictures compressed by
applying multiscale VQ have much better perceptual quality, in spite of the fact
that the complexity is reduced by a large amount. The encoding complexity per
pixel is proportional to 1024 for Figure 4.4.4 and 260 for Figure 4.4.6. We can
clearly see that the blocking effects in multiscale PCVQ are greatly smoothed; in

fact, almost invisible. This demonstrates the effectiveness of multiscale PCVQ.

Here we have simulated only two-channel filter banks. If we were to apply a
filter bank with more channels, then we could achieve a higher compression ratio,

given the same performance, however that performance may be defined.

Further comments

A satisfactory way to view this multiscale VQ scheme is from Shannon’s rate-
distortion theory. It has been shown before that, for a wide-sense stationary Gaus-
sian random process, we can achieve the rate-distortion bound D(R) = o2y2272F,
where 72 is the spectral flatness measure as defined in equation (4.4.1), by using VQ
as the vector dimension approaches infinity; or, alternatively, using subband coding
(scalar quantization in the subbands) as the channel number approaches infinity.
Taking these two schemes as the two extreme architectural ends in our proposed
approach, it is expected then that any intermediate compression algorithm (sub-

banding plus VQ with a specified block size in every frequency band) can naturally
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also achieve the rate-distortion bound. We have the theoretical option, however, of

minimizing the required complexity during compression as an added benefit of VQ.

In this work, we apply only separable filters. Nonseparable filters can also be
used in our proposed scheme; however, the problem of how the nonseparable filter

benefits image compression remains open.

Comparisons to other schemes

The scheme proposed above describes the algorithm of (generalized) intra-sub-
band V@Q. The idea of intra-subband VQ is not really new, and schemes of this
idea have been proposed before [Antonioni et al., 1992], [Bradley et al., 1992],
[Kim and Modestino, 1992]. The contribution of this work is to give a unified and
theoretical approach for applying this scheme and to provide the generalized case.
Unlike the previous works, which only intuitively perform VQ or other variations
of VQ (motivated by and similar to the work using DPCM [Woods and O’Neil,
1986] and DCT [Argenti et al., 1993], [Kim et al., 1993]) inside every subband in
order to achieve high compression ratios in that band, we use a product code VQ
approach to take a different and more theoretical viewpoint of this scheme. We treat
the analysis subbanding filters as the mechanism of decomposing and decorrelating
larger blocks into smallers blocks so as to fulfill the goal of product code VQ. To
the author’s knowledge, this treatment has not been proposed before. Although the

whole scheme and the results are similar, therefore,
the approach herein is totally different.

We have also been aware of the improvement in the picture quality of this
scheme over that of VQ. It is possible to obtain the same compression ratio by
using other constrained VQ schemes, such as predictive VQ, finite-state VQ, and
adaptive address VQ, which also take advantage of the interblock correlation in

coding, given the same PSNR and complexity. Blocking effects still appear, however,
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in the resulting compressed pictures of the above schemes. As far as picture quality
is concerned, therefore, the proposed multiscale VQ is superior to these schemes.

This further strengthens its feasibility.

It should be pointed out that we can also incorporate other types of VQ, such as
predictive VQ and finite-state VQ, in every subband in the proposed scheme, and
thereby achieve an even higher compression ratio. We can even apply different VQ

or other quantization schemes in different subbands.

There is another kind of subband VQ called inter-subband VQ [Westerink et
al., 1988] which takes one symbol from every subband to form a vector and then
quantizes these vectors. The comparisons of intra- and inter subband VQ have been
made in [Bradley et al., 1992]. In this paper, it was shown that intra subband VQ

is better in terms of the PSNR, given the same compression ratios.

Concluding Remarks

In this chapter, we have proposed the scheme of multiscale VQ. The motivation,
principles, and simulation results have been discussed and demonstrated to show
the feasibility of this scheme. Basically, the idea is to use the decorrelating property
of a subbanding operation to remove the interblock linear redundancy, reducing the
computational complexity and achieving compression. We have also formulated
the optimal codebook size-allocation problem for this scheme. We see that the
problems of high encoding complexity and low picture quality of VQ can really be
alleviated by applying the proposed scheme. With this scheme, real-time encoding

and decoding can be achieved.
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Chapter 5

Linear Multiscale Techniques

for Interframe Compression

Introduction

Interframe compression is the technique that exploits the temporal redundancy to
further reduce the transmitted bit rate in addition to the intraframe technique. We
know that typically high correlation exits among image frames. If we can appropri-

ately take advantage of this, then we can expect to achieve high compression.

Generally speaking, there are two techniques to exploit this temporal correlation
in compression. One way is, as in linear techniques for intraframe compression, to
take advantage of the non uniform distribution of the signals’ 3-D power spectrum
and adaptively allocate bits to components, depending on the signal variance of
the component. For example, we can design a 3-D subband coding system [Chen
and Vaidyanathan, 1993], [Chen, 1993], [Vetterli, 1984], separable or nonsepara-
ble, or a 3-D DCT, and process the signals throug}; this system directly to obtain
compression. Basically, this is a straightforward extension from 2-D to 3-D com-
pression. The other technique is to directly exploit the motion information among
image frames to help compression. Common sense tells us that, for general video
signals, almost all of the background and objects remain the same except when
the scene changes. During this scene-unchanged period, the only temporal changes

are mainly caused by object (or camera) motion. Consequently, nearby frames
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typically exhibit high correlation. Motion-compensation techniques direct.ly exploit
this inherent temporal redundancy and significantly reduce the data rate required
to transmit the video signals, thus achieving a high compression ratio. Motion esti-
mation is the technique to approximately identify the moving objects and find the
corresponding motion vectors. It is widely believed that, if the motion information
can be detected accurately, this technique is much more efficient than the former
one. Almost all of the video-compression standards, such as MPEG [Le Gall, 1991]
and H.261 [Liou, 1991], use motion compensation to exploit the temporal redun-

dancy.

In general, there are three main categories of motion-estimation techniques for
the compression purpose; namely, pel-recursive [Biemond et al., 1987], [Moorhead
IT et al., 1987], contour-based [Carlsson and Reillo, 1986], [Huang and Mersereau,
1993], and block-search [Jain and Jain, 1981}, [Koga et al., 1981], [Kappagantula
and Rao, 1983], [Srinivasan and Rao, 1984], [Puri et al., 1987], [Puri and Aravind,
1991], [Ghanbari, 1990], [Liu and Zaccarin, 1993] algorithms. Combinations of
these techniques are possible. For simplicity and easy implementation of VLSI, we
usually apply the block-search technique in interframe compression. A full block-
search algorithm is still too complex to be implemented, however, especially when
real-time compression is needed. Several fast algorithms (see the above references)
of block search have previously been proposed to speed the computation, with the
tradeoff of less accurate estimation. This means that we need to spend more bits

in intraframe compression.

In this chapter, we propose new schemes of generalized multirate motion com-
pensation [Lee, 1993a], [Lee, 1993c] to further improve the performance of the block-
search algorithm. The idea behind these proposed schemes is to use the properties of
multirate techniques [Vaidyanathan, 1993], including the subsampling and energy-
compaction characteristics to efficiently process the data, and the correlation of

the motion vectors among adjacent pixels to reduce the computational complexity
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and overhead amount. Instead of performing motion compensation on the origi-
nal signals, we apply it after the multirate processing. We first decompose every
frame into several subimages, using multirate technique, then appropriately apply
a motlon-compensation algorithm in every channel. We show that, by applying
the simple subsampling and properly designing the algorithm, we can save many
computations. Moreover, if we apply a filter bank first, then depend on the signals’
characteristics in different bands to design various estimation strategies with dif-
ferent complexity, we can reduce computations even more, or obtain more accurate
estimation. We can also estimate the motion vectors of some bands by using that
of the others. We design several methods of performing block search in subbands,

which can not only reduce the complexity but also obtain accurate estimation.

Chapter outline

The organization of this chapter is as follows: In Section 5.2, we briefly review
the principles of the block-search algorithm and some fast schemes. We also point
out some characteristics and drawbacks of the block-search technique, then explain
that block search can give only a rough estimation of motion information. In Section
9.3, we introduce a simple multirate block search (MBS) scheme. The principles and
advantages over the full-search type of this scheme are mentioned. We show that,
by properly using the simple decimators (separable decimators), the complexity of
block search can be greatly reduced, and accuracy can still be retained. Several
extensions of this scheme are also presented. Simulation results of every proposed
scheme are demonstrated to show their feasibility. In Section 5.4, we present the
generalized multiscale motion-compensation scheme and some of its modified algo-
rithms. Details of this scheme and how it reduces the complexity are discussed.
We show that, by applying a filter bank before the decimators to take advantage
of the non uniform distribution of the signals’ power spectrum, we can obtain an

even more accurate estimation. Simulation results are shown to illustrate the ad-

vantages. We also discusst some important points about the filter banks suitable
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for motion estimation. Finally, in Section 5.5, we give some concluding remarks

about this and discuss the possible extensions.

Review of Block-Search Algorithms

The basic idea behind the block-search algorithm (BSA) is to partition the whole
image into several non overlapping regions, then estimate the velocities (motion
vectors) of moving objects on a region-by-region basis without any consideration of
how the objects are moving as a whole. It takes many computations to accurately

detect the moving objects.

In a typical BSA, we usually divide a frame into rectangular blocks with M x N
pixels or, more favorably, square blocks of N? pixels. Then we set a maximum
displacement d between consecutive frames. If one pixel of an object is at position
(7,7) in frame ¢, then the corresponding pixel cannot appear outside the region
of {(z,y)|(z —1)? + (y — 7)? < d?} in frame c. For simplicity, however, we use
square search regions instead of c‘ircular search regions in BSA; i.e., the search
region becomes {(z,y)li —d < ¢ <i+d,j—d <y < j+d}. Finally, we find
the best match of every block in frame ¢ from all the blocks in the specific search
region in frame ¢ — 1 (forward prediction), given a particular distortion criterion.
For example, the matching (distortion) criteria, using MSE and mean absolute error
(MAE), are as follows:

1
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where fo(2,7) is the gray-level at pixel (4,5) of frame c. If
D, (mo,n0) < Dy jy(m, n), —d<m,n<d, (5.2.3)

then (mo, no) is the estimated motion vector of the block at coordinate (2,7). There-

fore, the prediction of f,(4,j) is

Folirg) = feur(G+mo,j + o),  1<i,j <N. (5.2.4)

Then we apply an intraframe compression algorithm on the compensated (predic-

tion) error signals,

o~

ee(p,q) = felp, @) — fo(p,q), 1<p<X,1<¢<Y, (5.2.5)

where X X Y is the frame size. So, in the transmitter, we send out the overhead
for motion vectors as well as the compressed error signals. If we can detect the
motion vectors— the (mg, ng)’s, more accurately—then the energy in e. will be less.
This means that we need fewer bits in intraframe compression to get the same

performance.

Several points about BSA should be mentioned herein:

(A) BSA has several drawbacks imposed by the block-search property. For example,
BSA can only deal with translational movement. Other kinds of movement,
such as rotation and zoom, fail to be accurately described by BSA. This is one
major weakness of BSA. Also, occlusion of the backgrounds and objects cannot

be detected.

(B) Using pure prediction, BSA cannot handle uncovered regions between frames.
One solution, such as MPEG [Le Gall, 1991], besides pure prediction, is to use
interpolative prediction for motion estimation; i.e., use frame ¢ and ¢ +J to
predict frame ¢ + ¢, where j > 1. Of course, this takes more computational

complexity and overhead for motion vectors; however, it can successfully reduce
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the signal variance of the compensated images by a large amount, thus greatly

saving the data amount for intraframe compression—a great advantage.

(C) One moving object tends to be decomposed into different blocks. One block may
also include components with different moving directions, especially when the
block is around the boundaries of moving objects. This is the major reason why
block search gives only rough motion information. The estimated images tend to
exhibit a very strong blocking effect, therefore, and the compensated signals tend
to have non uniform probability distribution. These phenomena are especially
clear around the boundary parts. One way to smooth the blocking effect is to

apply generalized multiscale block search, which is described in a later section.

We can see that, based on the above equations, if we apply the full search
algorithm (FSA)-i.e., compare all of the possible blocks in the search area—then
we need (2d + 1)? x O[D(-,-)] evaluations for computing the motion vector of one
block, where O[D(:,-)] is the complexity needed at every position in the search
area. For example, if the block size is 8 x 8, the maximum displacement d is 8,
and the frame size is 480 x 640 (row x column, NTSC standard size), then we need

3 x 64 x 289 x 60 x 80 = 2.35 x 10® additions and 64 x 289 x 60 x 80 = 7.83 x 107

multiplications to locate the motion vectors for the whole frame if we use MSE as
the distortion criterion. (Multiplying by 30 frames/sec is the number of operations
that must be done in 1 second for doing motion estimation.) This is very compu-
tationally expensive and cannot yet be carried out in real-time compression. Some
fast algorithms-such as three-step search (TSS) [Koga et al., 1981], two-dimensional
logarithmic search method (TDL) [Jain and Jain, 1981], modified motion estima-
tion algorithm (MMEA) [Kappagantula and Rao, 1983], conjugate direction search
(CDS) [Srinivasan and Rao, 1984], cross-search algorithm (CSA) [Ghanbari, 1990],
and so on-have been proposed to speed the computations. The merit of these al-

gorithms is that, instead of full search, they just recursively secarch the blocks at
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certain particular coordinates, thus drastically reducing the number of positions
that need to be computed. These techniques rely on the assumption of a mono-
tonically increasing distortion around the position of the optimal motion vector to
iteratively determine that position [Liu and Zaccarin, 1993], [Ghanbari, 1990], [Jain
and Jain, 1981]. There are usually local minima on the distortion surface, however,
so that these algorithms are trapped. These algorithms provide a tradeoff, there-
fore, between the complexity and the precision of the motion vectors (or necessary
bit rate for intraframe compression). Figure 5.2.1 shows the principles of TSS. We
can see that, if d = 8, then the complexity becomes proportional to 25, compared
to 289 in full search, or a gain of 11.56. Its performance compared to that of full
search is shown in the next section. The corresponding numbers used in applying
the other schemes are: TDL: 23, MMEA: 19, CDS: 19, and CSA: 17. Recently, a
new algorithm [Liu and Zaccarin, 1993] that takes advantage of the correlation of
the motion vectors among blocks to save computations was proposed. It is shown

later that this idea is quite close to that of one of our schemes.
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Figure 5.2.1 The procedure of TSS.
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5.3. Simple Multirate Block-Search Schemes

From the above, we can see that the maximum displacement and the block size
decide the precision and time complexity of motion estimation. Generally speak-
ing, larger maximum displacement and smaller block size can get more accurate
estimation, but the complexity and overhead are increased. The basic idea be-
hind this simple multirate block search (MBS) algorithm is that we can decimate
the original image signals first, then perform motion estimation on every decimated
subimages with smaller maximum displacement without sacrificing accuracy. Figure
5.3.1 shows a block diagram of this scheme of 2-channel (resulting in four subim-
ages In two dimensions) case. It is easy to show that this delay-chain is a PR
system [Vaidyanathan, 1993], [Chen, 1993]. In this circumstance, the maximum
displacement and the block size will also be subsampled by the corresponding num-
bers (e.g., 2 as in Figure 5.3.1). The complexity is now proportional to (d + 1)?
instead of (2d+1)? as in full search. The computational gain is then approximately
4. Because of the smaller block size in every subimage, however, more accurate

estimation can be obtained.

X(ng,ny) T 5 2] 2 y BS11 —>MVy;
z;l
#————-) 2 l 2 ve BSlg ——-—>MV12
2;1
+———-> 2 i 2 > BSQl ———-——)MV21
I
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BSQQ —-——-—)MV22

—— 2|2

MYV: Motion Vectors

Figure 5.3.1 2-channel subsampled block search.
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Ezample 5.3.1: Figure 5.3.2 shows the comparison of the estimation accuracy of
three schemes: FSA, TSS, and 2-channel MBS, using pingpong sequence as the sig-
nal source. The PSNR measures the accuracy of estimated image frames compared
to the original ones. Two frames of the pingpong sequence are shown in Figure
9.3.3. In FSA and TSS, we set the maximum displacement and block size to be
8 and 8 x 8, respectively, and 4 and 4 x 4 in the other oﬁe. We can see that the
proposed MBS scheme can actually get the best estimation, whereas the complexity
is only one-fourth of that of full search. As expected, TSS has the worst perfor-
mance compared to these two schemes because of the fewer points it searches. To
illustrate the benefit provided by motion compensation, we also include the curve
corresponding to the case without motion compensation. We just subtract the sig-
nals between two frames. It can be seen that one can gain a great deal by applying

a motion-compensation scheme.

2 4 -1 .|\""'""".... - - FSA

N ----TSS
22~ 00 e MBS_2
“\ -------- No esti
20 “'\ e T SrmeetTITIN Se .
I I I -
0 10 20 30
Frame #

Figure 5.3.2 Comparison of FSA, TSS, and 2-channel MBS.

The above example demonstrates the superiority of this simple MBS algorithm.

We need more overhead now, however, to transmit the motion vectors. For the FSA
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Figure 5.3.3 Two original frames of the pingpong sequence.
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and TSS cases, we need the overhead of X% x [logy(2d + 1)?] bits totally (i.n the

following, we ignore the constant of %), whereas in the 2-channel MBS case, we

need 4 X [log,(d+1)?], where [z] is the smallest integer no less than z. We propose

the following solutions to this problem:

(2)

(b)

Entropy code the motion vectors. The redundancy of the motion vectors in
the MBS case is expected to be higher than that in the other two cases. This
is because the motion information among different bands is highly correlated.
Thus, if we entropy code the motion vectors, we should be able to save more
bits than in FSA and TSS. For example, for the pingpong sequence, the average
redundancy of MV’s in FSA, TSS, and 2-channel MBS is 1.2, 1.1, and 2.1 bits,

respectively.

Take advantage of the high correlation of the motion vectors among different
subimages. Because we subsample the image signals first, then perform block
search, there is a very strong correlation of motion vectors at the same block
positions in all subimages. To use this correlation, we propose the following

variants:

(b.1) At block position (2, j), compute the motion vectors of all subimages at the

same positions. Then use the one that results in minimum total distortion

as the motion vector for all blocks; 1.e.,
(my;, ), for some 0 <1 < 4 such that

1
Z Dy, (mu;, ny; ) is minimurmn, (5.3.1)

k=1

Then (my,,ny;) is the motion vector for all of the blocks at position (7,5). Ap-

plying this scheme, the overhead is 2+ [log,(d+1)*], which is approximately
equal to that of FSA, while the complexity is reduced by an approximate fac-

tor of 4. Figure 5.3.4 shows the simulation results of this proposed scheme.
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We see that the performance is degraded slightly, but still better than that
of TSS. '

22 I | T
0 10 20 30
Frame #

Figure 5.3:4 Comparison of FSA, TSS, and 2-channel MBS (b.1).

(b.2) At block position (z,J), compute the motion vector of one band, e.g., band
0, first, (g, m0,). For the motion vectors of the other bands at the same
position, obtain them from the window {(z,y)|i + mo, — dy <z <14 mg, +
d,j +1g;, —dy <y < j+ng, +di} in every band, where d, is a positive number
much less than the maximum displacement d of band 0. In other words, we
first use the motion vectors of band 0 to represent approximately those of
the other bands. Then we refine these approximated motion vectors in a
small window centered at (z+my,, 7 +nq,) for every ¢, j and every band. The
overhead now is 3 x [log,(2d; + 1)?] 4 [log,(d + 1)*]. Figure 5.3.5 shows the
simulation results of this scheme. Here we set d = 8 and d; = 1. Compared

to I'SA, the computational gain factor of 10.7 is obtained.

(b.3) Use the motion vectors of some subimage to represent approximately those of
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Figure 5.3.5 Comparison of FSA, TSS, and 2-channel MBS (b.2).
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Figure 5.3.6 Comparison of FSA, TSS, and 2-channel MBS (b.3).
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the other ones without computing theirs. Now we have the overhead reduced
to [log,(d+ 1)2"} and complexity reduced by a factor of 16. Of course, we will
lose some accuracy here. Because of the high correlation of the motion vectors
among different subimages, however, we will not sacrifice much precision, and
will save a great deal of overhead and computations. Figure 5.3.6 shows the
simulation results of this scheme. We can see that the performance of this
proposed scheme is close to, or sometimes better than, that of TSS, and the

complexity and overhead are greatly reduced.

Figure 5.3.7 shows the comparison of schemes (b.1), (b.2), and (b.3). We can see
that the performance of (b.1) and (b.2) is very close. Basically, (b.1) is designed
to save the overhead, whereas (b.2) is for reducing the computational complexity
(and some overhead). Thus, it is expected that these two schemes have close
performance. In scheme (b.3), a great deal of complexity and overhead are
reduced. Even though it has the worst estimation accuracy, it is worthwhile to

apply this scheme to exploit the temporal redundancy.
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Figure 5.3.7 Comparison of 2-channel MBS (b.1), (b.2), and (b.3).

Note that, although the complexity of schemes (a) and (b.1) is higher than
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that of schemes (b.2) and (b.3), they can, however, be implemented by parallel-
processing. This means that we can concurrently perform the motion-estimation
operations in all subimages, thus greatly reducing the required processing time so

that it is the same as in scheme (b.3).

As stated, it is intuitive that the performance of scheme (b.3) is worse than that
of (b.1) and (h.2), especially when the number of channels becomes larger. To de-
crease the degradation so as to save the complexity and overhead, we can pre-process
the signals first so that the energy is compacted to one channel [Vaidyanathan,
1993], [Zhang and Zafar, 1992], [Zafar et al., 1993]. Then one estimates the motion
vectors of that band to approximately represent those of the other bands. Thus,
we can guarantee that the distortion generated in the other bands is much less, as
is the total distortion. The generalized multiscale block-search algorithm, which is

discussed in the next section, can achieve this goal.

~
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Figure 5.3.8 Block diagram of a L-channel MBS.

The above shows several approaches of the simplest 2-channel MBS. It is straight-

forward to extend these schemes to M-channel systems with minor modifications.
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Figure 5.3.8 is a block diagram of this generalized case. Now the maximum dis-

lacement becomes %— and % in the z and y directions, respectively, and the
p Mo, My, y

block size becomes VJ\L X % in the klth subimage. The computational gain over
Tk {

FSA on the original frames, therefore, is

2d + 1)2
€ = 1 ( +d) - (5.3.2)
2% 11)(2-2 +1
;;MmkxMyl( iz TV C Y

for schemes (a) and (b.1),

2d 4+ 1)2
Cr= g : ( d“) I (5.3.3)
2 1) (2— o (2d; +1)?
o o T A+ e Gat D)

for scheme (b.2), and

2d + 1)?
Cs = - ( : ) y (5.3.4)
2 4+ 1)(2— +1
Ml’k X Myl ( Mxk )( Myl )

for scheme (b.3), if we use band k,! as the reference in (b.2) and (b.3), which can
be large numbers. For example, for a uniform 4-channel MBS case (resulting in 16

subimages), C; = 11.56, C = 28.9, and C3 = 184.96. The overhead is now

ZK ZL o (24 2d
k=1 l=1 Tk

Yi

for scheme (a),

My = [logy(KL)] + [ log, (—A%d- + 1) (_A%;_ + 1)] (5.3.6)

Yi

for scheme (b.1),

2d 2d " 2
Ha = |logy (g—+1) (37 +1)|+(KL-1)x [log,(2d1 + 1)?]  (5.3.7)
Tk K
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for scheme (bh.2), and

2d 2d
Tk s

for scheme (b.3). Note that these numbers all represent the data amount for the

raw information; i.e., before entropy encoding.
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Figure 5.3.9 Comparison of FSA, TSS, and 4-channel MBS.

Ezample 5.5.2: Figure 5.3.9 shows the comparisons of the following schemes: FSA,
TSS, 4-channel MBS of scheme (a), (b.1), (b.2), and (b.3). Note that, in scheme
(b.3), because we use the motion vectors of one band to represent those of the other
15 bands, it is expected that it has the worst performance among these schemes.
The complexity now is proportional to 1.5625, however, compared to 289 in FSA,
which is reduced by a factor of 185, and its performance is much better than that
without motion compensation (see Figure 5.3.3). Also the overhead is less than half

of that of FSA. This also demonstrates its feasibility.

Generalized Multiscale Block Search

The schemes in the previous section provide methods of how to subsample the
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signals first to reduce the maximum displacement and save computations without
sacrificing performance. Besides this, we can also take advantage of the non uni-
form distribution of the image signals’ power spectrum to achieve more savings.
As stated, the power spectrum of image signals tends to be non uniform [Woods
and O’Neil, 1986], [Woods, 1991]. Generally speaking, lower-frequency parts have
higher energy, whereas higher-frequency parts have lower energy. In order to use
this property in motion compensation, we propose the scheme of Figure 5.4.1. We
first pass an image frame through a filter bank to decompose it into several subim-
ages in different scales with different variance, then apply scheme (a), (b.1), (b.2),
and (b.3) of the previous section to perform motion estimation. Of course, all of
the arguments of the previous section still hold here. To take advantage of the non
uniform property, however, we have the following additional schemes and observa-

tions:

N
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Figure 5.4.1 Block diagram of generalized multiscale block search.
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(a.1) Apply different motion-estimation schemes with various accuracy in different
subimages, depending on the variance in that band. For example, because

of the high variance in low-low band, we apply FSA; in the other bands, we
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can apply some fast algorithms, such as TSS, TDL, CDS, and so on. The
idea behind this scheme is similar to the optimal bit-allocation strategy [Soman
and Vaidyanathan, 1991}, [Vaidyanathan; 1993] of intraframe subband coding.

Given a certain total complexity, we should “allocate the complexity” to every

band so that the total distortion is minimized. It can be shown [Soman and

PSNR

Vaidyanathan, 1991], [Vaidyanathan, 1993], [Jayant and Noll, 1984] that, for
a paraunitary (PU) filter bank system, the total distortion is minimized if and
only if the distortion in all bands is equalized. For the lower-frequency subimage,
then, we should apply a more accurate estimation scheme because of its higher
variance. There is no explicit formula, however, to express the input-output rela-
tionship of the signal variance for motion compensation because it also strongly
depends on how the objects move. An optimal allocation equation cannot be ob-

tained here. Figure 5.4.2 shows a simple example of the proposed scheme. Here

we
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Figure 5.4.2 Comparison of FSA, TSS, 2-channel GMBS (a.1),

and 4-channel GMBS (a.1).
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Section 5.4. Generalized Multiscale Block Search

apply uniform 4-channel generalized multiscale block search ( GMBS). We apply
FSA in the low-low band and TSS in the other 15 bands. We can see that the

precision is very close to that of FSA, whereas the complexity is greatly reduced
(proportional to 33, or a gain of 8.76). This demonstrates the advantage of the

proposed scheme.

As stated, because most of the energy is compacted to the low-low subimage,
we use the motion vectors of this band to represent those of the other bands.
Comparing to scheme (b.3) of the previous secﬁion, one can obtain a more accu-
rate estimation because the distortion resulting from the other estimated bands
is much less. Figure 5.4.3 illustrates this fact. Here we compare the 4-channel
case. We can see that the performance of the GMBS (b.3) scheme is indeed

better than that of MBS (h.3).

30
28—
26—
24 %)
2 2 — X -. ’ . . .:_.'
kg R P MBS_4_b3
WL T e GMBS_4_b3
20
- | | |
0 10 20 30
Frame #

Figure 5.4.3 Comparison of FSA, TSS, and 4-channel MBS (b.3), GMBS (b.3).

(c)

In some high-frequency subimages, the signal variance may be very small. For

these subimages, we may not need to apply motion compensation because it is

not clear whether the signal variance can be reduced after motion compensation.
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Even if it can be reduced by a small amount, it is not worthwhile to spend such
high complexity for motion estimation to achieve little improvement. Combining

this property with scheme (a.1), we have the following approach:
o Compute the signal variance o? of every subimage first.

e If 07 € Ry, then apply motion-estimation scheme k in subimage ¢, where
scheme k can be any motion-estimation scheme, or without motion com-
pensation. As mentioned before, typically speaking, if o? > 0’?, then the

accuracy of the scheme used in band ¢ is no less than that in band 7.

An additional advantage of this GMBS scheme is that it can greatly smooth
out the blocking effects generated by the block search. As stated in Section 5.2.,
BSA tends to generate very strong blocking effects in the estimated images, which
may greatly degrade the image quality. Applying GMBS, we have a set of synthesis
filters in the receiving end to smooth out the annoying effects, thus improving the

picture’s visual quality—a great advantage.

Note that, although we have proposed methods of constructing the block size and
maximum displacement, we can still change these numbers in different subimages.
The motivation for setting these parameters in the proposed schemes is from the
viewpoint of subsampling and trying to compare the accuracy with FSA. We can,
of course, have different parameters in different subimages, thus providing more
flexibility. For example, in schemes (a) and (a.1), we can set the block size to be

smaller and maximum displacement to be larger in the lower-frequency band.

Fine points about the filter banks

Next we mention some points about the construction of the filter banks. For

simplicity, here we apply separable filters; i.e.,

Hy(22,2y) = Hi(z,)Hi(2,), 1<kE<K,1<I<LL. (5.4.1)
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Herein we propose to use linear-phase filter banks [Nguyen and Vaidyanathan, 1989],
[Soman et al., 1993], [Vaidyanathan, 1993] to avoid phase distortion in subimages.

This means that motion information can still be retained in subbands. We can

still preserve the strong correlation of motion vectors among different subimages,
therefore, which will greatly benefit schemes (b.1), (b.2), and (b.3). We apply the
algorithms developed in [Nguyen and Vaidyanathan, 1989], [Soman et al., 1993] to
obtain the filter coefficients for the 2- and 4-channel filter banks, respectively. Tables

5.4.1 and 5.4.2 show these coefficients for the 2- and 4-channel cases, respectively.

ho(n) hi(n) fo(n) fi(n)

n
0 0.0220851391 0.0008264153 —0.0008264153 0.0220851391
1 0.0240330876 0.0008993066 0.0008993066 —0.0240330876
2 —0.1040810278 —0.1037503319 0.1037503319 —0.1040810278
3 0.1028960652 —0.1048127948 —0.1048127948 —0.1028960652
4 0.4766289373 0.4687792213 —0.4687792213 0.4766289373
5 0.4766289373 —0.4687792213 —0.4687792213 —0.4766289373
6 0.1028960652 0.1048127948 —0.1048127948 0.1028960652
7 —0.1040810278 0.1037503319 0.1037503319 0.1040810278
8 0.0240330876 —0.0008993066 0.0008993066 0.0240330876
9 0.0220851391 —0.0008264153 —0.0008264153 —0.0220851391
Table 5.4.1 Coefficients of the two-channel, linear-phase filter banks.

n ho(n) hq(n) ho(n) hs(n)

0 —0.0915848091 —0.1335739046 —0.1335739046 —0.0915848091
1 0.1335739046 0.0915848091 —0.0915848091 —0.1335739046
2 0.3892334104 0.5676861405 0.5676861405 0.3892334104
3 0.5676861405 0.3892334104 —0.3892334104 —0.5676861405
4 0.5676861405 —0.3892334104 —0.3892334104 0.5676861405
5 0.3892334104 —0.5676861405 0.5676861405 —0.3892334104
6 0.1335739046 —0.0915848091 —0.0915848091 0.1335739046
7 —0.0915848091 0.1335739046 —0.1335739046 0.0915848091

Table 5.4.2 Coefficients of the four-channel, linear-phase PU analysis filter bank;
the coeflicients of synthesis filter bank are fiy(n) = he(N — n).
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5.5. Discussions and Summary

We have presented several interframe compression schemes, using generalized mul-
tirate techniques. The motivations, principles, and simulation results have been
explained to support the superiority. These schemes not only reduce the com-
putational complexity, but also improve the resulting picture quality. Also, these
schemes provide high flexibility in processing data. One can adaptively apply differ-
ent strategies to different subimages, depending on the signal characteristics and ap-
plications. Furthermore, we can achieve pure progressive transmission by applying
this scheme, as subband coding itself is intrinsically a progressive-type transmission
method. Comparing to the traditional approaches that apply motion compensation
first to the original frames, then apply subband coding to the compensated signals,
here we can independently process the data in every subband. Upon completing
processing of the signals in the low-resolution subimage, one can expand it and
start to browse it. When more subimages are received, more details can be ob-

tained. These schemes, therefore, are also suitable for packet video [IEEE JSAC,
1989], [IEEE CSVT, 1993].

As mentioned, in order to deal with the uncovered regions, we can incorporate
interpolative prediction. This means that we can also apply these schemes to MPEG
systems; i.e., after multiscale processing, we can have I, B, and P frames in subim-
ages periodically, then apply DCT or scalar quantization to all of the compensated
subimages separately. Herein I, B, and P frames refer to Intrafield, Bidirectionally
predicted, and Predicted frames. This can improve the flexibility and performance
of MPEG to make it more feasible. Because applying interpolative prediction (B
frames) costs more computations, overhead, and buffer for storing more reference
frames (and thus results in higher frame delay), however, it is still controversial

whether to apply this technique.

The video signals we used in simulations were with high movement. If we use
a video-conferencing-type signal source, the gain of applying motion compensation

will be much higher. We only need to spend very few bits in intraframe compression.
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In this case, we apply only the principles of block search to every band. We can,
of course, apply a more complex motion-estimation scheme to subbands because
these subimages still represent meaningful images, and the motion information is
still strongly related among subbands. We even speculate that the correlation of the
motion vectors among different bands obtained by these better estimation schemes
may be higher, as the motion information in every band is more accurately detected.
If there is no phase distortion in subbands, the motion information among different

subbands is highly correlated. We can, therefore, gain even more in schemes (b.1),

(b.2), and (b.3).

Motion compensation is still an open field, and deserves much more research.
It 1s believed that it is the motion-compensation technique that has the highest

potential further to greatly compress the video signals.
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Motivation and Block Diagram

In this chapter, we develop a video-compression scheme by combining the intra-
and interframe algorithms discussed in the previous chapters. As stated, a video-
compression system is basically composed of three parts: an interframe compressor,
intraframe compressor, and lossless data compactor. We first apply motion compen-
sation to the video signals to take advantage of the temporal redundancy to decrease
the signal variance. We then apply intraframe compression to the estimated error
signals by using the spatial redundancy and properties of HVS to further reduce
the number of bits. Finally, we apply an entropy encoder to losslessly decrease the

bit amount.

It has been demonstrated in the previous two chapters that many computations
can be saved by applying VQ and motion compensation to the subbands. Based
on this, we propose the scheme of generalized multiscale motion compensation with
V@Q. The block diagram is shown in Figure 6.1.1. We first pass the one frame of
signals through an analysis filter bank, then apply motion compensation to every
subimage. Finally, we apply PCVQ to the compensated signals in every subband.
Note that, although we perform motion compensation after filtering, there is almost
no interblock correlation among the blocks in different subbands. We can, then, still

take advantage of this and apply VQ to the blocks in each frequency band.



Section 6.2. Simulation Results 109
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Figure 6.1.1 Block diagram of generalized multiscale motion compensation with VQ.

6.2. Simulation Results

We now demonstrate and investigate the quality of the compressed pictures after
applying the whole system — subbanding, motion compensation, VQ, and their
reverse-decoding processes. Herein we have assumed that the transmission of motion

vectors and the indices of codevectors are free from error (lossless channel).

As mentioned in Section 4.4, deciding the number of bits (codebook size) allo-
cated to one frequency band is based on the signal statistics in that band. Before
applying PCVQ, therefore, we need to investigate the signal characteristics after
the subbanding and motion-compensation operations. Herein we consider only the

four-channel case. The coefficients of the filter bank are shown in Table 5.4.2. Table

6.2.1 shows the variance of the signals in every band before motion compensation,
after I'SA in every band, and after TSS in every band, respectively, and the code-
book size allocated to each band in the FSA case. (In simulations, we will show
only results of this case.) Figure 6.2.1 shows the histograms of signals after applying
FSA, where the number n in the first column represents the value of the signals in

the range of (n,n + 1] (¢ € (n,n + 1] means n < a < n + 1), whereas the numbers
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in the other columns stand for the amount of signals in the corresponding range.
From Table 6.2.1 and Figure 6.2.1, we can see that, after motion compensation, the
signal variances in all bands are decreased by a large amount. Almost all of the
signals in all bands (except for band 0) have values in the range of (—1, 1). This
demonstrates the fact that we can save a large number of bits by applying motion

compensation first.

0 1 2 3 4 5
Before MC 994.176 20.533 17.265 5.656 67.409 7.222
After FSA 29.255 4.787 4.605 1.486 11.026 2.235
After T'SS 57.702 7.738 7.124 2.364 23.652 3.436
Codebook size 128 4 1 1 16 1
6 7 8 9 10 11
Before MC 6.974 2.706 24.301 5.283 12.308 3.494
After FSA 2.256 0.831 4.932 1.767 3.020 0.936
After T'SS 3.417 1.321 9.165 2.742 5.015 1.548
Codebook size 1 1 1 1 1 1
12 13 14 15
Before MC 40.420 | 10.579 18.880 6.092
After FSA 11.823 3.728 4.520 1.424
After TSS 22.244 6.125 7.808 2.438
Codebook size 32 1 1 1

Table 6.1.1 Variances before and after motion compensation (MC)

and codebook size in subbands.

From Table 6.1.1, we can also see that the variance of the signals in the low-low
band remains the highest after motion compensation; therefore, we still allocate
most bits to this band. Remember that the optimal bit-allocation strategy is to

make the quantization error in every band equal (actually, approximately equal
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Figure 6.2.1 Histograms of the compensated signals in the subbands.
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Figure 6.2.1 (Continued)
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Figure 6.2.1 (Continued)

because the codebook size must be an integer, which makes the quantization er-
rors in different bands not exactly equal). Figure 6.2.2 shows two quantized frames
(frames 18 and 19) after applying 4 x 4 PCVQ to the compensated error signals
and then decoding. The corresponding original frames are shown in Figure 5.3.4.
Herein we consider only the case of FSA in all subbands. The codebook sizes al-

located to the subbands are shown in the fourth row of Table 6.1.1. The values

of the PSNR of these two frames are 32.523 and 32.539dB, respectively, and the
bits per pixel (bpp) is only 0.07. This means that we can achieve a remarkably
high performance (high PSNR as well as good perceptual quality without visible
blocking effects compared to those obtained by MPEG and H.261) by using such

a low bit rate (compression ratio is over 100:1) and by applying this subband motion

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ
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Figure 6.2.2 Two quantized frames of Figure 5.3.3 with 0.1bpp and PSNR of 32.5dB.



Section 6.3. Concluding Remarks

compensation with VQ scheme. When we properly include the side information

needed for transmitting the motion vectors, the bit per pixel is still low (approxi-

mately 0.1bpp, or 80:1 compression).

There are several points we need to mention about the implementation in the

simulations:

(1) We have only applied pure forward prediction in motion estimation. B frames
are not used. As stated in Chapter 5, if we were to include the B frames, we
could expect to obtain an even higher compression ratio by reducing the variance
of the compensated signals, especially because, in these 40 frames of pingpong
sequence, there are many uncovered regions between frames. This will be at the

expense of higher complexity, overhead, frame delay, and buffer size.

(2) Because in these 40 frames, the scene-change did not occur, we have designed
a universal codebook for one subimage for all frames (totally, 16 codebooks),
except for the first frame. To include the I frames in order to handle the scene-
change problem, we should design separate codebooks for the I and P frames

(and B frames if necessary).

(3) In our simulations, we have worked on monochrome pictures. If we were to
apply the same scheme and algorithms to the color video signals, we would
expect to be able to achieve compression ratios as high as 150:1 or more with
high picture quality (high PSNR as well as perceptual effect) and reasonable
complexity. This is because as mentioned in Chapter 2, Because of the lower

sensitivity of HVS to U and V (or I and Q) components, we can subsample
these two components by without sacrificing visible distortion. Even the

monochrome results demonstrate the feasibility of the proposed scheme in real-
time video transmission systems, such as videoconferencing, videophone, and

HDTV.

6.3. Concluding Remarks

Conclusively, the principles of the proposed scheme are as follows:
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1. We apply VQ to intraframe compression to get a high compression ratio. Because
of the characteristics of the compensated signals and the subbanding operations

before VQ, the complexity of this part is very low.

2. We apply motion compensation to interframe compression to exploit the tem-
poral redundancy. Because of the fast algorithms as well as the subbanding, the

complexity of this part is also low.

3. We use the properties of subbanding in both intra- and interframe compression.
In the intraframe case, we use it to remove the interblock correlations of large
blocks so that we can apply VQ to smaller blocks and retain the low-bit-rate
advantage of a larger block, thus greatly reducing the complexity. In the in-
terframe case, we use the decimation property of subbanding to decrease the
maximum displacement and block size, thus greatly decreasing the computa-
tions and achieving more accurate estimates. Because we apply analysis filter
banlk before decimation, the subimages will not suffer from aliasing. Hence, the

motion estimation on the subbanded images is still accurate.

We have demonstrated only one implementation and illustrated the simulation
results. There are certainly many variants of this proposed scheme. For example,
we can apply any interframe compression techniques (with or without subbanding
operation) proposed in Chapter 5, followed by VQ, DCT, or any other intraframe

technique. The design certainly depends on the desired applications.
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