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ABSTRACT

As a result of the assumption that the strain energy due to
the second invariant of the middle surface strains can be neglected
when deriving the differential equations for a flat plate with large
deflections, simplified equations are derived that can be solved
reé,dily. " Computations using the solution of these simplified equa-
tions are carried out for the deflection of uniformly loaded circular
and rectangular plates with various boundary conditions. Compari-
sons are made with available numerical solutions of the exact equa-
tions. The deflections found by this approach are then used to ob-
tain the stresses, and the resulting stresses are compared with
existing solutions. In all the cases where comparisons could be
made, the deflections and stresses agree with the exact solutions

within the accuracy required for engineering purposes.
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I. INTRODUCTION AND SUMMARY

If the deflection of a thin plate is small compared to the
thickness, the displacements in the plane of the plate can be ne-
glected. In that case the deflection is determined by a fourth-order
linear partial differential equation which is referred to as the plate
eqhation. Many solutions to this equation for various loadings and
boundary conditions have been worked out. Indeed, the majority
of the literature dealing with deflections of plates is based on solu-
tions of th.e plate equation. .

When the deflection becomes very large compared to the
thickness of the plate, three non-linear equations are used to find
the deflection and the two displacements. However, in this case
the bending rigidity of the plate can be neglected, thereby reducing
the highest order equation to a Second order non-linear differential
equation. In this case, the governing equations are referred to as
the membrane equations, Fairly complete solutions of these equations
have been computed for a few special cases of loading and boundary
conditions. However, the literature available on solutions of these
equations is considerably smaller than that available on solutions
of the plate equations.,

If the deflection is of the order of magnitude of the thickness
of the plate, the governing equations when written in terms of the
deflection and the displacements are one fourth order and two second
order non-linear partial differential equations, These equations
are referred to as the equations for plates with large deflections.

The three equations are ‘coupled together, and solutions of them
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are very difficult to obtain. Several techniques have been useci to
solve them.. For example, S. ‘Levy (Refs. 1, 2, and 3) substitutes
a double Fourier series solution into the equations for rectangular
plates and evaluates the coefficients. Chi-Teh Wang (Refs. 4 and
5) writes the equations for rectangular plates in a finite difference
form and solves them by the method of successive approximations.
S. Way solves the circular plate equations by substitution of a power
series into the differential equations (Ref. 6), and he solves the
rectangular plate equations by substitution of a finite power series
solution into the energy expression, determining the coefficients
by setting the first variation of the strain energy equal to the first
variation of the potential energy due to the external loading for any
variation of each of the coefficients (Ref, 7).

The main problem studied in this thesis is the determina-
tion of the deflection of plates when that deflection is of the order of
magnitude of the thickness. The purpose of the present investigation
is to develop a simple and yet sufficiently accurate method for solv-
ing this problem. This is difficult because the non-linearity of the
mathematical problem must be considered if the solution is to re-
semble reality. Except for those few problems where exact solu-
tions can be found in closed form the previous approaches to this
problem have been those that are outlined above. The approach used
in the following analysis is to investigate the effect of an approxima-
tion to the differential equations, still retaining their essential non-
linearity.

The approximation used to find deflections arises from ne-.

glecting the strain energy due to.the second invariant of the strains
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in the middle surface of the plate when deriving the differential
equations by energy methods. The resulting differential equations
are still non-linear, but they can be decoupled in such a manner
that they may be solved readily. The assumption that the portion
of the strain energy that is neglected will have little effect on the
solution for the deflection is based on physical consideration of
known solutions of the exact equations.

It can be reasoned that, in general, this approach will give
a good approximation to the deflection in the case of symmetrical
loadings. In many problems one need find only the deflection.

For example, the aerodynamicist is interested only in deflections
when computing the interaction between non-rigid structural ele-
ments and aerodynamic forces. However, in most problems a
knowledge of the stresses is needed. If the deflection is small,
the membrane stresses are very small, and the total stresses can
be approximated quite well by the bending stresses alone. This is
true even for deflections that are too large to be approximated by
a solution of the linear plate equations. Since the bending stresses
are computed solely from the bending deflection, a knowledge of
the deflection in this case is sufficient for a complete solution of
the problem.

As the deflection increases, the membrane stresses become
an increasingly greater part of the total stress. Consequently, to
solve the problem of large deflections of plates completely, an es-
timate of the membrane stresses must be made. This can be done

by assuming that the deflection is equal to that given by the solution
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to the'approximate_ equations and substituting this deflection into
the strain energy integral. The strain energy is then a function of
the displacements only, and by the principle of virtual displacements
differential equations can be derived for these displacements. These
differential equations are linear and can be solved readily. Knowing
these displacements as well as the deflection enables one to compute
the membrane stresses in the plate.

The first part of this thesis is devoted to the derivation of
the approximate differential equations that are used to find the de-
flection. These equations are derived in the manner previously
discussed._

The second part gives solutions for circular plates with uni-
form loading. Clamped, simply supported, and elastically built-in
edges are considered. The deflections for these cases are com-
pared with available solutions of the exact equations, and the de-
flection is shown to approach the exact solution as the deflection
decreases.

In the third part of this thesis, deflections are found for
rectangular plates with all edges simply supported and with two
edges simply supported and two edges clamped. Aspect ratios of
1, 1.5, 2, and infinity are considered. The agreement with re-
sults obtained by considering the complete equations is shown to
be increasingly better both as the deflection decreases and as the
agpect ratio increases.

The fourth part of this thesis outlines the technique for
determining stresses once the deflection is given. Calculations are

carried out for the clamped circular plate and the errors are shown
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to be greater than those for the deflection when given as functions
of the loading, but are very small when given as functions of the
maximum deflection.

The comparison of the results with available exact solu-
tions shows good agreement for all cases that were considered.
The amount of computational effort necessary to find deflections
and stresses is considerably less than that required by other meth-
ods that have been used in the past. However, no computations
were carried out for non-uniform loadings or for oddly shaped
plates. One should exercise extreme caution in using the tech-
niques of this investigation for the solution of any plate problems
of this nat\ure without first substantiating that the approximations

made herein are applicable to the case in question.
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II. NOTATION

Constants

DL E | Constants

Bending rigidity
_&n’

12(1-v%)
Modulus of elasticity

Stress function defined in (6.37)

Shear modulus (Lamé's Constant)
E

2(1+»)
Function defined in (6.47)

—
-

Function defined in (6.48)

Bessel function of the first kind of nth order
Bending moment per unit length along circumferential
sections of the plate

Radius of the circular plate

Strain energy

Pofential energy

Applied work

Bessel function of thé second kind of nth order
Half-width of the rectangular plate
Half-length of the rectangular plate

First strain invariant in three dimensions

= Ex+EyrEy

First invariant of middle surface strains
=&yt &y in rectangular coordinates

2E ey in cylindrical coordinates
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Second strain invariant in three dimensions

= = = = 2 A 2
Exey"fyfz"'fxfz 4[Y‘ + +X;(ZJ
Second invariant of middle surface strains

Xy in rectangular coordinates

=¢,.£g in cylindrical coordinates when there is circular

symmetry

Function defined in (5.1)

Function defined in (5.12)

Thickness of the plate

Summation variables

Function defined in (5.13)

Intensity of the uniform load

Cylindrical coordinates

Displacements in the plane of the plate (extensions)
Deflection of the plate in the z-direction
Rectangular coordinates

Function defined in (6. 52)

Function defined in (6. 50)

Constant of integration

2n+} -
2a

Three dimensional shearing strains in rectangular
coordinates
Shearing strains of the middle surface in rectangular
coordinates = 3-9‘ *a—; g;"g-‘i’
[2H+I") “ﬁ
Three-dimensional unit elongations in the x-,y-, and

z-directions
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€, E.)’r Unit elongation of the middle surface in the x- and y-
directions
_du , sow ] V. W, 2
& S5 (kY 5 &=y r2lEy)
&ryég Radial and tangential unit elongations of the middle surface
= du  Ldw 2 . X
SrEar 2 a(r) ) ¢o * 7
K liroportionality constant for elastically built-in edges
A Lamé's constant
= vE
(1+v)(1-2v)
A Constant
kmn
» Poisson's ratio
6., 8., 6., Normal components of the stress in three-dimensional
x’ %y’ Yz
rectangular coordinates
G.» Normal components of the membrane stresses in rec-
x’ Oy
tangular coordinates
H 1
G‘X,O‘Y Normal components of the bending stresses in rectangular
coordinates
Or, g Normal components of the membrane stresses in cylindri-
cal coordinates
0}', 6'9' Normal components of the bending stresses in cylindrical
coordinates
txy’ fyz’ (S Three-dimensional shearing stresses in rectangular
coordinates
T;‘Y Bending shearing stress in rectangular coordinates
1t Membrane shearing stress in rectangular coordinates
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III. DERIVATION OF EQUATIONS

The usual thin plate assumptions are that all stresses normal
to the plane of the plate are zero and that all sections normal to the
plane of the plate that are plane before the load is applied remain
plane after the load is applied. As a result of these assumptions,

one can write

Ti2=Ty,=0 (3.1)
0,=0=A€+20¢&, (3.2)
Ex = &g+ 2Z %2;‘% (3.3)
Ey= &y +z§2-yl2’ (3.4)
Y 2255 (3.5)

A sketch showing the notation for rectangular coordinates is given

in Fig. 1. Combining (3. 2) with (3.3) and (3. 4) gives
£, c -7 [e+zViw] (3. 6)

The three-dimensional strain energy-, U, expressed in terms of the

strains is given by (Ref. 8, p. 148)

U=z"///[mzc)Ez—4céz]dxdydz (3.7)

Substitution of (3. 3) through (3. 6) into (3.7) gives

=—f[[[ 1)2 e+zV W 46{62 Zléya 2 £X ‘;YM; Y;ygxma’y] (3.8)

2w 32w, 22w \2
+22[a by .37.2.. (aaxay) ]}jd!dyo{z
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Integrating in the z-direction, one gets

2w

({97 e ]2l e i By

This is the standard energy expression for plates with large deflec-

dxdy (3.9)

tions written in terms of the deflection and the strain of the middle
surface (Ref. 9, p. 95, p. 345).

If one writes the strains in {3.9) in terms of the deflection,
w, and the displacements, u and v, and then sets the first variation
of the potential energy (strain energy minus the"applied work") equal
to zero, one obtains the differential equations for u, v, and w.
These equations are non-linear and, except for a few special cases,
have been solved only by approximate techniques.

It is the intent of this investigation to develop a simplified
analysis for finding the deflection of plates when that deflection is
large enough so that the strain of the middle surface cannot be ne-
glected. To do this we would like to neglect terms in the diff.eren-
tial equations that do not appreciably affect the solution for the de-
flection with the hope that neglecting these terms will materially
simplify the ensuing analysis.

Examination of some available exact solutions for the de-
flection of uniformly loaded plates, such as S. Way's solution for
the clamped circular plate (Ref. 6) leads us to surmise that the terms
in the differential equations arising from the second strain invari-
ant of the middle surface strains, ey in the strain energy integral

do not appreciably influence the solution for the deflection.
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Consequently, as a working hypothesis, the first variation of e,
is neglected wheni deriving the differential equations. There ap-
pears to be no simple physical justification for this approxima-
tion, so its justification must be based on comparisons of the
resulting approximate solutions with available exact solutions
for the deflection.

A feeling for the nature of the approximation can be ob-
tained by noting that the variation with Poisson's Ratio, ¥, in
the resulting differential equations is confined to the bending
rigidity, D. Thus, the approximation can be interpreted as ne-
glecting part of the variation of the deflection caused by a change
in ¥ . However, any variation with » arising from the bend-
ing rigidity and the boundary conditions will still be present in
the proposed solution for the deflection. This will be demon-
strated later when studying simply supported circular plates.

The principle of virtual work states that, for a system
in equilibrium, the first variation of the strain energy is equal
to the first variation of the applied work for any vi'rtual dis -

placement, Thus,

V= §(U-w)= §(U-[[gwdxdy) (3.10)

which holds for any variation of u, v, and w. Using the afore-
mentioned assumption, the strain energy written in terms of

the displacements and the deflection is

U= 2ff{(vaw) 2B [ 35+ 85+ 2 (3F) /

e e



-12-.
Using (3.10) and (3.11), the Calculus of Variations gives the follow-

ing equations (Ref., 10, p. 191)

55 =0 (3.12)
%eg=0 | (3.13)

5-;)+§9(eg—“—;;]=—g- (3.14)

2,2
ou aw .2 q)__v_/z_otﬁ
ega'i*%?*‘é“(ﬁ)*‘ﬁ(ay)-"‘,a (3.15)

where a is a constant of integration. Substituting (3.15) into (3. 14')

gives

viw -a2 v = 2 (3.16)

Equations (3.15) and (3.16) are the differential equations that will be
used to determine the deflection of the rectangular plate.

Due to the constant of integration, a, the equations retain
their essential non-linearity, but they have been decoupled so that
it is possible to solvé the latter for w since it is linear in w, and
then use this solution in the former which is linear in u and v to de-
termine the constant of integration, a.

In the case where there is circular symmetry, the same pro-

cedure yields the following differential equations

2,2
du 7] dw 2_0( h
es 7 +3(&FV =57 (3.17)
2
d? ,1d \diW  pdw 2y). 2
(a(r2+7$l7*)( alr2+r dr -a w) D (3.18)
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A sketch showing the notation for the circular plate is given in Fig. 2.
The above equations contain all the essential features of those for the
rectangular plates, but since they are ordinary differential equations,
they can be solved more easily. Consequently, solutions for circular
plates are studied before those for rectangular plates so that the
essential features of the proposed analysis will be more readily ap-

parent.
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‘IV. CIRCULAR PLATES WITH UNIFORM LOADING

Since the majority of exact solutions are for uniformly
loaded plates, all approximate solutions are computed for uni-
formly loaded plates in order that the two may be compared.

(3.18) can be written as

2
rdr{ oA tw] ] B (4.1)

Integrating twice, one gets

2 r2
ol o= 24+ Cplogr (4. 2)

40

+ L
r

N
YR
sk

But C, = 0 because w and its second derivative must be finite
and its first derivative must be zero at the origin. Since (4. 2)

is a Bessel Equation of zeroth order, the solution is

2

w Ao (taur)+ B~ L7

D2 (4. 3)

where the coefficient of the Bessel Function of the second kind
has been set equal to zero because w must be finite at the origin.

(3.17) can be written as
2
0(2/1 Aw, 2
L& (ru) < g5 (%) (4.4

Using (4. 3) and standard integrals of Bessel Functions (Ref. 11,

p. 145), (4.4) can be integrated to get

24,2
et iotr) = Jp (dotn) Jg ezt ]
" Zpwz 2 () - Sr g

where the constant of integration has been set equal to zero, so

that u will be finite at the origin.
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" The equations for w and u contain three arbitrary constants,
A, B, and a. A and B are determined from the boundary conditions
on w, and then g is determined from the boundary condition on u.
Thus, we see that the approach used herein allows one to solve the
differential equations readily even with arbitrary boundary condi-
tions. It remains to be seen, of course, whether the solutions given
in (4. 3) and (4. 5) are sufficiently close to the exact solutions to war-
rant use of the approximation necessary for their derivation.

In order to investigate the accuracy of the approximate so-
lutions as well as to demonstrate the ease with which these solutions
can be obtained, three boundary conditions on w are considered in
the following analysis--clamped edges, simply supported edges,
and edges elastically restrained in rotation. In all three cases u
is set equal to zero on the boundary.

If the plate has a hole in the center, the solution can admit
singularities at the origin. Consequently, (4.3) would include the

terms
CY. (‘otr)—CZI r
ot xE 09

Similarly, the solution given in (4. 5) would include singular terms.

a. Clamped Edges

Assuming that the edges of the plate are restrained from
moving and fixed in such a manner that they cannot rotate, the bound-

ary conditions are

W(R) =0 (4. 6)



Uu(R)=0

From (4. 6) and (4.7) one gets

4R? -
A= A _
2008 (XRJ, (iaR)

and

40&2 L“RJ;(iotR)

Substituting (4.9) and (4.10) in (4. 3) gives

9/22 [ 20 Jp(iaRY~Joliar)]
40«2 taR J,((oR)

Substituting (4.9) in (4. 5) gives

_a?h? g2R2, [Jz(t'd")—./o(c'dr)./g(éﬂ')
U= 24 Tisp2x? J2(iaR)
_ s (lar)

(kR J, (LR )

+145)% ]

+ 45

Setting u{R) = 0 to determine the constant o, one gets

( Q“)Z_ £« R
Dh i..'. 7 _ JQ (‘LMR) Jo (‘dRJ

4 T&Rr)2 " EatR J, ((oR) 3 1,2((aR)

A plot of the above equation is given in Fig. 3.

J

From this plot,

(4.7)

(4. 8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

one finds the proper value of aR to be used in (4.11) and (4.12) for

the given loading. The deflection at the center of the plate is plotted

in Fig. 4, along with the results of S. Way (Ref. 6).

When the de-

flection equals the thickness of the plate, a comparison of the two

solutions shows an error of less than two percent for ¥ = 0. 25,

and less than one percent for ¥ = 0.35. We see that the deflection
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at the center of the plate approaches the exact solution as a ap-
proaches zero, aﬁd that the error increases monotonically as a
increases.

Limit a —>0

From examination of the differential equations, (3.16),
we see that the dependence on a disappears as a approaches
zero, sé we should expect the solution given in (4. 3) to be inde-
pendent of o as it approaches zero, and, therefore, we should
expect the solution to approach the exact linear plate solution
as a approaches zero. To show thaf. this is the case, we shall
take the limit of (4.11) as a approaches zero.

The expansions of Jo(iaR) and iaR Jl (iaR) for small a
are (Ref. 11, p. 128)

4
Jo liaR) = 1+ (%) %+ £ (25)% e14)

xR 2;,..]

LR, ((otR)= -2 (%@)2[/+é-( > (4.15)

Using these expansions in (4.11), the deflection for small values

of o is approximately

4
Ef_ [ i 2]2 (4.16)
W= g7p [/~ (%) :
As we expected, this is the solution for a clamped circular plate

with small deflections (Ref. 9, p. 60).

Limit g —o= oo

The results plotted in Fig. 4 show that the error increases
as a increases over the range of values of a for which a compari-

son could be made. It seems of interest, therefore, to investigate
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the error for very large a.

The expansions for JO('iaR) and Jl(iaR) for large a are (Ref.

11, p. 138)
' o R
o € /
JO(LO(,QJ:W[/*&_“—O‘Q*““] (4.17)
LR
€ _ S .,
Sar) ~Joz Li-52m ] (4.18)

Using these expansions in (4.11), the deflection for very large values

of a is approximately given by

.’?_&2_ [ r\2 4 19
we Sheeli~(7)°] (4.19)
and from (4. 13) the loading is approximately given by
9.2 6 -
(‘?Di )= % (xR) (4. 20)

Combining (4.19) and (4. 20), one gets the approximate deflection
for very large a
»2)gR”7
r,\2
W= 45/, ] [ ~(5) ] (4. 21)

For ¥ = 0.3, the maximum deflection given by (4.21) is
J

Wy = 0,6/0(?5%)3 | (4.22)

Hencky's exact result for the circular membrane is (Ref, 12)

' !
3R% 3
Wy = 0562( (4.23)

Since the difference between (4. 22) and (4. 23) is likely to represent
the maximum difference that will occur between the exact solution -
and the solution given in (4. 11-) for all values of a, the error intro-
duced by the proposed approximation can be estimated to be less
than 8 percent for uniformly loaded circular plates where the de-

flection and displacement are zero on the boundary.
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b. Simply Supported Edges
In the case of simply supported edges, it is assumed that
the-displacement and deflection of the edge of the plate is zero but

that it is free to rotate. The boundary conditions in this case are

w(R)=0 (4. 24)
e d

M.(R)=0 = Ta]= R (4. 25)

W(R) =0 (4. 26)

From the first two of the above conditions, the constants in (4, 3)

are found to be

(7+v) g

A= ” ‘ (4.27)
204 [ J, (o R) ~ EL dar)]
and
2 (1+ Jo (ot R)
8= 9R2 - y (20) g Jo lta (4. 28)
4D 2D [ (iaR)- 12, (cuR)]
Thus, (4.3) becomes
2
(et RY =, (c
e 2R i ,_(L)E_ 22(/+»)[J (i ) J (‘o.“.)] (4.29)
4D R' (AR)CU (caR)+ (1-v) i R J,({:R)
and (4. 5) becomes _
"= 0(2;]1P+ 22,Q2r {(Hv)a[.},_.a([ar)—Jo(t'ar)Jg(Lotr)
24 /6 D24 | [qR Jo(iXR) ~(1—v) ¢ J(caR)] %
(4. 30)

- 4(1+v) Jo (Car) _J_(_CJZ
&R [okR Jp ((hR) ~(-v) iJ,(iaR)] 2 'R

As in the case of the clamped plate, setting u(R) = 0 gives

q
a relation between aR and ?—E . A plot of this relation is given

Dh
in F'ig. 3.
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A plot of the deflection at the center of the plate is given
in Fig. 4 for ¥ = 0.25. The results of the computations for the
simply supported plate are given in Table 2. Unfortunately, there
are no available theoretical results for the simply supported plate
so the deflection cannot be checked, but some confidence in the
results can be obtained by checking the behavior of the solution
for small and large values of a.

Limit gq—=0

In the case of the s.imply supported plate, one find that the

deflection for small values of a is approximately given by

4

we 550 1725 - (R lr¢:)°] (431
This is the solution for the simply supported circular plate with
small deflections (Ref. 9, p. 62) so as in the case of the clamped
plate, the deflection given in (4. 29) approaches the exact solution
as a approaches zero. It should be noted, moreover, that (4. 31)
has the proper variation with Poisson's Ratio because that varia-
tion results from the boundary conditions.

Limit g — co

One sees that the deflection for very large values of a is

approximately given by

[ ]

which, as would be expected, is the same as in the case of the

clamped plate.
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c. Elastically Built-in Edges

If it is assumed that the edge of the plate in addition to having
zero displacement and deflection is restrained in such a manner
that the angle through which it rotates is proportional to the bending

moment at the edge, the following boundary conditions must be satis -

fied
w(R) =0 (4.33)
dw | =~k{d2w +—U-°-’.l“} } (4.34)
ar "=R drz y:RR r I’:Q ‘
w(R)=0 (4.35)

From (4.33) and (4.34), the constants in {(4.3) are found to be

9/22 /+/%(l+u)
Az—zoo@ [I- 5 ' ' 2Rk J, (: (4-36)
l-—R;(a-»)]co(:QJ, (i&R ) ~xFR Kk Jy (i R)
and
2
g R
6’:‘75:(‘2 -AJd, (caxR) (4.37)

Thus, (4.3) becomes

cJ_QZ {2 [1+5 (Y[ [ Jo(caR)=Jo i) ]

- +/~(E 2} (4.38)
402 ["%(:—u)](ac/?J,(cotQ)—o(?EKJO(toc.e) )

One sees that (4.38) approaches the deflection for the simply
supported case as K approaches infinity, and it approaches the de-
flection for the clamped case as K approaches zero. For all other

values of K , the deflection given in (4. 38) will be between these

limiting cases.
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As in the case of the clamped and simply supported cases,
the dlsplacement u, is found by substituting (4. 36) in (4 5), and
the relation between the loading and a is found by satlsfymg the
boundary condition (4.35). The resulting relation would be a curve

qR4
of aR vs. =— with k as a parameter.

Oh
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V. RECTANGULAR PLATES WITH UNIFORM LOADING

The equations that must be solved for the rectangular plate
with uniform loading are (3.15) and (3.16). It is not possible to
write the solution of these equations in closed form as was done
for the circular plate. Therefore, u, v, and w will be expanded
in appropriate series. The choice of the type of series that is best
suited to the problem will depend on the boundary conditions. Con-
sequently, no general solution for completely arbitrary boundary
conditions will be given for the rectangular plate.

A; an illustration, consider the solution when two sides,

x = + a, are simply supported, and the two other sides, y = + b,
have arbitrary boundary conditions. To do this w is represented

by the Fourier Series

W=Z fo(y) cos 22";'sz (5.1)
n=0

This series satisfies, term by term, the boundary conditions for

the simply supported edges

w(ta,y) =0 (5.2)
2wy .
3%2 lx_td 0 (5.3)

Substitution of (5. 1) into (3.16) gives

Z cos |Gn {dy4 (ﬁ'\z_.- Snz)dy +’8r‘285“n} = % (5' 4)

n90

where

{
l 2n+l \2 z
Bn= S5 5n=[("n+""') +d2J2
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Expanding the right-hand side of (5.4) in a Fourier Series in cos Bn X

gives

> (=)
22
g - =X — COS X 5.5
55 L7, 25 o (5. 5)
n:
Since (5.4) must hold for all values of x, one obtains the following

differential equation for fn(y)

d¥%, . 2 $2f 290" 5.6
RO SO S

Because of the choice of coordinate system, one is interested only

in symmetric solutions for fn(y). Therefore, the proper solution

of (5. 6) is

29 ()"
fnly) = W An‘““ﬂny“BncoshSny (5.7)

and the solution for w is

w Zcos@"x{ﬁ;—l—,jz ncos/x ﬁny-*B,,Co»sA Sny} | (5.8)

It is convenient to partially sum (5.8). Thus

oo

w:b%‘, { E:;:z:l (%922[1—(—;(—)2]} -Zcos@nx{/\ncosh Bny +BnCas/1$,,7}(5- 9)
h=o

where the equivalence of (5.8) and (5.9) can be verified by expanding

the summed portion of (5.9).

One notes that the first part of (5.9) is the exact solution for
the deflection of a simply supported infinite strip given by Shaw et al
(Ref. 13), Timoshenko (Ref. 9, p. 5), and others. Since w must be
independent of y as b approaches infinity, the second part of (5.9) will
approach zero as b approaches infinity, leaving the solution given in

(5.9) equal to the exact solution. Thus, the approximate solution
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found in this thesis approaches the exact solution in the case of rec-
tangular plates asb the aspect ratio, -E— , approaches infinity for any a.
- By the same argument that was used in the case of circular plates,
it can be shown that the solution approaches the exact solution as a
approaches zero.
Using (5. 1) one can write

ZZ Bn ng £ Sin BnX SinBmX

n=0 M=0
and this can be written as

ax Z [3,\24:2 ZZ Cos '_‘.13'_"{2 B [3n+kcn'cn+k

n:

- (5.10)
Z @h@k-n-a K-n-i Z, —k'pn'Fn—k}
n=0 N=k
Similarly, one can write
=ZZ -;(-——- Z—— Cos 3, €OS Bym X
n=0p0 m=0
which can be written as
(55 =22, (G557 cos 121 ) G e
n=0 k=l n=o (5.11)
K-l oo
_,.Z dtn diy, +Z dfn df,., }
d d
n=o0 Y y n=sk Y y
If one lets
«= D Guly) sin X (5.12)
K=
and
oo
v=Z £, (y) cos’%r—é (5.13)
k=0

where the above form has been chosen because we know that u is an
odd function of x and v is an even function of x.

The boundary condition on u at the edge x = tais



-26-~

W(*a,y) =0 (5.14)

 which is automatically satisfied by (5.12). If the plate is simply

supported so that there is no restraining force to displacement

parallel to its edges, the shear must be zero along its edges. Since
du and ow are zero along x = + a, the boundary condition on

oy % %y

the shear reduces to the following boundary condition

bvl

e =0 (5.15)

=%q

which is automatically satisfied by (5.13). If the plate has restraints
preventing motion parallel to its edges, the boundary condition on v

would be

V(ta,y)=0 ar 4 (y)=0 (5.16)
k=0

If one substitutes (5. 10) through (5.13) into (3. 15) and equates

coefficients, the following set of equations is obtained

2h2 d?, ’ 3 dfn\2
== dy° +Z”Z=O{( )+ (gn*n) } (5.17)

and

- ko dpk _a__co d"nd"nfk
0= Tgk+7+4z [@n@m-k o™ dy ey ]

h=0
k-1 fn df
L d+n d At i-n-t
3 & [Pn @Km—l -Fn'ck—n -l 0‘)’ 0‘)’ ] (5.18)

3 s -
+JFLZ [{Snﬁn-K'Fn’cn—K * ;_I_;v\ o‘tj_nyj]

n-=

Fa

k=1,2,3,...
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(5.17) can be integrated to get

olPh? B
dﬁ“12y1 {ng&}y =5 Y +B8aA an@ﬂwwpn

62 52

2
¥ 55, Businh Sny coshény 28, AnBy sinh gy coshny (5. 19)

49(:)"
+aopn26nz [AnSth‘ny + B Sth SHY]S

where the constant of integration has been set equal to zero because,
for all boundary conditions that are treated here, Eo(y) is an odd
function. When the boundary conditions at y = + b are given, this
equation determines the proper relation between a and the loading.

It is not possible to solve for gk(y) and Bk(y) independently
from (5.18). It is possible, however, to find the deflection, w, even
though one cannot find u and v explicitly from the above formulation -
of the solution. Also, one sees that it is not necessary to specify
the boundary condition on the displacement parallel to the edge in
order to find the deflection. This must necessarily be due to the
approximation used to derive the differential equations. It appears,
therefore, that a part of the error introduced by the simplification
made herein must lie in the fact that the deflection determined by
this analysis does not vary with the boundary condition on the dis-
placement parallel to the edge. Since the displacement parallel to
the edge was necessarily zero because of symmetry in the case of
the circular plate, one can expect that this additional source of error
in the rectangular plate solution will make the error in the deflection

greater in the case of a rectangular plate than it was in the case of a
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circular plate. Furthermore, the inability to determine u and v
explicitly leads to the conclusion that the method developed so far
" in this thesis cannot be used to determine accurate membrane
stresses since they depend on the displacements. However, in
many problems, interest is centered on the deflection, w, and the
previous analysis enables one to find this deflection readily.

In the following sections the simply supported and clamped
boundary conditions at y = + b will be considered, and computations

of deflections will be carried out for various aspect ratios.

a. All Edges Simply Supported

When all edges are simply supported, the boundary condi-

tions, in addition to (5.2) and (5.3), are

w(x,tb) = O (5. 20)
Pwy
W’Y=.+_;0 - (5.21)

Using the expansion given in (5.1), these are equivalent to the con-

ditions

faltb) =0 (5.22)
d24)
dy2l . (5.23)

Using the above boundary conditions, the coefficients in (5. 7) become

_ -2g(-)"
n- dDO(zﬁ,f cosh Bn b

(5.24)
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and
n
2g(-)
- 5.25
B, aba2p, &8 2coch &), b ( )
Thus, (5.9) can be written as
- ._%___ CoshXX _ | +(_°_‘__d)2[/__ _3‘..)2]}
w T 04 | coshad 2 <d
(5. 26)

oo 29(- 2 coshd ny @ M
+ZCOS§"X{aD°K2{33CS 2[/3 cosh &, b gn Cosh By b }
n=g

The boundary conditions on u and v for the simply supported plate

when the shear is zero along the edges are

5

v(x,2b)=0

Y ly: ”’ (5. 27)

and when the plate is restrained from moving parallel to its edges,
the boundary conditions are
u(x,tb) =0
(5.28)
v(x,tb)=0
Using the expansions of (5.12) and (5.13), (5.27) becomes
dgk I
Y= ib (5.29)
L (tb)=0
and (5.28) becomes
+b)=0

(5. 30)
£ (+b)=0

The above boundary condition on ﬂk when substituted into (5. 19) gives
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2 4
2 g2 &
Sl U A NN Y R - S A
12 6202 87146')2 20 cosh 6}16 0(4{3,,[3 (5.31)
n=o :

v BrlBrrzalf) 4 4, b}
46’)

If the relation

oo /

-:.__L- £ - Qt_d‘ 2 — ! 3 5.32
Z ag pn.q 6:14 Fxa)’ [4 lonh xa p; sech "xa O(a-"é{O(d) J ( )
n=Q

is used, (5.31) can be written as

4
(aa\ (gd ) [(43)3[25:&”/’“6_026 5ech oA - A3 +é-(0(d

12 T \Dh
2 2B, 37 (5.33)
'2 ‘ a4ﬂn454[ P sech 5B tanh 3, b
- 2
n=o -P" (ﬁg 42“0(2)?2”}; an]

A plot of this equation giving aa as a function of _?_f_ is given in
Fig. 5 for aspect ratios of 1, 1.5, 2, and ¢© . From this plot one
finds the proper value of aa to be used in (5. 26) for the desired
loading.

A plot of the deflection at the center of the plate is given in
Fig. 6 for aspect ratios of 1, 1.5, 2, and oo, The results of Levy
(Ref. 1) and Wang (Ref. 4 and 5) are also plotted in Fig. 6. The re-
sults of the computations for Fig. 5 and 6 are given in Table 3. It
should be noted that the series of (5. 26‘) and (5. 33) converge so rapidly
that never were more than two terms needed. In fact, the first term
alone would have yielded sufficient accuracy. Table 4 demonstrates
the rapidity of convergence of the series for the worst case of aspect

ratio .equal to one.
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Levy assumed that there was no restraint to displacement

parallel to the edges of the plate, while Wang assumed that the dis-
placement parallel to the edge was zero. As was pointed out earlier,
the solution given in this thesis is independent of which of the above
assumptions is used. We note that for an aspect ratio of one, the
solution given in this thesis lies between the solutions of Levy and
Wang. We can conclude, therefore, that this solution can be inter-
preted as representing the deflection for a plate where the displace-~
ment parallel to the edge lies somewhere between zero and the value
when there is no restraint against such a displacement, but one can-
not explain the whole error introduced by neglecting the second
strain invariant in the strain energy integral in this manner because,
as was shown in the case of a circular plate, there is an error even
when both boundary conditions give zero displacement parallel to
the edge of the plate.

It can be noticed in fig. 6 that the curves showing the solu-
tion of Wang and the solution given herein cannot be distinguished
from eé,ch other for an aspect ratio of 1.5. As was mentioned
previously, the solution arrived at in this thesis for an infinite as-
pect ratio is the exact solution, so the deflection plotted in Fig. 6
for -E- = oo is exact.

Physical intuition leads us to believe that the deflection at
the center of the plate for an infinite aspect ratio will be larger than
the deflection at the center for any other aspect ratio. The method
used in this thesis gives deflections for an aspect ratio of 2 that

are greater than those for an infinite aspect ratio. This appears
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to be due to the approximate nature of the solution, but it is interest-
ing to note that the calculations of Wang reveal the same result to a
lesser degree. This phenomenon will be discussed further when in-
vestigating the limit as a approaches infinity.

As in the case of the circular plate, the deflection given in
(5.26), for any given aspect ratio, approa-ches the exact solution
(Ref. 9, .P. 128) as a approaches zero. To investigate the error as
the plate approaches the membrane we take the limit of (5. 26) for
very large a. In this case the deflection is approximated by

2 . S (—) Ca\sllﬁn
w = =P D°<2‘ [/ ‘é} ] a D°<2 pn CUSA/@" Casﬁn (5. 34)
=0

The approximate value of ?Dj/)_ for very large a when obtained from

(5.33) is given by

g L (ot

5 539
/-62 5> _1 |
bn=o(ﬁna)€tanhl8"b

Eliminating a from (5. 34) and (5. 35), one gets

(

>z

2 Z() coshBay
)’( 4) 2[1-G)) Z(ﬂ T Corhpgb O (5. 36)
D
— < — 3
[ 2 /2"”2;0 ((gna),mnh,@nb]
Thus, for » = 0.3 and o 1, the maximum deflection for large a

is approximately given by
¢ 1
- g9 "\3
Wgy = 0.692(—57) (5.37)
Hencky's exact result for the square membrane, where both u and

v are zero at the edges, (Ref. 14) is
4
d

h

-0

|

_L
Wpay = 0-665 (21 )7 (5.38)

.
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Thus, the error introduced by the assumption used in this thesis is
4 percent for uniformly loaded square membranes with zero dis-
placements and deflection on the boundary. We note that, contrary to
the circular plate case, this is less than the error one gets when the
deflection is of the order of magnitude of the thickness.
By examination of (5.36) we see that when finding the deflec-

tion at the center of the plate, the difference between the numerators

2ntl b

2 a’

while the difference between the denominators is of the order -2— .

for finite and infinite aspect ratios is of the order of sech

Since the numerator increases towards its value for the infinite as-
pect ratio plate at a greater rate than the denominator, the deflection
must exceed that of the infinite aspect ratio plate for all aspect ratios
greater than the aspect ratio for which the deflection is equal to that
of the infinite strip. The maximum deflection given by (5.36) is plotted
in Fig. 7 for all aspect ratios, We see that for aspect ratios greater
tha;n 1.7, the maximum deflection given by (5. 36) is greater ‘;han that
for the infinite strip. |

The approximate solution given by F8ppl (Ref. 15, p. 228) is
also plotted in Fig. 7. We see that his approximate method gives
a deflection that is always too large and that the error increases with
the aspect ratio. It is interesting to note that the approximate solution
given in (5. 36) increases with aspect ratio at approximately the same
rate as FlUppl's solution for aspect ratios near one, but in contrast
with F'8ppl's solution, the center deflection given by (5.36) starts de-
creasing for large aspect ratios until it approaches the exact solution
for an infinite aspect ratio. The exact solution f_or an aspect ratio

of one is less than 25 percent lower than the exact solution for an
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infinite aspect ratio. Consequently, if one were interested in the
membréne solutiobn only, he could obtain a much better estimate
" of the maximum deflection than F8ppl's by fairing a simple curve

between the exact solutions for aspect ratios of one and infinity.

b. Two Edges Simply Supported and Two Edges Clamped

When the two edges, x = + a, are simply supported and the
two edges, y = + b, are clamped, we have in addition to (5. 2) and

(5.3), the boundary conditions

w(x,£b)=0 (5. 39)
vy
a),/)(__tb 0 (5. 40)

Using the expansion of (5.1), these are equivalent to

.{.:’(j-_b) -0 (5.41)
| =0 (5.42)
dy V=tb

Using the above boundary conditions, the coefficients in (5. 7) become

—2g6)" /

A = (5. 43)
h dDFnBJr,a { Sth ﬁnb[COfAﬁnb - _gﬂcafh Snb]

n

and

n
Bn = 293{')2{ ! (5. 44)
aDﬁn én SL”h‘Snb[%’-’- co‘th/s,,b-—co'th cgnb]

Thus, (5.9) can be written as

coshax _  (@afr g 2 }
Do<4 (Coshdd B [/"( ]

n cosh5n1 cosh Bny 5. 45
_29 Cos (3 X =) [ﬁ"' stohénb = dn S5EnhBn bJ ( )
a0 4 ﬁnaénz Bn cothd, b — Sncoth ﬁnb
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The boundary conditions on u and v are the same as those given in
(5.27) and (5. 28). Using the boundary condition on Eo given in

(5.29) or (5.30), (5.19) becomes

(oca)2= 934)2 )
12 Dh (a)?

N oa 2 3
[-j—.nmho(d —-;rseeh Ad -O(a+-6l-(o(a) }
= °K2 2 2 6 ( 2-0(2) 27,2 1 2 (5.46)
_— ——é&‘- esch éh b — _'LE%——— Co‘f‘hﬁnb -+ ﬁh (égnl;zc( )ca'th&b
o 523,887 [&y coth B = B coth&yb]2

A plot of this equation is given in Fig. 8 for aspect ratios of

1, 1.5, and oo . A plot of the deflection at the center of the plate

is given in Fig. 9 for the same aspect ratios. The results of the
computations used to obtain Figs. 8 and 9 are given in Table 5.

For the square plate the deflection lies between that of the fully
clamped plate {Refs. 2 and 7) and that of the simply supported plate.
As the load increases, the difference in deflection between the semi-
clamped plate and the simply supported plate decreases. For an
aspect ratio of 1.5, only a slight difference exists between the semi-
clamped and simply supported plates. In fact, for large loads the
approximate solution for the deflection of the semi-clamped plate

is slightly larger than that for the simply supported plate due to

the nature of the approximate approach. As the aspect ratio ap-
proaches infinity, the solution for the semi-clamped plate approaches
that for the simply supported one. Thus, the curve for an infinite
aspect ratio plate given in Fig. 9 is the same as that given in Fig. 6.
The limit of the deflection given in (5.45) approaches the solution
given in (5. 34) as a approaches infinity. As a approaches zero, the

deflection approaches the exact solution.
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V. DETERMINATION OF STRESSES

The foregoing analysis can be used to determine the deflec-
tion of the plate and the bending stresses at the surface of the plate

which are given by (Ref. 9, Chap. III) for the circular plate as

6D ;oW Y of w '
O‘,f=“—hz( 2t dr) (6.1)
i _6D diw | dw :

Ox =772\ gx2 ay? (6.3)
ofw  Fw
5'=-%5 (572 +»552) (6.4)
¢ _ _6D BZW
TXY— he (I—V) axay (6.5)

Since these stresses depend on derivatives of w, they will not be as
accurate as w, but they should be sufficiently accurate for engineer-
ing use. In many problems one is interested only in the deflection
and the bending stresses. However, frequently one needs to know
the membrane stresses as well. In such cases the displacements of
the middle surface of the plate must be known.

It was possible to determine this displacement for the circu-
lar plate in the foregoing analysis, but the membrane stresses com-
puted from this displacement are very inaccurate. Moreover, one
should expect that to be true because the deflection and displacement
that were determined did not satisfy the equilibrium equations. The

error resulting from this had little effect on the deflection, but we
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should expect it to have a large effect on the membrane stresses.
In the case of the rectangular plate, it was not even possible to
uniquely determine the displacements in the plane of the plate, so
it was immediately apparent that the technique used to find the de-
flection could not be used to find the membrane stresses.

It is possible, however, to obtain a good approximation to
thé membrane stresses by using the previous results for the deflec-
tion. If it is assumed that the deflection is a known function {de-
termined by the previous analysis) one can substitute that deflec-
tion into the strain energy expression given in (3.9). Then (3.10)
will hold for any variations of the displacements u and v. The Cal-
culus of Variations then can be used to derive the appropriate dif-
ferential equations for the displacements,

In the case of the rectangular plate the equations arrived at

in this manner are

a2y ey Pu v d%v __Q_&/(éz_\ﬂ+;_—gJa_2_\1_V)_/_ﬁ)@_\gazw (. 6)
572*'2"3)/2 2 Axdy  Ox\dx2" 2 oyZ/ 2 dy dxoy .

2 2 2 2 2
v wddv e dBu w2 1w Pwy prwow Pw
> ~+ 1 "—( y2+2 &xz) Z ox oxody (6.7)

dy2 " 2 Bx2" 2 axoy  dy
where the right-hand side in each case is a known function of x and
y. The equations, therefore, are linear equations in u and v and
can be solved in a straightforward manner.

For the circular plate, the corresponding equation for the

displacement, u, is

rFeT P dr T p2 T Zr(d" Zdr'[( (6.8)

where the right-hand side is a known function.
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- It can be noted that the above three equations are the usual
equilibrium equafions in the middle plane of the plate. Consequently,
 the procedure that has been followed in this thesis can be interpreted
as finding a solution for the deflection that satisfies modified equa-
tions of equilibrium in the plane of the plate and normal to the plane
of the plate, and then using this deflection in the equilibrium equa-
tions for the plane of the plate to determine the displacements. With
this procedure the potential energy is minimized under the assump-

tion that the deflection is given by the approximate result.

a. Circular Plates with Uniform Loading

For the circular plate, the equation for the displacement,

(6.8), can be written as

o __ [ [dw)2 /g‘_[__.dw 2/
L[+ (r ]— 'é;(dr)__z—alr (57) (6.9)
where the deflection, w, is given by (4.3). Integrating (6.9)' twice,

using the necessary integral relations of the Bessel Functions (Ref,

11, p. 145), the displacement is given by

2,3
C o IR ()94 g iar) . ZAF

6402 ¥ 5pud Doz Jollar)

{6.10)
+ 202 [ 12 (iar) + J 2 ior)] + B2 ARk Splisr)
where C is a constant of integration. The other constant of integra-
tion has been set equal to zero so that u will be finite at the origin.
If u is set equal to zero on the boundary, one can determine

C, giving the following expression for u
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W= ~ ._b_z, [%4(2{?:;) [é L'J,((O(IQ)-L'J,(io{r)]

AD
+2,€42(oue) R[J (ixR) = o (éd*’)] 64(0(2)4R[/
AZDZ (6 11)
+res LOR) G [UFiar) w2 R) - JFiar) < F i)
2”2
+ ;2/28 /;’) oLQ[R J, (tc(R)J(I.OlR) ~J (Catr) J, (LOU’)]}

The membrane stresses are given by (Ref. 9, p. 329)

13 du
Cr =72 aTF+ dr r] (6.12)
dw
S = /»2[ G+ 3G (6.13)

The membrane stresses at the center of the plate are given by

(0, (%), 75 ( F)reo (6.14)

Using the value of u given in {6.11) one gets

2 4 0)-
__9%R°E [AD je» R . AD [lidR)-1]
Wr)r:o— 0'”)02{9/842(0(2)3[“ (iaR)+2 ]+9/€4 2 (AR)2
23@8 -’—)—{O(Q)Z[Joz(c'alg)*\/,?([ol E)-I] (6.15)
+ A Zp? 1Y, . . @R)Z;  3-v }
t Sop8 T [Lo(RJo(LoLQ)J,/th)+_E._] SR
At the edge of the plate
£ du 1 1dw,2
() 275 (%) p = o2 | ar +2(alr) ],=,Q (6. 16)

After performing the indicated differentiations, one gets
__E g%R
(5%)reg "0 D2 { £4(a</2)2[2" (‘“E’*om" (‘“'2)] 32(«2)4

R : o 2 (i . X6.17)
9228 (o;) [Jaz((o(ﬁ)-}-‘j,?(ldﬂ)-a-&-é¢Jo(lo(/2)./,(ld9j}
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Substituting (4. 3} in (6. 1) and (6. 2), we find the bending stresses
at the center to be

6 D(1+v) [a°A
(600 (06 )pn 0= = 5| 55 - 552 ] (6.18)

and the bending stresses at the edge to be

gy - D ] . 2 .
(6, )*=R_ —%[%A(I—ﬁ) (J(( R)+ A, ((aR) — %%——g] (6.19)
(65, .4 ~ [—-—A(: -0) (Jy (AR ) + volPA J, (ot R) - Wg:l] (6. 20)

The values of A for the clamped, simply supported, and elastically
built-in edges are given in (4.9), (4.27), and (4. 36), respectively.
Substitution of those values into the above equations determines the
membrane and bending stresses for those boundary conditions. In
what follows, we shall examine the case of the clamped plate in de-
tail and compare the results with available solutions to the exact
equations.

For the clamped plate, (6.15) becomes

() = BRE 1 viRixr)+ 5
rir0 (1-v) p2 16 (xR)?

J,2((xR)
, (6.21)
L B Jo(xR)-20-) 2 (1+0)+ L (1+2)
(R J, ((R) *R)2

and (6.17) becomes

( 9?RE JE(taR) +2J0(LdQ) 3,8 }

%R =) D2 16(aRY | J2(iaR) * ixki aR) V2 (wR)2
 EhZa?

-n = 6.22
24(-») ( | )
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The bending stresses are given by

) - R QQ 3(/—0’)))
(0—")"-‘0_(0-9 )r:_o‘ _7)'72_‘ (0(2)2[ 2‘\/(‘0(&) (6.23)

qrZ | [/ oUQJo/LdR)]

(Gr‘)wR:'zLJ(G_G')p—:&: 42 (dg)z 2id, ((dR) (6.24)

The membrane and bending stresses given in (6. 21) through
(6.24) are plotted in Fig. 10, along with the results of S. Way (Ref.
6). The results of the computations used in plotting Fig. 10 are
given in Table 6. A comparison of the two solutions over the range
that was computed by Way shows a maximum error in the bending
stresses of less than 6 percent., The curves of Way for the mem-
brane stresses could not be distinguished from the curves for the
solution proposed herein over the range that was computed by Way.

Limit q —»— oo

The maximum error in the stresses is likely to occur when
the error in the deflection is a maximum which appears to be the
case for very large a. The approximate stress at the center given

by (6. 21) for very large a is

2°R e S (6. 25)
(G'r)r:o ) D2 64(1-v) (aR)? )
Substituting (4. 20) into the above equation gives
Ehtfa9R7 )5 50 6. 26
(o)™ R2 L3on | 640-2) (6-26)

For very large a the approximate stress at the edge given by (6. 22) is

2 oy |
(5r),. o vl IS (6. 27)
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For ¥ = 0.3, the approximate stresses given by (6. 26) and (6.27)

for very large a are

. 2olr _
()™ 0359 £ ,e 09655 £ (6.28)
r=0 22 Winax
E E

Hencky's exact result for the circular membrane is (Ref. 12)

2?£

(6‘,.),. o 0423[ ]3 O.gsf—g—zwfm (6. 30)

2 p%F

(Crdr-p ‘0328[2 ]J = 0,748 Ezwmax (6.31)

The stress at the center given in (6. 28) is 15 percent lower than
that given in (6.30) when the stress is written as a function of the
loading., However, when it is written as a function of the deflec-
tion, the two results are the same. The stress at the edge given
in {6.29) is 19 percent lower than that given in (6. 31) when it is
written as a function of the loading, but it is lgss than 5 percent
lower when written as a function of the deflection. We see, there-
fore, that for a uniformly loaded circular plate, the maximum
error in the membrane stresses is approximately twice the maxi-
mum error in the deflection when both are given as functions of
the loading, but when the stresses are given as functions of the

deflections, the error is considerably less,
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b. Rectangular Plates with Uniform Loading

To find the membrane stresses in a rectangular plate, it
is convenient to write (6.6) and (6.7) in terms of those stresses.
The relations between the stresses and the deflections are given

by (Ref. 9, p. 342)

2.0 (dW,\2
GX’/—v?-[a'"*”'g*zL(?)*?(ay)] (6.32)
£ rev ou IWL\2 Y AW, 2
C‘_\/T/—u?[ y Y x+2L(§'S7)“'Z(§§ (6.33)
- du Qv qw Iw
Txy=6 [ay xF ox By] (6.34)

Substitution of these equations into (6. 6) and (6.7) gives the equili-

brium equations for the stresses in the middle surface of the plate

O Gx 3 Txy

—5;‘4- _ST:O (6.35)
ocy , 9Ty _ ¢ (6.36)
ay o x

These equations are identically satisfied by the introduction of a

stress function defined by

2
QEF D2F _o°F
% SyE OyT oxz  TyToxdy (620

From the compatibility equation, we get the equation for the stress

function

2
()Zw 2 _Pw tw
AR E[ sy ) T ax® 3)’2]

Using the expansion given in (5.1), the above equation becomes

(6.38)
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F et 0 () A ]

*z—';w W(; [fonforoe 522 2t 4 1 g E o] 6
»
D [fnfrn 2 a“‘“' -4, ‘“"‘é”]

=0 oo Y

o, d%_ d2¥-
Zl;[ﬁ”ﬁ” o Gyt d’;:]J
n:

Since

252877 = B, 5,0 Ap A [cosh (Sn+Bm)y = O5h (8 m)y]

+$, 8, By B, [cosA ($n+dm)y ~cosh (8= 8m) y] 6. 40,

*Bn (Sm A, Bm[cos/. (p’n-l-cgm)’y ‘COSA/ﬁn"am)Y]
+ﬁ"” $n Am Bn[cos/; [p’m+ én)y ~ Cosh (/;.’m-cs,,,)y]

and

o Pty 49
2"6,7 dy,;'—aDﬁgéz [-/3”1 Cof/lﬁmy +Jrn25chs/,Jm.y7

+ ﬁm2A,,,Am [COSA (ﬁ”'l'/)'m)y —cosh (ﬁn */Sm)y] |

+ 8,2 By Bunlcosh ($n+bm)y ~coshl8p=8m)y ] (6:41)
* 8,2 Ay B [cosh (Bm+dn)y = cosh (B —Sn)y}
+ 6,5, A, B [cé:/«» ((g,,fcfm)y -~ Cosh {fﬁn‘Jm)y]

One can write (6.39) as

o0

4 kT < .
ELV F = Cos-—a—x Z,Ckmncosl;)\mny (6.42)
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where the Ckrnn',s and the Akmn's are defined by substituting (6. 40)
and (6.41) into (6.39). |
If the stress function is expanded in the following series

[acd

#-5 Ayt .o

k=0

and this series is substituted in (6.42), one can solve for Fk(y).

The symmetric solution is

3 K &
+f Z Crmn Cosh ApmnY Z Ciomn _g_) och K1Y (6.44)
2¢ KT \4 ‘
me [)‘kmn KW) J (T)

where N_ is defined as that value of n for any given value of m
2 _1xm?&
where A, = ‘-3-\
Since the boundary conditions are given on u and v, it is
necessary to solve for them in order that one may evaluate the con-

stants By and E;. From (6.32), (6.33), and (6.37) one gets the

relations
dU 1 (aw,2 _  13%F  33F
(32 (3 -0 8 649
w2 1 (dF L EE (6. 46)
5 ( 5y ) = ( ox2~Y 3y2

For simplicity, (5.10) and (5. 11‘) can be written as

3 2 S
) : eZe<y)cos—"—X- (6.47)
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gv_v ZZdy [,L/ (y)]cos Kk ITx (6.48)

Then, using the expansion for u given in (5.12), one gets the follow-

ing equation from (6. 45)

- 275
"(c% 9 ék =(kd_”) [("”)Dk*sz ]C“” K:TITY

KIT\2 Kfly . Ki (6.49
H-9)(g) E, 5 sinh 5 ’
where
— S [)‘kmn ))( ]
msz| )’I=’C\)lm Akmn - a )] ‘
(6. 50)
- KTY)2 KTy . M
—[(2 - 5‘”“"%3]Zcmnm
8(%7.) 2(‘%".)2 Mmzy
Using the expansion for v given in (5.13), one gets the following
equation from (6. 46)
d KT, 2
;/;[Zk+@k]=(-5‘l [0—»)DK~ZVEk]corA K7y
(6.51)
2 k
)T (-2) By “BX sinn KLY
where
M & 2 2
d@, - o IL/k _Z Z C [(Kéﬂ_-) - V’\kmn] cosh AKmnY
dy —dy Lalo ’""b\ 2 K1)7]
i N Kmn 1 (6. 52)
-y +p(KEN)2 g 0k KTy
[ - cosh _g_y+ —9 — ¢inh T]Z,CK"'N
/A
8 (47) 2(5 e
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Integration of (4. 51) gives

,@kq-@ = %-[(, V)D -(1+¥) Ek]smkxﬂy Kﬂ’(, V)Ek'i?coxh k7Y {6.53)

If the shear is zero along the edges of the plate, the boundary con-
ditions on g (y) and fk(y) are given in (5. 29). Substituting them into

(6.49) and (6. 53) and solving for D, and Ek’ one gets

o@ (6)[/+1) K"bco’ték”’f]q“”) @(b)[j’-v KTTh . +) Krrb]

(6. 54)
4 (KLY’ sinh K2
dgk(b) KT\ &
- (&L b
g - (%5)"8.(8) 655

4(%) sinh Kﬂb

If the displacements are zero on the boundary, the boundary condi-
tions given in (5.30) can be used. Substituting them into (6.49) and

(6. 53) and solving for D, and E,, one gets

5. 3. () 14 kgb oth KIb ]+@k(b)klr 2 . ,5!1 _g__]
i =
b

[(3+ p) cosh X212 —(, ) kﬂbﬂcl’g‘é‘]

5 (5) - O.(b) S cothkrd
) Py (6) - B (b) 3 coth’Z (6. 57)

S (D [(sev)cosh KB~ (j0) KB coch KIE]

The stress function has now been completely determined. The mem-

brane stresses may then be found by differentiation according to
(6.37).
The bending stresses are found by substituting (5.9) into

(6.3), (6.4), and (6.5). This gives
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;_QQ{_?_ [ coshxX
COx =z | pad ! e

- ' (6. 58)
% [(/-u)ﬁ,,zAn Cosh /3,1)/4—(@"2—))6,,2) By,cosh Sny] cos B, x}

| _6_\___ [ OS‘AO(X }
Oy = 732 DO<2 Coshd
' (6.59)

-nZ:O[(/-f))/?né’ A, Cos/:/eny +(6n2_u(@,,2) Bncosh 5,1\’] cosﬁ,,X}

D o
T, = &2 (,_U)Z [ 37 Ansinh Bry * 6,8, sinhdny ) cos gux (6. 60)
n=0

It is apparent that a considerable amount of computational
work is necessary to compute the membrane stresses at a given
point on a rectangular plate. However, the fast convergence of
the series that are involved makes the actual computations less
formidable than might be indicated by the complication of the for-
mulae. On the other hand, the bending stresses are quite simple
and can be computed easily, The errors involved in the stresses,
as in the case of the circular plate, will be greater than those in
the deflection, and the greatest error for any given point on the

plate will occur when a approaches infinity.
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VII. DISCUSSION OF RESULTS

The approximation based on neglecting the second strain
invariant in the strain energy integral when deriving the differen-
tial equations has been investigated for uniformly loaded circular
and rectangular plates., Maximum deflections were computed for
clamped, simply supported, and elastically built-in circular plates
and simply supported and semi-clamped rectangular plates. Mem-
brane and bending stresses were computed for clamped circular
plates. The results are plotted in Figs. 4, 6, 7, 9, and 10. In
all cases where comparisons were possible good agreement with
exact solutions is obtained over the complete range from the linear
plate to the membrane. The amount of calculation necessary to
determine the deflection or the stresses for any given problem is
considerably less than that needed when the complete equations
are solved. Consequently, this approximation enables one to carry
out a simple analysis for plates where the combination of size and
loading lies between those that can be analyzed by the linear plate
theory and those that can be treated as membranes.

It appears that no simple physical interpretation can be
given to the approximation resulting from neglecting the second
strain invariant. It is possible, however, to interpret the result-
ing analysis in terms of the stresses by investigating the assump-
tions on the stresses that must be made to derive the differential
equations that are used in this thesis. The equation for the deflec-
tion, (3.16), could have been derived if it had been assumed that

DX? . 7.1
Gx:(yy= h ) ny:o ( )
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That ié, (3.16) is the equation for the deflection when the membrane
stresses are those of an ideal membrane. The constant, a, which
can be interpreted as an average value of the membrane stresses
over the plate when (7.1) is not satisfied exactly, is then determined
from (3.15) in the case of a rectangular plate. The condition given
in'(3.15) is equivalent to assuming that the sum of the stresses is
given by

2

T+ Gy = D—;f— (1+ ) (7.2)

everywhere on the plate. Thus, once the deflection has been found
as a function of a, the condition that the normal stresses are con-
stant and equal is relaxed, and the constant, a, is determined using
the assumption that the sum of the stresses is given by (7. 2). It is
important to note that the sum of the stresses given in (7.2) is not
equal to the sum of the stresses given in (7.1). This difference may
well account for the accuracy of the approximation that has been
demonstrated by the calculations carried out in this thesis.

The displacements that can be obtained at this point of the
analysis are found by assuming that the deflection is given by the
above approximation, and then this approximate deflection is sub-
stituted in (3.15) or (7.2) to find the displacements. (Since there
is only one equation and there are two displacements in the case of
a rectangular plate, only a relation between the displacements can
be found, If, for example, it were reasonable to assume, in addi-
tion, that th is zero everywhere, one could find the displacements

explicitly.)
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If the assumption given in (7. 2) is not a good approximation, it is
necessary to go one step further to determine the stresses. In this case
th‘e deflection that is found from the above outlined analysis is used in
the exact equilibrium equations in the plane of the plate to find the dis-
placements or the membrane stresses. The stresses determined in this
manner will be reliable if the approxim;cltion to the deflection is good.

Fromtheforegoingdiscussionit seems reasonable toassume that
the proposed analysis will give good results if the conditions on the stres-
ses given in (7.1) or (7. 2) arenearly satisfied. The real test, however,
of whether or not the proposed analysis will give a good approximation
to the solution of any particular problem must be based on whether the
deflection determined in this manner is a good approximationtothe true
deflection.

In the case of uniformly loaded clamped circular plates, it was
possible to check the deflections for values of aR from zero to approxi-
mately 3.5 and for very large values of aR. For simply supported cir-
cular plates it was possible to check the deflection only for very small and
very large values of aR. The deflections for uniformly loaded clamped
rectangular plates were checked for values of aa from zero to approxi-
mately 5.5 and for very large values of aa. For semi-clamped rectangu-
lar plates thedeflections were checked only for very small and very large
values of aa. For values of aR or aa other than those specified above,
no checks were possible. Consequently, the curves that are plotted in
this thesis for these unchecked values can only be considered as tenta-
tive solutions until checks are available to verify their accuracy. Simi-
larly, if the proposed approach is extended to other problems where no

checks are available, the solutions must also be considered tentative.
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TABLE 1

CENTER DEFLECTIONS OF CLAMPED CIRCULAR PLATES

aR qR4 Y max
Dh h
1.0 24.13 0.353
1.5 39.01 0.527
2.0 57.25 0.700
2.5 79.92 0.870
3.0 108.06 1.037
3.5 142,73 1.202
4.0 184.87 1.364
4.5 235.47 1.523
5.0 295.44 1.680
5.5 365.73 1.835
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TABLE 2
CENTER DEFLECTIONS OF

SIMPLY SUPPORTED CIRCULAR PLATES

R4 ¥ max
aR BE h
1.0 5.91 0.310
1.5 11.05 0.464
2.0 18.80 0.617
2.5 30.05 0.768
3.0 45. 66 0.917
3.5 66. 50 1.065
4.0 93.43 1,212
4.5 127.33. 1.357
5.0 169.04 1.502
5.5 219.44 1.647
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TABLE 5

CENTER DEFLECTIONS OF RECTANGULAR PLATES

WITH TWO EDGES SIMPLY SUPPORTED

AND TWO EDGES CLAMPED

b/a =1 b/a=1.5

4 W 4 w
oa o | % ~rpes
1.0 13.61 0.377 6.33 0. 447
1.5 22.61 0.577 11.44 0.664
2.0 34,63 0.740 18.89 0.877
2.5 50. 40 0.920 29.43 1.084
3.0 70.88 1.098 43,78 1.287
3.5 96.92 1.271 62. 66 1.484
4.0 129.41 1.442 86.76 1.679
4.5 169.19 l.612 116.79 1.871
5.0 217,10 1,778 153.45 2.060
5.5 274.03 1.944 197.43 2,248
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TABLE 6

STRESSES OF CLAMPED CIRCULAR PLATES

BENDING STRESSES

MEMBRANE STRESSES

AT THE AT THE AT THE AT THE
CENTER EDGE CENTER EDGE

R (0tho0R? | (@02 R® | ()10 R2 | (00)pen R?
EnZ Eh? Eh? Eh?
1.0 0.994 1.593 0.121 0.060
1.5 1.461 2.459 0.270 0.134
2.0 1.898 3.406 0.475 0.238
2.5 2.299 4.455 0.728 0.372
3.0 2,661 5. 620 1.030 0. 536
3.5 2.988 6.918 1.377 0.729
4.0 3.281 8.355 1.766 0.952
4.5 3. 546 9.941 2.196 1.205
5.0 3.787 11.677 2.663 | 1.488
5.5 4,010 13.570 3.170 1.801
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o displacement of the middle
Y surface in the x-direction
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|
L - 20 ~ > v = displacement of the middle
surface in the y-direction

h w =deflection of the middle
— b x surface in the z-dircection

¥4 q = intensity of the uniform load

FIG.| — SKETGCH SHOWING NOTATION FOR RECTANGULAR PLATES

u = displacement of the middle
surface in radial direction

w =deflection of the middle
surface in the z-diraction

h = intensity of the uniform load
g Y

RN S

FIG.2 — SKETGH SHOWING NOTATION FOR GIRGULAR PLATES
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FIG.10 — CENTER AND EDGE STRESSES FOR
GLAMPED CGIRGCULAR PLATES



