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ABSTRACT

This thesis investigates the optical implementation of neural networks uti-
lizing dynamic photorefractive volume holography. The number of accessible de-
grees of freedom in a general holographic interconnection system is derived, and
a cascaded-grating scheme that provides full, nondegenerate interconnections be-
tween two unsampled planes is presented. The dynamics of the formation of
photorefractive volume holograms is considered. The impact of time-constant
asymmetry on multiple hologram recording is evaluated. A basic framework for
controlling the dynamics of photorefractive holograms is described and a number
of dynamic copying methods for rejuvenating decayed holograms are identified.
Experiments of linear dynamic copying using phase conjugation and nonlinear
copying using an optical feedback loop are presented. The electrical fixing of
photorefractive holograms in Srg 75Bag 95 Nb2Og crystals is experimentally demon-
strated and the physical mechanism is discussed. A number of neural learning
algorithms are investigated for optical implementation. An Anti-Hebbian local
learning algorithm is proposed to simplify the optical architecture of feedforward
multilayer networks. Experimental demonstrations of several optical neural net-
works are presented. An optical perceptron is trained for face classification, and
the use of dynamic copying for improving its performance is demonstrated. A
two-layer network based on Kanerva’s sparse, distributed memory model is imple-
mented and trained for real-time handwritten character recognition. Finally an
optical two-layer network for real-time face recognition, with moderate tolerance

to shift, rotation, scale, and facial expression, is presented.
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1. INTRODUCTION

1.1 Volume Holography for Information Storage

Volume holography, first invented as an interference method of recording the
light waves originated from a subject, represents an effective method of controlling
and probing the 3-D optical properties of media. The ability of volume holograms
to store information in 3-D with high density and parallel access has made them
attractive for various applications including optical information processing. It is
based on this technology that the optical learning systems presented in this thesis

are built.

Holography was first invented by Dennis Gabor [1] to improve the resolution
in images obtained with an electron microscope. Although unable to demonstrate
the validity of his principle with electron waves, he was able to do so with visible
light, which proved to be a step in the right direction. The inspiration for this two-
step, wave-reconstruction microscopy came from the work done by Sir Lawrence
Bragg, who invented the “x-ray microscope” [2] for the investigation of atomic
arrangement in crystals based on optical Fourier synthesis. After a decade or so,
Leith and Upatnieks [3-5] demonstrated off-axis holography that eliminates the
twin image effect in Gabor’s original in-line holograms. They gave convincing
proof that holography was practical and that the use of coherent laser light was

an important factor.

Volume holography was invented by Denisyuk [6] to improve the quality of
images stored in a hologram. Van Heerden studied volume holograms for infor-

mation storage, and estimated their storage capacity [7]. The analysis of volume
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holograms is different from that of planar holograms in that the wave-coupling ef-
fect must be considered. The coupled wave theory was first developed by Kogelnik
[8]. Since then, many refinements have been added to Kogelnik’s theory, including

the treatment of anisotropic effects and composite holograms.

The control of the vast number of degrees of freedom available in the volume
has always been a challenge. In fact, the capacity of a holographic memory or
interconnection system is usually limited by the recording scheme rather than the
capacity of the crystal. Information storage in a volume is achieved by various
multiplexing techniques. Spatial and angular multiplexing are the two methods
that have been most widely used [9-13]. Recently, with the advent of spatial light
modulators (SLMs) that are capable of phase modulation (such as liquid crystal
SLMs), phase-code multiplexing has been proposed [14,15] that eliminates prob-
lems associated with the physical realization of angular multiplexing. Wavelength
multiplexing, although an old concept, is made possible with the advent of wave-

length tunable lasers, especially solid-state lasers [16-18].

In this thesis, we are primarily concerned with volume holograms in photore-
fractive media, which are electro-optic materials in which phase holograms can be
recorded through the migration and trapping of photo-generated charges. Typi-
cal photorefractive materials used in this work include lithium niobate (LiNbOs3),
barium titanate (BaTiO3), and strontium barium niobate (SBN). A number of
theories have been developed to described the formation of photorefractive holo-
grams [19]. The most commonly used theory is the band transport model devel-
oped by Kukhtarev [20]. This theory is reviewed in chapter 2, with emphasis on

the dynamical behavior of the formation of photorefractive volume holograms.
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The general control of volume holograms was discussed by Brady and Psaltis
[21]. This thesis deals with the dynamic control of photorefractive holograms.
Several methods are derived and experimentally demonstrated that allow effective
use of the whole dynamic range of the crystals. Optical learning systems that are
capable of performing a very large number of adaptations can be implemented

based on these techniques.

1.2 Artificial Neural Networks and Optical Implementations

Neural networks are massively parallel computers in which a large number
of simple processing elements (neurons) are densely interconnected and operate in
parallel [22]. Typically, there are several hundred to several thousand connections
for each neuron. Therefore, the most difficult part in the practical implementation
of neural networks is the realization of the interconnections. If the implementation
is a simulation on a digital computer, then the implementation of a large network
becomes very time consuming because each connection needs to be realized by a
digital multiplication. Moreover, for a large network, there is a serious problem
with the storage and retrieval of the weights of interconnections from a mass mem-
ory. Hardware implementations can solve these problems through parallelism and
the use of a distributed memory in which the weights are stored adjacent to the
neurons that they connect. In this way, the logical function of the hardware repli-
cates directly the neural network and the network can be simulated extremely fast.
Electronics and optics are the two main approaches for neural network implemen-
tation. The advantages of the electronic implementation derive from the fact that

it is based on a very mature technology and hence it is possible to easily fabricate
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chips that reliably simulate complex neural network functions. The problems with
the electronic implementation arise when the size of the network exceeds what can
be accommodated on a single chip. For large networks requiring a large number
of chips, the problems associated with interconnecting the chips and sequencing
the operations properly make the electronic implementation difficult. The optical
implementation, on the other hand, is not based on a well established technology
which makes the fabriction of optical systems relatively difficult and expensive, and
it is more difficult to control their characteristics. The great advantage of the opti-
cal implementation derives from the ability to implement interconnections in three
dimensions. This allows us to have an architecture consisting of planes of neurons
separated by optical systems that implement the connections between the neurons
in the planes. The neural planes consist of non-linear optoelectronic processing el-
ements whereas the interconnecting system typically consists of holograms and/or
spatial light modulators. The ability to store and process information in three
dimensions makes it relatively easy to build very large optical networks, within
a relatively small volume and with small power requirements. Typically, a large
electronic chip can accommodate 10* to 10° weighted connections. We will see in
this thesis that optical networks with 10® to 10° connections are readily realizable.
Therefore, these optical systems can be functionally equivalent to several thousand

chips without the difficulties involved in connecting and synchronizing these chips.

The most important feature of a neural network is learning. Learning is
achieved by exposing the network to the problem, and modifying the weights of
interconnections and/or the characteristics of the neuron response based on the

error it made. In most neural network models the functionality of the network
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is determined by the values of the weights of the interconnections. The weights
are set during a learning phase in which examples of the function that we wish to
implement are presented to the network and its performance is monitored. The
weights are then modified to improve the performance. There is a wide variety
of weight modification algorithms and almost all of them can be thought of as a

variation of the Hebbian law [23]

Aw;; x 0;0;, (1.1)

where w;; is the weight connecting the ith and jth neurons and o; and o; are
the activation functions (typically, nonlinear thresholding functions) of the two
neurons. This simple rule not only forms the basis of most neural network learning
algorithms, but also has a very direct analogy to holography. Two optical beams,
interfering to form a hologram, reinforce the recorded hologram in proportion to
the product of their amplitudes. If the hologram implements the interconnection
between the ¢th and jth neurons, then the Hebbian law can be realized simply
by allowing light emanating from the two neurons to interfere and modify the
interconnecting hologram.

A similar history of development is another common feature of optical and
neural computers. Both topics became popular in the late 1950s and early 1960s
and both fell out of favor soon thereafter, until recently. The difficulty that both
approaches ran into was that they could not provide competitive, practical solu-
tions to interesting problems, despite their promise for superior capabilities. This
remains true today.

Nevertheless, there is renewed optimism and the level of interest in these

two fields is more intense now than ever before. Whatever the reasons for this



resurgence in interest may be, the remarkable fact is that the interest has been
increasing for the last ten years or so. The underlying reason is the transition,
in both fields, from the single-layer machines of the early 1960s to the multi-layer
machines of today. Most of the work in neural networks in the 1960s focused on a
single neuron (see Fig. 1.1), modelled as a simple threshold gate. Each input z;
to the neuron is multiplied by a weight w; and the weighted signals are summed.

If this sum exceeds a threshold, the neuron turns on; otherwise it stays off.

y= Sgn{ZWixi +0}

Figure 1.1. A single neuron modelled as a threshold unit.

What created excitement about this sort of thing was the discovery of al-
gorithms for training such a system. If we are given a set of inputs along with
the desired output for each of the inputs, then procedures such as the perceptron
[24] and the adaline [25] can iteratively develop a set of neuron weights to map
each of the given inputs correctly. Of course, these procedures can produce a set of
weights to solve the problem at hand only if such a solution exists. The realization
that there are no problems of practical interest that can be solved efficiently by a

single neuron essentially brought to an end the early efforts in neural networks.
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The most intensively studied optical computing system that originated in
that era is the optical correlator [26] (Fig. 1.2). This system correlates an input
image with a reference that is stored holographically. The value of the correlation
function at the center of the output plane is the weighted sum of the input pixels,
the weights being the corresponding pixel values of the reference image. At other
positions we obtain the weighted sum of a shifted version of the input image.
Therefore, the optical correlator is functionally equivalent to an individual neuron
with the additional feature of shift invariance. Optical correlators have not found
significant practical applications for the same reason that single neuron systems

have not.

T ] ]

Input Hologram Output

y; = sgn{Xw;x;; +6}

Figure 1.2. Optical correlator.

Research in neural networks in recent years has been focused on the study of
large sets of neurons. The discovery of training algorithms for multi-layered feed-
forward networks [27,28] is the development that has had the strongest impact in

the field. In a two-layer network (Fig. 1.3), the input pattern is first processed by a
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set of “hidden” neurons, and the final output is calculated by an addtional neuron
which accepts as its inputs the outputs from the hidden units. If we are given
enough hidden units, any function can be approximated with arbitrarily good
accuracy [29]. Therefore, the question for multi-layer networks is not whether
there are any interesting problems they can solve, but whether they can solve

some of them more efficiently than other approaches.

/
€
= y
/ T
Hidden
Units

Figure 1.3. Multilayer neural network.

While progress in neural networks occurred primarily through algorithmic
developments, in optical computing the most significant development in the 1980s
was the maturing of several key optoelectronics technologies. Spatial Light Mod-
ulators (SLMs) have always been considered the key component for optical com-
puting systems. An optically addressed SLM is a 2-D array of devices, each device
detecting light incident on it, electronically processing the detected signal (typi-
cally in a very simple way), and then regenerating an optically modulated signal

through a light modulator or a source.
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The most significant advances in SLM technology in the past decade came
from the development of liquid crystal devices [30,31] and semiconductor opto-
electronic devices [32,33]. These advances have made it possible to construct
multilayer optical systems in which the output of one layer (or SLM) is optically
interconnected to another. The linear portion of the system (the interconnections)
is the strength of the optical approach, but the nonlinear, optoelectronic portion
provides the system with computational power and diversity. Optical neural net-
works, digital optical computing [34], and optical interconnections for electronic

systems [35] are all examples of this new breed of multilayer optical machines.

The recent activities in the area of optical neural networks began with the
optical implementation of a Hopfield network [36,37] in which every neuron is
connected to all the rest. Since then, there have been many research efforts in this
area, investigating associative memories [38-47], higher-order networks [48-50],
methods of learning [51-56], perceptron networks [57-59], self-organizing systems

[60], and feedforward multilayer networks [61-63].

The general architecture for optical neural networks used throughout this
thesis is shown in Fig. 1.4, which is similar to the optical correlator shown in Fig.
1.2. A plane of sources at the input is connected to a plane of detectors at the
output via a volume hologram, and the light sources on a training plane are used
together with the input sources to control the hologram. This basic module can
be cascaded to form a multilayer network, and feedback can be added as desired.
The hologram in this system implements a linear transformation between the input
and output plane. The principal theme of this thesis is to develop methods for the

dynamic control of this hologram, and use these methods to implement real-time
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Figure 1.4. General architecture of optical neural networks.

learning in optical neural networks.

1.3 Thesis Overview

The primary goal of this thesis is to develop methods for dynamic control of
photorefractive volume holograms and apply them to applications such as optical

neural networks and optical memories.

The basic mechanism of 3-D information storage in volume holograms is
discussed in Chapter 2. The number of accessable gratings in the optical processing
architecture shown in Fig. 1.4 is derived, and a two-layer scheme is proposed that
provides full, nondegenerate interconnections between the input and output plane
without the need of fractal sampling at these two planes. The physical mechanism
of the photorefractive effect is reviewed in the second part of this chapter, and the
dynamic equation governing the formation of photorefractive volume holograms is

derived. The time-constant asymmetry involved in multiple hologram recording
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is analyzed. The effective use of such asymmtry improves the utilization of the
available dynamic range of the photorefractive crystal, and therefore enhances the

diffraction efficiency of the recorded holograms.

Based on the theory derived in Chapter 2, Chapter 3 describes a general
framework for controlling the dynamic behavior of photorefractive holograms. Sev-
eral types of dynamic copying methods are derived to refresh holograms that have
decayed due to read-out or multiple exposures. These methods are analyzed in
Section 3.1, and the experimental demonstrations of linear and nonlinear dynamic

copying are presented in Sections 3.2 and 3.3, respectively.

While the dynamic copying methods provide a solution to nondestructive
read-out of photorefractive holograms, the other approach is permanent fixing.
Chapter 4 presents the experimental demonstration of electrical fixing of pho-
torefractive holograms recorded in SBN:75. Electrical fixing of photorefractive
holograms is favored in practice because of its simplicity. The experimental re-
sults are presented in this chapter, and the physical mechanism involved in this
process is discussed. Theoretical predictions based on charge compensation in the

band transport model are shown to match closely with the experimental data.

The optical implementation of neural network models depends largely the
complexity of the learning algorithms. Chapter 5 investigates different types of
learning algorithms that can be implemented optically. The perceptron network
is described and its optical implementation, as a basic building block of multi-
layer optical networks, is presented. The backward error propagation (BEP) algo-
rithm [27] as an example of the algorithms for training distributed-representation

multilayer networks is described along with its optical implementation. An Anti-
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Hebbian Local Learning (ALL) algorithm is presented that ellimates some of the
difficulties encountered in the implementation of BEP-based multilayer networks.
As an example of the local-representation networks, the Radial Basis Function
(RBF) network and its optical implementation is reviewed. Finally, we study
learning algorithms that do not require a fixed network structure but rather de-
termine it as a part of learning. One example is the tiling algorithm, and its
optical implementation is discussed.

Chapter 6 is devoted to the experimental demonstration of optical learning
networks. An optical perceptron implemented using the dynamic copying tech-
nique is presented. This perceptron was trained in real time to classify two classes
of human faces, and it demonstrates improved performance over optical perceptron
without dynamic copying. A two-layer optical network based on Kanerva’s sparse,
distributed memory (SDM) model is demonstrated. This system was trained to
recognize handwritten character alphabet in real time. The last experimental sys-
tem is a two-layer network that is capable of recognizing at standard video rate
the identity of faces it has been trained for. The faces are presented under a wide
variety of conditions to the system, which demonstrates moderate tolerance to

shift, rotation, scale, tilt, and facial expressions.
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2. OPTICAL INTERCONNECTIONS USING
PHOTOREFRACTIVE VOLUME HOLOGRAMS

2.1 Introduction

The basic architecture for each stage of a multilayer optical network is shown
in Fig. 2.1. The neurons are arranged in planes, with the (n—1)th and nth neural
planes being the input and output layers of the nth stage, respectively. Neurons in
the input plane are connected to the neurons in the output plane via holographic
gratings recorded in a photorefractive crystal. As shown in Fig. 2.1, the light

-1 representing the

from the 7th neuron at the input, with its field amplitude ogn
response of that neuron, is collimated by a Fourier lens and then diffracted by a

holographic grating. The diffracted light is focused by a second Fourier lens onto

the 7th neuron in the output plane.

An interconnection between the ith neuron in the input plane and the jth

(n~
1

neuron in the output plane is formed by interfering o 1), the light emanating
from the ¢th input neuron, with tg-n—l), the light emanating from the jth neuron
in the training plane. The image of the jth training neuron coincides with the jth
neuron in the output plane. The interference of the input signal and the training
signal creates a refractive-index modulation grating, with the grating vector k;;
equal to k; — k;, where k; (k;) is the wave vector of the light that is emitted by
the ¢-th (7-th) neuron and collimated by a Fourier lens. The strength (i.e., the

weight value) of the interconnection is determined by A the amplitude of the

Jio

refractive index modulation. Later in this chapter it will be shown that Ag?) is
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Figure 2.1. Basic architecture for an optical multilayer neural network.

proportional to the modulation depth of the interference pattern:
(n—=1),(n—-1)
PO
ji I, ’

(2.1)

where I, is the total illuminating intensity. This grating diffracts an input beam
with wave vector k, into an output beam with wave vector kg if these two beams
satisfy the Bragg condition
ks — k, = kji. (2.2)
In section 2.1, we will derive the number of interconnections that can be
supported by the system of Fig. 2.1, and apply the result to the design of fully
connected optical systems. Section 2.2 describes the physical model for the for-
mation of photorefractive holograms, with emphasis on the first-order dynamic

properties.
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2.2 Volume Holographic Interconnections

2.2.1 Degenerate Interconnections

We will analyze the capacity of the holographic interconnection architecture
of Fig. 2.1 using the same global and local coordinate systems as Ref. 64 (see Fig.
2.2). The light emanating from a pixel at the input (training) plane is converted
to a plane wave propagating in the air by the Fourier transforming lens L1 (L2),
as shown in Fig. 2.2. This plane wave is refracted at the surface of the crystal,
resulting in a plane wave propagating inside the crystal. It is assumed that the
angle between the optical axis of lens L1 and the z-direction of the global system
is the same as that between the optical axis of the lens L2 and the z-direction,
and this same angle is denoted by 6. In addition, all the lenses are assumed to
have the same focal length f. Finally, the crystal is assumed to be uniaxial and it
is oriented such that its c-axis coincides with the y-direction.

We assume that the area of the input plane is small enough so that the parax-
ial approximation is valid. Consider a point source at the input plane, with local
coordinates (z},y;). The components of the wave vector p; of the corresponding

plane wave propagating in the air can be found, in the global coordinate system

(z,y,z2), as
ko
Piz ——Ty
f
ko )
Piy & cosﬁ(—-}—y;) — sinfk,, (2.3)

k,
piz R Sina(—Tyf) + cosbk,,

where k, = 2w /A, with A being the wavelength in vacuum.
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Yd

TRAINING PLANE

Figure 2.2. The global and local coordinate system.

Similarly, the wave vector of the plane wave originated from a point (z/}, y})

at the training plane is given by

ko, ,
Pdz = _733(1,
ko , .
Pay = cosf(——y sinbk,, .
y & cost( 4) t+ sinfk (2.4)

f
ke,
Pd: = -Slne("“?yd) + COSgka.

The wave vector of the refracted plane wave inside the crystal can be found
through the boundary conditions and the normal surface equation of the crystal.
We will consider only the extraordinary wave case, since the normal surface asso-
ciated with the ordinary wave is a sphere, which can be treated as a special case

of the ellipsoidal normal surface associated with the extraordinary wave. Let the
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wave vectors of the input and training plane waves inside the crystal be denoted
by k; and kg, respectively. For k;, the boundary condition requires that k;, = p;,
and k;y = p;y. The wave vector k; is confined to the normal surface given by [65]

AL

~iE gy Y

2 2 2
n? ns  n?

= k2. (2.5)

In the first-order approximation, the components of the input plane wave inside

the crystal can be calculated:

k
kiz ~ —_O':E:a
f
ko
kiy =~ cosG(——y, — sinbk,, (2.6)

~ ok, sin? sm()coqﬁk o(ne/n? )(y,/f)
ng \/1 — sin®6/n?2

Similar expressions can be found for the training wave

kdx ~ ”%mil’
ko
kay ~ cos()(-——-—-yd) + sinfk,, (2.7)
L noks sin® sin()coq()k o(n e/n2)(yd/f)
dz =~

TL2

° \/1 — sin®6/n?

The grating vector of a grating written by an input point located at (zi,y!) and a

training point located at (z},y}) is given by the Bragg condition

K =ky— ki, (2.8)

and its components can be found using Eqs.(2.6) and (2.7):

K. % ko(a} — 23)/f,
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K, = cosbk,(y; — yy)/f + 2k,sinb, (2.9)

sinfcosfk,(n./n?)

(vi +va)/f.
\/1 —sin*4/n2

The mapping between a grating vector and a pair of input and output wave

K, ~

vectors is not one to one. A given grating vector can be mapped to different pair
of input and reference wave vectors as shown in Fig. 2.3. This effect, called Bragg
degeneracy, indicates that in the system of Fig. 2.2, different pairs of input and
output points can be connected by the same grating. Clearly, the characteristics
of Bragg degeneracy have to be fully understood before any optical processing

systems can be effectively constructed based on the setup of Fig. 2.2.

N2
N

Figure 2.3. Illustration of the Bragg degeneracy.

All pairs of degenerate input-output wave vectors matched by the same grat-

ing vector are located on two degeneracy ellipses on the normal surface of the crys-
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tal. Specifically, a pair of input-reference wave vectors (k;, k) that are matched

by a given grating vector K must satisfy Eq. (2.8) and the following conditions:

k?x k?’/ kz2z 2

.2 k2 k2

dr dy dz . 1.2

n2 +—T‘l§'+-7—{g- = k.. (2.11)

By subtracting Eq. (2.11) from Eq. (2.10) and substituting k; by K + k;,

we obtain the following equations that consist of only the components of k;:

2 .2 .2
kiz kly ]”iz _ k2
2t T o2 T Ko
ne nO ne

(2.12)

2k + K;)K, 2k, + KK 2k;. + KK,
+ v vty

2 2 2
e L ne

=0,

which represent a degeneracy ellipse obtained by cutting the normal surface with

a plane. Similarly, the degeneracy ellipse for ky is given by:

1.2 2 2

l"dz + kdy + kdz _ k‘2

n? n? nz 9
€ o €

(2.13)

(2kar — Ko )K; | (2kay = KKy | (2ha: — KK,

2 2 2
ne ns ne

= 0.

The degeneracy ellipses given by Eqgs. (2.12) and (2.13) can be mapped to

the input and training planes by substituting Egs. (2.6) and (2.7) into Egs. (2.12)
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and (2.13), respectively. The result is a straight line at the input plane (in terms

of local coordinates)

2K .k, 2cosbK yk, 2sinfcos6 K .k,

).7:1 + ( 2 )y;
fre fng fn2neq/1 — sin®6/n2
(2 K2 K? 92infK,k, 2K:ko\/1-— sin29/n§
K y (¢ o om0k, vV )0, (2.14)

2 2 2 -
ns n ng Ne

(

and a straight line at the reference plane (in terms of local coordinates)

2K .k, 2cosf Kk, 2sinfcos I, k, ,

( )x,d + ( _— )yd
I I
i [~ - 3 ¢ ok — sl ’ ;
ng 1\3 I\z 28]I19]kao . 2I\zko\/1__m) = 0. (215)

+(Z+ 2L +=-
2 2 2 2
ng ng ni ng N

These two degeneracy lines are almost parallel, since the difference between their
slopes is very small when K, << K, which is true when the separation distance
between the input and reference planes is much bigger than the separation between
two input or reference pixels.

Once the degeneracy lines are found for a grating, all the degenerate inter-
connections corresponding to the same grating can be found. Any pair of input
and reference pixels that are picked from the degeneracy lines, with a separation
distance of K, f/k, in the z-direction, is connected by the grating specifying the
two lines. A direct result from this discussion is that any two pairs of input and

output pixels that are connected by a same grating should form a parallelogram.
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2.2.2 Number of Accessible Gratings

The Bragg degeneracy inherent in volume holograms indicates that in the
system of Fig. 2.2, it is impossible to obtain independent connections between the
2-D input plane and the 2-D output plane. The number of independent connections
that can be specified or accessed by the system can be found by determining
the accessible space of grating vector K. Let us assume that both the input
and reference planes are confined within a square, defined as —a/2 < 2! < a/2,
—a/2 < y; < a/2, and —=b/2 <z}, < b/2, —b/2 < y,) < b/2. Without loss of
generality, it is assumed that b > a.

According to Eq. (2.9), the maximum and minimum values of K,, K, and

K, are

Kimin = —ko%—b,

Kemaz = k%ff—b

Kymin = 2k,siné — coseko%—lz, (2.16)
Kymaer = 2kosinf + cos()ko%é,

sinfcosfky(n./n?)a+b

I\"zmin = ’
\/1 — sin?4/n? 2f

., sinfcosfk,(ne/n2) a+ b

I&Zm(lx - *
\/1 — sin®8/n? 2f

According to Eq. (2.16), the value of K, does not depend on the values of

either Ky or K,. Therefore the cross section of the accessible grating space cut

by any plane perpendicular to the K -direction is the same. The cross section is
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a parallelogram shown in Fig. 2.4, where

sinfcosfk,(n./n%)b—a

A’a = 3
\/1—sin?8/n2 2f
. . a—b
Ky = 2k,siné + COSGkO_éT’ (217)
b —
K. = 2k,sinf 4+ cosbk, 2fa.

The area of the parallelogram is given by

S :(I‘:zmaz - I(zmin)(-[\’ymaz - I\’ymin) - (I\"zmaz - I\’a)(-[\"b - I"ymin)

— (Ko = Kimin)(Ke = Kymin). (2.18)

The shape of the accessible grating space is a parallelepiped bounded by the edge

points given in Eq. (2.16), and the volume of this parallelepiped is

Va = S(I{zmaz - I{zmin)
sabla+b)n, sin(26)cosl

[ 3 2 3
f "o\ /1 — sin6/n?

where Eq. (2.16) has been used. In the grating space, the uncertainty volume of

=k

(2.19)

a grating is (27)° / Va1, where Vi = L, L, L, is the volume of the crystal. The
number of accessible gratings of the system of Fig. 2.2 is therefore
Va

(277)3/th111
~ Vaa ab(a+byn. sin(26)cosf

3 :
A A 1/1 —sin®6/n?2

N, =

(2.20)
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Figure 2.4. The cross section of the accessible grating space cut by a plane per-

pendicular to the K -direction.

Let the numbers of resolvable pixels at the input and reference planes be

N; x Ny and N; X Ny, respectively. According to Ref. 64, under certain conditions,

a

Ny = L (2.21)

and
Ny = b 2.22
2 — f)\/—Lz, ( . )

Equations (2.20), (2.21), and (2.22) yield the following relation:

L%4/1 — sin®6/n?

“L,L.sin(26)25cos

This relation shows that N,, the total number of accessible gratings, is on

the order of magnitude of Ny N2(Ny + N2). When the input and reference planes
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have the same size (i.e., a = b), Ny = N, = N and N, is on the order of magnitude

of N3.

2.2.3 Cascaded-Grating Interconnections

The fact that the number of accessible gratings is on the order of N2 implies
that it is impossible to realize fully independent connections between the N x N
input array to the N x N output array, since that would require N* independent
connections. One approach for alleviating this discrepancy is to decrease the
density with which the input and output planes are populated. A systematic way
of sampling the input and output planes was developed so that the product of the
numbers of active pixels at the input and output planes is equal to N?® [66,67].

These sampled pixels can then be fully connected without Bragg degeneracy.

The drawback of the sampling approach is that the capability of the input
and output planes, usually implemented with spatial light modulators, are not
fully utilized. The obvious solution to this problem is to increase the number of
accessible gratings between the input and output planes. One such method is
the cascaded-grating approach proposed and demonstrated by Owechko [68]. The
basic idea of the cascaded-grating approach is to use a set of angularly and spatially
multiplexed gratings, rather than a single grating, to store each interconnection.
By forcing a light beam to match the Bragg condition at each of a cascaded
series of spatially and angularly distributed gratings (Fig. 2.5), Bragg degeneracy
induced crosstalk is greatly reduced. The k-space illustration of this approach is
shown in Fig. 2.6. It is clear that two gratings in series connect only a single

input/output pair of beams through an intermediary diffracted beam. All other
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pairs of input/output beams are not able to match the Bragg conditions at both
gratings because the intermediary diffracted beam does not lie on the degeneracy
ellipse of the second grating. An undesired beam on the degeneracy ellipse of the
first grating is therefore rejected by the second grating. In Owechko’s experiment,

the cascaded gratings were generated through photorefractive fanning.

| ,/2

Figure 2.5. Cascaded gratings for eliminating Bragg degeneracy.

In Fig. 2.5, we can imagine that the input beam is diffracted by the first
(fanning) grating, and the diffracted beam arrives at an intermediate plane. The
light coming out of the intermediate plane is then diffracted by the second grating
to generate the final output beam. For a given both the input and output planes
have a given dimension of N x N. It is desired to find out what the dimension of
the intermediate plane, assumed to be M x M, should be in order to achieve full

connections between the input and output plane, which requires N* independent
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Figure 2.6. k-space illustration of the cascaded-grating approach.

connections. Based on the previous analysis of the number of accessible gratings,
the number of gratings that can be accessed by the input and intermediate planes
(called the first layer connections) is MN(M + N). The number of gratings that
can be accessed by the intermediate and output planes (called the second layer
connections) is also M N(M+N). Therefore the total number of accessible gratings
is on the order of MN(M + N). To have fully connected input and output planes,
it 1s required that

MN(M 4+ N) > N*, (2.24)

which yields
M ~ N3/%, (2.25)

The increase in the number of accessible gratings is achieved by using a

larger intermediate plane, which enables the access of more gratings. It should
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be noted that all the previous analyses are based on paraxial approximation, and

there is a limit to which the size of the intermediate plane can be increased.

The fact that the number of accessible gratings between the input and out-
put planes is greater than the number of required connections between these two
planes does not necessarily guarantee that the two planes can be fully connected.
Fortunately, it turns out that when the condition given by Eq. (2.25) is satisfied,
there exists a scheme that realizes full connections between the input and output
planes. The intermediate plane will be sampled as shown in Fig. 2.7a, where only
one out of every N columns will be utilized. There are a total of N1/2 (=N3/2/N)
such columns and therefore the total number of sampled pixels in the intermedi-
ate plane is N3/2 . N1/2 = N2 These N2 pixels can be fully connected to the
N? pixels at the output plane without Bragg degeneracy, since there are no two
sampled pixels at the intermediate plane and two pixels at the output plane that

can form a parallelogram.

The task of the first-layer interconnections from the input plane to the inter-
mediate plane is simply to perform a fixed mapping from the N? input pixels to
the N2 intermediate pixels. The only requirement is that the interconnection ma-
trix must be nonsingular. In fact degenerate interconnections are allowed because
the modification of the input-output connections can be achieved in the second
layer. The simplest case is a one-to-one mapping, which can be achieved by using
a planar hologram which consists of N1/2 multiplexed gratings. As shown in Fig.
2.7b, the first grating will connect the first pixel of the first column of the input
plane to the first pixel of the first column of the intermediate plane. Because

of shift invariance of the planar hologram, the first column of the input plane is
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connected to the first NV pixels of the first column of the intermediate plane. In
a similar fashion, the second grating will connect the second column of the input
layer to the (N + 1)-th pixel through the (2V)-th pixel of the first column of the
intermediate plane. This construction continues until the first N'/2 columns of
the input plane are connected to the first column of the intermediate plane. Then
next N'/2 columns of the input plane are connected to the second column of the
intermediate plane by a set of N'/2 gratings. This process is repeated until all
the input pixels are connected, in a one-to-one fashion, to the sampled pixels at
the intermediate plane. Here we described an approach using a multiplexed pla-
nar hologram for achieving the first layer connection. It can be envisioned that a
specially designed holographic optical element (for example, using binary optics)

can do the job more efficiently.

An advantage of using the above described cascaded-grating scheme over
Owechko’s fanning based method is that the crosstalk due to Bragg degeneracy
can be reduced to a greater extent. In the fanning based approach, the input,
intermediary, and output beams tend to lie in the same plane. As the result, the
degeneracy ellipses of these two gratings tend to be tangential with each other.
If the input beam changes slightly along its degeneracy ellipse, the intermediary
diffracted beam will not move a lot away from the degeneracy ellipse of the second
grating so that it will not be completely rejected by the second grating. This
results in crosstalk. In the cascaded-grating scheme described here, the input,
intermediary, and output beams are deliberately designed so that they do not lie
in the same plane. Therefore, as shown in Fig. 2.8, the two degeneracy ellipses can

be made perpendicular with each other at their intersection. This maximizes the
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sensitivity with respect to the intermediary diffracted beam, and thus the crosstalk
due to Bragg degeneracy is minimized.

+
]
i
L3
[}
1
v

Figure 2.8. k-space illustration of the two-layer interconnection scheme.

2.3 Hologram Formation in Photorefractive Media

2.3.1 The Band Transport Model

The photorefractive effect describes the light intensity dependent refractive
index observed in photoconductive electro-optic materials. In 1979, Kukhtarev et

al. [20] published the band transport model. The predictions of this model have

been verified experimentally by groups all over the world working on this subject,

making this one of the most important theories so far.
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The band transport model assumes that photo-excited electrons (or holes)
are rejected from filled donor (or acceptor) sites to the conduction (or valence)
band. Then they migrate to dark regions in the crystal before combining into
empty donors (acceptors). The charge separation results in a space-charge field
which modulates the refractive index via the linear electro-optic effect. As the
result, a volume hologram, i.e., the three-dimensional pattern of refractive index
modulation, is created in the photorefractive crystal.

In the simplest case, the hologram formation in a photorefractive crystal
can be modeled as the migration of a single species of charge carriers (which are
assumed to be electrons in the following discussion) from neural local trapping
sites to ionized sites. In this case, the band transport model is described by the

continuity equation for the mobile conduction band electron

5nm8Ng l

"é'?t"‘“ at +eV'J) (2'26)

the continuity equation for the immobile ionized donors

ON}, + +
5 = (B+sI)(Np = Np) —ynNp, (2.27)
the current equation
J = eunE + pkpTVn + T (2.28)
and the Poisson equation
V-eE = ¢(Nj, — N7 —n), (2.29)

where
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n is the free electron number density
Np is the total density of donors

N 5 is the ionized donor number density
J is the current density

e is the electron charge

[ is the the donor thermal ionization rate
s 1s the photoexcitation constant

I is the illuminating intensity

v 1s the recombination constant

E is the electric field

i 1s the electron mobility

kp is the Boltzman’s constant

T 1s the temperature

Jphr 1s the photovoltaic current

€ 1s the static permittivity

N7 is the number density of ionized acceptors.

The immobile acceptors are assumed to be completely ionized and not to take

part in the photoexcitation process. Therefore, N7 is a constant independent of

time and space.

We will consider hologram formation in the system of Fig. 2.2. We will

ignore cross gratings recorded between signals generated on the same SLM, since

they are weak due to large grating spacings [20]. The recording intensity is

I =I,(1+ Zm;jcos(f&;ij T+ ¢z]))

ij
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m;; and ¢;; are the modulation depth and phase difference between the :th input
beam and the jth training beam. I, is the average recording intensity. The
wave-mixing effect is ignored here, since they can be suppressed by using ordinary
polarized recording beams. Holographic recording with coupled beams was treated
in [69].

The variables n, N B, E, and J can be expanded in Fourier series in har-
monics of the wave vectors K ij. Assuming m;; << 1 and using the quasi-steady

approximation [70], the first-order dynamic equation is obtained [71]:

dE;;1
T

7 =—-FEj1+ m,'jejas‘j E,, (2.31)

where E;;; is the amplitude of the first-order Fourier component of the space-

charge field; 7 is the photorefractive time constant given by

N, E, (Eqi; + Em
r= 4 ]‘\’I_“( dist Bm) (2.32)
30D By — ¥ Epn + 1(Eaj + Ey)
and
1 Eo+ Eph + jEa.i;
Ey= = 1L Zph 7 (2.33)

. N7 . )
21— J(Eo|| + F&Epn + jEu,ij)/ Eqg

The parameters in Egs. (2.32) and (2.33) are defined as follows

E., = Eo . I&’,’j
T

K- Kijao'yN;
ph =

II;’ijleusND

N~
Ep = 1A
e
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where E, is the externally applied electric field, & is the Glass constant [72], and
«, 1s the mean absorption constant.

The space-charge field modulates the index of refraction of a photorefractive
crystal via the linear electro-optic effect. Specifically, the corresponding perturba-

tion to the permittivity tensor is

Ae = —erEe, (2.34)

where r is the electro-optic coefficient tensor. This also implies that the amplitude

of refractive index modulation is proportional to E;; ;.
2.3.2 Multiple Hologram Recording

When photorefractive holograms are used in neural networks, each weight
update in a network requires that an exposure is made to the crystal. At the end
of the training, the resulting hologram has contributions from all of the previous
exposures. We now consider the effect of multiple exposures to the strength of the
hologram. Let A,, be the amplitude of the mth hologram recorded. After a total

of M exposures,

tm Xt
Am = Aol - ea:p(—-?)]e:zp(— Z T)a (2.35)

m'=m+1
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where A, is the saturation amplitude of the index modulation recorded in the
photorefractive crystal, which is proportional to E;; t,, is the time of the mth
exposure. If we require that the final hologram is a linear sum of the recording

signals over all the exposures,which means A4,, = A,,4; for all m, we obtain

tm+41

1= eop(= 2 ep(~2E0) = [1 — eap(~ L)) (2:36)

Here the dependence of 7 on the grating vector Kj; is ignored; this dependence
will be explored later in this chapter.

If we assume that E, = E,; = 0, 7 becomes real and the solution to Eq.
(2.36), for maximum diffraction efficiencies of the recorded holograms, is given by

t; > 7 and [53,73]

tm = Tin( ), m > 1. (2.37)

m
m—1
With this exposure schedule, the final amplitude of the holograms can beobtained

using Eq. (2.35):

Am=Ay =4, /M, m=12... M. (2.38)

Therefore, the diffraction efficiency of each hologram, which is proportional to the
square of the recorded amplitude, decays as M ~2. For recording of M holograms,
the total exposure time is given by

M
T=Y tm=t+r1inM. (2.39)

m=1

In general, the recording time constant 7, is not necessarily equal to the

erasure time constant 7.. This asymmetry is created, for example, when the
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externally applied field E,|| or the photovoltaic field E,; is not equal to zero. In
this case, if we still assume that 7, and 7. are real, the exposure schedule is found

to be [53]

tm = Te/m (2.40)

for sufficiently large m. The strength of the holograms becomes

Am = AM = Ao[l - exp( MT,- )]
Te A‘O
~5E (2.41)

for all m. For example, if 7./7. = 5, there will a gain of 25 in the diffraction
efficiency of the multiplexed holograms.

In addition to the writing-erasing asymmetry associated with each hologram,
there is another type of asymmetry which results from different behaviors for
different holograms. For example, in angular multiplexing, the angle between the
signal and reference beams changes. Therefore each hologram has a distinct spatial
frequency which, according Eqs. (2.32) and (2.33), gives rise to different time
constant and saturation amplitude for different holograms. Figure 2.9 shows the
dependence of time constant on the angle between the writing beams, for LiNbOj,
BaTiOj3, and SBN, which shows that the time constant could vary by a factor of
10. A proper utilization of this effect can improve the final diffraction efficiency.
In what follows, the effect of varying time constant in angular multiplexing is
analyzed.

Assume we want to record M angularly-multiplexed holograms. Let AS |

Af . and 7, be the saturation amplitude, final amplitude, and time constant
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Figure 2.9. Dependence of time constant on the recording angle.
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for the mth hologram, respectively. The exposure time for the mth hologram is

denoted as t,,, and we define

m

TmEZti:t2+t3+---+tm, m=2,---, M. (2.42)

=2

For convenience, we define

T, =0. (2.43)
Now the question is how to find an exposure schedule #,, 13, - - -, t 3y such that
Al = Al m=23,---,M. (2.44)

The best strategy for the first hologram is, as usual, to make ¢; > 71 so that

the hologram reaches the saturation amplitude Aj. Equation (2.44) can then be

written as
Ay (1= emtm /7)o~ (T =T) = fg=Tut /7, (2.45)
which yields
Tm =T ln[%eT(#-%)_*_eTm—l?};}, m=2’3,...,M. (2'46)

where we have used the relationship

tm = T — Trne1. (2.47)

The M — 1 unknown variables T,, T3, - - -, Tps, can be found by solving Eq.
(2.46), which consists of a total of M-1 iterative equations. They are solved nu-

merically since closed-form solutions are difficult to find. Once Ty,’s are found,
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the exposure schedule can be derived from Eq. (2.47). At the end of the scheduled

recording, the holograms have the same amplitude, given by

Am = A; = Ale”TM/m (2.48)

If we define
T = Tm /71, (2.49)
T =T./m, (2.50)

then Eq. (2.46) becomes

A o1
T, =T, ln[A—:eT (1) + eT"’"1 ’v'n}, (2.51)
The final amplitude of the holograms is given by
Ap = Ale v, (2.52)

Next we will consider a special case where the time constant has a linear
dependence on the recording angle. This corresponds to the linear regions in the
curves of Fig. 2.9. For fixed 7, and 7)y, the linear dependence implies that 7, has

to satisfy
m—1

mEN T

(11 — ™) (2.53)

Then, using the definition given by Eq. (2.49), we obtain

7_, =c(M—m)+(m—-1)
m c(M-1) ’

(2.54)
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where

c=11/TMm. (2.55)

For simplicity, we also assume that the saturation amplitude of these holo-
grams is a constant independent of the recording angle. The saturation amplitudes

can then be normalized as

AS =1 m=12--- M. (2.56)

Under this assumption, Eq. (2.15) is solved numerically and the result is shown
in Fig. 2.10. Figure 2.10 is a log-log plot of the final diffraction efficiency 7y,
(defined as np = A%,) versus M, the number of recorded holograms, for three
different ¢ values 1, 3, and 10. For these selected values of ¢ and for the plotted

range of M, the diffraction efficiency is of the form

nm = B/M?, (2.57)

where the values of § are equal to 1, 1.6, and 2.1 for ¢ being 1, 3, and 10, respec-
tively. Therefore the diffraction efficiency is enhanced by a factor of ¢. To achieve
the same final diffraction efficiency of 107%, the numbers of holograms that can
be recorded for these three cases are 1000, 1260, and 1450 for ¢ being 1, 3, and
10, respectively. If this type of asymmetry is combined with the writing-erasing

asymmetry discussed earlier, the gain in the number of holograms is even greater.



41

-2
10 T i T
e c =10
ac=3
=c =1
e
Aap0e
& 107 hytailse. -
c [ 4,%
Sa 4a,%
o ., 4,00,
-t e, A%,
(3] Sn, ALt
= bt 44,0
a,%
Lo ng Aa,
Sy ay A0, %,
[<5] Pug, taagee,
ug 4a,%
g ny Aa %,
L faa, taalte
3 Nag tagle,
[4] Ty 44, %,
-] fa, "a,te
[ a,%,
Lol ay Ayle,
[ "y A, %,
— -8 L P P
= 10 - Bag ThaLle, -1
a e, TAa 0,
e As, %
g, tagy
'-.- Aa :a.
San “A::l
-.-- 44,00,
."- ‘A‘A sy
wy Aa,
By ta,
s, Y4al%e,
a, A b,
ag "4a,%
. a,%
. .'-. “A:
1078 1 L L fue.
]
2.0 2.8 0 X
10 10 10& 10&5 1040

M (Number of Holograms)

Figure 2.10. Log-log plot of diffraction efficiency versus the number of multiplexed

holograms.



42

3. DYNAMIC CONTROL OF
PHOTOREFRACTIVE VOLUME HOLOGRAMS

3.1 Introduction

Volume holograms recorded in photorefractive crystals are attractive for op-
tical computing applications owing to their high storage density and fast paral-
lel access [7]. The dynamics of photorefractive holograms have been extensively
studied and are relatively well understood, which enables intelligent control of the
hologram formation process and real-time modification of the stored holograms.
In addition, the continuing improvement in photorefractive materials makes it pos-
sible to record a large number of superimposed holograms with sufficient strength.
These advancements have had a great impact in areas such as optical neural net-

works and optical memories.

In an optical neural network, volume holograms provide an effective way of
realizing massively parallel interconnections between the processing elements (neu-
rons) [74]. One of the most interesting features of a neural network is its ability
to learn. Learning is achieved by modifying the weights of the interconnections in
a supervised or unsupervised fashion. In optical learning networks, this requires
that the holographic interconnections can be changed in real time. Photorefrac-
tive crystals are the most promising materials for realizing modifiable holographic
interconnections [53,57,75]. During each learning iteration, the required weight
change is calculated according to some algorithm, and the change is made to the

photorefractive hologram by exposing it to light.

For large optical networks, a large number of iterations is required to learn
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a desired mapping. This means that many exposures must be made to form the
hologram. When a new exposure is made to a photorefractive crystal, the previ-
ously recorded hologram decays. If we want all the exposures to make an equal
contribution to the final hologram, the exposure schedule described in Chapter 2
has to be followed in which the time for more recent exposures has to be shorter
than that for the earlier ones. The consequence is that the diffraction efficiency of
the hologram becomes inversely proportional to the number of exposures used to
form the hologram, if these exposures are statistically independent. In other words,
the diffraction efficiency will rapidly decrease with an increase in the number of
learning iterations. Therefore the number of learning iterations that a photore-
fractive hologram can provide is eventually limited by the background noise in the
system. On the other hand, if we use the same time for all the exposures rather
than following the exposure schedule, then the contribution of early exposures
will be negligible in the determination of the final weights and this may slow down
the learning or cause the system not to converge. This dilemma has to be solved

before a practical optical neural network can be constructed.

Another important application of photorefractive holograms is optical mem-
ories. The ability to store and have parallel access to information in 3-D is the
basic driving force for volume holographic storage. To record multiple holograms
with the same strength in the same volume, the exposure schedule should again be
used. Read-out is generally a destructive process in photorefractive memories be-
cause the stored holograms are partially erased by the reading beam, although this
decay can be slowed down by using a relatively low-intensity reading beam. One

way to achieve nondestructive read-out is by using a reading wavelength to which
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the crystal is not sensitive [76]. However, the Bragg selectivity of volume holo-
grams prevents us from reconstructing the recorded holograms with full fidelity
using this approach. Another approach is to fix the recorded holograms either
thermally or electrically, which will be discussed in detail in the following chapter.
While it accomplishes nondestructive read-out, the hologram becomes a write-
once memory. In many applications where modification of the stored information
is desired, the fixing techniques are not applicable. For a real-time programmable
holographic memory, it is usually required that we can selectively erase or rewrite
an arbitrary hologram without affecting other stored ones. However, the fact is
that during the modification of a hologram, the other holograms sharing the same
volume of the crystal will always be partially erased. To summarize, the challenge
we are facing is to realize a modifiable photorefractive holographic memory that

1s nonvolatile to read-out and selective erasure/rewriting.

In what follows, we will describe a general framework [77] for controlling
the dynamic behavior of photorefractive holograms. Two types of dynamic copy-
ing methods are derived to refresh holograms that have decayed due to read-out
or multiple exposures. These two methods are analyzed and their experimental

demonstrations are presented.

3.2 General Approach

The problems arising from holographic neural networks and modifiable holo-
graphic memories have raised a fundamental question: is it possible to control pho-
torefractive holograms multiplexed within the same volume such that they can be

driven to any desired state? We will consider the general holographic setup shown
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in Fig. 2.2, and assume that the input plane is an N x N pixel array and the
training plane is a 1-D array of N pixels. Under this assumption, no degenerate
interconnections will occur. There can be other arrangements for the dimensions
of input and training planes (with proper sampling grids to avoid degenerate in-
terconnections [66,67]), but the discussion presented below will apply in a similar
way. By using a set of N mutually orthogonal training (or “reference”) beams,
holograms can be multiplexed within the volume of the crystal. These reference
beams can be plane waves with different angles of incidence (which means only one
pixel in the training plane is on for each reference beam), or mutually orthogonal
phase-coded waves [14,15].

We first consider the control of a single hologram that is recorded with a
input signal and a single reference beam. We assume that the reference beam is
fixed and its intensity is much higher than the signal beam. Therefore the total
illuminating intensity I, is approximately the intensity of the reference beam, a
constant. Let the amplitude of the signal beam be denoted by a vector s, with
its ith element s; representing the amplitude of the light emanating from the :th
pixel in the input plane. Let the complex amplitude of the hologram be denoted
by a vector w, with its :th element w; representing the amplitude of the hologram
component recorded as the result of the interference between s; and the reference
beam. Then the first-order dynamic equation describing the formation and decay
of the photorefractive hologram is, according to Chapter 2, given by:

dw 1

where 7 is the photorefractive time constant and h is a constant depending upon

the crystal properties, recording geometry, and the amplitude of the reference
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beam. We ignore the two-wave mixing effect for the analysis. s; is the driving
signal used to control the hologram component w;, and there is an upper bound
b for the magnitude of s; so that the modulation depth of the recording field is
small enough for the first-order equation (2.1) to be valid [19].

In the terms of control theory [78], this system is controllable meaning that
if the initial condition of the hologram is known, there exists a control signal s(t)
such that it will take w to any desired state at least in the range |w;| < [hd| (for
all ¢) within a finite time. This tells us that it is possible to make the diffraction
efficiency of a hologram independent of the number of exposures that has been
made to the hologram. The method to achieve this comes naturally out of the
concept of observability of a control system [78]. For our system, the question
is how to determine the initial condition w°, both the magnitude and the phase.
It is obvious that the approach is to reconstruct the hologram w®° and use it to
determine the control signal s(t) which will take w to the desired state.

For a constant s, the solution of Eq.(3.1) is

w(t) = wlexp(—t/T) + sh[l — exp(—t/7)). (3.2)

To drive the hologram to a desired state w* at time t,, the required control signal

1s

s w* — wlezp(—t,/T)
h[l — ezp(—t,/T)]

(3.3)

If the goal is merely to enhance the stored hologram, then w* = aw®, where q is

an amplification factor. Eq. (3.3) yields
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a—exp(—t,/T

e &4
Equation (3.4) indicates that s should be simply equal to the initial state w°
times a constant, suggesting that we reconstruct the original hologram and use
the diffracted pattern as the control signal to enhance the hologram. This forms
the basic principle of the various “dynamic copying” methods [79-83] that have
been extensively investigated for refreshing the stored hologram after its strength
is reduced due to read-out or multiple exposures. Dynamic copying in general is to
transfer the primary hologram, whenever it becomes weak, to a another medium
(i.e., to determine the initial state w°), and then copy the hologram back to the
original crystal using the amplified reconstructed light as the writing signal (i.e.,
to use a control signal s that is proportional to the initial state w®).

As a first attempt to dynamic copying, Brady and co-workers successfully
demonstrated a system in which the decrease in the diffraction efficiency of a
multiply exposed hologram is recovered by periodic copying between a photore-
fractive crystal and a thermoplastic holographic medium [79]. When the hologram
recorded in the crystal becomes unacceptably weak after multiple exposures, it is
copied to the thermoplastic medium where it is then fixed. By reconstructing the
fixed thermoplastic hologram with a strong beam, the hologram is copied back to
the photorefractive crystal to rejuvenate the original. This system only recovers
the magnitude of the hologram while the phase of the hologram is not maintained.
This can cause problems in situations like selective hologram enhancement or
erasure where the hologram phases must be well controlled. The phase-tracking

problem has been solved by subsequently developed copying methods which will
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be described below.

It should be noted that for an optical learning system, we do not have to
draw a distinction between the learning phase and the hologram copying phase.
Let us assume that during learning, the update of the interconnection weights is
calculated to be Aw. If the control signal s is simply equal to Aw, then it is
impossible for the weights to reach the desired state w* = Aw + w° because of
the hologram decay problem. In this case, dynamic copying has to be performed
after the weight update to recover the decreased hologram strength. If, on the
other hand, the control signal is determined from both the desired state w* and
the initial state w° using Eq. (3.3), then the weight update will happen properly,
and it automatically incorporates the copying since we make use of w° to calculate

the proper control signal.

In order to specify the N3 pixels in a 3-D crystal, with on the order of
N? spatial degrees of freedom for each monochromatic exposure, the recording
field must have temporal variations. In the simplest case, we can use N discrete
exposures to alleviate this discrepancy. During each of such exposures, only one
of the N mutually orthogonal reference beams is used. To enhance N holograms
associated with N reference beams, we can simply cycle through the references,
incrementally refreshing each hologram in turn by copying, and repeat this cycle
many times. We assume that 7', the exposure time for each refreshing increment,

is the same for all the holograms.

The incremental refreshing of multiple photorefractive holograms can be de-

scribed by a first-order dynamic equation similar to Eq. (3.1):
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de

: (=wk + hsi), (3.5)

il

where w; denotes the amplitude of the kth hologram (associated with the kth
reference), and s; denotes the control signal for the kth hologram. s; is on only
during each refreshing increment for the kth hologram and remains off for the rest
of the time. When s; is a constant during each refreshing increment, an iterative

relationship can be found from Eq. (3.5):

wi' = |wi teap(—=kT/7) + sph[l — exp(—T/7)]|exp[—(N — K)T /7], (3.6)

where w7 is the value of w; at the end of mth refreshing cycle, and s7* is the
value of sy during the mth cycle.

We first consider the case where sJ* is a constant throughout the whole
copying process and is proportional to w{, the amplitude of the kth hologram

before the copying starts. Specifically, we let

sy’ = awy/h, (3.7)

where a is again an amplification factor. In this case, the system characterized by

Eq. (3.6) will finally reach a steady state wi:

1—ezp(-T/7)
—ezp(—NT/71)

w; = awjerp[—(N — k)T/T]l (3.8)
If T << 7, Eq. (3.8) becomes

wy = aw}p /N, (3.9)
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which indicates that this incremental refreshing method enhances the multiplexed
holograms if @ > N and the strengths of the final holograms are still proportional
to their initial strengths. Comparing to the single hologram case, the final holo-
gram amplitude is now reduced by a factor of N, the number of holograms. This
particular incremental refreshing method is similar to the incremental recording
procedure described in Ref. 84. The difference is that the control signal is de-
termined by the initial condition of the multiplexed holograms in the former case
and is provided externally in the latter case.

While the copying scheme described by Eq. (3.7) produces a nice result, the
physical realization of this method requires a volume holographic medium where
all the initial holograms can be stored, fixed, and then selectively reconstructed.
This may be possible in some cases, but in general it is difficult to achieve. In
the following sections, we will describe some more practical ways of choosing the

control signal for incremental refreshing.
3.3 Linear Dynamic Copying — Theory

A more practical way of choosing the control signal s7* for incremental re-
freshing is to make it proportional to the strength of the kth hologram at the

beginning of its turn for refreshing in the mth cycle, i.e.,

si' = awp lexp[~(k — 1)T/7]/h. (3.10)

This means that only a planar medium is needed to record, fix, and reconstruct
one hologram during each refreshing increment. Substituting Eq. (3.10) into Eq.

(3.6) and assuming again that T << 7, we obtain
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wp~ (- BT
~ [+ (a— N)T/rlw™ L (3.11)

Using Eq. (3.11), w}* can be expressed in terms of the initial condition w{:

wp & [14+ (a— N)T/r]"ws. (3.12)

Two properties of this copying method can be observed from Eq. (3.12). First,
the strengths of all the N holograms remain proportional to their initial condition
during the copying and they rise or decay at the same rate. Therefore the copying
1s linear. Second, in order for the holograms to get enhanced, the gain factor a for
the control signal has to be greater than a threshold value N so that the factor
[1+ (a— N)T/7] in Eq. (3.12) is greater than 1. Otherwise the holograms will
eventually decay to zero. In practice, of course, the holograms will not grow forever
when a is above the threshold N. Either the copying process will be terminated
at a certain time or the hologram strengths will saturate due to the finite dynamic
range of the material.

For the linear copying method given by Eq. (3.10), copying can be done using
either a 2-D holographic medium in which the recorded hologram can be fixed (for
example, a thermoplastic plate) or a spatial light modulator with memory. An even
simpler approach is to make the control signal s; proportional to the instantaneous

hologram amplitude wj during the copying, i.e.,

sk = aw/h. (3.13)
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In this case, Eq. (3.5) can be rewritten as

—_— ;—(a — 1)wk, (314)

which indicates an exponential growth of each hologram during its refreshing. An
expression for wi*, the amplitude of the kth hologram at the end of mth refreshing

cycle, can be easily derived:

wi = expl[(a — N)mT/r]wy3. (3.15)

Obviously this copying scheme is also linear and the multiplexed holograms are
enhanced as long as a > N. The advantage of this method is that there is no need
for a copying medium where the reconstructed signal from the primary hologram

can be stored for a certain amount of time. This results in a simpler optical system.
3.4 Linear Dynamic Copying — Experiment
3.4.1 Experimental Setup

In this section, the experimental system that realizes the linear dynamic
copying method is described. This method allows the composite photorefractive
hologram to reach a steady state with overall efficiency independent of M, the total
number of exposures made to the crystal. Furthermore, the phases of the recorded
holograms remain locked during the copying. The system diagram is shown in Fig.
3.1. The primary hologram is complemented by two phase-conjugating mirrors
(PCMs), which are photorefractive crystals in the four-wave mixing configuration.

They must share the same pair of pump beams so that the phase-conjugate beams



53

retain the same relative phase. The basic idea of this system is to record a pri-
mary hologram with external beams, read out this primary hologram with the
reference beam o;, and finally copy the hologram that is read out back to the
same crystal using the two PCMs. For photorefractive holograms produced by
diffusion only, there is a phase shift of 7/2 between the interference pattern and
the corresponding hologram. When the reference beam o; is on, and if the crystal
axis 1s oriented properly, the interference pattern formed by the reference beam
o; and the diffracted beam t; will create a hologram that is exactly in phase with

the original hologram [85]. When these two beams are phase conjugated (to pro-

!

% and t}), the hologram that the phase conjugate beams create

duce the beams o
is exactly in phase with the original hologram, and therefore the latter becomes

enhanced and sustained.

PCM 1
Amplitude Reflectivity r,

TN

N 0._
————— ~ ~ j
~
~
PCM 2
Primary Amplitude Reflectivity r,
Hologram

Figure 3.1 Schematic diagram for the linear dynamic copying system with a single

reference beam.

3.4.2 System Analysis
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The first-order dynamic equation describing the formation and decay of pho-

torefractive holograms is given by Eq. (2.31), which is again written here:

_dEij,

p =—-E;j1+ mijej‘P"" E,, (3.16)

where 7 is the photorefractive time constant, and ;; is the phase difference be-
tween the signal and reference beams. m;; is the modulation depth of the inter-

ference pattern, given by

mqi; = 2t;0;- Io, (317)

where I, is the total illuminating intensity. In this analysis, the two-wave mixing
effect in the primary hologram is ignored. For holographic formation by diffusion

only, the parameters in Eq. (3.16) are given by

r=1'/1, (3.18)

E, = —j|E,|, (3.19)

where 7' and |E,| are real parameters that depend upon the crystal properties and
the recording geometry. The fact that these parameters are real implies that the
phase of the recorded grating will not change if the phase difference between the
recording beams remain constant. Since, according to the previous discussion, the
phase of the copied hologram is locked , we can ignore the complex nature of Eq.

(3.16) and work with the magnitude of E;; 1, which is described by

S| _

o = Bl +mi| Bl (3.20)
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The amplitude diffraction efficiency of the (i7)th grating is denoted by w;; and it

is related to the space-charge field by [71]

w;; = stn(B|Eij1l), (3.21)

where  depends on the effective electro-optic coeflicient of the crystal, the holo-
gram thickness and the recording wavelength.

If we define

yij = BlEijal, (3.22)

and

c = 2B|E,], (3.23)

then a set of simplified equations is obtained:

dy," 1
Tdt_] = ;(—on,‘j + Ct;OS- , (3.24)
w;; = stn(yij), (3.25)

where we have used Egs. (3.17) and (3.18).
We first consider the case of single reference beam with N gratings recorded
in the crystal. With the reference beam on (see Fig. 3.1 for illustration), the

dynamics of this system are described by Egs. (3.24) and (3.25), with

t; = Arjw;j, (3.26)
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N
k=1

N N
L= A"+ A%} ) wi; + A*(1 =) wij)rk, (3.28)
k=1 k=1

A is the real amplitude of the reference beam, and r; and ry are the amplitude

reflectivities of the two PCMs. Substituting Eqgs. (3.26)-(3.28) into Eq. (3.24), we

obtain
dy;; r2 A2 N
d—t] = 27' {=la+ (0" = 1)) w};lyij + cpwij (3.29)

k=1

where a =1+ 1/r3 and p = r;/r;. In deriving Eq. (3.29), we have assumed that
¢, 7', and r; are all independent of the grating index :. This assumption is valid
if the spatial bandwidth of the signal beams is small.

The steady state of the system is obtained by setting dy;;/dt = 0 in Eq.

(3.29):

N
CpWij \/1 — k=1 wij
& .
a+(p? = 1) Xg=y wi;

Yij = (3.30)

The steady-state diffraction efficiency ng)z can be solved from the Eqs. (3.25)
and (3.30). The existence of a threshold level for the gain factor a of the control
signal in the previous discussion is reflected in this experimental system by the
fact that p must exceed a threshold level in order for the primary hologram to be

sustained. Assuming low diffraction efficiencies, a sufficient condition for nonzero

steady state is
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p> Maz{a/c,1}. (3.31)

It can be shown, using straightforward perturbation analysis, that the steady state
is stable under this condition. For typical photorefractive crystals, ¢ = 0.2 ~ 10.

In the case of small ¢, the steady-state overall diffraction efficiency satisfies the

condition Zi\;l w,%j < 1, which implies that w;; =~ y;; and \/1 - Zf:l wz]- ~ 1.
The latter is actually the undepleted reference approximation. With these approx-

imations, Eq. (3.30) can be solved explicitly, and it yields

()2 cp—a
Zwk) = Em (3.32)

With the approximation w;; = yi;, Eq. (3.29) also shows that all the gratings rise
or decay with the same time constant, which implies that w( 0 wfc J) = w,(]o) : wfc;)
for any ¢,k, 1 <17,k < N. Here wfj) represents the initial value of w;;. So Eq.
(3.32) can be rewritten as

w'®’

s)2 w;
wz(j) - Zk ] (0)2 (333)
1w

This property of grating strength normalization is very useful in many applications
including neural network implementation since it effectively prevents interconnec-
tion weights from either decaying or saturating. If the primary hologram is formed
through a sequence of M exposures using the exposure schedule described in chap-
ter 2, then w( )"~ M~ for all (2j) pairs. Therefore we can see from Eq. (3.33)

(s)?

that the steady-state diffraction efficiency w;;* is independent of M. For large

values of c, the preceding approximations do not hold and we have to solve Egs.



58

(3.25) and (3.30) for the exact steady states. Table 3.1 shows some of the typical
parameters and the corresponding steady-state values calculated numerically from

Eq. (3.30). For small values of c, ZkN=1 w£§)2 & 1 is justified.

Table 3.1 Typical values for system parameters and steady-state diffraction effi-

ciency in the case of a single reference.

c r Iy uh
0.2 20 2.0 0.76%
0.5 8 2.1 5%
1.0 3 1.9 13%

The approximation w;; =~ y;;, used to derive the steady-state solution given
by Eq. (3.33), takes into account only the first term in the expansion of the sine
function in Eq. (3.25). This approximation, however, is insufficient when the
overall diffraction efficiency starts approaching its steady-state value n;. When
that happens, dy;;/dt ~ 0 and the higher order terms of the sine expansion cannot
be ignored in the dynamic equation (3.29). These higher order terms, according
to our model, have an equalizing effect which will lead the system to a final steady
state where all the holographic gratings reach the same diffraction efficiency. This
same steady-state diffraction efficiency can be found by solving Eq. (3.25) and

Eq. (3.30). For large p and low diffraction efficiencies, this equalizing process
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occurs much slower than the grating normalization process we discussed earlier,
so that in practice we usually observe the latter case as a quasi-steady state.
Shown in Fig. 3.2 is a numerical simulation of Eq. (3.29) in which the primary
hologram consists of two gratings with different initial amplitudes. Initially the
ratio of the strengths of the two gratings remains constant until a quasi-steady
state is reached. Afterwards, the strengths of the two gratings slowly converge
to a common final steady-state value. The above simulation was performed with
the following parameters: p = 8,a = 2,¢ = 0.37,y;,(0) = 0.08,y2;(0) = 0.05, and
(r2A?/r") = 1.

3.4.3 Experimental Demonstration

The experimental system consists of an SBN crystal (1 mm thickness) as the
primary hologram and a BaTiOj crystal for the PCMs (Fig. 3.3). The BaTiO;
crystal, with the c axis oriented 45° from its face, provides phase conjugation for
both the reference and diffracted beams. This is done by directing the reference
and diffracted beams to two separate regions of the crystal illuminated by the
same pair of counter-propagating pump beams, so that the crystal acts effectively

as two separate phase-locked PCMs.

The first experiment examines the dynamics of a single grating recorded in
this system, where both the signal and reference beams are plane waves. The
phase-conjugate reflectivity of the BaTiO3 PCM for the reference beam was set
to be 1. Therefore ro = 1 and a = 2. The ¢ coefficient for the SBN was measured
to be 0.37. Figure 3.4 shows three experimental curves measuring the changes

in diffraction efficiency with time. When the phase-conjugate reflectivity for the
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Figure 3.2 Numerical simulation of Eq. (3.29) in which the primary hologram

consists of two gratings with different initial amplitudes. The simula-
tion was performed with the following parameters: p = 8,a = 2,¢ =

0.37,y1;(0) = 0.08,y2,(0) = 0.05, and (r34%/7") = 1.
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Figure 3.3 Experimental phase-locked linear dynamic copying system.

diffracted signal was 44 (therefore p = 7y = 6.63), condition (3.31) was satisfied and
the system reached an overall steady-state diffraction efficiency of about 0.845%,
independent of the initial condition. For comparison, the theoretical value for the
steady-state diffraction efficiency is ; = 1.06% from Eq. (3.32). The discrepancy
between the experimental and theoretical results may be due to the wave-mixing
effect in the SBN and the dependence of phase-conjugate reflectivity on the probe
intensity. When p was reduced to 2.35, however, the system did not have a nonzero
steady state and thus the grating decayed to zero as predicted.

The second experiment investigates the steady-state behavior of multiple
gratings recorded in the system. This was done by recording the Fourier trans-
form hologram of an image, which consists of multiple gratings resulting from

different spatial frequency components of the Fourier transform. Figure 3.5(a)
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Figure 3.4 Experimental result for the linear dynamic copying system. ro = 1 in
all the experiments. For p = 6.63, the same steady-state diffraction
efficiency is reached when we start with either low (e) or high (4A)
diffraction efficiency. For p = 2.35, the diffraction efficiency decays to

zero (o).
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shows the reconstruction of the image from the SBN when it was first recorded
and Fig. 3.5(b) shows the steady-state hologram resulting from the dynamic copy-
ing. Although there is some distortion in the steady-state hologram, it can be seen
that the grating normalization effect is dominant since all the spatial frequency

components are roughly proportional to their initial conditions.

3.4.4 Multiple Reference Beams

To store information in a volume hologram, multiple reference beams are
required. For the multiple reference beam case, assuming that there are N plane-
wave components in the signal beam and R reference beams, there are two possible
ways of sustaining them. One way is to bring in the reference beams cyclically (see
Fig. 3.6), and the other is to use mutually incoherent reference beams and have
them on simultaneously. Both of these schemes lead to the same steady state.
Specifically, assuming small steady-state diffraction efficiency, both of them are

described by the same dynamic equation

dw;; T%AZ 2 o 2
—2 =L {ep-Ra— (0 = 1)) wiwy, (3.34)
=1 k=1

with the steady state given by

R X (2 _cp— Ra

2 __
=1 k=1 p 1

Similar to Eq. (3.33), the grating strength normalization relationship also can be

found for the multiple reference case:
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(a)

(b)

Figure 3.5 (a) The reconstruction of the Fourier transform hologram of an image
initially recorded in the SBN crystal. (b) The steady-state response
of the hologram stored in the SBN with the initial condition being a

hologram of the image shown in (a).
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(8)2 w(0)2

ij
w;;’ =7NR .
ij R N (0)2
Zl:l Zk:l Wy

From Eq. (3.35), the number of reference beams that can be supported is bounded

(3.36)

by

CriTe

1+r22,'

R<cp/a= (3.37)

The right-hand side of Eq. (3.37) reaches its maximum when ry = 1, in which case

R < cry/2. (3.38)

Some of the typical system parameters and the corresponding number of

reference beams that can be supported are shown in Table 3.2.

PCM 1
Amplitude Reflectivity rq

PCM 2
Amplitude Reflectivity r,

Hologram

Figure 3.6 Schematic diagram for the linear dynamic copying system with multi-

ple reference beams.
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that can be supported (re=1).

and number of reference beams

c 19} R
0.5 20 5
10 20 100
10 100 500

Another experimental method that falls into the linear copying category was

demonstrated by Sasaki et al. based on dynamic copying between two functionally

identical photorefractive crystals [81]. An optical amplifier was used to provide

gain to the reconstructed signal from one crystal which serves as the writing signal

for the other crystal.

3.5 Nonlinear Dynamic Copying — Theory

If the primary holograms can be binary images, then there is another method

of choosing the control signal which will lead to a simple optical implementation.

We consider the case where w; can be treated as the (real) magnitude of the

hologram. This is justified by the fact that the optical system will maintain the

phase of the holograms during the copying (see the following section). In this case

the control signal sy for the kth hologram is chosen as
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spt = G[w}]/h, (3.39)

where G[x] is a nonlinear thresholding function operating on the individual ele-

ments z; of its vector argument x:

Glz:] = {0’ i < Toj (3.40)

Ysat, Ti > To-
In Eq. (3.40), z, is the threshold level and ysq¢/h is the magnitude of the control
signal whenever the corresponding component of the initial hologram exceeds xo
Following a similar derivation that led to Eq. (3.9), we can find that the system

will also reach a steady state where

wy ~ G[w}]/N. (3.41)

Therefore the final holograms are the binarized version of the initial ones. Again
the steady-state amplitude of the individual holograms is independent of the num-
ber of exposures made to the crystal before copying and is inversely proportional
to N, the total number of holograms.

Let the ith component of the hologram w; be denoted by wy ;. After incre-
mental refreshing, those components with an initial magnitude above the thresh-
old level z, will reach the same final magnitude of y,,,/N. Using Egs. (3.40) and

(3.41), we can write the steady state of those components as

wi; & akiwg /N, (3.42)

where ay ; is an amplification factor determined by both y,,; and the initial con-

... o .
dition wy,
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Ak,i = Ysat/Wh, ;- (3.43)
If the initial hologram is not binary, Eq. (3.43) indicates that this copying method
changes the hologram in a nonuniform fashion. Each of those hologram compo-
nents is either enhanced or reduced depending upon whether its initial magnitude
is less or greater than y,,:/N. For those enhanced components, the ones with
smaller initial magnitude are amplified more. If the initial hologram is itself bi-
nary, then a; ; becomes a constant independent of the subscript « and the hologram
is therefore uniformly enhanced as long as the initial magnitude of those compo-

nents in the on state is less than ys,¢/N but more than z,.
3.6 Nonlinear Dynamic Copying — Experiment
3.6.1 Experimental Setup

The experimental system for implementing nonlinear (binary) dynamic copy-
ing is shown in Fig. 3.7, which consists of a single photorefractive crystal for the
storage of Fourier transform holograms, a spatial light modulator (SLM) to dis-
play input images, and a feedback loop with a liquid crystal light valve (LCLV).
The LCLV performs image amplification and thresholding. The basic idea is to
reconstruct the stored weak hologram, amplify and binarize the reconstructed im-
age with the feedback loop, and rejuvenate the stored hologram by rewriting it
with the amplified reconstructed image as the signal beam. Both the input and
the signal reconstructed from the hologram are imaged onto the writing side of
the LCLV and read out from the other side.

A basic problem with such a feedback loop [86] is that it is inherently unsta-



69

Input SLM ==
Y

<>
0 . (<
, v U
LCLV
A
> M
L T 0 — 0
Sampling > = — > __,_,_é
Array > U //g Y =
Generator k Crystal

Reference

Figure 3.7 Schematic diagram of the experimental nonlinear dynamic copying sys-

tem with a sampled optical feedback loop.

ble. Any slight misalignment or perturbation in the optical setup will be amplified
by the feedback loop, which results in a smeared image and a smeared hologram.
A novel feature of this new memory system is that it is stabilized by sampling the
image on the reading side of the LCLV with an array illuminator. We used an
128x128 element micro-lenslet array and a 4-f system to generate the sampling
light spot array. When the reconstructed image is fed back to the writing side of
the LCLV, each pixel is magnified to a larger circle by placing the LCLV slightly
before the image plane. Therefore, any misalignment between the input and feed-
back images will be corrected as long as the readout sampling spot does not miss

the magnified pixel incident on the writing side of the LCLV, as shown in Fig.
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3.8. There is an obvious trade-off in this system between image resolution and

tolerance to misalignment errors.

©
OXO)
© ©
OEOOO
O, O,
O, ©

Figure 3.8 Illustration of the spatial sampling technique for stabilizing the feed-
back loop, where the small dots represent the sampling points on the
reading side of the LCLV and the large circles represent the magnified

pixels of the feedback image.

An important property of this dynamic memory is that the relative phases
of the stored holograms are maintained during copying. This is true because any
of the holograms is recorded and copied with the same reference and signal beams
that have a fixed phase relationship. In the case of hologram formation by diffusion
only (such for the BaTiO;3 crystal used in our experiment), the consequence is
that the hologram will always remain phase locked. This property is crucial for
the realization of selective memory erasure and holography-based optical neural
networks, where the phases of the holograms must be accurately controlled.

Multiple holograms are recorded in the system of Fig. 3.7 by changing
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the angle of the reference beam with a mirror mounted on a motorized rotary
stage. These holograms are dynamically enhanced by scanning the angle of the
reference beam, sequentially reading out and rejuvenating each stored hologram,

and repeating this cycle many times.

3.6.2 System Analysis

A simplified diagram of the dynamic memory loop is shown in Fig. 3.9, where
z; and y; represent the field magnitudes of the ¢th image pixel at the input and
output of the LCLV, respectively. A is the field magnitude of the reference beam,
and a; and ay account for losses in the feedback loop. The crystal is oriented so
that the optical signal reconstructed by the reference is in phase with the writing
signal beam. Such a geometry plus the phase-locking property of this system
allow us to use only the magnitudes of all the optical signals for the analysis,
similar to the linear copying case. Let w;; be the amplitude diffraction efficiency
of the grating corresponding to the :th pixel on the LCLV and the jth plane-wave
reference. The response time of the LCLV (approximately 20 milliseconds) is much
faster than that of the BaTiO; crystal (approximately 3 seconds with the light
levels used in the experiment). Therefore, the signal in the loop (i.e., the output
of the LCLV) will first quickly reach its steady state before there is an appreciable
change in the hologram recorded in the crystal. The steady state that the signal
in the loop will arrive at depends on the initial diffraction efficiency w;;(0), as

shown in the following.

Let the nonlinear input-output characteristic of the LCLV be described by

y; = G[z;], which can be approximated by a piecewise linear function
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Figure 3.9. A simplified system diagram.

07 u S Ug;
Glu] ~ { (u — uo)g, up < u < ug; (3.44)
Ysat E(ul—u())g’ Uzul,

where g is the gain in the linear region and v > 0. The magnitude of the optical

field incident on the LCLV is

z; = ag(oy; + Aw;;(0)). (3.45)

Equations (3.44) and (3.45) are illustrated in Fig. 3.10, where we have assumed
that ayazg > 1. Eq. (3.45) is plotted for two cases: (a) agAw;;(0) < uo (dashed
line), and (b) azAw;;j(0) > ug (solid line). For case (a) there are three steady
states, but only two of them, the on state y; = ys,¢+ and the off state y; = 0, are

stable. In this case, the ith pixel will remain in the off state, since the initial
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condition for dynamic copying is (z;(0),y:(0)) = (a3 Aw;;(0),0) which is itself the
off state. For case (b), there is only one steady state, i.e., the on state y; = ysa:.
Thus the ¢th pixel will always go to the on state. To summarize, the pixels on
the LCLV has only two stable states: the zero (off) state and the saturation (on)
state. This implements the thresholding function G[x] defined in Eq. (3.40). The

condition for switching on the ith pixel on the LCLV is

a2Awi]‘(0) > ug, (346)

which simply means that the light amplitude incident on the writing side of the
LCLV, which results from diffraction off the corresponding grating, must exceed
the threshold ug of the LCLV. Because of the thresholding effect, the control signal
for any particular hologram remains unchanged throughout the whole copying
process — it depends only upon the initial condition of the hologram. This realizes
the copying method given by Eq. (3.39).

In this system, the cyclical readout and enhancement of the stored holograms
lead to a self-driven incremental refreshing. A very useful feature of the self-
driven incremental refreshing is that there is no need to provide repeatedly external
writing signals during each exposure. Rather, the memory loop itself generates the
writing signals by tuning to the appropriate angles of the reference beam, which
is a great simplification for practical applications. The final diffraction efficiency
of each hologram scales as 1/R? (where R is the number of reference beams), and
it does not depend on the number of exposures used to form the initial holograms
(before copying).

The dynamics of photorefractive holograms in this system can be described
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Figure 3.10. Steady state behavior of the dynamic memory.

by the following equation (derived from Eq. (3.20)):

waij/dt = —Wyy + cay ysat/Ay (347)

where ¢ is a unitless parameter determined by the crystal properties and the
recording condition. Strictly speaking, Eq. (3.47) is valid only for weak gratings.
However w;; scales as 1/R and it becomes small when R is very large. In this
context, Eq. (3.47) is almost exact. From Eq. (3.47), we find that the steady-
state amplitude diffraction efficiency for R recorded holograms is ca;ysq:/(AR).
Using this value for w;;(0) in the switching condition (3.46), we obtain the upper

bound for the number of angularly multiplexed holograms:
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R < caiazysat/uo- (3.48)

For example, assuming ¢ = 1,a; = a; = 0.9 and yyes/ue = 103, the maximum
value of R is 810.

In deriving Eq. (3.48) , we have implicitly assumed that the amplitude of
the reference beam for copying is the same as that for recording. This does not
have to be so. In fact, we can use a strong reference pulse (with an amplitude A4,
that is larger than A) during the reconstruction phase of the copying, so that a
smaller w;;(0) would still satisfy the switching condition (3.46). The amplitude of
the reference beam returns to its normal value of A once the LCLV output reaches
its steady state. By doing this, the upper bound of R can be increased by a factor

of A,/A.

3.6.3 Experimental Demonstration

In the experimental apparatus, a § mm cubic BaTiO; crystal with its ¢ axis
oriented 45° from the cut face was used, and the writing beams (A = 514.5 nm) were
extraordinary polarized. The stabilization of the feedback loop is demonstrated
in Fig. 3.11. Fig. 3.11(a) shows the steady-state hologram when the initial
one was recorded with a single exposure of the letter A and the sampling was
used. The quality of the stored image remained virtually unchanged during the
dynamic copying. Fig. 3.11(b) shows the same thing except that the sampling was
removed. For the unsampled case, careful alignment simply slowed the transition
from a recognizable image to the smeared final state.

A series of experiments were performed to demonstrate the capabilities of
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Figure 3.11 Examples of images dynamically stored in the crystal: (a) with sam-

pling; (b) without sampling.

dynamic enhancement /equalization and selective erasure/rewriting of this system.
Ten angularly multiplexed image holograms were first recorded with equal expo-
sure and their diffracted signals were measured with an oscilloscope (shown in
Fig. 3.12(a)). As expected, the diffraction efficiencies are highly nonuniform. Dy-
namic copying was then performed for 27 cycles until these holograms were finally
equalized and enhanced (see Fig. 3.12(b)). Next the fifth hologram was erased by
introducing an 180 degree phase shift in the corresponding reference beam with an
electrically controlled liquid crystal phase retarder and writing a hologram that is
out of phase with the one to be erased. The measured diffracted signals from the
stored holograms are illustrated in Fig. 3.12(c), which shows that the fifth holo-
gram was almost completely erased and the other nine holgrams were also partially

erased. Subsequent dynamic copying rejuvenated the other nine holograms while
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the fifth hologram got completely erased because it was too weak to satisfy the
switching condition (see Fig. 3.12(d)). Finally, a new hologram was re-recorded
at the fifth position, and all the holograms were again dynamically equalized (see
Fig. 3.12(e)). The final diffraction efficiency of each hologram is approximately
0.12%.

Another experimental nonlinear copying system, with a feedback loop con-
sisting of a CCD camera and a liquid crystal TV (LCTV) spatial light modulator,
was demonstrated recently by Boj et al. [83]. The CCD camera detects the re-
constructed signal from the weak primary hologram, and the signal is amplified
electronically using a computer and then displayed on the LCTV to rewrite the

hologram.
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(b)

() d

Figure 3.12 Experimental results: (a) the diffracted signals of ten angularly mul-
tiplexed holograms recorded with equal exposure; (b) the equalized
holograms after dynamic copying; (c) selective erasure of the fifth holo-
gram; (d) the other nine holograms rejuvenated by dynamic copying

after being partially erased during selective erasure; (e) rewriting of

the fifth hologram.
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4., ELECTRICAL FIXING OF PHOTOREFRACTIVE HOLOGRAMS

4.1 Introduction

The dynamic copying methods described in the previous chapter can be
used not only for refreshing multiply exposed holograms, but also for rejuvenat-
ing holograms that are partially erased by the readout light. The latter case can
be thought of as a dynamic fixing scheme. Nondestructive readout can be also
achieved by permanent hologram fixing and several fixing methods have been re-
ported. Thermal fixing of holograms was demonstrated in LiINbO; [87], Bi;2Si02q
[88], KNbO; [89], and BaTiO; [90], where a compensating ionic charge grating
(which cannot be erased optically) is formed at an elevated crystal temperature.
Micheron et al. demonstrated hologram fixing in Srg 75Bag 25 NbyOg (SBN:75) [91]
and BaTiO3 [92] through the creation of a ferroelectric domain pattern by apply-
ing an external field at room temperature. Hologram fixing in Sry 75Bag.25NbyOg
was also achieved by cooling the exposed crystal through the ferroelectric phase
transition [93]. Leyva et al. demonstrated hologram fixing in KTa; _yNb,O3 by
cooling the exposed crystal under an applied field through the ferroelectric phase
transition [94]. In general, electrical fixing is preferable from a practical point of

view because of its relative simplicity.

This chapter presents the results of our investigation on room-temperature
electrical fixing of photorefractive holograms recorded in SBN:75 crystals [95]. We
were able to reproduce some of the effects Micheron and Bismuth reported in Ref.
91, but our observations were different in several important respects. In addition,

two novel ways of electrically fixing holograms in SBN:75 are presented that ex-
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hibited improved performance, and it has been demonstrated that holograms of

images can be fixed and faithfully reconstructed.

4.2 Experiments

The crystal sample used in the experiment was grown and poled at Rockwell
International Science Center. It has a dimension of 6 x 6 x 6 mm?®, with its c axis
parallel to the edges. An external electric field can be applied along the ¢ axis, and
it is called positive (negative) if its direction is the same as (opposite to) that of
the initial poling field. In our experimental setup (Fig. 4.1), an ordinary-polarized
plane wave from an argon laser (A = 488 nm) is split into three beams, two of which
are used for recording a grating in the crystal, and the third is used as a non-Bragg-
matched erasing beam. The grating vectors are approximately parallel to the c axis
and the total recording intensity is about 10 mW /cm?. The diffraction efficiency
n is monitored with a low-intensity, extraordinary polarized HeNe laser beam
incident at the Bragg angle. The diffraction efficiency 1s calculated by subtracting
the background noise level from the measured diffracted light and dividing the

difference by the transmitted light power.

In the first experiment, a holographic grating with a grating spacing A = 11.6
pm was recorded in the completely poled crystal without any applied field. After
the diffraction efficiency n reached its saturation value (n = 11%), the recording
beams were blocked and a negative voltage pulse with amplitude V =-1kV and
duration t = 0.5 s was applied to the crystal, which caused 7 to fall quickly. After
the voltage pulse was removed, n recovered a portion of its initial value before

the pulse. Then the crystal was illuminated with the non-Bragg-matched erasing
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Figure 4.1. Optical Set-up.
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beam, and 7 decreased further until it reached a steady-state value of  ~ 0.06%.
This fixed grating could not be erased by the erasing beam. Then the erasing
beam was blocked and a positive voltage pulse, with amplitude V = + 2 kV and
duration of a few seconds, was applied to the crystal. During the positive voltage
pulse, n = 1.8% and after the pulse, a grating with n = 0.4% was revealed. This
revealed grating can be optically erased. The experimental results of recording,
fixing, revealing, and erasure are shown in Fig. 4.2, where the diffracted signal is

plotted as a function of time during the different stages of the experiment.

Comparing the results in Fig. 4.2 with Ref. 91, we see that we were able
to achieve electrical fixing, but the fixed grating obtained in our experiment is
much weaker than in Ref. 91. Another important difference is our observation of
a revealed grating upon applying a strong positive voltage across the crystal at

relatively large grating spacings.

We have found that in general the strengths of the fixed grating and revealed
grating can be greatly enhanced by applying a constant negative voltage during
recording. With an applied voltage of V = - 500 V, we recorded a grating with
A = 11.6 pym using an exposure time of 50 s. Then the recording beams were
blocked, the applied voltage was removed and the grating was allowed to settle
down to a steady level. Upon illuminating the crystal with the erasing beam, 5
decreased first and then rose back to a steady state, indicating a fixed grating of
n = 0.8%. Finally, a positive voltage pulse same as the one used in the previous
experiment was applied, revealing a grating of = 0.5%. This experimental result

is shown in Fig. 4.3.

The same experiment described in the last paragraph was repeated for several
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Figure 4.2. Diffracted light as a function of time for fixing with a negative voltage
pulse (A = 11.6 um). The transmitted light power in the absence of the
grating is 1.1 uW. (A) Hologram recording begins. (B) Negative pulse
is applied. (C) End of negative pulse. (D) Optical erasure begins. (E)
Erasing beam is blocked and positive voltage pulse is applied. (F) End

of positive pulse. (G) Optical erasure begins.
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and negative voltage is applied. (B) Negative voltage is removed and
recording beams are blocked. (C) Optical erasure begins. (D) Positive
voltage pulse is applied (Probe beam is blocked) (E) Optical erasure
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different grating spacings, and the results are summarized in Fig. 4.4. Under our
experimental conditions, the maximum diffraction efliciency of the fixed grating
is found to be 0.8% at A = 11.6 pm. The revealed grating is observed only for
relatively large A and its strength increases drastically with the increase in A,

achieving about 17% diffraction efficiency at A = 29 um.

Finally, an image was recorded in the crystal as an image plane hologram,
and Fig. 4.5a shows the reconstruction of the hologram. Figure 4.5b shows the
reconstruction of the fixed hologram. The fixed hologram did not show any sign
of degradation under illumination with the non-Bragg-matched erasing beam for

two and a half hours.

4.3 Physical Model

The fixing and revealing process we described was not observed when a
positive rather than negative fixing voltage was applied. If we assume that the
mechanism responsible for fixing involves compensating ions, then we have no
obvious explanation for the asymmetry regarding the polarity of the fixing voltage.
Similarly, if the mechanism involves two types of photorefractive species [96], the
effect would not be sensitive to the polarity of the fixing voltage. The fact that
the fixed grating can be erased nearly instantaneously (less than 0.1 s) in the dark
(i.e., without redistribution of charge carriers among the trap sites) also indicates
that the effect does not involve two types of trap sites that compensate each
other. Therefore, we believe that the mechanism responsible for this effect is the

polarization grating formation suggested in Ref. 91.

Specifically, our observations can be explained as follows. With the aid of
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Figure 4.5 (a) Reconstruction of the recorded hologram. (b) Reconstruction of

the fixed hologram.

the negative external field, the electronic space-charge field established during the
holographic recording causes a spatial modulation of the ferroelectric polariza-
tion. In the areas where the space-charge field is negative, the local polarization
is modified (which corresponds to local depoling or possible re-poling in the op-
posite direction). This causes the decrease of both the mean linear electrooptic
coefficient and the amplitude of the space-charge field modulation. As a result,
the amplitude of the refractive index modulation decreases upon applying a nega-
tive voltage pulse, causing the drop in the monitored diffraction efficiency. Under
the illumination of the erasing beam, the electronic grating is erased further until

a balance between the polarization grating and the electronic grating is reached.
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The fixed grating observed is attributed to the polarization grating that is partially
compensated by the electronic grating. Finally, a strong positive voltage applied
to the crystal erases the polarization grating (i.e., the ferroelectric domains are
re-aligned), revealing the compensating electronic grating which of course can be
erased optically. The enhancement of the diffraction efficiency of the revealed
grating during the positive voltage pulse (see Fig. 2) is attributed to the nonlinear
electro-optic effect in SBN:75 [97].

A physical model describing the above process can be derived based on the
band transport equations given in Chapter 2. Specifically, a spatial modulation
of the ferroelectric polarization is equivalent to a fixed space charge distribution

according to

pp=—V-P. (4.1)

Therefore the Poisson equation (Eq. (2.29)) becomes

6-65=6(N$—N2—n)—6-ﬁ. (4.2)

Assuming small polarization mudulation and following the standard linearization
procedure, the steady-state values for the net space-charge field and the compen-
sating electronic component can be found. In the absence of externally applied
field, the ratio of the diffraction efficiencies of the fixed and compensating (or

“revealed”) gratings is found to obey the following relationship [98]

lnnreveal — 4lni\- + ¢, (43)
Nfiz Ae
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where ¢ is a constant and A.(= 27 :—;‘IB\%) is the Debye length. It should be
pointed out that Eq. (4.3) is independent of the actual value of the polariza-
tion modulation, which allows us to compare the theory and experiment without
accurate measurement of the polarization modulation. Figure 4.6 shows the ex-

perimental data of In(Nreveat/Nfiz) versus InA, and a linear fit indicates slope of

4.2 £ 0.2 which closely matches the theoretical value of 4.
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SBN:75
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Figure 4.6 Log-log plot of the ratio of the diffraction efficiencies of the revealed
compensating grating and the fixed grating vs. the grating spacing A.
The linear fit has a slope of 4.2 £ 0.2, which is in good agreement with

the theoretical value of 4.
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The above experiments suggest two modes of hologram fixing in SBN:75 crys-
tals: the fixed polarization grating and the revealed electronic grating. Although
the revealing process is destructive to the polarization grating, it is possible to re-
create this grating by applying a negative voltage pulse after the electronic grating
is revealed. These revealing/fixing cycles were repeatedly performed (shownin Fig.
4.7) and the diffraction efficiency of the revealed grating (and thus the polarization

grating) remained unchanged.
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Figure 4.7 Cyclic fixing and revealing of the stored hologram (A = 20.2 pm), with
the erasing beam off during the entire process. (A) Positive (revealing)
pulse is applied, with V = + 1 kV. (B) Negative (fixing) pulse is
applied, with V = - 1 kV.
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5. LEARNING ALGORITHMS FOR OPTICAL
MULTILAYER NEURAL NETWORKS

5.1 Introduction

One of the most important issues in the optical implementation of neural
network models is the determination of a proper algorithm to train the network.
The criterion is that they must effectively utilize the massive parallel processing
capability provided by optics, while the operations involved in learning should be
easily implementable with existing optical and optoelectronic devices and compo-

nents.

The back error propagation (BEP) algorithm [28] and its variants are the
most popular procedures for training multilayer optical networks [56,61,62]. Back
error propagation is an example of a learning algorithm that yields distributed
representations in the hidden layers of a network. In a distributed representation,
a large portion (typically half) of the hidden units respond when the input is one of
the training samples. In contrast, in a local-distribution learning algorithm, each
hidden unit is trained to respond to only a small number of training examples.
The Radial basis function (RBF) classifier is an example of a commonly used local-
representation algorithm. An optical RBF system has been recently demonstrated
[99].

The advantage of local-representation algorithms is the fact that the training
process 1is relatively easy. If an input training sample does not cause any of the
existing hidden units to respond sufficiently, a new hidden unit is added and

devoted to the new sample. The disadvantage of local-representation algorithms
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is the large network size that is typically obtained. On the other hand, distributed-
representation learning algorithms have the advantage of a smaller network size.
However, the training of such networks is difficult, typically requiring a large
number of training cycles. The optical implementation of algorithms such as BEP
requires a dynamic holographic medium such as a photorefractive crystal, the
behavior of which can be accurately controlled. When a new hologram is recorded
in a photorefractive crystal the previously recorded signal is partially erased. This
“weight decay” in effect limits the number of cycles a training algorithm can run
on an optical system, since earlier exposures are erased as the training progresses.
Dynamic copying [79-83] can overcome this problem by restoring the strength
of the hologram through feedback. Another way for bypassing the weight decay
problem is to use local-representation algorithms since they do not require long

training sequences. In this case the large storage capacity of 3-D holograms can

be used to synthesize the large networks that are required.

The distributed-representation learning algorithms are discussed in section
4.2. We start with the single Perceptron network as a basic building block of
feedforward multilayer networks. Then the BEP algorithm and its optical imple-
mentation is reviewed. An Anti-Hebbian Local Learning algorithm is described
which eliminates the error propagation required by BEP, and therefore greatly
simplifies the optical system. The RBF network is described in section 4.3 as an

example of the local-representation networks.

Section 4.4 presents another type of multilayer networks, the structures of
which are not fixed in advance. Rather the structures of these networks are deter-

mined during the learning based on the difficulty level of the given problems. A
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typical example is the tiling algorithm, which will be discussed in some detail.
5.2 Distributed-Representation Networks
5.2.1 Perceptron

Shown in Fig. 5.1 is a diagram depicting the most basic one-layer network
with N input elements and one output. The weighted sum of the input elements

is thresholded to yield the output

N 1, 2>0;
v=o w0 ={y 220 (51)
i=1 ’ -7

where ¢(z) is the nonlinear thresholding function, w; is the weight of the ith
connection, and z; is the :th element of the input pattern. Such a network can
be used to dichotomize a set of patterns into two prescribed classes, and more
complex, multilayer networks can be built up using this as the basic building
block.

The perceptron [24] is a powerful learning algorithm for the single-layer
network of Fig. 5.1 in that if there exists a set of weights that could solve the
dichotomization problem, the algorithm guarantees it will find this solution set.

The perceptron algorithm is given by the update equation:

wi(n + 1) = wi(n) + a(n)zi(n), (5.2)

where w;(n) is the ith weight at the nth iteration, and z;(n) is the ith input at

the nth iteration. a(n) is given by
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Figure 5.1. Single-layer neural network.

0, if y(n) is correct;
a(n)=4¢ 1, if y(n) =0 but should have been 1; (5.3)
—1. if y(n) = 1 but should have been 0.
The threshold bias can be absorbed into the input patterns by choosing one ele-
ment of each pattern to be always equal to a nonzero constant [24]. Note that both
additive and subtractive changes to the weights w; must be made to implement
the algorithm directly.

The optical perceptron can be implemented with the correlator setup shown
in Fig. 1.4. By virtue of their dynamic nature, photorefractive crystals are ideal
candidates for the holographic medium. If the hologram is exposed with a weight
pattern w at the input plane and a training plane wave, then the inner product

between a new input x and the weights w stored in the hologram can be obtained

at the center of the correlation pattern at the output plane. The holographic
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process records both the magnitude and phase of patterns and thus it can be used
to store bipolar valued weights and adaptable changes, which are either subtractive
or additive, are possible.

Specifically, it requires that a grating can be recorded in the photorefractive
crystal with a phase of either 0 or 7 (relative phase difference is 7. After writing a
hologram with one phase setting, hologram subtraction can be performed by using
the other phase setting in the subsequent exposure and addition can be performed
by using the original phase setting. A method to acheve this is shown in Fig. 5.2
in which the training beam passes through a liquid crystal phase modulator to

acquire a phase of either 0 or 7 relative to the input signal beam.

OUTPUT

Figure 5.2. Optical implementation of the perceptron.

5.2.2 Back Error Propagation Algorithm
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The single-layer system of Fig. 5.1 can be cascaded to form a multilayer
netork, and one of the most widely used learning algorithms for training fully
adaptive multi-layer neural networks is the Backward Error Propagation (BEP)
algorithm [27,28], which is a steepest descent algorithm that minimizes the error
at the output of the network with respect to the weight values of the connections
between the neurons. Optical architectures capable of implementing the BEP
algorithm have been proposed [53,61,68]. One of these architectures ([61]) is shown
in Fig. 5.3. It has two layers but an arbitrary number of layers can be implemented
as a straightforward extension. A training pattern o(® is placed at the input plane
Ny. The pattern is then interconnected to the intermediate (hidden) layer N; via
the dynamic volume hologram H;. Simulating the action of an array of hidden
neurons, a spatial light modulator (SLM) placed at plane N; performs a soft
thresholding operation on the light incident on it to produce o), the output of
the hidden layer of neurons. Hologram H, connects N; to the output plane N,
where another SLM performs the final thresholding to produce the response of the
network to the particular input pattern. This network output o(? is compared
to the desired response t and an error signal § = t — o(?) is generated at Nj.
The undiffracted beams from Ny and N; are recorded on SLMs at T and Th
respectively. The SLMs at T}, T, and N, are then illuminated from the right to
read out the stored signals and the modulated light propagates back toward the
left. Let sgn) be the total input to the jth neuron in plane N,,, and wg?) be the
weight of the interconnection between the jth neuron at N, and the :th neuron
at N,—j, for n = 1,2. Let the function f[-] be the thresholding function which

operates on the input to each neuron in the forward path. According to the BEP
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algorithm, the change of the interconnection matrix stored in H; is given by

Awg-) o ékf'[siz)]ogl), (5.4)

where f'[-] is the derivative of f[]. Each neuron in N, is illuminated from the
right by the error signal é; and the backward transmittance of each neuron is
proportional to the derivative of the forward output. The hologram recorded in
H, is the outer product of the activity patterns on planes N, and T3, which means
the change made in H is that described by Eq. (5.4).

The change in the interconnection matrix stored in H; is

wl) [Zéf (s w2 ] 115710, (5.5)

The error signal applied to N; produces a diffracted signal at the jth neuron at N,
which is proportional to ), 6k f' [322)]1022]) By setting the backward transmittance
of the jth hidden neuron to be proportional to f ’[sgl)], the interconnection matrix
in H; is modified as described by Eq. (5.5).

The hardware implementation of the BEP algorithm is complicated by the
need to realize error backpropagation through the network and the need for bidi-
rectional optical devices with different forward and backward characteristics. To
overcome this problem, we describe an Anti-Hebbian Local Learning (ALL) al-
gorithm for two-layer networks [56]. With this rule, weight update for a certain
layer depends only on the input and output of that layer and a global, scalar error
signal. We show that this learning procedure still guarantees that the network
is trained by error descent. The fact that error signals need not back-propagate

through the network makes this local learning rule easy to implement.
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Figure 5.3. Optical architecture for backward error propagation (BEP) learning.

5.2.3 Anti-Hebbian Local Learning Algorithm

As pointed in the previous section, the practical implementation of the BEP
algorithm is complicated by the fact that BEP is a non-local learning rule. Con-
sider the two layer network shown in Fig. 5.4. If we change any one of the weights
in the first layer (decrease or increase), the effect of this change on the output of

the network depends on the value and sign of the weights of the second layer. BEP
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is a steepest descent method and therefore it attempts to decrease the output er-
ror as quickly as possible. To accomplish this, we require knowledge of the second
layer weights to change the weights in the first layer. From an implementation
point of view, this complicates matters since we must communicate information in
both directions and have bi-directional neurons with different functionality in the
forward and backward directions [61]. In what follows, we describe an algorithm
for training two-layer optical neural networks, in which the weight updates are
calculated from the signal at the input of each connection, the signal at the other
end of the same connection, and a global, scalar error signal. The advantage of
this algorithm is that it can be implemented with signals that are locally available

which simplifies the optical system.

We can get an intuitive feel for how our algorithm works by considering the
network of Fig. 5.4 with only a single output neuron. Suppose further that the
output of that neuron takes values +1 or -1. The weights of the second layer are
trained using the same procedure as in BEP. For the weights of the first layer, if
the output is wrong for a particular input, then we can correct it by adjusting
the weights of the first layer to produce the negative of the current response of
the hidden layer [100]. Therefore, we can treat the first layer as a single layer net
with known desired output and thus it can be trained with one of the existing
algorithms for training single layer nets. We will show in what follows that it is
possible to select the training algorithm for the first layer to guarantee that the

output error will decrease at each iteration.

Let the numbers of neurons for the input, first and second layers of the two-

layer network shown in Fig. 5.4 be Ny, N; and N,, respectively. The inputs to
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Figure 5.4. Schematic diagram of a feedforward two-layer neural network.

the neurons of the nth layer are:

Nn—l
sg-n) = Z w(-'})ogn‘l), (5.6)

ji
=1

where wg-?) is the weight of the interconnection between the jth neuron in the nth
layer and the 7th neuron in the previous layer, and oﬁ") is the output of the ith
neuron in the nth layer. The signal at the input layer is denoted by 050). The first
and second layers of neurons perform a soft thresholding operation on their inputs

to produce the outputs:
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ogn) = f[sgn)], (5.7)

where the function f is chosen as f[z] = tanh[z] for the analysis.

(0)

The desired response corresponding to the input o, ’ is the vector t, whose
elements are binary, t; € {1,—1} for k = 1,2, - -, N;. The output error of the
network is measured by the logarithmic energy function [101,102]:

AL 1+t 1

—
E=Y {(1+t)ln—25 4 (1—tp)in——2ky, (5.8
3 o TG )

The above function has its global minimum at £ = 0 and it reaches this minimum
if and only if the network output is the same as the desired response. We chose
this form of error function instead of the more commonly used quadratic error
function, because we found in simulations that for the problems we investigated
this energy function gave better performance. The algorithm we describe in this
paper also works with the quadratic error function with a slight, straightforward
modification of the weight update rule we derive below.

The BEP rule changes the weights via gradient descent, 1.e.,

OE
Awg-) 0.6 ——-——Té-)— = 26k0§-1), (5°9)
ow,
N
(1) 0E (1)%, (0) (2)
Awﬁ X —-5;"(‘?)— = 2(1 - Oj )0,' Zékwkj ’ (510)
ji k=1

where 6 =t} — ogf) is the output error signal. The non-local nature of the BEP

algorithm is due to the E,Icvzzl 6kw§c§) factor in Eq. (5.10), which contains the values

of the weights of the second layer.
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Let v = 6k322). Then -4 is positive if and only if the sign of the kth output
unit matches the sign of t;. For example, let us assume that #; = -1 and 022) > 0.
Then é; < 0. The input signal to the kth output unit, 322), has the same sign as
the output of that unit and is therefore positive also. This gives us v, < 0 for this
case. Let us now define the quantity v = 211:2—1 ~vr which will be positive if the
sign of most of the output units matches the target sign and will be negative if
the reverse is true. We can construct a learning rule for the first layer of weights
using v as a performance metric. Notice that v is a scalar quantity that can be
calculated from signals that are available at the output layer of the network. The
basic idea is to modify the first layer of weights so that we reinforce the production
of the current hidden layer response if v is positive or reinforce the production of

the negative of the current hidden layer response if v is negative. We know that

the simple Hebbian learning rule

Awgi) x 051)020)’ (5.11)

reinforces the reproduction of the current response when presented with the same
input. Therefore, if we want to reinforce the negative of the current response
when the output is incorrect, then we can simply adopt an “anti-Hebbian” rule by

multiplying the right-hand side of Eq. (5.11) by 7. This idea leads to the following

Anti-Hebbian Local Learning (ALL) algorithm for the first layer:

(1) _(0)
Aw'? 7% %

Ji (1 _ 0(.1)2) . (512)
J

The denominator in Eq. (5.12) is an additional term that is needed to guarantee

that this learning rule always decreases the overall error at the output. Using Eqs.
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(5.10) and (5.12), and assuming that the weights of interconnections between any
input neuron and all hidden neurons are updated simultaneously (true in most

practical situations), we obtain:

AE

oF
Z 6 (1)A (1)
o« — ( )225 Zwm) (1)

0)? Ak 2
= ——-705 ) Zéksg)
k=1

2
= —7%0{"”

<0, (5.13)

which proves our claim. Thus we proved that even though the ALL algorithm is
not a steepest descent rule, it is still a descent rule.

In some cases, it may happen that during training, the output of certain
hidden neuron becomes so close to +1 or -1 that the denominator (1 — 0§1)2) in
Eq. (5.12) is close to zero. This causes numerical instability. One way to avoid
this is to find 05,1211, the hidden neuron output that has the maximum magnitude,
and normalize the right-hand side of Eq. (7) by the factor (1 — 05,12”)

Computer simulations of the ALL algorithm were performed for the problem
of recognition of handwritten zipcode digits provided by the U.S. Postal Service.
For comparison, the BEP algorithm was also used to solve the same problem. The

handwritten zipcodes were first segmented into single digits and then each digit
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was reduced to fit a 10 x 10 binary pixel grid. A network of 100 input neurons
(to match the 10 x 10 pixel grid), 5 hidden neurons and 3 output neurons was
selected and trained to perform classification on 3 classes of handwritten digits: 3,
6, and 8. Each output neuron responds to only one class. 600 digit patterns, with
200 patterns from each class, were selected. These 600 patterns were partitioned
into 300 training samples, 150 validation samples, and 150 test samples. The
validation samples were used after each learning iteration (i.e., presentation of the
whole training set) to calculate the classification error of the network. The network
training stops when the classification error of the network on the validation set
stops decreasing with further iteration. After the network was trained, the test
samples were presented to the network to find its generalization error. For the ALL
algorithm, the first layer was trained only in 1 out of 40 iterations. By doing this,
we rely more on the steepest descent training in the second layer and it improved
learning convergence for this particular classification problem and this particular
network. For given training, validation, and test sets, the network was trained 4
times with different initial conditions for both the ALL and the BEP algorithms.
The same step size was used for the two algorithms for the purpose of comparison.
The same simulations were repeated using different training, validation, and test
sets obtained from different partitioning of the 600 digit patterns (the numbers of
the training, validation, and test samples were still 300, 150, and 150, respectively).

Therefore, there were a total of 8 runs for each algorithm.

For the ALL algorithm, the network was able to converge (meaning all the
training patterns were classified correctly) in 7 cases. In only one case the network

fell into a local minimum and gave a training error of 1%. For the BEP algorithm,
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the network was able to converge in all the 8 cases. The average generalization
errors for the ALL and the BEP algorithms are 9% and 8%, respectively. As for
the average convergence rate of the two algorithms, it took 581 iterations for the
BEP algorithm to converge, and 3,665 iterations for the ALL algorithm. However,
since the amount of computation involved in each learning iteration is different
for the two algorithms, we should also compare the convergence rate in terms of
number of computational steps. It turns out that for this size of network, the
number of computational steps in each iteration for BEP is about 2.4 times of
that for ALL. In this sense, ALL is only about 2.6 times slower than BEP when
implemented by a serial digital computer. In the optical implementation which is
fully parallel, the appropriate speed comparison between BEP and ALL should be
based on the number of cycles since the time required to complete each cycle is
roughly the same for both algorithms. Therefore for the problem we studied in our
experiment, a parallel optical implementation of ALL would be approximately 6
times slower than BEP. However, the optical system that implements ALL is much
simpler than the BEP system, and this makes it much more likely that an ALL
system can be built in practice. We should point out that the relative convergence
rates of the two algorithms quoted above apply only to the problem we have tried

and the relative performance will be generally problem dependent.

Shown in Fig. 5.5 is one possible implementation of the ALL algorithm. This
architecture is quite similar to the architecture described in Refs. 53 and 61 for the
implementation of BEP, with a few key differences. The input images are recorded
on an electrically addressed spatial light modulator (EASLM1) and hologram #1

interconnects the pixels at the input plane to the pixels at the intermediate or
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hidden layer plane. The non-linear response of the neurons at the hidden layer is
simulated by an optically addressed spatial light modulator (OASLM). The second
layer is very similar, with hologram #2 interconnecting pixels from the OASLM
to the output plane where a 2-D CCD detector (CCD1) is placed to detect the
light. At the input stage there is a second electrically addressed SLM (EASLM2)
on which the reference signals necessary for the adaptation of hologram #1 are
recorded. Similarly at the hidden layer there is EASLMS3 to record the reference for
hologram #2, which is simply the error signal é; (see Eq. (3.9)). This error signal
is produced by subtracting the network output from the desired target signal, a
point operation that can be accomplished either optically or electronically. The
reference for hologram #1 is more difficult to derive (see Eq. (5.12)). It involves
the global error signal v and the response of the hidden layer o(!). ~ can be
calculated with point operations from signals already available at the output of
the system but we need a second detector (CCD2) at the output to record oV
as 1t is imaged through hologram #2. Once the reference signals are calculated
and recorded on EASLM2 and EASLM3, hologram #1 (hologram #2) is exposed
to the interference between the signal recorded on EASLM2 (EASLM3) and 0"
(o). This requires that a latching device, such as the microchannel spatial
light modulator, is used as the OASLM. The key difference between the ALL
architecture and the BEP architectures described in Refs. 53 and 61 is that the
light always travels in the same direction throughout the system (left to right in
Fig. 5.5). This simplifies the construction and the alignment of the system, and
most importantly it does not require a device at the hidden layer (OASLM) that

operates in both directions and has a different response function in each direction.
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Thus, the ALL architecture is much more likely to be constructed in the foreseeable

future.
5.3 Local-Representation Networks

A typical example of local-representation networks is the radial basis func-
tion (RBF) classifier [103]. The RBF classifier is somewhat similar to sample-
based systems such as K-nearest neighbor (KNN) classifier [104] where learning
time and learning algorithm complexity are traded for memory requirements and
classification time. The moltivation for using a RBF classifier to perform pattern
recognition tasks comes from the regularization and approximation theory [105].
The basic idea is to approximate a prescribed function f(x) with a parameterized
function f(w,x), where w is a parameter vector used to tune the estimate f. The
problem becomes that given a set of training samples {x; — f(x;);t = 1,..., M},
how to choose the form of f and its parameters w such that f(w,x;) = f(x;) for
1t = 1,...,M. The RBF approach defines f(w,x) as a weighted sum of radially

symmetric basis functions:

M

fw,x) =" aiexp(~|x - t:[*/o?), (5.14)
i=1
where {t;}, called the centers, the widths {o;}, and the weights {a;} comprise the
parameter vector w, and are determined from the training set using any supervised
or unsupervised learning algorithms.
The RBF classifier can be considered as a two-layer neuron network. We

define the RBF unit, shown in Fig. 5.6(a), as a neuron with response given by
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Figure 5.5. Optical architecture that implements the ALL algorithm.
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yi = exp(—|x — t;[*/o?). (5.15)

Then, the RBF classifier can be viewed as a two-layer shown in Fig. 5.6(b), where
the hidden RBF units perform the nonlinear operation given by Eq. (5.15) to the
weighted sum of the inputs, and the output layer consists of a single linear unit
whose output is simply the weighted sum of its inputs.

The optical implementation of the RBF network has recently been demon-
strated [99]. One important issue is to find an optical way of calculating the
Euclidean distance |x — t,~|2. As shown previously, an optical correlator is capable
of computing the inner product of two vectors in a parallel fashion. If x and t;

are both binary (with their elements equal to either 0 or 1), then we can write

x|* = x - (t; + 1), (5.16)

so that

Ix — t;)? = |x|* + [t:]? — 2x - t;

=t +x-ti —x- ta. (5.17)

x-t; and x - t; can be calculated with optical correlators, and |t;|?’s can be stored
in a memory and read out during the postprocessing stage to form |x — t,-|2.

The advantage of the RBF network may be trained with some clustering
algorithm rather than an error-driven procedure, and therefore the training time

i1s reduced. One of the experimental systems described in the next chapter is
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y=exp(-lx-t|2/ o )

(b)

Figure 5.6. (a) Definition of a RBF unit; (b) Schematic of the RBF network.
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trained with an algorithm partially moltivated by the RBF approach, so that the
network can be trained relatively easily and the decay problem associated with

multiply exposed holograms is less severe.

5.4 Multilayer Networks with Variable Structures

The neural network models discussed above have the same feature that their
structures, including the number of layers and number of neurons for each layer,
are fixed a priori. The choice of the appropriate network size for a given problem
is usually based either on experience or on trial and error. There exist one type
of learning algorithms [106-108] that does not require that the size of the network
be fixed in advance. Rather, the size of a network is changed dynamically during
learning, i.e., the network size is determined, as part of the learning, based on the
difficulty level of the given problem. The network either grows or shrinks until it

reaches a size which enables it to implement the desird mapping.

As an example, we will describe the tiling algorithm [106] in which case units
are added like tiles whenever they are needed. The first unit of each layer is called
a master unit. During the growth of the network, the master unit of the more
recently built layer gives a strictly better approximation of the desired output
than the previous one. Therefore, it guarantees convergence with a finite number

of layers.

Let us consider layered nets, made of binary units whose output can be

either +1 or -1. The ith unit in the Lth layer is connected to the N;_; units of
(L)

the preceding layer, and its output o;”” is obtained according to
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Np-1
= sgn( Z wioEDy, (5.18)

(L)

where w; ;" is the weight of interconnection between the jth unit in the (L — 1)th

layer and the sth unit in the Lth layer. The threshold bias is taken into account
by a zeroth unit in each layer, clamped in the +1 state (ogL) = 1), so that w,(-f)) is
the bias. For a given training set of p patterns of Ny binary units, {x# = (m;‘ =
+1,7=1,...,No),u =1,...,p}, we want to learn a given mapping x* — y* where
y# is scalar, binary number.

To solve this problem, the tiling algorithm build a network layer by layer.
In each layer, once the master unit has been obtained, one checks if it does the
classification on the training set correctly. If yes, the training is complete. Oth-
erwise, new auxiliary units are added to the layer until this layer gives a ‘faithful
representation’ of the problem: any two input patterns with distinct outputs have
distinct internal representations. Once this condition is fulfilled, the current layer
is considered to have been achieved, and one proceeds to build the master unit of
the next layer.

Each new unit is trained with a variant of the perceptron algorithm, the
‘pocket algorithm’ [109]. It consists of runing the standard perceptron algorithm,
with a random presentation of the training patterns, but keeping in memory (in
one’s pocket) the set of weights which has produced the smallest number of errors
so far. It has been shown that with probability as close to one as desired, it will
give the set of weights with the least number of errors.

Let us denote the number of errors that the master unit of the Lth layer

makes by e7. It has been proved that if all the classes in layer L — 1 are faithful,
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and that ey, is non-zero, then there exists at least one set of weights connecting
the (L — 1)th layer to the master unit of the Lth layer such that e;, < ep_; — 1.
This ensures learning convergence with a finite number of layers.

The optical implementation of the tiling algorithm is straightforward since
it involves only two tasks: (a) to implement the pocket algorithm as a variant of
the perceptron algorithm; and (b) to build up the network unit by unit and layer
by layer. The pocket algorithm can be implemented with the same optical setup
shown in Fig. 5.2, except that a memory buffer should be added for temporary
storage of the currently best set of weights, which can be reconstructed with the
corresponding training beam and imaged onto the memory buffer. Adding new
units to a layer is achieved by changing the angle of the training beam, so that new
sets of weights can be multiplexed within the same hologram volume. Shown in
Fig. 5.7 is one layer of an optical tiling network, and this module can be cascaded

as new layers are added to the network as training proceeds.
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Figure 5.7. Basic module of the optical tiling network
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6. EXPERIMENTAL DEMONSTRATIONS
OF OPTICAL NEURAL NETWORKS

6.1 Optical Perceptron Using Dynamic Holographic Memory

In the optical perceptron network described in Chapter 5, learning is achieved
by modifying the holographic weights with new exposures. As pointed out earlier,
new exposures made to a photorefractive crystal will partially erase the previously
recorded holograms. The weight update equation in comparison to the ideal rule

of Eq. (5.2) is given by

wi(n + 1) = exp(—te/T)wi(n) + [1 — exp(—t./7)]a(n)zi(n), (6.1)

where t. is the exposure time. The partial erasure of the old weights may slow
down the learning convergence, or even cause the network never to converge. This
problem can be solved with the dynamic copying methods introduced in chapter
3. We have built an optical perceptron network based on the feedback copying
scheme shown in Fig. 3.7, and the optical setup is illustrated in Fig. 6.1. The input
patterns are displayed on a spatial light modulator (SLM), amplified by a liquid
crystal light valve (LCLV), and fed to an optical correlator with a photorefractive
hologram placed in the Fourier plane. The inner product between the input and the
interconnection weights stored in the hologram is detected and then thresholded
to produce the response of the output neuron. Real-time learning is achieved by
modifying the hologram according to the perceptron algorithm, which says that
the input is either added to or subtracted from the weights based on whether the

actual output is less or greater than the desired output. The operations of addition
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and subtraction are implemented in our system by appropriately setting the phase

of the reference beam with an electrically controlled liquid crystal phase retarder.

OUTPUT

Figure 6.1. Dynamic holographic memory based optical perceptron network.

Dynamic copying is performed every few learning iterations by reconstruct-
ing the hologram with its reference beam and closing the feedback loop (denoted
by the dashed lines in Fig. 6.1). The reconstructed signal is fed back to the
writing side of the LCLV, and quickly amplified by the LCLV and the feedback
loop. The original hologram is then refreshed by rewriting it with the amplified

reconstructed signal.
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The experimental perceptron network was trained to distinguish the faces
of two people. The training set, selected from a video clip of the two people,
consists of ten frames for each person. Figure 6.2 shows some of the training
samples. The network was trained both with and without dynamic copying, and
the experimental results are shown in Fig. 6.3. The optical network took 37
cycles to learn the task without dynamic copying, while it took only 20 cycles to
converge with dynamic copying. It is expected that for larger training sets and
larger networks, this difference in the convergence rate can be more significant.
By cascading such optical learning modules, a multilayer neural network can be

constructed that is capable of an arbitrarily long sequence of real-time adaptations.

6.2 Optical Two-Layer Network for Real-Time Handwritten Character

Recognition

6.2.1 Introduction

This section describes an experiment in which commonly available optical
devices are used to implement an adaptive multilayer network [62,110]. The system
is a two-layer network that was trained based on Kanerva’s model of Sparse, Dis-
tributed Memory (SDM) [111]. This learning model was chosen primarily because
it is relatively easy to implement. The system uses photorefractive holograms as
synaptic interconnections and liquid crystal light valves (LCLVs) to perform non-
linear thresholding. The first layer has random interconnection weights, which
map each input pattern into a very large sparse, distributed internal representa-
tion. The second layer is trained by the sum-of-outer-products rule [112], which

associates internal representations of different classes of characters to different re-



119

Figure 6.2. Examples of the training samples.
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Figure 6.3. Experimental learning curves of the optical perceptron network.
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sponses of output neurons. The trained network can recognize not only all the
training patterns but also a fairly large percentage of test patterns that it has

never seen.

6.2.2 System Architecture

We will briefly review the SDM model to point out the necessary charac-
teristics that the optical system must incorporate. A schematic representation
of a two-layer network is shown in Fig. 6.4, which consists of an input layer
globally interconnected to a hidden layer, which is interconected through a second
weighted network to an output layer. The system is trained so that the desired out-
puts y®, .-,y are produced for the respective input patterns x(), - - L x(M),
Moreover, the output 0(® of the network should be close to y) when the sys-
tem is presented with the input o(® close to x(). y() and x{) are real vectors
of length N, and Ny, respectively, with components restricted to the binary set
B = {—1,+1}. The weights of the connections between the input and hidden lay-
ers form an Ny x N; matrix denoted by W(l), whereas the weights of the hidden to
output layer connections form an N; x N, matrix W(?). In general, the intercon-
nection weights of both layers are modifiable, so that the system can be trained
to perform a desired transformation from the input space to the output space.
In SDM, however, the first layer acts as a fixed-weight preprocessor, encoding
each Np-bit input into a very large N;-bit internal representation, N; > Ny. The
second layer is a trainable sum-of-outer-products network, which is programmed
to recognize the higher-dimensional internal representations. Kanerva’s primary

contribution is the specification of the preprocessor, i.e., how to map each Ny-bit
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input into a very large N;-bit internal representation in such a way as to permit
the network capacity to exceed by far any linear relationship with the input di-
mension. This is important because in most applications, the dimension of the
input (which is approximately equal to the capacity of a single-layer machine) is

much smaller than the number of patterns we wish to recognize.

Random-Weight Outer-Product
Matrix W Memory w@

Figure 6.4. Kanerva’s Sparse, Distributed Memory (SDM) model.

The operation performed by each hidden neuron is thresholding. Specifically,
if we denote by fg(U) the neuron response function with U being the input to the
neuron and 6 being the threshold, then fg(U)is 1if U > 8 and 0 if U < 4. The
weight matrix W) is populated at random by +1’s and -1’s. The input vector
to the hidden neurons is given by the matrix-vector product W(1o(® which is

thresholded by the function fs to become the output vector o(*) = fo(W(1o(®))
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of the hidden neurons. With 8 = Ny — 2r, the N;-bit word o{!) contains a 1 in
the ith coordinate if and only if o{® is within Hamming distance r of the ith
row of W), If the parameters r and N; are set correctly, then the number of
I’s in the representation o) will be very small in comparison to the number
of 0’s. Hence oY) can be considered as a sparse, distributed representation of
0{®): sparse because there are few 1’s, distributed because several 1’s share in the
representation of 00,

The overall SDM can be regarded as a sum-of-outer-products associative
memory operating on the sparse, distributed representation of 0. We define a
function ¢ : RN> — R™2 to be the vector signum function, which takes the sign
of each coordinate independently. Then the response of the output neuron is

0@ = g(W® o), where the synaptic weight matrix W(?) is given by
p g g

M
w®@ = Zy(j)[fe(W(l)x(j))}t. (6.2)

i=1

It was shown by Chou [113] that by allowing N;, the dimension of hidden
layer, to grow exponentially with the input dimension Ny, the capacity of the
SDM can grow exponentially in Ny, achieving the universal upper bound of any
associative memory. This is in sharp contrast to the capacity of a single-layer
associative memory, which grows at most linearly with the input dimension. In
terms of pattern recognition, large N; implies mapping input vectors into a higher
dimensional space so that it is much easier to find the appropriate decision bound-
aries. In this way, a linearly nonseparable problem can be converted into a linearly
separable one at the hidden layer [114].

The optical implementation of a two-layer neural network trained by SDM
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requires both fixed and modifiable interconnection matrices. Dynamic volume
holograms recorded in photorefractive crystals are very promising candidates for
the implementation of such interconnection matrices because of the three dimen-
sional storage capacity possible within the volume of a crystal [7}, the well-studied
dynamic response of photorefractive crystals and the ability to fix photorefractive
holograms. Nonlinear effects, such as fanning in photorefractive crystals, generally
a nuisance, are helpful for the implementation of the random interconnection ma-
trix in the first layer. Optically addressed spatial light modulators (SLMs) with
nonlinear thresholding and amplification functions can be used to simulate neural
response. In our experiment, liquid crystal light valves (LCLVs) manufactured
by Hughes are used both for providing the input and gain, as well as for use as

thresholding devices.

6.2.3 Handwritten Character Recognition Application

The problem that was selected to test the operation of the system is hand-
written character recognition. 104 training patterns were created by drawing char-
acters on a 10 x 10 pixel grid (4 character patterns for each letter of the alphabet
A-Z). The optical system architecture is shown in Fig. 6.5. The interconnections
between the layers were implemented with Fourier transform holograms recorded
in two LiNbOj; photorefractive crystals (PR1 and PR2) using an argon-ion laser
(A = 514 nm). The input layer consists of a video monitor (VM) and a liquid
crystal light valve (LCLV1). There are 100 input units, matching the size of the
10 x 10 grid for the character patterns. Input patterns are presented on VM by a

computer, imaged onto the LCLV1 by an imaging lens (L1), and read out by the
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laser beam on the other side of the LCLV1. The hidden layer, implemented by a
second liquid crystal light valve (LCLV2), consists of an array of approximately
300 x 300 neurons. There are 26 output neurons for this system, represented by

26 pixels in a CCD detector array, each responding to one letter of the alphabet.

The method used to train the network is a modification of the SDM model.
According to this method, the weights of the first layer are selected at random.
The weights of the second layer are trained by presenting the training patterns
at the input of the network that induce a response at the hidden layer through
the random connections. If, for the current input, the desired response for an
output neuron is high, the response of the hidden layer is added to the second
layer weights leading to that particular output neuron. This simple procedure is

repeated for all the patterns in the training set.

During the training of the first layer, random dot patterns were presented at
the input as training patterns. Each random dot pattern was split into two parts,
and both were Fourier transformed by the lenses L2 and L3. These two Fouriler
transformed random patterns were used to record a hologram which consists of
gratings of random strength. This process was repeated many times so that a
volume hologram with random interconnection weights was recorded. Further-
more, in the crystal we used, the photorefractive nonlinearity is sufficiently strong
that a laser beam passing through the crystal loses much of its power to a broad
fan of light resulting from amplification of radiation scattered by imperfections in
the crystal [115]. This phenomenon, called beam fanning, further randomized the
recorded interconnections and at the same time drastically increased the number

of hidden neurons that input neurons are connected to. The writing beams in the
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Figure 6.5. Optical two-layer network. VM = video monitor, LCLV = liquid crys-
tal light valve, PR = photorefractive crystal, (P)BS = (polarizing)

beam splitter, RM = rotating mirror, L = lens, S = shutter.
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first layer were polarized in the extraordinary direction with respect to the crystal
in order to obtain maximum fanning. In our experiment, each of the input neurons
were connected to about 10° hidden neurons. Therefore the resulting weight ma-
trix performs a dimensionality-expanding random mapping, which is exactly what
is needed in the implementation of the SDM model. After the first layer train-
ing was completed, the random interconnection hologram was thermally fixed by
heating the crystal to 100 °C for 30 minutes [87] and training of the second layer

was then started.

The goal of the second layer training is to ensure that when a character
pattern is presented at the input of the network, one of the 26 output neurons,
with spatial position proportional to the order of that letter in the alphabet,
will be switched on. This was achieved by training the second layer using the
sum-of-outer-products rule. During this process, the 104 training patterns were
sequentially presented at the network input and randomly mapped into higher-
dimensional hidden representations. These hidden representations were amplified
and thresholded by LCLV2 and Fourier transformed by lens L5. Their Fourier
transform holograms were recorded in association with plane wave references with
appropriate propagation directions. The directions of these reference beams are
chosen according to the identity of the input patterns. The reference beam trans-
mitted through the crystal is focused by lens L6 onto a different position on the
CCD, with the angle of the reference beam determining the position of the focused
spot. Therefore, by selecting the proper angle for the reference beam, the response
of the hidden layer is added to the weights of the interconnections leading to the

output neuron that is responsible for the current input pattern. The reference
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beam angle is selected by rotating a mirror, which was mounted on a motorized
rotary stage controlled by the computer. The photorefractive crystal was exposed

104 times to record the desired interconnection pattern.

In order to compensate for the hologram decay associated with multiple ex-
posures in photorefractive crystals, the exposure schedule described in chapter 2
was followed during the learning process so that all the holograms were formed
with equal strength. This leads to the implementation of the sum of outer products
in Eq. (6.2). The crystal we used for the second layer was an 8 mm thick LiNbOj,
doped with 0.01% Fe. Under our experimental condition, the time constant T was
measured to be 425 seconds. During the network training, internal representations
of the 104 training patterns need to be recorded in the second-layer crystal with
roughly equal diffraction efficiencies. The exposure time for each of these holo-
grams except the first one can be calculated from Eq. (2.37). For example, t; =
295 s and t5p = 8.6 s. t; was chosen to be 25 min so that t; >> 7 and the first
hologram reached the saturation diffraction efficiency. Therefore, with M = 104,

the total exposure time i1s T &~ 58 min.

Another important issue is the finite angular bandwidth of volume holo-
grams. If the angular separation between the reference plane waves is too small, the
presentation of any character pattern at the input may reconstruct several plane
waves so that several output neurons (corresponding to these reference waves) will
be turned on. This leads to crosstalk and possible misclassification. The angular
separation, however, cannot be too large because of the limitation of optics. To
find an appropriate angular separation, we need to examine the angular bandwidth

of volume holograms in the crystal, which is given by [116]
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where A is the laser wavelength in vacuum, 6. is the angle between the normal of
the crystal surface and the propagation direction of the reference beam inside the
crystal, and d is the hologram thickness. In our experiment, the angle of incidence
of the writing beams in the air is §; = 20° and the index of refraction of the

LiNbOj; crystal is n, = 2.20. Therefore 6, can be solved from

nesinf, = sinfy, (6.4)

which gives 6, = 8.94°. With A = 0.514um, d = 8mm and using Eq. (6.3), A8, =
0.0054°. Finally, we can find the angular bandwidth in the air by differentiating

Eq. (6.4), which yields

Aby = A8 n.cosb./cosby = 0.0125°. (6.5)

To make sure that crosstalk due to the finite angular bandwidth is greatly sup-
pressed, we chose the angular separation between reference beams to be 0.03°.
Therefore the total angular sweep of the reference beam is 26 x 0.03° = 0.78°,
which is reasonable for the motorized rotary stage and at the same time guar-
antees that the two writing beams overlaps in the crystal for all reference beam
angles.

Once the training is complete, the presentation of any one of the training
patterns causes the second hologram to reproduce the reference beam with which

it was recorded. This reconstructed beam codes, in the angle of propagation, the
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identity of the pattern. The final lens in the system focuses the reconstructed
beam to an output neuron whose position in the output array is proportional to

the angle of the reconstructed beam.

6.2.4 Experimental Results

A photograph of the experimental system is shown in Fig. 6.6. After train-
ing, all the 104 training patterns were tested and recognized correctly by the
system. Figure 6.7 shows three examples of the input patterns, their internal rep-
resentations, and the responses at the output of the optical system. The input
patterns shown in Fig. 6.7 were among those used for training the network. The
bright dot in each example indicates the position of the switched-on output neuron.
As can be seen, crosstalk was completely suppressed in these cases, mainly due
to the drastically expanded dimensionality of hidden representations and the non-
linear thresholding operation of the neurons. We can also observe the differences

between hidden representations for different input patterns.

To check the generalization property of this trained network, 520 handwrit-
ten character patterns (20 patterns from each class) that were not in the training
set were presented to the optical network and the identity of each pattern was de-
termined from the position of the output neuron that had the maximum response.
Figure 6.8 shows some of the testing patterns and the result is summarized in Fig.
6.9, which gives the number of correct classifications out of 20 tests for each class.
It turned out that 311 out of the 520 testing patterns were correctly classified,
giving an average recognition rate of about 60%. This recognition rate is much

better than random guessing (4%), but far below what is required for a useful
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Figure 6.6. Experimental apparatus.
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Figure 6.7. Examples of the signals at the input (top), hidden (middle), and output

(bottom) layers in the experimental system.
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character recognition system. The reason for the relatively poor performance on
the test set is the choice of training algorithm used, specifically the fixed first layer
weights and the limited number of training cycles for the second layer. This same
system can be used to implement algorithms in which both layers are fully trained
in response to the training patterns, which, in computer simulations, give much

better performance.

6.3 Optical Two-Layer Network for Real-Time Face Recognition

6.3.1 Introduction

This section describes the experimental demonstration of a two-layer optical
network that accepts input images of faces at standard video rates and classi-
fies them in real time. The optical system isa modified version of the standard
holographic multilayer architecture [61,62]. Its second layer has fixed weights,
whereas the first layer interconnections, implemented with holograms stored in a
photorefractive crystal, are modifiable.

The algorithm that we use is a hybrid. It has features of local-representation
algorithms in that each hidden unit is trained separately and the training method
is not iterative. On the other hand, the resulting representations are distributed. It
was found that distributed representations are crucial for two reasons. First, when
the optical network was trained with purely local representations, we found that
it became extremely susceptible to noise and the performance deteriorated very
rapidly as the number of hidden units increased. This is because in a purely local
representation, only one hidden unit is on at a time. Since the output is formed

as a linear combination of all the hidden units, a small amount of noise from
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each hidden unit will ultimately overwhelm the signal term as more hidden units
are added. Poor generalization performance is the second reason to avoid purely
local representations. We found that by switching to distributed representations
the system performed much better when presented with images it had never seen

before.

In the next section the optical architecture and the overall experimental set-
up are described. Section 6.3.3 describes the training algorithm and the details of
the training procedure. Section 6.3.4 describes the performance obtained with the

network.

6.3.2 Experimental Apparatus

The optical set-up is shown in Fig. 6.10. It is a two-layer network with an
optical preprocessing stage that performs edge enhancement. The input device
to the network is a liquid crystal TV (LCTV) that has a resolution of 320 by
240 pixels and 2x2.5 cm? clear aperture . This device was extracted from an
EPSON television projector. The LCTV is illuminated with collimated light from
an Argon laser (A = 488nm). Lens L1 produces the Fourier transform of the input
image at plane P2. A spatial filter is placed at P2 to accomplish two goals. It
blocks the higher diffracted orders that result from the pixelation of the LCTV.
The removal of the higher orders gives a smoother, less noisy image but it reduces
the light efficiency of the LCTV. The second function of the spatial filter in plane
P2 is to block the low frequency components of the input image which enhances
the edges of the input image and dramatically improves the ability of the system

to discriminate between inputs from different classes. A photograph of the spatial
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filter is shown in Fig. 6.11. It consists of a cross-hair and a DC block for high
pass filtering. The purpose of the cross-hair is to remove the diffraction pattern
at P2 due to the sharp edges formed at the boundary of the actual area of the
LCTYV. This boundary, when edge enhanced, yields a very strong rectangle that
is common to all inputs and makes discrimination difficult. The diameter of the
DC block is 260 pm. Given the wavelength of light and the focal length of L1
(FL1 = 50 cm) we can find the cut-off frequency to be .533 lines/mm. Roughly
speaking, features in the input plane that are smaller than 1.9 mm are highlighted
in the edge-enhanced image. An iris (not shown in Fig. 6.11) is used to block the
higher orders not blocked by the crosshair. An example of an image of a face and
the edge enhanced version of it that was produced by the optical system is shown

in Fig. 6.12.

Lens L2 images with magnification 1 plane P2 onto plane P3, the plane of
the hologram. The size of the spectrum on the hologram is approximately 5 mm
in diameter. The hologram is formed by introducing a plane-wave reference. The
angle between the signal and reference beams varies from 29 to 31 degrees, outside
the crystal. The reference beam is reflected off a mirror mounted on a computer
controlled rotation stage. The plane of the rotating mirror is imaged onto the
crystal with a unit magnification 4-f system that allows the angle of the reference
beam to be scanned without moving the position of the reference beam on the
crystal. The crystal is an iron doped LiNbOj, with doping level 0.01%. The c-axis
of the crystal is in the horizontal direction in Fig. 6.10. The crystal dimensions

are 20 x 20 x 8 mm?3.

Lens L4 is a Fourier transform lens that produces an image of the edge
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Figure 6.10. Optical set-up of the face-recognition system.
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Figure 6.11. Spatial filter used in plane P1 of Fig. 6.10.
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Figure 6.12. Edge enhanced image and original face.
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enhanced input image on a CCD for visual assessment. Lens L3 is also a Fourier
transforming lens that produces at the output plane P4 the response of the first
layer where it is sensed by a linear detector array. A beamsplitter placed in front
of the array diverts a portion of the light to a CCD camera so that the output
of the first layer can be visually monitored. Functionally, the system from the
input plane P1 to P4 is an array of image correlators with 1-D shift invariance.
To understand this, consider the case where a single hologram is recorded in the
crystal at a particular angle of the reference beam. In this case the system is
a classic VanderLugt [26] correlator except that a volume hologram is used and
the input has been high-pass filtered. The effect of the volume hologram is to
eliminate shift invariance in the horizontal direction in Fig. 6.10. This happens
because a horizontal shift at plane P1 will change the angle of incidence at plane
P3 and cause the hologram to be Bragg mismatched [117-119]. Specifically, the

light distribution at plane P4 is given by [117]

g(z',y') = //f(w,y)h(m —z',y —y')dzdy sinc(az'), (6.6)

where f(x,y) and h(x,y) are the input and filter functions, respectively. The input
coordinates are (x,y) and the output coordinates are (z',y’). The thickness of the

crystal is L, 6 is the angle of the reference beam and

B Lsiné
O2AF

(6.7)

We see from Eq. (6.6) that the effect of the thick hologram is to mask off the 2-D
correlation pattern except for one vertical strip whose position depends on the

angle of the reference beam. The amount of shift invariance that can be tolerated
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in the horizontal direction is approximately equal to 1/a plus the width of the
correlation peak in the horizontal direction. The system retains its shift invariance
in the vertical direction. If we change the angle of the reference beam and record a
different hologram at each angle then the 1-D strip of the 2-D correlation function
will be produced at a different horizontal location. In the experiment that we will
describe, holograms are recorded at 40 separate angles separated by 0.05°, yielding

a system that has 40 correlators with 1-D shift invariance.

The experiment in Fig. 6.13 demonstrates the operation of this part of the
system. In this case each filter was a recording of the face of the same person
at different scales. What is shown in Fig. 6.13 is the input to the network for
4 different size images, along with the corresponding response at the right-hand
side of each picture. We see that as the size increases the strongest response of
the system is at different vertical positions. In the optical set-up, the correlation
responses shown in the right-hand side of each picture is actually horizontal, and

the display was created by simply rotating the CCD camera by 90 degrees.

The role of the second layer is two-fold. The first task is to take advantage
of the vertical shift invariance of the first layer and the second task i1s to combine
the outputs of the 40 correlators and make the final classification. We will dis-
cuss first the shift invariance. Suppose that an image at a particular location at
the input produces a strong correlation peak somewhere at the output. If the in-
put is horizontally translated by approximately 0.4 mm then the correlation peak
disappears. If the input is translated vertically then the correlation peak moves
vertically also. What we really need for shift invariant recognition is a system

whose output does not change as the input shifts. To accomplish this we use long
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Figure 6.13. Experiment showing the position of the correlation peak to be propor-

tional to the size of the input face.
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detector elements in the vertical direction as shown in Figure 1. These long detec-
tors collect the correlation peak and continue to produce a strong output signal as
the input image shifts vertically. Unfortunately, we cannot use an arbitrarily long
detector element to obtain full shift invariance vertically because then the detector
would simply collect all the diffracted energy from the corresponding filter stored
in the hologram. Roughly speaking, all input signals with the same total energy
would yield the same response. A shorter detector responds more selectively to
the correlation peak, and hence the degree of match between the input and the
reference but it sacrifices shift invariance. Thus there is a basic trade-off between
shift invariance and discrimination capability. In our network we made this com-
promise by trial and error. By repeating the experiment with a horizontal slit of
varying width placed in front of the detector array, the amount of shift invariance
in the vertical direction is roughly 3 mm or equivalently 12 percent of the size of
the input image. As we will see later on this choice yields good discrimination

capability.

The second layer also puts together all the vertically integrated responses
from the first layer and produces the final output. Since the output of the detector
array in plane P4 is electronically available we can implement the second layer ei-
ther electronically or optically. We have done both with comparable performance.
The optical implementation of the second layer is realized by thresholding the
output of the detector array and then feeeding it to a second LCTV. The inner
product between the signal recorded on the LCTV and a weight vector stored
in the form of a transparency is then optically formed. This inner product is

electronically thresholded to produce the final output. In the current system we
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describe in this paper, the operations of the second layer are so simple that it
was easier to do them electronically. Specifically, all the weights of the second
layer have the same value. In other words , the second layer simply integrates the
output of the first layer. The electric signal from each detector is the square of the
light amplitude of the total signal incident at each element. The signal from the
detector can be thresholded electronically. However, we get the best performance
by simply using the square-law non-linearity. In this case, the system becomes
similiar to a quadratic associative memory [48,120]. Notice that the nonlinearity
performed at plane P4 is crucial in this system. If the outputs of all the corre-
lators from the first layer were somehow coherently added without the inclusion
of the nonlinearity then the overall system would simply be equivalent to a single

correlator.

A schematic diagram of the overall system is shown in Fig. 6.14. The input
images are detected by a standard television camera. The video signal is either
stored on a video cassette recorder (VCR) to form a training set or fed directly to
the LCTV during real time operation. The 2-layer optical network is the system we
described above. A personal computer controls the experiment during the training
phase by instructing the VCR to advance the video by one frame and pause so
that the training algorithm can be executed in the optical system. The output
of the hidden layer determines whether the hologram should be modified by the
current input image. If a holographic exposure is needed the computer opens two
shutters (one for the signal and one for the reference beam) for a specified time
and the hologram is recorded. During the execution of the algorithm the computer

also controls the angle of the reference beam, so that different hidden units can
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be trained. After the training is completed, the computer is no longer involved in

the operation of the system except to record the output data if desired.
6.3.3 Training Procedure

The training algorithm that we use is partially motivated by the tiling al-
gorithm [106]. In the tiling algorithm, individual units are trained separately for
a fixed number of iterations. Once a unit is trained the algorithm moves on to a
new unit and trains it to make up for the deficiencies in the performance obtained
with the previous units. In this way networks with multiple layers and many
neurons per layer can be built-up and trained. In the standard tiling algorithm
each unit is trained with the perceptron algorithm with the entire training set.
In our algorithm each unit is trained by a subset of the training set that consists
of similar images. This similarity measure is enforced by training each unit to
respond to a contiguous short segment of the training video. In this way, each
unit is trained to respond to a specific aspect of the input face. This simplifies the
training of individual units and the overall training procedure results in networks
of predictable size.

The flow chart for the algorithm we use is shown in Fig. 6.15. We describe
more specifically the algorithm. Let f* denote the k-th image in the training
sequence stored in the VCR and let w;; denote the weight of the first layer con-
necting the ¢-th input pixel to the j-th hidden unit. The training algorithm is as
follows:

set e=0 (e is the number of exposures per hidden unit)

set 7 =1 (7 enumerates the hidden units)

while (“there are more training examples”)
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do { (go through the training set one frame at a time)
h=0 (h is the number of hidden units turned on)
for j' = 1to j, if 332, |, fFwicirj|? > 6 then h=h+1

(count the number of hidden units that are on)

if (h < Hand 312, |2, fFwicu j* < 6)

(less than H hidden units are on, and the current unit is off)

then w;; = w;; + fF ande=e+1 (make an exposure)
if (e > E) (more than E exposures on current unit)
then j=j4+1land e=0 (create new hidden unit)

“go to next frame”

The user must select the parameter 8, H, and E before the algorithm begins.
In what follows we will explain the role of each parameter and how it affects the
performance of the trained network. The variable ;7 counts the hidden units. We
begin training the first unit (7 = 1) by presenting frames to the system in sequence
(incrementing k). The k-th input is added to the weights of the first unit if the
response of the first hidden unit is below a threshold 6. Notice that in the optical
system the response of the hidden unit is not simply the inner product between
the input and the weight vector but an integration over I pixels of the center of
the correlation function, as we described earlier. If 6 is set too high then the units
become very highly tuned to respond to the particular images they are trained for.
If the threshold is too low then too much cross talk with unfamiliar faces results
leading to erroneous classifications. Ideally, § should be lowered as the training
proceeds and hidden units are added, since this weakens all the stored holograms.
In the experiment we describe we used a constant §. The first unit continues
to accumulate training examples in this way until a total of E exposures have

been made to it. At that point a new hidden unit is created (j is incremented) by
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rotating the mirror that controls the angle of the reference beam. We would like to
have E large in order to have each unit be responsive to as many training examples
as possible. However, since we are only presenting positive examples to the system
(i.e., we never subtract anything from the weights but always add to them), if too
many examples are accumulated the weight is simply the average of the subject’s
faces, which is similar to the average of anybody’s face, and loses its discrimination
capability. The first H hidden units are trained in exactly the same manner as
the first. When j exceeds H the current input frame is added into the weights of
the 7-th hidden unit only if fewer than H units are above threshold. If H is set to
1, then the training of the early units is identical to the rest. However, this results
in a hidden layer response that has only one unit on at a time. We have already
commented that we found that this results in poor performance on the training
set due to susceptibility to noise and poor generalization. By requiring that at
least H hidden units are on at any one time for the training set, we improve the
robustness of the system and improve generalization. If H becomes too large, we
would need too many hidden units to enforce this requirement, and the encoding

becomes inefficient.

The discussion in the above paragraph describes the basic trends that we
predict and experimentally observe as the parameters E, H, and 6 are adjusted.
The experiment that we will describe in this paper was carried out with H = 3,
E = 6, and 0 was set equal to 3 times above the noise background level. These
values were arrived at empirically by running the experiment several times and
measuring the generalization performance. The system performance is sensitive

to the setting of 8 (it should be set relatively low), but not as sensitive to changes
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in H and E. These settings worked best for all the face recognition experiments
we tried. Unfortunately, there is no guarantee that these settings are the best for
other problems.

The most attractive feature of this algorithm is that it can be easily imple-
mented with the optical system described in the previous section while yielding
remarkably good classification performance, as we will see in the next section. The
algorithm requires two basic operations from the optical system: Evaluation of the
response of the hidden units to an input image so that the computer can compare
it to a threshold and addition of the current image into the hologram that speci-
fies the weights of that unit. We have already described how the system evaluates
the response of the hidden units. We will discuss here how the weight updates
are performed. When a hologram is exposed to light the strength of an individ-
ual holographic grating (or connection w;; is modified according to the following

equation :

-+ wij = fmaj, (6.8)

where 7 1s the time constant of the holographic recording in the photorefractive
crystal, § is a constant that depends on the crystal properties, and m;; is the mod-
ulation depth of the frequency component of the illuminating light that matches
the grating w;;. For a short light exposure of duration At, we can approximate
the change in the hologram by

At At
Aw,-j ~ ——-;_—-w,-j + —7-_-ﬁm,-j. (69)

In other words, each exposure reinforces each weight in proportion to the strength
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of the corresponding frequency component of the illuminating light. However, each
exposure also erases all the weights in proportion to their current strength. This is
the well known weight decay problem that plagues photorefractive memories 73]
and photorefractive neural networks [53]. Several solutions to this problem have
been proposed [79-84]. We use a simple exposure schedule in our experiment,
in which the later exposures are linearly shortened to compensate for the decay
of the earlier holograms resulting in an approximately uniform final recording.
Specifically the m-th exposure, t,,, is set equal to t,, = 3 — m /240 seconds. Thus
the exposures varied from 3 seconds at the beginning of the exposure sequence to 2
seconds at the end, with a total light intensity equal to 10 mW/cm?, a modulation

depth approximately 0.1.

The training set for the experiment was a video recording of the face of one of
the authors (Yong Qiao) moving his head in front of the camera, turning, nodding,
tilting his head, smiling, etc. The total number of images in the training set is
5,400 frames. The execution of the algorithm modified the hologram with only 240
of these images. The rest produced an acceptable hidden layer response. Since
each hidden unit receives 6 exposures, a total of 40 hidden units were created. The
maximum number of hidden units that the system can support is limited by two
factors. One is the dynamic range of the photorefractive hologram. In this case
a total of 240 holograms are superimposed. If we assume that all these exposures
are statistically uncorrelated (i.e., each exposure simply erases all the previously
recorded holograms and does not ever reinforce them) then the diffraction efficiency
of each hologram would fall by a factor equal to (240)% [53] compared to the

efficiency with which a single hologram is stored. Since up to 5,000 [12] holograms
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have been superimposed in lithium niobate crystals, the dynamic range was not a
problem in our experiment. The second limitation is the numerical aperture of the
optical system to allow all the reference beams to enter the crystal. The system
we used in the experiment had the capability to implement in excess of 100 units
and it is possible to build systems with more than 1,000 units. Therefore, this
particular training set did not stretch the limits of the system’s capabilities. The
entire training cycle lasted about 40 minutes, which includes the time for hologram

exposure and controlling the system by computer.

Shown in Fig. 6.16 is a composite photograph showing a short sequence of
the training session. Each picture in the composite shows the current input frame
and on the right, vertically displayed, is the optical response of the hidden units.
The first event in the sequence is on the top left in Fig. 6.16 and it shows the
frame shortly after the hologram is exposed. As time progresses the hidden layer
response changes (upper right corner) and gradually dims (lower right corner).
Ultimately, there are fewer than 3 units on and the system is triggered to make
another exposure (lower right corner). The white ribbon on the left of the input
image where the hidden layer normally appears, indicates that the hologram is
being exposed to light and the camera that monitors the hidden layer response is

flooded with light.

6.3.4 Classification Performance

In this section we describe the performance of the trained network. Once
the network is trained it operates in real time, processing 30 frames per second

directly from the input TV camera. The outputs from the detector array are
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Figure 6.16. Photographs showing part of the training session.

simply added together electronically and this sum is then thresholded to produce
the final output. The holograms will decay when exposed to light during the
testing phase. We can overcome this by either thermally fixing the hologram [87]
or by using dynamic copying described in chapter 3. In this experiment we adopted
a simpler route that temporary overcomes this problem. By reducing the readout
light intensity by a factor of 20, compared to the total writing intensity, we can

calculate that the holograms will decay after several hours of constant illumination.
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The holograms were sufficiently strong that the reduction in the readout intensity
yielded sufficient signal at the detector. The system was tested with the training
set and a wide variety of test sets, including Yong, presented to the system under
various conditions and others attempting to confuse the system. Shown in Fig. 6.17
is the signal at the output of the system before final thresholding. The entire
recorded presentation shown in Fig. 6.17 lasts for about 10 minutes. The first
minute is a portion of the training set. The next 2 minutes is a real-time input
of Yong who looks into the TV camera and moves around in a manner similar to
the training set. While he does this, he does not have access to any information
from the network. The rest of the sequence is the response of the system to two
other persons (Sid and Allen). We can see that the average response is highest
for the training set, and it remains almost as high for the rest of the time when
Yong is the input. The average response for the other two subjects is markedly
lower. The variance of the response is higher for Yong, because he was exhibiting
a wider range of head perspectives, compared to Sid and Allen, to test the limits

of the system. Similar behaviors were observed for all 14 members of our group.

To make the final classification, we need to threshold the signal shown in
Fig. 6.17. In the actual system, this is done electronically in real time. The
optimum threshold was determined from the data shown in Fig. 6.17. Shown in
Fig. 6.18 is a plot of probability of error as a function of the output threshold
level. The three curves correspond to the probability of error for Yong, Sid and
Allen, estimated by classifying the data in Fig. 6.17 with different thresholds. If
we want to minimize the overall probability of error, the optimum threshold level

is approximately 2.5 nW, giving a probability of error of about 12%. If we set
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the threshold slightly above 3 nW, then we almost never make a false recognition

while correctly identifying Yong approximately 70% of the time.

We can improve the performance of the system further by using the time
domain. If the input face is moving and presents different views to the system,
we can eliminate many of the errors by using a period of time longer than the
duration of a single frame to do the classification. Specifically, we classify the
current frame to be Yong if M out of the N previous frames give us a positive
response. In implementing such an algorithm, we need to select N, M and the
threshold level. Shown in Fig. 6.19 is a plot of probability of error on the same
three data sets as before as a function of the threshold level for M = 7 and N = 25.
Notice that if the threshold level is selected in the range of 2.75 nW to 3 nW, the
estimated probability of error is zero. In this example, the decision is made based
on observation of the input video for 6 seconds (the computer sampled the output
at 4 samples/second). In general, there is a tradeoff between performance and

observation time.

The next sequence of experiments we describe were carried out to evaluate
the kind of generalization obtained by the network. In this case, the subjects (Yong
and others) were allowed to look at the output of the network and adjustments were
made to test the limits of the system. Examples from this series of experiments
are displayed in the composite of Fig. 6.20. The pictures are arranged in a 4 x 4
matrix. We will assign to each picture a pair of numbers (i,j) with the picture
at the upper left corner being (1,1), and the one at the upper right corner being
(1,4). The small black circle within each picture displays the final output of the

system after thresholding. If the bright dot appears in the circle, the system
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Figure 6.19. Probability of error as function of the output threshold level when the

output is observed for 6 seconds to perform the classification.

makes a positive identification of Yong. Picture (1,1) is an example of Yong being

correctly recognized by the system. Picture (1,2) shows Yong illuminated from

below and the side, whereas during training the illumination was from above.

We can see that the system is sensitive to the direction of illumination because

of the edge-enhancement that is performed by the system. As the direction of

illumination changes, the edges move around. To obtain invariance to illumination
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direction, we need to include in the training set examples of different lighting.
Picture (1,4) and (2,1) show that key features such as the mouth and the eye
are crucial for recognition. However, as picture (2,2) shows, the eyes alone are
not enough for a positive identification. Picture (2,3) is meant to display the
invariance of the system to up and down motion. It is difficult to assess this from
the still photo. However we measured a tolerance to vertical shifts of about 5%
of the whole scene. The optical system was arranged such that vertical shifts of
the input image become horizontal shifts on the LCTV. We did this because we
need more tolerance to horizontal input shifts (people move side to side much
more than up and down) and the optical system provides shift invariance in the
vertical direction at the LCTV plane. Prior to the training, the tolerance to
vertical input shifts was 2% of the whole scene. Training more than doubled the
tolerance of the vertical shift. The tolerance of the system to nodding up and
down was recorded by measuring the vertical motion on the screen of a fixed point
on Yong’s forehead, as he nodded up and down. According to this measure, the
spot on his forehead can move by 1 cm without loss of recognition. From this
measurement, and by measuring the dimensions of Yong’s head, we obtain a crude
estimate of 5 degrees for the maximum tolerable angle of forward head tilt. Picture
(3,3) shows an example of the tolerance of the system to horizontal shifts of the
input image. In this direction the optical correlator provides considerable shift
invariance. We measured the maximum horizontal shift to be about 13 percent
of the total horizontal extent of the input frame. Overall, the system has more
than 3 times better tolerance to shifts in the horizontal than the vertical direction.

Pictures (3,4) and (4,1) demonstrate the system’s ability to tolerate turning of the
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head, which we measured to be 30 degrees in either direction. The maximum tilt
of the head (picture (4,2)) was measured to be 12 degrees in either direction. We

did not seriously test the response of the system to scale changes.

6.4 Discussion and Conclusion

The power of the optical neural networks is indicated by calculating their
processing speed. Take the character recognition network for an example. It has
approximately 107 synapses or weights and the response time of the network is
approximately 10 milliseconds. This corresponds to 10 analog multiplications
per second. If the size of the input image is increased to the full resolution of the
input spatial light modulator (approximately 10° pixels), then the rate increases
to 10’2 multiplications per second. Finally, if a ferroelectric liquid crystal SLM
is used at the input and hidden layers, the response time can be improved to
approximately 10 microseconds [121], which yields the very impressive rate of
10'5 multiplications per second. This processing speed is achievable with currently
available optical components and it would be extremely difficult to duplicate with
electronics. The issue therefore is not whether optics can in practice outperform
electronics in terms of computational speed, but rather whether the high speed of
optics can be put to practical use. The main issue is whether these large optical
networks can be trained effectively to solve useful practical problems. There are
both algorithmic and device related problems to address. The hologram copying
method we described earlier is a promising solution for the device dynamic range
problems. As for the training of multilayer networks, it is well known that large

networks require very large training sets [122] but it is not known how the training
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Figure 6.20. Examples demonstrating the generalization capabilities of the system.
A bright dot in the circle at the lower-right corner of each photograph
indicates that the system classifies the input image as the person it

was trained to recognize.
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time scales with the size of the network and/or the training set. Understanding
such issues about the training of large optical networks remains a major challenge

before these systems can have a practical impact.
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