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ABSTRACT

The determination of parameters in a dynamical system, on
the basis of noisy observations of its state is variously known as
parameter estimation, identification or the inverse problem. In this
work, the determination of porous rock property distribution in a
petroleum reservoir using the production rate records and observed
pressures (the history matching problem) is considered.

The history matching problem is inherently underdetermined
because of the large number of unknown parameters relative to the
available data. The number of unknowns can be reduced by repie-
senting the distributions by a small number of parameters (parameter-
ization). The commonly used zonation approach involves a pafameter—
ization, but introduces a considerable modeling error. In chapter 1,
Bayesian estimation theory is extended to history matching as an
alternative to zonation; it is sought to alleviate the underdéterminacy
through specification of a priori statistical information about the un-
known parameters. Application of Bayesian estimation and zonation
to the problem of porosity and permeability estimation in a one-~
dimensional single-phase reservoir indicates that the former yields
superior estimates; this holds true even when the prior statistics
involve large errors. The application of the conjugate gradient and
the Gauss-Newton (or Marquardt's) algorithms for history matching
is investigated, and the numerical effort for zonation and Bayesian
estimation in one- and two-dimensional reservoirs is estimated in

detail.
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In chapter 2, analytic expressions are derived for the sensi-
tivities of an observed oil pressure to small, arbitrary changes in the
porosity and permeability distributions in a one-dimensional reser-
voir. The results indicate that highly oscillatory components of either
have very small influence on the pressure and thus cannot be deter-
mined by history matching. Further, the dependence of all the
observed pressurebs on the unknown parameters is linearized, for
small deviation, about twov reference property distributions. The
linear relation is analyzed to yield quantitative information concerning
the statistical properties of the problem. Iterative corrections in the
history matching aigorithms are identified with various pseudo-
inverses of the linear relation, thus explaining the properties of thbe
resulting estimates, The nature of the linear relation is found to be
not strongly dependent on the reference property distributions used for
linearization; thus such analysis can be performed prior to estimation.
It is discussed how the linearized analysis can be used to determine
the determinacy of any given parameterization,

The information derived from the linearized analysis and that
in the a priori statistics is synthesized in chapter 3 to predict
covariances for the zonation and Bayesian estimates, Since the
results of the linearized analysis depend only weakly on the reference
distribution, the predicted covariances are valid for a class of reser-
voirs having "true' property distributions with identical prior statis-
tics. A good agreement is found when the predicted variances are

compared with actual mean square estimate errors in simulations



with four distributions with given prior statistics. The sensitivity

of the estimates and their covariance to changes and errors in the
specification of the prior statistics are investigated in considerable
detail., The determination of zonation with smallest trace of estimate
covariance for a given problem is consicered. The design of
Marqguardt's algorithm to yield the smallest expected total estimate

error for a given zonation is discussed.
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INTRODUCTION

Estimation of porous rock properties in a petroleum
reservoir is important for the purpose of accurate modeling
and performance optimization., The estirmation of properties
based on well pressure and production rate data belongs to
the class of parameter estimation problems in distributed
systems. Such problems are also known as identification or
inverse problems,

In this dissertation, we consider estimation of the
spatial distributions of transmissibility (assumed isotropic)
and storage in a two-dimensional petroleum reservoir, For
simplicity, we consider a single-phase oil reservoir with im-
permeable boundary. It is emphasized that the methodology
developed here is easily extended to multi-phase reservoirs
with arbitrary boundary conditions and, indeed, to the problem
of identification of any distributed parameter dynamic system.
For the single phase reservoir, the oil pressuré as a function
of space and time is governed by a linear, parabolic partial
differential equation, From the geological and drilling data, -
the boundary location, the flow conditions at the boﬁndary,
and the initial oil pressure are usually known, The available
data consist of the production rate history records and ob-
servations of the well pressures at a finite number of instants,
It is assumed that the production rate history is perfectly

known whereas the pressure observations are contaminated by
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random observation errors with known statistics.

The problem of property estimation is usually posed as mini-
mization of the total deviation of the calculated model préssures from
the observations with respect to the unknown rock properties. This
approach (Jacquard and Jain 1965, Jahns 1966, Carter et al, 1974)
is commonly known as pressure history matching. Although in prin-
ciple the property distributions are specified by an infinite number
of parameters, a computational model can only contain a finite num-
ber. For computational purposes, the partial differential equation is
approximated by finite differencing with a uniform spatial grid cover-
ing the reservoir. The most detailed description of the unknown
distributions is obtained bgr allowing the properties to vary independ-
ently at each block of the grid. While minimizing the modeling error,
this approach entails a great deal of uncertainty in the estimates
due to a large number of unknowns compared to the limited data
available. i

The uncertainty in the estimates can be reduced either by re-
ducing the number of unknowns through constraints on the unknowns
(parameterization), or by incorporating in estimation auxiliary in-
formation, or both. The commonly used zonation approach (Jahns
1966, Thomas et al. 1972) involves a parameterization; it reduces
the number of parameters by restricting the unknown property
distributions to be uniform within each of several contiguous regions
of the reservoir called zones. The larger the number of zones,
the more detailed is the description of the property distributions;

but, at the same time, the statistical uncertainty in the
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parameter estimates is higher, On the other hand, very few
and large zones yield accurate estimates but entail large
modeling errors, Thus an intermediate number of zones
vields a minimal overall estimation error.

As an alternative to zonation, we may attempt to re-
duce the uncertainty in the estimates by taking into account
additional information about the unknowns, which is based on
certain geological considerations, For example, the property
variations, deriving from random sedimentation processes,
should have a randommness encompassing a certain degree of
smoothness. In Chapter 1, we seek to incorporate such
auxiliary statistical information in the estimation process
through extension of Bayesian estimation theory. Due to
nonlinearity of the property estimation problem, direct
application of classical Bayesian estimation is not feasible;
instead, its penalty function formulation is utilized to in-
corporate prior statistical geological information,

The statistical information is derived from geological
observations concerning typical property variations that oc-
cur in the sedimentary rock constituting the reservoir,

Such observations need not be on the particular reservoir
being treated, but may encompass a whole class of reser-
voirs formed under similar sedimentation conditions. How-
ever, laboratory measurements of local property values on
reservoir samples (for example, obtained by coring) may

also be taken into account while specifying the prior statistics,
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We have suggested a statistical model for the propérty vari-
ations, and a method of specifying the statistics based on

the radius of auto-correlation reflecting the degree of smooth-
ness of distributions, to serve in absence of detai_led geoiogical'
information, However, scope for considerable improvement
exists ‘as more geological observations become available.

For illustration, Bayesian estimation and zonation are
applied to the problem of estimating porosity and permeability
distributions in a hypothetical one-dimensional rgservoir, and
their performance ié compared, The numerical simulations
are used to investigate such'quéstions as the optimum number
of parameters in zonation, the effect of erroneous»prior sta-
tistics in Bayesian estimation, Considerable attention is
given to computational aspects such as convergence rate and
‘computer time required by two of the most commonly used
minimization algorithms, Marquardt’s and conjugavte gradient,

The nonlinear parameter estimation problem is solved
iteratively, the co;'rections in thé current estimates being
obtained through the solution of an associé,ted linear sub-
problem, An analysis of this linear subproblem is apt to
yield. a considerable amount of information about the nature
of. the nonlinear problem. In Chaptei‘ 2, we carry out such
an analysis of thé linearized relation between small deviations
in the unknown parameters and the observed pressures., It
yields quantitative information about the ill-conditioned and

underdetermined nature of the problem, It is shown that
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iterative corrections in the different minimization algorithms
can be identified with different pseudoinverses of the linear
relation; thus the nature of the resulting estimates of the
property distributions can be explained, Furthermore, such
analysis can be used to determine the conditioning and de-
terminacy of any given parameterization,

It is observed that the characteristics of the linear
relation do not depend strongly on the reference distribution
used for linearization. This is the key feature that makes it
possible to perform the analysis before performing extensive
estimation, It is also of cardinal importance in the determi-
nation of a posteriori covariance associated with the property
estimates, The information about the unknown rock properties
derives from two sources: the observations and the prior
statiétics. The observations yield information mainly about
the components of the unknowns which are significantly sen-
sitive to them, The information about the less sensitive
components is derived from the prior statistics., The linear-
ized analysis aids the separation between the two types of
components, and thus the determination of the covariance,
The weak dependence of the linear relation on the reference
distribution allows prediction of the covariance before per-~
forming estimation, using only the prior estimates in analysis,
Furthermore, the predictions are valid for an ensemble of
distributions which do not differ significantly from those

used in the analysis,
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The total modeling error in zonation can be estimated
using the results of the above analysis. When compared with
the statistical uncertainty in the estimates, it provides a
theoretical basis to determine a priori the optimum number
of zones commensurate with the available data. As the prior
statistical information is taken into account while predicting
the estimate covariance, a change or error in the statistics
can be expected to influence the predictions. Furthermore,
since the Bayesian approach utilizes the prior statistics in
the estimation process, the resulting estimates are also af-
fected by such changes or errors, These aspects are

investigated in considerable detail in Chapter 3.
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CHAPTER 1
ESTIMATION OF ROCK PROPERTIES

IN A SINGLE PHASE PETROLEUM RESERVOIR

In this chapter, we consider the estimation of porous rock
property distributions (e.g. those of permeability and porosity) in
a petroleum reservoir from well production and pressure data,

which is commonly referred to as history matching. The reservoir

geometry, boundary and initial conditions, and fluid properties are
assumed to be known.

The estimation of reservoir properties is inherently an under-
determined problem because of the large number of unknown param-
eters relative to the available data; hence, its solution is non-unique.
A commonly used approach to reducing the number of parameters is
zonation, where the reservoir is divided into several zones and the
properties within each zone are assumed uniform., The zonation
entails considerable modeliﬂg errors due to arbitrary assignment
of zone boundaries and the insistence that the properties are uniform
within each zone. In this chapter Bayesian estimation theory is ex-
tended to history matching as an alternative to zonation. The under-
determined nature of thegene"ral history matching problem can be
alleviated through specification of a priofi statistical information
on the unknown rock properties. The Bayesian estimation and zona-
tion are compared through their appliéation to the problem of porosity
and permeability estimation in a one-dimensional, single-phase reser-

voir,
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The mathematical model for a single-phase oil reservoir is
formulated in section 1-. 1, In section 1.2, the history matching
problem is formulated in continuous and discrete terms, and relative
merits of the two formulations are considered. Further, non-
uniqueness of the solution and consequent need for additional informa-
tion or parameterization are discussed, citing zonation as an example
6f the latter. In section 1.3, we introduce Bayesian estimation theo:fy
and extend it to the history matching problem. The nature of the
prior statistical info’rmation‘is discussed from a geological viewpoint,
and a simple homogeneoﬁs random process model for the property
distributions is developed to serve in the absence of any definite
information, The Bayesian estimation is shown to result in a signif-
icant reduc»tion in the number of parameters. The hqmogeneous
random process model is used in section 1.4 to produce realizations,
which serve as ''true'' property distributions in simulated test prob-
lems. The details of simulation are also included in this section. In
section 1.5, we consider, including théir derivation, two minimization
algofithms for history matching: conjugate gfadient and Gauss~
Newton (or Marquardt) algorithms. Their convergence characteristics
are discussed and detailed estimates are derived for cdmpu’cation
effort per iteration of each algorithm, for zonation and Bayesian esti-
mation in one-dimensional and two-dimensional reservoirs, Finally,
in sect‘ion 1.6, the numerical simulations with one-dimensional reser-
voir are used to investigate questions such as the optimum number of
parameters in zonation, the effect of erroneous prio'r statistics in

Bayesian esimation and to compare the performance of the two methods.
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1.1 Mathematical Model of a Single Phase Oil Reservoir

In a single phaée reservoir, the oil flows through the porous
rock under the influence of pressure gradients towards opened wells,
where it is removed. The energy required for driving the oil flow
against the frictional resistance to the motion, and against the gravi-
tational forces during the primary recovery, 'is provided by expansion
of the oil and the porous rock as the ambient pressure declines.
Whenever the reservoir has a contact at the boundary with an aquifer
or a gas reservoir, the expansion of the fluid in the latter accompanied
by motion Qf‘the front sepa;‘afing the two fluids supplies part of the
energy necessary for driving the motion.

In order to describe the flow of oil in a single phase oil reser-
voir, one has to take into account the prpperﬁes of the medium, the |
thermodynamic and transport properties of the oil and the mechanics
‘of the ﬂuid motion. However, to reduce the complexity of the problem,
we éhall make several simplifying as silrnptions. Firstly, we assume
~ that .thé flow velocities are small enough everywhere that the flow
description with the low Reynolds number approximation is accurate.
In such a situation, for a flow in a horizontal plane, the flow velocity
at any point in the reservoir is i)r{)po‘rf:iqna-l to the gradient of the
pressure at that point, This law of .ﬂui‘d motion is commonly known
as Darcy's law (Collins, 1961). The constant of proportionality
depends on local fluid and rock propertiés. We shall assume that the
fock properties are isotropic. Then Darcy's law yields the flow

velocity,

vp (1.1.1)

u
~

1
w®ix
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Wheré k and g are the local rock permeability and oil viscosity re-
spectively.

We shall assume that the vertical thickness h of the reservoir
is small compared with other dimensions, and varies slowly with
position and that the reservoir lies in a horizontal plane. Then we
may describe the oil flow by a two-dimensional model and disregard
the effect of gravity. The law of conservation of mass applied to the
oil in a small prismatic volume element with height h of the reservoir

leads to the continuity equation,
. 9
Ve (hpu) = - 5 (hdp) (1.1.2)

where ¢ is the local rock porosity and p is the local oil density. It
will be assumed that the rock compressibility is sufficiently small,
so that the porosity and permeability are independent of pressure,
and consequently time invariant,

Introducing (1. 1. 1) into (1. 1.2) we obtain

V-(E’%l-(-zp) = h¢-2L (1.1, 3)

ot °

The thermodynamic properties of the oil are assumed to be
of a very simple nature: the oil density p is only a function of préssure

p, and the compressibility of oil ¢ is constant. Then we have,

¢ = %gﬁ = const. (1. 1. 4)
d .

Vp = Zpa*g- = cp¥p (1.1.5)

9 _ % dp _ _ 3

ot ~ ot “dp = Pt (1.1.6)
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Introducing the last two relations into (1.1.3), we get

kh kh 0
p I (G- EP) *+ ¢ p o Up-¥p = hécp =L (1.1.7)
If the fluid motion is assumed to be so slow as to yield very small
pressure gradients, then the second term on the left of (1. 1. 7) may

be neglected in comparison with the first. Consequently, we obtain

a linear parabolic partial differential equation for pressure p(x, y;t),

bch B = Z-(E“-th) (1. 1. 8)

The parameter combinations ¢ch and %1-1- are called respectively
transmissibility v and storage w at a given point in the plane of the
reservoir,

In order to complete the mathematical model of the physical
reservoir, we need to prescribe boundary and initial conditions. The
condition at the boundary 8D of the domain D of the reservoir depends
on what adjoins the reservoir. If the reservoir under consideration
is surrounded by impermeable rock, then the appropriate condition
is zero flux normal to the boundary; it leads to, through t'he use of

Darcy's law,

vp(x,y;t)'n = 0 (x,y) € 8D (1.1.9)

where n is the unit vector at (x,y) normal to the boundary. Alter-
natively, if the reservoir is surrounded by a large aquifer, pressure
of which remains constant, then the boundary conditions for the initial
stage of oil production is,

p(x,y;t) = constant = p_ (x,y) € 0D (1. 1. 10)
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More complex flow conditions at the boundary due to a motion of
the water front are possible. For the sake of simplicity, in most
of this work we shall only consider the case of a reservoir with
impermeable boundary described by (1. 1.9).

The initial condition for (1.1.8), describing the state of the
reservoir at the beginning of the oil flow, is clearly that of the fluid
at rest with a uniform pressure throughout the horizontal domain D
of the reservoir. The value of this initial pressure P, will be assumed

known, giving
P(x,y;0) = p, (x,y) €D (1.1.11).

Figure (1. 1. 1) shows a schematic drawing of the reservoir.

The description of the producing reservoir is completed by
including the producing wells., The wells opened in the reservoir
will be assumed to traverse the whole of the thickness h. Then the
flow in their vicinity may be approximated by a two-dimensional flow
in the horizontal plane. The boundary condition at a well is the
mathematical statement of the fact that the total flow of oil towards
the well at any time must account for its current production rate.
Thus, we have the additional boundary conditions,

% upndp=aq(t) i=12,...,1 (1. 1.12)

i7" well

where the integral is over the periphery of the ith well and IP is the
total number of producing wells, In (1.1.12), qi(t) is the volumetric
flow rate of ith well; it is negative for production.

An alternative description of the wells contained within the

reservoir boundary is obtained by approximating the wells by point
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sources with strength qi(‘t) situated at the center of the respective
wells, This representétion makes the mathematical treatment more
convenient than that given above and leads to additional terms con-

taining delta functions on the right hand side of (1. 1. 8),

I
1=

Equations (1.1.8, 9, 11, 12) or (1.1.13, 9, 11) constitute

the mathematical model describing the oil flow in the reservoir,

1.2 Rock Property Estimation

1.2.1 The Property Estimation Problem

It is necessary to know the distributions of the transmissi-
‘bility vix,y) = %}—1 and the storage W(X,.Y) = @dch, to model accurately
a given two-dimensional single phase o0il reservoir. These functions
are never known completely a priori, and must therefore be esti-
mated from the available information about the reservoir. Usually,
this information is in the form of records of production rate history
for the different wells and the‘pressure measurements at different
time inétants at some or all of the wells,  In addition, the analysis’
of the core samples provides information about v andlw at the well
locations. Geological information about the type of the reservoir,
and information about the extent of the reservoir including the
loéation‘ of the boundéry'are also usually available.

A generally used method of utilizing the pressure and pro-
duction history records involves seeking functions v(x,y) and w(x, y)
which yield model pressures that match the measurements. This

procedure of estimation is commonly referred to as history matching.
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If the measurements of the production rates and the pressures
~are corrupted by unknown observation errors, as is invariably tﬁe
case, insistence on an exact match between the model pressures and
the measurements is not justifiable. In this situation, we may attempt
a match in the least square sense, using weighting that depends on
statistics of the different observation errors. Such a formulation of

the history matching problem is,

' 2
Min . _ o _ 1 [ cal . obs . ]
vow I F 7%——-02 P (g, Yt p (g, Yty (1.2.1)
i

where the summation extends over all the observations. The quantities
pcal(xi,yi;ti) are the values of the solution of the model pressure equa-
tion (1.1.8) using the estimated functions v(x, y) and w(x, y) for the

respective property distributions, and the recorded production history.

1.2.2 General Approaches to Estimation of Distributed

Parameters

The task of determining the two functions v(x, y) and w(x,vy)
from a finite number of noisy observations is clearly impossible;
there would be infinitely many sets of these functions which satisfy

-the data to the same degree of accuracy, making it impossible to
choose any one of them as the correct solution. Furthermore, a
computational model, of necessity, has to be finite dimensional.

However, the problem of distributed parafneter estimation
can be approached conceptually in two different ways, depending
on at which stage a finite dimensional approximation is introduced.
In figure (1.2.1) we show the two alternative approaches, In the left

branch of the loop, the problem of minimization of J is posed in .
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infinite dimehsions, an algorithm is derived, and at the end it is ap-
proximated by finite differences or any other suitable device for com-
putational purpose-s. In the right branch of the loop, the original
infinite dimensional system model (pé.rtial differential equation) is
approximated at the beginning by a finite dimensional model (discrete
algebraic equations, for example) through finite differencing or other
suitable methods; subsequently, an appropriate algorithm is derived
for the finite dimensional minimization problem, which can be exactly
implemented numerically. Thus, inthis approach, no implementation er-
rors are introduced w}vlile executing the minimization procedures for history-
matching. Due to'the exactnumerical implementation of the minimization
algorithm in the latter, this approaéh performs better computationally,
yielding a better history match with less effort., Hence, we shall adopt
this “approab.ch in the sequel.

| Wé shall use a finite difference scheme empldying a uniform
vspatial grid covering the domain of the reservbir for the purpose of
the finite dimensional approximation. This would reduce the original
partial differentialnequ;ation to a set of coupled ordinary differential
equations for the oil préssure at the -grid points. These will be further
approximated by di-fferencingr in time, using constant time steps to
-yield a set of discrete algebraic equations, which wili be taken as the
.model for the systém. 'The minimization of J will be carried out
subject to these model equations, with respect to the grid point values

of the rock properties v and w.
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1.2.3 Non-uniqueness of Solution and Parameterization

The most detailed description of the unknown rock properties
is obtained by allowing v and w to vary independently at each block of
the spatial grid used in the finite differencing. For accurate modeling,
a fine spatial grid is essential; this would lead to a large number of
unknowns compared to the limited data available. Thus, while mini-
mizing the modeling error, this approach entails a great deal of un-
certainty, or even leads to a situation where the number of unknowns
exceeds the number of data points, resulting in non-uniqueness of the
solution to the property estimation problem,

The problem of the non-uniqueness can be dealt with by reduc-
tion of the number of unknowns or by injection of additional infoi'mation,
or by a combination of the two., The reduction of the unknowns can be
affected by parameterization, i.e. introduce a set of fewer parameters
along with a rule (mapping) which uniquely -determines the values of
v and w at all the grid points corresponding to a given value for this
parameter set. The property estimation problem then reduces to that
of minimizing J with respect to this parameter set. Zonation, de-
scribed in the following subsection, is an example of parameterizatioh.

We note that any parameterization that reduces the number of
unknowns, necessarily introduces some constraints on the unknown
rock properties, If the mapping between the rock properties and the
parameters is linear, then the parameterization can be viewed as a
projection of the unknowns onto a linear-subspace of their Euclidean

space. For example, let m be an M-vector of parameters and let the
Cd
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linear mapping be,

1<

1
!
t
1

glr, (1.2.2)

1<

where y and w are N-vectors respectively of the values of v and w at
the N-grid points, and G is a (2NxM) matrix of rank M., Then the
above parameterization is equivalent to a mapping of the 2ZN-space of
rock properties onto an M~space (M < 2N) of the parameters T
Alternatively, this parameterization is equivalent to the restriction
that the component of the 2N-vector of rock properties be zero in a

(2N-M) dimensional subspace of EZN which is the orthogonal comple-~

s
ment of the subspace spanned by the columns of G. This is tantamount
to (2N-M) linear equality constraints that the 2N property values must
satisfy. These constraints are inflexible, and hence are often called
"hard' constraints. Furthermore, each parameterization may be
viewed as an introduction of some additional information into the
property estimation problem; for example, (1.2.2) injects information
that the components of the 2N-property vector [XTl \LrT]T along a
(2N-M) dimensional subspace of EZN is zero, We shall consider two
different parameterizations involving linear mapping in the sequel.,
Additional information may be injected into the property esti-
mation problem in several ways. The estimatéd properties may be
required to satisfy some '"hard" inequality constraints on their values;
for example, wé- < W, < W where W, and w, are respectively the
lower and the up;er limits 1on the alloW;ble valules of W, (Carter et al.,

1974). Alternatively, the minimization index J may be modified by
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the addition of a positive definite term involving the unknown property
distributions, For example, the pqssibility of highly oscillatory esti-
mates of the distributions of v(x,y) and w(x,y) can be restricted by

the introduction of a penalty term in the index,

J=3+ [ oy llsvli® + o, llgwl* Jaxdy O (L.2.3)

where ay and a, are positive weighting factors. Similarly, penalty
méy be placed on higher derivatives of v and w. This approach to
the injection of additional information was attempted but led to no
significant improvement in the accuracy of the estimates., Contrary
to the inequality constraints, this-approach can be thought of as in-
volving '"'soft' (i.e. flexible) constraints on the unknown distributions.
The former method of hard inequality constraints without any
additional parameterization, does not yield satisfactory results; the
property estimates often tend to lie along the boundary of the feasible
region in EZN (Carter et al, 1974). In addition, the minimization of

J, subject to these hard constraints, is more difficult, The latter

method of derivative penalty constraints has the shortcoming that the
information introduced by it is rather arbitrary in nature; and it may
lead to severe errors in the estimates. In section 1.3, we present a
‘new approach, which we call Bayesian approach, that introduces addi-
tional geological information through a (soft) penalty constraint, It
may be thought of as an extension of the derivative penalty method.
1.2.4 Zonation

In zonation approach to parameterization, the unknown property

distributions are described by piece-wise constant approximations.
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The values of a given rock property are assumed constant over con-
tiguous regions of the reservoir, called "zones/t' Clearly, for uni-
form zone size, the larger the number of zones, the better is the
approximation to the original distributions. Conversely, large zones
yield less accurate approximation, but involve fewer parameters and
consequently are conducive to a unique and more precise determination
of the parameters, Thus the selection of the number of zones employed
in the zonation approach, is a matter of compromise between two
errors: the parameterization error and the error due to statistical
uncertainty of the estimates., The question of optimum zonation com-
mensurate with the available data will be discussed in chapter 3.

A major disadvantage of the zonation approach is that the zone
boundaries are arbitrarily chosen, usually on the basis of well loca-
tions and have no bearing on the actual property variations in the
reservoir., In addition, the inflexible constraint that the rock properties
be uniform within zones and suffer sudden jumps across the zone
boundaries is clearly artificial. The zonation approximation is not
usually in harmony with the geologist's experience with property
variations; deriving from random sedimentation processes, they should
have a randomness rather distinct from piecewise constancy. The
Bayesian approach, introduced in section 1.3, restricts the statistical
uncertainty by incorporating probabilistic information concerning this
randommness,

1.3 Bayesian Approach to Property Estimation

1.3.1 DBayesian Estimation

The Bayesian approach to estimation, involves a probabilistic
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description of the parameters to be estimated. The estimation process
consists of updating the prior probability density for the parameters
using the observations, yielding a posteriori probability density. The
estimates and their statistical properties (for example, their co-
variance) are determined from the a posteriori probability density
(Bryson and Ho 1969, Sage and Melsa 1971).

1.3.1.1 Linear Bayesian Estimation

For clarity we present in this subsection Bayesian estimation
applied to a linear estimation problem; the reader is cautioned that the
notation in this exposition is different from the main text of this

chapter. (See the box.)

The typical Bayesian estimation problem is concerned with the|

linear model (Bryson and Ho 1969, Sage and Melsa 1971)
z = Hx+g (1.3.1)

where x = (Xl, oo, xM) is the random vector to be estimated,

z = (Zl’ oo, zN) the measurement vector, ¢ = (el, cee, eN) is the
random error vector and H a known N x M matrix. Let the X and £
be normally distributed vectors with means K, 2 and covariances
,Yx’ Xe respectively., The parameters '/i and Xx constitute the prior
knowledge about the vector X,

In Bayesian estimation the estimates of x are defined by the
maximization of the conditional probability density p(§| z). This

density p(:‘slg) is given by Bayes rule:

p(z|x) p(x)
P(’f,!g) = TR

(1.3.2)
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Using (1.3.1) we find that P(,Z.‘ZS) is normal with mean Hx and vari-

ance V ; and p(z) is normal with mean Hy and variance HV HT+V
e ~ ~ ~e

A -
so that
T 1
det(HV. H™ + V )?2
l X o ~C
(zn)M/Z detV_ dety_

p(x|z) =

(2-Hx)- 3 (e-p) T ¥ (oxep)

T, -1
rexp {-3(z-Hx) "V,

Hp Ty, BT @Epl (13,3

1
+ 3(

The maximization of P(§|5) with respect to x is equivalent to the

minimization of the quadratic function
J = (’%-I;I}'S)TX;I(Z-I-IX) + (x-p)Tv};I(zf-p) (1.3.4

The first term in J represents the weighted mismatch between the

model and observations while the second represents the weighted

deviation of x from its a priori mean .
~ ~

1.3.1.2 Extension to Reservoir Estimation

As shown in subsection (1.3.1.1), the Bayesian estimation
reduces to a quadratic minimization problem provided the parameters
and the measurement errors are normally distributed and the model
is linear in the parameters. When these conditions are not satisfied,
the rigorous application of Bayesian estimation is extremely tedious
and is used very rarely. Since the reservoir estimation problem is
nonlinear in the parameters, a rigorous application of Bayesian esti-

mation is impractical. However, the following practical approach,
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akin to least squares estimation, is feasible. By analogy to (1.3.4)

we define an objective function
J = J +17J (1.3.5)

where Jp is the customary objective function based on the difference
between the observed and calculated pressures defined in (1.2.1), and

T -1

JZ = u Eo u (1.3.6)
where,

ul = [y )T (1.3.7)
and

- E{uu’)} (1.3.8)

~ O ~ o~
with

v = Efvl, w = E{w] (1.3.9)

Implicit in the above formulation is the assumption that the unknown
property vectors can be described by an a p‘riori probability distri-
bution, In the following subsection we describe a method for arriving
at such a prior probability distribution, through the use of geological
information. The expectations in (1.3.8-9) are taken with respect to
this probability distribution. The quantities z and % are the prior
mean values of the property vectors. The matrix '130 is the prior
covariance associated with the 2N-vector [xT;%T]To

The estimation is then defined by the minimization of the com-

posite index J = Jp + JZ" The term Jp represents the measurement

2. . . .th . .
error, O, being the variance of the i~ measurement, JZ is a Bayesian
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term penalizing the weighted deviations of the parameters from their
prior mean values. Minimization of JP results in utilization of the
information in the observations; JZ introduces the prior information
about the parameters into the estimation procedure. By adding I, we
require that the parameters follow some preconceived pattern. This
requirement reduces the statistical uncertainty at the cost of increasing
the residual observation error. The relative weight in the two terms

J, is determined by the variance of the observation error, Cfi2 s
1

J

2

. When little is known a priori about the rock properties,
‘ ;

and by P o
,\II’O will have large diagonal elements, and the elements ofﬂlf'; will be
small so that the term J2 will be given a small weight. The weighting
of the prior information can be reduced, if desired, by modifying the

term Jz of (1.3.6) by

T -1
JZ’ﬁ}z‘,fo E’a

(1.3.6a)
where 0<B < 1.

The above formulation assumes prior knowledge abouf the
means of transmissibilitir and storage., If it is desired to use prior
information about the correllaytion of these properties but not about
their means, E, y:s;, the latter quantities can é.lso be considered as
parameters to be estimated. As discussed later in the subsection
(1.3.2) these vectors mé.y 'bé parameterizéd i)y a few scalars; thus,
such an alte?ation will not increase the tot-al number of unknowns
- significantly,

Lastly, we make an important point about the nomenclature.

'Although the approach to property estimation suggested here is called
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Bayesian approach, it should be more properly called pseudo-Bayesian
approach, since it is not rigorous. However, for the sake of brevity,
we will continue to call it Bayesian approach; it is hoped that no mis-

understanding will result for this somewhat inexact nomenclature.

1.3.2 Nature of Prior Geblogical Information

The application of probabilistic models in geology is the sub-
ject of a recent review (Marriam, 1976). In applications discussed, a
given class of geological structures is modeled‘by a random process
with a certain probability distribution. A specific structure is
. regarded as a vrealization. of the random process. A realization is
then the outcome of .a randorﬁ event which in our case is the sedimen-
tation procéss responsible for the formation of the porous medium.
The articles of Pi’eston and Davis in the above reference (Marriam,
1976) treat sedimehtary formations with regard to microstructure,
The distribution of rock properties such as porosity and permeability
pertaining to the macrostructure, i.e., the reservoir as a whole, can
also be considered as random processes resulting from the joint action
of several random conditions during sedimentation. Pryor (1972) has
measured pordsities and permeabilities as functions of position in
récent sand bodies. Similar measurement in actual petroleum reser-
voirs require extensive drilling, and have not been carried out,

To sirﬁplify ndtation we consider a lineér or radially symmetric
reservoir so that the rock properties v é.nd w vary in one direction only,
although the following discussion can easily be generalized to multi-

dimensional problems, In the discrete description, these properties
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are characterized by random N-vectors v = (v v

P 1’060’ yz

N)J
(Wi’ oo ,WN),
The geological information required for Bayesian estimation

includes the means and covariance matrices of v and w. Let these

be given by,

E{vi} = v (1.3.10)

E{wi} = w (1.3.11)

E {(vi-’&)(vj—?)} =P, = £(|i-j]) (1.3.12)

E {(w;-w)(w;-W)} = Q. = g(]i-j]) (1.3.13)

E {(vi-??)(w.-W)} = R, = h(li-j|) (1.3.14)
J ij

The reader is cautioned against confusing the function h(li-—j|) with the
depth h(x) (or h) of the reservoir. The function f(li-j |) and g( Ii-j l)
are autocorrelations of transmissibility and storage respectively;
h(|i-j|) is their cross-correlation function.

The definitions (1.3.10-14) imply that the processes v and w are
homogeneous. This simple description is appropriate in the absence
of information suggesting systematic spatial variations. If such vari-
ations are known to exist, they can be treated by parameterizing the

mean of \f] and W, by smooth functions, for example:

E {vi} =v,=ax, +b (1.3.15)

1]

E {wi}:vsg a'x, + b’ (1,3.16)

The parameters Pij’ Qij’ and Rij are then defined by equations

(1.3.12-14) with v, w replaced by Vi and {{v'i.
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In a purely Bayesian approach, the parameters v, w (or a, b,
a', b') andf, 9, R, are considered as known, representing the prior
information. It is possible, however, to regard v and w (or a, b, a',
b') as parameters to be estimated. In all cases P, 8, andfg must
be treated as known.
Thé dete‘rmination of f,v Q, and 5 can in princ‘iple be carried’
out using past measurements on geologically similar reservoirs that
“have been subjected ‘f;o‘ extensive core sampling. When such data are
not available, we must proceed in a more qualitﬁtive fashion. Con-‘
sider, for eka—mple Pij'= £( 'i-j |). This function, »beigg an autocorrela-
tion, attains its maximum at i = j and the quantity f(0), which is the
variance of»vi, may be specified using previous information concerning
the size of fluctuations in the 'trénsmissibility. Experience usually

suggests upper and lower limits for reservoirs of a given type, e.g.,

v,<v,<v ., Then we may set
Lo i u

£(0) = (jll—;:’—@->2 (1.3.17a)
g(0) = (V-V-‘E;—Wi>2 | (1.3.17b)

While £(0) and g(0) depend on the magnitude of the fluctuations
at a single location, f(‘i-jl') and g(‘i—jl), for i#j, depend on the mag-
nitude and correlation of ﬂuctﬁations at two locations i'and j. In the
case of rapid lateral variability of properties, f(li-j l) and g(|i-j|) are
rapidly decreasing (in absolute value) functions of 'i—jl, v;/hile in the
case of-smooth property variations, f(li-j‘) and g(|i—j|) decline slowly

with increasing |i-j ! .
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Very little geological information is at present available re-
garding the lateral variability of reservoir properties. We are thus
led to édopt empirical expressions for the spatial correlations, for

example
(155 = ~1i-j]%/s°
i-j|) = £(0) e | (1.3.18)

_li_.|2/32
g(li-jl)= g(0) ™17 (1.3.19)

making the reasonable assumption that the spatial correlations of

. storage and transmiis sibility have the same functional form. Further-
more, transmissibility and storage are correlated with each other as
shown by laboratory measurements on'coré samples (Pryor, 1972).

One possible representation of this correlation is
. 1 1
h(li-j1) = p£2 (li-3De? (li-j] (1.3.20)

where p is independent of i and j and satisfies 0 <p < 1.

The parameter s introduced in equations (1.3.18-19) is a -
measure of the length scale of property variatiéns. Thus, if Ax is the
grid size in the finite difference model of the reservoir, sAx is the
correlation length, i.e., the distance beyond which the property values
at sorﬁe location are essentially uncqrreléted with those at another. |
Figure (1.3.1) illustrates the function f(li-j ‘) for various values of s
while figure (1, 3.2) gives property distributions obtained as >realiza—
fions from spatial c;)rrelations with different values of s. The details
of the computational procedure for obtaining the realizations are dis-
cussed later in section 1.4. A comparison of figures (1.3.1) and

(1.3.2) illustrates how the nature of the correlation function f( li-jl)
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relates to the oscillatory content of the property distributions. The
choice of s hopefully can be made with some guidance from the geolo-
gist. As will be shown later, Bayesian estimation provides reasonable
results even when the values of £(0), g(0)and s used contain considerable
errors.
With these definitions of P, 9 and B, the (2N%2N) matrix

of prior covariance is given by,

P R
P = ~ ~ . (1-3021)
~ O R.T Q

r~ o

We note that in a two or three-dimensional reservoir, the
assumption of homogeneity of the random process would lead to,

instead of the second relations in (1.3.12-14),

P = f(d)) (1.3.22)
Q; = gld;) (1.3.23)
Ry; = (4 (1.3.24)

where dij is the absolute distance (positive) between the grid points

i and j. Furthermore, (1,3.18-19) may be replaced by

2 2 :
£(0) e~ febx) (1.3.25)

£(d)

e-dZ/(sAx)z (1.3.26)

g(d) = g(0)

When more detailed geological information is available, the
above random process model for v and w can be refined. " For example,
when geological information suggests that the reservoir consists of

two or more sections with distinct properties, the mean values v, w

can be chosen independently in each of these sections.



33

1.3.3 Reduction of the Number of Parameters

The Bayesian penalty term defined by equation (1.3.6) can be
rewritten as a sum of the squares as follows. Let )\1 > X2> cee 2 )\ZN
> 0 be the characteristic values of Po’ z(1), ..., z(2N) be the corre-

sponding normalized characteristic véctors andg be defined by:

Z = (z(1) ... z(2N)) (1.3.27)

T

Since P_ is symmetric, Z is orthogonal and Z P"1
-~ 0 ~ ~ ~0

Z is diagonal
with entries 1/)\1. Thus, from (1.3.6)

2N g2
J, = E_X-l— (1.3.28)

Si=l i

where E = (?,1, cees §2N) is the vector

E=Zu (1.3.29)
Then u is given in terms of § by
T 2N
u=2Z" € =2 £, 2(i) (1.3.30)
~ SRR -3 | ~

In most cases of practical interest the characteristic values
)\i decline very rapidly with increasing i as a result of the spatial
correlatidn of the reservoir properties. From equation (1.3.28) it
follows that those %i corresponding to very small )‘i will be effectively
suppressed in the minimization. It is thus cofnputationally convenient
to retain a limited number M of terms in equation (1.3.30), setting

M
u = 2 g, z(i) (1.3.31)
-~ i=1 ~

and then minimize the modified index
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M g%
J=J + 2 xl (1.3.32)
P 210 M ,

with respect to @1, cee, §M. The number of unknown parameters has
now been reduced from 2N to M, An additional advantage accruing
from this is alleviation of ill-conditioning due to the inverse of the
nearly singular matrixf}’o in (1.3.6). Both of these are very impkor-
tant from a numerical standpoint., As before, the weight placed on

prior information may be reduced by setting

M g_‘l"
J=J +p (1.3.32a)
P i=1 )\i

where 0 < B <1,

Expression (1.3.29) indicates that, in effect, the Bayesian
approach to estimation results in a parameterization, the property
vector being a linearly related to the parameter vector.

1.3.4 Non-Gaussian Probability Density for Parameters

Clearly, actual reservoir properties are not normally distri-
buted. For example, based on the Gaussian distribution, there is a
finite probability that any grid point value of a rock property is nega-
tive. Such a situation is not physically meaningful. In practice, how-
ever, this may not cause any difficulty because the probability density
is not used directly in the estimation procedure, and the penalty term
(1.3. 6) usually leads to property estimates which are close to their
prior mean values. On the other hand, some special statistical rela-
tion between the properties may make a non-Gaussian representation
more attractive.

In general, maximization of non-Gaussian probabilities do not



~-35-

lead to simple quadratic minimization criteria. Hence, it is prefer-
able to define a suitable nonlinear parameterization, such that the

parameters themselves have a Gaussian distribution. For example,

let
v
ot B {(§) (1.3.33)
W
) ~
wherefi(g)>o v¢, i=1,2,...,2N.

and let & be Gaussian with mean C and prior covariance P,. Then the
-~ ~ ~e

arguments similar to those employed in arriving at (1,3.5) may be

used to obtain the minimization criterion,

-—T -1 _
J=J_ +8( -C)" P, (C-C) (1.3.34)
p ~ ~ f"’g ~o~
where the minimization is to be done with respect to the parameter

vector (.
~t

1.4 Conditions of Simulation

1.4.1 Reservoir Descriptions

The procedure for parameter estin;.ation described in the pre-
vious section was tested and compared to zonation by means of a hypo-
thetical one-dimensional reservoir (0 < X £ 3,200 ft. ) with imperme-
able boundarives and a known uniform thickness. The compressibility
and viscosity of the oil were taken to have constant values, ¢ = 5 ><10_6
(psi)-l and y = 1 cp; the reservoir volume factor was taken to be
unity.

Since the thickness is uniform and known, the rock properties

to be estimated may be taken as the permeability and porosity. For
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the purpose of numerical calculations the reser\;oir was divided by a
uniform gr.id into 32 iﬁtervals; the 33 grid points were numbered 1
thx.'ough‘33‘ (Figure 1.4.1). The property values were taken as con-
stant over a region extendiné half a mesh size on either side of each
grid point; at either end point, this region is of only half a mesh size,
extending into the reservoir. All the wells were located at grid points.
This discrebtization results in 33 v_ectbrs, 5 and 3 of the unknown
properties (N = 33). For simplicity the composite 66-vect.or

[liT | ’?T] T will be represehted by the symbol i

1.4.2 Simulated Property Distributions

The rock property vectors k and ¢ were simulated by random
vectors with uniform mean values k = 5.0 md, ¢ = 0.2 and covari-

ances given by

(k, -k)(k,.-k) .42, 2
g{ | £0)e-11-31"/s (1.4.1)
I3 g
E{——:z——— = Q; = gl0)e - -
¢ |
(k -E)(b ¢)
E{ } = R,, = pf"‘(O)g (0)e -li-31%/ (1.4.3)

1)

where £(0) = 0,0625, g(0) = 0 0625, and p = 0.5. The covariance ma-
trices in E‘quation‘s (1. 4.1 - 3) are similar to those of Equations
(1.3.12 - 14), since for uniform thickness h, ¢, and k are propor-
tional to \4 and w. The normaliéation in Equations (1.4.1 - 3), while
notvessential, has been found computationally convenient and efficient.
(S'ee appendix 1. 1.-) |

Using the above means and covariance matrices, several reali-
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zations of the random vectors ’13 and ’c\]::/ were generated numerically by
means of a procedure described in appendix 1.1. Eight such realiza-
tions R1 - R8 are shown in Figure 1.4.2 . Some of these were used
as the ''true' property distributions in simulations, as described later.

1.4.3 Discretization of Pressure Equation

The partial differential equation (1. 1. 13) reduces to, for a one-

dimensional reservoir with constant ¢, and uniform h,

I
P
op 1 9 op 1
$x) 33 = no Bw (K00 3 o By 95(0)80e-x,) (1.4.4)
The boundary conditions are
% _ ¢ % = 0,L for all t . (1.4.5)

0x
The initial condition was taken to be
p(x,0) = 0 . (1.4.6)

These equations were spatially discretized using the 33-point
uniform kgrid and second order finite differences, resulting in a set of
33 coupled ordinary differential equations. These were further dis-
cretized with respect to time using the implicit Crank-Nicholson
scheme (the trapezoidal rule) with uniform step size. The derivation
and the resulting vector ordinary differential equations and the dis-
crete algebraic equations are presented below. |

Let the pressure distribution at t have the value pi(t) at the

grid point i. Let us define the N-vector of these grid point values,

p(t) = [p,(t) pylt), ..., py(®1" . (1.4.7)

The differential operator -é-a; (k(x) —g-}%) at t and x = X, the

location of the ith grid point, can be approximated by the central dif-
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ference scheme,

) . 2
b} < 8p) 9k op 9 p
ox k(x) ox/ ~ 0Ox 0Ox + k(x) 8x2

okl Py (8)-p; 1 (®)
T 2Ax 2Ax
p.,,(t)-2p.(t)+p. ,(t)
T LU N2 (1.4.8)
(Ax)
33k 4
It is easy to verify that provided —5 and —— exist at x = x_,
8x3 3x4 ' *

the above approximation involves an error O(Ax)z. The boundary con-

dition (1.4.5) can be approximated to the same degree of accuracy as

follows. Let x, = 0 and x = L. Then, (1.4.5) implies at x = x

1 N 17
0 op sz
‘5;;(1‘&): k(l)———-—z (1.4.9)
ox 'x=x

1
Let us extend the domain of the reservoir beyond the boundary
oint x, by including a hypothetical point x at x = -Ax. Then
p 1 Py g P o
-g% =0 at x = 3 yields the pressure at the hypothetical point,
p (t) = p,(t) . (1. 4.10)

Then the finite difference approximation of the right hand side

of (1.4.9) yields,

P, -2p,tp P,-P
%(kg%)\ :kl_z..._lz_.‘i:zkl 2 é . (1.4.11)
X=X (Ax) (Ax)
4
t is easy to verify that if 0 z exists at x = X this approximation
Ox :

involves an error O(AX)Z. A similar treatment can be applied to the
boundary condition at x = XN Then, substituting these approximations
in (1.4.4) and arranging the equation in a vector form we obtain,

32 = Faop() + ) (1. 4.12)
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where
E,, = d1ag(¢1, ¢2: s v ey ¢N)
- N 5
- kl k1 .
1 T - )
Flk) = =——5— : T -
~ (Ax) uc )

-2
1) ki

(1.4.13)
0
~/
~
1
7Ry ek Tk )

~

~

~

~

~

-2k |

(1.4.14)

The elements of the vector q(t) are zero except those corre-

sponding to the Ip

and these are respectively given by -C-}i—;{ qi(t) , 1

initial condition is

1,

2,.

grid points where the producing wells are located,

The

N
p

(1.4.15)

The original parabolic system has infinite eigenvalues varying

from 0 to oo,

The vector ordinary differential equation system

(1.4.12) has N eigenvalues, but the spread between the smallest and

the largest (in absolute value) eigenvalue is usually very large. Such

a system is called a stiff system;

it is well known that explicit

methods of time differencing require very small time steps for sta-

bility (Gear, 1971).

On the other hand, the implicit scheme employing

the trapezoidal rule is unconditionally stable and is of second order ac-

2
curacy (O{(At) error), (Isaacson and Keller, 1966) and thus can be ex-

pected to yield results close to the true solution even for fairly large

time stepsv.v Hence, we select it for time discretization in the follow-

ing.
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Let pressure vector p(t) at time t = iAt be denoted by p; -
. — —~

Then the trapezoidal rule gives

P.,-P: F
~itl 21 _ ~ 1= -
Ryl S TSI TR AL TS R TR (1.4.16)

After rearrangement we obtain

Gpiyy = Hpj+ 9 i=0,1,2,...,T (1.4.17)

where for convenience we have defined

G=-3-4F - (1.4.18)

H=-3+5r (1.4.19)
- L ey = '

9; = zAt(q, +g;) - (1.4.20)

In (1.4.17), we have assumed that the total period of interest is T
time steps long. For the purpése of history n&atching, t = TAt may be
the time of the last pressure observation. rI’.he initial condition is
30 = E . (1.4.21)
'~ We used At = 1.75 days in our numerical computation.
As discussed in section 1.2, webshalll treat the set of discrete
algebraic equations (1.4. 17, 21) as the description for our system and

derive finite-dimensional history matching algorithms for it.

1.4.4 Conditions of the Estimation Problem

Two sets of conditions for the property estimation problem
were inves‘cig;a‘ced; using simulations. We shall refer to these as S,
and S‘2 . The conditions of these sets are described in table (1. 4. 1)
.and in figures (1. 4. 3-4) .« As detailed therein, there are K observa-
tion sites where the pressures are‘ observed; there are R time in-

- stants when the observations are taken simultaneously at all the sites.
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Table 1.4.1: Conditions of Simulation

Set: S1
K = Number of observation sites = 10
Observation sites situated at grid points 3, 6, 8, 11, 14,
17, 20, 23, 26, 29.
R = Number of observations at each site = 8
Cbservations at all sites are taken simultaneously, at
intervals of 42 days, starting at t = 38.5 days.
Ip = Number of production wells =1
Production well at grid point 17
g(t) = Production rate = 0.16 x 10'2 STB/day/ft2 constant over the
observed history. (See figure 1.4.3)
Set: S,
K = 3
Observation sites situated at grid points 8, 17, 25.
R = 25
Observations at all sites are taken simu]taheous?y, at
intervals of 14 days, starting at t = 10.5 days. |
Ip =2

Production wells at grid points 3, 17.
qi'(t):Production rate history--piecewise--constant as shown in

figure (1.4.4).
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Thus, there are a total of I. = RK observed pressures available for
history matching. Under these circumstances we can write the summa-
tion in the expression (1.2.1) for Jp more explicitly as

R

K
R S S e B
P m=] n=1 o

2
o
z- i - pmn) (1.4.22)
where pi,j is the calculated (model) pressure at time step i and grid
point j (= (pi)j); p:nn is the observed pressure at the site located at
in and at time step i_ .

For simulations with conditions S four realizations R1 - R4

1
of the random process with the statistics given in subsection (1. 4. 2),
and an additional non-random property distribution, R-NR , were used
as the "true'' property distributioné. These five distributions are
shown in figure (1.4.5). With set S, four realizations R1, R2, R3,
R5 (see figure 1.4.2) were used for this purpose.

For each property distribution, equations (1.4.17, 21) were
solved using the values of the "true." distribution for k and ¢. The
pressure histories obtained from the difference equations were cor-
rupted by normally distributed measurement error with zeroc mean
and 1 psiZ variance to produce the simulated observations. Since the
difference equations were used both for the generation of the simulated
observations and for the subsequent estimation, the truncation errors
due to discretization were excluded, and the results of estimation de-
pended only on observation errors and on the inherent statistical

structure of the problem. In real applications, several other types of

errors would contribute to the final estimate errors. These include
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errors in the production rates, discretization errors due to the finite
differencing, and modeiing errors of various types, for example,
regarding the location of the reservoir boundaries. Since the object
of our study is to compare the zonation and Bayesian approaches ‘
using various minimization algorithms, it is not necessary to include
errors other thap observation errors and errors arising because of |

the random nature of the unknown parameters.

"1.4.5 Parameterizations_ Used in Simulation

The simulated property estimation problem for each property
distribution and each set of conditions (S1 or SZ) was numerically
wor‘ked vout using several different parameterizations, indicated below,

Firstly, the problem was treated with the zonation approach.
Three different zohations involving different number of zones, NZ,
with almost uniform zone size were attempted; in particular, the
valués Nz =4, 8, 16 w.ere.used. Table (1.4.2) details the configura-
tion of eaéh of these zonations. Since we haye two rock properties -
to be estimated, the number of parameters in zonation is M = 2(NZ).
| The problem was also treated withoﬁtlany parameterization,
leaving the values of all the elements of the 33-vectors Eand é to be
independently determined. This can be thought of as a special case
of zonatioﬁ .with NZ‘ = N(¥33).

 Lastly, the problem was worked out via the Bayesian a,pproach.
For this purpose, the normalized rock properties, k/k andﬁ/?o’ s |
~ along with their covariances as defined in (1.4.1-3) were used. Thus,
thg Bayesian parameters are the components of [(’IS,-E)T/_E, (’é-Z)T/-(Z]T

along M eigenvectors of their composite covariance matrix }30 with
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Table 1.4.2: Zonations Used in Simulations

No. of Zones (n7) Grid points included in the different zones
4 (1-8), (9-16), (17-24), (25-33)
8 (1-4), (5-8), (9-12), (13-16), (17-20),
(21-24), (25-28), (29-33)
16 (1-2), (3-4), , (29-30), (31-33)

33 (1), (2), . (32), (33)
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largest eigenvalues. Several values of the parameters s, f and M
were used for a comparative study. The results of the simulations

are described in section 1. 6.

1.5 Minimization Algorithms

For generality of discussion, we shall denote the M-vector of
parameters in all of the different parameterizations by . From the
context and the dimension of w, it will be clear which parameterization
is under consideration,

Due to the non-quadratic and implicit dependence of J on mw, it
is necessary to carry out the minir{{ization in an iterative manner.

For this purpose, we start with a prior estimate or ”iﬁitial guess'"

of the parameters and start the iterations. An iteration consists of
determining corrections in the current estimate, which leads to a
reduction in J. We employed two alternative algorithms for determi-
nation of the iterative corrections: the conjugate gradient algorithm
and the Gauss-Newton algorithm or its variant called Marquardt's
algorithm, In the present section we describe details of derivation

of these algorithms and present some results regarding convergence
characteristics in the framework of the minimization problems defined

in sections 1.2 and 1.3. As discussed in section 1.2, we shall con-

sider only finite-dimensional algorithms.

1.5.1 Conjugate Gradient Algorithm

This algorithm requires the gradient of J with respect to the

parameter vector 7 for determination of the iterative correction. We

~

have in general,



a _ M, M
8}1 - o 8£
K R 0 apim,jn GRS
= 2 4 ®; i -Pn) 3 + (1.5.1)
m=1n=1 ‘m’Jn puy g

where we have used definition (1. 4.22) of Jp. The quantities api j/8"12,
are called the sensitivity coefficients. They can be evaluated by solu-
tion of the sensitivity equations, which are derived from the system

equations by differentiating them w.r.t. « Another method for the

2
calculation of the sensitivity coefficients will be discussed in the next
subsection, Both of these methods are detailed in appendix 1.4. The
evaluation of the sensitivity coefficients requires very extensive com-
putational effort. However, as shown in appendix 1.2, it is possible

to evaluate 8Jp/alr more efficiently without recourse to the sensitivity

coefficients by the formula,

97 T-1
_P_ [ ] -
5‘% s .., 8n2~1+1 241 L 1,2....,M (1.5.2)

The sequence {\l/i} of the N-vectors in (1.5.2) is the solution of the

forced initial value problem,

T T K
G V. ,=H Vy.+2 2 (p. . 0)6. . e. (1.5.3)
~ wi-l o~ i _ »J -P i,i_ ~j
n=1 m’“n “mn m’ ‘n

(1.5, 4)

where ,gj is the jnth column of the (NxN) identity matrix,

n

The equations (1.5.3-4) are called adjoint system equations
and {\]/i} are called adjoint variables. The derivation of the above

formulation, based on a variational approach, is detailed in appendix
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1.2. This method of calculation 8J/9n for the discrete system is a
finite-dimensional analégue of a method for an infinite dimensional
system (p.d. e rrrlodehl) devised by Chen et al, (1974) ‘and>Chevant et al.
(1975).

Although it is possible to use expression (1.5.2) directly to ‘
compute the gradient for any parameterization, usually it is simpler,
and more efficient frdm the computational standpoint, to first evaluate
8J/8k and a.r/ag, and subsequently transform these into 8J/8n. In
appendix 1._2 we present the transformations appropriate for zonation
and Bayesia.n, parameterizations. Note that the adjbint equation can
be separately integratéd backward in timé after the pressuré equation
is integrated forward,

The minimi‘zation scheme using the conjugate gradient algorithm
is detailed in the flow chart in figure (1.5.1). In our computation, the
conjugate search directions Lli were determined using the Polak-
Ribiere-Polyak-Sorensen formulation (Polak, 1973), as it is known
to be generally superior to several other more commonly used formu-
lations for the conjugate directions. The superiority ‘of its perform-
ance in application to the reservoir parameter estimation problem
was confirmed through numerical experimentation., The unidirectional
search for the local minimum of J at each iteration is the most time
consuming computational step, as it involves repeated solutic-)n of the
system equation, Cohsequently, a.careful -corhparison between several
procedures was carried out. The procedure ultimately used is detailed

~ in appendix 1.3.
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I=20
Start with the prior estimate
of m. Solve system equations
(1.4.17, 21), Evaluate J. Store {P.]

~

Y

i 4
Solve the adjoint equations (1.5,3-4)
using {rlzi} {for current estimates,
Store {¥,}. I=1+1.

X
using {E]} and {,‘gl}

Evaluate 9J

P

~

in (1.5.2). Evaluate 3J/3m

Determine search directions using conjugate
gradient formulation, If I = 1, use the
gradient direction as search direction.

Carry out unidirectional search for a local minimum
of J, closest to the current estimate, along the search direction,

Update 1 to be equal to the parameter value
at the local minimum of J found in previous step.

!

Solve system equations (1.4.17, 21) with the updated

values of parameters, Evaluate new value of J, Jﬁew‘

Test for convergence:

‘ ) _ <
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1s " Ir'new - lr‘old " < n?
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Stop

Figure 1.5.1 Conjugate Gradient Algorithm
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1.5.1.1 Convergence and Estimates Resulting from

Conjugate Gradient Algorithm

At first, the conjugate gradient algorithm was implemented
using single-precision computation. The resulting convergence was
very slow and the final values of J reached were usually much larger
than the expected residual based on the observation errors. (Appendix
1. 6 contains an analysis that leads to a probabilistic description of the
residual value of J.) The numerical difficulty arises from large errors
in the computed gradient 8J/8r. The formula (1.5.2) for the gradient
involves a repeated sum of the differences of almost equal numbers. -
This step leads to a loss of three to four significant digits and the
single precision results are sometimes meaningless. This numerical
difficulty prompted the use of double pre-cision in all subsequent com-
putation, Then the cdnvergence characteristics improved substantially,
and it was possible to reduce J to the expected residual level.

The reduction in J is very rapid during the first few iterations.
However, as the minimum is approached, the convergence becomes
slower. Figures (1.5.2a-d) illustrate typical convergence character-
istics of the conjugate gré.dient algorithm. (Due to the very slow con-
v‘ergence near the minimum, it was found necessary to terminate the
minirﬁization according to some criterion. The computation was
stopped when the fractional decrease in J in one iteration became
smaller than a predetermined level, usually 5x10—4. )

When sensitivities of the minimization index J with respect
to some of the parameters are much smaller as compared to those

of others, the numerical minimization is difficult. Determination cf
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the minimum in the subspace of the less sensitive parameters is the
difficult step. The value of J may be close to the minimum value and
yet the estimates of these parameters may be far from the minimum,.
In these circumstances, the estimates numerically obtained depend on
the algorithm used for minimization.

The first order gradient algorithms, a class to which the con-
jugate gradient algorithm belongs, make iterative corrections in the
parameter estimates in the direction of the gradient BJ/E?IL., The
component of the gradient in a given parameter direction is proportion-
al to the sensitivity of J w.r.t. that parameter. Thus, generally at
each iteration, the components of the correction along the more sen-
sitive parameter directions are dominant. Consequently, the estimates
of the less sensitive parameters change little from their starting values
and only the more sensitive parameters are estimated accurately.

The situation just described is invariably encountered in the
reservoir parameter estimation problem. The permeability in regions
away from the production and observation sites and especially in the
regions close to impermeable boundaries where pressure gradients
are small has little effect‘ on the observations (figure(l.53)). Conse-
quently, the final estimates of the permeability in such regions differ
little from their initial estimates (see figure (1.5.4)).

In the case of porosity estimation, its mean value over the
reservoir domain has a very large influence on the pressures. The
mean ¢ determines the total volume and consequently the average
density of oil (for any given cumulative production) in the reservoir,

For small compressibility of the oil, the pressure is a very strong
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function of the density. As a result, the pressure level at all the
stages of production are strongly determinéd by the mean value of 4.
The actual distribution of ¢ only weakly influences J. As a result, the
estimate of the mean, 4, is very accurate but that of the actual dis-
tributiclm is poor, the estimated profile being quite flat around the
mean, This feature is clearly illustrated by figure (1.5.4). (We note
that these remarks apply only to the case of reservoir with imperme-
able boundaries. When the constant pressure boundary conditions
exist, there will be intrusion of surrounding fluid in the reservoir
and the mean, 4, does not influence the pressure levels to as great
an extenl. We present a more detailed discussion of sensitivities in
chapter 2.)

The convergence characteristics of the conjugate gradient
algorithm are also influenced by the large range of parameter sensi-
tivities. This range is indeed very large in zonation approach as the
zonation parameters represent the values of k and ¢ in local regions
of the reservoir. Consequently, estimates only of the zonation parém-
eters representing high sensitivity regions are corrected. This limits
the effective dimensionality of search space, the subspace of the |
parameter space where unidirectional search is carried out. For a
given problem, parameterizations using different numbers of zones
result in approximately equal effective dimensionality of the search
space. The conditions that lead to this situation are somewhat com-
plex, involving two opposing influences; we discuss the details in
subsection 1.5,1.2. Furthermore, for different zonations, even

among the more sensitive parameters, the sensitivities are widely



-61-

spread. As a result, the hypersurface of J, when viewed in the sub-
space of these parameters, has very long narrow valleys. Under
these conditions the first order gradient algorithms are known to
perform poorly even when the number of parameters is relatively
small, and a large number of iterations are required for minimization
(Bryson and Ho, 1969). Consequently, the number of iteraﬁons re-
quired for achieving a given reduction in J did not change appreciably
as the number of zones ranged over the set {4, 8,16, 331

| The convergence properties are more favorable in the case of
Bayesian estimation. The Bayesian parameters represent the values
of k and 4 over the whole reservoir'rather than in any local region;
this causes them to have more uniform sensitivities. Furthermore,
the Bayesian penalty, JZ’ limits the size of the corrections along the
less important directions (more spatially oscillatory components of
the distributions) to a minimum. Consequently the conjugate gradient
algorithm in the Bayesian approach requires fewer iterations for a
given reduction in J as compared to zonation. When additional param-
eters are introduced in the Bayesian estimation, the situation is not
changed significantly, The new parameters are the components of
((E'E)T l (ﬁ—z )T) along the eigenvectors Offo with smaller eigen-
values; as evidenced by expression (1.3.32), nonzero values of these
parameters are most heavily penalized, resulting in very little par-
ticipation by the new parameters. Thus, the effective dimensionality
of the search space ‘does not increase with the number of parameters
M beyond a certain limit, and the number of iterations required for

the Bayesian estimation does not change significantly with M,
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1.5.1.2 Zonation Parameter Sensitivities and Convergence

In a given property estimation problem, zonation has a strong
influence on the sensitivities of the resulting parameters. There are
two possibilities having opposite influence, and depending on zonation
and region of the reservoir, either of them may occur. For example,
if two or more grid points with property sensitivities, which are large
and of the same sign, are lumped into a single zone, the resulting
zonation parameter has a very large sensitivity. On the other hand,
if the grid points have very large‘ sensitivities with opposite signs,
these may cancel each other, resulting in a small sensitivity of the
zonation parameter,.

For illustration, we plot in figure (1.5.3) (E)p:.L f /akyz:) and

m’“n
(op ./ ¢,%) for the same observation time i_, and three different

i
obs:f]:val’zion locations jn’ for conditions of the set SZ' The association
of an element Ofli orf’with a region in the one-dimensional reservoir
is utilized for the identification of the abscissae. The sensitivity with
respect to k is large near a production well (for example, at x = 1600
ft), but its sign changes from positive to negative as x changes from
the well location to an adjoining grid point on either side. For dis -
tances fx;om the producing well larger than one grid spacing, the
k-sensitivities are very small in absoclute value. A zonation perme-
ability parameter that lumps the well location with one grid point
on either side W;ill have a net sensitivity much smaller than the indi-
vidual grid point sensitivities due to cancellation. The opposite situ-

ation occurs when many contiguous grid points away from the wells

are lumped into a single zone; the sensitivities have the same sign at
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all the grid points and thus the resulting zonation parameter has a
higher sensitivity.

In the former case, zonation entails a severe loss of parameter
sensitivities, resulting in a poor convergence., On the other hand, in
the latter case the zonation improves sensitivities and aids conver-
gence. Thus there are opposing influences of zonation on convergence

of the conjugate gradient algorithm.

1. 5.2 Gauss-Newton and Marquardt Algorithm

The Gauss-Newton minimization algorithm has been applied by
several authors to history matching (Jahns (1966), Thomas et al.
(1972)). In this algorithm, Newtor‘;'/s method (Issacson and Keller
(1966)) is used to find the ''zero'" of 8J/8m, but the second derivative
E)ZJ/E)E om required for this purpose is evaluated approximately. The
approximation to the second derivative is obtained in terms of the first
derivatives 9p. . /0m ; details of the approximation are contained
in appendix 1, 5. n’:_L[‘hrel resulting itei‘ative correction for the general

problem including JZ is,

- P. . op. . T

A+l 2 [% % 2 ( lm"]n)_( lm’Jn)
T =L T A1 4= "2 o om
(0] ~ ar

mn
BZJZ 7'1 5
+ (--) (1. 5. 5)
8’1\r,alr_i ) 81 )
I I

where lr}z is the éstimate after the ,@thitera’cion. The chief advantage
of this method is that it requires a much smaller amount of computa-
tion as compared to the exact second-order Newton-Raphson method,

while maintaining the convergence characteristics of the latter in the
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vicinity of the minimum, It has the disadvantage that it may diverge
even when the exact second derivative of J is positive-definite. The
divergence more commonly occurs when the approximation to the
sccond derivative is poor. Such circumstances 'arise in history
matching when the prior estimates are much different from the '"true"
values and the associated history match errors are large.

When the term JZ is absent (e.g. in zonation) or small, the
reservoir estimation problem is generally ill-conditioned; this is re-
flected in this algorithm in the form of a nearly singular Hessian
matrix in expression (1.5.5). In these circumstances, the behavior
of the correction in (1.5, 5) becomes unstable and the iterative process
may diverge. Marquardt's modification remedies this problem by
adding a positive definite matrix 1 to the Hessian before inverting
it. This result can be arrived at rigorously by constraining the size
of iterative correction lelﬂ"'_I-EZH to be equal to a given constant.
Appendix 1.5 contains the details of this derivation. Systematic
methods for determination of 4 are available (appendix 1.5, Eykhoff
(1974) ), but are computationally expensive; hence a value of y that led
to satisfactory convergence for a given simulation was determined by
trial and subsequently was held fixed. In chapters 2 and 3 we shall
approach the question of determination of g from an altogether dif-
ferent standpoint.

The value of U used determines the convergence characteristics
of Marquardt's algorithm. In a given problem convergence is guar-
anteed for sufficiently large . Large values of yyield slow conver-

gence because, as discussed in appendix 1.5, Marquardt's algorithm
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approaches the gradient algorithm., On the other hand, as u — 0 the
Gauss~-Newton algorithm is approached. Thus for intermediate value
of 4 Marquardt's algorithm offers a compromise between convergence
rate and insurance against divergence, Typical convergence charac-
teristics of Marquardt's method are depicted in figures (1. 5. 2a-d).
As the minimum is approached, the Gauss-Newton approximation be-
comes more accurate and the convergence rate improves,

In the application of Marquardt's algorithm to zonation (J2=O),
large values of | yield results akin to those of the gradient algorithm,r
i. e. the resulting property distributions are less oscillatory and do
not differ significantly from the prior estimates in the regions of low
sensitivity. On the other hand, small values of y produce large cor-
rections along the insensitive parameter directions(corresponding to
smaller eigenvalues of the Hessian), Therefore, the final estimates
are spatially oscillatory as shown in figure (1. 5. 4), and involve large
estimate errors as indicated in tablé (1.5.1). Fﬁrther analysis of
this effect will be carried out in chapter 2.

In the Bayesian estimation, the term BZJZ/SEBE in the Hessian
is positive definite, and exerts a significant stabilizing influence on
the Gauss-Newton iterations, Thus, addition of the term pI was found
to be not always necessary for convergvence. Furthermore, when
Marquardt's modification is employed, the value of g does not have
significant influence on the nature of the corrections, as the more
oscillatory components are considerably suppressed by the penalty

term JZ’
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Table 1.5.1

Effect of Minimization Algorithm

Property Distribution: R-2. Conditions of Estimation Problem:
* )

Initial Values: Jp = 14,900, JK = 11,73; J¢ = 7.22

Zonation: No. of zones = 16
‘ Final Values

~ Algorithm | I Iy J,
Gradient (u = =) ' 98.9 8.39 6.82
Marquardt (u = 5.0) 70.5 7.52 7.04

i1

Marquardt (u 1.0) 69.8 8.65 12.49

* J, and J, are defined by;

(kiESt _ kitrue)

<
1 |
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Setting aside the question of computational time, a comparison
between the conjugate gradient and Marquardt's algorithms, in terms
of the errors Jp’ Jk and J¢’ favors the latter algorithm as shown in
table(l. 5. 2). The computational time requirements are discussed in

detail in subsection 1.5, 3,

1.5.2.1 Calculation of Sensitivity Coefficients

There are two options available for computing the derivatives,
api . /om . First, one may simply solve the sensitivity equations
m’’n ~ '
obtained by differentiating the original pressure equations with respect

to each of the M unknown parameters. This method is detailed in

appendix 1. 4. Second, the calculation of Bpi ; /alr, can be carried

m’“n
out by evaluating the formula,
P j Wl e m! o am
m’"n T ~ T —
b, c T 24w kit B L e B (1.5.6)

where the N-vector sequence {\yi} is the solution of the initial value

problem,
T T . .
G ﬁi—l = H A 1"0’1’2’°°°’1m_1 (1.5.7)
T
9 ,\Y,i -1 = sj (1.5.8)
m n

where ¢. is the jnth column of the (NxN) identity matrix. Again,

(1. 5. 7—81)’l are called adjoint equations and {).]/’1} are called adjoint
variables. This is an exact formulation for the sensitivity coefficients
of the grid point pressures determined by the discrete equations
(1.4.17, 21). We present the derivation of this formulation, based

on a simple variational approach, in appendix 1.4. This formulation

is a discrete analogue of those obtained by Jacquard and Jain (1965)
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Table 1.5.2. Comparison of Conjugate Gradient
: and Marquardt's Algorithms.

Property Distribution: R-2

Minimization Initial Final Final Final No. of . Computer

algorithm Jp Jp Jk J¢ Iterations time, sec.
Zonation (No. of zones = 16) 3 obs. Qells; 2 prod. wells, no. of obs. = 75. (S,)
Conjugate 0.149x10°  98.9 8.39  6.82 a0 136

gradient
Narauarde's 0.149x10° 705 7.24 6.85 4 124

n= :

Bayesfan M =20, 8 =1, s =05, 3 obs. wells, 2 prod. wells, no. of obs. = 75. (S,)

Conjugate 0.149x10° 163  7.73  6.11 25 106
gradient

Ga%ss-?ewton 0.149x10°  79.8 7.51  5.73 4 121
=0

Zonation (No. of zones = 8) 10 obs. wells, 1 prod. well, no. of obs. = 80, (s,)

Conjugate 0.285x10° 161 5.8 6.74 40 181
gradient

Marquardt's  0.285x10°  67.0 6.37 9.18 4 129
(u=25)

Bayesfan M =20, 8=1, s=05, 10 obs. wells, 1 prod. well, no. of obs. = 80.(51)

Conjugate 0.285x10° 125  5.84  6.26 59 _ 223
gradient

Marquardt's  0.285x10°  69.7 3.07  4.60 5 177
(u=25)

* Computer time reported is for IBM 370-158.
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for linear ordinary differential equation model, and by Carter et
al. (1974) for linear partial differential model of the reservoir. Al-
though our results are analogous to those of others, the method of
deviation in appendix 1.4 is more general and applicable to a wide
variety of problems-—those described by linear or nonlinear discrete
equations, ordinary differential equations, and pal;tial differential
equations (hyperbolic or parabolic)—whereas the derivations by
Jacquard and Jain or Carter et al. a‘re not easily extended to other
problems. (See section 2.4 for more discussion.) Thus, in this
method we have a powerful tool, In chapter 2 we shall present its
application to a partial differential”équétion description of the reser-
voir,

We note that in the case of time invariant systems (9, H inde-
pendent of t), the adjoint equation needs to be integrated only once
for each observation site with im = T. This solution can be used,
after appropriate changes in the subscripts, to evalua,tg the sensitivity

coefficients of pressures at all the observation times at that location.

Thus, when the observations are available from K different sites, K
integrations of the adjoint equations are required, one for each site
with a different initial condition. This results in a very important
saving of the computational effort.

As mentiofxed earlier in connection with the calculation of the
gradient 8J/81r,, it 1s simpler and usually more efficient to first calcu-
late the derivatives ap; Jj /8}3 and ap; i /8{(‘2'5, and from these evalu-

m’ n m’“n
ate api . /83 subsequently for Bayesian or zonation parameteriza-

m’“n
tion. Details of these transformations are contained in appendix 1. 4.
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Furthermore, use of double-precision arithmetic is recommmended
for the same reasons as before.
We compare the computational effort required by the two

methods of sensitivity coefficient calculation in subsection 1. 5. 3,

1.5.3 Computational Time Requirements

We have just discussed two numerical minimization algorithms
commonly used in parameter estimation problems. From the point of
view of implementation the principal question is: which algorithm
should be employed in a specific problem? The total computational
effort required to obtain convergence in a parameter estimation
problem depends on the number of iterations and the time required
per iteration. The number of iterations is difficult to predict for any
given method and problem, whereas the time required per iteration
can be exactly determined. In general, the first-order methods, such
as the conjugate gradient method, converge slowly but require little
computation per iteration. The quasi-second-order methods, the
Gauss-Newton and Marquardt, converge more rapidly but require
more computation per iteration than the first-order methods.

It is useful to attempt to estimate the computational effort
per iteration required in each of the three minimization methods as
a function of the number of unknown parameters, the number of data
points, and the number of mesh points employed in the numerical
solution of the pressure equation. With such an estimate it is then
possible to select the most efficient method to use in a particular
problem. As noted above, the number of iterations required for con-

vergence cannot be predicted, although from computational experience
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one can estimate the relative number of iterations required by differ-
ent methods for the same problem. For example, our experience has
indicated that the conjugate gradient method requires about ten times
as manyiterations for convergence as the Gauss-Newton or Marquar(it
methods. On this basis the choice of the conjugate gradient method
over the Gauss-Newton or Marquardt methods would require it to be
at least ten times faster per iteration than the other two methods.

We will take the number of multiplications required for each
method as a measure of the computational effort per iteration. (The
number of additions is approximately the same as the number of
multiplications for each of the methods and therefore will not be
considered. )

We shall analyze the discrete versions of the two minimization
algorithms in conjunction with two types of parameterization, zonation
and Bayesian, In each of the four cases we shall report, for both
one -dimensional and two-dimensional reservoirs, estimates of the
number of multiplicative operations per iteration required for the
discrete formulation of the history matching problem. We shall con-
sider both of the two alternative procedures available for calculation
of the sensitivity coefficients required in the Gauss-Newton algorithm.

The discrete equations(1.4.17,21) are assumed to model one-
dimensional reservoirs. We assume that the implicit equations at
each time step are solved via L-U decomposition of G obtained by
direct factorization of the tridiagonal matrix (Isaacson and Keller,
1966). Discrete pressure equations obtained by application of fhe

alternating direction implicit (ADI) method (Peaceman and Rachford,
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1955) are assumed to model the two-dimensional reservoir (See
appendix 1,7 for details of discretization), Again, at each time step
for each row of grid points, the implicit equations will be assumed
to be solved by 1.-U decomposition,

The considerations involved in arriving at the estimates of
computational effort for all the cases are detailed in appendix 1. 7.
Since the ratio of effort involved in two alternative algoﬁthms is
important while making a choice between them, we present the results
in the form of such ratios,

Let us define T, @S the ratio of the number of multir:lications
per iteration in the conjugate gradient algorithm to that in the Gauss-
Newton (or Marquardt) algorithm with the adjoint equation solution
for the sensitivities. Then we also define T, as the same ratio, but
with direct integration of the sensitivity equations in the Gauss-Newton
(or Marquardt) method. Table (1.5.3) shows the expressions for T
and T for a one-dimensional reservoir for the zonation and Bayesian
approaches; and table (1.5.4) shows ratios for a two-dimensional

reservoir,

The parameter S represents the number of times it is neces-
sary to solve the pressure equation while carrying out the urﬁdirectional
search, for the minimum of J along the search direction, at cach itera-
tion of the conjugate gradient algorithm. Its value depends on the
search algorithrﬁ used and the degree of accuracy of the search. The
accuracy of the search also influences the number of iterations re-
quired for convergence; a greater accuracy will reduce the number

of iterations. However, quantitative prediction of this is not possible
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Table 1.5.3: Ratios T and T, for One-Dimensional Reservoir

Zonation Approach Bayesian Approach
T (6S + 16)NT (6S + 16)NT + 2MH
sensitivities [{2(3K + L + 3NT + & M2L + 1 M3 |{2(3K + L+3)NT +1 weL
computed via
adjoint
variables 32,3 143, 342
+'2—M +—2-ML} +2NLM+€M +§”
3
+5 M
T (6S + 16)NT (6S + T6)NT + 2MN
2
{(6M + TANT + anT + 3 M2L f6(2m +1)AT + 3 M2L
sensitivity
eguations used 1.3 3.2 3 1.3 3.2 3
directly g M+ 5N +7ML} te M +5H +7ML}

N = number of mesh points in spatial grid

T = number of time steps in pressure equation integration over
observed history

K = number of observation locations

M = number of unknown parameters

S = number of pressure equation solutions in one-dimensional search for
local minimum of J

L = total number of data points
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Table 1.5.4:

Zonation Approach

Ratios g3 and T, for Two-dimensional Reservoir

Bayesian Approach

6(S + 2)NT + 6NT

6(S + 2)NT + 6NT + 2MN

1,2 1443

1.2

f

"1 [3(2K £ L+ 2)NT + 5 ML+ g M7 1 3(2K + L + 2)NT + 5 ML + 20LH
3%+ 3n T3+ 3w+ 3y
oM+ S tE M ST+ S L
6(S + 2)NT + 6NT 6(S + 2)NT + 6NT + 24N
U {601+ TN + NI/ 4 20T/ | 6(2 + 1IN + 3 HEL + £ 17 + 37

1 2 1.,3,3,2,. 3
+ §'M L+ g-ﬂ + §»M + ML

ML

N

+
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and a search routine may be selected by cxperimentation. For the
search routine we used (appendix 1.3), a typical value of S is 4,

We further define 8 as the ratio of the number of multiplications
per iteration in the Gauss-Newton (or Marquardt) method when the
adjoint equation formulation is used to that when the sensitivity equa-
tions are solved. Clearly 0 = TZ/TI, When 6 > 1, direct integration
of the sensitivity equation is preferable in the Gauss-Newton algorithm.

Figure (1.5.5) shows Ty and T, as functions of the number of
parameters M for fixed values of N, T, L, and K (N = 30, T = 200,
K=3, L = 60) and for S=3, 4, and 5 for zonation in one—dimensiénal
reservoirs. The behavior of Ty and T in the Bayesian case is similar
to that shown and is presented in figure (1.5.6). Although one may

consider the variation of Ty and T, with each of the parameters, the

2
most informative, and most relevant, case is that in which N, T, L,
and K are fixed, and the number of unknown parameters M and the
number of simulations in the unidirectional search, S are varied.

If, as noted, roughly ten times as many iterations are required
in the conjugate gradient method as in the Gauss-Newton method, the
total effort required by the two algorithms will be equal when T, O T,

is 0.1. Figure (1.5.5) indicates that T. is quite insensitive to M,

1
decreasing only very slowly as M increases. Up to M = 60, 0,1 < Ty

< 1.0, indicating that the Gauss-Newton method is to be favored. When
the sensitivity equations are used (i. e., TZ), for S = 3 the Gauss-
Newton method is preferable to the conjugate gradient method when

M < 52; for S = 4 this conclusion holds for M < 60, Thus, under the

conditions of figure (1.5.5), the Gauss-Newton method appears to be
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preferable to the conjugate gradient method, for zonation. Similarly,
figure (1. 5. 6) indicates that when adjoint variable method is used in
the Gauss-Newton algorithm, it is proicrable to the conjugate gradient
algorithm for all values of M and S in the Bayesian approach. On the
other hand, when the sensitivity equations are integrated, the Gauss-
Newton algorithm is more efficient than the conjugate gradient algo-
rithm in Bayesian estimation when M is less than 26, 30 and 36 re-
spectively for S = 3, 4 and 5, Thus from the figures we can decide
the most efficient algorithm for any parameterization, for a given
ratio of the number of iterations.

Figure (1.5.'}) shows the variation of O with M for zonation and
Bayesian parameterizations under the same conditions as figure (1.5.5).
When 8 < 1, the eidjoint variable formulation is preferable to direct
the solution of the sensitivity equations. For M > 22, the adjoint
formulation is preferable for zonation; Whereas in the Bayesian ap-
proach, M = 12 for this conclusion to hold. Obviously, the value of
M at which it becomes more efficient to employ the adjoint variable
approach as opposed to direct solution of the sensitivity equations will
depend on the particular conditions (N, K, L, T) of the problem.

Figures (1l.5.8-9) contain plots of 7. and Ty against M for

1
zonation and Bayesian estimation respectively in two-dimensional
reservoir, for N = 900, T = 200, K=9, L = 180. Since N and L are
large for this problem, the adjoint variable approach for sensitivity
calculation requires a very large computational effort. (See the term

3LNT in table (1.5.4).) The conjugate gradient is preferable to the

Gauss-Newton for M < 180 for both parameterizations. However, when
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sensitivity equations are directly integrated, the Gauss-Newton algo-
rithm is more efficient than the conjugate gradient for M < 70 in
zonation and for M < 35 for Bayesian estimation, when S = 3.

Figure (1.5.10) shows the variation of 8 with M for two-
dimensional réservoir, for the same conditions as in figures (1.5.8-9).
It is evident from these plots that, in the Gauss-Newton algorithm,
direct integration of sensitivity equations is more efficient than adjoint
variable rhethod when M is smaller than 100 for zonation and 60 for
Bayesian approach. _Again, these conclusions are true for only the
méntioned values of N, T, K and L; and for a given set of conditions

plots similar to these may be drawn for a similar analysis.

1.5.4 Combination of Two Algorithms

Under certain cifcumst_ances, a combination of conjugate
gradient énd Marquardt algorithms may be more efficient than either '
of them alone., This is especially true when the initial estimates of
the parameters invoive large errors, In this situaﬁon, the initia.I
history match error is very lérge and the Gauss—Newfon approxima-
tion is poor. Then a large value of 4 is required to ensure conver-
gence of the Marquardt algorithm; as noteci earlier, this results in
a slow convergence and inefficiency due to the large computational
effortkper iferation. On the other hand, the conjugate gradient algo-
rithm redupés J s-ignificvantly in the first few iterationé, but the con-
vergence slows down considérably as J ,appl;oac'hes its minimum value
(see figures ‘1. 5.2a-d). Thus, reduction of J to a satisfactory value
may require a very large number of iterations if the initial guess is

' far from the '"true'' values of the parameters,
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In this situation it is beneficial to utilize the initial rapid
convergence of the conjugate gradient algorithm, and subsequently
when its convergence slows down switch to the Marquardt algorithm
which has a rapid convergence in the vicinity of the minimum. In
addition to being efficient from a computational standpoint, this scheme
has another advantage over the conjugate gradient algorithm when the
zonation approach is used. As we shall discuss in chapters 2 and 3,
for a given zonation, an '‘optimal'fvalue of 4 can be determined which
yields the smallest total expected error (trace of the covariance) in
the resulting estimates. When the combination ‘of the two algorithms
is used, this "optimal! value of it can be used in the Marquardt algo-

rithm, thus improving the quality of the estimates.

1.6 Results and Discussion

This section is concerned with the errors in the estimates
obtained by zonation and Bayesian estimation, The criteria used to

evaluate the estimate errors are :

N
1 N &
- Pv—— "k. . °
A AR 1:6.2
N
S - 4¥
Iy = = ja!a 2 | (1.6.2)

where Ej’ 3j are the estimates and k;z, ¢j* are the simulated or '"true"
values. In an actual field study these two errors cannot be determined
since k;: éj* are not known. The success of estimation ¢an only be
evaluated by making predictions and comparing them with new measure-

ments as they become available, A simulation study, on the other

hand, is useful in providing comparisons based on errors Jk’ JQ‘. The
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final data fit error, or history match error,

R K -~ 2 »
I, = = Zl Lpical. -pr(r)]n] (1.6.3)

m=1 n= m’ Jn

evaluated at ’I:g and ?} will also be followed. As will be seen below,
however, this error alone is not an adequate indication of the quality
of estimation.

The property estimates 5, ?J have a random component, for
they depend on the random observation error and on the ''true'' property
distributions, which are taken as a realization of a random process,

A study of the effect of various conditions of estimation and a compari—
son of Bayesian estimation with zonation would thus require a suffi-
ciently large sample of simulations. Each member of this sample
would employ different observation errors and ''true'' property distri-
butions, Since such a rigorous comparison would be quite expensive in
computer time, we have limited the simulations to four property reali-
zations generated using the statistics defined by the expressions

(1.4.1-3). Two sets, S1 and S,, of conditions of estimation problem

2
(see table (1.4.1)) were used in the simulations. The realizations
(see figure (1.4.2)) R1-R4 were used in simulation with conditions Sl’
whereas the realizations R1, R2, R3, R5 were used with SZ' In the
numerical results reported here, all the simulations for a given set
of conditions (Sl or SZ) employed the same set of observation errors.,
Additional simulations, utilizing conditions Sl’ with different sets of
observation errors were also performed; these indicated that the

randomness introduced by the observation error is substantially

lower than the one resulting from a change in the '"true'f profile.
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Hence, most of the comparisons were made on the basis of the same

set of observation errors,

1.6.1 Ill-conditiohing or '"Non-uniqueness'

Reservoir estimation problems are known to be ill-conditioned
in the sense that widely different parameter estimates produce essen-
tially the same fit .TP (Jahns (1966), Chevant et al. (1975)). This be-
havior is often referred to as ''non-uniqueness,' although the term
should not be understood in its strict mat'hema’ciéal sense, The ill-
conditioned nature of estimation will be evaluated from the matrix of
sensitivity coefficients in chapter 2. Some results of the present simu-"
lation study exhibiting ill-conditioning are presented in tables (1.6.1-2).
Although the data fit error Jp has essentially attained its irreducible
level, considerable estimate errors Jk and J(é persist, and a lower
value of jp does not always imply lower estimate errors. The dif-
ferences between the values of Jk and JqS from case to case reflect

considerable differences in the estimated property distributions.

1.6.2 Effect of the Number of Unknown Parameters

1.6.2.1 Zonation

The effect of the number of zones on the errors Jp’ J., and Jq‘

K’
for estimation problem conditions S1 is illustrated by the results of
tables (1-6,3-6). In all cases the data-fit error JP decreases when
the number of zones is increased from four to sixteen, with most of
the change occurring from four to eight zones, Further increase in

the number of zones does not seem to have any effect on JP other than

a small random variation. The estimate errors Jk and Jé, on the



Table 1.6.1

Comparison of Data-fit and Estimate Errors.

Property Distribution: R-2

5
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Estimation Problem Conditions:

Initial values: J_ = 0.285x107; Jk

p

Conditions of Estimation

Zonation: NZ = 8
Marquardt (u=25)

Zonation: NZ = 16
Marquardt (u=100)

Zonation NZ = 33
Marquardt (u=100)

Bayesian: M = 20; B
Marquardt (n=25)

]

Bayesian: M= 20, B =

Marquardt (u=25)

0.1; s

1.0, s

5.0

2.5

= 11.73; J¢

67.0

65.0

64.7

65.8

65.8

= 7.22

Final Values
Jk '
6.37
6.55
7.09

4.92

5.01

¢
9.18

6.40
7.22
6.27

5.01

S

1
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Table 1.6.2: Comparison of Data-Fit and Estimate Errors
Property Distribution: R-2; Estimation Problem Conditions:

Initial Values: Jo = 14,900, Jk = 11.73; J¢ = 7,22
Zonation, Marguardt (u = 5)

Final Values

No. of Zones _ Jp Jk J¢
4 77.9 11.07 6.43
8 71.4 7.22 6.29
16 70.5 7.52 7.04
33 70.7 7.89 6.82
Bayesian (i1 = 20, B = 0.1), Gauss-Hewton (u = 0)
Length of Autocorr. - Final Values
S Jp Jk J¢
5.0 71.9 7.42 5.04
2.5 70.8 6.26 5.03

7.5 70.9 8.67 5.80
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Table 1.6.3 Results of Zonation and Bayesian Estimation

Property Distribution: R-1 Estimation Problem Conditions: 5,

Inittal values: J = 0.105x107; 3, = 4.70; Jy = 5.78
Algorithm: Marquardt
Zonation: (1 = 500 for NZ = 4; u = 100 otherwise)

-Final values

No. of zones Jp Jk J¢
q 148 5.36 6.89
8 66.0 2.44 2.1
16 64.1 3.24 4.43
3 64.9 3.74 5.18

Bayesian Estimation: (u= 25)

Final values

M 8 ] Jp J2 Jk J¢
20 0.1 5.0 64.2 0.837  2.02 3.26
20 1.0 5.0 64.9 6.6 2.28 3.35
20 10,0 5.0 70.2 50.9 2.58 3.46
10 1.0 5.0 77.5 7.49 2.62 4.03
20 1.0 5.0 64.9 6.6 2.28 3.35
25 1.0 5.0 64.7 6.53 2.32 3.35
30 1.0 5.0 64.7 6.53 2.31 3.35
40 1.0 5.0 64.7 6.53 2.31 3.35
20 1.0 2.5 64.0 7.75 2.58 3.62
20 1.0 5.0 64.9 6.6 2.28 3.35

20 1.0 7.5 72.8 9.51 2.30 3.19



Table 1.6.4

Property Distribution:
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Results of Zonation and Bayesian Estimation.

Estimation Problem Conditions: S1

Initial values: J = 0.285x10°; I = 173 4, = 7.22

Algorithm:

Zonation:

No. of zones

4

8
16
33

Bayesian Estimation:

20
20
20

10
20
30
40

20
20
20

0.1
1.0
10.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0

Marquardt

(u

5.0
5.0
5.0

5.0
5.0
5.0
5.0

2.5
5.0
7.5

¢

(u = 500 for NZ = 4; u = 100 otherwise)

Final values
Jd Jk J

p ¢
223 8.79 6.53
68.2 5.42 8.98
65.0 6.55 6.40
64.7 7.09 7.22

= 25)

Final values
Jp Jz Jk J¢
65.8 4.32 4,92 6.27
69.7 93.4 3.07 4.60
103 153 3.51 4.19
118 36.4 5.14 4.51
69.7 93.4 3.07 4.60
69.4 24.4 3.64 4.89
69.4 24.4 3.64 4.89
65.8 25.0 5.01 5.01
69.7 93.4 3.07 4.60
74.9 42.5 3.27 4.91
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Table 1.6,5° Results of Zonation and Bayesian Estimation.

Property Distribution: R-3 Estimation Problem Conditions: §;

Initial values: J = 0.306x10°; I = 2.99 3, =7.33
Algorithm: Marquardt

Zonation: (u = 500 for NZ= 4; p = 100 for NZ = 8, 16, 33)

Final values

No. of zones} Jp Jk J¢
4 75.2 2.05 5.15
8 65.9 1.80 3.01
16 ' 65.4 2.52 2.95
33 67.3 2.29 3.7

Bayesian Estimation: (up = 25)

Final values

M B s Jp J2 Jk
20 0.1 5.0 65.4 1.82 2.08
20 1.0 5.0 68.0 9.55 1.05
20 10.0 5.0 79.2 63.3 1.79
10 1.0 5.0 76.2 10.8  2.30
20 1.0 5.0 68.0 9.55 1.05
30 1.0 5.0 69.7 9.64 1.11
40 1.0 5.0 69.7 9.64 1.11
20 1.0 2.5 67.5 9.95 2.07
20 1.0 5.0 68.0 9.55 1.05

20 1.0 7.5 71.8 15,2 1.23

2.42
1.96
3.56

3.76
1.96
2.08
2.08

3.27
1.9¢
2.03
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Table 1.6.6 Results of Zonation and Bayesian Estimation.

Property Distribution: R-4

Inftial values: J = 0.161x10; J, = 8.28; Jy = 10.41

Algorithm: Marquardt

Zonation: (u = 500 for NZ = 4; u = 100 for NZ = 8, 16, 33)

Final values

No. of Zones Jp
4 173
8 66.4
16 65.4
33 66.1

Bayesian Esfimation: (n = 25)

Iy
4.12
2.44

3.96
7.10

¢
4.46
3.14
3.98
8.56

Final values

Estimation Problem Conditions: S1

M 8 s Jp
20 0.1 5.0 66.3
20 1.0 5.0 - 69.6
20 10.0 5.0 88.8
10 1.0 - 5,0 80.9
20 1.0 5.0 69.6
30 1.0 5.0 69.2
40 1.0 - 5.0 69.2
20 1.0 2.5 66.0
20 1.0 5.0 69.6

20 1.0 7.5 78.3

Jp
3.35

20.4
148

19.0
20.4
20.3
20.3

25.7
20.4
21.0.

Iy
1.47

1.12
2.43

3.92
1.12
1.03
1.03

2.01
1.12
3.06

2.64
2.04
2.00

2.96
2.04
2.05
2.0%

2.39
2.04
2.92
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other hand, pass through a minimum at eight zones. The minimum
is rather flat since there are only small differences between the |
results obtained with cight and sixteen zones., To explain this mini-
mum we observe that the estimate error has two components. One
is due to the error of parameterization and decreases with an in-
creasing number of zones. The other is due to statistical scatter
and increases as the number of zones increases, Evidently, the sum
of the two errors attains its minimum at an intermediate number of
zones. These results emphasize that decreasing Jp does not neces-
sarily impiy improved estimates, We shall provide a theoretical
analysis of estimate errors in zonation including a procedure for
predicting the optimum number of zones in chapter 3.

The effect of the number of zones on Jp’ Jk and Jeﬁ is further
illustrated by the simulations with conditions SZ’ the re‘sults of which
are presented in tables (1, 6. 7-10), In this set, the data appear to
contain less information about the parameters than in set S1 (we
present a quantitative analysis concerning this aspect in chapters 2
and 3); consequently the error Jp approaches closely the irreducible
level even for NZ = 4, Also, JP increases in two cases as NZ is
changed from 8 to 16; this implies that for this set, zonation with
16 zones results in too high a dimensionality of the parameter space
to carry out an extensive minimization efficiently. Again, the total
error Jk + JQS passes through a flat minimum at NZ = 16; however, the
statistical scatter is too large to allow conclusions about the optimal

number of zones from this limited sample,
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Table 1.6.7: Results of Zonation and Bayesian Estimation

Property Distribution: R-1 Estimation Problem Conditions: 52

6

Initial Values: Jp = 0.800 x 10°; J, =4.70; J, =5.78

k ¢

Algorithm: HMarquardt

Zonation: (p = 100)

Final Values

Yo. of zones Jp Jk J¢
4 78.7 1.02 3.19
8 ' 70.0 3.47 3.05
16 70.4 4,17 3.30
33 70.9 4.14 5.07
Bayesian Estimation (n = 50) - 70.7 3.39 2.49
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Table 1.6.8: Results of Zonation and Bayesian [Lstimation

Property Distribution: R-2; Estimation Problem Conditions: S2

Initial values: J = 0.149 x 10° , 3, = 11.73, 3, = 7.22

k
Algorithm: HMarquardt

Zonation: (p = 100)
Final Values

No. of zones J J J
' p K ¢
4 ' 78.3 9.05 6.29
8 71.5 8.53 6.27
16 _ 71.8 7.88 6.32
33 ©72.0 8.26 6.35

Bayesian Estimation: (u = 25)

Fianl Values

M 8 s Jp Jy J¢
20 0.1 5.0 71.9 7.42 5.04
20 0.25 5.0 73.4 7.57 5.44
20 1.0 5.0 79.8 7.51 5.73
16 0.1 5.0 71.9 7.67 5.08
20 0.1 5.0 71.9 7.42 5.04
20 0.1 2.5 70.8 6.26  5.03
20 0.1 5.0 71.9 7.42 5.04

20 0.1 7.5 70.9 8.67 5.80
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Table 1.6.9: Results of Zonation and Bayesian Lstimation

Proberty Distribution: R-3; Estimation Problem Conditions: 32

5

Initial values: Jp = (0.256 x 107 Jk =2.99; J, = 7.33

¢
Algorithm: Marguardt

Zonation: (u = 100)

: ' Final Values
No. of zones J Jk dJ

p ¢
4 70.5 1.89 4.49
3 79.5 1.80 2.88
16 71.3 1.48 2.17
33 73.3 1.89 2.96

Bayesian Estimation (n = 50) 73.1 1.51 1.84
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Table 1.6.10: Results of Zonation and Bayesian Estimation

Property Distribution: R-5; Estimation Problem Conditons: S?

Initial values: J_ = 0.437 10°, J = 549, 3, = 7.12

Algorithm: Marquardt

Zonation: (u = 100)

Final Values

No. of zones Jp Jk J¢
4 70.9 5.34 3.18
3 69.5 3.98 3.19
16 70.1 3.74 2.39
33 72.8 4.20 2.71

Bayesian Estimation (u = 50) 70.7 3.86 2.63
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1.6.2.2 Bayesian Estimation

Tables (1.6.3-6) indicate that an increase in the number of the
basis vectors used in Bayesian estimation results in a decrease in all
three errors Jp’ Jk’ and J¢. The decrease becomes insignificant
beyond 20 vectors; hence for the problem with conditions Sqs the opti-
mum number of unknowns is about 20. This is close to the sixteen
unknowns (eight zones) which were found optirhal in zonatibn for Sl'
However, unlike zonation, the estimate ei'rors in the Bayesian esti-
mation do not increase when the number'of parameters is increased
beyond the optimum. This is an attractive feature of Bayesian esti-
mation since in a real application the optimum number of unknowns

would be quite uncertain a priori.

1.6.3 The Effect of Incorrect Prior Statistics in Bayesian
Estimation |

Thé weighting factor B, 0<B <1 was introducéd in equations
(1.3.6a) aﬁd (1. 3; 22a) to allow a reduced weighting of prior informatior
However, this factor can also be varied to study the effect of error in
_prior statistics. In the latter case p should be allowed to assume
values larger, as well as smaller, than unity. The use of 3 > 1 is
tantamount to pl_aéing a larger confidence in the prior estimates of
vall the par#meters. The other pararh-eter that can be varied to study
the effect of e'rrors in prior statistics is the dimensionless correlation
length s.i

Tableﬂs (1,6.3-6,8) present results obtained by using erroneous

values of B and s. As discussed in section 5, the '"true'’ property
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distributions Rl - R5 were generated using the ""correct' statistics
(=1, s =5). The use of erroneous f3, e.g., B =0.1or B = 10 in-
stead of B = 1 produces significant variation in the estimate errors

J, and J However, the differences are partly due to statistical

k 8
scatter since the correct value of p does not always result in the
smallest estimate errors. Similar behavior is observed when s is
varied in the range 2.5 < s < 7.5 (see also figure (1.3.1)). In viex&
of the rather large errors in g and s explored, the resulting estimate

variations are considered to be quite acceptable and, as will be shown

below, they compare favorably with the results of zonation.

1.6.4 Comparison between Zonation and Bayesian Estimation

1.6.4.1 Simulations with Random Property Distributions

Tables (1. 6.3-6) present the estimate errors obtained using

' zonation and Bayesian estimation for the "'true'' property distributions
Rl - R4 and a single set of estimationg Sl' In a real application the
Bayesian parameters B, s will not be accurately known. Similarly,
the optimum number of zones will also be uncertain, Hence, a com-
parison of the two approaches must ehcompass results obtained with
various values of B, s and with different numbers of 'zones. If we
limit the comparison to cases with = 0.1, 1, 10; s = 2.5, 5, 7.5 and
with 8 and 16 zones, we find that the Bayesian estimation yields
results considerably better than zonation, For example, the Jyes Jd
errors averaged over all the cases specified (with conditions Sl)

are 2.74, 3.36 in Bayesian estimation and 3.55, 4.45 in zonation,

Incidentally, the Bayesian results are superior for each of the four
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property distribu’cions R1 - R4.

Using the results in tables (1.6.7-10), a similar but less
extensive comparison can be carried out for simulations using four
realizations R1, R2, R3, R5 under conditions SZ' Due to limited data,
we shall restrict the comparison to cases with § = 1, s = 5 and with
8 and 16 zones for this set of conditions. The values of Jk and Jé
averaged over the four realizations are, respectively, 4.07 and 3.17
in Bayesian estimation, 4.45 and 3.35 for 8 zones, and 4.32 and 3.55
for 16 zones. Thus, for these conditions too, the Bayesian estimation

appears to be superior to zonation.

1.6.4.2 Simulations with Non-random Property Distri-

Jbutions

As already discussed, the "true'" distributions R1 - R5 used in
tables (1.6.3-10) were obtained as realizations of a random process
with the covariance matrices given by equations (1.4.1-3) with § =1,
s = 5. The Bayesian penalty term used in the estimation was formu-
lated using the same functional form for the covariances but different
values of B and s. The mere fact, however, that the same functional
form for the covariance matrices is utilized both fér the generation
of ""true'' property distributions and for the estimation may introduce
a bias favoring the Bayesian approach in comparison to zonation. To
investigate the importance of this bias, we carried out further simu-
lations with the property distribution R-NR which,as seen in figure
(1.4.5),is piecewise constant. Estimation computations were then

carried out using two zonation procedures, In the first, the true zone
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boundaries were assumed known, i.e., three of them were taken to

coincide with the three points of discontinuity in R-NR. In the second,
the zone boundaries were selected arbitrarily. The results of these
simulations with conditions S1 are presented in table (1.6.11), Table
(1.6.12) presén’cs similar results for fewer sifnulations with estimation

conditions S For the case of known zone boundaries zonation, as

2
expected, this provides considerably better results than the Bayesian
approach. However, for the case of unknown zone boundaries, the
Bayesian approaéh provides much better estimates than zonation.

Since the latter situation would be more in accord with real field
studies, it is concluded that the Bayesian estimation provides generally

better estimates than zonation.

1.6.4.3 Convergence of Minimization Procedure

In addition to yielding superior estimates, the Bayesian param-
eterization results in superior convergence characteristics of mini-
mization algorithms. This aspect is especially important when the
‘"trud' property distributions are not smooth, as in R-NR. As evidenced
by the multiple values of u reported in tables (1.6.11-12), in zonation
the Marquardt algorithmm required many iterations beginning with
large values of p. On the other hand, in all the reported cases of
Bayesian estimation, except one, a single value of Y sufficed to yield
a satisfactory va}ue of Jp in 5 to 7 iterations. Thus, for these distri-
butions generally two to three times as much computational effort was
required for estimation using zonation as that for the Bayesian estima-
tion. For smooth '"true'" property distributions (R1-R5), the difference

was not very large, but generally Bayesian parameterization led to
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Table 1.6.11 Results of Zonation and Bayesian Estimation.

Property Distribution: R-NR Estimation Problem Conditions: 5,

Initial values: J_ = 0.408x10°; 3 = 7.513 9y = 7.51
Algorithm: Marquardt

- e ar e m e e em W om M M m T e e Mm m @ e o e e W e o e e E e we W w M e = e e e W e

Zonation: zone boundaries coincide with discontinuities in "true" distributions

Final values

No. of zones u* Jp Jk *3¢

4 10%, 10, 2x10° 75.0 2.25 3.41

8 10°, 103 73.0 2.92 4.59

16 10% 68.0 3.22 4.18

33 10° 69.8 3.47 4.54
Zonation: zone boundaries do not coincide with discontinuities in "true”

distributions
* Final values

No. of zones u 3b Jk J¢

4 10%, 109, sx102 413 6.63 10.39

8 10%, 107, sx10%2 106 4.43 6.66

16 10°, 104, 107 76.5 4.05 5.86
Bayesian Estimation: (u = 25)

Final values

M 8 s 3, J, N 3
20 0.1 5.0 66.5 3.11 4.36 3.19
20, 1.0 5.0 9.8  15.3 4.27 3.03
20 10.0 5.0 97,7 74.4 3.5 3.90
20 1.0 2.5 67.6 9.44 3.74 3.32
20 1.0 5.0 -69.8  15.3 4.27 3.03
20 1.0 7.5 80.0  23.0 4.83 4.14

* When multiple values of u are reported, they were used successively as

minimization of Jp proceeded.



-105-

Table 1.6.12: Results of Zonation and Bayesian Estimation

Property Distribution: R-NR; Estimation Problem Conditions: S2

Initial values: J_ = 0.106 x 107; d, = 7.51; Jy = 7.51
P k ¢

Algorithm: HMarquardt

Zonation: zone boundaries coincide with discontinuities in "true"

distribution.
* , Final Values
Mo. of zones M Jp Jk J¢
4 103 77.8 3.65 3.94
8 10%, 102 71.0 3.46 2.03
16 10°, 10° 71.7 3.72 4.94

Zonation: =zone boudnaries do not coincide with discontinuities in
“Lrue" distribution.

* Final Values
Ho.
0. of zones i Jp Jk J¢
8 104, 2 x10° 2.4 7.45 6.50
. e 2,k
Bayesian Estimation: (p = 107, 25)
Final Values
M B S Jp Jk J¢
20 1.0 5.0 '
74.1 5.29 6.38

* Uhen multiple values of u are reported, they were used successively as
minimization of Jn proceeded.
i
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quicker convergence. Thus, also from the standpoint of computational

effort, the Bayesian parameterization is preferable, especially for
ill-behaved problems.

While closing this section we note that the general problem of
estimate errors for the Bayesian estimation as well as zonation is
treated by means of a linearized analysis in the following chapters.
The theoretical results confirm most of the numerical results of this
section relative to the significance of the nufnber of unknowns, the
effect of errors in prior statistics and the comparison between Bay-

esian estimation and zonation,

1.7 Conclusions

(1) The use of well pressure data to estimate the porosity and
permeability distributions in a petroleum reservoir is an underdeter-
mined statistical problem. Its solution necessitates the reduction of
the number of unknowns by some form of parameterization,

(2) When zénation is used to reduce the number of unknowns,
the best estimates are obtained for an intermediate number of zohesa

(3) Another way of reducing the number of unknowns and de-
creasing the error due to statistical scatter is by Bayesian estimation.
This involves the addition to the objective function of a penalty term
incorporating prior geological information. This approach results,
in effect, in a parameterization with fewer unknowns and better con-
ditioned minimization problems. The results of the Bayesian estima-
tion were found to be more accurate than those of zonation in a simu-
lated case of a one-dimensional reservoir. The Bayesian formulation

also resulted in improved convergence of the minimization algorithms,
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(4) The accuracy of the Bayesian cstimates depends on the
accuracy of the prior statistics used; thercfore, the Bayesian esti-
mation can be greatly improved as additional geological information
or spatial autocorrclations of rock properties become available.

(5) Both the Bayesian and the zonation approaches to estima-
tion were implemented by the conjugate gradient and the Gauss-Newton
(or Marguardt's) minimization algorithms. Detailed comparisons of
the computational effort per iteration for the conjugate gradient and
Gauss-Newton (or Marquardt) methods, for one-dimensional and two-
dimensional reservoirs, were carried out, Formulas have been devel-
oped to enable one to determine which method is expected to be more
cfficient for a particular problem. In addition, comparisons of the
computational effort in the Gauss-Newton (or Marquardt) method
when the adjoint and sensitivity equation formulations are used were

carried out.
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CHAPTER 2
LINEAR ANALYSIS OF THHE RESERVOIR

PARAMETER ESTIMATION PROBLEM

The nonlinear parameter estimation problem is usually solved
iteratively. At each iteration, the corrections in the current param-
eter estimates are obtained through the solution of an associated
linear subproblem. An analysis of the linear subproblem is apt to
yield a considerable amount of information about the nature of the
nonlinear problem. Such information can be used to guide the iterative
estimation process in a more efficient and fruitful manner. In this
chapter we present an analysis of the linear subproblem and illustrate
some wayé in which the resulting information can be utilized., We
shall postpone until chapter 3 the exploitation of the information about
the nature of the problem to obtain approximate but realistic covariances
for the estimates.

Having introduced the linear subproblem in section 2.1, we pro-
ceed to describe in section 2, 2 its decomposition and.the conclusions
about the existence and uniqueness of its solution under various con-
ditions, In section 2,3, the inverses of the linear subproblem corre-
sponding to the corrections in the commonly used first and quasi-second
order iterative minimization algorithms are discussed; they are
analyzed in the light of the decomposition and several conclusions
are made about the nature of the resulting corrections. In section 2.4,
we present analytic results about the sensitivity of an observed pres-

sure with respect to the porosity and permeability in a one-dimensional
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single phase reservoir. The results provide a basis for making an
order-of-magnitude comparison of the influence on the observation
of the various Fourier components of perturbations in the porosity
and permeability, leading to some conclusions about the identifiability
of these components of the unknown rock properties. This is followed
up in section 2.5 by a numerical analysis of the linear subproblem for
two different sets of k and ¢ distributions in a one-dimensional reser-
voir, illucidating the behavior of the simulations described in chapter 1.
In section 2.6, an approach to simplification of the parameter estima-
tion problem, based on the results of the linear analysis, is described;
its merits and demerits relative to the Bayesian approach are discussed,
Another application of the linearized analysis is described in section 2.7,
which may be used for a priori evaluation of the identifiability of the
rock properties in the different regions of a reservoir, and may aid
a rational choice of parameterization. We close the chapter by a dis-
cussion about the uses of the linearized analysis in section 2.8,

addressed in particular to the practicing reservoir engineer,

2.1 The Linear Subproblem in Reservoir Property Estimation

The observed pressures are functions of the unknown rock
properties in the reservoir for a given set of initial and boundary
conditions and a given production history, Similarly, the calculated
model pressures depend only on the estimates of these rock properties
wheh the rest of the conditions remain unchanged. Let the pressures
{p(xi, tj);i =1,2,...,R, j=1,2,...,K] be the okserved quantities. For
the discretization described in chapter 1, these atre represented by

the grid point values {piln: in ;m=1,2...,R,n=1,2,...K}. Let us define
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2

an L-vector (L = RK) of the calculated pressures,l’T= (31 jl’pi joroo
1’ 271

). Let us denote the Li-vector of the ob-

p s Py s P

fpedy " Tipdp" T Vips g
servations {pm(;} as XO, and the M-vector of unknown param-
eters as 1. The vector 5 is linearly related to the composite vector
of the grid point values of the unknown rock properties. When these
are the spatial distributions of the permeability k( r ), and the porosity

é(x),
k
T = G |--- ‘ (2.1.1)
¢
where k and ¢ are the N-vectors of the grid point values and G is an
(Mx2N) matrix depending on the parameterization used, N being the

number of grid points., Then we can express the functional relation

as

3

Y = ym (2.1.2)

This is a nonlinear implicit relation., The associated linear sub-
problem can be derived as follows. Consider a variation &r in m;
let 6y be the resulting variation in y. Then we have the Taylor series

expansion of (2,1.2) as

2
. (x ls 9% 2.1.
61 = \81>61r‘+ 2 ]? 8TT1 aﬂ'j 61T1 6T[’J + e ( 3)

For small variations we may neglect the terms quadratic and higher

order in {ﬁwi} to obtain,

9y
&y = (_ai_./: ém = A &m (2.1.4)

where we have denoted the LxM matrix of the derivatives by A. The
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element 3y of A is the sensitivity of the ith observation with respect
to the jth parameter; hence A is commonly called the sensitivity

matrix.

2.2 Analysis of the Linear Problem

Lanczos (1961) introduced a diagonalization of a

rectangular matrix called singular value decomposition, For

an (LxM) real matrix A, two sets of orthonormal eigenvectors {131}

and {vi} may be found such that

A v, = A.u. (2.2.1a)
23 TN
rI‘
A u., = A.v. (2.2.1b)
= Y 3% ,
Equivalently,
ATA v, = 2%y, i=1,2,0.., M (2.2.2a)
= 2575
ééT’gj - szgj j=1,2,..., L (2.2.2b)

It can be assumed without loss of generality that all eigenvalues
{X,}] are positive and are arranged in a non-increasing order of mag-
i

nitude. It can be shown (Noble, 1969) that for some integer r <
min (M, L) ,

)\i = 0 i>r (2.2.3)
The integer r is the rank of A and may be interpreted as the number
of independent relations existing between the elements of the vectors

by and 6m in (2.1.4). In terms of the estimation problems, itis

called the number of degrees of freedom in the data,
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Defining the (Lxr) matrix U = (g;,4,,...., j_lr) , (Mxr)
matrix V = (v5,¥,,--- y_r) and (rxr) diagonal matrix A=

diag()\l,)\ >\r ) , we can write (2.2.1) as,

2,0.-,

A = UAVT (2. 2. 4)

~

where we have used the orthogonality within the sets of {E—i} and

{2,1 } . We can find (L-r) orthogonal L-vectors, L SRPRREI

each of which is orthogonal to all the columns of U. Similarly, a set

of (M-r) orthonormal M-vectors {'Y-r+1’ oo, Y‘K} , each orthogonal
to the columns of V can be found. Using these vectors as columns,

the Lx(L-r) matrix LJO and Mx(M-r) matrix Y’o can be formed, Then

the linear vector spaces spanned by the columns of U and Qo are ortho-
gonal complements of each other; together, they span the L-dimensional
Euclidean space EL. Similarly, the columns of V and l/'o together

span EM. The foregoing discussion can be summarized in the fol-

lowing mathematical statements:

vy = oI, (2.2. 5a)
T

Uy Uy = Lo (2. 2. 5b)

ulU =0  (Lem)xr (2. 2. 5¢)

A 2. 2. 6a)
T -

Yo ¥o = LiM-r) (2.2.6b)

viv = 0  rx(M-1) (2.2. 6¢)

—_— ~0 —~—

Ifr=1L=< M, then U is an orthogonal square matrix with full rank,

and we have



vlu = vut = 1 (2.2.7)

Similarly if r = M <1,, the matrix V is orthogonal,

viv = vyl = 1 (2.2.8)
Lanczos (1961) dermonstrated that the condition r = L. guarantees
the existence of a solution to linear equation (2.1.4), and the con-
dition r = M guarantees uniqueness if a solution exists.
However, we shall follow Jackson (1972) for the analysis pre-
sented below, Since L-vectors {gi:izl, e..,L} form a complefe ortho-

normal set, we may express §y as their linear combination,
L r L
= = + =
by '231 [3:'1 Y '§1 ‘3:'[ Y r§1 ﬁi}—‘i ue +g'09‘0 (2.2.9)
where §§ is an r-vector ancl_@o is an (L-r) vector. Similarly, we can

express om as,

b = Vg + V a (2.2.10)
Substituting these into (2. 1. 4),
"I‘ )
UAV (Vo +V o) = UB+U_ B, (2.2.11)

An exact solution of (2.2.11) exists if the residual vector

€= Adm-06y vanishes. We have,
2
lgh® = efe = lng-plP+lgl® (2.2 12)

2, is given by

The least square solution, which minimizes ”5!

a = Q’lg (2.2.13)

_—
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and it has the least square error 1[,@0“2 = HQOT 6_1[”2 . This least
square error is zero if 8y is orthogonal to all the columns of E_JO.
When r = L, this condition holds trivially, since U, is nonexistent.
When r < L, this condition for existence of an exact solution leads

to (L.-r) linear constraints on 6y ,

u,” 6y = O i=r+l,..., L (2.2.14).

In such circumstances the system is called overconstrained,

The vector a, is not determined from the data by equation
(2.2.11), since U A _YT —Yo = 0, and can be arbitrarily selected
without affecting the data fit. Thus, unless r = M, there is an infinite
number of solutions, each corresponding to a different choice of a.-
Uniqueness of the solution is guaranteed when r = M, since then a is
nonexistent, . Hence when r < M, the linear system is said to be
underdetermined.

In the case when r < L and r < M, the linear system is both
overconstrained and underdetermined. Then no exact solutions exist,
and an infinite number of solutions exist which yield equal residuals
satisfying the least square criterion,

We shall illustrate the foregoing ideas by a few simple examples.

As an example of an underdetermined system, let us consider the

(2x3) system A x = b with,

(2+3)/3  (2-3)/3 2/3

A
- N2 (4-7/3)/6 N2(40/3)16 2./2/3
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Then the singular value decomposition of A is,

A = urvT
with, 1 NYE
g ="
N273 -1/J3
2 0 ]
A =
~ 0 1 -
and, "1 1]
N3 NA
1 1
v =1 = =
3 N2
L
L V3

Then, U, is nonexistent, and V= L1/J6,1//6, -\273 ]T, a 3-vector,

From the given data b, the component of x along 1/:0 cannot be deter-

mined, and any value of this component will not alter the data fit,
since AV =0,
~ =0 -~

Now consider the (3x2) overconstrained system Ax = b, with,

C2+8)/3 7 (4-3)/6 )

A = | (2-3)/3 V2 (4+.3)/6
2/3 22 /3

e

The singular value decomposition is,

EVV-EER VA

A=uavT=l 1,5 -1/2

1/,/3 0 _J

2 0 13 273
0 1 LT3 -1//3

For this system we obtain U, = [1//6, 1706, -\273 ]’I,‘ a 3-vector, and
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yo is nonexistent. Since we have L =3, M =2, and r = 2, it is
overconstrained but not underdetermined, For existence of an exact
solution, the data b must be orthogonal to the vector HO, It E,Tjg b =0,
a unique exact solution exists, otherwise we obtain a unique least

square solution,

x = a'a Tt aTp

Lastly, as an example of the underdetermined and overconstrained
system, consider the (3x2) system Ax=Db with

BN

A= 23 B3
V273 2//3

e
yielding

I’l/ﬁ

A = | 2/VT | W71 [1//3 J273 ]

e

In this case we have,

2/M5 2735
- 273
U =1 -1//3 J8/35 and V_ =
~ 1/J/3
0 -J577 3

No exact solutions of this system exist. An infinite number of least
square solutions with equal residuals exist, all differing from each
other by multiples of :\[O, The least square residual will be zero if
b satisfies the two linear constraints, LIC"I' b=0.

After multiplying by QT the equation (2.2.11) reduces to

2
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Aa = B (2.2.15a)
. ‘ T T .
Noting that a, = v, 9x and B. = u’ &y , we obtain,
i ~1i ~ i ~i
T = ul i = 2.2.15b
Mv,” ém) = w by i=1,2,..., 1 ( )

Thus, for small variations, a component of the variation &y
in the simulated observations along u, is linearly related to the com-
ponent of the variation ép in the estimate along Yi» the constant of
proportionality being )‘i . For a given a;, the larger )\i is, the
larger is Bi . Equivalently, a larger value of )‘i yields a smaller
value of a, for a given ﬁi' Thus, the component of the parameter
vector 7 along a vector /) corresponding to a small eigenvalue )‘i
is poorly determined by the observed data; a small error in the obser-
vations along u will cause a large error in the component of the
estimate along Y.

The perturbation vequation, 8y = A 6m can be interpreted as a
step in the iterative process aimed at achieving a match between the
observations Xo and the computed pressures y. In this situation, we
wish to make small correction &w in 7, leading to a variation 6y in
Yy which reduces the differences Ay = (y - y°), atthe current
iteration. Consequently, 6y = -cAy where ¢ <] is a positive
constant. Once such a &y is selected, the simultaneous equations
(2.1.3) can be solved to yield the correction &7 in the estimafes at
the current iteration. The foregoing analysis indicates that the com-

ponents of Ay along the columns of Qo cannot be reduced by making
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a small correction in the existing parameter estimate. In addition,
an attempt for reduction in the component of Ay along u, using (2.2, 15)
will result in a correction in 7 along i of magnitude proportional to
i/)\i . Thus the correction éw will have dominant components along
the vectors v with small )‘i . If the components along {Y{l} with very
small eigenvalues are included in the solution, it may not be acceptable
due to large uncertainty. In addition, the iterative procedure for
history matching would yield large alterations in the estimate at each
iteration, and thus may fail to converge.

Thus, clearly, the components of v along the less sensitive
directiéns {zi : Ay < dg, 0<d << 1} cannot be determined from
the pressure observations alone; some addif;ional information is neces-
sary for their satisfactory determination. In absence of any such
information, it may be expedient to refrain from making any correc-

tions along such directions in the parameter space.

2.3 Different Inverses of the Linear Relation

As described in the foregoing sections, nonlinear parameter
estimation problems are solved iteratively, the corrections at each
iteration being determined through the solution of a linear subproblem.
As discussed in section 2.2, the solution of the linear algebraic
problem depends on the characteristics of the linear matrix operator
A. In the case of the reservoir parameter estimation problem, ou.r
computational experience suggests that the linear subproblem is
usually underdetermined and overconstrained, in the sense defined
in section 2,2, for most ordinary parameterizations. This point is

quantitatively substantiated in section 2.5, This is due to the fact
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that the rank of the sensitivity matrix A is usually much smaller than
the number of parameters or the number of observations for most
parameterizations. As a result, the inverse of the linear algebraic
problem is not unique, and the final estimates depend on the choice
of the inverse used. In view of this, we shall discuss several alter-
native approaches to the solution of the linear subproblem arising at

each iteration and their effects on the final parameter estimates.

2,3.]1 Inverse Used in the Gradient Algorithm

This algorithm attempts to minimize a scalar positive criterion
J, representing the history match error by making the estimate cor-
rections in the direction that would yield locally the most rapid
decrease in J. This is the direction of the negative gradient of the
function, J, in the parameter space. Assuming the observation noise
to be zero-mean with independent elements and with a uniform vari-

ance, the criterion J may be written as,

J‘l§§< -°72—i[(>-°]T[(>°J 2.3.1)
" 2m=1n=1 pim,jnpmn, =z XY Y(m)-y .3,
Then the gradient of J with respect to w is,
T
oy :
'g_-: = [31?] [xm)-y°T = AT [yim)-y°] (2.3.2)

and the correction for the gradient algorithm is,

or = -d = _aATay da>o0 (2.3.3)

where Ay = [y(n) - 10]. Again, writing 8y = -c Ay, and defining a

new constant d1 =d/c, (2.3.3) can be written as,

om = d/cAT sy = d AT 5y (2.3. 4)
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The last expression may be taken as the inverse of the linear sub-
problem (2. 1.4) employed by the gradient algorithm. The linear
theory suggests that a small value of fhe constant of proportionality

d1 be used; otherwise, a decrease in J cannot be guaranteed. In
practical applications, d1 is usually determined by a unidirectional
search for the first local minimum of J in the direction of the negative
gradient, The search procedure incorporates more information about
the function J than is included in the gradient and its results cannot

be interpreted in the framework of linearized analysis.

Using the decomposition of the sensitivity matrix A discussed

in section 2.2, we obtain

T
or = d; VAU &y (2.3.5)

—_— —~ -~

This expression indicates that the correction in 7 given by the gradient
algorithm contains dominant contributions along a few vectors Y in
the 1 -space with the largest singular values )‘i' The correction made
along the direction vy is proportionai to )‘i' This scheme results in
very small corrections along the vectors corresponding to very small
singular values and none along the columns Ofy-o It is observed, and
quantitatively demonstrated later in this chapter, that the linear sub-
space spanned by the less sensitive vectors of {yﬂ} does not change
significantly as the estimate, about which the linearization is done,

is changed. As a result, the final estimates obtained through the
gradient algorithm differ from the initial estimates only along those

few directions with high sensitivity,
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2.3.2 Lanczos Inverse and the Gauss-Newton Algorithm

Lanczos (1961) introduced an inverse of the linear problem
(2. 1.4), which is equivalent to the generalized inverse of Penrose

(1955),

st = v luT sy (2.3.6)

Jackson (1972) further discussed the application of this solution to the

ill-conditioned problems. Their solution is,

st = VA 1T T sy (2.3.7)

A~ —~ -~

where V and U are matrices formed by the first £ colums of Vand U
respectively, and z is the diagonal matrix of the largest 4 eigenvalues
in A, This adaptation leads to a better conditioned solution; however,
the solution lacks entirely in the components along the vectors

{X,(Hl’ . ’Xr} and the columns of -Yo’ Tﬁe solution is dominated by
the components along the vectors v, as sociated with the smaller among
the 4 singular values in A. Furthermore, (2.3.7) is the solution with
the smallest norm which takes into account the inverse of the largest
L sensitivities., The integer £ is selected from the consideration of
the resolution and the uncertainty of the correction 6w (Jackson, 1972).
The larger £ is, the better is the resolution as more orthogonal direc-
tions in the parameter space are included in the solution. At the

same time, a larger value of £ implies inclusion of some additional
vectors v . with even smaller eigenvalues; this results in a greater

uncertainty in 6m for a given uncertainty in §y, and the covariance

of the solution increases. (See chapter 3 for details.)
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Lanczos (1961) demonstrated the equivalence of his inverse
discussed above and the ordinary least square solution when the
problem is over-constrained but not under-determined (£ = M < L).
Jackson (1972) demonstrated that the Lanczos inverse is equivalent
to the inverse of Smith and Franklin (1969) when the problem is under-
determined but not over-constrained (£ = LL < M), These statements
can be readily verified by substituting the decomposition A = U A _YT

in the respective solutions,

m = AT AT oy (2.3.8)
& = éT(%T)‘I 5y (2.3.9)

In the following, we shall demonstrate that, when £ = M < L,
the Lanczos inverse of the linearized subproblem is equivalent to the
iterative correction of the Gauss-Newtozi algorithm for the history
matching problem. In appendix 1.5 we have described the second
order minimization algorithm and its Gauss-Newton approximation,
It leads to the corrections determined by the linear system of alge-

braic equations,

ATA&n = - A" by (2.3.10)

If we identify 6§y = -Ay, and use the singular value decomposition
of A and the orthogonality of the columns of U and V, we obtain the
solution of (2. 3.10)

sm = vAluT ey (2.3.11)

—~—

This is identical with the Lanczos inverse.
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Now we shall briefly explore Marquardt's modification of
the Gauss-Newton algorithm, This modification, also discussed at
length in appendix 1.5, is designed to aid the convergence of the
algorithm. It consists of adding a fixed positive constant y to each
of the diagonal elements of éThj-} in (2. 3. 10) before its solution.

The result is,

o = (éTé +ul)”

-~ -4

LT sy (2.3.12)

Using the singular value decomposition of A and the ortho-
gonality of Vwhen £ = M, we obtain

T

vTler = aPmptau® oy (2.3.13a)
or component-wise,
vT om = )\i uT oy
e e }\12_‘_“ ~i (2.3.13b)

From the last relation it is clear that the component of the
correction &n along the vector v, in the parameter space will be small
if either Ai is very small or very large. For a given §y, the component '
of 6w along the vector X; with eigenvalue closest to 4/ will be domi-
nant. Thus the results of Marquardt's method are intermediate to
those obtained from Jackson's modification (2.3. 7) of the Lanczos
inverse by rounding off the smaller eigenvalues to zero, and the
Gauss-Newton method or equivalently the unmodified inverse. The
components of Marquardt's correction along {Xa} corresponding to
very small{xi} will be close to zero, whereas both the Gauss-Newton

and the Lanczos solutions have dominant components along the v,
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with the smallest of the non-zero eigenvalues. In Marquardt's
method, we can 'tune'' the corrections at each iteration by
choosing the parameter f, and thus have some control over the
final estimates of the history matching process. The parameter
K, however, is not totally free because it has to be such that the
iterative process converges. We shall have more to say about

the choice of the parameter g in chapter 3,

2.4 Some Analytical Results Concerning Sensitivity

In this section we shall attempt to gain some qualitative
understanding of the sensitivity of the observed pressure with
respect to the rock properties at different locations in a given
reservoir, For this purpose, we shall derive analytical expres-
sions for the sensitivity of the pressure at a given location and
time, in a single phase reservoir with uniform thickness h, with
respect to the permeability k and porosity 4. For simplicity, we
shall assume the reservoir to be one-dimensional, with spatial
domain {x €(0,L)}. A production well w1th constant production
rate is situated at x = a < L, and the pressure observation site
is at x = b < L. In order to gain insight into the differences
arising out of different boundary conditions, we shall treat ‘reser-
voirs with two kinds of boundary conditions: impermeable bound-
aries and constant pressure boundaries.

As mentioned above, we wish to determine the sensitivity
coefficients 9p(b, t)/Bk(xl) and 9p(b, t)/ad(xl) for the values of xle(O,L).
If we let X, be a variable, and denote it by x ¢(0, L), then these quan-

tities are functions of x, defined over (0, L). These functions are
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called the functional derivatives of p(b, t) w.r.t. k(x) and é(x) respec-
tively, and are denoted by the shorthand notations
op(b, t) and 625b|t)
8k(x) 66(x) °
The functional derivatives have a property that, the change

6p(b,t ) in p(b,t ) due to a change 6k(x) is given by:

L
sp(b.t) Sp(b.t ) oy x)dx (2. 4. 1)

= o ok(x)

6k{x)
A similar expression involving %%{)L-) yields ép(b, t) due to a
change 6&d(x) in d(x).

The expressions for the sensitivity coefficients for a spatially
discrete ordinary differential equation model of a single-phase reser-
voir were first developed by Jacquard and Jain (1965) by analogy with
the electric circuit theory, Carter et al. (1974) treafed the continuous
model described by a partial differential equation and derived the ex-
pressions for the functional derivatives, using a reciprocity property
of certain convolution integrals of the solution of a forced linear
parabolic differential equation. We shall rederive their results using
a simpler variational approach, which is applicable to all linear and
nonlinear dynamic systems-—parabolic, hyperbolic, as well as the
lumped parameter systems described by the ordinary differential
equations. An application of this approach to a discrete system has
already appeared in appendix 1.4. In the following we present the

derivation for the one-dimensional single-phase reservoir.
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2.4.1 Reservoir with Impermeable Boundaries

At first, we shall derive expressions for the sensitivity coefficients.

The equations describing the reservoir are,

b0 58 = ro we (k) ) + W s(x-a) (2. 4.2)
* =9 x=0, L, Yt (2. 4.3)
p(x,0) = O (2. 4. 4)

Consider the variations 64(x) and §k(x) in the rock properties, and let

o6p(x, t) be the resultant pressure variations. Then for small variations

2

we have the linear equations,

26 9
B(x "a‘tp‘ uc 2= (k(x) 222 56(x) 52 + “Ca S (6k(x) ) (2. 4. 52)
%SJa: 0 x=0, L, vt (2. 4. 5b)
>.4
6p(x,0) = O (2. 4. 5¢)

Multiplying (2. 4. 5a) by an arbitrary function y(x, t) and integr_ating

w.r.t.x over (0, L) and w.r.t. t over (0, T), we obtain

T
I f"‘(x) Vix, t)dt dx f f (k(x )-—-B)\y(x t)dx dt
o O
T L 5 T L
] I{ 6 $(x) 2 \I/(x,t)dxduuc[ J 2 (6k(x) R )y(x, thxdt (2. 4. 6)

Using integration by parts w.r.t. t, we obtain,

LT L
[ [ 860558 yix, thatdx = [ 66 op(x, T) yix, T) dx
O O (o]

TL

.” é X) (%, 1) 8p(x, t)dtdx (2. 4.7)
O 0O
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where we have used (2. 4. 5¢).

Integrating by parts w, r.t. x twice, we obtain

TL
i i(k(x)—"’—&ﬂ)\v(x,t)dxdt- k(x)——P—«xt) k(xr—-Bw o] Jae
ox ox

| {k(x)ap—Y| —k(x)6p—\k: }dt

L

o

T ,

+ J' J‘ .a_‘z{_(k(x)—‘k) 6p(x, t)dt dx (2. 4. 8)
oo

The first two terms on the right of (2. 4. 8) vanish due to (2. 4. 5b).

Finally, a single integration by parts w. r. t. x leads to,

H 5o (6k(x) 22 ) (x, t)dxdt = | {«Sk(x)—E\yl -sk(x) 2Ry O}dt
(o] X =

T L

- Joke & 2 axat (2. 4.9)
oo

Again, the first two terms on the right vanish on account of (2. 4. 3).

Note that in problems with more than one spatial dimension, Green's

theorem will have to be used instead of the integration by parts in

arriving at results analogous to (2. 4. 8-9). Substituting (2. 4. 7-9) into

(2.4.6) and rearranging, we obtain

T L
.gf [‘ ¢(X)gt -;;g-;,;(k( )"'Y‘)]6px t)dt dx
o

+ f¢(x)6p(x,T)¢(x; Tidx =
(o]

-k(x)—lk 6p| fdt
LT
- [[s ¢(x)%};2 V(x, t)dtdx - Tlc(;r J’-QB By 6 k(x)dx dt (2.4.10)

ox bx
oo o

Liet us now restrict y(x, t) which is entirely atbitrary so far, to satisfy

the following system of equations:



) 1 9 )
b G == o e (kix) SY ) (2. 4. 11)
N - oo x=0,L, t€lo,T] (2.4.12)

ox
V(x, T) = &(x-b) | (2. 4.13)

Note that these define an initial value-boundary problem very similar
to the original system problem and may be integrated backwards in
time to yield a unique solution y(x,t) for t €[0, T]. This problem will
be referred to as the adjoint problem; and V(x, t) will be called the

adjoint variable., With this definition of y(x, t), we obtain from (2.4.10),

L T
$(b)ep(b,T) = - [ 6d(x) [ -g-}} y dt dx
[o] (o]

L T
1 9p 9y
"7 { 5k(x) .(J)‘ L o dt dx (2.4.14)

From (2.4.14), we can easily obtain the expressions for the functional

derivatives for the sensitivity coefficients,

T
o
and T
5p(b, T) _ 1 ap(x, t) N(x,t)
__%{_(a}_{.)._ = - ¢(b)p.c-r S e dt (2. 4.16)

From these expressions, it is evident that we need the solutions
p(x,t) and ¥(x, t) in analytical form, in order to analytically evaluate
the sensitivity coefficients, This requirement necessitates that the
distributions k(x) and 4(x) be such that closed form solutions of
(2.4.1-3) and (2.4.11-13) can be obtained. Simple distributions such

as uniform and linear variation satisfy this requirement, Since the
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analytical treatment is the simplest for uniform distributions of k
and ¢, and the results will have the same qualitative behavior as
in other cases, these are selected for the following analysis,
Let us assume q to be independent of time, and that q and t are scaled

such that the system equations reduce to,

D 5%
5? = -8—12’- + q §(x-a) (2.4.17)
X
%ﬁ= 0 at x=0,L (2.4.18)
p(x,0) = 0 | (2. 4.19)

We wish to obtain the sensitivity coefficients for p(b, T).
The solution of (2. 4, 17-19) can be easily obtained using the

cosine transforms as follows. Defining the transforms,

L
B(t) = [ plx,t) cos(lTI:X ) dx i=0,1,2,.... (2.4.20)
(o]

the solution p(x,t) can be expressed in a Fourier cosine series,

o0
pix,t) = £ T F(t) cos X+ 2 5 (1) (2. 4.21)

i=1

Multiplying (2.4.17) by cos-ilrl—f-{—- and integrating over (0, L) and using

(2.4.18), we obtain the ordinary differential equation governing

p; (t),
dp. (t) . T
S = - )PP tqcos T2 (2. 4.22)
95,
-2 - q (2. 4.23)

The initial conditions are,
’i)'i(()) = 0 i=0,1,2,... (2. 4.24)
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The solutions of (2.4.22-24) are,

2 . )
B,(0) = a(:+) cos(F2)[1 - e~ im/L)7t, (2. 4. 25)

qt (2. 4.26)

Po(t)

Then we have

' X 2
2qL X 1 ira iwx -(im /L)t t
pe,t) = 23 5 cos(ifR) cos((E) [1-e 1+% @42

To obtain the solution of the adjoint equations (2. 4. 11-14) for these

4 and k, we make a change of variable § = (T-t), yielding for E€(0, T),

2
%% - %;\E , W% 0)= 8(x-b), S =0 x=0,L (2. 4.28)

Then the solution of (2. 4.28) can be obtained through cosine trans-
forms in a manner very similar to that described for p(x,t). The

solution is,

o0 . . . 2
¥(x,8) = %j§l cos J}T_‘b cos JTIZX e—(Jv/L) 2 +_}: (2.4.29)

or

. . . 2
_ 25 jub jrx _-(w/L)*(T-t) | 1
Yix,t) = T .?31 cos=3— cos-= e + 5, (2. 4.30)

Substituting these expressions in (2. 4.15-16), we obtain

. | )
op(b T) - 4 o0 00 _1__ .. _ "‘(JTT/L) T
I R p KL

+é_g__ LO?O 5> j (i, j:a b)» [e—(iﬂ/L)zT_e"(jT\'/L)ZT]
w2 i=lj=1 i(5%-i%)
i#j
o2
+ 49T 3 gy i5a,b) e G7/L)T (2. 4.31)

L2 i=1

o0

where, inx jrx ira jrb
8(i, jsa,b) = sin-—5~ sins=~ cos—y~ cos
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and
o0 . .
6P§22 'I)‘) = qg -FE-% 2 —12- (cos———mla‘1 + cosnler )Jcos HIZX [1-e (m/L) T]
X .
L m i=l11
0 00 -
+ig‘ 22 Zl ozos—}r_‘-é-lcosl'rrx cosL- os’—[ (m/L)ZT (JH/L,ZT
n%i=1j=1(%1
1%j
o0 . . . . 2.
+iqzl 2 cosiT2 cos—l% cosz(%i)e'(l"/L’ T (2.4.32)
L i=1

From the property (2. 4. 1) of the functional derivative, we can obtain
the change in the observed pressure due to an arbitrary perturbation

6k(x) in k. Decomposing §k(x) into a Fourier cosine series, we have

X Lux X
ok(x) = 2 €Lcos T = 2 ok, (2. 4.33)
£4=0 £=0

The contribution to §p(b, T) due to the 4th Fourier component 6kz of

ok(x) in (2. 4.33) can be obtained from (2. 4. 1) and (2.4.31) as,

Tr -- 3 '((1+£)1;/L) T
q€,L 5p(b, T) ﬁkz = - z—? 1(1+L) 8,(i,i+2) [1-e ]
; 2
'? 1(1+1,) 91(i+z,i)[1_e-(m/L) Ty
L-14-1
t2 2o 80, ) [1-e” ~(jm /1) T,
i=1 j=1 J
i‘l")zl

. 2 . .
+ 2 2 [e-(m/L) T_é((1+l,)1r/L)2T][_1_-.l_-_f:_ 91(1’ i+2)
i=1 (£°42i8) 1
tog 0,0+, )]
2-12-1 ] 2
+ 3 E j 6 (1 i) [e” (11T/L) T -(JTr/L) T]

i=1 J 1 12(] 1)
i*j,i+j=4

00 . 2
- Ty el(i,i)e“(“*/L) T 6,, , (440) (2. 4.3 4a)

L i=1 »



-132-

2 w0 . 2
T ep(b,T)|  =- I 80,4 [1-eHT/ DT
2q e L Bko i=1 1
2 00 . 2
. T 'g > el(i,i)e‘(”/“ T (2=0) (2.4.34b)
L izl
where Gl(i,j) = cos i;a cosl}?— .

In the last expression all the terms are smaller than unity in
absolute value and have signs alternating in a regular fashion. The

series are absolutely convergent for T > 0. It follows that for large T,
sp(b,T)| = O(€, ) t#0
&k

L (2. 4.35)

Sdp(b, T) = O(€
61(0

CLES
2
w
E'gzé') L=0
v

o
This indicates that the observed pressures have vanishingly small
sensitivity to highly oscillatory components of k(x), and consequently
it is not possible to determine accurately such components through
history matching.

In order to investigate the component—wiée sensitivity of the
porosity é(x), let us express the variation 6é(x) in a Fourier cosine

series,

X Irx X

cos—= = 2 66
£2=0

5h(x) = e + (2. 4.36)

o e
£=1

£ L

Before we carry out the calculations, from (2. 4.32) it is evident
that the contribution to 6p(b, T) due to the component e, of &§é(x), which
represents the mean value of the perturbation in ¢, will grow linearly
with time for large T. Then the sensitivity of the observed pressure

to changes in the mean value of 4 is large and increases with time.



-133-

Consequently, the mean value of ¢ can be determined with considerable
accuracy through history matching. It is important to note that this
conclusion holds only in the case of reservoirs with impermeable
boundaries. In such reservoirs the pressure levels are strongly
dependent on the cumulative production and the amount of oil originally
present, the latter being determined by the mean value of porosity,
A treatment similar to that used for arriving at (2. 4. 34) leads

to the following expression for the change in the observed pressure

due to the #th Fourier component (£%0) of &§d(x),

. : 2
—el— p(b, T) = CZILZ (cos Lia + cos-%—b—)(l-e_u“/L) T)
2 6(51’ w &
LA R pima o, irh -Gr/L)PT
L .7 L L 2i, 4

2 2. [co ira cos(i+£)1‘rb +cos(i+z)1ra"osi"bj
L gL § [e-(in/L) T_e-((i+£)1r/L) T -7 L L L. L
Z . J z...
=1 (L°+2i8)
£-14- os &2 irb . . »
S T s M PR ? [e‘(”/L’ZT-e“J"/L’ZT] (2. 4.37)
o i=1 j=1 A(j-1) ‘
i%j,i+tj=4

Then for large T (L% 0),

ep(b,T)| = Ole, 35 L) (2. 4.38)

Thus, the sensitivity of observed pressure with respect to the
highly oscillatory components of #(x) is very small. A comparison of
(2. 4.35) and (2. 4.38) reveals that a Fourier component of é(x) with
non-zero wave number £ has much smaller influence than a component

of k(x) with the same wave number, the difference increasing with £ *



-134-

2.4.2 Reservoir with Constant Pressure Boundaries

The pressure in this case is determined by equations (2. 4. 2)

and (2. 4. 4), with the boundary conditions (2. 4. 3) replaced by
p{x,t) =0 x=0,L, vt (2. 4.39)

The derivation of the formulas for the functional derivatives

&p(b, t)/ 6k(x) and 6p(b, t)/64(x) proceeds in a manner very similar to
that for reservoir with impermeable boundaries. The adjoint systerﬁs
equations in this case are (2.4.11), (2.4.13) and with an altered

boundary condition,
Y(x,t) =0 x=0,L te€flo, Tl (2. 4. 40)

The expressions for the functional derivatives (2. 4. 15) and (2. 4. 16)
remain unaltered.

Again, for analytic simplicity, we shall treat the case of a
one-dimensional reservoir with uniform distributions of k and 4. Let
the pressure in the reservoir be governed by (2.4.17), (2.4.19) and
the boundary condition (2. 4.39). The solution can be easily obtained

by use of the sine transforms as

; 2 . .
pix,t) = 2 -—%—[ -e-(m/L) t] silrr}f]:_‘i sinTX (2. 4.41)
i=11 L

Similarly, the solution of the adjoint system (2.4.11), (2.4.13) and

(2. 4. 40) for this simple case is,

[v. ]
W t) = 2 2 sin 2 eindTE o (/L) (t-T) £E(0, T) (2. 4. 42)
=1
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Substitution of these solutions into (2. 4. 15) and (2. 4. 16) and evaluation

of the time integrals yields,

OpAb, q S : 2
6 (b T) - . 4 OQ 09\ _l- . _ "(JTT/L) T
6k(x) ~ TTZiZ].j::I 1 8,0, ja, b)[1-e ]

. _ 5 . ,
+i% %o; i? ""L"z 9(i,j;a,b)[e'(1"/L) T_e'(JTT/L) T]
aZi=1j=1i(j%-i%) 2
i%j
00 . 2
+24E 20 (i,i:a,b)e'(m/l‘) T (2. 4. 43)
L% i=1 2

. . 2 . 2
6p(b, T) _° 49 g ‘5 1 . 93(i,j;a,b)[e‘(”/l" T_ -(jn/L) T,
T

66 (x) 231 j=1 (% - i%)
i%]
LA R g b)e-(in/L)ZT (2. 4. 44)
L2 3 3

where we have defined for brevity

. _ inx jnx . ima . jmb
92(1,J,a,b) = cos—y= cos~3= sin—5— sin-T

irx . Jmx . _ima .. juwb
sin 4

- o e j
93(1,3,a,b) sin 5= sin-5= sin-p T -

Then the change &p(b, T) due to the £th Fourier component in the cosine

series (2. 4. 33) for 6k(x) can be obtained from (2. 4. 1) and (2. 4. 43) as,

£-14-1 2
1 __gL 1 . -(jm/L)°T
qﬁp(b, T) sk, .2 i=21 jz.le i 0,01, 5) [1-e ]
i+j=4 2
L R _1 . - ((i+L)n /L)“T
- %z_ i:zl EEAE 64(1, i+8)[1-¢
2
ql, X 1 L -(inr/L)°T
-5 i__{—i (i'h@)i 94(1+£, i) [l-e ]
ks
L-1 24-1 . 2 2
gL > i . ar~lin/L) T -(jn/L)"T
e R RV ° )
i#], i) = 4 (Cont'd on hext page)



0 . .
. +32£- 'Z} { 21 - ':11'!' 94(i,i+2)+i__ﬁ— 94(i+£,i).]

1

2 . 2
[e-Um /L) T__-((i+£)w/L) T]}

o 2 '
+ 8L 2 0 0oL Ty (120)  (2.4.452)

i=1
and
2
| _ -2l R 1 . -(in/L)"T
g-—ap(b: T) 6k - 2 .Z) 2 94(1: 1)[1"8 ]
o o T i=l i
) . 2
+ 24T 5 g (i q)e-(m/L)°T (2. 4. 45b)
L .- 4"
i=1
where
s sy . ima ._ jub
84(1,3) = sin=F ,Sm-L—~ T, (2. 4. 46)

Similarly from (2. 4. 44), the pressure change &p(b, T) due to

the #h Fourier component in cosine series (2. 4.36) for 64 is,

1 L X 1 .. ) .
— &p(b, T) - 4= ¥ ~ [6,3,ite) + 0 ,(i+2,i)]
) 6“‘1, 2 =1 { 2%i2ip 4 4

[e—(in/uz'r_e-((i+z)n/L)2T]}

2-1 2-1 L2 i
L 1 .. -(in/L)"T ~(j»n/L)°T
_ﬂz—i:Z j:zl 100 84(1,3)[e -e ]
m
i%j, i+j=4
qT X . . -(iw/L)ZT
- =5 .Ll 94(1’1)621 € (£ %0) (2. 4. 47a)
1= ?
and
0 . 2
L oo, T4y =29 3 g, je W/ LT (2. 4. 47b)
o o L i=1

whete 64(1, j) is the function defined in (2. 4. 46).
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From (2. 4. 45a,b) we have for T = «

6p(b’T)‘6kz=O( 1.2 L)L*o

(2. 4. 48)
2
o, 28) 10
™
Similarly from (2. 4. 47a,b) we obtain for large T,
gL 1 -(n/L)?
6p(bT)|6¢ "O(z = e T) L 40
£ |
(2. 4. 49)

- (e, 29F o~tr/n"T)

A comparison of (2. 4. 48) and (2. 4. 35) reveals that the sensi~
tivity of an observed pressure with respect to a Fourier component
of k(x) with wavenumber £ has identical behavior for the reservoirs

with either impermeable boundaries or constant pressure boundaries.

The conclusions made earlier about the identifiability of the different
component of k(x) from the pressure observations hold for both kinds
of reservoirs.,

On the other hand, a comparison of (2. 4.49) and (2. 4. 38)
reveals that the behaviors of the sensitivity of i)(b, T) with respect to
different Fourier components of #(x) is radically different for the
two kinds of reservoirs. In the reservoirs with impermeable bound-
aries the influence of de(x) on p(b, T) is finite, O(Z-Z), for large T;
whereas in the constant pressure boundary reservoirs, this influence
is vanishing for large T. The difference is even more striking for
the component £ = 0, which corresponds to a change in the mean value
of ¢(x): in impermeable boundary reservoirs this component has an

influence which linearly increases with time and thus dominates the
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rest, whereas in the constant pressure boundary reservoirs, this
component has vanishingly small influence for large T. The compo-
nent 6050 has a larger influence than 6¢Z(£ # 0) in either case.

From the above analysis we conclude that in the case of the
constant pressure boundary reservoir, the problem of estimating k(x)
and é(x) from observed pressures is more ill-conditioned than the
corresponding problem for impermeable boundary reservoirs. The
porosity has vanishingly small influence on the observation at large
times; and its various Fourier components, including the mean, can-
not be determined accurately from the observed pressures alone,

The permeability has a finite influence on the observation at all times;
however, as the Fourier component with wave number £ has O(L-l) in-
fluence at large times, hence the highly oscillatory components of

k(x) cannot be estimated accurately from the observations,

Although it is not evident from the foregoing analysis, we note
that for the constant pressure boundary reservoirs, the flux and the
pressure gradients in regions close to the boundary are of the same
order as elsewhere in the reservoir and thus the influence on the
observations of the permeability in these regions is not different
from elsewhere. On the other hand, as both the flux and the pressure
gradients are very small in the vicinity of the impermeable boundaries,
k(x) in these regions has small influence on the obser.ved pressures
compared to elsewhere in the reservoir. Hence, we expect to be
able to determine k(x) more accurately in the region close to constant
pressure boundaries compared with the regions near the impermeable

boundaries.
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In this section, we have attempted to analyze the sensitivity
of the observed pressure at a single location and a single time instant.
For accurate overall estimation of parameters, itis necessary but not
sufficient that the sensitivities of individual pressure observations
with respect to the different components of the parameters be large,.
In such a problem the number of independent degrees of freedom con-
tained in the data is equally important. A sensitivity matrix with
large elements can have a smaller rank than another with smaller
elements, Hence such analysis of the sensitivity matrix is crucial
to the study of the parameter estimation problem. In the next section,

we carry out such analysis numerically and present typical results.

2.5 Numerical Results on the Reservoir Parameter Sensitivities

In this section we present numeri‘cal results on the linearized
problem in order to elucidate more fully the nature of the reservoir
parameter estimation problem,

The one-dimensional reservoir covered by a uniform grid with
33 nodes described in chapter 1, withimpermeable boundariesis consid-~
ered, Inthe case withno constraints, the number of parametersto be esti-
mated is 66, each of the 33 grid point values of the permeability k and
the porosity 4. To bring out the similarities and the differences
arising due to the use of different parameter distributions for linear-
ization, the problems associated with the two different sets of k(x)
and ¢(x) are presented. These distributions are, the realization R-2
of the homogeneous random proceés described in chapter 1, and the

uniform distributions of k(x) = 5.0 md and 4(x) = 0.2. The conditions
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of the estimation problem are those of the set S2 defined in chapter 1;
they are, two production wells with piece-wise constant production
rates, three observation locations, each with 25 observations at
uniform time intervals.

There are 75 observations, yielding the 75-vector y, and
the sensitivity matrix A is (75x66). The elements of A, the sensitivity
coefficients were computed using the adjoint variable method derived
in appendix 1.4, The singular value decomposition of A was carried
out using the double-precision, real version of the program by
Bushinger and Golub (1969).

The 66 singular values for each of the two cases, involving
linearization about R-2 and the uniform distributions of k and 4, are
plotted in figure (2.5.1). It is clear from this figure that the variation
and the magnitudes of the singular values are characteristic of the
general problem and do not change significantly with the actual distri-
bution of k and ¢ as long as their mean values do not change appre-
ciably. It is also evident that the singular values for this problem
decline approximately in a geometric progression, each being smaller
than the preceding value by a factor of approximately 0.63. Conse-
quently a large number of singular values are much smaller than
unity, pointing out the fact that the problem is in effect under-
determined as well as over-constrained. (Also, see section 3.3.)

-Figure (2. 5.2) contains plots of the vectors {Y—i} in the param-
eter space corresponding to the largest 10 singular values of A for
R-2. Each eigenvector v has 66 elements, one element corresponding

to each spatial grid point and each property (k and ¢). In figure (2.5.2),
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each element of v, is shown as a function of location corresponding
to the permeability or porosity. It can be easily seen that these
vectors become more and more oscillatory as the corresponding
singular values decrease. We recall the conclusion of section 2,2
that a singular value )‘i represents the sensitivity of the component
of y along w with respect to the component of 7 along Yo Thus this
association of decreasing singular values with increasing oscillations
in {!i} is in agreement with the analytical findings of section 2. 4.
In addition, it can be observed that the first several eigenvectors
{y{} have significant oscillations in the permeability subspace but
not in the porosity subspace. (We refer to the two subspaces spanned
by the elements of v, corre sponding to the permeabilities ki and the
porosities éi as the permeability subspace and the porosity subspace
respectively. ) Significant oscillations in d-subspace occur in the
eigenvectors with singular values much émaller than the largest.
This observation is in qualitative agreement with the analytical result
in section 2. 4 that the components with a wave number £ (4£0) of k(x)
and @(x) have respectively O(L~ 1)and O(L-z) influence on the pressure.
Anothef noteworthy feature is that the vectors with large
elements corresponding to the permeability in the vicinity of well
locations have large singular values associated with them. This
indicates that the permeability in the vicinity of well locations have
large influence on the observations, This conclusion is easily verified
from the numerical values of the elements of A. The highly oscillatory
components of k with almost zero elements in the vicinity of the

wells have a weak influence on the observations, Thus, the former
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parameters will be determined accurately by history matching,
whereas the latter components of k, will be poorly determined.

On the other hand, the eigenvectors {Xi} with large elements
corresponding to the permeability in regions away from wells, and
especially in the vicinity of impermeable boundaries, have small
)\i’ indicating that the permeability in these regions have very small
influence on the observations. The porosity sensitivities exhibit a
different behavior. The v-vector with the largest eigenvalue has
almost equal elements corresponding to the porosities at all the grid
points, indicating that the mean value of porosity has a very large
influence on the observations., As the eigenvalues )‘i decrease, the
associated v show more and more oscillation in the porosity sub-
space. The effect of the distance of a grid point from any of the wells
on the influence of its porosity on the observations is much less pro-
nounced than in the case of the permeability.

Figure (2.5.3) shows the vectors {}}ﬂ} in the observation space
corresponding to the largest seven singular values for R-2. Since
the observation vector has 75 elements, so has each U, Each obser-
vation corresponds to a specific observation location in the reservoir
and a specific time; hence, the corresponding element of u, can also
be identifiéd by these. Thus, instead of the element number, these
more physically meaningful identifications are used for the abscissae
on the plots. It is evident that these follow a trend similar to that of
{!i} in the parameter space: for large singular values, the vectors
{Ei} have few temporal oscillations over the period of the observed

history; as the singular values become smaller, the corresponding
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u-vectors have more oscillations in time. This behavior implies that
when the observations at a given location have systematic errors,
they will have large influences on the parameter estimates., On the
other hand, when these observation errors are uncorrelated from

one observation‘ instant to the next, they have very little influence

on the parameters. Due to this, when the history matching is done,
the mismatch of the latter kind will be difficult to eliminate by making
corrections in the parameter estimates; consequently, the components
with this characteristic will constitute the residual history-match
error z—xo. The rapidly fluctuating history match errors with almost
zero mean when used in the forcing term in the adjoint equation, yield
solution {Lyl} that itself fluctuates in space and time with small magni-
tudes, The use of such a solution for ¥ in the expressions (Al,2.19-11)
in appendix 1,2 for the gradients 8J/0k and 8J/9¢, yields a small norm
of the gradient 8J/0nr implying that the current estimates are in the
vicinity of an extremum of J. In addition, the highly oscillatory be-
havior of { yields large numerical errbrs in computation with finite
precision due to cancellations during the summation for time inte-
gration and consequent loss of significant digits. This partly explains
why the performance of the gradient algorithm deteriorates as the
minimum of J is approached. Similar reasoning can be followed to
understand why the residual history match errors with almost zero
mean and rapid oscillation fail to produce any further corrections in
the estimates when the Gauss-Newton or Marquardt's method is

employed.
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Figure (2.5.4) shows the first 7 vectors {Ki} obtained by
linearization about, the uniform distributions of k and 4. To facilitate
a comparison between the respective v-vectors for linearization about
the two different sets of distributions considered, they are plotted
superposed on each other in figure (2.5.5). It is evident that the
vectors {y_i} with larger sensitivities do not depend very strongly on
the actual distributions of k and ¢ used for linearization, as long as
their mean values are approxirhately equal.

A more important question for the purpose of estimation is,
how close to each other are the linear subspaces of the parameter
space spanned by the highly sensitive vectors {Y-i} in the two cases?
A quantitative procedure to answer this question is developed in
appendix 2.1, The procedure consists of starting with a random
vector § in one subspace, with uncorrelated components along a
set of orthonormal vectors spanning the subspace. KEach of these
components is assumed to have a Gaussian distribution with zero
mean and a uniform variance 02. A projection of § onto the second
subspace and the associated residual vector, which are easy to deter-
mine, are also random. The ensemble average of the norm of the
residual vector divided by the average norm of the random vector g
is taken as a scalar measure of the difference in the two subspaces.
When one of the subspaces completely contains the other, this ratio
will be zero; and for disjoint subspaces, it will be unity.

For the linearization about the two sets of profiles, the values
of this measure were found to be 0,35, 0,30 and 0.226, for the dimen-

sionalities of the subspaces of 16, 10 and 6 respectively, These values
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are fairly small compared with unity indicating that the intersection
of the two subspaces encompasses a fairly large portion of either of
them; a random vector in one of the subspaces has, on the average,

a fairly large component in the other. Quantitatively, these values
imply that the average length of the component of a completely random
unit vector in one of the subspaces, lying outside the other subspace
is 0.35, 0.30 and 0. 226 for the three cases. We note that these values
give only an approximate indication about the equivalence of the two
subspaces. In practice, the corrections along the basis vectors in
either of the subspaces will not, in general, have equal magnitudes,
thus violating the assumption of uniform variance made in the fore-

going analysis,

2.6 Estimation Using Only the Parameters with High Sensitivity

As we saw in section 2.5, there are only a few directions
locally in the parameter space that significantly influence the observed
pressures. We also observed that these directions do not change
appreciably as the distributions of k and ¢ used for the linearization
are changed, so far as their mean values do not change significantly.

Since only the components of the corrections along thesé
highly sensitive directions are determined accurately by the data,
we may estimate them without attempting any corrections in the in-
sensitive components, Later, corrections along the less sensitive
components may be made based on some auxilliary information,

The Bayesian penalty, introduced in chapter 1, is one example of
such additional information., The history match would not be sig-

nificantly altered by such a modification of the estimates, as the
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additional corrections are along the insensitive directions in the
parameter space. -

The results of such estimation using the 16 most sensitive
vectors in the parameter space for the basis of the corrections in
the estimates are summarized in table (2. 6.1). The estimation is
carried out using two different sets of vectors {Xl} obtained from
linearizations about R-2 and the uniform distributions, The esti-
mates resulting from the former set are plotted in figure (2. 6. 1)’.
The details in table (2. 6; 1) indicate that the results obtained by the
two different sets are very close to each other. The history match
errors have been reduced to the irreducible level in both cases,
The estimate errors Jk and J¢ are of the same order as those ob-
tained by Zonation or by the Bayesian approach. However, as can
be seen from figure (2. 6. 1), the estimated distributions have sharp
kinks in the vicinity of the production and observation sites. This
stems from the fact that the highly sensitive vectors {y_i}, utilized
as the basis, themselves have such kinks, - (See figure 2.5.5.)

We may attempt to smooth out the kinks in the estimates i
by making appropriate corrections along the insensitive vectors.
This smoothing can be done so as to minimize the Bayesian penalty
term. Such a smoothing problem is a linear quadratic minimization
problem and its solution can be obtained in closed form. The details
of the problem and the resulting solution are described in appendix
2.2, However, as is evident from it, the problem and its solution
are very ill-conditioned, involving the inverse of a nearly singular

matrix ,_1?0 . As an alternative, an approximate formulation of the
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TABLE 2,6.1

ESTIMATION USING ONLY THE SENSITIVE COMPONENTS

(1)

(2)

Dimension of the correction subspace = 16.
Conditions of the problem: Set S2 (See section 1. 4)
Initial I = 14,900

Initial Jk = 11,73, Initial Jd = 7,22,

Final Values

JP Jk ., J p
Sensitivity vectors obtained
by linearization about R-2, 73.2 8.91 6. 68
Marquardt's Method (g = 100)
Linearization about uniform
distributions of k and ¢ : 70. 6 7. 64 6.87

k(x) = 5.0 md, d(x)=20.2

Marquardt's Method (g = 5)
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smoothing problem which is well-conditioned is also described in
appendix 2. 2. Srﬁoothin.g was carried out using this approximate
scheme, and the results are plotted in figure (2. 6.1). The reported
results are obtained by removing to the best possible extent, the
components of (#-% ) along all except the first 12 eigenvectors of

the prior covariance matrix —130’ using for correction the 56 least
sensitive y-vectors in the parameter space, obtained by linearization
about R-2. As can be seen, the kinks in the vicinity of the production
well are not significantly smoothed. This is due to the fact that the
set of insensitive vectors used for smoothing does not span the
parameter space, and therefore cannot annihilate the arbitrary
difference between a smooth distribution and the estimate .

We may attempt iterative smoothing by successively linear-
izing about the smoothed estimates. However, due to the approxi-
mate invariance of the sensitive subspace described in section 2.5,
such iterative attempts maf not be successful in completely elimi-
nating the kinks in ?_L In addition, if the smoothing is successful
after several iterative éttempts, the total corrections may be large.
Though they are in locally insensitive directions, these large cor-
rections may induce nonlinear effects, not accounted for in the
linearized analysis, and significantly alter the history match, If
this occurs, further effort would be needed to restore the history
match. Thus, this approach appears to require very large compu-
tational effort without guaranteeing acceptable results,

As a result, we conclude that the Bayesian approach to esti-

mation is preferable to the one discussed in this section. The
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Bayesian approach uses smooth vectors as a basis for the correction

subspace, and consequently yields smooth estimates, requiring no

a posteriori treatment,

2.7 An Index of Regional Parameter Sensitivity

In this section we develop a scalar measure of the sensitivity
of a given rock property in a given region of the reservoir that takes
into account all the observations.

The magnitude of the derivative ayi/ 31rj is a measure of the
sensitivity of the observation y; to small variations in the parameter
m.. However, any single derivative does not contain all the informa-
tion about the sensitivities of all the observations. The matrix A
of all such derivatives contains such information; however, it is in
a form that is difficult to delineate. The set of singular values
{)\i} also contains this information, but it is difficult to assign any
regional significance to the associated eigenvectors in parameter
space. Hence it is necessary to carry out further analysis to answer
the questions about the regional parameter sensitivities.

The singular values {)\i} of A depend on two independent
factors: (i) the magnitudes of the element of A, and (ii) the linear
independence of the vectors formed by the sensitivities with respect
to all the parameters of the different observations (which are the
rows of A). The first factor is directly proportional to the observed
pressure levels, Since the eigenvectors {P’-i} and {yyi]‘are all nor-
malized to have Euclidean norms of unity, all the information about
the magnitude of the elements of A is contained in the singular

values, If all elements of A were changed by a factor c, the singular
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values will also be changed by the same factor, leaving the eigen-
vectors unaltered. The factor (ii) can be understood from the
following. If a row (or a column) of A, that is originally linearly
independent of the rest, is replaced by a vector which is linearly
dependent on the rest, the rank of A is reduced by 1. The number
of non-zero singular values of A is equal to its rank. Thus, the
singular values are affected by the linear independence of the dif-
ferent rows of A. The second factor depends on the number- of
independent modes effectively contributing to constitute the observed
pressures. The first factor mainly affects the larger of the singular
values; whereas the other determines the rank of A and thus has a
large effect on the smaller of the singular values. The second factor
is of great importance in the solution of the estimation problem as
the smaller singular values have the greater influence on the co-
variance of the estimate, as is briefly discussed in section 2. 2 and
developed in detail iﬁ chapter 3. The first is a dominant factor in
the parabolic problems, the kind to which the reservoir system
equation belongs, because the higher modes in the solution decay
very quickly with time, thus making it very difficult to alter the
second factor significantly. An important exception occurs when

an additional observation site is established, The observations at
the new site contain fresh information about the eigenfunctions, thus
contributing directly to the increment in the effective rank of A. In
addition, the rock properties in the vicinity of the new site have a

pronounced influence on the observations at that location. Thus a
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new observation site contributes the first factor as well. These
influences are even more significant when the new site also has a
production well,

We shall assume that the eigenvectors of A in the parameter
space can be divided into two groups: {—Y—l’ Vosees, Y»L} corresponding
to relatively large singular values, and the set of remaining (M-4%)
vectors with small singular values. Then the vectors representing
the regional rock properties that are effectively contained in the sub-
space spanned by the first set of vectors will have a high measure of
sensitivity, Thus, we may assign the index of sensitivity to the
regional fock properties proportional to the degree to which their
vector representations are contained in the subspace of the more
sensitive v-vectors. This degree may be quantitatively determined
by the following procedure,

The iﬂ'1 element of the parameter vector ET = [le giT ]
represents a rock property in a region of one grid block size in the
reservoir, The norm of the component of the M~-vector (M = 2N)

e i’WhiCh is the ithcoluxnn of the identity matrix, along any unit vector
is a measure of the degree to which the vectors coincide. Similarly,
the norm of a vector, which is the sum of the vector components of
e; along a set of unit vectors in EM is a measure of the degree to
which e; is contained in the subspace spanned by this set of vectors,
Then it follows that the norm of the component of e, orthogonal to
the above vector-sum is a measure of the degree to which e; fails

to be contained in the subspace. If we use the set of vectors v,

associated with large eigenvalues in the above analysis, we have a
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measure of the degree to which the ith component of the parameter
vector fails to be contained in the high sensitivity subspace of the

parameter space. This component is given by,

(2,7.1)

where v, is the matrix whose columns constitute the set of high
sensitivity vectors., Thus we define the index of insensitivity of ith

component of the parameter vector as,

4= [[(L- Y—leT)sill (2.7.2)

where

| is the Euclidean norm. Using this definition of the

index of region-wise parameter insensitivity, we can compute

this index for all the grid points in the reservoir, considering each
rock property separately. Figure (2.7.1) shows this index plotted
for all the 66 elements of 1 ; two sets of indices are computed, using
two different sets of seventeen v-vectors (£= 17) obtained for the two
sets of k and ¢ distributions. Again, the correspondence of a given
element of the parameter vector with a region in the reservoir is
used to label the abscissa in terms of location within the reservoir,
for permeability and porosity. As all the vectors involved in this
computation are of unit norm, the residual vector in (2.7.1) will
have a maximal norm of unity, A value of the index close to zero
corresponds to a high degree of sensitivity and a value close to
unity indicates almost no influence on the observations of the appro-
priate rock property in the corresponding region. The plots in

figure (2.7.1) indicate that the permeability and porosity in regions
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close to observation wells which also produce (x = 700 ft and

x = 1600 ft) have a.large influence on the observations. The proper-
ties in a region around an observation well with no production

(x = 2400 ft) have much lower sensitivity., Properties in regions
away from any of the wells have have still smaller sensitivities.
The least influential are the sensitivities in regions close to the
impermeable boundaries, the regions for the permeability being
larger than the porosity. It is noteworthy that the distributions of
the insensitivity index for the two sets of k and ¢ distributions do
not differ significantly, As a result, we may carry out such analysis,
for a given reservoir, in advance of any extensive parameter esti-
mation attempts and consequently be forewarned about the ill-
determinancy of the rock properties in specific regions; thus, we
may be wary of placing unjustified confidence in the results of the
subsequent estimation,

In principle, the distribution of the residuals compufed as
above, can be used in designing improved parameterization for any
specific reservoir parameter estimation problem. For example,
we may select the zone boundaries so as to yield zones with approx-
imately equal sensitivities. However, due to the rapid changes in
the distribution of the index, indicating high sensitivity only in very
small regions and uniformly low sensitivity in the rest of the reser-
voir, this index is not suitable for a fine grading of the parameters
based on the sensitivities. A strict adherence to it will result in a
few and grossly unequal zones, which would be unacceptable. A sim-

ilar sensitivity analysis can also be carried out for these parameters
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in Bayesian estimation, Thus, alternative parameterization can be

compared. (See section 2.8 for further discussion.)

2.8 Practical Uses of the Linear Analysis

The analysis of the linear subproblem presented in this
chapter is a very powerful aid in understanding the nature of the
parameter estimation problems. By performing this analysis using
the prior estimates of the unknown parameters before attempting
the estimation, a practicing reservoir engineer can uncover a lot
of useful information about a given problem. This information can
be subsequently used in carrying out the estimation in an optimal
fashion.

The first step is to compute accurately the matrix A for a
suitably fine space grid and the available observations using the
prior estimates for linearization. The singular value decomposition
of this matrix may be efficiently and accurately accomplished using
double precision word-length and the pfograr’n by Bushinger and
Golub (1969). The singular values, which are all positive, when
arranged in a decreasing order of magnitude yield a very clear
picture about the conditioning of the problem and the number of
independent parameters one can expect to estimate in the given
problem. An error of one unit in the observations may yield an
error of 1/)\i units in ’ghe component along v, of the parameter vector.
From this consideration, a positive cutoff in the singular values,
such that the singular values smaller than it should not be utilized

for estimation, can be selected as follows. Let the standard
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deviation of the observation errors be O Let ¢ be the estimate

of the maximum mbdelling error, based on the grid size and numer-
ical scheme used for simulation. Any uncertainties other than the
unknown parameters, about the conditions existing in the reservoir
must also be reflected in €., Then the total expected difference be-
tween an observed pressure and the corresponding computed pressure

after the estimation is completed, is of the order,

cr_—_oo+e (2.8.1)

Let the maximal permissible uncertainty in the final estimate of
the parameters be given by the standard deviation - Then the

~

cutoff c in the singular values may be selected as,

c= o/ (2.8.2)

01
The singular values {)\i:)\i < c} should not be used for making cor-
rections in the estimates during the iterative process. This criter-
ion should govern the selection of the history matching scheme. The
gradient algorithm, as discussed in section 2,3, will almost always
be in compliance of this criterion; but it is usually very restrictive
in making corrections along many v -vectors and as a result, the
effective cutoff may be higher than in (2.8.2). Marquardt's method
on the other hand, offers more control on the corrections through
the choice of the parameter . The largest correction in Mar -
quardt's method occurs along v closest to /. Thus, we may choose
u = o.c% where a > 1 is a positive constant which ensures that only

very small corrections are made along the eigenvectors with
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)\i < ¢. The choice of a depends on the actual parameterization
being used; but a = 10 often seems to be satisfactory. The number
of singular values greater than the cutoff is approximately the num-
ber of parameters that can be estimated with reasonable certainty.

Each 6f the v-vectors associated with these large singular
values should be plotted as a function of the spatial position in the
reservoir for each of the unknown rock properties, Then the regions
where one or more of these vectors have large elements are Where
we may expect to determine the appropriate rock property accurately,
In the rest of the reservoir domain, the rdck property is not well-
determined by the data and its final estimate may be expected to be
fairly uncertain. If possible, the rest of the v-vectors should aléo
be plotted. The components of the rock properties along these
vectors have little influence on the data. Particularly, note that
many of the ill-determined components have very rapid spatial
oscillations. Similarly, the u-vectors may be plotted against time
for each of the observation sites. Then the history match errors
following the pattern of any of the u-vectors with large singular
values will have a large influence on the parameters and will be
more completely eliminated than the others during the history
matching aftempt. On the other hand, the errors along those with
small singular values will be difficult to remove and will constitute
the residual history match errors.

The results of this analysis can be further extended to quan-
tify the region-wise parameter sensitivity using the procedure

described in section 2,7. One may compute the index of the region-
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wise sensitivity for each of the rock properties, The index may be
used for a rough indication of the uncertainty to be expected in the
corresponding final estimates. It may also be used to determine
the optimal zonations as follows. The regions with high sensitivity
index may be covered by small zones to obtain a better resolution

in the final estimates. The regions with low index of sensitivity
may be lumped into a few large zones in order to increase the sen-
sitivity of the zonation parameters to a level such that they can be
estimated with acceptable certainty, However, while using this
technique it should be borne in mind that this index exhibits a high
degree of saturation characteristics. That is, it varies rather
abruptly from a high value to a very low value and thus the gradation
for the intermediate values of the sensitivity is not very'satisfactory.
Hence, judgement must be exercised while defining the zones in this
manner,

The matrix of the sensitivity of the observations with respect
to the zonation parameters can be computed trivially from the matrix
A. This is achieved by simply adding the sensitivity values of a rock
property at the nodes of the grid contained in the zones., This sen-
sitivity matrix can be similarly analyzed by carrying out its singular
value decomposition. Then the singular values will give an indication
of how well-conditioned is the zonation parameter estimation problem.
If all the singular values are larger than the cutoff, then all the
zonation parameters can be determined with the arceptable level of
certainty. Thus this analysis can be used to study the effect of the

various alternative zonations and consequently to determine the
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"optimal'’ zonation.

The Bayesian approach to estimation, described in chapter 1,
has many characteristics that make it preferable to zonation., We
may obtain a sensitivity matrix for the Bayesian parameters from A
using the chain rule of differentiation. This merely involves, as in
appendix 1.4, the postmultiplication of A by the transpose of the
matrix Z, the columns of which are the eigenvectors, used as the
Bayesian parameters, of the prior covariance matrix. Then the
singular value decomposition of the resulting matrix may be similarly
carried out. The eigenvalues of the prior covariance matrix give
the expected ciegree of participation by the associated eigenvectors
in constituting the corrections to the prior estimates. The singular
values of the sensitivity matrix, on the other hand, indicate the
degree of information available in the observation about the associ-
ated y-vectors. Thus, if the number of the basis vectors with high
participation factors is less than or equal to the number of singular
values larger than the cutoff, the Bayesian estimation is well-
conditioned, and the significant components of the corrections are
well-determined.

The conditioning of the estimation problem is determined by
the spread of the larger singular values. If the singular values larger
than the cutoff are spread over many orders of magnitudes, the
estimation problem is ill-conditioned. Thus a parameterization
which yields the smaller spread of these singular values is the best-
conditioned formulation of the problem. The linear analysis can

thus be used to compare the conditioning yielded by the alternative
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zonation and Bayesian parameterizations; and their relative merits
can be judged, leading to an ''optimal'' parameterization for the given
problem.,

2.9 Conclusions

(1) The reservoir parameter estimation problem is usually
grossly underdetermined, when the values of the rock properties at
each grid block is allowed to be independent of others. This leads
to a high degree of non-uniqueness of the estimates

(2) Through linearized analysis, it is possible to determine
which components of the parameters cannot be estimated from a given
set of data. Analytical expressions are derived for the sensitivity
coefficients of an observation pressure with respect to small arbitrary
perturbations in the porosity and permeability in a single phase one-
dimensional reservoir; two different kinds of boundary conditions, for
impermeable and constant pressure boundaries,are considered. In
reservoirs with either kind of boundary conditions, the Fourier com-
ponent of the permeability with wave number £ (£ # 0) has O(L-l) influ-
ence at large times on the pressure; this implies that the highly
oscillatory components of the permeability cannot be estimated from
the observed pressures. In the reservoir with impermeable boundaries,
a similar component (£ # 0) of porosity has 0(2_2) influence, whereas
for 4= 0 the influence increases linearly with time; thus the mean
porosity can be very accurately estimated but the oscillatory com-
ponents are worse determined by the data than similar components
of the permeability. In the constant pressure boundary reservoirs,

the influence of the various porosity components vanishes exponentially



-167-
with t; thus accurate determination of porosity in such reservoirs
based on observed.pressures alone is not possible.

(3) The estimation may be attempted in two steps, estimation
of components of parameters in sensitive subspace, followed by the
determination of the insensitive components to smooth out the esti-
mated distributions according to some auxilliary a priori information
about the parameters. Such an attempt is found to require many
iterative steps including linearization and smoothing; it may not be
successful even after many iterations due to the approximately in-
variant nature of the sensitive subspace.

(4) A scalar index of the degree of accuracy to which a given
rock property in any region of the reservoir can be estimated from a
given pressure data, is developed. This index can be calculated
a priori, using nominal estimates of the properties. The index can
be used to determine the confidence that can be placed on the results
of the subsequent attempts at estimation, and to study the conditiening

of the problem under various alternative parameterizations.
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CHAPTER 3
COVARIANCE QF THE ESTIMATES

In this chapter we present methods for approximate determi-
nation of the covariances for the parameter estimates obtained by the
zonation and the Bayesian approaches,

There are two essential ingredients required for the détermi~
nation of the covariance of an estimate: (a) a measure of information
gained from the observations, and (b) a measure of errors in the prior
estim.ates or the ''initial guess.'' The first factor is determined
through the linearization of the estimation problem about the available
estimates, drawing on the results obtained in Chapter 2. The second
factor is used for the estimation of the error in the components of
the parameters about which the obs ervations contain inadeciuate infor-
mation, It is assumed that thekprior information is available in the
form of a priori mean and covariance matrix,

In section 3,1, we advance the arguments and derive the pro-
cedures for calculating the covariances for three cases: (i) estimation
done withéut constraints, i.e., no attempts are made to group and
reduce the number of parameters, (ii) Bayesian estimation, including
its parameterization and the ''soft'' penalty constraint, (iii) estima-
tion with "hard" constraints, an important example being the zonation
constraint. In section 3.2, we explore numerically the procedures
developed in section 3.1, and illustrate their application for the dif-
ferent approaches to estimation using the one-dimensional single-phase
reservoir, A discussion of various aspects of the results and a com-

parison of the covariances for the different cases are included.
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Section 3. 3 contains the verification of the predicted covariances for
the different parameterizations, using the results of simulated esti-
mation problems with k and ¢ distributions for a sample of four
realizations of the random process model, Section 3,4 contains a
numerical study of the sensitivity of the computed covariances to
changes in the prior covariance matrix, The prior covariance matrix
is based on the random process model of the Parameter distributions,
introduced in the Bayesian estimation. The sensitivity of the covari-
ances in the different cases is investigated in relation to the different
parameters determining the random process. Finally, the effect of
erroneous prior information on the predicted a posteriori covariance
is investigated in section 3. 5.

3.1 Derivation of Expressions for the Covariances

In this section we shall discuss the problem of determination
of estimate covariance in general terms. Having pointed out the dif-
ficulties with the standard approach when applied to the reservoir
proioerty estimation, we shall propose a Procedure that alleviates
these difficulties. Later in this section, we apply the procedure to
the zonation and Bayesian approaches to estimation, which are respec-
tively examples of hard and soft constraints on the parameter distri-
butions,

Letz be the calculated values of the chserved pressures cor-
responding to the estimates ﬁ at any iteration of the history matching
procedure. Letzro be the M-vector of observations, and ]1:;: be the

M-vector of the unknown "true" values of the parameters. Let y:'v< be
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the "true' values of the observed pressures, corresponding to the pa-

.

rameter vector IL . Let the observations and yﬂ‘ be related by

~

sk

y =y +n (3.1.1)
~ ~ ~ .
where 1’15.3 a Gaussian random vector of observation errors, with
zero mean and covariance "2: Let us define the difference of the cal-
culated pressures and the '"true' pressures corresponding to the ob-
servations as

* o] -
DA A S AU SR (3.1.2)

where 6Xh is the history match error. Similarly, we define the dif-
ference between the estimate and the unknown "true' value lr:‘: of the

parameters as

(3.1.3)

5k
om = mw -
~ ~

LN

We shall assume that the history matching is carried out to
such a degree that the residual history match error Sth is small;
let ﬁh be the resulting estimate of m. Further, we assume that the
observation errors in n are small; then the residual value G,.Yr of

7
the deviation &y defined in (3. 1.2) is also small. We shall assume

ate
<

that the corresponding residual deviation 6Er = E —jh is also small.
Then we have the linearized relation [see (2.1.4)]

S.Xr = éégr (3.1.4a)
and with (3.1.2) we obtain, for the residual values,

= AST +7m (3.1.4b)

Ihr r
where ,A, is the (L X M) sensitivity matrix evaluated at the estimates

~
m
~

h b
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%
/= 3;);;11 (3.1.5)

Then, for any inverse j~\¢ of A, the solution of (3. 1. 4a) is

Wy

6g = A" oy (3. 1. 6)

AT

However, the estimate correction §7 is obtained by using the residual
~r

history match error 6th in (3.1, 6). Then,

n s
81, = A by, (3. 1.7)

We shall define the error in the final estimate as

1>

e =
~

- E:{c (3. 1. 8)

. A . . .
where we redefine T to be the final estimate of r after the correction

A LA
&7 is made in '

~r
. A
7=, +om (3.1.9)
~ o~ ~T
Then we have
A A AA o N
5l’r'6l'r ~Z_r*—1rh—lr+1rh~zﬂ—lr- e (3.1.10)
Furthermore, we obtain from (3. 1. 6) and (3. 1. 7)
A Y _ W
67, - br. = A (6Zr—62hr) = -ATq (3.1.11)

where the relation (3, 1, 2) is applied to the residuals, Combining

(3.1.10) and (3. 1.11), and using the statistics of nwe obtain,
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(3.1.12)

where Eﬂ denotes expectation with respect to . Using (3. 1. 10) we

define the covariance of the error in the final estimate as

A
P, =E {ge') =E (@) @7 (3.1.13)
Then we have
p -a¥x A¥T (3. 1. 14)
~T ~ o~

Thus the covariance of the error in estimate depends on the
inverse é‘b of A. As discussed in section 2.5, the singular values
of A for an unconstrained reservoir property estirnation problem
decrease fairly rapidly in a geometric progression, resulting in a
situation where only a few of these singular values are significantly
larger than unity. This holds for most of the parameferizations
normally used, and at least a few of the singular values of A are
usually much smaller than unity. Thus, an inverse of A, which
takes into account all of its singular values would usually have very
large components yielding a covariance with unacceptably large
elements. I'or example in zonation, when the ordinary least square
solution, which is equivalent to the Lanczos inverse (Chapter 2)
including all the singular values of A, is used in (3. 1. 14), the trace
of En’ for the simulated problem with conditions of set 52 (see section

1.4) and Z =1 is as shown in table (3. 1.1). (Parameter means = O(l)).
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Table 3.1.,1 Effect of Number of Zones on Covariance

No. of Zones Trace (’_13")
4 0.843
8 0.427 x 10°
16 0.504 x 101°
33 0. 406 x 1022

Thus it is evident that inclusion of all the singular values of
A in é\p leads to unacceptably large variances in all of the above
zonations except for the four-zone case., However, when the number
of zones is small as in the last case the large zones entail a large
error due to the parameterization and it must be taken into account
also. We shall have more to say about this and other errors later
in this section.

On the other hand, ignoring the smaller singular values of A
in constructing éql would imply that A is in effect rank deficient - a
situation in which the problem is underdetermined; then the inverse

élli

is not unique, Thus, this direct approach to determination of the
covariance of the estimates does not yield reliable, acceptable and
unique results,

To obtain a realistic and acceptable estimate of '137r’ additicnal
information about 7 must be incorporated into the covariance deter-
mination, Such information may be in the form of a prior probability
density of gy, deriving from core sample data and other field tests,

perhaps in conjunction with a random process model for the rock

property distribution similar to that used in the Bayesian estimation
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discussed in Chapter 1. I{ more than one kind of prior information is
available about g, it should be integrated with appropriate weighting
during or before its use in the covariance determination procedure.

In the following we propose a methodology for accomplishing this.

We shall treat individually three types of parameterizations: (i) Esti-
mation with no explicit constraints, (ii) Estimation with soft constraints
using Bayesian estimati.on as an example, (iii) Estimation with hard

constraints with zonation as an example.

3.1.1 Covariance for Estimation without Explicit Constraints

In this subsection, we shall deal with estimation, in which
the rock properties at each node of the space grid are considered as
separate parameters. (This corresponds to the case with NZ = 33
in Chapter 1.) For a given grid, this is the parameterization with
the largest number of degrees of freedom in the unknowns; it involves
no additional constraints on the property distributions. As pointed
out in section 2.5, this problem is generally grossly underdetermined.
For example, for the 33-point-grid with 66 unknowns, and for 3
observation locations with a total of 75 observations, the (75 x 66)
sensitivity matrix A has only 9 singular values larger than unity.
Let us define the effective rank of A to be the number of singular
values larger than 0.1. Then the effectivé rank of the above-mentioned
sensitivity matrix is 17. Thus, making corrections along more than
17 y-vectors of A will result in unacceptably large uncertainty in the
estimates. All practical algorithms of history matching make itera-
tive corrections in only r out of possible M (= 2N in this case) dimen-

sions; for any algorithm to yield acceptable results r must be close
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to the effective rank of A.

The r-dimensional subspace of the parameter space, in which
the estimate corrections are made, is different to some extent for
different algorithms. Furthermore, the directions change from iter-
ation to iteration due to changes in estimates. However, according
to the results of section 2.5, the subspace spanned by a few y -vectors
of A with the largest singular values does not change significantly
with the estimates used in linearization. Consequently for a given
algorithm, we shall treat the r-dimensional subspace of thé parame-

ter space to be invariant, Let the (Mxr) matrix V. be formed by

1

using as columns the r v -vectors of A with the largest singular
values, We shall form, using the (M-r) remaining v -vectors of A

as columns, an Mx(M-r) matrix v We shall make the important

0.
hypothesis that no corrections in the estimates are made along the

columns of V Let ’/},1 be an (rxr) diagonal matrix with entries

Oo

)\1 = AZZ. . ?Ar, the largest r singular values of A; and let IN\O = diag

(A A A

r+2"°°1 M)' A

We shall also assume )\ << 7\1.

MRE r+l, " M

As the columns of Xl and V = together span the parameter

0

. . A
space, the residual estimate error 6;Lr‘=‘ n* - Iy, can be expressed

as
br,. = N2 t ¥y (3. 1.15)

where g and are, respectively, rxl and (2n-r)xl vectors defined

a,

by ¥V T{’ZLI. and X0T6r75r° The reader is cautioned that, since the

1

vector 6l'r is in general different from the deviation 67 defined in

Chapter 2, the vectors g and g, are different from the vectors
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bearing the same symbols in Chapter 2. Then the component YJIG’
being along the sensitive subspace, can be attributed to the difference,
82'1- =y 5 ; and the component X0a~0 is due to the fact that no cor-

rections are made along columns of XO’ We have from (3. 1. 4b)

8y, = é(YI %+y090)+1l (3.1.16)
LN B

6th = [El 90] o 1 VT = gélg+ 'UOQ()%O—’.U/ (3.1.17)
- P ~ ()

~ Ul a+n (3.1.18)

where we have used the assumption about relative magnitudes of

{)\i}. The least-square solution of (3.1, 18) is

8 (3.1.19)

Y

Then the inverse used in the linear problem (3.1, 18) is (EL\I) =

1

AT ,UT. Then applying the results (3. 1. 12) we have,
E{a-¢} =0 1. 20
a-gal} =0 (3. 1. 20)

A A T -1 .. T -1
En{(,‘i"% Ng-g ) } o= ,{,\1 ’gl z rgll‘/\z\l (3.1.21)

The error due to the lack of corrections in the insensitive subspace

spanned by the columns of XO is given by

rI\

=V, {zg - 2%} (3. 1.22)

R0

where Lo is the initial guess with which the iterative estimation
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process is started. Since g* is unknown, only statistical measure
of this error can be obtained; for that we need to consider the proba-
bility distribution for an appropriate ensemble of the rock properties.

Taking the expectation and using the assumed invariance of \

0’
= T — - - T _—
E,,{go} =¥ E,,{z,ro 7%} =¥ (mo-2) (3.1.23)
where we define the ensemble mean of 7,
z =E {zn*} (3. 1. 24)

If Zg does not coincide with _i, there will be a bias in the
estimate; we shall assume that the initial guess is chosen such that

no such bias exists, Then
E{gy} =90 (3. 1. 25)
o SN { . T <
E{@ -z9@ -z%7 1L, (3.1.26)

We shall assume that the covariance associated with the prior esti-

mate g is
~

By= El(m -z% (x 12T (3.1.27)
Then
T T
E {g490} =¥5B0 Y, (3. 1.28)

We shall now assume that n, and 7 are uncorrelated.
In order to determine the total covariance of the error in

estimate, we need to add the two components., However, we note
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that in (3. 1.21) and (3. 1. 28) we have expectations over two different

ensembles of n and #. Further, note that the quantity is indepen-

2
dent of n and hence the expectation on the left in (3. 1. 28) can be

~
interpreted as over both the ensembles. However, the expectation
with respect to s of the contribution in (3. 1. 21) is not easy to deter-

mine exactly, since both .A1 and U depend on 7 used in linearization,

1
Hence, we shall again make an additional assumption that ‘_./}1 and Hl
are approximately invariant forlrl belonging to the ensemble., Then

within this approximation we can interpret the expectation on the left
in (3. 1.21) to be over both the ensembles of n and . We then obtain

the following expression for the covariance, which is true approxi-

mately for all the realizations T,

- A A Ty A A T...T
p=E A@-m9@-19") =V,E {(a-a)(a-2) "}V,
+V,. E_{a.a }VT
~0 "7 x0~0"~0 (3.1.29)
“1_.T -1, T T T
=¥121 LBUL1 Y Yo Yo o Yo Yo (3.1.30)
-1, T T T o T
VST U ZG 2 v YY) By YY) (3. 1.31)

where the last expression is arrived at by using the orthogonality of

(V1 Yo)-
In the absence of detailed statistical information about the

observation errors, we may assume that n is zero-mean Gaussian

with uniform variance for its elements,

2
O—Iv) (3.1.32)

13

= N(E, o]
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In this case the first term of (3. 1. 31) simplifies,

T
1)

2..T T
= - -3
Vit V)P Y

2 -
}‘3“ OOXI':/})I A 5 ~~1X (3.1.33)

The considerations involved in arriving at the foregoing results
indicate that a statistical knowledge of the true property distribution
g is essential for the purpose of obtaining a realistic covariance of
the estimates, even though such a knowledge is not used in arriving

at the estimates themselves.

3,1,2 Covariance for Bayesian Estimation

In this approach, we start with an initial guess 20(:5) and
minimize

J = (V-YO)TE'I( O+ @ T ) (3. 1. 34)

~ o~ [aadile g NO S~

o are prior statistics of the

"true" property distribution m* and 2 is a covariance of the observa-

where as defined in (3. 1.24,27), T and P

tion errors. For small values of variations &y and &7 iny and 7,

we have the linear relation (2. 1.4), 6y = Aém., At each iteration of
~ o~ v

the history matching procedure, in the Bayesian approach, the cor-

rection &7 is determined by minimization of the quadratic index,

J' = (6y-Abm) " = (8y-AdT)
T -1
+ (m+om-mw) " Pyt (THET-T) (3. 1.35)

The solution of this quadratic minimization problem is

A T.-1 -1,-1 T-1 -1 -
f-a"2 a1 S - B leD ) 6o
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Then applying (3. 1. 36) to the estimate ir\h and identifying the

variation &7 and &y with their residual values, the estimated correc-

. A -
tion Inwis

A T -1 -1.-1 Te-1 -1lA =
I I N S
The error in the estimate of 6,15r is
§n_-6n_ = (AL 1A+ P —1)-1[AE'15 Pl w
~T ~T T Ve ~ ~0 ~ o ~Yh1‘ ~0 (’Vh-"‘)
ATz A en - Pilen (3. 1. 38)
~ v o~ ~T ~0 “~r
where, as in (3. 1. 4a)
A
631_ =wE -y (3.1.39)

A Tea-1 -1 T-1 -1 -
8, - 8. =(ATZ TAYP)T) [ATZ n-PpT(mxom)] (3. 1.40)
Then
E_ {3 -8m) (68 T .e{ TZ'IA+P'1)-1
n,T ( ’Er- "’r) (631‘-651‘) -E'ﬂ‘ ({E ~ ~ ~0
T -1 —1 T T ;':—T -1 T "'1 'l "].
[A7Z7 A+ Py @eT)meT)" BG] (AT E 7 A+PG0) 7 (3. 1 41)

where we have used the independence of :‘,and:r’ and the statistics of .
Since in the strict sense {'\ depends on T, evaluation of the expecta-
tion with respect tolrl is truly a prohibitive task., Hence, as done
earlier, it will be determined in an approximate fashion, We recall
from section 2.5 that the larger singular values of A and the asso-

~

ciated eigenvectors are almost invariant with the property distribution
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s used in linearization, as long as the spatial means of the properties
do not change much., In the above expression é, always occurs with
additive terms and thesmaller singular values do not significantly
influence its value. If we restrict our ensemble oflr/ such that its
realizations meet this requirement (as they would if they do not have
very large prior covariance), then we may treat the matrix é‘ to be
constant, equal to its value atﬁwhile evaluating the above expecta-

tion, Then recalling the definitions ofjr; and PO’ we obtain

{n =

En,w 631‘ - 531- —9/ (3.1.42)
n A Ty ,,Ts-1 -1,-1

E, o1 (8%,-8m, )80, -87 ) h= (ATZ A+ By (3. 1.43)

In light of (3. 1. 10) the quantity in (3. 1. 43) is the covariance of the

error in estimate, P_:
~ T

p o=’z A+l (3. 1. 44)

~T ~ e

We note that in (3. 1. 44), as in (3. 1. 29), the definition of ’1/3“ includes
expectation over both n and . Thus, we expect to find the a pos-
teriori covariances computed for two different property realizations
to agree very closely with one another; and we may compute the

expected covariance before doing the estimation, using A evaluated

—

at m,
~

The expression for ,.]‘?Tr can be written in an alternative form
using the matrix inversion lemma (Jazwinski, 1970) as

- T T -1
Fr =Py BoA (APyA" +2) " AR, (3. 1. 45)

From a computational standpoint, (3.1, 45) is preferable to the
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previous expression,

3.1.3 Covariance for Estimation Under Hard Constraints

The zonation approach and the procedure for approximate
implementation of the Bayesian estimation discussed in Chapter 1
involve hard constraints on the corrections in the estimates. These
constraints confine the corrections in the estimates to an M-dimen-
sional subspace of the parameter space; M depends on the parameter-
ization used; for example, in case of estimation of k and ¢ using NZ
zones M = 2NZ, and in the approximate implementation of Bayesian
estimation M is simply th¢ number of eigenvectors ofgo used as a
basis for correction in the 2ZN-dimensional parameter space. Math-

ematically this can be expressed by (again, assuming T :E),

(3. 1., 46)

&L

=G §

™
~

where G is a 2N x M matrix with rank M, its columns being ortho-

1
normal vectors which span the admissible parameter space. For

example, in the zonation constraint, if the elements {"i’ Tirl e
are constrained to be equal, then one column of 91 will have

all elements zero except for those with subscripts {i, i+l,.., i+m}

" i+m}

which will all be equal to 1/Ym+1 . In the numerical implementation

of the Bayesian approach, the columns ofg will be simply the eigen-

1
0 corresponding to the largest M eigenvalues., Due to
orthogonality of the columns of 91, (3. 1.46) implies £ = GFII‘(E-E).

vectors of P
~

The chain rule of differentiation yields the linear relation

between the small variations by and 6¢,

by = A G, 68 (3. 1. 47)
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A decomposition of the matrix (AGI) in a manner similar to
o~

that used for (2. 2. 4) leads to

=T
G 33T (5. 1. 48)

Out of the M singular values in Z&:, let ry be large and (M—rl) be com-
paratively small; we shall assume as before that no corrections iné
are made along the (M—rl)columns of :\Z associated with the smaller
singular values, ILet these column vectors in E form an Mx(M—rl)
matrix YO’ and let (Mxrl) matrix -\Zl be formed from the rest. Let

the corresponding columns of I’J- form —E-O and ’Tj respectively, We

1
shall assume (see section 2, 3) that the subspace spanned by the col-
umns of ?}1 is invariant with 'r'rwused for linearization, Then we have

L, +V

5 =V, 5+ Yo Lo (3. 1. 49)

and we may assume that only the component Ylgl ofé is updated
during estimation, whereas no corrections are made in the component
:\:7'050. Then using the same reasoning as that for the covariance of
the unconstrained case and using analogous notation, we have for the

residuals after history matching (i.e. replace 6§ by agr),
~ n

A
L Sy 1 (3. 1. 50)
En,n{%l LG s} = 4
where Z}-l is the XTI, diagonal matrix of the largest singular values
in :IS Furthermore, the covariance of the error in the estimate

A
ﬁér is
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A A
1r{ wérfaér)(&gr_sér)}

v. A gt Ty =T .
=V121 U 591751 Xl +y En{ﬁogo} Jo (3. 1.51)

Using the definitions (3. 1. 46) and (3. 1. 49), the orthogonality of the
columns of <5 and VO’ and the assumption of noncorrection in the

components along the columns of VO’ we obtain

T

E {éogg‘} :y G E {(w TT*)(TI 1r>:=) } IYO

ki) ~

Y (3.1.52)

As in the previous discussion, the second term in (3.1.51)
represents the error due to the lack of corrections in YOT( E—E*). In
addition to this, another error is introduced due to the hard con-
straint; it prevents the corrections in (é\-f) along the (2N-M) dimen-
sional subspace, which is the orthogonal complement of the subspace
spanned by the columns of 91‘ The ensemble average of this error
is zero; however, it contributes to the covariance, Since this and
the error in (3. 1. 52)1 derive from the same prior probability distri-
bution for the ensemble of the reservoir properties, the two are
correlated. Thus we have the following three additional terms in

. . . . A
the expression for the covariance error in the estimate o,

aT T = T ~T
1-G, G )
-G G1) Po U-G,G1) + 1-C1G819P0C1 Y0 0 &1
7 T T T ,
*C1 YooY G1 By -G,G)) (3.1.53)
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We note that the first term in the last expression is indepen-

dent of Xiand XO; it only depends on EO and »G-'l" Hence, once the

zonation is decided, for a given P, this error is fixed; and it is

0’
independent of the property distributions used in linearization for
determination of é We also note that the second and third terms
are merely transpositions of each other and represent correlation
of the same two errors. Furthermore, as the two errors are
orthogonal to each other - one in the subspace spanned by columns
91 and the other in the orthogonal complement, we may expect
them to exhibit some special behaviour. As shown in Appendix 3.1
they have zero trace. Thus they contribute to the cross-correlation
elements in the covariance matrix and even to the diagonal elements
representing the individual parameter variances, but do not con-

tribute to the trace which is the sum of these variances.

Adding all the contributions up, we obtain

. T e —-1=T T FT T —T T
P.=G 21 Y16, 1C 081k 01

M
a
>

V,V,G; PG

0 v

1 120Y 1YoYo G

T T oT <T T
GiHE-G181)P0G1 %0 %0 €1

+G (3.1.54)
~

In the absence of precise information about the observation

errors, Z may be assumed to be 025; this yields a simplification of

the first term on the right of (3. 1. 54) to

O'ZG
~

5

’ZV’TG;I (3.1.55)

1

v
~ ~ 1

1



-186-

Expression (3. 1.54) can be used for the zonation and the
Bayesian approach' when no penalty is levied along the M admissible
vectors. The case of estimation without any constraints, discussed
earlier in subsection (3.1.1), is a special case of the approach with
hard constraints, the number of constraints being zero and M = 2N.
Then the parameters being estimated are simply the N grid point
values of each of k and ¢, implying 91 :l; this value of 91 reduces

(3.1.54) to (3.1.31). (Note that for G

~1:&Y =V, A =A

1 ~1" ~1 " ~1’
Yo Yo Ty =540

We shall close this section with some general remarks. In
the foregoing discussion wé assume corrections only in the sensitive
subspace and none in its ofthogonal complement. This assumption
is only approximately satisfied by the different history matching algo-
rithms considered in Chapter 1. As a result, while implementing the
above results, a decision has to be made as to where the cutoff lies
in the singular values that leads to this division. The covariance
will vary with the selected cutoff. In practice, this cutoff can be
decided by trial and error as follows. If some additional small
singular values are included in the inverse, their contribution will
increase the covarianceg this is accompanied by some reduction in

the error term containing v Thus it seems plausible that an opti-

O'
mum cutoff will exist at the smallest value for a scalar measure of
the covariance (the trace, for example)., In the following section
we investigate this possibility numerically and find that such an

optimum value for the cutoff does exist. Then this value of the cutoff

may be selected for covariance prediction,
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While determining the cutoff, the properties of the algorithm
used for history matching may also be taken into account. For the
gradient algorithm only a few of the larger singular values must be
included in the inverse, yielding a somewhat higher contribution by
the error due to noncorrection. Whereas for the Marquardt method,
as pointed out in section 2.3, the components of the correction along
the y-vector with the singular value closest to Y will be dominant;
therefore the cutoff in this case should be at singular values sub-
stantially smaller than )/— . Looking at it from a different angle, an
optimal value for p may be selected as follows. As noted in the
previous paragraph (and verified numerically in section 3. 2), an
optimum cutoff exists, which leads to the smallest norm or trace
of the a posteriori covariance. Then the value of p may be so selected
that the virtual dimensionality of the correction subspace is as close
as possible to this optimum cutoff. We present numerical results
concerning this in the following section.

As discussed in detail in section 2.5 and briefly in subsection
3. 1.2, the subspace spanned by the y-vectors of A with the larger
singular values is approximately independeﬁ.t of the property distri-
butions used for linearization, as long as their spatial means do
not change very much; it primarily depends on the conditions of the
estimation problem, for example the number and location of the
observation sites and production wells, the number and times of the
observations at diffcrent sites, the production rate histories for
different wells. Thus, these vectors can be computed using A cor-

responding to the prior estimates and used for the covariance
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computation. The computed covariances will be valid approximately
for the whole ensemble of the reservoir properties. This makes it
possible to compute the covariances for a given estimation problem

before doing the estimation.

3.2 Computational Results on Covariances

In this section, we present results concerning numerical
computation of the covariances for the different parameterizations
considered in the last section.

The conditions of the simulated estimation problem are those
of the set S2 detailed in section 1.4. (They are for a one-dimensional
reservoir with three observation sites and two production wells; the
production rates are piece-wise constant and there are 25 observa-
tions at each site, taken at uniform time intervals from the start of
the production,) The observation errors are assumed to be Gaussian
random variables independently distributed with zero mean and a
variance of 1 psi® (implying Z = I).

The sensitivity matrix ,Au’ required in the covariance com-
putation was evaluated for uniform property distributions corres-
ponding to their respective ensemble means of 5.0 md and 0.2, To
investigate the effect of the property distribution used in the 1i.ﬁeari-
zation, some of the computations were repeated using A for the
realization R-2.

The prior covariance 5’0, for the computations in this section,
is taken to be the ''true'' matrix which was used in generating the
realizations of the property distributions. We shall study the influ-

ence of variation in PO on the predicted covariances in section 3.4
~F
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and the effect of erroneous specification Of,_:E/)O in section 3, 5,

We shall carry out the analysis in a manner similar to that
of section 3,1, taking each parameterization separate‘ly. First we
shall treat the case of estimation with no explicit constraints; then
the Bayesian estimation will be dealt with; finally the zonation will
be studied as an example of the hard constraints.

We shall not present the full (66 x 66) covariance matrices,
and instead will concentrate on their most important elements,
namely those on the principal diagonal. In addition, a comparative
study requires a scalar measure for the matrices. We shall use
the trace for this purpose; not only is it easy to compute, ‘but also
it is a measure of the total uncertainty in the estimates of all the
parameters, since it is the sum of their variances. All the variances
reported in the remainder of this chapter are for the normalized
properties ki/E and ¢i/$. In this section, we shall attempt to under-
stand and interpret the predicted variances of the 66 parameters,
and the contribution to them by the different terms in the expressions
of Eﬂ in the respective parameterizations, In the non-Bayesian
parameterization, we shall also study the relative importance of the
contributions by the uncertainty (term depending on {4) and the
total error due to parameterization which includes the errors due to
noncorrection and the hard constraint and their cross-correlation,

This leads to the study of trade-off between the two contributions,

3.2.1 Covariance for Estimation with no Explicit Constraints

Expression (3. 1.31) is used in the computation for this param-

eterization. As it is not evident a priori what value to use for r,
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the rank of 'Yl’ we shall let it be a variable, Nv’ and study its influ-
ence on the different aspects of the result, Figure (3.2.1) shows
the variation of the trace of f" corresponding to the normalized
rock properties, and the contributions to it by the two terms on the
right hand side of (3.1, 33). The trace of the total covariance is
minimum for Nv = 9. As N, increases, the contribution of the first
term involving the eigenvalues )ti (which are the sensitivities of the
components of T along xi) increases rather sharply, whereas the
contribution of the term representing the ensemble average of the

"error due

square of the error due to noncorrection (identified as
to noncorrection'' in the sequel) diminishes very gradually with
increasing Nv‘ (Note also that in the figures, NV is written as

NV). As a result, the trace of the sum is not symmetric about

the minimum, Figure (3.2.2) shows these results for the case when
the sensitivity matrix A is evaluated for the property distribution
R-2. The results in the two cases are very similar. However,

the minimum of the trace of the total covariance in the latter case
occurs at NV = 8, and the curve is shallower near the minimum.,

The similarity in the two cases is encouraging, in view of the fact
that the R-2 distributions are significantly different from the uniform
distributions.

Figure (3. 2. 3) shows the variances of the estimates of the
grid point rock properties, which are the diagonal elements of the
covariance matrix, for NV = 9 and linearization about the uniform
distributions. The association of each element of the parameter
T)T

vector m= (k™| ¢ with a region in the reservoir is exploited in
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the identification of the abscissae by the physical location in the
reservoir for each property. The figure also shows the contribution
to the variance of each m, by the sensitivity (containing {)\j}) term
and the other term in (3. 1.33). The traces of each term and of the
total variances are also included. For this problem, the trace of
contribution by the error due to noncorrection is much larger than
the trace of the other term, for the value of Nv at which the minimum
of tr(P ) occurs. An examination of the distributions in figure

(3. 2. 3) reveals that the contribution of the XO term is high in the
regions of low sensitivities (for example as defined by the index of
insensitivity of section 2.7), whereas the other contribution is very
small in these regions, as expected., The contribution by the more
sensitive parameter in the uncertainty term is largestbin the regions
of intermediate sensitivities, as these parameters correspond to
the v-vectors with the smaller singular values which are included

in this term. The kinks indicating rapid fluctuations in the sensi-
tivity of the permeability in the vicinity of the production wells,

fig. (1.8.3), are reflected in the variances through the XO term
contribution. The variance of the porosity in the region around

% = 1200 ft is low because of the high sensitivity due to the existence
of the two production wells on its either side. The high sensitivity
of the porcsity in the regions close to the boundaries, reflected by
lower variances, results from the faét that the oil removed from
these regions cannot be replenished by any inflow because of the

impermeable boundaries,
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Figure (3. 2. 4) shows similar results for linearization about
R-2 and for N = 8. The variances of the permeability estimates
are very similar to those in the case discussed above. However,
the porosity variance has a large '"gpike'' at the central production
well when A for R-2 is used, while no such anomaly exists for the
other case. This difference is due to two factors. Firstly, the
analysis rests on the cutoff N, that separates rather arbitrarily
the eigenvectors into sensitive and insensitive sets; furthermore
the factor ;/_X:Z in the first term in the expression for the covariance
sharpens the effect of the cutoff, as the Ai closest to the cutoff yields
the largest contribution to this term. The cutoffs are different in
the two cases. Furthermore, we note that v-vectors of ’é for the
two cases do not have an exact one to one relation after the first six
singular values, (See figure 2.5.5). In particular, the seventh
and the eighth vectors for R-2 have pronounced kinks whereas no
such kinks exist in the first 9 y-vectors for uniform distributions.
These differences become dominant as discussed above. This ten-
dency for abrupt local changes in the computed variances is a
shortcoming of the proposed procedure for covariance prediction.
However, it must be recalled that the distributions of R-2 are sig-
nificantly different from the mean values (see figure 1.4.2,) and in
this sense this is a rather extreme test. Even in this extreme
test, the computed variances for most of the parameters do not

differ significantly in the two cases.
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3,2.2 Covariance for Bayesian Estimation

The covariance matrix for the estimate resulting from the
Bayesian approach was calculated using (3. 1. 45).

In order to reduce the computational requirements, the sensi-
tivity matrix A was not computed afresh; instead, it was reconstructed
from its largest 20 singular values and associated u and X/—vectors.
From the plot of the singular values (figure (2.5. 1)), it is evident
that the ratio )\21/7{1 is approximately 10—6, indicating a high degree
of accuracy in the reconstructed matrix. The reconstructed sensi-
tivities were verified by comparison with their exact values, and
except for a few smallest elements four-to-five decimal place agree-
ment was observed. As the term containing A is added to a positive
definite matrix in the second term of (3. 1, 45), the smaller elements
of A do not contribute significantly to it. The neglect of the smaller
singular values of A while its reconstruction is tantamount to round -
ing them off to zero, and this will yield a slightly conservative
covariance,

The inversion of the (L x L) symmetric matrix in (3. 1. 45) -
was carried out accurately via its eigenvalue-eigenvector decompo-
sition using the program of Bushinger and Golub (1969).

The parameter variances for the Bayesian estimation are
plotted in figure (3. 2.5); it shows two sets of variances resulting
from the linearization about R-2 and the uniform property distribu-
tions., The variance distributions for the two cases are very similar.
The variances of the permeability in the regions around x = 1000 ft

and x = 2200 ft are significantly higher for linearization about R-2.
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This is due to substantially higher permeabilities in these regions
for R-2 than the mean value, leading to a drop in the pressure
gradients in these regions; the sensitivity of observation with respect
to the perreability in a region is approximately proportional to the
time average of the square of the pressure gradients in that region
(see Appendix 1,4). Similarly the porosity estimate variances in
the region (800 ft-1400 ft) are larger for linearization about R-2 due
to a lower influence on the observation of the porosity in that region,
This is due to high porosity values than the mean in these regions
for R-2, leading to a smaller average time-rate of pressure decliné
which is directly proportional to the ¢ -sensitivity.

Figure (3. 2.5) also shows the variances for the case when
the estimation is carried out using a total of 24 observations, 8 at
each observation site, taken over the same period at uniform inter-
vals. The linearization in this case is about R-2, The distribution
of the variances is similar to that for 75 observations, but they are
somewha.t higher. However, the small difference in the traces for
the two cases indicates that taking three times as many observations
at the same location in a given period of time does not increase

significantly the information content of the data.

3.2.3 Covariance for Estimation with Hard Constraints

Expressions (3.1.54-55) were used together with A for line-
arization about the uniform distributions in this case, The zonations
involving 4,8 and 16 almost uniform zones detailed in Chapter 1 were

treated. In each case the calculations were repeated with different
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values of Nv’ the rank of Y-l’ and the trade-off between the uncer-
tainty and the total parameterization error was examined. As in
the case with no explicit constraints (see the foregoing subsection
3.2.1), the trace of the total covariance was minimum for a certain
value of N_; these optimal values were 7, 9 and 9 respectively for
NZ =4, 8 and 16. The details of the distributions of the parameter
variances (diagonal elements offn) including the contributions by
the various terms were studied for these values of N, in each of the
zonations., The results and their discussion follow,

The results for the four-zone case are shown in figure (3. 2, 6).
The contribution of the NV (= 7) sensitive parameters (y-vectors),
given by (3. 1.55), is small in regions of very high or very low
sensitivity., The contribution by the second term which represents
the ensemble average of the square of the error due to noncorrection
along the remaining (ZNZ-NV) v-vectors is largest in the zones of
smallest influence. The third term contribution, which is the
ensemble average of the square of the error due to the hard constraint
of zonation, is the largest near the zone boundaries. This can be
explained from the following: the representative value of a rock
property in a zone is close to the mean of its ''true'' distribution
in that zone; for a smooth property distribution, implied by the
assumed EO’ the mean is close to the value of the distribution at
the center of a zone. Thus, on the average, the zonation constraint
causes the minimum error at the center and the maximum error at

the boundary of a zone., The distribution of this zonation error has

a uniform pattern almost all over the reservoir because the pre-
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scribed EO represents a homogeneous random process for the prop-
erty distribution and also all the zones except one are uniform in
size., Moreover, since for the normalized property distributions
the submatrices in 3’0 corresponding to’l\g andg are identical, these
error distributions are identical for both the properties.

The last two terms in (3. 1. 54) are the cross-correlation of
the errors due to the hard constraint of zonation and the noncorrec-
tion along the columns of EO“ They are the transpose of each other,
hence only one plot of their diagonal elements is shown in the fig\ire.
As discussed in section 3,1, and proved in appendix 3 1, these
terms have null traces; this is verified computationally by the re-
ported value., The contribution of the cross-correlation terms is
significant only in the regions of low sensitivity, where the non-
correction error is significant, Furthermore this contribution has
a negative minimum at the zone boundaries and a positive maximum
at the center. It is positive at the center because the error due to
noncorrection will be, vs;hen the initial guess coincides with the
ensemble mean, on the average of the same sign as the error com-
mitted at the center of the zone due to the lumping fbr zonation,

The reverse is true close to the zone boundaries,

The total variance for ki is low in the regions close to the |
production and observation sites because of high sensivity of the
observations with respect to those permeabilities. Note that for
this case with very few and large zones, the error due to the zona-
tion constraint dominates the rest of the contributions.

Figures (3.2.7) and (3. 2.8) contain similar plots for the
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cases of 8 and 16 zones respectively. The general features are
similar to those of the four-zone case detailed above. The major
differences are as follows., The variance distributions for N7 = 4
are dominated by the error due to the hard zonation constraint; as NZ
increases this contribution diminishes, At the same time, the error
due to the noncorrection in :\ZO increases, because the dimensionality
of the zonation parameter space (= 2ZNZ) increases while the number
of high sensitivity parameters (N,) remains almost unaltered. For
the 16-zone case the error due to the hard constraint is uniform
over most of the reservoir, because each zone in this case includes
only two grid points which are equidistant from the zone boundaries.
The zone closest to the boundary at x = 3200 ft consists of three

grid points and hence shows some variability 'of this error,

As the number of zones is increased from 8 to' 16, the zone
size becomes small enough that the kinks in the distribution of the
sensitivities of m, are replicated in that for the zonation parameters,
This results in the rapid spatial variations in the error due to non-
correction and consequently in the total variance distribution in
figure (3. 2.8).

3.2.4 Comparison of Covariances for Different Parameteri-

zations
As discusse.d at the beginning of this section, we shall com-~
pare only the traces of the different matrices. We note that any
norm of the matrices would also suffice for this purpose, but the
trace is easier to compute, Moreover, the trace of a covariance

matrix is an important quantity encompassing the information about
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the quality of the estimates of all the parameters; in particular, it
is the sum of the variances for the individual parameters (which are
all non—negafive).

Figure (3. 2.9) shows how the trace offﬂ varies with NZ in
the zonation approach. (The case NZ = 33 is included as a special
case of zonation,) The values in this plot correspond to the mini-
ma in the trade-off curves of tr(gﬂ) versus Nv' The figure also
shows the contributions by the total parameterization error (which
includes all the terms except the first in (3. 1. 54)) and the uncer-
tainty term involving the sensitivities, The total parameterization
error passes through a minimum at NZ = 8; whereas the uncertainty
contribution has a maximum there., The parameterization error
declines from NZ = 4 to NZ = 8 primarily because of the reduction
in the error due to the zonation constraint; the rise from NZ = 8
to NZ = 33 is due to the increase in the error due to noncorrection
accompanying the increase in the dimensionality of »YO (= ZNZ-—NV)..
The minimum in the total trace is significant, It implies that if the
estimation were carried out '"optimally'' (so as to achieve the cor-
rections commensurate with the appropriate ''optimal'' value of
Nv), the zonation with eight zones would yield the most accurate
estimates. Thus, for the given set of zonations, NZ = 8 is the ''best''
parameterization. We shall compare these predictions with the
results detailed in tables (1.6.7-10) of simulations carried
out using property distributions for four realizations, The mean
values of Jk + J¢ for this sample of 4 realizations are 8,727, 8,293,

7.863 and 8. 795 respectively for NZ = 4, 8, 16 and 33. These
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results are in a qualitative agreement with our predictions in that
a minimum in the total error does occur at an intermediate value of
NZ. The minima in two cases do not coincide; it may be due to one
or several of the following reasons: (i) The errors Jk and J¢

(see table (1.5.1)) are different measures of error than the vari-
ances of the estimate errors, (ii1) The effective values of NV in
actual simulations may be different than those used for the predic;
tions in this section, (iii) The sample size of four realizations may
be too small yielding a large statistical scatter in the mean values
of (Jk + J¢). (A more extensiv;e simulation using many additional
realizations is necessary before reliable estimates of the total
errors can be obtained by averaging; however, it would be very
expensive, )

Figure (3. 2.9) also shows the trace of the covariance for
the Bayesian estimation. The trace -Offn is smaller for Bayesian
estimation than for any of the zonations; this is expected, because
the Bayesian estimation incorporates prior information (in terms
of prior mean andNIfO) in the estimation process, whereas no such
information is exploited by the zonation approach, Thus the Bayesian
approach is expected to yield more accurate estimates., This pre-
diction is again qualitatively verified by the results of simulations
reported in Chapter 1; the average value of (.Ik + J¢) for the four

realizations is 7. 240 for Bayesian estimation, which is lower than

that for any of the zonations.
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3.3 Verification of the Predicted Variances

The procedure proposed in section 3. 1 for determination of the
covariances of the property estimates was tested using the results of
simulations deécribed in Chapter 1. In this section we present a
comparison of the predicted variances (the diagonal elements of the
covariance matrix) with the actual estimation errors in the simula-
tions averaged over a sample of four realizations., Admittedly thié
sample is too small to lead to conclusive results; but it may serve
as a qualitative indication of the accuracy of the predicted covari-
ances, The comparison is carried out for all the different parame-
terizations for which the predicted covariances were presented in
the preceding section; the results for the individual parameterization
are presented in the same order as before.

We recall that the conditions of the simulations were identical
with thos‘e used for the predictions, Thus there is no modelling error,
. or uncertainty about the reservoir geometry, boundary conditions,
production rate histories and the observation instants, In the field
problems, these factors will be present and our predictive capabili-
ties will, in general, deteriorate. The observation errors are zero-
mean, independent Gaussian random variables with a uniform vari-
ance of 1 psi2 (E :}).

The minimization was carried out using Marquardt's method,
with p = 100 for all the cases except for the Bayesian estimation in
which p = 50 was used. However, we recall from Chapter 1 that,
as long as p is not changed significantly (say, by one or more orders

of magnitude), the results of Bayesian estimation do not suffer any
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significant alterations. We recall from the analysis of Chapter 2
that Marquardt's method, in minimization without Bayesian penalty
term, yields the largest correction along the z—eigenvector of A
with singular value closest to Yu. Thus the use of p = 100 in the
zonation approaches (NZ =4, 8, 16, 33) will result in insignificant
corrections along the v-vectors with )\i = O(1) or smaller. From
figure (2.5. 1) it is evident that the number of singular values larger
than unity is 10; this implies that for NZ = 33 the dimension of the
correction subspace - the effective value of N, - for the simulations
is approximately 10, Furthermore, in fhe singular value decompo-
sition of (’égvl) for NZ = 16, 8 and 4 yielded the result that the
number of singular values significantly larger than unity is 9,‘ 9 and
7 respectively. These are precisely the '"optimal'' values of Nv for
these cases observed in the previous section. This indicates that
p = 100 is an ''optimal'’ choice for NZ = 4, 8, 16 and 33; it is ex-
pected to yield estimates with the smallest trace of total covariance,
Hence we are justified in comparing the results of these simulations
with the predictions based on the values of Nv which lead to the
smallest trace of the covariance matrix in the respective cases.

We emphasize that the foregoing consideration indicates that

an optimal value of u can indeed be chosen for zonation from an

analysis utilizing the prior covariance. We also note that the gra-

dient minimization algorithms do not lend themselves to such analysis
of the effective dimensionality of the correction subspace (Nv). Thus,
accurate prediction of the covariances is not possible for them; from

the considerations of section 2. 3, we conclude that the effective
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value of N for the gradient algorithms are somewhat smaller than

those which yield minimal tr{fn} .

The root-mean-square (abbreviated as '""rms'' in the sequel)
estimation error for each property at each grid point was computed
for the sample of four realizations, and compared with the équare
root of the predicted variance (the standard deviations). The two
quantities are plotted together for the sake of comparison. Figures
(3. 3.1-3.3.5) show such plots for all the different parameterizations
considered. As done before, the association of each element of 1
with a grid point in the reservoir is utilized in the identification of
the abscissae. We conclude from the comparison that on the whole
the predicted standard deviations of the estimate errors and the
rms values for the actual simulations are in good agreement in the
cases of zonation (NZ =4, 8, 16) and in estimation without con-
straints (NZ = 33). The Bayesian estimates have somewhat higher
actual estimate errors compared with their predicted values. This
may be partly due to the approximations made in arriving at the
expression for the predicted covariance and partly due to the limited
sample size.

We conclude that when an accurate prior covariance is known,
the fofmulation in section 3.1 yields fairly accurate predictions of

the variances for the property estimates obtained via the different

approaches to parameterization and estimation considered here.
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3.4 Effect of Prior Covariance on A Posteriori Covariance

In this section we shall study the effect of change in the spe-
cified prior covariance on the a posteriori covariance predicted by
the results of section 3.1, In addition to indicating the influence of
50 on f", such an investigation is important in predicting the effect

of an error made while specifying the prior covariancefo on the

results.

Parameters of Prior Covariance. As detailed in Chapter 1, we can

specify the prior covariance matrix for the reservoir parameters
based on qualitative or quantitative knowledge about the degree of
smoothness of their distributions and the degree of their variability
from the specified means, Such a construction hinges on modelling
the parameter distributions as a realization of a homogeneous random
pro;:ess. Then the prior covariance matrix for the porosity and
permeability distributions can be specified by four scalar parame-
ters, namely s, the parameter associated with the length of the
autocorrelation, the uniform wvariances, 013 and og, characterizing
the ﬂuctuationé of the respective parameters from their mean values,
and p, the cross correlation parameter. The parameter s reflects
the degree of smoothness of the spatial distributions of k and ¢. On
the other hand, Oy and o¢ reflect the degree of confidence we have
in the specified mean values and also the degree to which the actual
local values of the parameters are expected to deviate from the
respective means.

We shall investigate the effects of variations in the prior

covariance within the framework of this construction. Consequently,
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we shall first vary s while keeping the rest of the parameters inhl’Do
fixed. Then we shall study the effect of the erroneous specification
04) and 0 as t_he two distributions are correl;ated, it is reasonable
to vary them simultaneously and in the same proportion. Later we.

shall study the effect of varying p.

3.4.1 Change in Specification of s

The covariances for the different parameterizations treated
in section 3. 2 were recomputed using s = 2.5 and 7.5, while keeping

the rest of the parameters inhl? unchanged as follows: o‘(b/c_t; =

0
ckflz = 0. 25, <_l)- =0, 2, k =5.0 md, p =0.5. In the following descrip-
tion of the numerical results, the values of oﬁ and ‘cj are indicated
through a single parameter B, in a manner similar to that of Chapter
1; a variation in these parameters from their nominal values noted
above by a factor p will correspond to replacing the prior covariance

matrix .-.1?0 by BEO, Denoting the nominal values of the variances

quoted above by o‘¢7(2) and okg , the parameter § is given by
2 2 2, 2
p = Oy /GkO = ¢/°O (3.4.1)

The sensitivity matrix ’I_XI for the uniform distributions (equal to the
respective mean values) was used for all of the following computation.
The resulting variances were compared with those obtained for s = 5.0
in section 3.2, The a posteriori variances for these three values of

s for each of the five different approaches to parameterization are
plotted in figures (3.4.1-3.4.5). The trace of the a posteriori co-
variance matrix and the relevant parameters of P, are also indicated

0

in the figures,
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3.4.1,1 Estimation without Constraints

Figure (3.4.1) shows the plots of the variaﬁces for esti-
mation done without constraints, i.e. NZ = 33, In this case, trace
(Eﬂ) is minimum for N, = 9 for all the three values of s, As the
value of s is increased, the trace decreases, implying a better overall
estimation for a higher value of s. As discussed at the beginning of
this chapter, the a posteriori covariance depends on two factors:
the prior covariance and the information content in the observations.
For a given set of observations, and given fband N, the changes in
the posterior covariance are entirely due to those in the prior covari-
ance. Then the above-mentioned trend in trace (,:-E)TI') can be explained
from the fact that a larger value of s implies a higher information
content in the prior estimates; this assertion follows from the obser-
vation made in Chapter 1 that for a higher value of s, the matrix EO
has a larger number of eigenvalues close to zero. It is well known
that a reduction by one in the rank of a covariance matrix of a random
vector is tantamount to the existence of an additional deterministic
relation between its elements. Thus a larger value of s corresponds
to fewer basis vectors (the eigenvectors of’Eo) in the parameter
space along which the components of the prior estimate vector have
significantly large uncertainty.

Now we shall examine the details of the variance distribution
for the three values of s. The reduction in the trace with increase
in s is mainly brought about by the reduction in the variances of the
permeability estimates in the regions between the three observation

sites and by an almost uniform reduction in the variances of the
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porosity estimates all over the reservoir. In addition, as s is in-
creased, the distribution of the variances becomes smoother in
general, This is because of the contribution by the error due to
noncorrection in the expressions (3. 1. 30); it is obtained by pre- and

post-multiplication Of,go by the matrix V The larger value of s

0
results in the elements offo dropping off to zero less rapidly as we
move away from the diagonal; this has a greater averaging effect

in the error term and consequently the results are smoother on the
average. An important exception to this trend is,the kinks occurring
in the variance distribution of the permeability estimates in the
vicinity of the observation sites which contain producing wells
becofne larger as s incréases. It appears that the effect of increase
in s is to increase the steepness and amplitude of the large and
sudden changes in the variance distribution while smoothing out
small variations,

3.4.1.2 Bayesian Estimation

Figure (3.4. 2) shows the effect of s for the Bayesian
estimation., The trace of the a posteriori covariance matrix decreases
considerably as s is increased. This is due to the increased infor-
mation content inhlfo resulting from larger s, as discussed in the
foregoing paragraph. An important feature of this case is,the dis-
tribution of the a posteriori variances becomes smoother as s is
increased, and no sharp changes are present for s = 5 and 7.5. For
8 = 2,5, the averaging effect of’_l_?o (discussed above) is sufficiently
small to allow the variations in the sensitivity to be reflected in the

variance distribution, The rapid decrease in the variances with
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increase in s indicates that an accurate specification of s is important
for a reliable determination of the a posteriori covariance for the
Bayesian estimation., In particular, too large a value of s will lead

to undue confidence in the estimates.

3.4.1.3 Estimation with Hard Constraints

In the study of the effect of s on the a posteriori covari-
ance for the zonation approach, we shall first investigate how the
trade-off between the contributions of the uncertainty and the parame-
terization error is affected, For each zonation, the trace {Eﬂ’}
was found to be minimumn at approximately the same value of NV for
the different values of s. For the purpose of illustrating the details,
we plot the traces of the various contributions to the total variance
against NV for the three values of s for the eight zone case in figures
(3.4.3a,b,c). As explained previously, the contribution by the sen-
sitivity term in the expression (3. 1. 54) remains unaltered when s
is changed. The error due to the hard constraint ch“anges signifi-
cantly with s but is independent of Nv' The contribution by the error
due to noncorrection in the (ZNZ—NV) less sensitive directions in the
parameter space changes little with s. On the whole, the minimum
in the plot of the trace of total a posteriori covariance does not shift
appreciably as s is varied,

Figure (3. 4.4) shows the results for the four-zone case. (The
values of Nv used in the computations, which yield minimal tr {En}v’
are indicated in this and similar figures throughout this section,) |
In this case, the dominaﬁt contribution to the total variance is that

of the error due to the zonation constraint; hence the effect of s on
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the total variances can be understood in terms of the variation of
this error with s. - As s increases, the realizations of the homogen-
eous random process become less oscillatory, and thus better suited
for approximation by zonation; as a result, the error due to con-
straint decreases considerably as s increases, and with it the trace
of the total covariance decreases. The reduction occurs all over the
reservoir, but especially near the zone boundaries, because a
smoother profile has a smaller average difference between the
parameter values at the center and near the boundary of a zone,

Figure (3.4.5) contains the results for the eight-zone case.
As discussed above, the error due to the constraint decreases
rapidly with increase in s, yielding a smaller trace. In particular,
the high level of error near the zone boundaries decreases rapidly
yielding a relatively smooth spatial distribution of the variances for
s =7.5.

Figure (3.4.6) depicts the results for the 16-zone case. In
this case, the trace of the total covariance decreases less dramati-
cally with increasing s; this is because for this case the error due to
the zonation constraint is a relatively‘ small contribution to the total
covariance. The spatial distributions of the variances become
smoother, in general, as s increases but the sudden jumps near
the production well sites become sharper. Both these features are
very similar to those observed in the case of estimation without
constraints (NZ = 33).

In conclusion, we observe that in all the parameterizations

studied here, an increase in the parameter s of the prior covariance
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leads to smaller variances of the estimates. The largest effects
are observed in the cases of Bayesian estimation and zonation with
very few zones:. The trace of the a posteriori covariance changed

at most by a factor of 3 for a 3-fold increase in the value of s. In
all the cases studied, a larger value of s leads to a smoother spatial
distribution of the variances in most regions of the reservoir., In
zonation with many small zones, the variance distribution for the
permeability shows sudden changes in the vicinity of the production
wells containiﬁg observation sites, the kinks becoming larger and

sharper with increasing s,

3.4. 2 Effect of Change in Prior Variances

An alteration of the specified diagonal elements of the prior
covariance matrix has a large influence on the a posteriori covari-
ance. This can be explained from the following. The diagonal
elements reflect the degree of confidence we have in the respective
prior estimates. Due to the ill-conditioned nature of the problem
detailed in Chapter 2, the observations contain almost no information
about some of the parameters., Thus the uncertainty in the estimates
of these parameters does not decrease due to history matching the
observations, and their posterior variances are almost identical
with their prior ;\rariances. In other words, the a posteriori covar-
iance contains significant error contributions which strongly depend

on the prior covariance.
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3.4, 2,1 Estimation without Constraints

Except in the case of the Bayesian estimation, most of the
terms in the expressions for the a posteriori covariance are directly
proportional to the prior covariance. This results in large changes
in the parameterization error estimates following large variation in
the specification of the prior variances. On the other hand, the
sensitive term contribution represents the level of information exist-
ing in a given set of observations and depends only on the property
distributions used for linearization and on the observation policy;
in particular, this contribution does not depend on the prior covari-
ance, We recall that the value of the parameter N is selected so
as to yield a minimum trace of the a posteriori covariance; this
involves a trade-off between decreasing parameterization error and
increasing uncertainty as NV is increased. Since the former of the
two is significantly altered by changing the prior variances for a
given value of s, the optimal value of Nv will also change, This can
be simply visualized in the foll;)wing manner, If the level of prior
uncertainty is high, corresponding to a higher value of prior vari-
ances, it is advantageous to include the components of the estimate
vector about which the observations contain even very little informa-
tion. On the other hand, if the prior parameter estimates have a
relatively small uncertainty, it is disadvantageous to include the
less sensitive components of the parameter vector in the correction,
as their inclusion will increase the uncertainty of the updated esti-
mates, Thus the optimal value of N decreases as the prior vari-

ances decrease and vice versa. A quantitative study of this variation
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of '"optimal"' NV with P is detailed later in relation to the estimation
with hard constraints,

The trace of the a posteriori covariance drastically changes
as p is increased from 0. 16 to 9.0. This is an indication of the
degree to which the prior information participates in the determination
of the confidence in the a posteriori estimates for this problem. In
other words, it is an indication of the ill-determined nature of the
parameter estimation problem.

Now we shall examine the details of the spatial distribution
of the a pbsteriori covariances for the different values of 8, for the
various approaches to the parameterization. Figure (3.4.7) shows
this distribution for estimation without constraints, for p = 0,16, 1.0
and 9.0, It also shows the distribution of the prior variances in
each case. As noted above, the levels of the variances are altogether
different for the different values of B. The details of the distributions
are similar for the three cases, because the values of NV are not
significantly different, For a given value of Nv’ the various contri-
butions to the parameterization error are simply increased or

decreased uniformly by a factor of $.

3.4. 2.2 Bayesian Estimation

Figure (3. 4.8) illustrates the effect of B on the a poster-
iori variance distribution for thé Bayesian estimation., In this case,
in addition to altering the levels, the value of B also influences the
details of the distribution, This is due to the complicated nonlinear
enters the expression (3.1.45). In this expression,

way in which ’130
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the a posteriori covariance is obtained by balancing the prior infor-
mation and the information in the observations. If the prior infor-
mation is very little (large B), then most of the information is derived
from the observations and consequently even small sensitivity of a
parameter will have a visible effect. Thus the parameters in a
larger portion of the reservoir have substantially smaller vari-
ances compared with their prior variances. On the other hand, when
the prior estimates are very ‘rel‘iable, corresponding to a small
value of B, the information gained from the observations about the
low sensitivity parameters has little impact on the a posteriori
covariance. As a result, only the regions of reservoir with high
parameter sensitivity show appreciable decrease in the variances,

As pointed out previously, the variance distributions are relatively

smooth for the Bayesian estimation for all values of B.

3.4. 2.3 Estimation with Hard Constraints

As discussed previously the value of NV at which the
minimum of tr {fﬂ} occurs changes significantly with B. As a quan-
titative example we present details of the trade-off between the
contributions by uncertainty and the parameterization error, for
zonation with NZ = 8., While the other parameters are kept fixed
at s = 5.0 and p = 0.5, the trade-off will be examined for § = 0. 16,
1.0 and 0.9, Figures (3.4.9a,b) contain the details of the trade-off
determining the optimal N_ for p =0.16 and B = 9.0 respectively.
The trade-off for § = 1.0 is shown in figure (3. 4. 3b). The optimali

values of N, for B =0.16, 1.0 and 9.0 occur at 8, 9 and 9 respec-
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tively., The sudden increase with N of the contribution by the sen-
sitivity term beyond NV = 9 causes the optimal values for the different
cases involving large B to be clustered around NV =9,

Figure (3. 4. 10) contains the results for zonation with four
zones. In this case, the optimal value of Nv changes considerably
with B due to the large contribution of the parameterization errors
to the total covariance, and also because the contribution of the
sensitivity term does not increase very rapidly with Nv' Conse-
quently, the contributions of the error due to noncorrection and of the
cross covariance terms are considerably different for the different
values of B, altering significantly the distribution of the a posteriori
variances, For small value of B, the uncertainty is kept small by
taking a small value of NV. Hence the error due to noncorrection
is large and the variances are relatively large for the parameters
with low sensitivity. For B = 9, the prior information is so little
that it is advantageous to include in 21 all eight of the vectors in the
parameter space for large B, the error due to the zonation constraint
dominates the picture and the variances are large in the regions
near the zone boundaries,

Figures (3.4.11) and (3. 4. 12) show the results for the 8-zone
and 16-zone cases., As the number of the zones increases, the con-
tribution of the parameterization errors decreases and the changes
in the "'optimal'' value of N, become smaller; thus the distributions
of the variance are similar for the different values of  for a case
with a large number of zones. In the 8-zone case, for § =0.16

additional the less sensitive vectors are included in XO and
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consequently variances of the permeability in the regions close to the
reservoir boundaries are practically unchanged from their prior
values. For p = 9, the error due to the zonation constraint becomes
a prominent contribution. In the 16-zone case, these effects are
smaller and the distributions of the variance for different values of

B are not very dissimilar.

In conclusion, we state that the most important effect of § on
the a posteriori variances is in the determination of their magnitude,
The variances of the different parameters do not alter significantly
relative to each other, Thus an error in specifying the prior vari-
ances will cause an approximately uniform misjudgement in the level
of confidence in the resulting estimates of the grid point values of
the rock properties; the relative degree of confidence in the different
parameters will be largely unaffected by such an error. An error
in the prior variances by a certain factor will result in a change by

approximately the same factor in the a posteriori variances,

3.4,3 Effect of Change in Cross-Correlation in Prior

Covariance
The effect of the parameter p in the prescribed prior covari-
anceE on the a posteriori covariance for the different cases of
parameterization was investigated by repeating the computations
with p = 0,25 and 0,75 while keeping B and s fixed at 1.0 and 5.0

respectively,

3.4.3.1 Estimation without Constraints

The resulting variances for the case of estimation with-
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out constraints are presented in figure (3.4, 13)., The three-fold
change in the value of p does not appreciably alter the a posteriori
covariance for this case; its trace increases slightly as p increases,
This is due to the following. A higher value of p corresponds to a
higher correlation in the distributions of the permeability and
porc)bsity° As is evident from figure (2.5, 5), the components of

the first several v-vectors in the permeability-space and the porosity-
space are quite dissimilar; this causes the corrections in their
estimates to have much different distributions, This results in a
higher error due to noncorrection for a higher value of p. The
contribution of the sensitivity term does not change as the v-vectors
and the value of NV are the same for all values of p. The details

of the distributions of the variances do not differ significantly for

the three values of p.

3.4. 3.2 Bayesian Estimation

Figure (3.4. 14) presents the results for the Bayesian
estimation. In this case, the trace of the a posteriori covariance
decreases fairly rapidly with increase in p. This is due to the fact
that this approach utilizes the information in the prior covariance
for the purpose of estimation. A larger value of p implies greater
prior information about the parameter distributions; hence the
resulting estimates are less uncertain for a larger value of p info,
The decrease in the trace is achieved by an approximately uniform
decrease in the variances of k and ¢ all over the reservoir. The
sensitivity of the observations with respect to the porosity is approx-

imately uniform over the reservoir; for a larger p, this results in
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a greater information in the observations about the permeability in
the regions where its sensitivity is low. Hence the variances of the
permeability near the impermeable boundaries are significantly
smaller and the '"'trough'' in the k-variance distribution becomes

wider for a higher value of p.

3.4.3.3 Estimation with Hard Constraint

Figure (3.4. 15) presents the results for the four-zone
case. As in the case of estimation without constraints, the trace
increases with increase in p because of the increased error due to
noncorrection, The variance of the permeability in the region close
to the x = 3200 ft boundary is particularly affected. This can be
understood from the fact that, for NV =7, only a single v-vector with
the lowest singular value contributes to the noncorrection bias; the
largest component of this vector corresponds to the zone covering
this region. The error due to the zonation constraints does not
change with p. As observed earlier, the error due to noncorrection
is a very small contribution to the total covariance for the four-zone
case, Hence the effect of the three-fold change in p is quite small.

Figure (3.4.16) shows the results for the eight-zone case.
In this case, too, the trace of the a posteriori covariance does not
change significantly with variations in p. However, the trend in its
variation is contrary to that observed in the rest of the zonation
cases., This may be related to the fact that, as presented in figure
(3. 2.9), the contribution of the parameterization errors to the total

covariance is the smallest for NZ = 8. The details of the analysis
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reveal that this error actually decreased with increasing p for this
case, As indicated in the figure, the ''optimal'' value of Nv for

p = 0.25 is different from the other two cases, even though the dif-
ference in the values of the trace for Nv = 9 and Nv = 8 is only 0. 004.
This change of NV causes the details of the variance distribution for
p = 0,25 to be significantly different from the other two cases.

Figure (3.4.17) contains the results for the 16-zone case.
Here again, the a posteriori variances change very little with the
three-fold increase in p, the trace increasing very slightly with p
because of the increased error due to noncorrection,

In summary, we conclude that even large changes in the
value of the parameter p do not alter significantly the a posteriori
variances when the process of estimation does not utilize the prior
covariance. The effect is significant for the Bayesian estimation,
where the trace of the a posteriori covariance decreases by about

30% when p is increased from 0. 25 to 0. 75.

3.5 Effect of Erroneous Prior Covariance

In this section we shall investigate the effect of an error in
specifying the prior covariance on the property estimates and the
predicted covariances., First we shall treat the non-Bayesian esti-
mation which includes the estimation without constraints and the
estimation with hard constraints., (We shall treat the former as a
special case of the latter.) Later we shall explore the effect on the

Bayesian estimates.
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3.5.1 Non-Bayesian Estimation

As the prior covariance is not utilized in the process of esti-
mation, the estimates are not affected by an error in the prior
covariance. However, the predicted covariance of the estimates
depends on the prior covariance and hence will be significantly
affected by any error made in its specification. The resulting error
in predicted covariance is easily calculated when the changes in NV
are overlooked since in that case its dependence on the prior co-
variance is linear.

Letflj’o be the ''true'' prior covariance and let;ﬁo be its
erroneously specified value. Then the ''true'' a posteriori covari-
ance of the estimates is given by expression (3. 1. 54). . (Set 91 = L
in that and in the following expression for obtaining the results for
the special case of estimation without constraints,) The predicted
a posteriori covariance vbased on :O is obtained by replacing .?O
by :?0 in (3. 1,54). Subtracting the two, the error in the predicted

covariance is given by

o = <T.T
AP = (Bp -(Bp =G VoY )

0~0 VT
0 Laad 0 ] U v

— T
AP GV Y G

T T T — =T T
+ (-GG ) AP (-G G )t (-GG AP G Yo Yy &)

+ G V‘\TTG?

T ,
Gy Yo¥o G 281G Gy) (3.5.1)

where AEO ZELPW
The effect on the computational results due to the erroneous

prior covariance is amply demonstrated by the results in section 2. 4.

We conclude from these that AP is directly proportional to Afo and
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a large error AEO will lead to a comparably large error A}Bﬂ in the
predicted covariance. We note that this analysis is valid for AEO
which do not change significantly '""optimal'' values of NV used for

determining the partition between t\io and Yl'

3.5.2 Bayesian Estimation

In the Bayesian approach, on the other hand, the prior covari-
ance EO is utilized in obtaining the property estimates as well as
their covariance. Thus, both of these are affected by an error in
specification of E . However, as long as the prior meanf_ is cor-
rectly specified, then from (3. 1. 40, 42) we conclude that the resulting
estimate will not be biased, irrespective of an error made in speci-
fying foo

In the following we derive the covariance of error in the

Bayesian estimate associated with an erroneous prior covariance

P.. Expression (3.1, 37) yields in this case

~0
A To-1, =-1.-1 ,Tw-1 =-1A = ,
6T, = (ATZ APy [ATZ by mPy (M m)] (3.5.2)
Then,
T -6m (AZ""A+P [ATZ & (TT )
~T T ~ Yhr ~O wh
T 1 ) —=-1
'z e, Bl G5y

Using (3. 1.10), (3.1.39) and (3. 1. 46) we obtain

e T - ].
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where we denote the Bayesian estimate resulting [rom the use of the
_ A
erroneous prior covariance fo by TEe It follows from the definition

of the true covarianceﬂl?o that

A Y (n Ty _ ATl 5-1,-17 ,Ts-1
E R {@g-2nCg-u0 ) = (A2 AP ) T [A7Z A
=1 =-17, Tew-1, =-1.-1
+ Py Polo 1(A7Z A+, (3.5.3)

By adding and subtracting :ljso from the central factor on the right of

(3.5.5), it can be rewritten as

(3.5.6)

where we denote the covariance of error in the Bayesian estimate

using the erroneous ISO by Pss . It is evident that for '_EO =Py

~B
Pg =P, The covariance Py was evaluated for several er-

roneous values of B and s; the trace of ,13—]?-,- for the different
cases are shown in table 3,5,1, From the values therein, it
follows that even large errors in B and s do not cause very
large errors in the Bayesian estimates. This prediction, based
on the linearized analysis and some approximations (see Section
3.1), is reasonably well verified by the results of simulations
described in Chapter 1. Thus, when accurate P, is not available,
an approximate value or an estimate for it can be used in the

Bayesian estimation without incurring serious errors in the re-

sulting estimates,



-255-

Table 3.5.1
Bayesian Estimation: Effect of

Erroneous Prior Covariance

True Parameters: g = 1.0, s = 5.0

4] S Trace of Error Covariance
1.0 1.0 1.830
1.0 2.5 1.280
1.0 5.0 1.140
1.0 7.5 1.255
1.0 10.0 1.538
1.0 15.0 2.222
0.16 5.0 1.301
1.0 5.0 1.140

9.0 5.0 1.772
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3.6 Conclusions

(1) As there is a many-dimensional subspace of the param-
eter space along which the components of the estimates are
ill-determined by the pressure observations and the production
rate history data, the variances of the estimates are unaccept-
ably large in absence of any additional information. In this
chapter, we derive realistic estimates of the covariances associ-
ated with the prior estimates of the parameters. There are two
components that make up the a posteriori covariance: (a) The
uncertainty in the estimates associated with the errors in obser-
vations which depends on the sensitivity of the observations with
respect to the parameters. (b) The error associated with the
initial guess and the fact that the components of the parameter
vector with very little influence on the observations are not up-
dated while history matching, In addition, the covariance
determination must take into account the nature of the algorithm
and the constraints imposed by the parameterization, In this
chapter expressions are derived for the covariance of the error
in estimates resulting from the use of the zonation and Bayesian
approaches,

(2) The predicted covariances were tested using simulations
with a sample of four realizations of a homogeneous Gaussian
random process model, with prescribed statistical properties,
for porosity and permeability in a one-dimensional reservoir,

A good match was observed between the spatial distributions

of the predicted variances and the mean square estimate errors
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averaged over the four realizations, both for the zonation and
the Bayesian approaches to estimation,

(3) The sensitivity of the predicted a posteriori covariance
to variation in the specified prior covariance was studied using
the homogeneous random process model for the property dis-
tributions., It was found that a change in the specification of
the length s of the autocorrelation function has little influence
on the a posteriori variances, the variances decreasing with
increasing s. A change in the prescribed prior variances has
a larger effect on the results, the percentage change in the re-
sulting variances being same as that for the prior variances,
(4) It was found that for a given zonation, it is possible to
determine an optimal value of p, the parameter in Marquardt's
method, by computing the predicted a posteriori covariance
beforehand, by using the prior parameter estimate.s for linear-
ization, The optimality is in the sense that, the use of the
indicated value of p in Marquardt’'s method for history matching
will yield estimates with the smallest trace of the a posteriori
covariance associated with them.

(5) The effect of erroneous prior covariance on the estimates
and a posteriori covariance was studied for the different ap-
proaches to estimation, In zonation such an error does not
influence the estimates, but it significantly affects the predicted
covarijances; the most important parameter for this is B, which
governs the degree of confidence in the prior estimate, On the

other hand, in the Bayesian approach, the estimates are affected
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by such an error; but for an unbiased prior estimate the re-
sulting estimate is also unbiased, Any error in the prior

covariance increases the covariance of error in the resulting
estimate; however, even for large errors in EO, the increase

in the latter is relatively small,
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CHAPTER 4

CONCLUSIONS

In this thesis, we have dealt with the inverse problem
concerning the determination of porous rock property distri-
butions in petroleum reservoirs from the well pressure and
production data, The analysis and methodology developed in
this work can be easily extended to the general problem of
determination of parameter distributions in arbitrary dynamic
systems from the input-output data.

The problem of property estimation in a petroleum
reservoir is an underdetermined problem, Its solution ne-
cessitates the reduction of the number of unknowns ‘by some
form of parameterization, When zonation is used for this
purpose, the best estimates are obtained for an intermediate
number of zones. As an alternative to zonation, we have
developed a method of reducing thé number of unknowns and
decreasing the uncertainty of the estimates by extension of
Bayesian estimation theory. It involves the addition to the
objective function of a penalty term incorporating statistical,
geological information. The results of Bayesian estimation
were found to be more accurate than those of zonation in
s‘irnulation with one-dimensional reservoirs even when the
specified prior information contained large errors. Both
Bayesian and zonation approaches to property estimation were

implemented using the conjugate gradient and the Gauss-
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Newton (or Marquardt's) minimization algorithms., Detailed
estimates are obtained for the computational effort per iteration
of either algorithm for =zonation and Bayesian estimation in
one-dimensional and two-dimensional reservoirs, Formulas
are developed to enable one to determine which method is
expected to be more efficient for a particular problem, Two
alternative methods for computation of the sensitiVity, coefficients
are considered for Gauss~Newton (or Marquardt's) method and
the associated computational effort for one and two-dimensional
reservoirs are determined, -

The degree of ill-determinacy of the property estimation
problem is quantified through its linearized analysis, It is
shown that it is possible to determine, through the linearized
analysis, which components of the parameter‘s cannot be esti-
mated accurately for a given problem., The highly oscillatory
components of the porosity and the permeability are found to
have very smmall influence on the pressure observations, and
thus are ill-determined. In reservoirs with impermeable
boundaries, the permeability in the regions close to the
boundaries is particularly ill-determined. The porosity and
permeability in the regions close t.o the production wells
which are also observation sites, are Well—determinéd. since
they exert a large influence on the observations,

Analytical expressions are derived for the sensitivity
coefficients of an observed pressure with respect to small,

arbitrary perturbations in the porosity and permeability in
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a single phase one-dimensional reservoir, with either imper-
meable boundary or constant pressure boundary. In reservoirs
with either kind of boundary conditions, the Fourier component
of the permeability with wave number £4(£#£0) has O(f'_l) in-
fluence on the pressure at large times from the beginning of
production; this implies that highly oscillatory components of
the permeability cannot be estimated from the observed pressures,
In the reservoir with impermeable boundary conditions, a simi-
lar component (&#0) of porosity has 0('@—2) influence, whereas
for 4 = 0 the influence increases linearly with time. . Thus the
mean porosity can be very accurately determined but its oscil-
latory components cannot. In the constant pressure boundary
reservoir, the influence of the various porosity components on
the pressure vanishes exponentially with time (measured from
the beg’inning of the production) and thus accurate determination
of the porosity based only on the observed pressures is not
possible., These observations are in agreement with the results
of numerical analysis discussed in the previous paragrgph.

The nature of the linearized relation between the obser-
vations and the rock properties is found to be only weakly
dependent on the reference distributions used for linearization,
Thus the analysis can be performed before extensive estimation
attempts., Furthermore, the results of analysis using a set of
mean distributions yield information about the property esti-
mation problem concerning an ensemble of reservoirs with

properties differing statistically from these means.
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A scalar index is developed, from the results of linear-

ized analysis, that indicates the degree of accuracy to which

a given rock property at any location in the reservoir can be
estimated from a given set of pressure data, This index can

be calculated a priori, using nominal mean estimates for
linearization, It can be used to study the conditioning of the
problem under any parameterization, and thus aids determination
of an ''optimal" parameterization, These practical uses of the
linearized analysis are detailed in section 2.8, which is addressed
to a practicing reservoir engineer,

‘The information about the unknown rock properties comes
from two sources: (a) the pressure observations, and (b) the
prior statistical informé,tion. The observations contain informa-
tion about only those components of the unknown distributions
which significantly influence the observations, The errors in
the estimates of these components can be statistically determined
from the linearized analysis. The error in estimates of the
rest of the components can only be estimated based on the prior
information. These two can be synthesized to determine the
covariance of errors in estimates., Expressions are developed,
based on the properties of the linearized problem, for co-
variahces of estimates from zonation and Bayesian estimation,

The predicted variances for the grid point property
values were compared with actual mean square estimate errors
in simulations using a limited sample of four property distri-

butions with known statistics, A good agreement was found
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for both zonation and Bayesian estimation,

The sensitivity of the predicted estimate covariance to
variation in the a priori statistics was studied. Changes in
the prescribed length of autocorrelation for spatial property
variations and the cross-correlation between the porosity and
permeability do not have large influence on the predictions,

The degree of confidence in the prior estimates determines to

a great extent the covariance of the resulting estimates; large
prior variances result in large a posteriori variances, The
effect of erroneous specification of the prior statistics on the
predicted covariances was also investigated., Again, only the
errors in the prior variances significantly affect the a posteriori
covariance of the zonatjon estimates, On the other. hand, the
predicted covariance for Bayesjan estimates is not strohgly
influenced by errors in the prior statistics,

Using the predicted contributions to the covariance of the
parameterization error and the uncertainty in the estimates re-
sulting from the observation errors, it is possible to determine,
for a given problem, a zonation that yields the smallest expected
total error in the estimates., Thus 'optimal' zonation can be
determined before detailed estimation. It is also possible, based
on the linearized analysis, to determine for a given zonation the
parameter p in Marquardt's algorithm for history matching, such
that the expected total error in the resulting estimates is the
smallest, Such a design of an '"optimal' history matching al-

gorithm for zonation is discussed in detail in chapter 3.
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Appendix 1.1

Numerical Procedure for Generating the Samples

of a Gaussian Random Vector

Theory:

The procedure followed utilizes the Loeve-Karhunen expansion
of a stationary random process into orthogonal functions (Davenport
and Root, 1958). We shall describe the discrete version of the pro-

cedure.

Let the Gaussian random M-vector 7 have mean'f_ and co-
variance matrix Eo' Since Eo is a symmetric and positive definite
matrix, all of its eigenvalues are real and positive., Let the eigen-
values be )\1 > )\2 e 2 A and let the corresponding ortho-
normal set of eigenvectors of Eobe z(1), 2(2)....2z(M). Defining

the matrices

Z = (&(1), 2(2) ... z(M) (Al 1.1
A= diag(xl, XZ,...,XM) (Al.1.2)
we have,
T
}30 = ZAZ". (Al.1.3)

Consider the decomposition of the random vector (IL‘E’) along

the complete orthonormal set of vectors z(l),....,z(M).

M
T-7 = Zu =2 u z(i) (Al.1.4)
- ~~ i=1 1
Then, due to orthogonality of Z,

w = z2Wm-7) (Al.1.5)
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In the last expression, u also is a Gaussian random vector

with the following mean and covariance:

E{ul = o0 (Al.1,6)

2Pz =0 (Al.1.7)

—

H

E{uu’)
Then the elements Uy, Uy,eee, Uy of u are independently dis-
tributed Gaussian random variables with zero mean and the variances
}\l’ )'\Z’ oy )\M. Then, the samples of the random variables
Uy, Uy, eel, Uy can be obtained, one at a time, using a random

number subroutine and the corresponding sample of the random

parameter vector is given by,

m= w7 + Zu (Al.1.8)

Numerical Details: All computations were performed for constant thick-

ness. The numerical values of k and 4 in the conventional units are
usually one or two orders of magnitude apart. . Consequently their
variances differ by two to four orders of magnitude. Under these cir-
cumstances, when the composite co-variance matrix Eo is decomposed,
the largest few eigenvalues have eigenvectors that lie almost entirely
in the k-subspace and the eigenvalues smaller by two to four orders of
magnitude have eigenvectors that lie mainly in the #-subspace of the
parameter épace. This situation implies that we would have to use
almost all the eigenvectors of P, for a basis while generating the
sample functions and in all the subsequent estimation procedures that
utilize the prior statistical information. This situation would demand

large storage space and computational times. In addition, it would
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give rise to numerical difficulties due to widely different orders of
magnitude of the errors due to roundoff errors in the k and ¢ sub-
spaces of the parameter space.

These difficulties were avoided by scaling the variables k and
¢. All the computations for generating the sample functions and in the
subsequent estimation procedures were carried out in terms of the
normalized variables k/ k and 4/ 4. Then, the normalized variables
always have root-mean-square values of unity and variances that are
numerically quite close to each other.

When the smooth autocorrelation functions given by the ex-
pression (1.3.1) are used, the corresponding matrix 'Eo for the nor-
malized variables has a few eigenvalues that are O(1) and the rest
drop off almost geometrically with unitorm rapidity to yield a value
of 0(10"7) for the last eigenvalue. As a very large number of eigen-
values Ki are several orders of magnitude smaller than the largest
eigenvalue >\1’ the amplitudes u, of the corresponding cornponents
will be, on the average, correspondingly smaller than the others.
Hence, without loss of much accuracy,r we may truncate the summation
in (Al. 1. 4) after a suitable number of terms. In our computations,
truncation criterion was Xi/)xl < 0. 5X10-4. For s = 5, this resulted
in the use of the first 27 eigenvectors u, asa basis of the computed
realizations., The figure (Al. 1. 1) contains the plots of seven eigen-
vectors of -Eo corresponding to the largest seven eigenvalues, for

s=5, p=0.5 R(0)= 0,25,
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Appendix 1,2

Algorithm for computing gradient of J w. r.t. parameters

The minimization problem associated with the history matching

requirement is,

R\ K o .2
Minimize J = 2 2 (p. . -p._.) (A1.2.1)
T 1=

—

where the observed pressures are at R time instants corresponding to
the time steps {lm} and K location corresponding to the grid points

{j n}" We denote in the above these observed pressures by {Pn;)n}
and the corresponding model outputs by {pim' jn}.

The above minimization is to be performed when {pi j } are
m’'n

the resulting pressures from the discrete system equations,
Gpyp = HR+ g 1=01...,T (a1.2.2)

p,= 0. (Al.2.3)

In (Al.2.2) the matrices G and Hare functions of the parameters .
Let us define a new performance index by adjoining the constraint

equation (Al.2,2) to the original index in (Al.2,1),

T-1
— - '1“
T I+ Dy [Gpyyy- Hp; - 9] (Al.2.4)

where \|/i ,1=0,1,2,..., T-11is a sequence of arbitrary N-vectors.

-

We introduce a perturbation 6 in n, which induces the perturbations

{6pi} and &7,

R K o
6.3 = 2 2 . . - 5p.
m=1 n=1 (le, Jn Pmn) plm, Jn

(Al.2.5)
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which can be rewritten as

6T = z[\v \lf 2?(1)

11~ n= ,j " Pmn iim—v]

~

T 1o
* ¥y Hoopp +i§5 Y [ﬁgfiﬂ’ s H.p; |
where e, is jnth column of the NxN identity matrix, and 6, 4 is the
n i ¢ o}
Kronecker delta.

If we choose \]/i to satisfy
~ K
T =HT . +2 .- p o Al.2.7
el Y‘i-]_ - E \l[i+t.. I:L____.\Il (p. )6- . e. ( . ° )

l

3
=]
3
:;..

= 0 (A1.2.8)

then T-~1
- 'I‘l:
67 = L ¥ agfiJrl-é'I:IEi]

or 57 ) \‘,T[ig; p] (A1,2.9)
om , i=0 i 3Tr£p

We note that as long as p; are calculated to satisfy (Al 2,2-3) at any

—

iteration, J=J and (Al.2.9) therefore gives the expression for the
components of J".,

—

To compute JTr requires one integration of (Al.2,2) in the
forward time direction followed by one integration of (Al,2.7) in the
backward time direction, followed by evaluation of the summation
(Al.2.9) once for each element of r,

. Ty ,T,T . .
In particular, when = (k I ¢7)", expression (Al.2.9) gives,

for one dimensional reservoir, using the definitions of G and H for

the implicit scheme,

,

97 At T[ E}
W, T T ko Yilag d Bt Ry (AL.2.10)
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and

T"'l T"'l
aJ  _ T 39J N _ IR
9, 13% % o4, P17 Py = 12% Vi (Pyyq-P; )
L=1,2.... N (Al.2.11)

where the superscript denotes the element of an N-vector,

Gradient of J w. r.t. the zonation parameters:

In case of zonation with M zones, the 2M-vector 7 = [-rrlk,nzk. .o

"1\3[{’ “lqs’ v ’ﬂl\ﬁ ] is the parameter vector. Then, for example, a

single scalar permeability parameter, nzk , determines the values
th

of k at several contiguous grid points which belong to the £~ zone,

A variation 61r12 results in the variations of equal magnitudes in the

values of k at all these grid points, Then, in (Al.2.9), we have,

3G 5 3G
=% = Ly e (Al.2.12)
o, jJ€47 zone J
9H
= = D SH (Al.2.13)
k j €47 zone 9k,
‘ 81711 j
and consequently,
RN Al (A. 1.2, 14)
k . th ok,
an j € £ zone j

Similarly, we get the relation,

8y \ aJ Al.2.15
o z 84, ( | !

P j€ Eth zone j

Gradient of J w. r.t. the Bayesian parameters:

In the Bayesian approach, it is convenient to expand the com-

' .
posite parameter vector ,1T= (_lg_Tz QT) in the basis of orthonormal
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set {g(i)}of the eigenvectors of the prior covariance matrix 50. Let,

(Al.2.16)

141

mo= Z u +

Then the vector u is the parameter vector we wish to estimate,

and the gradient {—;% is necessary for this purpose, Let us partition

—~—

the matrix Z as,

T _ T! (A1,2.17)
z =1z 124
so that we have the N-vectors,
k = Zk9~+-k-: (Al.2.18)
¢ = ng+z (Al.2.19)
The chain rule of differentiation yields,
- T T
8y _ (_?_lf_,> _@g__F<8¢) 8J
du  ~ \du ok ou Ers
8 J/dk (Al,2.20)
T 8J T 8J T -
=  Z ==+ Z = Z
S S T B O J/o¢

Thus (Al.2.9) can be used to compute the gradient for the Bayesian

approach,
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Appendix 1.3

Procedure for Unidirectional Search

The unidirectional search is required for the determination of
a local minimum of J in the conjugate directions. A basic element in
a search procedure is the search step size. It determines the total
number of integrations of the system equations required for completing
the search in a given iteration, and consequently determines the total
computational time required by the estimation procedure employing
the conjugate gradient algorithm. We allowed the program to deter-
mine automatically an appropriate search step as the minimization
proceeded as follows., We started the minimization process with an
assigned size for the search step, which was determined by experi-
mentation, After the completion of the first four iterations, we set
the search step size to be equal to the average of the lengths of the
actual parameter vector corrections that were made during the last
four iterations. If this value exceeded a predetermined limit, thé
search step size was set equal to the limit, These rules seemed to
keep the total number of the integration of the system equations to a
reasonably low value, usually at 4 per iteration, while given fairly
accurate estimates of the minima.,

The details of the actual search procedure are summarized in
the flow chart in figure Al.3. 1.

It may be noted that when it was found necessary to search in
the interval enclosed by the starting point and the first step a bisection
was used whereas for the search beyond the first step, uniform steps

were used, In the former case, the distance between the three
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Flow Chart for the Unidirectional Search
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Set the result of search =

3 arg min (J ., JC)

Current search step

AN is too small for
economical search,

Set the result of search
= arg(Jc)

End Search

Figure Al.3.1
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equidistant points is smaller than the search step size, guaranteeing
an accurate determination of the minimum of J in the search direction.
On the other hand, in the latter case, if the search step were to be
doubled, the three consecutive points would no more be equidistant
and at the same time the largest distance between the consecutive
points may increase to unreasonably large values, yielding a parabola
whose minimum is a poor approximation to the time value. These

considerations led us to the strategy in the flow chart,
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Appendix 1,4

Sensitivity of an Observation w. r.t, the Parameter Vector 1

In this appendix, we derive the expressions for the sensitivity
of the pressure at a given location and time, computed according to a

given discrete scheme,.

Method I. This is the discrete analog of the result first obtained by
Jacquard and Jain (1965) for the o.d. e.. formulation.

The discrete system equations are,

G Py = Hopitq i=0,1,..., T-1 (Al.4.1)
p, = 0 (Al.4.2)

Consider a variation 6r in n with the resulting variations

6G, &H and {6p.} . The first-order variational equations are
~ i

with
bp, = 0 (Al.4.4)

~

Let us multiply (Al. 4.3) by a sequence of arbitrary N-dimen-
sional vectors {y,} and sum fromi= 0 to (i -1) wherei_ is the value
~Lo m m

of i corresponding to a data point. We obtain

i -1 i -1 i -1 i -1
. = T ¢t T T
Eo Xi G opiy 0 ii Eéﬁi Eo.wj 6g§i+1+i§) & 55}31 (Al.4.5)

Rearranging (Al.4.5) and using (Al. 4. 4) yields

i -1 i -1 i -1
m m m
T T .. _ T T ™
i:zl [Y}'lg Y I”Ilagi_ ) Eo\ii 6g£i+l+i§1 Vi o0 - Y}n{lg‘ﬁfim
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Let us choose the sequence "\L’i’ i=0,1,2,..., i, -1 tosatisfy

Ir
'I‘ T )
G __\!il—l = H ‘l’i i=0,1,2,..., lm-l (Al.4.7)
Gl = e (Al. 4. 8)
~ 1 =1 Jj
~m Iy
where g.n is the Jntll column of INxN' Using (Al.4.7) and (Al. 4. 8),
(Al. 4. 6) becomes,
i -1 i -1
T % 4T (Al,4.9)
5P, . = o- 5 G p. + S §H p. . 4.
plrn’ In =0 4 =Pl 5 ill "‘Bl
Then, we have,
op. . i -1 i -1
1) m oG m oH
____ITl"__B_: - Z} T iind T ~ Al. 4
dm 4 2o ¥ 5w Pin +i§’1i'.i w2 Pj (Al. 4.10)

Note that it is necessary to solve the adjoint system (Al. 4. 7) and

(Al. 4, 8) separately for each measurement location, j;l, n=1,2,...,K.
For different observation times, i_, m=1,2,...,R, for a given
location, the same solution of the adjoint system can be used by merely
redefining the subscripts. This requires that the adjoint system be
integrated with im = T once for each of the K observation locations;
The summation in (Al. 4.10)has to be evaluated separately for each
value of im and jn.

For the one dimensional reservoir, recalling the definitions

of G and H,

9 p. : i -1

'm0 A R T(g‘_.}f;_)( ) (Al.4.11)
9k, 20 350 Y \8k,/ Pis1 " Py
9p; i -1

m’In _ 4, 4 2 (Al. 4. 12)

where the superscript denotes the element of an N-vector.
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The sensitivities with respect to the zonation parameters can

be obtained, as described in appendix (1.2), as

apHan = 2 9P%an (Al. 4. 13)
] 'ITLk B i€ ﬂth zone 9 kj T
—ra Pime Iy = i P In (Al. 4. 14)
9 T, B i€ Zth zone ——ﬂ;—— o

The sensitivities with respect to the Bayesian parameters can be

similarly obtained as

5p. . op. . /9ok
‘m*dn LTl o In (Al. 4. 15)

du - VP, - A

i .3, /98

Method II. Sensitivity equations

An alternative method of computing the sensitivities is to solve
directly a2 setof discrete sensitivity equations for each of the parametebrs.
From the equations (Al.4.3) and (Al. 4. 4) we obtain the equa-

tions for the sensitivities of the pressures w. r.t. the parameter m,

OPit1 °Pi | ag oH
- = = - . +—— N 1. -1
-~ ETT!J I}' 31% szvgﬁ'l an P (Al. 4.16)
Lo Eo/a"zj = 0 (A1.4.17)
api j
For obtaining the set {-—-—é-%ﬂ } , equations (Al.4.16) and (Al.4.17)

need to be solved once for each parameter T, and then the sensitivities
of the desired pressures can be picked out. The sensitivities with
respect to the zonation and Bayesian parameters can be obtained

according to (Al.4. 13, 14, 15).
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| Appendix 1.5

Gauss-Newton Algorithm and Marquardt's Method

We have the minimization problem,

R K 2
Min J = » 2 (pi . - pm°n) (Al.5.1)
™ m=1 n=1 m’In 4

subject to the system equations.

A necessary condition for a minimum is,

53 R K- 8Pi L
.222 (p ;-2°,) —22-0 (ALS5.2)
o m=1n=1" ‘m’n ™7 om -
The second derivative of J w. r.t. 7 is, 2
82 J R XK o ° pizn’j
2T . 52 (p, . -p° ) —mm
dm om m=1n=1 % 1,,J), ™0 om dm
op; . op. 3
vz B ( le,Jn)( plm'Jn)'f’ (A1.5.3).
m=1n=1 dm dm

The Gauss-Newton approximation involves the assumption that
the current estimate of lr!' is close to the true value, yielding a small

history matching error (pi j ) for all of the observations,
m!’n
Then we may neglect the first term in (Al. 5. 3) obtaining the approxi-

" Pm,n

mation,
op. . 9p. . T
2 R K i, i_,)
o v m’ n)( m’ n)
om 9w - 2mél nzzll( om 9m (Al.5.4)

+
Then, the updated estimate 17_'% ! is obtained from the current

estimate 11' using (Al.5.2), (Al.5.4)andthe truncated Taylor series.

‘ 2
8 N (a J > L+1 Ay 5
o |_4+1 - all ¢ 7 w o ﬂ,;, (@ "-m) = 0 (Al.5.5)

-_— —r

whence,
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-1

g1 4 (8% )
LS = % 7 \byom/r, o ‘ 2
2 P i ;r
e m, —_—
o g (e | (351 4 (AL5.6)

When the matrix to be inverted in (Al. 5. 6) has one or more very small
eigenvalues, the corrections in the parameter estimates become large
and the iterative process fails to converge, Marquardt's modification
alleviates this difficulty by imposing an additional constraint that the
correction in parameter estimate have a specified length. Denoting

the correction in the parameter estimate by A7, the constraint is,

AT

—

Anm = r2 = constant (Al.5.7)

Then, our minimization problem can be more expediently posed as
the minimization of J in (1.5.1) with respect to Aw . Adjoining the
constraint (Al. 5. 7) using a scalar Legrange multiplier } , our

problem becomes,

Min T = J+puAxlAx - r2) (A1.5.8)

Then application of the Gauss-Newton procedure to (Al. 5. 8)

E)p:.L j 8p:.l j T -1
- m’'n m’‘n aJ
b = zrr?n( 91 ( o ) ‘1£+““I* (o Ju

(Al.5.9)

Thus the direct consequence of Marquardt's modification is to

vields

strengthen the positive definiteness of the Hessian matrix by addition

of the diagonal matrix g I. Clearly, u> 0 for this purpose.
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To understand the effect of Marquardt's modification, note that
as -0, (Al.5.9) approaches the result (Al.5. 6) of the Gauss-Newton
method., On the other hand, as y —» » , the term pI dominates the
term approximating the second derivative and the corrections become
smaller and smaller in length and parallel to the gradient (-g-l::r )w,c.
Thus for large values of yu , the Marquardt's method behaves ;n—a
manner similar to the gradient algorithm of minimization. For inter-
mediate values of gy , Marquardt's method may be viewed as a method
intermediate between the Gauss-Newton method and the gradient method.

The question now remains as to what is an optimum value of u.
In principle this question can be answered by carrying out a uni-
directional search. However, such a process is likely to be very
expensive as each search step would involve the inversion of a full
matrix and an integration of the system equation to compute the re-
sulting value of J. In addition, this search will have to be carried
out at each iteration step. In our application, therefore, we used a
preselected fixed value of H for each of the estimation attempts.

The inversion of the matrix in (Al.5.9) needs to be accurately
carried out, because the accuracy determines the rate of convergence
of the minimization algorithm. In addition, obtaining api i /on for
all m, n dominates the total computational effort. So it is ﬁorrzhwhile
to expend more effort in the inversion and to minimize the number of
iterations, With this in mind, we used the diagonalization of the
matrix by its decomposition into eigenvalue and eigenvectors for the

purpose of inversion, using a modification of the program by

Bushinger and Golub (1969).
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Appendix 1.6

Probability density of the irreducible value of J

. : . . %
For the '"'true' estimates, J will have some irreducible value J
due to the observation errors. When the observation errors are inde-
pendent, Gaussian with zero mean and uniform variance, the irre-

ducible J*, being the sum of their squares is xz—distributed

. R K Ne 2
- P> ( . - °)= > (Al,6.1)
J m§1n=1 p1m,3n Pm,n 121 %1 .
where N0 = total number of observation and
2
X; = N(0,07) (Al.6.2)
Then, with J* >0,
NO-Z " 2
e 1 >:< 2 'J /20
PU) = w7z N Y e
2 0 5 01"(—29-) (Al1.6.3)

(Papoulis, 1965)

For 0 = 1, the probability Q, that > -XZ for N_ = 70,80 are as follows

(Abramowitz and Stegun, 1968):

Ny Q -~ 0.995 0.99 0.975 0.95 0.9 0,75 0.5 0.25

2

70 Ix 43.27 45.44 48.76 51.74 55.33 61.70 69.33 77,58

2

80 |x 51.17 53.54 57.15 60.93 64.28 71,14 79.33 88,13

For N_ = 70, probability that 61.70 < J < 77.58 is 0.5 and the proba-
bilities are 0.25 for the events, J > 77.58 and J* < 61.70. Then,

for 70 observations with unit variance of observation errors, there
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Appendix 1.7

Computational Effort for Gradient and Gauss-Newton Algorithms

In the following, only the number of multiplicative operations
(abbreviated as ''mults'') are reported, the number of additions being
approximately equal. Furthermore, we shall estimate the computa-
tional effort per iteration in each case, the actual number of iterations
required for minimization being kept a variable.

We shall analyze two minimization algorithms, the first order
gradient algorithm and the Gauss-Newton algorithm, We shall con-
sider two types of parameterization, the zonation and the Bayesian.

In each of the four cases, we shall report for both the one-dimensional
and two-dimensional reservoirs the leading-order estimates of the
computational effort for the discrete formulation of the problem, the
algorithms for which are derived in appendices 1.2 and 1. 4.

I. Gradient Algorithm

The numerical effort per iteration for the gradient algorithm.
with search and the conjugate gradient algorithm are almost identical.
For either, the number of simulations (solutions of the pressure equa-
tion) per iteration is:

1 pressure {Pi }

1 adjoint {jq:i}

S  unidirectional search for determining correction

S+2 total

The value of s depends on the search algorithm used and the degree of
accuracy of the search for the minimum of J along the gradient or
conjugate direction. A typical value of s for the procedure in appendix

1.3 is 4.

T




~284 -

Determination of Gradient: The effort in determining 8J/871 depends

on the number of time steps, T, and the number of grid points, N. In
addition, it also depends to some extent on whether the reservoir is
one~dimensional (abbreviated as ''1-d") or two-dimensional (referred
to as ""2-d' in the sequel).

(a) 1-d reservoir. The evaluation 8J/0k can be most economically

carried out by computing the necessary elements of the matrix

T-1
T T
i1 Vi iy 7P )

and subsequently computing their linear
combinations occuring in (Al.2.10). For a 1-d reservoir the matrix
F is tridiagonal, necessitating the computation of only three principal
diagonals of the summation. This requires 3NT mults. The evalua-
tion of 8J/88 according to (AL2.11) needs additional NT mults. Thus,
total effort is 4NT mults. |

(b) 2-d reservoir. For a two-dimensional reservoir, the pressure and

the adjoint equations of which are solved by the alternating direction
implicit (ADI) method, the determination of the number of multiplica-
tive operations is more involved. In order to obtain an accurate
estimate of this, we shall work oﬁt the structure of the .formulation,
considering the minimum amount of detail.

For simplicity, let the reservoir be rectangular and be divided
into a uniform IxJ (IJ = N) grid. We denote any quantity associated
with a grid point by the indices (i, j) and the time value by the super-
script £. Then, the application of the ADI method to the pressure

equation yields the difference equations

20+1 24 24+1 24+1 24+1
GBS TP NP AP e P

24 24 24 Al.7.1)
TPy e P ert Py T e Py (
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20+2  24+1 24+1 _ 24+2 24+2 24+2
P "% Pi,j =, 5-1P55-17 5 3P0 5 T8y o1 Py jea
24+1 2441 24+1
+h, . .p2*Tlan, 28 .
1—],3p1~1,J+h1,JpJ.,J +hi+1,j Pit1,;
(A1.7.2)

where {8. .} are the grid porosities and the scalars {a. WA ,hy J}

are linear combinations of the grid permeabilities {ki j} . For sim-

»;

plicity, the source terms have been dropped from (Al,7,1-2).

Define the I-vectors

B;-I‘=[p1’j,p2,j,...,pN,j] j=1,2...,7 (Al.17.3)
Then (Al.7.1-2) can be written as,
3 (15“1 ”) A, 3‘+1+§j_1§‘1+ c, pJ'z+DJ+1 pﬁfl (AL.7.4)
50 - A g e FE (AT
The matrices {23 } j=1,2,...,J are diagonal, {EJ } and {fj }

are tridiagonal, and each of the remaining matrices have only a single
nonzero element in each row.

If we define the N-vector,

R [p 1 3 pz ERR AL | pJ’ ]
then (Al.7.4-5) can be written in the form,

2042 24
¢ (p —RZ )

P

n
g
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2092 _ 241 gy Pl y 42 4z0,1,2,..,T/2

2 (p H X .
(A1.7.7)
where
ﬁ —
noo S
= ®a. » A= 42.
-0 iy 0 As
— -y — -
T €1 P2 °
_ - ) Al.7.8)
2 = H, 0, X =158 & D (
L o 'HJJ ) "By, Cy
-
.
Fyoo G, O
Y =|EB F G
; 0 L] 5-1. E‘JJ

The matrix & is diagonal, A and H are almost tri-diagonal and each
of X and Y has 3 nonzero elements in almost each row,

We obtain the modified performance index

T/2 T
- 24+1 20+1 24, —= 24+1 24
7= g gy P [a @t B E x|

T/2
+1§0 !zuz [?;(22“2~9_“H) _ EI?MI‘XRZHZ] (Al.7.9)

The usual variational procedure will yield a set of difference equations
for the adjoint variable {y_z} When the adjoint and system equations

are satisfied, we have the first-order variational relation
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T
24+1 2 _
51 Ty 68 (p24 124 . 57 241 sxp%*]
£=0 ~ ~
T2 e 24+2  24+1 24+1
] Tt S IR S - 33
- 5 y p2t? ] (A1.7.10)

From the last expression, the operation count for computing §J/9k
and 8J/84 can be easily carried out. These gradients are most
economically computed by evaluating the required elements of the

summations

T/2 T T

T/2
> 2 4+1 24+1+m 24 24+m
o ¥ P and LZ;)O veUp for

N~
appropriate values of m,and forming their necessary linear combina-
tions. As each of the matrices E, H, X and Y has approximately 3N

nonzero elements, these sums require

4 x 3NT/2 = 6NT mults,
The terms containing 62 do not require any additional computation
because the required diagonal terms are alreadyv included in the above.
Thus, the evaluation of the expressions for 8J/0k and 8J/9¢

requires for a 2-d reservoir,

6 NT + O(N) mults

when discrete formulation for A, D, I. method is implemented.

For both 1-d and 2-d reservoirs, the determination of 8J/dm
from 8J/0k and 8J/84 requires only O(N) summations in the zona-
tion approach, In the Bayesian approach, this requires the product

of (M x 2N) matrix with a (2N x 1) vector, where M is the number of
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parameters being estimated. This requires 2MN mults. The rest of
the computational steps need O(N, M, T) multiplications.

Each simulation requires approximately 6 NT multiplications,
when the implicit scheme is used for a 1-d reservoir or the A.D. 1,
scheme is used for a 2-d reservoir.

Thus, the final estimate for the computational effort per itera-

tion of the conjugate gradient method is,

6(S+2)NT + aNT + MN + O(M, N, T) mults

4 1-d reservoir
where a

6 2-d reservoir

0 Zonation
ﬁ =

2 Bayesian approach

II. Gauss-Newton (or Marguardt) Method:

ap.

i ]
In this method, the quantity 5’1‘7 2

m=1,2,...,Randn=1,2,..., K, which determine the time and

must be computed for

location of the observations, The total computational per iteration
for this method, therefore, depends on the scheme used for computing

the sensitivities.

(i) Adjoint Equation method for sensitivity calculation,

For this method, since the adjoint equation has to be integrated
separately for each observation location, and since the convolution
sum needs to be evaluated separately for each of the observations, the

computational effort depends on,



-289-

L. - the total number of observations

K - the number of observation sites,
In addition, it also depends on the instants when the different observa-
tions are obtained. Note that when the pressures at all the K sites are
recorded simultaneously for R instants, as assumed in the previous
discussiong, L = KR. However, we shall assume a more general
observation strategy, where there are a total of L observations taken
at K different sites, Furthermore, we shall assume for simplicity
of analysis that the different observations at any given site are
taken at uniform intervals over the observed history period., Then
(K+1) simulations are required for the adjoint equations and the original
system equation. The sums for the sensitivities of each of the obser-
vations w.r.t. k and ¢ are analogous to those for 3J/0k and 3J/9¢ ,
with a difference that now they have to be evaluated for an average
time period of T/2. Then the effort for the sensitivity computations
can be deduced from that for the gradient computation in the conjugate
gradient method. Thus the computation of the (Lx2N) sensitivity matrix
requires,

4 x NTL/2 mults for a 1-d reservoir

6 X NTL/2 mults for a 2-d reservoir,

In addition, for the Bayesian approach, the Bayesian parameter
sensitivity matrix is obtained from the foregoing (Lx2N) matrix by
post-multiplication with (2NxM) matrix Z. This operation needs
2NLM multiplications. The corresponding operation in the zonation

approach involves only O(LN) summations.
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Thus, total effort for computing the appropriate sensitivity
matrix is,
6(K+1)NT + oaNTL + BNLM multiplications, where
2 1-d reservoir

3 2-d reservoir

0 Zonation

2 Bayesian approach.

(ii) Difference Equations Method for Sensitivity Calculations

(a) 1-d reservoir.

Differentiating the system equations (Al,2,2-3) with the param-

eter w g We obtain the sensitivity equations

op. ap. oG
G —itl - g =2 (.,:_)p,» +(3-Ii)p. i=1,2,... (Al.7.11)
op. |
— = 0, (Al,7.12)
o ~

L

For each parameter Ty 2 separate set of such discrete equa-
tions has ‘to be solved. The homogeneous part of each set is identical
to the original pressure eqﬁations. The forcing terms induce some
additional work for the solution. This additional work is different for
different parameterizations,
Zonation: Assume M/2 zones, implying M parameters. Each of the
M/2 permeability parameters affect on the average (6N/M+4) elements
in each of the matrices G and H, Each of the M/2 porosity param-
eters affect, on the average, 2N/M diagonal elements in G and H.

Thus, the solution of the M sets of sensitivity equations requires,
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including 6NT multiplications for the solution of the pressure equation
6NT + M(6NT + SNT/M+4T) = (6M + 14)NT + 4MT mults.

Bayesian Approach: Each of the M Bayesian parameters influences

the values of k and ¢ at all of the N grid points. This leads to tri-
diagonal matrices in both the forcing terms for all the parameters.
The evaluation of the forcing terms requires 6NT multiplications for
each set of equations. The total effort for M sets of sensitivities is,
6 NT + M(6 NT + 6 NT) = 6(2M + 1)NT mults.

Once the coefficients of the forcing terms are appropriately
computed, the resulting sensitivities are w, r.t. the Bayesian param-
eters, and no more matrix multiplication is necessary, saving 2MNL
multiplicative operations.

(b) 2-d reservoir: The discrete sensitivity equations can be derived

from the A, D.I. system equations (Al, 7.4) and (Al. 7.5) by differen-~

tiation w, r. t. LE

24+1 24 24+1
ng a P; ap . Bp?‘.f' op. ap ifi
@_(a -5 ):A.———-l +B =—d +¢c. 1 4+p. 1
~j L) Ty ~j an ~j-4 O ~j 81r1/ ~j+1 awl
0% . OA. 9 B.
2 (i) B en OBpy o
Ty \N <] anz =j ow ~j=1
9C. oD. 24
~j 248 ~3+1
+ = p“© —T
8“2 P—J + E Ej+1 (Al.7.13)

and a similar equation for the next time step, implicit in the other
direction, These equations differ from the pressure equations only
in the forcing terms. Hence, additional work required for their solu-

tion is only due to these terms.
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(bl) Zonation, Let there be M zonation parameters, implying

M/2 zones. For simplicity, we shall assume that the reservoir and
each of the zones are rectangular with the aspect ratio (the ratio of
length to width) close to uﬁity. If this assumption does not hold, there
will be an additional '"shape factor' occurring in the expressions for
the estimated computational effort. We shall further assume that all
the zones are equal in size, Then each zonation parameter determines
2N/M grid block values of either of the rock properties. The average
number of brid blocks on the side of a zone in which the properties are
assumed constant is approximately Y2N/M. Then the equation for the
sensitivity of the pressure with respect to the porosity in that zone has
a forcing term with P2N/M non-zero components. There are YN such
equations which determine the sensitivities at all N grid blocks in the
reservoir. Thus, the calculation of the porosity sensitivity coefficients
requires,
+ M(6NT + /N anET) = 3MNT + NTm

Similar1y§ each permeability zonation paraméter determines
Y2N/M values of k along any line of integration., Then, the matrices
aéj/an'z have (3)2N/M + 4) non zero elements, and the terms with the

derivatives of B. together have 3Y2N/M nonzero ele-

- 1

ments. The same count holds for the equations for the alternative

C. and D.
~] ~Jt

direction.
Thus the total effort for the calculation of the permeability
sensitivity coefficients is

3 M[6NT + TJ/N (6 /2N/M + 4) ]
= 3MNT + 3NTJ/M/Z + 2MNTYN mults.
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Adding up, total effort for the calculations of the zonation

parameter sensitivities is,
6(M+1)NT + 2NT ,,/'ZM + ZMTA/'N mults.

(b2) Bayesian Approach. Each of the M Bayesian parameters

affects the values of k and ¢ at the N grid blocks. Then the forcing
terms in the sensitivity equations will have as many nonzero elements
as those in the coefficient matrices in the original system equations.
This implies 6y N nonzefo forcing term elements in each of the line
equations.y Thus, the effovrt involved in solving the Bayesian parameter

sensitivity equations for a 2-d reservoir using the A, D.I. method is,
6NT + M(6NT + 6 TN VN ) = 6(2M+1)NT mults.

Computing the Corrections in estimates

After the appropriate sensitivity matrix is computed by either
of the two foregoing methods, the corrections 6&r in the estimates

are computed by the solution of the linear system,

T
A" Abdr = éT S5y (Al.7.14)

-—

where 62” is the vector of pressure match errors. The (MxM)
symmetric matrix éTé is obtained by ML/2 + M%L/2 multiplica-
tions. The computation of the (Mxl) vector éTﬁx needs ML multipli-
cations. The solution of the resulting (MxM) system is most efficiently
obtained by Cholesky decomposition, requiring (Isaacson and Keller,
1966)

M3 /6 +3M%/2 + O(M) mults.
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The rest of the computational steps require O(M, N, L, T) multiplicative
operations. The computational effort for Marquardt's method is the
same as above up to O(N). Adding up, all the steps in a Gauss-Newton

or Marquardt iteration require,

6(K+1)NT + aNTL + BNLM + %MZL + -(1)- M +-§i M2 + %ML mults

2 l1-d reservoir

where a =
3 2~-d reservoir

0 Zonation

2 Bayesian Approach
when the sensitivities. are computed through the adjoint variables.
When the equations for the sensitivities are solved, the total number

of multiplications per iteration is,

(6M+14)NT + 4MT + M®L/2 + M3/6 + 3M%/2 +% ML(1-d Zonation)
6(2M+1)NT + MZL /2 + M3/6 + 3M2/2+§ ML (1-d,2-d

Bayesian)

6(M+1)NT + 2NTY2ZM + 2MT)N +M2L 72+ M6 + 3M2/2+§- ML
(2-d, Zonation)
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Appendix 2.1

A Measure of Difference in Two Subspaces of a Linear Vector Space.

Let A and B be two linear subspaces of E". Let dim(A) = m
and dim(B) = 4. Let sets of orthonormal vectors {Y-i’ i=1,2,...,m}
and Ei’ i=1,2,..., 4} span the subspaces A and B respectively.
Using {!1} as columns, form an (nxm) matrix V. Similarly form
(nx£) matrix Y from {_ii}'

Any two vectors x and y in A and B can be expressed as

x=Va (A2.1.1)

y=V8 (A2.1.2)
The difference r between x and y is,

r=Va-VB (A2.1.3)

This can be done by finding the £ unknowns {ﬁi} that yield the least

For a given x, y can be determined so as to yield a minimum Hg_

square solution of the n equations,

Va=Vg | (A2. 1. 4)
The solution is,
B = N !9 vae=Vva (A2.1.5)

This is simply the projection of V g on to the subspace B. The mini-
mum residual is,
r=(1-%Y T

—

1<

Va . (A2.1.6)

If ¢ is a random vector, so is r. Then,



E{r) = I-VV)VE{a) (A2.1.7)
and
Ellz]*) = £l ) = e VT @I TN E-T T )V a)
= tr[E{aa )V (@-FF)% V ] (A2. 1. 8)
If the random vector g is such that,
E{g_} = .9,: E{EQ_T} = 0'2_];_ (A2.1.9)
then
E{ 2%} = o x{vT - T¥D)% v} (A2. 1. 10)
and
E{|zl} — L
= L teelvTia- AR ARk (A2.1.11)
E{fla}  Vm -

The values of this measure for different cases are reported in

section 2,5 (with m = 1),
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Appendix 2.2

A Posteriori Smoothing of the Estimate by Insensitive Corrections

Let the insensitive directions in the parameter space be given
by the orthonormal column vectors of the Mx(M-=-4) matrix «Yo'

Let 5’0 be the prior covariance matrix of the parameter vector
. Then as discussed in chapter 1, 5 contains information about
the auto-correlations and cross-correlations of the rock properties.
The correction éw in the estimate i along the insensitive direction
are to be made so as to minimize the Bayesian penalty term,

MinT = G-z+en) P lE-THem) .  (A2.2.1)
én v o~ Y ~0 -~ ~

As the corrections lie along the insensitive directions,

v = V_ (A2.2.2)

r
~ ~s

The solution to this simple quadratic minimization problem is,

T -1, =1 T =1~
x = (VO PV )TV Po(E-T) (A2.2.3)

~O A O A~

Since the matrix -130 has many eigenvalues close to zero, the
the evaluation of the corrections from (A2. 2. 3) entails severe numer-
ical difficulties.

An alternative approximate formulation that avoids these
numerical difficulties is as follows.

Let the columns of Eo be the orthonormal set of eigenvectors
of P, which correspond to very small eigenvalues. Then the mini-

mization of the Bayesian penalty is approximately equivalent to
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finding the corrections such that the components of the updated esti-
mate along the columns of Eo are as small as possible. Mathemati-
cally, we wish to find ém = V0 xr such that it yields the least square

solution of the set of linear algebraic equations,

@ -T+ém = 0 (A2.2.4)

va r = - B G - T) (A2.2.5)

The solution x of (A2.2.5) is unique if the rank of the matrix

B T v, 2 dim(zx). If this condition is not satisfied, a solution r with

~0 A~

a smallest norm can be found through the use of the Lanczos inverse
(see section 2.3).

A computationally more convenient formulation of the approx-
imate problem considered above is as follows.

Let the columns of ]~31 be the orthonormal eigenvectors of
fo corresponding to large eigenvalues. The spaceé spanned by the
columns of E andA]E/’, are the orthogonal complements of each other.
Then the above problem can be posed as that of finding r such that
the component of the updated estimate orthogonal to the subspace

spanned by the columns of B1 is as small as possible. Mathematically,

we have the least square problem,

(l' Blgf)(ﬁ-§+y (A2.2.6)

< 0X)=

0
~/
The remarks about the solutions of (A2.2.5) also hold for the solution

of (A2.2.6).
The formulation (A2.2.6) was used in arriving at the smoothed

estimate presented in figure (2.7.1,).
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Appendix 3.1

Trace of Cross Covariance Term in Estimation with Hard

Constraints

The cross covariance term in expression (3,1.54) is,

T — =T . T
) Po (G Yo¥o &) (A3.1.1)

Since P0 is a covariance matrix, it is real and symmetric, and
”~

it may be expressed as,

P. = TATT (A3.1.2)

Where A is a diagonal matrix and T is orthogonal, Let

{,1:1, 7T sz} be the columns of T. Then,

P. =Y AttT (A3.1.3)

tr {(L- GG ) ?o~1YoYoT91T} = tr {ia:Z\Tl M (L- GG )
LT 6%V G )

= 21:\11 Mg (L 516 ") 91Y0Y0T91Tr5i

- 0 (A3.1.4)

Where the last result is arrived at by noting that the

columns of the matrix Gl form an orthonormal set of vectors
and consequently, the matrices (I - G G T)

- ~1z

and 91 are ortho-

gonal to each other,
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