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ABSTRACT

The objective of this research is to examine and to develop
methods of treating nonlinear, closed-cycle, single loop systems,
Analytical and graphical'methods are immediately rejected for
their failure to include the complexities of realistic systems,
Exrerimental techniques as, for example, electrical analog modeling
are flexible and can accormodate complicated system deseriptions,
Associated with such a technique are three important steps: 1)
selection of suitable analog elements, 2) arraying or modeling these
elements to properly simulate the actual system, and 3) devising an
experimental test procedure that produces appropriate insight into
the cause and the control of results,

Designed for the sxploratory testing of nonlinear systems
the electronic, logarithm type function generator is a nonlinear
element that creates an easily modified function of two or more
input variables, Its compubting speed is sufficient for oscillo-
scope monitoring of solutions,

Systen modeling is the most critical step; as demonstrated by
two system examples, the deceptively simple hydraulic servomechanism
and the supsrsonic diffuser instability.

Based upon & limited Taylor series approximatioh of the input
function the experimental procedure used to design a realistic
servomechanism for best saturated performance is quite simple, It
‘utilizes intentional shaping of the rate feedback function (or the
statlc error), Performance within the system's customarily linear

region can be improved by intentional saturation,
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I. INTRODUCTION

The objective of this research is the development of technlques
useful in treating nonlinesr, closed-cycle systems, In contrast to
much of the existing work in nonlinear mechanics, the approach here
is essentlally normathematical, Arguments and results appeal to
physical intultion,

Here, the formulation of the research program is reviewed,
Since the aim of the research is to develop ideas and concepts that
might be useful to an engineer faced with a nonlinear problem,
methods rather than detailed solutions are emphasized, Most of the
realistic systems are complicated, Response sclutions of a real
nonlinear system require detailed definitions of the system's
characteristics and in general have mesning only in connection with
the specifiec, defined system., On the other hand, a method concerns
1tself with a group or class of systems and thereby offers possi-
bility of application to many detailed problems,

The justification of such & research project entalls first,
evidence that nonlinear systems which are in need of study exist,
and second, svidence that methods already available are inadequate,
The first point can be shown in many ways: for one, all natural
(and for that matter, all mammade) ocourrences are nonlinear if
for no other resson than having limited energy available, In treat-
ing nonlinesr systems, formal mathematical methods with thelr
assoclated rigor are not generally applicable, for the infinitely
diverse cannot be codified, In many instances, experimental
techniques are available, but the tesk of interpretation is often



difficult.

Closed-cycle phenomens form an important famlly of nonlinear
ooccurrences, The basic elements are 1) a controller of energy
(manifested by mechanical force, tempersture, hydraulic pressure,
ete.), 2) a reaction of part of the system, the load, to the con=
trolled energy, and 3) one or more feedback or loop closures by
vwhich the reaction influences the controller, The reciprocating
engine is a nonlinear feedback system, an oscillator, in which the
energy source is combustion and the reaction is crankshaft rotation
influencing combustion by valving, ignition, and plston position,
External influences control steady state engine speed (as denoted
in nonlinear mechanics, the outer, stable limit cycle); the inner
(low speed) unstable limit cycle eatablishes minimm starting speed
initiating oscillations, In modern meronautics, aerc-elastioc
effects such as flutter, supersonic diffuser "buzz", and rocket
and ramjet flame instabilities are important, unsolved problems,
Intentionally closed systems such as hydraulic and pneumatic
servomechanisms exhibit prominent nonlinearitles, and all servo
controls display large nonlinearities in saturated regions of
operations, The present resesrch 1s concerned with the elemental
form, the aingle loop nonlinesr system. Although efforts are for
the most part directed towsrd treating servomechanlsms, one
naturally closed-cycle system, the simplified supersonlic diffuser
model (Section III, Part C), is included,

One of the baslic system characteristlcs of general interest is
stability which has an intimate relation with 2ll closed-cycle



phenomens, The other characteristic is performance, which is
assoclated with systems intentionally closed to perform certain
operations, A nonlinear system may display both stable and un-
stable regions of operation; the requirement that the system
be stable (or perheps unstable, as in the case of an oscillator)
must also precisely specify the reglon of operstion, For example,
stability near the mull or singular point of a servomechanism is,
despite conceptions extrapolated from linear servoanalysis, not
of principal interest, If a servomechanism has some tolerated
error, | 5|, null instability is acceptable and may be desirsble
provided a stable limit cycle occurs within the allowasble error,
Any nonlinearity whose effect 1s felt in the null region may produce
this situation, as, for example, back lash or dead space or coulomb
friction, Alternatively, an scceptable osclllator may have a
stable null but also have a small unstable limit cycle such that
a small excitation pushes it into the unstable region. The other
characteristic, dynamic performance, 1ls as diversified as the
gservomechanlam's applications, Obviocusly, no one universal per
formence requirement exists., Some of the commonly encountered
dynemic requirements for control systems ars;

1. Poaition jump (step function): Move from initial position
'a! to position 'b £ \6\ ' (6 being the tolerated error) within
the shortest possible time,.

2. Velocity jump (rsmp function): Move most guickly from
initial position 'a! to 'b 4 6', b moving at a constant velocity,

3. Simusoidal input: Follow a sinusoidal input within
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tolerated amplitude error, 18] (or tolerated phase error oF)
maximizing frequency.

4e BRegulator: Metch a fixed input minimizing error for
changing loads,

5. Defined time varying input: Minimize the rms error
of the output in following some defined input,

A complete performance requirement includes at least two
specifications: 1) a definition of the input (and possibly
other expliclt time variables), and 2) & definition of the
departure or error from ideal performence, i,e. a criterion for
evaluation and improvement, Sinusoidel inputs and Jump functions
are most commonly used in analyses, The other specification,
evaluation eriterion, perhaps needs a little clarification be-
cause customsry linear analysis fails to define a useful ideal
system, The theorstically ideal linear system has no limltations,
a point of ascademic interest but of no assistance to the design
e eer, In practice, & real servomechanism must accept a set of
physicel limitations: e.g., actuator foree, actuator speed, actuator
inertias, totsl power, etc., The intelligence of the system, pro-
vided by intentionally added components, 1ldeally makes the most of
these physical handicaps*; thet is, with ideal intelligence, a sys-
tem is limited only by its physical restrictions (a state ususlly

referred to as “saturated"), If the performence of such a system

% It is assumed throughout this thesis that signals from the input
and the feedback have been stripped of spurious information, thus
isolating system response subjected to severe nolse as a separate
problm.



is known, it cen serve as a criterion for evaluating actual system
performance.

As previously mentioned, a scarcity of methods applicable to
nonlinear systems exists at present, To substantiate this assertion,
a review of currently available methods 1s made, For clarity,
ninternal® techniques are distinguished from "external® techniques,
An internal technique involves the human mind intimetely in all
the details and quite possidbly in the mathematical rigor of the
solution, Included here are all of the analytical and most of the
graphical methods, Although solutlons by such processes are
thorough, the many restrictions exclude most practical applications,
In contrast, "external" techniques, essentially experimental methods,
involve the important inputs and outputs of the system; the complex
of internal workings of the system are often nelther defined nor
understood in detsil, Necessarily this technique involves either
testing the system itself or using some suitable analog, The
assignment of the human mind to such method 1s as problem director,
rather than problem solver,

Most of the current methods are "internsl", From an internal
point of view, the nonlinear system may be seen as an ordinary,

differential equation:

L{x,t,x:& = (Zit

where x4 1s the input, x, the output, and t the independent varilable,

* Throughout this report, the brackets {} denote "a function
of. LR 0"



time, For our purposes, x4 is a defined function of time, allowing
the equation to be written

L{x,t} =0 I-1

If the equation is quasi-linear, autonomous, and its solution
has certain continuity properties, the graphical phase space method
developed in Appendix A can be employed, Unfortunately, thils type
of analysis applied to higher order systems is tedious, and insight
into system action 1s obscured,

Admitting linearity restrictions, we obtain a more mathematically
acceptable equation:

Lo {x,t} = £§x,t} 1-2
vhere L, denotes a linear, constant coefficlent, ordinary differential
operator, From here, two directions are open, By letting
f{x,t} = k sgn [g {x,t}] ,* time appearing only in derivatives,
we gel the famlly of linear systems with discontinuous foreing
functions, 1,8, linear, relay-controlled servomechanisms, Mme, I,
Flugge-Lotz (Ref. 1) rigorously treated the linear switching problem
in which L, is second order and g§{x,t} =g x+ gy x . Bushaw
(Ref. 2) extended the solution to ineclude an optimm g {x,;:} s
introducing the criterion that optimum performance is defined asz
the quickest response to & step function input, McDonald (Refs, 3
and 4) somevhat empirloally arrived at a similar result for the

linear second order system with the "spring" (or x) term missing,

* Here, sgn[ ] means "he polarity, or sign, of ...



More recently, Rose (Ref, 5) has studied the n dimensional linear
system with an Moptimm" switching function, When Ly{x,tY is
second order, the switching solution can always be treated by phase
plane analysis, as has been done for various systems by MacColl,
Weiss, Hopkin, Uttley end Hemmond (Refs, 6, 7, 8 and 9, respectively),
and others, An alternative method, suggested originally by Hazen
(Ref, 10), utilizes standard Laplace transforms or other linear
techniques for the successive linear pleces of the response,

Another attack on Eq, I-2 was devised by Poincare (Ref, 11)
in which the nonlinear portion, f {x,t} was considered as a amall
perturbation, His method of small parameters applies to the
equations

X+alx = u{x, X, t} I3

with 4 a small quantity compeared with x and X . Van der Pol (Ref,
12), the man responsible for inciting the modern wave of interest
in nonlinear mechanics, intuitively treated Eqe. I-3 with
u=Xk(1 - x2)x , approximating a vacwum tube oscillator, In Russis,
Kryloff and Bogoliuboff (Ref., 13) revised Folncare's method for-
engineering applications and introduced the concept of "equivalent
linearization®, Ignoring all output components from a slightly
nonlinear element except the fundamemtal of the input, one can
define an equivelent impedance for the element, It 1s interesting
to note that this approach, suggested possibly fifteen years ago,
1s identical in concept to the recent popularized frequency method
of Kochenburger (Ref. 14)e

Linearization of a system to the extent that nonlinearities



appear only as switching functions or small perturbations is not
usually possible, The topologlcal method (Ref. 15) suggested by
Poincare is in theory applicable to nonlinear systems with many
dimensions, but from an engineering point of view 1s applicable
only to second order, quasi-linear, autonomous equations, Singular
point stability concepts of Liapounoff and the limit cycle theorems
of Bendixson provide information about specific operating reglons,
Lienard devised a simple geometric technique for the construction
of phase plene (actually distorted and designated the Iienard
plane) trajectories for equetions of the forms: |

;+f{X};!+X=O

X+ £{xJ+x=0
levinson and Smith (Ref, 16) investigated the relaxation

oscillator equation

X+ g{xx}x + hfx} =0
and Rauch (Ref. 17) has treated one of the few third order systenms
mentioned in literature:

X+ (gt kygfx})R + Ky g'fxy ¥
+gfxyx + x = 0

There are several methods not noted above which for the most
part are versions of known techniques: to mention two, the
variation of system parameter of Gypser (Ref, 18) and the "General
Linearizing Process for Nonlinear Control Systems" of Loeb (Ref. 19)



a frequency method notable for its lack of generality,

In summary, Internal techniques at present are confined to
systems which can be represented either by second order quasi-
linear, autonomous equations or by higher order, piece-wise
linear equatlons,

Although the internal methods are exceedingly attractive to
the engineer with & nonlinear problem, most nonlinear real systens
cannot be fitted into this mimute group, Attempted pruning down
of a conplicated phenomenon to one of the simple internal forms
usually produces misleading results. For example, a nonlinear
servomechanism can, by lgnoring a sufficient number of tems, be
represented by & quasi-linear second order egquation and treated by
phase-plane analysis, However, we should be most skeptical of the
results; experience with linear systems tells us that the solution
of a second order system is trivial, and for proper analysis orders
as high as fifth or tenth may be required. The effects of these
higher order terms would not be expected to lose thelr importence
when the system is nonlinear, For the majority of real, nonlinear,
closed~loop phenomenon, experimental treatments must be used,

External technigques can sccommodate complex systems with
nuerous nonlinearities, This admits 2 great many systems not
tractable to internal techniques but also introduces difficultles
assocliated with experimentsl techniques, Excepting cases in which
the system itself is available for first hand observation, modeling
is necessary, Modeling often takes the form of scaling, as is done
in wind tunnels and towing tanks, or by snslogs -~ the former being
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generally more sccurate and the latter more flexible, In particular,
the electirical anaslog is adaptable to a large variety of modeling,
and is utilized throughout this research., The ability of the analog
t0 duplicate the original system depends upon both the elements

of the analog and the problem dirsctor's translation of the
phenomenon into analog terms, These are fundamental considerations
of experimentsl solutions and consequenitly form the first portion of
the research,

The other basic factor of the analog solution is procedure.
Usually, the system is explored by varying one or more of its elementis
and observing and interpreting the resultant solutions, The admission
of nonlinearities greatly confounds the problem, This is apparent
even in the simplest example, a nonlinear servomechanism in which
some parameter function is controllable, If the system were linear,
the parameter would be a constant coeffilclent, and all probable values
of this constant could be readily tested in the model, In the non
linear system, this parameter is a varlsble coefficient, a function
of one or more varisbles, Without plan, the problem director is
confronted with the somewhat futile task of selecting samples from
all possible curve shapes, The experimental technique must be
capable of establishing a procedure, initlally rejecting by simple
means all but a small, loglcally organized family of functions,

Experimental tests not based upon some logical procedure have
value only in connection with the specific system tested, Corre-
lation is poor or does not exist on the level of results alone,

This is due to the individualistic nature of the nonlinear system;
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an element inserted to provide good performance in one system
probably will not work in another, and system performance cannot
be synthesized by a study of component performances, There is
more generality assoclated with the experimental methods in that they
apply to groups, vwhereass results spply to specific systens.

is previously mentioned, the aim of the logleal experimental
methed is good performance, which requires a definition of the
system input. Procedures which involve sinuscidsl inputs are
termed here "Fourier Methods®, and procedures invelving jump
functions are termed "Taylor }%thoda.“*

If a single sinusoidal input of frequency f 1s introduced
into a system having the proper nonlinearities, the system output
cen be represented by a Fourier series with terms, £, 2f, 3L, ses
When the harmonics, 2f, 3f ... are sufficiently smell to be neglected,
the system or s component of the system can be represented by an
woquivalent impedance" (Ref, 13) which usually changes with both
frequency and amplitude., Experimental techniques of treating these
equivalent impedances have been developed by Kochenburger {Ref. 14),
McCann and Wilts (Ref. 20), and others, The usefulness and
popularity of this approach lies in its close correlation with
exlsting linear techniques, Extended Nyquist diagrams, extended
Bode plots, etc, (Refs, 21 and 22) are permissible, On the other
hand, there are some serious limitations to the equivalent

linearization techniques, First, there 1s the same lack of a

& YPower Serles Methods," in which the inputs are expressed as
polynomials of time, might slso be used but at present have
been concerned only with linear systems,
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useful performance criterion as exists in linear system techniques,
Second, the basis of the method consists in small perturbations
from & linear system, & profoundly nonlineer system may produce
many important effects excluded from the analysis, such as large
higher harmonics, subharmonics, non-integer harmonics, and frequency
entrainment, Superpositiocn, assumed in the method, is not in
general possible; the response of a nonlinear system to simultenecus
input frequencies f7 and i‘z is not the sum of the individual fre-
quency responses,

The "Taylor Methods" can be grouped loosely as those which

expand the input, xi(‘b) into & Taylor series,

xy(t) = x5+ 8y :':iot +a, 'iiotz + 8y }‘io‘bs e oo
and consider a limited number of terms., An approximation of the
general input can be built up as follows: at time tl, the systenm
(at rest) is instantly requested to move to some xio s Wwhich is of
course a simple step., After steady state is regained, the system
is requested to move to another Xy o Thus, in stairstep fashion,
a genersl input cen be approximated by a series of step functions,
Crude ss this one term approximation may seem, it has the great
advantage of allowing a simple interpretation of the "ideal system."
Here the ideal system is one which with defined physical limitations
most rapidly follows 2 step input, Simple servomechanisms have
been treated in this fashion by McDonald (Ref. 4) and others,
with interesting results, One might expect a system designed by
such a technigque to work best for step inputs and rather poorly for
continuously varylng inputs such as sinusoids., Curicusly, the
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aystems thus optimized not only were superior in step function
response, but also had superior frequency response compared to
identical systems optimized by standard linear techniques, (For
example, see the responses Fig, IV-20,) Perhaps thls isn't as
surprising as it first appesrs, Of the infinitude of lntentional
variations of a given control system, the likelihood of the
specisl variety, the perfectly linear system, best fulfilling a
given performance reguirement ia negligible,

Intuitively, one would expect that the inclusion of more
terms of the Taylor series in treating the system would better
performance,

In summary, the exploration of real, nonlinear, closed-cycle
phenomena usually requires experimentsl techniques, introducing
the necessity for providing suitable analogs or models and also
the necessity of logical procedures for testing the models, The
latter point is particularly appliceble to servomechanism performance
tests,

Therefore, the objectives of the research program are:

1. To develop modeling techniques associated with the
electrical analog, including both analog elements and problem
“translations" from actual to analog terms,

2. To develop a logicsl procedure of performasnce improve-
ment of nonlinear servomechanisms, based upon &) an "ideall
systenm which utilizes its maximum physical capabilities and b)
approximation of performance responses %o an input by a limited

Taylor series.
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I1I, MODILING TECHNIQUES

A SPECIAL NONLINEAR AHALOG ELEMENT

A Introduction

The selectlon of the electrical analog for nonlinesr explora-
tion 1s not by chance; its erstwhile rival, the digital computer,
is noncompetitive for applications where versatility both initially
and in the process of the problem solutiocns 18 held more important
than accuracy, Whereas the digital machine requires complete and
precise {and laborious) problem programming prior to performing
a relatively slow solutlion, the electrical snalog can present a
complete transient response of a complicated system in possibly
1/100th of a second and responds instantly to changes of system
parameters, Spur-of-the-moment changes necessary in efficient
exploration are simply effected.

Having experienced several years of development and use, the
basic eleotricai anslog designed for linear and simple arithmetic
operations has reached an acceptable degree of perfection, Ele
ments such as passive units (resistors, capacitors, inductances,
and transformers), d.c. feedback amplifiers, and electronic
multipliers are assumed throughout this research to be standard
items, Nonlinear functions generators are in a less advanced
stage, For the application at hand, the function generator should
be rapld encugh to allow oscllloscope monitoring of solutions,
should produce functions of two or three independent variables,

and should provide for easy variation of these functions,
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Accuracy need not be comparsble with that of non-exploratory,
specific function generstors, A review of currently available
nonlinear function generators is presented ito show the desirability
for new nonlinear elements designed especially for explorstory work.
Diode switches: Dilodes are arrayed to switch resistances in

or out at various voltage (or current) levels, Complexity ranges
from simple limiters to 20 or 30 segment units, Advantages: high
speed operatlon, can approximeste unusual curve shapes by multi.
segments, Disadvantages: nonlinesr function is of only one
variable, a simple curve change may require 20 or 30 adjusiments,
Photoformers:s Beam of & cathode ray tube is slaved in one

coordinate to follow a photographed mask as the other coordinate
1s varled elther with time or with another independent wvariable,
Advantages: high speed operatlon, good accuracy, duplicates any
single valued mask curve, Disadventages: nonlinear function is
of only one varieble, & simple curve alteration requires & new
photographic mask,

Multipliers: By successive multiplication of the input by
itself, a limited power series is available, f(x) = a, + ayx + az;{e .e
Advantages: multipliers are usually availlable as standsrd come
ponents, Disadvantages: electro-mechanical multipliers are slow,
electronic multipliers perform only one multiplication per unit
and are not efficlently utilized if the function requires severasl
series terms,

Resclvers, etc.: Electro-mechanical devices can produce sine-

cosine functions by resolvers and certain nonlinear functions by
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means of potentiometer combinstions, Adventages: computers such
a8 the REAC have these functions resdily available, Disadvantages:
limited mwmber of curve shapes avallable, slow speed operation.

Electro«lechanical Followers: The arbitrary function generator

ocan be thought of as an X-Y recorder run in reverse manner, with
the arbitrary function as a curve (often metallic) affixed to the
chartboard, The independent variable moves one coordinate of the
follower, and the corresponding curve value is measured sither

by reslatance devices or by slaving & curve follower, Advantages:
any single valued function can be duplicated, Disadvanteges: non-
linear function is of one vsriable, slow speed operstion, snd a
simple curve alteration requires a new chart,

In summary, the electro-mechanical devices are slow in
operation and are elther quite limited with regard to functions
available or require new chart setups for each function alteration.
The latter is also true of photoformers, The diode switching de-
vice, demanding 20 to 30 segment switches to reproduce general
curves, also demands 20 to 30 controls for simple curve alterations,
This observation is not intended to merk their inferiority, since
all of these devices are extremely useful for the express purposes
for which they were designed, None, however, adequately fills
the new requirements for an exploratory nonlinear functlon generator,

From a survey of potentlally useful schemes, as yet undeveloped,
the logarithmic multiplier showed the most promise, The logarithmic
multiplier is all electronic, sllowing high speed operation; 1t can
accept several independent variables; and although it is not an
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arbitrary function generator, a fairly large and useful set of
functions sre availsble by simple exponent controls, It was
concluded that the successful development of such a device would
constitute s useful contribution to nonlinear exploratory techni-
ques; accordingly, this device constitutes the first portion of the

research,

B, The Logarithmic Function Generator

The theory of the logarithmic function generator is most
gimple: inputs, appearing as d.c. voltages, are converted to
logarithms; then added, subtracted, or scaled (multiplied by
constants); end finally, converted to imverse logarithms, If the
inputs are x, y, or z, the output is of the form %P yq zr, where
P, G, and r have continuous range both positive and negative,
Since the inputs must always be positive when converted to logs-
rithms, polarity signs must be handled independently -~ an additional
requirement, but one which also provides some useful discontinuous
functions, With polarity control, a three veriable input type

generator can produce funciions of the form:

output = sgn (x-a7) |(x-8,)1” sgn (3=b))|(3-5,)| ? sgn (z-0y)[(a-05)|
I1.1
vhere again, p, q, and r have continuous range positive and negative,
Some of the useful forms of Eq., II-1 will be shown later in this
section,
The logarithmic multiplier as an electronic device has bheen

proposed several times (for example, Refs, 23 and 24), but a number
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of practical difficulties lie in the way of obbaining a working
device, Oneg obvious difficulty is obbaining by electronic means,
“true logarithnms and inverse logarithms; another difficulty is
electronic polerity control.

Since so few published data exist concerning the logarithmic
mulbiplier as a unit, historical notes here are brief and are
concerned principally with research done at the CGalifornis
Institute of Technology., A4s evidenced by earlier experiences at
North Ameriecan Aviation, the heart of the computer is the
logarithm converter, and a Joint research effort by G. J. Savant,
Re G Howard, and the writer resulted in a trlode converter
(Ref, 25) having fairly stsble conversion sbilities over an input
rengs of 3 to 300 volts, &t the conclusion of this research, @
simple multiplier was set up using a standard d.e, amplifier with
& logarithm converter in its feedback for inverse logarithms,
Operating speed was slow, and no polarity control was included,

Onea version of the logarithmic function generator, completed by

Rs G, Howard and G, J, Savant (Refs, 26 and 27), used the logarithm
converter mentioned above, a high loop galn inverse logarithum
converter, and a limiter type polarity control, The gensrator
gatisfactorily performed several nonlinear problems, The imvaluable
contritubion of this generator was that it proved the initial scheme
was sound, Secondarily, it pointed out several of the troubles

and sources of error expected of such a device, the most important
of vhich were 1) time hysteresis effects, attributable to the

high gain inverse logarithm converter; 2) excessively large muber
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of preliminary balancing adjustments; 3) poor accuracy, directly
due to the low level of input voltage to the logarithm converters;
4) instability tendencies of the inverse logarithm converter; 5)
drift; 6) lack of simple control of scaling and exponents; and 7)
large space requirement, Developments described below were aimed
at eliminating as many of these cbjectionable features as possible.
The present version of the function generator is shown
achematically in Fig., II-l and physically in Fig., II-2, Except
for a standard summing amplifier and the power supply, the com-
plete function generator is assembled as plug-in components behind
a relay rack panel 17 1/2 inches high, The face of the panel is
arranged as a patchboard on which most of the jumpers are shorted
double pin banana plugs., Any component can be isolated and checked
indlvidually from the patchboard, ZEach of the logarithmic con-
verters has a helipot in its output for comtrol of exponents be-
tween O and 1; exponents greater than 1 arecbtained by using higher
gaing in the summing amplifier, 4&nother helipot supplies 0 to 100
volts as 2 bias term (the "b¥ factor noted later). The components
of the generstor are brlefly discusded below in the sequence they
are utilized, For & more detalled discussion, resfer to Appendix B.
Three inputs are received at the jacks on the far left of the
panel (front view, Fige. II-2), 4 plug-jumper introduces these
inputs to simple germanium diode arreys (as seen at the right hand
edge of the rear view, Fig., II-2) which split each input into its
positive portlon and its negative partion, The diode array is
passive, has a gain of unity, and requires no adjustments, Itis
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frequenay insensitive within the frequency range of interest,

The positive and negative portions of each input are fed (by
& pair of plug-jumpers) to differential inputs of small amplifier
(shown in Fig, II-3) such that the positive part is eamplified by
+6 and the negative part by -6, As established by best logarithmic
converter rangs, the output of the amplifier is linear beiween O
and +350 volts, The amplifier has a relatively low loop gain
(about 1500), which is easily checked by removal of a chassis
plug-jumper opening the loop; it requires only one belancing
adjustment, and it passes full wave rectified sine waves of 500 ops
without undue phase distortion, Linearity distortion contributed
by the amplifier 1s negligible compared to the overall computer
erTors,

On the patchboard, the amplified sbsolute value of each input
is applied by & plug-jumper to a logarithmic converter (shown in
Pig. II-4). This is the triode converter mentioned in the
historical sketch; it produces - log, of its imput. Unfortunately,
five adjustments are required to get accepteble conversions., Thus,
the acouracy of this device is difficult to pin down and depends
largely upon the patlence of the experimenter, With reasonable
diligence, an accuracy of ﬁ% referred to the input might be
expacted,

Outputs from the logarithmic converters and the bias potentioe
meter are channeled to a standard d.c, summing amplifier having a
negative gein for positive exponents and a positive gain for negative
exponents, From the summing amplifier, which produces the logarithm
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of the absolute value of the output function, we transfer to the
inverse logarithmic converter (see Fig. II-5). This component
1s a positive gain d.c. amplifier with the logsrithmic type con-
verter as its feedback, Generdlly a "forward" gain is selscted
in a functional (feedback) amplifier such that the feedback
element essentially determines the overall closed-loop characteristics,
Paculiarities of the amplifier supplying the gain are thus reduced
below some specified minimm, Here, however, the feedback element
1tself is a pecullarly operating nonlinear triode, It makes no
difference in the overall system whether the desired closed-loop
characterlstic is due entirely to the feedback or is in part due
to the amplifier, With a nominal gain of 1000 or so, varlations
(with time) of amplifier characteristics are negligible compared
to drifts in the feedback, In short, there is no particular reason
for requiring high loop gain,

The present logarithmlc converter has a forward gain of about
1500 and as a consequence is easily stabllized without numerous
large capacitors and consequent frequency restrictions, By re-
moving the two chassis plug-jumpers, forward and feedback sections
can be isolated for independent check and adjustment; the forward
amplifier has one balance control and the feedback has the usual
five adjustments., Accuracy is comparable to that of the logarithe
mic comverter: about 5% (including petience) referred to the out-
put. The frequengy response is considerably improved over a
comparable high loop gain converter; frequencles below 200 core
are not appreciably distorted, Thils distortion is roughly
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equlvalent to that contributed by the standard summing emplifier
(remembering that here we are concerned with the full wave
rectification of the base frequency).

From the inverse logarithmlc converter, the signal is trans.
ferred by & plug-jumper to the polarity control (Fig., II-4), This
unit is basically a logical circuit: an sssembly of triode clamps
&8ll opsrating to ground that produces a positive cutput if both
sign control voltages (provisions for two sign controls were incorpo-
rated in this particular generator) are of the same sign, and other-
wise a negative output. Only one balancing adjustment is required,
The unit has a gain of + 1/4 with no major inaccuracies in linearity
and will switch 4300 volts input at frequencies up to 500 cps.

The threshold of the sign control voltages is less than 1/4 volt,

Although the ultimate output function (Eq, II-1) of the
generator may be quite complicated, it can be resolved into 1) the
sign control and 2) factors of the form |x|\¥, The final function
is a produot of the terms of 1) and 2), Control of signs is
fairly obvious from Eq, II-1, and no difficulties or restrictions
are involved in physically effecting this control in the computer,
The general factor |x|¥ requires some special effort if the computer
is to be used most efficlently, as established by the logarithmic
converter requirement of approximetely 300 volts maximum input,

Consider the production of a function |x|\¥ having a defined
range X 4. to x max * This requires one input channel of the
computer, From the defined gains of the input amplifier and

output polarity comtrol, we can write (voltages are defined in



To get 300 volts maximum desired at the logarithmic converter,
the maximum input voltage should be 50 volts,

" T

From the logarithmic converter, we obtain

= = a0
ey = - 1oga e =- 1oga o x\

which is summed with a blas voltage we will define as

4a3 = 1oga \-:&33; b\
Giving
o, = eyt e, = - lcga\x/‘b\

The exponent control multiplies e 4 by -r,

95 = + loga \x/‘b‘r
And the final output 1s
-1
& = Vb og = i dog” (s5) = —al” I1-2

Now we can see why the bias, b, 18 necessary, For best
accuracy, the inverse logarithmic converter must have a maximm

input corresponding to 300 volts maximum output; that is,



= = -1—'- T Il
eé&rmx 300 +F 'xz!;ax Tw3

and 1t follows that the bias voltage, 03, is defined by

-1/r
= = = I=d
o, = log, (300b) = log, (300lx), )(300) = ==log,(300)
I1-4

From this set of equations, the procedure for settlng up func-
tions can be established,

Procedure 1, Determination of the logaritim base, &,

If the input to a converter is scaled 1:1, i.e, mumber = volts,
and the output is sinilarly considered, then the base of the
conversion logarithm is defined by the measured input and output,

E out =~ loga Ein' The use of one-to-one scaling to define a 1s
done for convenilence,
le Set exponent r = 2.
2. Bet e, =507,
3. Adjust b (that ias, :-aB) until
3‘6 = 300 Ve 1
2”‘
4e From squation II-4, a = (300) 93 .

Procedure 2, Producing a single factor function lxlr .

1. Meaximm input voltage should be 50 volts,

2, Exponent, r, set by helipot for 0 & r 1,
or by the summing amplifier gain for » > 1,
Svmming anplifier should produce revsrse
sign from sign of r.

3« Voltage bias, 83, WAY be set by equation Il-4,
or by trial,
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4. The output function, \x{*, has its scale

determined by equation 25 i.e.
r
=" = (%) o,
If multiple factors are desired, the mathematical determination
of bias, D) 1s less obvious; the blas can probably best be found

by sweeping \x\ through its intended range and adjusting 33 by

observetion of the maximum value of 8¢ OF ©ne

Ce Typleal Functions Produced by the Generator

An attempt to categorize and describe all of the possible
functions available would be a sizable research program in itself,
However, expressly for purposes of demonstration, a few typical
funoctions avallable are presented here.

1, Single factor functions.

In general, the single factor functions are of the form

u = sgn (x-a)‘[}x»blr + d] .

a, u= ‘x‘r e« Positive values of r are shown in
Fig. 1I.7, and negative values of r are shown in Fig, II-9, All
curves are symmetric about the u axls,

b, u= sgn x-‘x\r. The set of traces shown in Figs.
118 and IT-l0 are identlcal to those of case a above, except that
symnetry is now about the origin.

c. U= sgn xt}xlr + 6] . The polarity control has been
designed to =sccept only positive inputs, as would be normally

expected from the inverse logaritimic converter., Consequently,
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when the term d, added to the output prior to switching, is
negative, certain portions of the output may be zerced, For
exsmple, Figs, II-1l and II=-12 show this "dead space! effect,
When d is positive, dlscontinuities such as shown in Figs, II-13
and IT-14 are svailable,

d. Inclusion of the term b simply trsnslates the
plcture left or right, while term a translates the switch
point,

2+ Double and Triple Factor Functions,

The double and triple factor funciions are product com-
binations of the functions described above, Quadratics, cublcs,
and certain higher order polynomials are available, as well as more
complicated switching effects, Three examples of double factor
functions are shown in Figs, I1I-15, II-16, and I1.17,

3. Special Techniques,

There are also special arrangements of the computer which
will produce urmsual functions, For example, if the output u
is reintroduced ss one of the inputs, barring instsbilities, we
get 8 functlon of the fomm

P q r
u = sgn (x-8)°|x-8,|" sgn (yabi)iyhbz\ \upclﬂ
The phrasing of the nonlineasr function always demands that
accuracy be weighed against simple adjustments, Specific

applications of the function generator to variocus investigations

are made in the succeedling sections of this research,
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11T, TWO EXAMPIES OF MODELING; THE HYDRAULIC

SERVQMECHANISH AND THE SUPERSOWIC DIFFUSER

A, Introduction

The purpose of modeling is to simulate the system under study
in an enviromment such that testing is more controllable and more
gimply instrumented than the natural enviromment. By modeling,
one can sometimes extract from & complex affair a fundamental
factor and determine its independent characteristics, Occasionally
the model is quite simple and entertains conclusions by direct
physical intuition, Based on the means of modeling, & rough
categorization of modeling is 1) envirommental methods, 2) scaling,
3) physical analogs, and 4) mathematical analogs.

Envirommental techniques make no chenges in the model (usually
some type of operating device) but provide controlled environment.
Centrifuge testing of human beings and verious temperature, vibrae-
tlon, and shock testing of eguipment fall in this category.

Scaling techniques maintain the same basic phencmenon but alter
physical dimensions or characteristies to obtain more convenient
test requirements, These techniques may utilize actual enviromments,
as for example captive flight tests of an aerodynamic model, or may
use controlled environments such as in wind tunnels, towing tanks,
and centrifuge tests of monkeys,

Inventing physical anslogs of natural phenomena is an lnnate
ability of man., With varying degrees of exactness, techniques have
been used by poets, painters, and scientists since their respective
historicsl beginnings, Although scientific history in particular
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appears to be a heap of discarded models, one cannot assume the
general approach has fallen into disuse; it 1s an engineering
necessity., 4 useful example is the electrical snalog, where current
and voltage across an electrical element are likened to forces and
velocities of a mechanlcal element, or ito pressure and flow of a
hydraulio or acoustic element, or to temperature and heat flow of
a thermal element, Once the coupling between the elements is de-
fined, elaborate systems can be assembled by simple correspondence.
Boundary conditions between elements or blocks of elements are
automatically fulfilled, Many other ingenious formas of analogs
have been used for engineering problems. A ball in a salad bowl
has snalogous mobtion to the pitche~yew coordinates of a homopolar
missile, and by relating the local slopes of the bowl to the
stability derivates, nonlinear dynamlc responses are directly
obtained (Ref. 28).

Mathematical analogs imply that elements at least of the
phenomenon ocan be described by differentisl equations, Various
computing devices may then be employed to perform these mathematlcal
operations,

If the snalog is selected as the means of modeling, the problem
director first mustitranslate the importent features of the real
gsystem to equivalent enalog terms, This appears to be a step so
obvious it warrants no further discussion, bul appesrances are
deceptive, It 1s the most critical step of the entire experimenial
procedure; it must be handled logilcally and carefully., Overlooking
one innocently small factor can invalidate the entire analog
solution, The inclination to concentrate upon the end result, a
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convaniapt analog, arbitrarily simplifying features of the system
to fit, is attractive but dangerous, The important and difficult
task is not evaluating what remains as the simplified model, but

evaluating what is excluded from the model,.

The present discussion makes no pretense of supplying a
universal translation procedure; of course, no such procedure
exlsts, Two systems are treated, purely as examples, to demonstrate
the pitfalls and the potentialitles of electrical analogs. The
first example, the hydrsulic servomechanism, is selected because
it often has been subject to abuse by modelers, Most of the dise-
cussion is directed at pointing up some of the important features
of the real system and the modeling compromises which have to be
evaluated,

The second example, the ramjet diffuser, is included because
it demonstrates that if one accepts (and jJustifies) a set of comw
promises leading to a simplified model, the elecirical analog can
be a powerful means of analysis, Elements of the system can be
modeled independently, The mathematically difficult problem of
matching boundary conditions between elements is automatically
performed by analog couplings. 4n element whose influence on the
overall system is unknown can be readily evaluated, Furthermore,
wnlike analytical treatments, the analog accepis nonlinearities

as readily as linearities,

B. Modeling a Hydraulic Servomechanism

1, Genersl

The hydraulic servomechanism is selected as an example of
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intentionally closed loop systems primarily for its decepiive
simplicity in physical appearsnce coupled with its extreme
complexity in operation. 7Tt is true that some analyses have

been made viewing the hydraulic system as linear (Refs, 29 and 30),
but the assumptions included in such simplifications put these
analyses in the academic class with mathematical analyses of second
order nonlinear servomechanisms, Two approaches have been made
toward modeling hydrasulic systems, The first involves oversall
system response tests and subsequent syntheslis of the responses by
a defined electrical network, There is rarely a one-to-one
correspondence between an eleetrical component and an isolated
hydrsulic component, The second method involves defining an analog
for each of the hydrsulic components and then assembling these
analog components by dirsct correspondence to simulate a given
systen (Ref, 31). The second methed is obviously more versatile
and more useful in associating improvements noted on the analog
with changes in physical components, It 1s also lesa reliable
unless careful overall system tests are made to insure that the
assembly corresponds to the hydraulic assembly,

There is no generallized hydraulic system, Each system is a
speclalized design Intended for a apecialized application, and its
performance and pecullarities principally have meaning only for
this system., Furthermore, subclasslfying hydraulic systems is of
little assistance, for there 1s no generalized aircraft hydraulic
autopllot, nor missile autopllot, nor hydraulic indusirisl control,
Unless the investigator undertook to test (for example) a number of

missile sutopilot systems, each operating under a number of typical
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conditions, little generality could be claimed for the results,
Even here, extension of concluaions to a new system is risky.
Fortunately, the components of the hydraulic system are more
nearly standard, Hydresulic lines, double acting spool valves,
diaphram or piston-cylinder accumulators, constant preasure pumps,
plston-cylinder actuators, amd couplings such as tees, crosses,
elbows, and expansion and contraction junctions are components
employed by a large mumber of servomechanisms, Therefore, the
present brief investigation is aimed at a critical examination

of some of the components and their analogs, rather than a detailed
study of a speclalized assemblage of components,

At least two external systems couple into the hydraulic
gservomechanlsm and often in such a manner a&s to have a profound
effect on its characteristics, The first is the input systen,
Due to friction and unbalanced pressures, the hydraulic servo
valve is not an irreversible device, The dynamic characteristics
of the mechanical, electrical, or secondary hydraulic system
inserting an input into the control system should usually be
included in modeling. One type of airecraft hydraulic control is
& hydraulic servomechenism which moves a control surface to match
a mechanical input inserted by the control stick (by means of =
cable or push rod system), It has been shown in tests that the
difference between fixing or freeing the supposedly isolated
stick control in the hydraulic system can be the difference
between a stable and an unstable loop. The second external

influence upon the servomechanism is its load, The single degree
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of freedom linesr mass-spring-dashpot load sttached to the hydraulic
actuator‘avoida reality. Consider for example the loading on the
aforementioned aircraft hydraulic control system. First, there is
a nonrigid coupling between the actuator and the control surface,
Second, there is the mechanics of the control surface, usually
involving at least two dynamic modes and hinge friction., Third,
there is the aerodynamics of the control surface, which is pro-
foundly nonlinear for any surface which is efficiently balanced.
Fourth, there is a nonrigid system supporting both the actuator and
the hinge of the control surface which 1s subjected to reactions
from the actustor as well as to warpsges generated by aercelastic
effects, Fifth are disturbances (gust loading effects) influencing
most of the above fazctors. Elimination of any of these factars in
the model requires careful anslysis and experimental Justifications,

Inside the hydraulic servo system, the components discussed
below appear reasonably frequently.

2. Hydraulic Lines

The hydraulic line is a pipe commonly of circular cross-
section used to transport hydraulle energy. Static hydraulic pres-
sures are often high (1000 to 3000 psi). With certain assumptions,
the electric transmission line can be considered analogousd to the
hydraulic line, thereby providing a convenient model of this
component, Correspondence between hydraullc pressure (p) and mass
flows (velocity « area - density, Pud) and electric voltages
(v) and currents (1) are examined here to determine the limitations
of this model.
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The inertial term of the flow is isolated by assuming, for the
monent, that the fluid is frictionless and the tube walls are rigid.
Thus, for a pipe running in the X direction, by lewton,

du_ _,dp _ ek

A———-——

oY 3x 2t

which corresponds favorably with the transmission line analog, where

Lﬁ:-u
g * ¥x

L being the inductance per unit length,

The density, P, of the hydraulic fluid varies slightly due to
temperature variations and entrapped vapors, but these effects are
insignificant compared to the other compromises of the analog,

How assume the fluld is viscous and malntains a steady state
flow rate, A drsg force will exist at the well and for laminar
flow is proportional to the gradient of the velocity profile at
the wall, For low Reynolds numbers, the flow introduced into a
typical hydraulic tube in a short distance downstream assumes a
velocity profile which (as long as the flow is laminar) has an
invariesnt shape, but its amplitude varies with mean velocity.
Thus the wall slope and consequently the drag is directly pro=-
portionsl to velocity:

Xu ; AP Du = --izg
dx

g gituation analogous to the transmission line temm

Ri::..h
X

where R 1s the electrical resistance per unit length, and D is the
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corresponding fluid frioction constant dependent upon viscosity and
tube sectionsl geometry. This portion of the analog is pleasantly
gimple, but unfortunately it is not always accurate, First, the
laminer flow assumed above occurs only at low flow rates, 4s flow
rate increases, first the flow experiences transition (typical
fluid resistances per unit pipe length are shown in Fig, III-1),
where resistance characteristics are fairly unpredictable, Further
increase in flow rate sponsors turbulent flow, which exhibits s
predictable but highly nonlinear resistance. Second, viscosity,
the mechanism of fluld resistance, is markedly affected by
temperature., 4n aocurste analog would include in the transmission
line distributed resistances which were constant for small currents
and properly nonlinear for high currents, If experimental tests
show spprecilable temperature fluctuatlions during, say, transient
tests of 8 system, these may also be important in the analog,

Now assume the pipe full of fluid is being tested for variocus
static pressures, Compressiblility of the fluid and elasticity of
the wall sllow fluld to be stored in the pipe as pressure i1s incoreased,
If the pressure ls increased at some slow fixed rate, a flow rate
is observed into the pipe; that is,

EQ:-M
ot 3x

which is analogous to electrical capacity to ground in a trans-
nission line,

oY - . X
3t dx



42

Here, E 1s the fluld capacitence per unit length, and C the
electrical capacltance of the analog,

Fluid compressibllity and wsll elasticity are reasonably
linear, Entrapped vapors cause significent (and unpredictable)
variations in fluld capscitance., Furthermore, although fluilds
compress, they do not siretch, It 18 possible in & low pressure
return line to experience imposed negative pressure pulses of the
same magnitude as the stetlic pressure, The result is a form of
cavitation; sepsration of the fluid ian the tube. If we assume
cavitation is distributed uniformly, this can be interpreted in
the fluld equations, below some low total pressure, as nonlinear
variations of inertial, friction, and capacitance terms., In the
analog, this effect might be simulated by insertion of coupling
elements along the transmission line which are inactive above some
small total pressure and obey appropriate gas laws below this
pressure,

S8ince no distributed leakage occurs along the hydraulic line,
the corresponding electrical leskage term of the transmission
line 1s omitted,

Nonlinear coupling terms must be ignored in the simple analog,
For example, the effect of fluld acceleration upon velocity profile
is ignored. Intultively, one would expect that a step jump in
veloclty would not result in an instantaneous establishment of
8 nevw steady state velocity profile. Radlal flows sponsored by
tube stretch similarly affect profiles, The importance of these

nonlinear, dynamic couplings has not been evaluated experimentally.
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Combination of the constant coefflcient equations results
in the weve equation, showing that under certain assumptlons
pressure and flow disturbances in a hydrsulic tube propagate much
in the manner of electrical disturbances along a transmission
line, The customary model of the distributed constant transmission
line 1s a lumped constant line in which short sections are simulated
by lumped elements (T or T sections). If these lumped constent
sections are of the order of sight wavelength sections, the
approximation introduces less than 10{ error, The effects of
introducing pronounced nonlinearities into the lumped section
analog (compared with introducing the same nonlineasritles as
distributed constants) probsbly must be determined experimentally
for sach variety of nonlinearity introduced.

3. Double-zating, spool valves

Fluld flow into the actustor is often controlled by a double
acting spool type hydraulic valve (Fig, I1I-2). In simple systems,
the housing 1s attached to the actuator output (position feedback)
and the apool is moved by the input. A4s mentioned before, the
valve is not unilateral as seen by the input,

The static performsnce of a valve is the relation of three
variables: pressure drop across the valve, flow rate through the
valve, and spool position relative to its housing. One manner
of displaying this performance is flow rate vs, pressure drop
charaeteristics for various spool positions (z varisble). 4n
exemination of valve cheracteristics for a falrly wide assortment
of spool shapes (a typical characteristic is shown in Fig, III-3)
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indicetes that pressure drop as a funcilon of flow rate, spool

position being constant, can ususlly be written as

where K, 1 is & constant assoclated with a particular spool positian
Z4, W 18 the mass flow rate, and the exponent, r, lies between
1.5 and 3,0, Thus the static characteristlo for a constant zy
cannot be intentionally molded to any great extent, since only
amall variations in the exponent are available,

Rewriting the characteristic as

Ap=K, A « f {z}

where K"’i ia a constant associated with a particular mass flow,
Wiy We get a set of curves such as those shown in Fig., III-4. The
function, f{ z} can be aprroximately predicted from the manner in
which the spool, moving with x, unports the valve orifices, 4
bevel (or a radius) on the spool edge (shown dotted in Fig., III-2)
alters the function £z} . If an analog study indicated that
some f{ z} gives desirable responses, this function might be
thysically realized by correlation with a spool design consisting
of multiple bevels {smooth functions would not be practicable to
fabricate), and perhaps orifice shaping.

The electrical analog of the hydraulic spool velve is not
gimple., 43 an example of extreme effort to maintain a linear

model, references 29, 30 and others utilize the relation

wzcl'z

with the corresponding electricsl analog as a current generator
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whose oqtput is proportional to z. This involves the unlikely
assunptions that 1) Ap is constant and 2) f {23} = Cy(z)™"
The former assumption is invslid for any well designed servomech-
anism having a real loed, snd the latter rigidly constrains spool
design, A much improved relation is

w=g {A p} °z
vhere g {A :p} is an arbitrary function of the approximate form
(& p)l/r « This function can be modeled by a current generator
sontrolled by the product of z and the output of & function
generator forming g {A p} o« Spool design is defined by the selected
function g §4 p} , which itself is only slightly formable,

The heart of the hydrsulic servomechanism is its control wvalve;
thus one would suspect spool design is a critiocal factor of the
system, The electrical analog should provide the opportunity for
testing, easily, & large mumber of f {z} functions, To do this, the
gtatic valve characteristlc i1s modeled, in the simplest form, as

Ap=1¢% {z} o w)*

The corresponding electrical anslog might consist of a voltage
amplifier whose input is the product of two arbitrary function
generators, It can alsoc be produced directly by the specisl
function generator desoribed in Section II with an esasily altered
function, £ {2 of the form

f{z} = agn (z-a) }z-b‘r sgn (z-c) 'z-d\q

Utilizing this function generator and noting that the inflom

and the outflow characteristics msy all be dlfferent, we can repre-



46

sent thel electrical analog of the valve as shown in Fig, III-5,.
The voltages vy and vy, correspond to pressures in the cylinder
chambers (at the valve outlets), When the () z input, to the
functlion generators are negative, the generator blocks flow,

The generalized valve requires four specislized function
generators (or the equivalent sssembly of multipliers and
arbitrary function generstors) which often &are not available,
Consequently certain simplifications of the model may be useful,

If the two inflow characteriatics are identical and the two
outflow characteristics are also identlcal, the valve can be re-
duced to two function generators and & switch reversing with the
polarity of z (as shown in Fig, III-6), 1In this model, the
pressure drop across the function generator varles as the absolute
value of z and increases as z decresses, It resembles the negative
exponent functions such as shown inFig, I1-9, Families of
pressure drops vs, flow rates produced by the function generator
are shown for verious values of r in Fig., I1I-7,.

For models in which & symmetry about the center of the load
(the dotted line of Fig, III-6) can be devised, a further simpli-
fication can be made, This symmetry implies 1) that the supply
and the exhaust lines are identical and cavitation does not occur,
2) that inflow and outfiow valve characteristics are all identical,
3) that the cylinder and load can be split into symmetrical sections,
and 4) no leaksges to ambient pressure occur, If these features
oan be justified experimentally, the system reduces to the single
function generator and switch, as shown in Fig, III-8 by this argument,
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If the system is symmetrical and the power supply pressure is pg,
the center point pressure 1s pg /2 o Reducing pressures throughout
the model by pg /2 Pats the center point at ground (zerc pressure),
and pressures at symmetrical points differ only im polarity.
Thus switch point d has the negative of the pressure at point a,

Hydraulic time lags in the valve are probably small compared
to other system time effects, Valve characteristics vary with
viscosity, and thus with temperature, $Since the valve is not uni-
lateral, its backecoupling into the input must be determined, amd
even without the benefit of experimental data it is a reasonsble
guess that this backcoupling is not linear,

ke Hydrauliec accumilator

The hydraulic accumulator is a chamber a portion of which is
spring loaded, For zerol'th ordsr analyses, the quantity of
ligquid in the sccumulator is proportional to the fluid pressure,
end thus its electrical analog (utilizing voltages and currents as
related to pressures and flow rates respectively) is a large
capacitor between the line and ground. The purpose of the
acoumulator is identical to that of a large capacitor in an electri-
ocal powesr supply: 1t smooths supply pressure fluctuatlons, If
substantial entrance and internal flow rates occur, inertlal
and resistance terms should alsoc be included in the dynamic
model, Furthermore, kinetic energy error discussed later (Part 6,
Couplings) is always present and csnnot be modeled by any simple
electrical anslog,



48

5« Hydresulic piston-cylinder actuators

The hydraulic piston-oylinder actuator is perhaps the
simplest and most common form of the hydrauliec sctuator. The
plston, sealed by O-rings, chevron rings, or other means, rides
in a cylinder generally sealed atf both ends, Iriving force is
extracted from the piston by a rod brought out of one cylinder end
through sealed bushings. One method of operation maintains a cham-
ber on one side of the piston at constant pressure and produces
controlled pressures above and below this constant value in the
other chamber, Another method obtains differentisl pressure
across the plston by filling one chember and simultaneously
exhausting (to ambient pressure) the other chamber, The first
method has simpler valving; the second requires half the operating
pressure to get the sane forece,

For modeling purposes we can assume the load complex has
been highly and accurately subminiaturized and fitted between
the piston and the cylinder, The forces acting on the load are
produced by differential pressure across the piston, These
pressures are determined by fluid dynemics in the chambers and
the inlet conditlons are eatablished by the velve; similarly to
the accumulator, the varisble volume chambers can be represented
for low mass flows by varlable condensers and for high mass flows,
by including veriable inertial and viscous effects., 4s with the
accumulator, kinetlo energy errors must be tolerated, Leakage
acrogs the plston and around the piston rod bushing are both quite
nonlinear effects and if included at all in the model should probably
be put in es nonlinearities.
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6. ‘Gouplings

Couplings such as elbows and flexible couplings can be
treated in a manner similar to hydraulic lines, However, couplings
involving expansion or contracition of cross-sectlonal area introduce
a feature of hydraulics which i1s not included in the elecirical
analog, Change in oross-secidonal area occurs where tubes vent
into chambers, where tubes change size, and where flows split or
combine (T's, crosses, eic.).

Consider a steady state flow rate in a tube of initial area
A] and final srea A, The expansion 1s here assumed to be loss-
less, By extended one dimensional theory, continuity tells us

which is analogous to

From energy,

which is obvicusly not a simple relation to model, To use the
eleetrical analog, we must assume that 91 = Py and that the
stagnation pressure (% piui) is negligible compared to the pressures,
P43 therefore, Py = Pae These are rather broad assumptions., For
flow velocities of 100 fps, the impact head is of the order of

500 psi, Couplings such a8 lines dumping into & large chamber
almost fully realize this head. This is the most fundamental and

perhaps the most serious disadvantage of the electrical analog.



50

7« Analysis of approximations
A slightly more rigorous approach shows the curious manner
in which the analog must be justified, We start with the usual

hydrodynamic equations of motion:

From contimiity - = <= +}.’231 0
dxy

n o dew dewuy )
From moment 3% 3:: s—-+;——-—+ﬁgi

w3 WwI v V0%, + o)
From energy = = = ) ij_ }k 3111

where °"1k ig the shesr tensor, Oy = 0, T is the total energy

tern % W +h (h being the enthalpy), and gy is the gravity temm,

The model to which these equations are applled is a two
dimensional configuration (Fig. III-9) with flexible walls, and
consequently the linearized characteristic,

A(x,t) = 4,(1 + a P) wall elasticity
and P(x,t) = Po(1 + B 1) fluld compressibility.
Ay and P, are functions of x, and a and P are small,
First, we assume that temperature variations (q terms),
gravity, and cross flows are all negligible, Second, we simplify

the viascous term of the momentum equation:

39:3; RS w. '
37 '5:!(”3)')? )y*“}%
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For low Reynolds mubers with reasonsbly constant 4, the flow
will havé»a nesrly parabolic velocity profile, u = ulc - dyz),
with constants such that u = O at the boundary. Therefore,
}EQ = -2 dﬁ, a function of the mean velocity, u . Again
imposing the requirement that temperature and thus viscosity

variations are small,

}%fgi = - E,= Kiu

From here on, we deal only with variables averaged over ¥y
for any station x, and, for convenience dropping the bar notation,
we oan write the first two hydrodynamic equations as

Contimilty - - -  OPA 4 dpuk _ o

}t ):c

Homentull = = = T’E—‘i'—s-x—-:--squlu

For the defined qualities of 4 and P, neglecting the second
order term,
L2 ¥} _ . 3P
= A +
ETRRC LR r e KZR
Reducing continulty to the fom

dPud

3
i3

This is equivalent to the assumed fluid capacitance relation,
The momentum equation should reduce to the desired resistance-

inertial relation
(eur)
\t

+ D(Pud) = - A)p
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To accomplish this, first we must assume that A and P are essentisally
conatant ’with x, and second, we must accept the unorthodox logie

that although )Sp.‘_f‘ is worthy of consideration in contimuity,

}%—fi—% 1s negligible in momentum, In other words, kinetlc energy

in the snalog is everywhere constant, It follows that the energy
equatlon is disregarded. For hydraullc systems, the latter ia

the most serious and unjustified assumption,

Cs Modeling & Supersonic Ramjet Diffuser

The supersonic remjet diffuser is a typical closed loop,
highly complex phencmenon, for which modeling is essentially a
process of determining and extracting from the complete system
sone component, The particular final model of this demonstration
(for which no experimental wind tunnel tests were specifically cone
ducted to corroborate assumptions) should not be viewed critically
as to 1ts authenticity, the procedural technique being the point
of the discussion,

The supersonic ramjet is an alr-breathing, continuous flow
engine which undergoes the usual combustion sequence of intake,
compression, addition of heat, and expension, Fige. III-10 shows
a typleal cross section of this mechanically simple device in
operation, Observed in body cocrdinates, the air approaches the
ramjet {region 0) undisturbed and at some Mach mumber in excess
of one (vary likely greater than 1,5). The air entering the
diffuser is supersonically compressed through a series of oblique

shock waves sponsored by the cone and imner body and then at some
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point 2 beccnes subsonie, expanding into region 3. This enclosed
region up to the flane holder is sometines termed a "plenum chanmber®,
hut one should not be misled into visualizing this reglon as a
placid reservolr of compressed air. Impcsed upon the average
vaeloecity of air through this region are considerabls sddies, cross-
flows, and fluctuations cuzsed by boundary layer peeling off the
inner body, asymietric inlet conditions (engine at angle of attack),
and other factors., At station 4, fuel is injJected and asreated
until station 5 where, conditions heing proper, flames are held

in the stresm by flame holders. Between 5 and 6 the fuel is

burned and the hot expanding gas mixture is vented to the amblent
air through the customary expansion nozzle.

Une of the least understocd classss of phenonena associated with
the ramjet can be loosely grouped as instaldlities affecting burning.
These burner instabilities are extremely important, since they often
incite flamecut, i.e., engine disability, At least three some-
what distinet flelds are involved in the ramjet; asrodynanics,
gsro-thernodynsnics, ard hydrodynamics (pertaining to the fuel
system up to injection). Thus reasons for 21l sorts of possible
instabilities can be invanted or deduced. The pressurs boundary
at the injector allows air pressurs external to the injector to
affect fuel flow, and fuel flow later affects external pressure,.
Angle of attack of the ramjet influsnces mass flow, mass flow re=
lates o thrust, and thrust, st least in an altitude stabilized
vehicle, influences angle of attack through velocity, The

instabilities of flames burning in a steady state draught and
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subject to sclid boundaries are so munerous and complex they form
a conplete brench of seclentific research. Reactions of flanes
+to nonstesdy flows such as those initisted by the serodynanic
compressors have gcarcely been touched on, Several kinds of
asercdynamic instabdllitiess can occecur in and forward of the diffuser,
Furthermors, all of the instabllity phenomena are nonlinsar,
pretty well invalidating the accurate synthesis of an operating
remjet instability by superposition of wvaricus component ine
stabilitles. This by no means mininizes hasic inwvestigations, 4
knowledge of the physical mechanisms proveklng variocus component
instabilities can gonetines lead to spproprists desipgns reducing
or eliminsting these particular instsbility tendsncles.

The present modeling is concerned with a specific aerodynamic
instability. Its extraction from the genersl problem folleows this
argument (Ref, 32). Several experiments have shoun that diffuser
ingtabilities can occur without burning (and thus, are aerodynamic)
and that these instebillties casn be Influeatisl enough in an engine
to blow out the flame. One mechanism sponsoring instabilities hasa
been stirituted to high mass flow charging snd discharging of the
"plermum chember," The instability is evidsnced by fairly infre-
quent, sonmewhat rendom pulsing of the flow through the diffuser,
Another lower amplitude instability is evidenced by pericdic (generally
above 100 eps) oscillations. These occur both at high mass flow
and at low mass {low with choked diffusers., Either of the inw
stabilities requires suberitleal diffuser conditions: l.2., thse
flow becones subsonic some place shead of the diffuser inlet,

aslloring internsl disturbances to mwopagate forward, thus



55

influencing the shocks and flow intc and around the diffuser,

The’high frequency instability appears to be a condition
independent of the large amplitude charging phenomenon, and it
is periodic, Therefore, 1t is here extracted for modeling,

One further subdivisbn of the high frequency instability
is possible if gertain arguments are accepted, Dalley's cold flow
tests (Ref, 33) of a complete diffuser (including nose cone and
inner body) revealed a tendency of the serodynamic instability to
resonate at some “organ pipe" mode of the diffuser tube, and the
rarticular mode was always one which lay within g definite fre-
quency band (470 to 940 ops). Furthermore, the frequency band
seemed to be dependent upon Reynolds number rather than upon
diffuser length, Dailey deduced from this, not without experi-
mental justification, that the instabllity was due to viscous
foreces occurring in and around the diffuser entrance, and through
coupling with a tuned aft tube, 1t developed approximately the
frequency of the organ plpe mode nearest that of the foreing
function, Tests performed &t the California Institute of Technology
by Stoolman have shown that such a viscous type of instebility
exists, even in a completely blocked diffuser (zero length pipe)
and that again the instability is periodic (400 to 600 cps).
However, an entirely different type of serodynamlic instability
can be readily produced with the pipe alone (without cone or
inner body) which is periodic over & large range of model
dimensions at the fundamental mode of the pipe. It seems

reasonable to assume that this instebility is not due to viscous
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effects about the tube lip, for two reasons: 1) frequency is
dependent upon tube length rather than Reynolds number, and 2)

1ip and diffuser shapes varying from & wall normal to the tube
axis to & thin, sharpened lip such as the one shown in Fig, III-ll
all seem to produce the same instability at approximately the
fundamental longitudinal organ pipe mode (Ref. 32), It is
entirely possible that this basic type of instebllity could also
exist in the complete diffuser, A4n alternative explanation of
Dailey's results is that both high frequency instabilities can
occur with suberitical conditions, but both are nonlinear
phenomena and the nonviscous instability is obvicusly more
versatile in frequency range, A combination instsbillty results,
and the single resultant frequency is an entrainment of the two
nonlinear instabilities, In practice, such deductions would be
specifically checked by experiments., Here, without ado, we extract
the nonviscous phenomenon from the more general problem and
proceed to the modeling of this specific instability,

By eliminating viscous effects at the diffuser entrance as
mechanizing the instebility, we place responsibility for the affair
upon the shock wave ahead of the diffuser, Consider Fig, III-ll,
A disturbence starting at, say, the diffuser lip (as evidenced by
pressure, density and velocity changes) and aimed downstream
propagates aft at a weve speed sssoclated with the sonic veloclty
in the tube and the inner air veloclty. 41 the exit end it 1s
reflected, its new magnitude depending upon the mismatch of the

exit boundary conditions, The reflected forwasrd travelling wave
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is partially reflected at the 1lip and partially propagated for-
ward externally. This latter portion bounces off the back of
the shock wave and re-enters the tube, For instebility to occur,
the shock and the flow region shead of the tube must have the
properties of an aerodynamic amplifier, reinforcing in some
manrer the impinging disturbance,

We can reasonably well define the dynsmie characteristics
of the plpe and also the conditions across a nonsteady shock wave,
The key to the instability (if it is a shock phenomenon) liea in
the flow reglon between the shock and the diffuser entrance, This
is the region of interest,

There is no obvious reaseon for the instability, which is clcsely
assoclated with the longitudinal mode of the pipe, to be peculiar
to three dimensional axially symmetric configurstions within the
diffuser, so here we assume (following an approach used by Ref, 32)
that the internal model is one dimensional, (Fig. III-12,) Further-
nore, wind tunnel tests show thst the portiion of the shock directly
ahead of the tube (the portion one would expect to have significant
influence on the instability) is almost normal; consequently, we
model the shock wave as a normal shock,

A convenlent break in the system oceurs at the diffuser
lip, separating the model into an axially symmetric forward sec-
tion containing the shock and the external diffusion region and
a one dimensional aft section representing the internal region of
the tube, The aft section is, by itself, similar to an organ
pipe with one end open and the other partially blocked, At its
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fundemental mode, the tube's length ls approximately a quarter
wavelength; that is, a complete cycle is described, for example,
by a compression wave starting at the lip and making a round trip,
being reflected at the forward open end as a rarefaction wave which
then mekes a second round trip and is reflected again at the lip
as a compression wave beginning the second cycle, The reflections
at the nozzle always include losses, Therefore, if an instability
is to occcur, the forward section must not only properly reflect
disturbances but also reinforce them,

Pirst we look at the aft, diffuser tube section, During natural
oscillation, the shock oscillates at the ssme frequency about some

position, 6 Noting that the shock is an entropy generator, we

o*
deduce that nonsteady motions of the shock cause entropy fluctua-
tiona which drift downstream as properties of the air particles,
A portion of the air is captured by the tube, and the included
entropy fluctuations continue through the internal part of the tube.
If a 1s the velocity of sound in the tube and U is the air internal
velocity, the pressure~velocity disturbances propagate downstream
with velocity a + U and upstream with velocity & - U, Since the
tube length is roughly x/z,, the approximate oselllation fre-
quency is £ = a/\ = a/4Q (assuming U is small compared to a).
Entropy waves propagate downstream only and at velocity U (which
i1s of the order of 0.1 &), Two or three entropy cycles exist
in the tube length, 9 o

If it 1s assumed that the disturbances are propagated without

losses, that their megnitudes are small compared to the average
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conditions in the tube (the waves are sound weves), that the flow
1ls one dimensional, and that the gas is perfect, certain relations
can be deduced (Ref, 32)., We use the notation:

Total velocity =U + u
Total pressure = P+ p
Total demsity = 4 + P
Total entropy variable =H + h

where the capitalized symbols are the steady state values and the
small symbols, the disturbances, h l# an entropy varlable,

ReAs/ ® . (R is the gas constant, As the change in entropy, and oy
the specific heat at constant volume,) Velocity disturbsnces

satisfy the wave equatlon and can thus be expressed as

u

- = oX
wi=1 {x-(a-m)t} + £ {xﬁ-(a-ﬂ)t}- Ty TII-1
Pressure (actually, dp/dt) is coupled to velocity, giving
P/P = XM(fl - fz) OI-2

where M = U/a. Entropy propagates downstream only:

i = £y § x-UtY II1-3
Density couples both to the sonic disturbance and to entropy,
1
o/p = Mfy - £)5 5 1114
Therefore, a given right running wave, fy, propagates unchanged
until it meets the exit boundary, Its transit time from 1lip to

exlt 1a & 4y = ,Q/(a-!-U) « At the boundary it reflects as a new
right running function, f,, which propagates unchanged back to the
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1ip. Tts trensit time is &ty = %/(a-U). The boundary condition
at the exlt, or nozzle (Ref. 32), is that the exlt Mach muber is

constant, i,e.

Wi =al/a
where a' 1s the disturbance effect on the speed of sound and can

be defined from the properties of the fluid,

al/a = -23:- EX- 1) Q{E + h/a
= g E‘s- 1) M(fy - £,) +§f3]
Consequently,
Wl = +14, =% E‘- l)M(fl - fz) + %f;;] II1.5

If f3 and fy are defined at the exit, we can immedlately deter-
mine the reflected disturbance, f2‘ The model of the diffuser tube
can thus be devised (Fig., ITI-13), with inputs fy and f3 and an
output fz.

Before attempting to model the forward externsl section of the
system, it is instructive to consider the fictitious czse where the
steady state shock is at the lip (€ = 0), 411 the flow 4n the
infinitesimal forward region is thus one dimensional, We wish to
determine the reflection conditions looking from the lip section
forward to the backside of the shock,

4 nonsteady shock having some velocity,é » produces changes
compared to a sieady state shock in pressure, velocity, and entropy
immediately behind the shock. These changes can be determined by

the Rankine-Hugoniot relations (as done in Ref., 32) and will simply
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be designated here as known functions:

u=f4§é'}
p=1; §§3
h=f6§§}

Now from equations III-~1,2
u=u,tuy =1 963
p =%1—4 (u, = ug) = £5{€1

The input (the known variable) here is ug, which leaves us
with two equations and two unknowns, The corresponding model
solution is shown in Fig, III-l4, If the relation between
f'ﬁ and é is monotonic, the infinite gain amplifier guarantees
tlia'b the error between i"! and fg will be zero by controlling

§.

Now let us attempt & similar approach to the situation where
the shock is shead of the diffuser lip, and axially symmetric
flow exista, The transit time of a particle across the external
diffusion region is quite small compared to the period of oscillae
tion, so we introduce the assumption that the flww field between
the shock and the lip is established instantaneously by the position
of the shock, § s and the shock velocitY,é e This quasi-stationary
agssumption allows a direct means of determining p and u at the lip
section as functions of § andé e If the freestream velocity
{(ahead of the shock) is U,, & nonsteady shock at instantaneous
position E and valocityé produces the same instantaneous flow
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conditions as a steady shock at g produces with corrscted free-
stream velocity, U + E o Thus static wind tunnel neesuremente®
of p, u, and P at the diffuser 1lip for various freestream veloclties
and shock positions (as varied by nozzle choking) provide the
functions
u= f’? §€,?§
t, 16,83
- fg {g v é}

The resultant model of the system is shown in Figure III.15,
As before, if u! 0 is a monotonic function of the error signsal,
the amplifier guarantees that u? g =1y by adjusting 5

If such a model is successful, it becomes a powerful supplee-
ment to actuel wind tunnel testing, Here, all important variables
and functions are directly available and controllable, For example,
the isolated influence of each of the assumed funotions f,,, fas

and fg esn be readily explored in the model,

# These measurements can be made up to the point whers shock
instability occurs, One would expect the functlons to be
reasonably smooth, and thus a certain amount of extrapolation
into the unstable region is permissible,
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IV, PROCEDURES FOR IMPROVIIL SERVOMECHANISM RESPONSES

A, Introduction

The intent of this seatioﬂ* is to demonstrate simple experi-
mental methods of treating servomechanisms, The given portion of
the system (the amplifier, actuator, and load) is assumed to have
a defined set of charascteristics and limitations, The nethods
concentrate principally upon the inputs and outputs of this
“forward" portion of the system, and other than alterlng the
amplifier static gain function, no attention is paid to internal
workings. The basic system dynamics may be equivalent to a third
order or a fifteenth order differsntial equation that may be
linear up to saturstions or may include nonlinearities. Satu-
rations (1limiting) need not be perfect, Unconcern of the methods
for system complexity should not be construed as a clasim of
complete universality; one could concoct any number of nonlinear
systems for which the methods would be poor or not applicable.
However, the techniques appear valid for many of the commonly
encountered servomechanisms,

The reason for treating & servomechanism is to improve its
performance, immediately requiring two basic performance defini-
tions: =& definition of the input and a definition of deviation
or error compared to an ideal system response, More or less
general inputs can be defined as functlons of time by Fourier

series, Taylor serles, power series, etc. Limited Fourier serles

% This section reviews and extends the method described in
Ref. 34.
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and linited Taylor series approaches have both been applied to
nonlinear control systems, By assuming that the input contains
only one frequency, the fundamental, and by further assuming that
the aystem's output components other than the fundamentel are all
negligible, the present Fourier methods have reduced themselves
to extended forms of linear theory., As mentioned in Section I,
an input containing simultaneously two or more frequencies requires,
if extended linear theory is to apply, superposition of the funda-
mental solutions, Furthermore, the infinite response speed of the
ideal system of either the linear or the extended linear theory
is unrealistic, Like the Fourier techniques, most of the current
Taylor serles methods consider the simplest form of the series, the
displacement step input. Despite its crude manner of approximating
a genersl input, it more than compensates by offering a definition
of an ideal system having substance, For a step input, one can say,
"the ideal system is one thet, having the same physical limitations
as the real system, moves most quickly from position a to position
b." The importance of this gquality caennot be overemphasized. For
once, a pr- ctical goal is created recognizing the fact any real
servo system is in essence an sccumulation of physical limitatlons,

In an effort to define the operating regions of a servomechanism,
a tagsk that must be performed if nonlinear treatments are to have
neaning, we designate three zones:

Mull region: the region in which amall motlons occur without
excursions exceeding the tolerated error 18| of the system. In

itself, the character of the motions is generally unimportant
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except fqr the requirement that !6‘ and possibly ‘5] limits should
not be exceeded, Illonlinearities such as backlash and coulamb
stiction ars of‘ten prominent,

Optional unsaturated Eggion: the reglon extending from the

null region to the operating boundary at which saturations are first
evidenced, The useful operations of a servomechanism treated as

a linear system are entirely restricted to this region, Contactor
{relay) control systems eliminate the region. Within the region,
the system may be nearly linear or may have intentional and unine
tentional nonlinearitles,

Saturated region: the zone extending as far as desired beyond

the gaturation boundary, Operation in this region complies with
the performance concept of utilizing the maximum physical capabilities
of the systen,

It follows that the ideal system has no optional region and
has an appropristely small mull region., If, due to technique
limitations, one cannot elinminate the optional region without unduly
enlarging the null error, |86\ , the compromise takes the form of
minimizing this anti-ideal region.

For clarity's sske, the technigues of treating the specific
reglons are discussed in reverse order, beginning with the funda-
mental, saturated region, Throughout this discusslon, the defined
input is a displacement step, At the end of the sections, techniques
of extending the methods to include mors terms of the Taylor serles

are touched upon.
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B, Saturated Reglon of Operation

The postulated system has its physical limitations, static
gain curve, and whatever devices are needed for the lnner two
regions of performance defined. It is further assumed that either
rate feedback or static error is available for modification in the
saturated region of operation, All known time lags, time delays,
and nonlinearities of the amplifier, actuator, coupling, and load
should be ineluded in the model, unless fortultously the real
gystem is avallable for tests,

First, certain interpretations of the worksheet, the output
displacement vs, veloeity plot, need be considered, The plot is
viewed as an experimental data record, ignoring mathematical
implications as & phase-space cross section, The followlng set of
examples demonstrate work-plot pictures of quickest response to a
step function ;nput.

The system is initially at rest at point xq (Fig. IV-1), and
at time t+ = 0 is requested by the input to move instantaneously
to point x;. For our purposes, the final point is surrounded by
a mall region, and this possibly surrounded by an unsaturated
region, We wish to direct the response as displayed by & path or
trajectory on the plot most rapidly from xq to the midst of the end
regions about Xqe

If the systenm has almost unlimited available force, its
quickest route to the final point is by means of & neerly infinite
acceleration to some midpoint and then a nearly infinite decelera=-

tion to the final point. The corresponding response trsjectory,
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FPigure IV-la, rises vertically from the inltial point % to an
almost infinite velocity and then descends vertically down to xj.
The relation between the trajectory and the response time is

apparent:

A
4%
dx/dt

L

Response time =T = dat

Thus the response time is the area under the reciprocal of the
plotted trajectory (as a function of x). For the ideal response
of Figure IV-la, the travel time is practiecally zero,.

Using this representation, the effects of physical limitatlcns
can be easily shown, Velocity saturatlion prevents the trajectoriles
from rising above & velocity limit (dx/'c'i'h)max « A control having
no other limitations best performs the task of moving fron x4 to
Xy by an infinite acceleration up to the bounding velocity and
then & constant maximunm veloclity to the endpoint where an infinite
deceler=tion stops the motion, The resultant trajectory, Figure IVe
1b, now has a finlte response tine,

In a8ll practical systems the output acceleration must be
finite, limited by inertia of the load and available force, TFor
example, 2 system having a pure inertia load and limited available
force but no other restrictions has as its best response:; 1) maximm
acceleration to the midpoint and 2) maximm deceleration to the
endpoint, The trajectory is that of Figure IV-lc,

If the control force is not able to reverse itself instene
tangously at the midpoint, the apex of the trajectory is rounded
as shown in Figure IV-1ld,
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Implied in 81l of the exsmples is the rule that minirum
tranait time trajectorles are obtained with a single reversal,
Sone investigators feel this point is not obvious, and & rigarous
mathematical proof hasgs been attempted for second order systems
with discontinuous forcing functions (Ref. 2). The same conclusion
usging a little physical intuition can be deduced for real systems,
The rising trajectory, say of Figure IV-1ld, forms the left-hand
boundary of possible trejectories rising from x4, for by definition
this trajectory has the maximum accelerstion sponsored by the
maximun available force, Similarly, the descending trajectory to
x4 forms the right-hand boundary of all possible trajectoriles
terminating at xy. (Obviocusly a trajectory to the right of the
boundary could reach x5 by recycling, but this back door approach
always adds & little time for the go around and can be neglected
here.,) The saturated reversal at the pesk is the fastest possible
means of transferring from the ascending boundary to the descending
boundary; therefore it occurs closer to the apex of the boundary
intersection (noting that the apex point represents infinitely
fast reversal) than any other reversal, Therefore, any trajectory

between Xq and x, made up of unsaturated or multiple reversal

i
segments rmust lie inside the boundary set up by the single reversal
saturated trajectory. Since transit time is the area under the
reciprocal of the velocity curve, it is apparent that the minimunm
transit time corresponds to the bounding trajectory.

Nou let us conslder the switching function in more detail,

The typical instantaneous reversal curves of Figure IV-2e have been
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ahifted such that the endpoint is alweys the origin by the sinmple
transformation x! = x - x4. The abscissa 1s now the static error,
For various starting points, x',, x‘z, - -, there exists perfect
switching (or reversing) points, 815 8,55 = = which properly
deflect trajectories towsrd the origin, If we could supply a
switching funetion consisting of all of the "s" points, the
saturated response of the system would slways be ideal.

Adnmitting & naximum rate of change of controller force,
(aF/at),,,» the family of optimum responses become those of
Figure IV-2b, Note the switching line sy a, 83 - - initiating
reversal has been advanced to account for the reversal time;
the intervals s t,, sztz, - - are the reversal portion of the
trajectories,

If some absolubte veloeity barrier is added to the system, the
perfect switching line may take the odd form shown in Figure IV-2c.

In short, a system switched at the proper instant from saturated
acceleration to saturated deceleration fulfills the performance
ideal, Suppose now, that the smplifier is a perfect relay
reversing instentaneously when the error signal reverses polarity.
Locking at Figure IV-2, we note that the switching line 8 85 ~ =
can be considered either as a function of velocity plotted versus
the ordinate, dx/dt, or as a function of the static error plotted
versus the sbscissa, x', With the first consideration the switching
line is Sl { dx/dt} , and we wish the relay to reverse when a tra=
jectory crosses this line, (See Figure IV-3a) In other words,
when the static error, x!, equals the switching function S §dx/at}
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the relay control signal should reverss polarity from plus

(acceleration) to minus (deceleration),

M= - x! + 8, Jax/aty V-1

The similarity between this desired relatlon and the actusl
error signsl obtained by the usual linsar position plus linesr

rate feedback is spparent; for the linear control,

n\;xi-z-al-dx/dt:-x'-alcdx/dt .

When the rate feedback is intentionally nonlinear, A {dx/dt.} s

the error signsal is

0= - x' - & fax/aty -2

and comparison with the sought relation IV-l shows that the ideal
rate feedback function, 4 {dx/dt} , 1ls precisely the negative of the
data plot switching line, S; §dx/dt}.

If we had assumed the switching line to be a functlon of x!',
8= Sz {x'} y by the same argument the error should reverse when
the trajectory meets the switching line (Fig. IV-3b), In this
case the error signal should reverse polarity when the output

veloclty, dx/dt, reaches the static error function S, {x'} ; that is,

N = - dx/dt + Sg{x% V-3

Suppose in the physical servo system we combine a function of
gtatic error, A2 {x'} s With a linear rate feedback to form the
totel error signal, V| (Pig. IV-4). For this arrangement, the
relay control signal dis

N = - dx/dt + 4, §xi} -,
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and agein comparing the desirable function (eq, IV-3) with the
obtainable function (eqe IVei), We note the nonlinear function of
negative static error should be identical to the data plot switching
line, 8, { x'} .

In actual systems, switching is not instantaneous for various
reasons, The error signsl must have a small but finite positive
value to sponsor saturasted accelerations and a small but finite
negative value for saturated decelerations, Therefore, in passing
through zero, a time delay or time lag is evidenced bhefore saturated
deceleration is observed. Time lags in the system and physical
limitations restricting reversal rates enhance this prolongation
of reversal, The switching line is actually a sort of switching
band on the work plot, However, for the experimental techniques
discussed here, the point is unimportent,

In brief, the features of the control system of present
interest are: 1) either linear static error combined with functional
rate feedback or functional static error combined with linear rate
feedback produces a switching control which can be readily inter-
preted on the velocity vs., static error response plots; and 2)
this switching function should be molded to deflect saturated rising
trajectories downward directly toward the origin of the data plot,
These features lesd to a simple, direct, experimental method of
determining the best function of rate feedback, or alternatively
of static error,

Experimental Method of Obtaining "Ideal" Satursted Responses

l. The complete servomechanism including linear rate feedback

and linesr statlc error is set up elther as a model or as an actusl



systen,

2. Velocity vs. static error responses are recorded for
varioua displacement step inputs.

Je In general, the trajectories will not be perfect, but
wlll niss the origin by certain inerements, &x‘n (for the neth
trajectory), dependent upon initial starting points (Fig, IV~5a),
If these trajectories are adjusted left or right by -fwx'y, they
become perfect (Fig., IV-5b). As previcusly shown, the shift
corresponds dirsctly to a medification of the rate feedback,
(dx/at),, immediately genersting the correction to apply to the
initial linear rate feedback, It is, of course, possible to
Interpret this mew rate feedback function in terms of its fraternal
static error function,

4e Test of the new system may still, for reasons of experl-
mental errors, undue nonlineardities in switching, ete,., evidence
alight misses, which 1f unacceptable can be extracted by iteration.

Systems having terms which vary with output position x (such as
those introduced by an aerodynamic flipper subjected to nonlinear
static hinge moments) will have different families of responses
for each fimal value, x3. This in turn produces a family of
"ideal® switching functions; i.e, the switching function is now
a three dimensional surface rather than a line,

A simple example illustrates the method, The given system
(Fig. IV-6) consists of an inertial load, a linear actuator having
one time lag, an amplifier having one time lag, direct position
feedback, and rate feedback sensed by a device having two time lags,
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The smplifier statically saturates at some output level \vs\ »
Treating the system first in its linear operating region ( \v!(\vs\ )s

we provide a linear rate feedback and thus a feedback

- {1 + a;p } x
1+ ’l‘jp)(l + ‘l",*p)

The forward transfer function ig

X = & n
7?1 + ?;_P)(l +?2p)

The resultsnt sixth ordsr system displayed the instabllities
usually encountered with rate feedback stebillization, For a fixed
low gain (Kl), decrsasing the rats feedback (deecreasing al) below
some value produced underdamped responses and finally the "displace-
ment mode" hunting, Increasing rate feedback above s;:me other
higher valus produced underdamped responses and finally a higher
frequency “velocity mode" hunting. As static gain was increased,
the two values of 87 giving eriticel damping approached each other,
and at approximately optimum galn these values merged.

With this experimental procedure, & linear static gain, X,
and a linear rate feedback, a4 :.c s Were selected, The resultant
static characteristic of the amplifier is shown in Figure TV7.

If the amplifier output does not exceed \vs\ s Which corresponds
to an error signal ‘Y(s‘ s the responses are linear and slightly

less than critically damped., These responses are discussed in
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more detail in Part C below, For the present, we are interested
only in the saturated and far ssaturated responses of the systen
(Il > 1.

As an expedient for getiing saturated responses rapidly, two
response tests were run, each with a single large step input., The
first employed the linear rate feedback prescribed by unsaturated
tests, and the second used half this rate feedback. A4s shown in
the resulting responses (Figs. I1V-8,9), several saturated reversals
come out of one test. By measuring the seversl misses, the correction
rate feedback function was determined (taking into account the
reduced linear damping in the second case), arnd this function
(Fig. IV-10) was produced in the feedback by the nonlinear function
generator discussed in Section II, Resultant responses to various
step inputs are shoun in Fig., IV-1ll, A comparison of saturated
response times of the system with nonlinear rate feedback ard the
system with linear rate feedback is shown in Figure IV-12, This is,
of course, & different manner of presenting the information shown

in Pigure V=7,

C. Optional Unsaturated Region

If we accept the postulate, "best response is saturated
response,™ this is the unwanted region., The preceding analysis
sgsuned, for convenience, that this unsaturated region was approxi-
netely linear since the end zone was of no great consequence to
performance in the far saturated regions (except possibly to fur-
nish & reason for selecting the initial lipear rate feedback).
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In looking more carefully at a magnified view of the endpoint
region outside the null, we are immediately confronted with a
provogative dilemma, Linear tradition atstes per se that the
systen should be linear and operstion remein within the saturation
limits. In practicsl systems, the amplifier is set at sone
maximum gain as related to the cholce of stabllizing elements,
Suppose we have such a sgystem, linear except for emplifier
limiting with gain and rate feedback adjusted for spproximately
best linear response, We further restrict the displacement step
inputs such that the saturation limits of the amplifier, jﬂs,
(Fig. IV-13) are not exceeded. This is about as ideal s situstion
as gould be expected for the linear system. But comparison with
the postulated "ideal saturated" system indicates performance can
be improved by revising the static gain curve as shown by the
dotted line in Fig, IV-13, extending saturation toward '[z O.

This super-performance, if you will, as compared to the
linear performance has many subtleties attached, and the present
investigation mekes no pretense of optimizetion, It does show
that even a rather primitively selected nonlinear system ia
superlor both in step response and in frequency response to
the equivalent linear system (keeping the same rules of the game,
i.0. that the Qy as determined by the linear system is not
exoceeded) .

Haphazard selection of the new, narrower static gain character-
istic invites underdamped responses or instabllities; for example,

sinply steepening the central portion linearly (as dotted in Fig,
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IV.13a) tends toward instability, since the original static gain
slope was the maximum coupatible with properly damped responses,

It might be inferred from extended linear theory that any narrower
static gain curve tends toward instability, but this inference is
not valid, It is clear that the present method deals with "best
performance’ of systems: the linear system is assumed to have
highest gain compatible with critically damped responsej the
saturated system has its response trajectories properly directed
toward the mull reglon, On the other hand some of the extended
linear techniques deal with systems which are marginally stable

or unstable., For example, & result of extended frequency analysis
is that limiting, such as that produced by amplifier saturation, is
stablilizing; 1.s. the mean effective gain of the system is lowered
by ssturations, A servo system which 1s unstable in its linear
region 1s "stabllized" at some limit oycle oscillation if
saturation occurs, The present method suggesis precisely the
reverse, 4 serve system which produces oritically damped responses
in its linsar region of operation evidences overshooting when
saturation is introduced. There is, of course, no discrepancy in
these results; the two approaches are concerned with quite different
operating conditions of the servo system,

Hers, attempting to improve upon linear (unsaturated) per=
formance of the system, we intentlionally saturate part of the
operation by narrowing the unsaturated region, Between the points
vhere static limiting ocours, the average gain of the amplifier is
substantislly increased, When this average gain exceeds the linear
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"~ gain sponsoring neutral stebility, extended linear theory tells us
that a limit cycle is to be expected., To demonsirate that this is
not a basic limitation of the proposed method, we can consider the
following rather extreme case, Assume initially that we have a
gsystem working within its linear limite and producing critieally
denmped responses, MNow we collapse the central unsaturated region
of the static gain to nearly zero width (infinite average gain),
meking sure that the small unsaturated section remaining across the
mll is maintained at low gain (Fig. IV-13b). Extended frequency
analyais tells us that if the nonlinear static gain exceeds some
linear limit, shown &8s a dotted line, the system becomes unstable,
This leads to the conclusion that a stable limit cycle exists at
point &, an unstable limit cyele or barrier exists at point b,

and the mull region is stable, Excursions of the error signal withe
in the inner limit barrier result in stsble responses, If the
error signal exceeds the inner limit barrier, the responses "lock
into" perlodic stable limit cycle oscillations., There i1s a delsy
in reversal due to the time lags in the system ahead of the
saturation, By the procedure basic to the proposed method, we can
determine the correction to apply to the rate feedbmck funcilon
{directly related to the miss of a trajectory) and reduce the limit
cycles By a series of such tests, the limit cycle can be reduced
to any arbitrary small maximm amplitude external to the unsatu-
rated reglon, If the 1limit cyele iz reduced to confinement within
the unsaturated region, it disappears by virtue of the well damped
responses of the low static gain characteristic, In other words,
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the limit cycle predicted by extended linesr analysis may be
reduced to an arbitrarily amwall amplitude or eliminated by
adjustment of the rate feedback function and the shape of the
unsaturated static characteriastic,

The actual nonlinear static gain characteristic used was
obtalned by triasl and error and was justified solely by the fact
that it produced stable responses, It was characterized (Fig. IV-19)
by new saturation limits, V) 'y , substantially closer to W} =0
and by low gain through Q= 0 . The shape was obtained by a pair
of diodes, back-to-back, shorting the internal feedback of the
amplifier, One would suspect that such & static characteristic
is far from optlmum; unfortunately the intereating problem of
optimum static characteristic is of a magnitude which excludes it
from this research,

Once the new statle gain curve is established, the experimental
technique developed in Section IV, Part B, is applied, Here, the
linearly determined rate feedback is more than adequate, switching
too early (predicting a slower deceleration), and model tests with
Ybeath linesr feedback result in trajectories attempting to undere
shoot the origin (Fig. IV-15 noting initial position has been
shifted to clarify details of the final approach),

Just as in treating the far saturated responses, by reading
off the miss dilstance for each trajectory, the shift in x! re-
quired to bring the trajectories down on the endpoint is mesasured,
thus providing the correction to the original rate feedback, In
contrast to the preceding saturated analysis, the correction here

i1s negative, decrsasing the rate feedback,



20

A comparison of responses to various displacement step inputs
was made between the system incorporating nonlinesr static gain
and the newly dstermined rate feedback funetion and the linear
system optimized as previously described. Reaponses of both systems
to three different steps are shown in Figures IV-l4, 17, 18; the
first step corresponded %o an error signal just under V), (just
under saturation of the linear system), the second to approximately
50% on( g+ 8nd the last to approximately 15% of 7 g ¢ Inall three
instances, the inner trajectories were those of the linear system,
Remembering that transit time is the integral of the inverse curve,
we conclude that the nonlinear system is superior to the linear
system for displacement step inputs, and particularly so at amaller
requested inputs vhere the linesr system is constrained to low
forces,

Both systems were tested for frequency responses to an input
with peak amplitude corresponding to about 25% '[a « The results
are shown for 1/2, 1, and 3 ops respectively on Figure IV-20,
Perfect response is a 45° line, The unfortunate pair of "teats"
on the input vs, cutput traces is due to the odd waveform of the
signal generator (Fig, IV-21l), For each of the frequencies tested,
the nonlinear system had less attenuation and less phase shift than

the linear systen,

D, Il Region
The character of the mull region is intimately linked to the
choice of static amplifier gain function and rate feedback function
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for the adjacent operating region, Iits only feature of interest

is size, determined by dead space effects (multivalued null),

or possibly by small limit cycles., The simplest limit cycle tests
are for complete instabilities, for which no matter how the response
enters the null region, the final state 1s a limit cycle, Partial
instabllities are more difficult, for only certain kinds of

entry conditions excite the coycle, If a system has prominent none
linearities around the null, one mst always make sure the range

of entry conditions (inner boundary exit conditions of region 2)

do not provoke some unacceptable limit cycle, For model studies of
nonlinear null effecta, representative elsctrical analog functions
are available: for example, stiction as shown in Figure II-14 and

dead space as shown in Figure II-12,

E. Extension of the Taylor Seriles

Only the first term of the Taylor series approximation of
the input was used in developing the technique described above for
treating saturated responses, The more general approximation of
the input introduces the velocity step, the acceleration step,
etes It will be shown that for a given system, the inclusion of
the next higher order Taylor series term results in extending the
switching function by one dimension, For example, if the optimum
response to an arbitrary displacement step input can be obtained
by a switching line, A{ ;:} s then the optimum response to an input
consisting of an arbitrary displacement step plus an arbitrary
veloclty step can be obtalned by a switchlng surface, 4 { :.c,;

L] L]

where z 1s the velocity error x - %y .
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Adnmission of the sscond term of the Taylor series approximation
of the inﬁut introduces the welocecity step or ramp function. There
have been some investigations of saturated system responses to
remps alone, but essentially none on treating systems subjeoted
to the more general arbitrary displacement step plus arbitrary
ranp input, On the data plot, the endpoint is now not the origin
but a target which at initlation of the problem begins to move with
constant velocity (see Fig. IV-22), The perfect system must be
able to intercept this target with saturated motions and only one
reversal, If the target velecity is ;5, we can run the problem
backwards in tine, defining the collision point as occurring at
x! = 0 (here, x' is not the static error) and obtaining a family
of saturated trajectorlies such as those shown in Figure IV-23, This,
of course, can also be produced by shifting A-wise the set of
sasturated trejectories obtained for step displacement inputs
(for example, Figure IV-2) such that they all intercept point
0, %o Jote the curious shape of the switching line, From the
facts 1) that the function is an inconvenient shape to duplicate,
2) that the shape varies depending upon target velocity, ;i’ and
3) that the x' variable requires that we know the impact point
when the problem is initiated, we are tempted to look for another
approach,

At the risk of confusion, we fall back upon & mathematical
representation of the system, assuming the forward portion of the
gystem can be described by

Lft} = wft
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where L 1s an ordinary differentiel operater, t the independent
tine variable appesring implicitly in 1L, and Q is the error
signal forecing the complete forward system., Saturations are
thus included in L, Furthermore, we assume the error signal Q ,
is the sum of an input, xii'b} , and a function of the output,
“-X - f{x,t} « The feedback, as before, transfers- x to the input
sumier along with some intentionally added function of time
derivatives of x, fix,t} o Here the input is a position step
plus a ramp, so
Lix,t}=xg + ;‘16 t - x - £§x,t3

Since f contalns t implicitly only, it can be combined with L,
giving

L' §x,t} txExy ot >0 -5

Our objective is to select a substitution such that the right
hand foreing funetion drops out, thus reducing the equation to
autonomous form. The reduced equation produces solutions having
a certain amount of generality. For example, in the treatment of
gystens subjected to single displacement step inputs, equation
IV-5 can be written

L'{x,’b}*x:xio +>» 0

and the substitutlon x' = x - x4 (1ntroducing static error)
o
rroduces
LY dx",t§ +x' =0

providing L' contains only derivatives of x, The governing
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differential equation is unchenged by the substitution. If we
utilize x' instead of x, the resultant responses are in a sense
independent of x and of xio. Instead of considering all possible
x and all possible Xy 9 we need teke only all possible x!,
Paralleling this, we can attempt a substitution in IV-5,

»

X=x-3X - xiot (static error)

*

%=X - X, (velocity error)
o

First, we note that terms like g-{i} in L! complicate the
substitution by bringing in explicit time and consequently re-
affirm the previous assumption that L' contains only derdivatives

of xo. The substitution produces

Lt {(;-& X1 )y t§ *+a=0

*4 aed

vhere L' includes terms such as (; + ;10)’ Zy % = = =, For
systems having only second order or higher terms (inertia loads
with no damping or springs), the (; + ;io) factors drop out and
we get
11 §z,t} +2=0 -6

The equation exhibits the desirsble qualities of an ansalog.
It says that physically the responses ; vs, x! of a system forced
by a step position have an exact correspondence with responses
; vs, 2z of & system forced by a step positilon plus a step velocity.
If we have obtained by the technique previocusly discussed the

optimum responses, ideal switching line, and desired rate feedback
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function for a system exposed to displacement step inputs, we simply
rolabel fhe axes ; and z, reading off the desired rste feedback now
as & function of z, the velocity errors Alternatively, the switching
function can be thought of as a function of static error, leading

to a system with functional static error and linear velocity error
feedback. For such treatment the system must know velocity error

as wWell as the natural neasurement, static error. The approach
gives an inkling of what a really intelligent servomechanism must
do: continucusly compare all pertinent features of the input with
its own output and make the proper compensations within itself to
minimize the importance of these errors.

The existence of damping in the system inserts (; + xio) terms
in L', and the corresponding optimm feedback functions are different
for different :.:io, & procedure identical in all respects to the
position step treatment of systems having springs. When this more
elite treatment 1s applied to aystems containing springs, the
swltching function is four dimensional, xig and ;:io both influencing
the selectlon of the proper rate feedback function.

Extension of such an approasch to include third order terms
adds one dimension of complexity to the feedback function,
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Figure IV-7
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Figure IV-10
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Figure V=12
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V. CONCLUSIONS

A, Internal methods of treating closed loop systems, using
the word "internal" as it is defined in Section I, confine themw
selves to systems which can be described either by second order,
rquasi-linear, autonomous, ordinary differential equations or by
higher order, constant coefficient, linear, ordinary differential
equations having discontinous forecing functions (F = 4+ constant ),
Nelther descriptions apply to the majority of real physilcal
problens,

B. External methods, again as defined in Section I, are
experimental in their nature; these methods must accept full
responsibility not merely for producing results but for providing
means of interpreting the results. A complicated nonlinear system
might for example, be modeled by an slectricsl analog and experimental
tests run producing a set of responses, Unless the method (including
the model) 1s so designed that it provides the problem director with
insight of how to control the results or why the resulls occurred,
the experimental solution is somewhat trivial.

Ce If a variety of experimental tests by modeling are sought,
first one looks for a versaiile model, The electricsal analog is
useful and reasonably generel in its spplications, However, there
are ssveral gaps in the 1ist of deairable analog elements, in
particular the logarithm type of functiion generstor answers the need
for a flexible explorstory nonlinear element, Compared to other
function generstors, this unit performs rapidly, accepts three

independent variables, and effects functions of each variable by &



1lce

pair of controls,

D. Having selected the form of the model, one next attempts
t0 translate the essential features of the real system into model
terms, This is the most difficult and nost deceptive step of
the procedure, However, if the translatlon is done properly
(including s fortuitous selection of the model form), the model
offers a powerful means of anelysis, that of paralleling experi-
ments on the actusl system and experiments on the flexible model.
The hydraulic servomechanism is extraordinarily deceptive, The
extremely complex ramjet system offers an example in which
extraction and modeling of & relatively simple component instability
can be accomplished.

E. The final step is model testing and interpreting test
results. If the system is a2 servoméchanism, one wishes to exercise
soms control over the results, manipulating available parameters
such that the system performs well., This implies that good
performance is defined: the system input is defined and the departure
of the servomechanlsm responses from "ideal responses" is defined,

1. Approximation of the input by a limited Taylor series
has the advantage of admitting into performsnce sn "ideal system"
which has reaslistic limitations, The ideal system always utilizes
its full physical capabilities (l.e,, is saturated).

2. If the system is operating in its saturated region,
the "idesl control® can be found directly through experiment, This
control may be either a nonlinear rate feedback or a nonlinear

stetic error function, Each additional term of the Taylor serles
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(velocity step, acceleration step, etc,) included in the definition
of the input adds one dimension to this contrel function.

3« OCustomarily, the linearly treated servomechanisms are
confined to operation within their saturation limits, If all but
the null region of such a servomechanism 1s satursted by, say,
nonlinearly shaping the statie gain characteristic, the system
response to step inputs can always be improved, Once the static
gain function has been selected, the procedure is the same
experinental procedure applicable to the far saturated responses
(conclusion E-2, above). Certain systems coincidentally improve
their frequency responses; the latter result has not at present

been fully explained.
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AFPENDIX A

Phase Space Construction

An ordinary differential eguation of the form L (x,t} =0
and of order n can, if autonomous, be written as a set of n

similtaneous equations;

L {xys ®pgs == Xy === x}=0 A-1
Nl
Py L%
Thee], at dtn-l
Awl
= X
xl at

The variables x; (wvhere n2 1> 0) can be plotted against x,
producing & set of phase space cross sections such as those shown
in Figure A-l, For ususl plotting techniques, one must restirict
Xy where n> 1> 0 to continuous functions, and X, to plecewise
continuity. However, the lower order terms may also be of plecewise
continmuity if they happen to be sufficiently well defined at dis-
continuities to establish complete new sels of initial conditions.

The construction tschnique 1s as follows, From inltial
conditlons, the starting point on each of the planes is located
(designated point 0). The slope of the trajectory (here the inter-
gsection of the multidimensional response function with a particular

plane) can be linked to the subsequent plane irajsctory by:
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dx;, dxy 1 my

dx dt dx/at Xq

We know the diresction to begin motion in plane 1, because
treajectories run to the right for +xq and to the left for -xl.
Therefore the slopes of trajectories for all hut the n-th plane
are determined immediately by rotating the initial % value to the
% axis and carrying this value through all of the planes (see Fig, A-1).
The slopes xi+1/x1 can be directly picked off the i+l planes and
transferred to the corresponding points of the preceding i-th planes,
Having completed all of the slopes for the incremental advence O
on the first n-1 planes, we resort to the basic equation A-1l in order
to determine the new x,, knowing the rew x, - through x, This last
step may rarely be done geometrically.

The subsequent iteration procedure needed to obtain a complete
phase spsce response is essentially identicel to that commonly

used for second order phase plane constructions,
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APFENDIX B

Details of the Function Generator

A brief discussion of the ecircuit details of each component
of the function generator follows:

l, Input Splitter

The circuit diagram, Figure B-l, is self-explanatory. By a
simple cascade of germenium diode voltage dividers, a pass gain
of 1.0 for inputs up to 100 volts and a blocking gain of 0,002
are obtained, The input impedance is the back resistance of the
diode.

2+ Differentisl Amplifier

ds shown in Figure B-2, the differential input is effected
by means of comaon cathode, balanced tricdes, Since the required
output of the smplifier is always positive, the final stage (the
cathode follower) i1s biased such that its output range is 350 volts
meximum to =10 or =20 volte minimum, Its closed loop gein is +6,
linesr within about 1/2% over an cutput range of O to 4300 volts,
Having an open loop gain of about 1500, the amplifier is reasonably
insensitive to power supply fluctuations, To minimize Ium, the
first stage employs a d.c. filament supply.

3. logarithmic Converter

Except for rearrangement of the chassis layout, the unit
is that described in Ref, 25. Its circuit disgram 1s shown in
Figure B-3, The nonlinearities at the tricde are sensitive to

filement, plate, and bias voltage variations; consequently, the
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complete supply must be well regulsted, A small unintentlonal
change in the voltage representing loga x when x is, say, 300
(volts) is highly magnified when converted to an irverse logarithm,

The triodes used as nonlinear elements must be selected
(estimated rejection about 60~70%) and aged 500 hours, No precise
tests have been made concerning the upkeep of a converter, A tricde
which has been warmed and then has the proper circuit adjustments
made holds its conversion reasonably well for 100 hours contlauous
operation., Intermittent operation is less rellable.

4e Inverse Logarithm Converter

The feedback of this unit (diagrem in Fig, B-4) is the logarithm
converter just discussed, and all of the features mentioned also
apply to this unit. The forward gain of the emplifier is about
+1500, Excluding the idiosyncrasies of the feedback, the camplete
converter 1s fairly drift free and 1s easily balenceds Its output
range 18 approximately O te +350 volts,

5« Polarity Control

This is a logieal circuit which always has a positive input,
Tts output is linear with its input, positive if the polarities of
two control voltages are identicel, and negative if the control
voltages have opposite polarities., It 1s shown functionally in
Figure B-5, 4s a matter of fact, the control could utilize relays;
however, reliable, inexpensive relays are slow (2 milliseconds or
s0 transfer time), Pulse relays having transfer times as low as
100 microseconds sre quite expensive and are delicate, It was

therefore decided to design the control as an all-electronic device,
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One method of electronic control (Ref, 26) amplifies
and limits sach of the contrel voltages, By adding the two
linited voltages, a switching voltsge results vhich is & v,
if the control inpute ere of the same polarity and vhich is O
if the inputes differ in polarity. Satisfactory operation demsnds
quite precise limiting, and elements working at verlous voltage
levels, hs & result, the unit has several required balancing
operations end is subject to drift,

The approach used here directly treated ths logical diagram,
replaclng relay switches with electronic switches. The mest
reliable elsctronic switching of the versions tested was by use
of triodes clamping to ground. The clamp was quite simple; &
sinzle or double section of & trlede such zs a 12&X7 had its
cathode grounded and its place tied to the input through a
resistance of ahout l/@ megohnm, With s grid voltags of +4 volts
(using paralleled sections of the twin triode), the tude clamped
voltages up to 300 volts producing less than 1/2 volt outpute
With a grid voltage of -2 volts, the tube hlocked current,
allowing full output voltage. The complete circult diagram utilizing
this triode clamp is shown in Figure B-6, Simple amplifiers boost
the conbrel voltages such that these may be as small as & 1/4
volts and effeet polarity control. Isolation cathods followers
drive the final clemps. The differential amplifier controlling
polarity of the signal is a sinplified version of the anplifier
discussed in Section 2. The unit csn switch an input voltege of

4300 volts cleanly al frequencies up to 500 cps.
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