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ABSTRACT

This thesis is a generel investigation of some of the properties of
rfree and forced vibrations in linear, non-conservative systems, Particu-
lar emphasis is placed upon the problems which srise in normal mode studies
made oﬁ the electric analog computer at the California Institute of
Technologye.

In Part I the major problems are defined, and limitations of the study
are discussed, Part II is a review of the basic theory of normal modes
included primarily to establish familiarity with the notation to be used
later, In Part ITI, modifications of normal mode concepts, as applied to
damped systems, are examined, "Small damping® ecriteris are discussed,
and a set of theorems of small demping is presented,

In Part IV a series of normal mode analog circuits for déﬁped»sys-
tems are developed, Part V is a study of uniform damping, géneralizing
‘and exbending some of the work of Rayleigh, Bode, and Guillemin, It is
shown that for any type of uniform damping, all of the basic normal mode
concepts are preserved, |

In Part VI the theory of mode separation in unifbrhly damped sys=-
tenms is considéred. Criteria for determining mode freguencies and mode
varameters are develoved, 4 multiple drive method of excitiﬁg normal
'modes is proposed, In Part VII, some of the methods of4Part VI are
extended to none-uniformly damped systems, Equivalent or%hogonal systems
are proposed to approximate the behavior of systems with moderately
non-uniform damping, 4 quantitative measure of non-uniformity is
presented,

In Part VIII, numerical examples and experimental results in support

of the theory are presented. Concluding remarks are made in Part IX,



PREFACE

The theory of vibrations is a very old and well developsd sub-
ject, and the related literature is quite extensive, In the course
of this study, a thorough survey of the literature relating to damped
vibrations was attempted, It seems inevitable, though, that some
important sources of information may have been overlooked,

In order to present a comprehensive treatment of the problem; and
to preserve continuity, it has been necessary to include some very
besic and well knoun theory in the text, as well as some published
materisl which is rather obscure, Wherever possible, credit has been
given when the results of other investigators are mentioned.

Except for minor novelties in presentation, the material of
Part IT and the first section of Part IIT is strictly review, To the
best khowledge of the writer, the following portions of the work are
presented for the first time, and are either original with hin, or
were developed by him after suggestions by members of his eﬁamining
comnittees

Part IIT - (1) Demonstration of the difficulty of éxpressing
T, V, and F in complex normal coordinates. (2) The eriterion for
suppressing a mode when the system is excited bj jnitial impulses,
(3) The treatment of small damping, beginning with Theoren 3.

Part IV - The extension of the normsl mode analog to damped
systems, and the development of the various forms of these analogs,

Part V ~ (1) The generalization of some results of Bode and
Guillemin, in Theorem 10, (2) Theorems 11 and 12, (3) The loci of
Figure 11, with the exception of Figure lle,

Beginning with Part VI, a1l of the remaining materiel is believed

to be original, except in portions where direct credit is given,
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I. INTRODUCTION

The .concept of normal modes of vibration was developed as a
tool for the analysis of linear, conservative mechanical systems,
with either continuous or lumped parameters, It continues to be
associated primarily with such systems, as well as with elactr‘b-
magnetic systems such as transmission lines, waveguides, and cavity
resonators. Though equally valid in the treatment of lumped parameter
electric circuits which are purely reactive, the normal mode approach
hes found less general application for such systems, This is
perhaps due to the fact that such circuits usually occur in stand-
ardized forms, such as filters or artificial transmission lines,
vwhich are more easily treated by other techniques, In the eléc'bro-
magnetic systems, parasitic damping is usually smsll, and usually
uniform; hence it can often be treated by exact solutions of the
| syétem differential equations, or by perturbation technigues, Con-
sequently, most of the technical literature relating directly to
the effects of damping upon normal modes is concerned with elastic
structures and other mechanical systens,

The generalized treatment of vibrating systems was developed
to a high degree by early mathematicians end classical physicists,
culminating in the comprehensive works of Lord Reyleigh (Refs, 1,
2)e In connection with damping, Rayleigh introduced the dissipation
function, discussed the special case of uniform damping, and applied
perturbation theory to systems with small damping,

Since Rayleight's time, one of the principal lines of development

in normal mode theory has been the search for simpler and more



powerful methods, both exact and approximate, for the solution of
complex conservative system problems, On the contrary, there has
- been relatively little parallel development of general non-conserva-
tive system techniques, Portions of the literature deal with exsct
analyﬁical methods, which are geldom applied to manyadegree-off
freedom systems because they are so tedious, Much work has beenv
done in investigations of the various types of damping thaﬁ are
encountered in practice, such as structural damping, viscaus‘
frietion, coulomb friction, etcs Using one or more of these types
of demping, inserted in various ways, humerous one, two or‘three
degree of freedom systems have been examined intensively,. Higher
order damped systems are occasionally investigated; an example is
the study of a six degree of freedom geared turbine ship drive in
torsional daniped vibration by Poritsky and Robinson in 1940 (Ref, 3).
The practical importance of damping has long been recqgnized
in connection with vibrations of such complex structures as bridges
(Ref, 4), buildings (Ref. 5), and ship structures (Refs 6)s The
need for better understanding and improved techniques became acube
yith the development of the aircraft industry, and since World
War IT some generalized approaches to the study of forced damped
vibraﬁions have begun to appear (Refs., 7, 8). The development of
electric analog circuits to repﬁesent complex elastic systems has
made possible experimental normal mode studies during early stages
of design (Ref. 9). These studies are supplemented by %shake tests
on the completed structure, and the results are used to predict
eritical flutter speeds of the aircraft, to determine stresses due

to landing impact, ete., Thus, in aircraft development work, there



are two major problems that arise due to the presence of damping:
(1) If the undemped mode shapes and frequencies of an idealized
structure are known, and if the nature and distribution of the
demping in verious parts of the system are known, then how cen the
effects of this damping on the transient responses of the system
best be predicted?
(2) How can one best determine, experimentally, the idealized
normal modes of a structure which contains demping? This applies
both to the aircraft shake test and to the electric analog normal
mode study, since in both the presence of damping tends to couple
the various modes of the driven system, The problenm is.severe when
two or more modes lie close together‘in frequency., Specifically,
how can one excite such a system to minimize the interfering
modes, and how can observed deta best be corrected to remove the
distortion of interfering modes?

This work attempts to consider both of the problems in a very
brosd manner, At the same time, an effort is made to develop ideas
and points of view which it is hoped will result in a better
"physical feeling" for the effects of damping on system behavior,

The work is confined to linear, lnmpéd paremeter, holonomic
systems, which in the absence of damping can be deseribed by
Lagrange's equations of motion, The results epply either to the
mechanical system or to its electrical counterpart, No restriction
is placed upon the mmber of degrees of freedom of the systems
congidered, because in practice the finite difference analog of en

aircraft structure may contain many degrees of freedom (10 to 100).



A

The results of the work are applicable to linear continuous
gystems, elastic or electromagnetic, as a result of the lack of
restrictibns upon the nmumber of degrees of freedom or the complexity
of the system. Such extensions are intuitive, and no attempt is
made to give any rigorous justification for them,

The work is further restricted to physically realizable,
passive systems, Consequently, all systems considered are bilateral
as well as linear (Ref, 10) .t This restriction prevents any direct
application of the results to many interesting problems, such as
feedback control systems, aircraft flutter, and mechanical systems
which appear non-bilateral due to the use of a perturbation theory
of gyroscopic motion,

4n attempt has been made throughout the work to maintain a
dval point of view, The mingling of the ideas of electricity and

applied mechanics allows the more powerful techniques of each art
to be applied to best sdvantage, In this respect, the advantages
of electro-mechanical anslogies extend to analytical as well as
experimental investigations,

It is hoped that the work will serve three primary purposes:

(1) The presentation of some of the known results of other

investigators, in a convenient and unified form,

# Unfortunately, many texts on electric circull theory associate
the term "bilateral with the relation between input impedance
and direction of current flow in a two terminal element, As
used here, the term has significance only for multi-terminal
elements such as amplifiers, control valves, etec, Such ele-
ments are non-bilateral if they inbroduce unsymmetrical
coupling terms into the dynamic equations of a system, thereby
voiding the reciprocity theorem,



(2) The establishment on a firm basis of some of the methods
and ideas which have beer used or proposed in the past as =
result 6:&‘ intuition and experience.

(3) The introduction of some new ideas, technigues, and points:

of view,



II, REVIEW OF NORMAL MODE THEORY FOR LINEAR
LUMPED PARAMETER, CONSERVATIVE SYSTEMS

A, Normal Modes of Conservative Systems

Consider Lagrange's equations of motion for a holonomic system
with n degrees of freedam, the state of the system at any time :
being completely defined by the values of n independent generalized
coordinates, qy, and their various time derivatives, q,, 4y otos
Lagrange'!s equations of motion for the system take the form (Ref.
11, Ch, 3),

J J -
< —.-T-)-----g =% (1210000  (114)
at dq‘i o)qi '

vwhere T is the system kinetic energy and E‘i is the generalized force
applied to generalized coordinate dje We can express I’i as the sum
‘of a non-conservative force, f;, and a conservative force, f 0i® In

terms of the system potentisl energy, V(ql, Qs eee qn),

- | - :
fCi = "’J'q-';: v(qlg q-2, seee qn) - (i = 1, Y n) (II“Z)

The conservative forces cen be shifted to the left side of (II-1),
and since V is a function of position only, the equation cen be

expressed in the form

_c.l..( é}:) A S (=1, v n)  (TI3)
a\da, ) q

vhere L = (T=V) is the Lagrangian function,



Consider next s conservative, dynamic, holonomic system with
n degrees of freedom, Measure the n generalized coordinates
' (ql, %oy PO qn) with respect to their equilibrium positions when
the system is at rest, Set the potential energy level to zero at

equilibrium, Then for small oscillations about equilibrium, the

expressions for T and V become linear if higher order terms in

q; and g, are neglected (Refs 11, Che 5), giving

n n

155w, 0
=1 g=1 |
n n

v .-:i Z Z ki.j ay qj (11-5)
1=1  j=1 '

vhere the mi;] are generalized mass coefficlents and the kij are
generalized spring coefficients, Inserting (II-4) and (II-5) into

Lagrange's equation (II-3), we obtain the system equations,
819 (play + aq5(Play + eee + 8y (Play = £

8,9 (P)ay + 2,5 (Pla, + eeo + 8y (Pl = £,

. ) ) : (11-6)

anl(p)ql + a‘nz(P)qz + eee t ann(p)qn = fn :

where in operational form, aij(P) = (mijp2 +k, :I)’ p being the
operator, d/dt.



In (I1-6), let the non-conservative forces (fi eeo fn) equal
zero, To solve the resulting set of homogeneous equations, assume
a set of solutions:

n
= A ) II-
g I w. cos (w gt ﬂK) (T1-7)
K=1
vhere W and.ﬂk are arbitrary constants of integration, and AjK
represents the relative amplitude of oscillation of coordinate
qj in mode K, Substitution of the assumed solution gives the

matrix relation

—all(j mK) see Ell‘l(j (DK)- —Ale-‘ -0T
anl(ij) YY) ann(ij) AnK 0

which can be condensed to

s Qo] [bae]

Nonetrivial solutions of (IT-8) require the vanishing of the

1]

[o] . (I1-82)

determinant of the matrix [aij(jasK)] , the result being an nth
order algebraic equation inay?® o The n solutions yield the n
natural frequencies of vibration of the system, When these are
knoun, the relative amplitude factors AjK can be obtained from
(I1-8). One way to do this is to move column 1 of (II-8) to the

right side and omit row l:
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g — —

_&22(:}031() aaaj(joax) eos a'2n(j(ux)- A - -321(,-)%)4&1;

n

ay(iey) 8y, (d) won 8y (i) |18y ) =1 -8y Gy )y

. (11-9)

Snp(0) g (Jeog) wee @ (o) | (B | =0y (o )y

From (II-9), the values of Aoy eoe A ¢ can be obtained in terms
of AlK’ by Cramer's rule,

The n natural frequencies Wy and the corresponding sets of
amplitude ratios AjK’ define the n normal modes of the system,
For a conservative system, the AjK must be real numbers, and the
wkgimust be real and positive {or zero)., For the sake of breVity,
the values of«nK will frequently be referred to as eigenvalues.of
the system, and the corresponding sets of amplitude ratios will be

.c&iled elgenvectors,
B, Normal Coordinates of Conservative Systems.

The choice of generalized coordinates, qi, is to a large
extent arbitrary, In general, it is necessary only that they be
independently variable, and that the actual location of each
physical point in the system be expressible as a function of the
qi. In a lineariged system, these functions must, in addition,
be linear combinations of the Qye Clearly, then, if one set of
suitable generalized coordinates 9 is known, a second set, equally
suitable, can be formed from n independent, linear combinations of

the Qe It is often convenient to meke this choice so as to obtain
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the normal coordinates of the system,

The expressions for T and V in (II-4) and (II-5) are positive
definite quadratic forms, and a theorem of algebra states that it
is always possible, with a pair of expressions of this type, to
find a linear coordinate transformation which makes all the mz‘;j
and kij vanish for 1 # j. (Ref. 12,) Let the resulting |

generalized coordinates be designated UK. Then

n
.2
_1
T = 3 Z M, Uy (11-10)
K=1
z 2
- ; -
\'f > KK UK . (I1-11)
K=1

Substitu’cing (IT-10) and (TI-11) into Lagrange's equation, we
~ obtain

M Ty + K Uy = Fp (K =1, eee n) (11-12)

where FK is our designation for the generalized force applied to
normal coordinate X, Thus, the set of n simultaneous equations in
,(II-6) has reduced to n independent equations by the choice of
normal coordinates for generalized coordinates,

Taking the noneconservative forces FK to be zero, the solutions

of (IT-12) are

Uy = uy cos (mK‘!?-+ ]ZfK) . (11-13)

Since the physical system has not changed, these are the same Wy

previously determined from solution of (II-8). Combining (11-7)
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end (II-13), we can express the original coordinates as

n
‘ K=),

Conversely, the normal coordinates UK can be expressed as linear
conbinations of the q, by inverting the matrix [A jK] in (II-14),
provided it is non-singular,

From (II-12), the eigenvalues of the system are

K
sz = & (11-15)

"

vhere KK and My are generalized spring and mass coefficients,
respectively, of the Kth normal coordinate, Mk can be evaluated
from considerations of total kinetic energy, Substitution of (II-1Z)

nmo(IL%)gﬁms
._.% ZZ my Z Z Aip Agy UK UL . (11-16)

In (IX-16) the order of summation can be interchangeds

T=2 Z Z(Z Z my g gk 'L) U, . (137)

The Uy and Up are independent coordinates when K # L, and the

kinetic energies defined by (II-17) and (II-10) are for the same

physieal system; therefore,

> Ay Aspp = (11-18)
- %: my g Aix Agx = .
Do X my A A =0, ®AD) (11-19)
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Relation (II-19) is the very important normal mode orthogonality

conditione
Similar manipulation of the potential energy expressions in

(II~5) and (IT-1l) yields values of K, and a second orthogonality

relation:

i

> > kyg Ay Ay = Kg (I1-20)
3 |

Z; ZJT kg A A5 =0 (K#L) . (11-21)

To relate the applied forces, assume a set of virtual dis-
placements, qu e Eguating virtual work in the two c¢oordinate sys-

tems,

D £ 80, = ) B oU . (I1-22)
1 X

Substitution of (II-14) in (II-22) and reversal of the order of

sumation gives
FK = 2{: ﬁiK fi . (I1-23)
i

Equations (II-12), (II-15), (II-18) and (II-23) combine to
provide an expression for the normal coordinates in terms of other

'generalized quantitiess

. 2 Zj‘t Ty Ak
U tog U = = , . (11-24)
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Only the relative values of the AiK coefficients are fixed,
their absolute level being arbitrary, The choice of level of the
AiK determines the level of MK’ KK’ Uy end Fye This arbitrariness
can be removed by adding some form of normalizing equation, For
exemple, one way to normalige the 2% is to take MK = 1 for all
modes, thus simplifying the expressions for T and V. A4 more
convenient normalization for use with damped systems will be
mentioned later, Additional types of normalization will be used

for special purposes wherever it is found to be desirable.

Ce Relation of Normal Modes to Roots of System
Characteristic Deteminant

Tt will prove fruitful at this point to examine closely the
relations that exist between the normal modes of a conservative
system and the complex plane description of the system, One way
to approach this is to assume & set of impulsive forecing ﬁirmtions
f;, and apply Laplace trensform methods (Ref. 13). Assume that the
system is initially in equilibrium, so that initial energy storage
terms drop out of the transformed equations, Then in (II-6), let
T o= Hy 6(t), a force impulse of amplitude Hie Transforming

i
(I1-6) to functions of the complex variable s,

Fall(s) azl(S) see anl(s)—] _ql(s)- I-Hl—

832(5) azz(s) Y anz(s) q2(3) = H2
. | . . - . (I1-25)

aln(s) &zn(s) coe am(s) qn(s') H

b — b - b —
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Solving for a (s) by Cramer!s rule,

%, H, 4,,(s)
- . > Ay
qj(S) = < a0o) (IT~26)

where A(s) is the determinant of [aij(s)] s and Aij(s) is the
cofactor of element 8 (s) in A(g). |
For the systems with which we are dealing, both A(s) and Ai j(su)
are polynomials in s, If the system is conservative, then the roots
of A(s) are conjugate imaginary roots, sg =% jog o These roots,
which lie along the imeginary axis of the s plane, provide part of
the definition of the system normal modes, The remaining .quantities

to be defined are the amplitude ratios, A Taking the inverse

iK °
transform of (II.. 6) we obtain:

Al:j (J&’K) jmKt
q;(%) = Z Z e (11-27)

’ P 2l R,P

2

where A(ij) ( ___é_(;s_)_) s and R,P, signifies real part,
s <+ o,\K
= Jx

Interchanging the order of summation, and recalling that the sum of

real parts equals the real part of a sum, it is clear that frequencies

oy will be missing from the system response provided that

; X ij(jmx) = 0 (T1-28)

(j 31, PYS n) .

From (II-13) and (II-14), ay (t) can slso be expressed as
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jlo,t + 2)
qj(ﬁ:) = %AJK . [e X ﬂx} (11-29)

R.P,

Comparison of (II-27) and (II-29) shows that

Y, |A . (11-30)
Il = auax A(jmK>
|43k
But, since T2 ] is a property of the system, it must be lnde-
K

pendent of the forcing impulses, Hys This requires that the ratio,
| 3 By Ayt |
| %: Hy Ay (o) |

also be independent of the values of Hi’ a8 situation which can’
only exist if

8y ()

The relation (II-31) is, in fact, a velid and necessary one for any

= Constant for any row i , (IT-31)

venishing determinant (Refy 14, 15)., Making use of this relation,
the rather cumbersome expression given by (II-9) can now be replaced
by the following:

A (Jooye)
JE s (for any row i and any mode
B Ay (J0g) X) . | (11-32)

The relstions above are not violated if we choose to normalize

the AiK such that they are defined by

Z‘ 35 (i) (11-33)
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In equation (II=33) we have a direct, compact relation between the
components of the eigenvector of mode K and the eigenvalus, jm‘,{,

- which is a root of the characteristic equation, A(jmK) = 0,

It should be noted in passing that the impulsive forece on nor-

mal coordinate Uy is, from (II-23):
Fy = Z A By o | (TI-34)

Hence, using (II-33),

Fy =ZZA1:I(3"’K) Hj .  (11-35)
g i

Since the system is bilateral, Aij = Aj 40 and we can :Lnterchéng_e:
dummy indices to give

P, = Z Z H Aij(ij) (11-36)
J 1
which is in accord with (II-28),

D, The Degenerate Case of Equal Roots

If a passive, conservetive system happens to have ﬁwo equal
roots jmy in its system equation, &(s) = 0, then it is clear from
physical considerations that solutions of the type (Ki-f— Kz'b)eijt
cannot exist for sudh a system, Instead, one has actually two
arbitrary choices of amplitude coefficients for the oscillations of

frequency wr o
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It has been shown by Routh (Ref, 16, Ch, 6), that for a con-
servative, passive system it is both necessary and suffiecient
that all first minors & 3 (ij) vanish, in order that two equal
roots ;]mK can exist, For three equal roots, all second minors
mist vanish, and so on, Thus, for a singly degenerate system,
the ratio AjK/AhK given by (II-32) becomes indeterminate. However,
suppose we assume that &,y = 0, Then wy is still a root of the
equation All(s) = 0, which is the system one would obtain by

constraint of coordinate Qye Taking second minors,

Aggy  Puaag () L=
by, Al T THRT 0

(11.37)

Let the mode defined by (II-37) be designated mode Kl' Then
there exists é second mode K2 at frequency g vhich is independent
- of, and orthogonal to, mode K;4 To determine Kz, let some other
coordinate, say ZBK’ be constrained to zero, Then A33(s) = 0 has
& root ij and a set of amplitudes given by

3. A, (im,)

The mode shape defined by (II-38) provides an additional
solution with arbitrary constants of integration, and the pair of
solutions (IT-37) and (II-38) constitute a complete solution of
the system as far as frequency oy is concerned, In general, mode
K, defined by (II-38), is not orthogonal to mode Ky, but rather is
Kz’ set

5K = Asz + ﬁAjKl o Then, using the orthogonality relation,

a linear combination of Kl snd KZ' To determine A 3

A
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szij 1Ky '”“*j ) =8 MK
1 3 !

Thereforé,
;3 = Ei gj my s A Ao - (T1-39)

and
A =A =P A II-40

Obviously, the modes Kl and 1{2 defined above do not constitute
a unique orthogonal pair, but any other valid orthogonal pair ean
be. formed by linear combinations of the AjKl and Asz N

Good physical examples of simply degenerate systems are
spherical pendulums, sguare drumheads, and other systems with

identical symmetry in two dimensions. 1In these cases, the

orthogonality of the degenerate modes is geometrical as well as

algebraic,
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ITI, EXTENSION OF NORMAL MODE CONCEPIS TO
NON~CONSERVATIVE SYSTEMS

A, Some Contributions of Rayleigh

(1) The Rayleigh Dissipation Function '
Let viscous friction forces be introduced into an otherwise

conservative system of n degrees of freedom, so as to retard

the absolute motion of coordinates q and their motion with

respect to one another, The total viscous friction force exerted

on qi can be expressed as

fp=-) Byyd; . (111-1)
3 ‘

The total work per unit time done on the system by these forces

is8
_ . . - . . o
=) T == ) LERE T (T11-2)
i i 3
Therefore,
JdP_ =
..C{_ = Z 4398, ==28p . (111-3)
i i

By definition, the Rayleigh dissipation funetion is one half the

rate of energy dissipation,

pal | _
Consequently,
OF
i¥ (5ai
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Moving the frictional forees to the left, and designating the
remaining applied non~conservative forces as f’i, Lagrangels

equation becomes

.@.9.2) 9T , 2¥, 2% -5 (I11-6)
d{«;_(aai dq, aqi aqi i ;

(2) Rayleigh Treatment of Small Dissipation Forces

The dissipation function, F, is & positive definite quadratic
form, as are T and V, Assume now that in a system with visecous
damping, T and V are reduced to sums of squares by a trans{fomation
to the normael coordinates of the undamped system, In general, F
will not simulisneously reduce to sums of squares under this same
coordinate transformation, and the resulting three functions will

take the form
FONRE
T2 Mg Uy
K
=2 Z (ITI-7)
K .

Z - BKI.UKUL i

Substitution into Lagrange's Equation (I1I-6) now gives

Nl

mn—r

MU+ ) B U +K Ug=Fp - (111-8)

Often the damping coefficients BKL will be so small that they
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can be assumed to induce only minor perturbstions intc the systen
behavior, Under these circumstances, assume that mode X of the
undanped a;*‘tem stil). deseribes the vrincipal mode of free vibration

of the damped system, To a {first order approximation, then,

(M p° + By p + Kg) U, =0 (111-9)

vhich gives a damped oscilletion
. -C'.K‘b th"'jﬂ{K
g =u e cos (Eyt + ﬂfK) =lu. e (IT1-10)
RePs

B '
kK - J 2 2
2 Br={ g ~o ZFop.

The response of any other mode Ug, § # K, will be induced primarily

.h = . : + : -_
where FK ay + ﬁK and O =

by the coupling force, BggUp, such that, neglecting second order

$<
effects, and assuming variation as e ’

(Mg P° + Kg) U + Jog Brg U S0 (IT1-11)

Takirig only the partiecular solution for Ugy we obtain,

Ua ~ 3
Us = Jox Bgg (I13-12)

Thus, in the presence of free vibration in one dominant mode, a
lightly demped system exhibils an accompanying response of all other
coupled modes, these vibrating at the frequency of mode K, but with
approximately 90° phase shift,

Rayleigh continues this line of ressoning to get a second order

approximation to the response of the doninant mode,
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(3) Rayleigh Treatment of Uniform Damping

Let us introduce the type of damping which will be designated
- henceforth in this work as uniform damping, by a direct quotation
from "Theory of Sound" (Ref. 1, Ch. 5, p. 130):

WThere is, however, a not unimportant class of
cases in which the reduction of all three func-
tions may be effected; and the theory then
assumes an exceptional simplicity, Under this
head the most importent are probably those when
F is of the same formas T or V, The first case
occurs frequently, in books at any rate, when
the motion of each part of the system is re-
sisted by a retarding force, proportiocnal both
to the mass and veloclty of the part, The same
excepbional reduction is posgible when F is a '
linear function of T and V, or when T is itself
of the same form as V, In any of these cases
the equations of motion are of the same form as
for a system of one degree of freedom, and the
theory possesses certain peculiarities which
make it worthy of separate consideration,"

Clearly, a sufficient condition that the various modes of oscillation

- remain totally uncoupled in a vibrating system is that

biJ = Cpy my s + r:k kij | (I11-13)

where G and Gk are constants for all i, j, The transformation

to normal coordinates then results in n separate equations of the

form

My Uy + BK UK TR Uy = FK . (113-14)
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Be The Meaning of "lNormal Mode" and YNormal Coordinate" for
a Non-Conservative System

Consider now any system where T, V, and F are given in terms
of generalized coordinates by equations (II-4), (II-5), and (III-%4),
respectively, Substitution into Lagranget!s equation (IIIgé), gives

the following system equations, expressed in p operator notation:

_au(p) 857(D) eee anl(p)_ -ql- -flﬂ

al?,(p) azz(p) ese anz(P) qz = fz

. . . . ] (111-15)
_aln(p) 85n(P) eee am(p) | % £,

where aij(P) = (mij p + bij p+ k ) .
The possible free vibrations for the damped system are Ob=
- tained by setting the fongs f; to zero, and assuming solutions

with a time variation e s resulting in

[aij ( rk)] [55] = [:6J C (111-16)

where &j represents a complex quantity whose real part is qj. For
existence of non~trivial solutions, the determinant of the matrix
aij Fk) must vanish, resulting in an algebraic equation in Fk
of order 2n, This equation has real coefficients and represents a
passive system; hence, it can have only negative reai roots, or

complex conjugate roots in the left half of the complex plane. In
the remainder of the discussion it will be assumed that the system

is primarily an oscillatory one, and that all roots will occur in
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conplex conjugate pairs, This is simply a matter of convenience
in dealing directly with the systems of greatest interest; it will
not necessarily restrict all the results to such systenms,

Let the roots of the system equation be designated as

= - +
M o JﬁK

(111-17)
%
[ = cg -
K ag = I By
Solutions of (IJI-16) ean be expressed as
n _a?-b
-_-.-ZGZ ehcoa(5t+ﬂx+9 )  (111-18)
% sk UK K K -
K=1

where Uy and F“K are arbitrary constants of integration, GjK is a
relative ampiitude factor (real), and 8 3K is & relative phase factor,

. The letter two can be combined as

je
Co. o K
DjK = GjK e (111-19)
where DjK is now a complex relative amplitude factor, Solutions

(I77-18) can be expressed in a more compact form:
Z r’Kt+g;dK
= 1 D
% - x| €

Substitution of the solution into (III1-16) shows that if the

(I1T-20)
R.P.

system equations are to be satisfied for all values of time, it is

necessary that

(o5 €T [oy] = [0] (K =1, vee n) o (ITI-21)
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The complex amplitude ratios, DjK’ correspond here to the real
amplitude ratios, AjK’ for the undamped system,

If a set of impulsive foreing functions, Hy 6(t), are assumed
to be applied to the damped system, a Laplace transform analysis

similar to that in Part II-C gives a set of solutions

, gt
45 T) e |
qj(t) = E;Zj:ui jBKé ( - | (I11=22)
R.P,
where
i .é(f}<>=( L .
(s - f’K)(s - %)
s = K

Here we observe that the cofactor Ai j( I"K) pleys the same role for
the damped system as Aij(j‘*’x) for the conservative system, By
argumente similar to those in Part IXI-C, the ratio of complex

- amplitude factors must be

Dyx Aij(rx) (for any row 1 and any ( )
= mode K), : TIT-2
Dx  Aqn(Ty) ) | ?
The normalizing condition can be chosen so that the DjK are defined
explicitly:
Dy = ) Ay,(%) (TTT-24)
i

We have now reached a point where it is possible to give =
logical definition to the phrase, “normal mode of a damped system",
The normal modes of a conservative system are simply the solutions
of the homogeneous system equations. They are specified by a set

of conjugate imaginary roots of the system characteristic equation,
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and by a set of real smplitude factors, Ajyxe 4s demping is added,
the conjugate roots move into the left half complex plane, and
~ the esmplitude ratios become complex quantities, DjK' We wish to
define normal modes in such a way that they (1) give a complete
description of any possible free motion of the system, and (2)°
retain their identity when damping is added to or removed from the
system, Consequently, it is guite naturzl to propose the following
Definition: The normal modes of an oscillatory noneconservative
system will be taken to be the solutions of the homogeneous
system equations, A normal mode will be completely specified
by an eigenvalue, F’K, of the characteristic equation, and a set
of complex relative amplitudes, DjK'*
Such a definition, in itself, reveals nothing new, It simply re-
flects a point of view which will be worthwhile only insofar as it
‘permits clearer expression and better understanding with respect
to the behavior of the damped system,

The question now arises whether or not a useful set of
generalized coordinates can be formed which will correspond to the
normal coordinates of the conservative system, We know, in advance,
that no choice of coordinates can reduce T, V, and F simultsneously
to sums.of squares, in general, except in the case of uniform
damping as discussed in (iII-C). However, we also know that in free
vibration the system is capable of independent response in any of

the normal modes defined above, because these modes represent

# The term "normal mode" for an oscillatory damped system hasg been
used by Guillemin in this sense (Ref. 17; Ref. 18, Ch, VII},
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independent solutions of the system homogeneous equations., Each
normal coordinate should describe one of these modes of free
motion, and, in addition, should transform readily intoc the set of
generalized coordinates qj.

One possibility which suggests itself is to let the normal
coordinates Uy be defined by the real part of a complex displace-
ment, 'I}'K. During free vibration of the system,

o g

These complex normal coordinates can then be relsted to the

complex generalized coordinstes by the transformation:
Gy= ) Dy (111-26)

&t this point, a fundemental difficulty srises, in that the
trensformation (I1I-26) does not, in general, transform T and V into
sums of squares, Thus, the normal modes of our damped system are
not orthogonal, As an example of the difficulty let us attempt to
relate total system kinetic energy in the two sets of coordinates,

The instantaneous total kinetic energy is
T=5 Z Z qi q;j .

Sinee d/dt [R.P.(z)] = R.,P. [dz/at] , we can substitute from (IIT-26):

=3 (T, (B, )
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The anplitude factors DiK and DjL’ being complex, cannot be separated
from the normel coordinates in the above expression, because the real
pert of a product does not equal the product of real parts., There is
at least one exception, that of uniform damping, for which the

amplitude factors D;y have the real values Ajge For this case,

these quantities factor out of the brackets, and the orthogonality
relation, together with the value of Mg, cen be obtalned as vas
done in (I¥-B) for a conservative system,

Desplte the difficulty in relating T, V, and F to the complex
normal coordinates, the transformation defined by (IIT-26) does
. possess some useful properties for the general case, For one thing,
the matrix [DjK] can nomelly be inverted to give a unique set of
ﬁk for a given set of ﬁj. We can also demonstrate at least a for=
mal correSpohdence with some of the force relationships for con-
- servative systens,

For example, (III-22) shows that a set of impulses, Hy 5(t),
will fail to excite mode K of the demped system, initially at rest,
only if

Z;Hi By (M) =0 Gt (IT1-27)

Summation on j, substitution of éﬁi for Aij’ and use of (III~24)

changes this condition to the form

Z Dy Hy =0 . (II1-28)
1

This summation represents & generalized impulsive force on normal

coordinate K, and corresponds to (II-28) for the conservative system,
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Since the DiK are complex, (III-28) is equivalent to two real
equations, Thus, in general it would require impulses at two
points in the systen to eliminate the real part of the sum, and &

set of three impulses to suppress mode K completely.

Ce The Effects of Small Damping Upon Normal Modes

Suppose we start with a conservative system of many degrees
of freedom, Let viscous damping be added to this system, in such
a manner that no new degrees of freedom are created, Assuming that
the damping coefficients are small, we wish to examine the following
system properties:

Displacement of the system eigenvalues into the left half
of the complex plane,

Variation in amplitude factors IDsx| »
Variation in phase of DiK/DjK .
Behavior of the orthogonality equations,
The ternm "small damping® must first be explained. From (III-22),
the motion of any coordinate of the system, following a set of initial

impulses Hy, can be expressed as
‘ rt

K
A (K)e
0-3
K Z 38 & (I

C [ J
This response depends upon evaluation of terms from the system.
determinant, A(s), at the various values of [y« Therefore, at
present we will consider the damping coefficlents, bij’ to be

| tgmall¥® for a mode XK if

Ky s .
{bij} << ‘T"iiqc and  |byy[<< |myy Myl o (T11-29)
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We will assume that, on the aversge, the ratio

|33

is of order of magnitude € , For i = j this ratio has a simple

physical significance., With all coordinates constrained exceﬁt U9
the system represents a one degree of freedon spring, mass, dashpot
combination, Then 1/bii is a measure of the displacement response

-1/2

to a unit force impulse on the dashpot alone, Similarly, }miikii]
is the maximum displacement of the spring-mass combination alone in
response to a unit impulse,
(1) Displacement of System Zigenvalues
Iet & (s) be the determinant of the matrix )_'a (s)] for the
original conservative system, and let Al(s) be the same determinant
~after the demping terms have been added, Then the former is com-
posed of products of terms (m. .32 + klj)’ while the latter is
composed of products of terms (ml & + by 38 + k, j). .
Theorem 1., If any of the eigenvalues change their absolute
magnitude, then some must increase while others decrease, the
product of all remaining constant,
This is easily seen to be true, because the constant term in
A(8) = 0, which is ecual to the product of all the roots, depends
only upon the kij' This theorem holds regardless of .the amount
of damping,
Now, Rayleigh's treatment of small dissipation forces, which

is reviewsed in (III-B—), shows that to a first order approximation
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sach mode of the gystem behaves essentially like & one degres of
fresdom oseillator when damping is introduced, Tt is well known
- that for the latter, the rool locus is a circular arc, centered
at the origin. Thus we have
Theorem 2, As damping is introduced, all of the elgenvalues.
mist depart from the imaginary axis perpendicularly ag they
move into the left half plane, They move, on the average,
along circﬁlar arcs centersed at the origin, Thus, the bes;h

approximation to ay 18 |y |

jw jw

Pigure 1, locus of Displacement of System Elgenvalues
Upon Introduction of Damping, (a) for a One Degree of
Freedom System, (b) for a Many Degree of Freedom Systew,

This same result was derived by Routh (Ref. 16, Ch, 7), who
reasons sonewhat as follows: Clearly Ab(s) can contain only even
powers of s, If the damping terms are added, and terms of second

order and higher in € neglected, then

& (s) £ 8y(s) + 8 Z Z o1 Loy 8 (I11-30)

where the first term on the right now contains only even povers
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of 8, and the second term only odd powers of s, Let the roots of
Al(s) = 0 be of the forn F’K = ja)K + Py, where jor is the corres-
ponding root of Ao(s) =0, and Py is a small deviation of undeter-
mined magnitude and phase, Using & Taylor's series expansion for an

analytic function,
P 2
By + P) = B () + Py &' () + 55 A (o) + oo

- 1 © »
=0 + pK A o ( jmK) + higher order terms in PK¢

Thus, letting s = /’K in (III-30),

020 At () + (G +0p) ) Y by By (1)
r 1

Dropping second order terms in Py and € ,

02 P &' (o) + Jooy D 21: by 85 (kog)e  (TII-31)
r

Since A' o(j‘”K) is pure imaginary, and the second term is likewise
pure imaginary, it follows that Py must be real, thus proving
Theorem 2, Note that Py = =Qy; hence the "smallness" | of Py is
proportional to ay/og e

In 1928, Guillemin (Ref. 19) used this method to obtain the
same result for an electrical system treated on a mesh basis, He
went into greater detail than Routh, and presented a number of
additional results, By considering the Taylorts series expansion
of & Joye + pK) and the binomial expansion of (jcoK + &'11{)2n Guillemin

obtains as conditions for smsll dampings

by 4] v |
34l << 1 (111-32)
0w

K
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and
2n = 1 G.K
— K< 1, (111-33)
2 ®x

These relations are undoubtedly rigorous and general, and they are
presumbly the proper ones to use for extreme cases of non-uniform
damping, such as might be produced by inserting one or two strong
damping elements into a large system, The author feels that they
are too strong for systems where the damping has any significant
degree of uniformity, For example, (ITI-32) is dimensionally
incorrect and fails to account for the vast variation which may be
found between the largest by and the smallest bij in a coﬁplex
system, Using (III~33), small damping becomes practically impossible
for a large degree of fresdom system*, and, in the limit, for a
continuous system,

For uniformly demped systems, condition (III-29) reduces to
| bij | | O Ty * G Ky |

Vimgy kg5l Y Imgg kig

while

ay Cm Mg + Gy KK ( Gy )
— = oom | —— .
g ZMKCBK 2\axg ckwK

Esch mode of such & system behaves as a single degree of freedom

oscillator; consequently the eigenvalues move preoisély along

& For a 100 degree of freedom finite difference representation of
an airframe, and an accuracy of 4/, this would require a per-
unit eritical damping of ,002, a "Q# of 250, or an equivalent
structural damping W"g" factor of ,004.
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eircular arcs, For a single degree of freedom oscillator,

~k_ 20
e

Therefore, the following theorem is proposed:

Theorem 3, In approximating an undamped normal mode from &
pure damped mode of a freely vibrating system, the order of
magnitude of the terms € and § whose squares are neglected

will be taken aé

I bi 3 ' . 2GK

’ c-g—-::G
Vimgg kygl :

for systems where the damping is highly uniform, and as

1l
m

Pyl oo, 21X _,
o 2 ox

for systems where the damping is highly non-uniform,
4 messure of the non-uniformity of damping will be discussed later,
(2) Variation of implitude Factors |Dj|
We can extend the technigue used by Routh to investigate the
bghavior of the amplitude factors of a normal mode, From (IT-33) and

(ITI-24),
Ay =) Bopglieds  Dyg= 3 & (M) . (111-34)
r r '

Expanding Alri( I"K) exactly as Al( F’K) was expanded above, neglecting

second order terms in € and Py, and finally swuning on r, we obtain,

Dyg = Ay + 0, ) A" (o)
ik = 43k * Py Z orild®y (1T1-35)

r
L PIpE Z;; By Soring (Jog) -
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where Aorimj designates cofactor mj of cofactor ri, The second and
third terms on the right are pure imsginary and are of first order
in Py and € , thus establishing

Theorem 4. For small damping of order € , 0 the variation

in the real part of the amplitude factors Dsy is of second

order in € and §, The imaginary parts of the DiK are of

first order in € and §,
The theorem shows that large variations in the undamped AiK are not
to be expected except near node points of mode K, where the AiK
are small, Even near node points, the variations are minor when
compared with the larger displacements of the mode. Thus; it is
possible to state & slightly different theorem: |

Theorem 5, For small demping of order € , 6 the variation of
| Dig|
105k
second order in € and §, provided neither q4 nor a4 is near

the ratios of magnitudes of amplitude factors, y 18 of
a node point of mode XK,
(3) Variation in Phase of DiK/DjK
From (III-35) and Theorem 4, it is clear that the phase shift
‘from A;g to Dyx is of first order in € and 0, provided 4,y is not
near a node point, Hence, we can state
Theorem 6, The relative phase angle of the ratio (D:U(/DjK) will
be of first order in € and §, provided neither qq hor q j is near
a node of mode K, In the vicinity of a node point, large phase

shifts rriay be produced by small damping,
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(4) Behavior of Orthogonality Equations
Using results of (2) let us represent Djx for small demping
as

Dig = Dax * J Dix

where D,y is of order € , 6 and'ﬁiK g‘AiK’ neglecting second arder
terms, Consider the effect of introduction of damping upon the

orthogonality relations (IT1-19) and (II-21),

)—i: Zj: mys Dyg Dyp, = 2; Zj Mgy [ (Dyx Dyp, = Dyx Byr)

+ 3 (Ogg Dyy, + Dig 531)] .

The first term vanishes by (II-19), and the second term is of
second order in € , 6 , Hence,
[; ij ms s Dix DjL]R,P, = Teegfsﬁgf order (111-36)
(X # L)
From Theorem 5, it ean be seen thal another possiﬁility is

the nse of the expression
n D D
21:%: 15 1Psxl [Pyl

as a substitute or (II-19), This is the more accurate expression

for the large values of |Dyx| , but less accurate for the small
,DiKl‘ This sgcond exmression gives justification to the practical
expedient of taking the "real part" in (IIT=36) with respect to a
reference phase axis which is en average phase position of the larger

amplitude factors Dsr. While this is not truly the resl axis, the
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resulting expression will in reality be more accurate than (III-36)
if the damping is to any extent uniform, for in this case the roots
move approximately along circular arecs., Thus we have

Theorem 7, For small damping,

s (K
5 oy T & { 0, (KAL)
i 3 . MK’ (K = L)

where I—JiK is ‘the component of DiK taken along a reference phase
vhich is an average phase angle for the larger values of Dixe
A similar theorem could, of course, be stated involving the

k

15° Note, however, that for non-uniform damping

};:Xjfbij‘ﬁm'njL;éo , KAL) .

In fact, this quantity will be used subsequently as one measure of
the non-uniformity of the damping,.
| These results can be summarized as a final theorem.
Theorem 8, If a pure mode can be excited in a system with small,
arbitrary damping, then the corresponding normal modé of the
undamped system can be described accurately by teking the

average in phase components B:I.K’ and teking flﬁ{ = 'F K" '
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IV, NORMAL MODE AKALOGS COF LUMPED PARAMETER
ELECTRICAL AND MECHANTICAL SYSTEMS

A, TNormal Mode Analogs of Conservative Systems

The existence of analogous electrical snd mechanical systems,
resulting from the identical form of the differential equations
which deseribe the behavior of the systems, is long established
and well known, The electrical circuit equations can be set up
in terms of the energy expressions T, V, and F as are the Lagran-
gian.equations, on either a mesh basis or a node basis (Ref, 20,

Ch, 6). The far grester flexibility of analogous electrical systems
has led to an increasing use of the electric analog technique, This
has been particularly true in the study of stress and vibratioﬁ of
complex elastic structures, for which practical finite difference
‘electric analogs have been developed (Refs, 9, 21). It is this

type of system with which we are primarily concerned. '

In general, the nodal electric analog has been found to be
more convenient than the mesh analog for studies of mechanical and
elastic systems. Hence, we will concentrate attention on the nodal
analog, In this analog, the corresponding electrical and mechanical
quantities are current - force; voltage - velocity; capacitance -
mass; inductance - spring compliance; conductance - demping coeffi-
cient; and ideal transformer - lever (Ref. 9).

The true dynemic analog of & conservative mechanical system must,
of course, be a purely reactive electrical gystem of the same degree
of freedom, Once this reactive circuit has been obtained, in any form,

then as far as measurements made between any two terminals of the
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network are concerned, it can be replaced by either of Foster's
canonic forms (Ref., 22), Either of Foster's canonic forms can be
considered as normal mode analogs of the original electrical or
mechanical system, the second form being the proper one to use in
the nodal analogy. Each parallel resonant tank circuit of Figure
2(b) represents a normal mode of the parent system, If one of the
terminals is chosen as a ground terminal (mechanically, the absolute
reference frame), then the voltage across each tank circuit wili
represent the corresponding normal coordinate of velocity, AiKﬁK,
and the terminal voltage, by (II-14), is the generalized physical

coordinate q4 of the parent system,

a3

3
é = - MmNV -

(a) (b)

Figure 2, (&) Foster's First Canonic Form
(b) Foster's Second Caznoniec Form

By the use of ideal transformers, it is possible to extend the
usefulness of the normal mode analog represented by Foster'!s second
canonic form, Iet the various tank circuits be isolated conductively
from one another as shown in Figure 3, such that the reflected
impedance of each tank 1s unchanged when viewed from Qg The
transformer turns ratios are arbitrary, but a convenient choice is

AiKzl. To maintain the seme operational impedance, teke A;KLK = Ix



40

and A;KQK = Ok, thereby keeping the normal mode frequency constant,

The voltage‘across the_isolated tank K is now UK:t If a single

generalized force, fi, is applied to generzlized coordinate q,, this

i’
is represented by injecting a current, Ii = fi’ at Ay The current

injected into tank K, then, is f3/Asx = F,. Note that this is not

K.
the circulating current in tenk K, The circulating currents deter-
mine the energy stored in the inductors of each mode, which is

analogous to strain energy, Thus,
L ]

*

A3 dy
= 2
- V=3 ZI: KUk
] ‘
Aﬂ ' G 1 2
. == T
r 1 ] 1 I 5 ZK Ltx
fi Fy = % 2. ({L—)U,..-2
A, H _L K K E
iz Y
2
1l Hence, CK = HK and
‘ 1
[ 1 R/
(I;C) . ‘{Ko
S Ty
Sy Ely Ay H . T el
() (b)
Figure 3, Isolation of tank elrcuits in Foster!s

eircuit (a) by use of ideal transformers (b),

¥ In actual physical analogs there will usually be only & propor-
tionality, rether than an equality, between analogous electrical
and mechanical quantities, This proportionslity mey change
within the system due t¢ impedance base changes, We will
ignore these scale changes in the anelytical work and assume
direct equality, Henceforth, electrical symbols and their
analogous mechanical symbols will be used interchangably, since
it is felt that use of mechanical symbols on electrical diegrems
lesds to a betiter ¥physical picture" of the correspondence,



4l

Clearly, the choice of coordinate ay in Figure 3(b) is arbitrary,
and if coordinate qj were brought out instead, then the only change
would be in the transformer turns ratios., Hence, we can meke avail-
able any number of generalized coordinates by simply adding a new
set of transformers for each one, If a complete set of n independént
generalized coordinates is thus created, then any set of applied
currents, fj, will induce the correct generalized currents, FK’
into the various tank circuits., In fact, it can be showﬁ, by
considering each set of transformers es a constraint upon the system,
that whenever new coordinates are created in any electric analog by
use of ideal transformers, the resulting forces will automatically

be correct, (Ref, 23.)

nd |

Figure 4. Complete Normal Mode Anelog of Two Degree
of Freedom System, with Generalized Coordinates
Brought Out,
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The complete normal mode analog as shown in Figure 4 requires
nz transformers for an n degree of freedom system, This nmumber can
be reduced to n(n-l) by using the original Foster circuit for one
genere_tlized‘ coordinate, Since all primary windings shunting a
given tank are identical, all of their cores carry identical mag- |
netic fluxes, Consequently, only one core need be retained, énd if
suitable multi-winding transformers are available, only n of these
are reguired, For completely free systems with zero freéuehcy modes,
some "tanks" will degenerste to simple capacitors,

Normal mod'e analogs of this type have been used in the psst on
the Analysis Laboratory analog computer for representing a few of
the more important modes of a substructure attached to a main
structure at a few points, Only the coordinates necessary for
attachment are brought out, 4ll modes above the frequency range of
~ interest are approximated by omitting the capacitors and lumping
the remaining inductors into a single inductor, Similarly; if
there are modes below the frequency range of interest they can be

approximated by & single capacitor, Thus the number of transformers
required is kept to a minimum,
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Be Normsl Mode Analogs for Uniformly Demped Systems

Suppose now that our n degree of freedom system has viscous
damping introduced between existing coordinates, such that the
dampiﬁg throughout the system is uniform in the sense mentioned
by Rayleigh, which wes discussed in (III-C). Such a system is‘

completely defined by its energy functions:
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where
bij=cmmij+ckkij . (1v-2)

Using the same real coordinate trensformation which produced nor-

mal coordinates in the corresponding conservative system,

a; = ). A U (v-3)
K .
we obtain sums of squares for T, V, and F, and the resulting

uncoupled equations

T, + Byl + KOy = Fy (IV-4)
where

By = Onig + Gy o (Tv-5)
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The solution for each normal coordinate during free oscillation is

FKt :
Uy = [ e :l (IV=6)

R.P.

now

where | 'BK
- * g % —— 2 2
In the direct electric analog of such a system, the damping
appears as a conductance element shunting each inductor and/or

each capacitor, We will hereafter designate this particular type

of damping as uniform shunt damping.

r—_--—-——"-__'—-_--l
K, 28, ——,! é é é
YR T ' 13. YA21 %31 s

!
!
{
| PR DN IR I gt Wi i

5 AN

éE NP T

E T 3 _é"}f*_é‘_‘zz B
ST T

35 N

Figure 5. Complete Normal Mode &nalog for Four Degrees
of Freedom and Uniform Shunt Damping. Mode 1 is =
Yzero frequency' mode,



L5

The above relations can be reproduced exactly in the normal
mode analogs of Figure 3 or Figure 4, by shunting each capacitance
Mg by a ponductance CyMyg, and shunting each inverse inductance KK
by a conductance CkKK. Combining the two parellel conductances
gives a net conductance Gx = By shunting each tank K, The result-
ing normal mode analog is Eﬁ‘f‘.’ being described by a set of équa-
tions identical with those of the system it replaces,

Figure 5 has been shown with multi-winding transformers, which
results in a more compact circuit diagram for a large degree of
freedom systenm,

Ce DNormal Mode Analogs for Non-Uniformly Damped Systems

Suppose now th_at the damping coefficients bij depart from the
condition of uniformity defined by (IV-2), and we wish to further
modify the basiec analogs of Figure 3 and Figure 4 to account for
~ this noneuniform damping,

The type of damping that we are considering must be introduced,
electrically, as shunt conductances between established nodes of
the undamped circuit, the reference (ground) node :anlﬁded. These
nodes are preserved in the complete analog (Figs. 4, 5). Thus,
we can approach the problem by adding the indi\fidual bi_ j _coh-
dﬁctances directly to the undamped normal mode analog, Figure 6

shows such an analog for a three degree of freedom s-:ystem.."t

& It should be noted at this point that the mechanical system may
have positive mass coupling coefficients, m;s. 4s 2 result,
both the direct electric analog and the normal mode analog pro-
posed above may have negative coupling condensers and, conse-
quently, negative coupling conductances. These "unrealizable!
circuit elements can often be eliminnted from the analog by
proper choice of scale factors (Ref. 23). In any event, they
can be simulated by using feedback amplifiers (Ref. 24). For
purposes of analysis, the signs of the coupling terms are
immateriel,
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The analog of Figure 6, as it stands, provides us with a
vehicle for the study of damped systems which will lead to a num-
ber of significant facts. Before going into these applications,
however, let us investigate whether there are other fsrms of the
analog which may be equally valuable,

Clearly, all of the damping elements in Figure 6 cannot be
brought into the normsl mode tanks as was done in Figure 5, because
this would result in decoupling the normal modes from oné anothér,
violating a well established property of non-uniformly damped
systems, However, a possibility which suggests itself is that of
bringing a portion of the damping inside the tanks leavihg the
remainder external to them, There are at least two ways in which
this can be accomplished:

(1) Let b.j consist of two parts, one a uniform part and the
other a non-uniform part, The uniform part of bij czn then be
brought into the tank circuits directly, leaving only the
residual, non-uniform damping to couple the external terminals
The uniform damping should be fixed in form and level such that
the residual, non-uniform terms are small, on the average.

(2) Use the real coordinate transformation (IV-3) on the le,
thus obtaining a set of By which can be brought inside the
transformers, FProper intercomnection of the normal coordinates
will then result in an exact analog,

Consider methed (1) first, We can express esch damping co-
efficient as

bys=C 3 4 Gkkij + 855 (Iv-")

where €33 is the resld ual term, its value being arbitrary, Note that
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g 13 may be either positive or nogative now for any i, je. The
first two terms can be brought directly into the tank circuits
in the form of shunt conductances (IV-5),

By = Cphy + Cy K &
The residual temms, &340 remain to couple the external coordiﬁates,
q 3 It is obviously to our advantege to make a choice of Gm and
Gk such that the gy4 are small, on the average, The equivalent
circuit in this second form is shown in Figure 7,
Now econsider the second approach, The normal coordin_ates mst

satisfy the relations previously considered in (III-B); namely,
MKUK"'Z By Up + K Up = Fy (IV-8)
L

where

By = Z Z by Ay Ay (TV-9)
i ]

and where no one mode is now considered dominant, so that all n
equations of type (IV-8) are to be satisfied sinmltaneéusly, in
contrast with the treatment in (IIT-B).

Ignoring the external coordinates and transformers for the
moﬁent, equations (IV~8) can be satisfied by grounding one side of
each normal mode tank in Figure 4, and considering I.IK as the voltage
to ground from the free terminal, Coordinates UK aré then coupled
directly by the BK]'..‘ Replacing the transformers and external co-

ordinates, we obtain the complete analog, Figure 8,
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V. EXTENSIONS OF THE CONCEPT OF UNIFORM DAMPING

A, Uniform Shunt Demping

This is the type of uniform damping which has already been
mentioned in some detail, The excerpt from #Theory of Sound"
quoted in (III-C) indicates that the behavior of a complex system
with uniform shunt daméing wag well understood in Rayleights time,
A survey of more recent literature leaves the impression that this
phenomenon is not so well known today, Throughout the literature,
scattered references are found to "special cases" of damping where
the mode shapes are unaltered, A4 few refer to Raylelgh's wbrk;
others are derived as special cases in studles of particular
system types, Practically all of the latter involve the dampihg -
mass relationship, (See,'for.example, Refs, 25, 26, 27). The
significance and usefulness of the damping - stiffness relation
.appears to have been largely overlooked,

Even Rayleigh places heavy emphasis upon the damping mass
relation, which he says %occurs frequently, in books at any rate',
There are, of course, some practical problems where a constant
proportionality between bij and mij does exist, or can‘be approxi-
mated, An example is that of a beam vibrating in a viscous medium,
where distributions of mass and damping reaction are approximately
proportional (Ref. 27).

The writer feels that the bij - kij relationship is actually
of greater significance., It applies, at least to good approximation,
to many continuous elastic structures, lumped parameter mechanical
systems, electric circuits with parasitic deamping, and contintuous



50

electrical systems, Perhaps this has not been recognized more
generally because the cases of paramount interest involve elastic
- hysteresis, or parasitic damping in electrical inductors, raf,her
than shunt viscous damping., The relations between these various
forms of uniform damping will now be considereds
The analysis of uniform shunt damping was partially carriéd
jout in (ITII-C) and (IV-B), To complete the analysis, it should be
noted that the transformation to normal coordinates is a feai co-
ordinate transformation, Consequently, in (III-23), as the damping
becomes uniform, the ratio of cofactors must become real:
Dk _Agy(lg) A
Bx Mn(lMg)  Anx

Since (V-1) holds for any row i, this implies that all cofactors

. (V-l)

of A( FK) have a common phase angle for uniform damping; i.e.,
_QjK—v QK. Since we are interested only in relative amplitudes, this
phase angle can be ignored, The amplitude factors DjK are computed
for a simple system with Cy = G, = 1/2, in (VIII-4),

From (IV-56) it is clear that the eigenvalues, [k, move along
circular arcs as damping is added uniformly, For damping propor-
fiqnal to mass, By = C, Mgy hence,

GK = - -El-n - (V—.?.)

For damping proportional to spring stiffness, By = Cy Kxs hence,

aK=-Ck2—%=-;_k_mK2 . (V-3)



51

For the mass damping, then, the absolute decay rate is identical
for all modes; for spring damping, the decay rate incresses

s rapidly with frequency, These properties are illustrated in
Figure 11 e,b, |

B, Structural Damping

The literature on this subject is copious, and not always in
agreement, In 1912, Hopkinson and Williems (Ref. 28) measured the
energy loss per cycle in a vibrating steel rod and found it to be
essentially independent of frequency; i.e., an elastic hysteresis
effect, Two years later Rowett (Ref, 29) made more sensitive
measurements on thin steel tubing and found that the loss per
oycle varied as the cube of the stress amplitude, In 1926-2'7‘
Kimball and Lovell (Ref. 30) tested a variety of structural materials
~such as metals, woods, and plastics, using the "whip" induced in a
rotating shaft to evaluate the damping loss, The use of large
masses of material tended to reduce surface effects, and they found
a loss per cycle proportional to the square of the stréss amplitude,
and independeht of frequency except at very low frequencies, where
the loss increases. | |

| Designating the energy loss per cycle as &W = A fmyn where £
is frequency and y is vibration amplitude, later investigations
have shown (1) that A increases appreciably with temperature, (2)
that m is essentially zero, (3) that n is either 2 or 3 or some-
where between, at ordinary temperatures, and (4) thet in some
cases, particularly at high temperatures, n may go much higher,
to around 8 or 10, (Refs, 31, 32, 33, 34.)
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The nature of the structure is also an important factor. Kim-
ball points out that built-up steel structures may exhibit a much
higher damping than can be attributed to the internal stresses
alone, due to friction and impact damping at the joints (Ref, 32).
Coleman has measured the damping in various modes of solid and built-
up cantilever wing models, and he concludes that for a homogenéous
structure the damping coefficient is approximately the same in all
modes of vibration (Ref. 25). o

About 1940, a complex stiffness factor was introduced ﬁs a
means of accounting for the effects of linearized strain hysteresis
(Refs, 3, 35). The elements of the system matrix can be expressed
as: ‘

a15(p) = mp° + (1 + Jedk,y o (V-4)
By this means, the damping forces are considered to be directly
proportional to the spring forces, but 90 degrees out of ph_ase with
them, This complex Mg-factor" is now widely used in structural
analysis, Recently Myklestad (Ref. 36) has pointed out that a more

realistic linear representation is

2, Jg : ‘
aij(p) =myyp +e kij . v(V-5)

For the large class of vibration problems where amplitudes are
small and temperatures are moderate, (V-4) or (V-5) are probably
acourate representations of the system forces, The épproximations
involved concern nonlinear effects, and are clearly beyond the
scope of this work, Our present purpose is to investigate the
effects upon the normel modes of the system, when the damping

factor, g, is introduced.
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First consider the system equations,

[aij(P)] [qj] = [fi] (V-6)
| where the aij(P) are given by (V-4). Divide each row by (1 + jg),

alterihg both the 213 and the fi‘ Consider an individual term:

aij(P) L p2 ) ‘
A+ M (= e/ 4 =)

It is now clear that the homogeneous equations must be sétisfied

by a set of eigenvalues [y, where

2 ' _
b A (v-8)
1+ g
Consequently,
o= jowy1+je . (v=9)
K K

This expression defines a rather peculiar root locus in which 511
roots increase in absolute value, leaving the imaginary axis at right
angles and curving to become asymptotic to the radial line at an
angle of 135°% If Y 1+ jg = &+ Jb, then [ = -ty + Jooy;
hence, for a given g the roots lie along a radial line from the
origin, indicating a decay rate proportional to the damped fre-
quency, as they should, This behavior is shown in Figure lle.

If (1 + jg) is replaced by ejg, we get in place of (V-9),
jef2
l"k = jug e
ag = wg sin g/2 _ (V-10)

gK’-'-'(DKCOS g/2 .
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The roots now move in semicircular arcs, and continue to lie along
radiel lines, F:‘Lgure.lld.

The use of the factor e‘}g

corresponds to replacing the actual
hysteresis loop by an equivalent ellipse, It is clear, from com-
parison of Figures llc and 1lld, that the latter is the correct
linear approximation, as Myklestad has stated. FPhysically, the
substitution of ki 3 cos g for the spring stiffness impligs that the
springs become wesker as the dissipatioh increases, »

The analysis of (V-7) and (V-8) amounts to a complex frequency
transformation of the adwmittance matrix, This 1s a technique that
has been used extensively by Bode (Ref. 37). |

It is now clear that introduction of structursl demping simply
changes all the coefficients a'ij( I‘K) by a constant complex damping

factor, when (V-10) is combined with (V-5), Then (III-24) gives

j(n~l)g A
_ i
The constant phase shift drops out in the ratio, so that
D 4
- 1: S 5 G (Vv-12)

A better point of view is to replace (V-6) by

[(eﬂjg mijpz + kij)] [qj] = [e-jg fi] . (V-13)

Now for root K the matrix elements on the left are identical in

both the damped and undamped case; hence,

DJK = AjK ' (V-14)
and since all the normasl coordinate theory applies, we can modify

(I1-12) directly:



55

~3g -ig
e MUy +KUr=e  Fy (V-15)
&
where My, Uy, Ky and Fy are those of the undamped system,
The linear electrical analog of a spring with strain hysteresis
is a constant Q¥ inductor, Q being the quality factor; i.eey 2 7
times the ratio of maximum stored magnetic energy to total energy

loss per cycle, when the inductor is driven sinusoidelly, It is

1
tan g

easily demonstrated that the "(® of a spring is s OF

approximately & for small g (4ppendix B),
The frequeicy transformation of the admittances must apply

regardless of the size or form of the system, Therefore, it
applies to the individual tank circuits in the normal mode analog,
As a result, the normal mode enalog still represents the struéturally
demped system exactly, if equivalent structural damping is introduced
into the tank circuit inductors.

| We have thus shown that uniform linear structurel demping leaves
the normal modes completely uncoupled in free vibratioz;, even as
uniform shunt demping, Thus, in a large and importent class of

damped systems, "small damping" assumptions need not be resorted to,

# The Laplace transformed equation would be:

Je J

- 2 _ =8

(B MK s <+ KK) UK(S) =8 FK(S) -j g/2

hence, the complex frequency s is transformed to (e s)_in the
admittances, but not in the forces. '
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Ce Ignorable Coordinstes in Series Damped Systems

Up to this point all of the analysis has been based upon the
premise that we are dealing exclusively with dynamic mechanical
systems which have n degrees of freedom, either with or without
damping, or with the nodal electric analogs of such systems, 'ﬁe
now wish to consider the effects of series viscous damping; l.e.,
the parasitic series ohmic resistance present in the elements of an
experimental electric analog,

"Degree of freedom" is a well defined expression in mechanics,
being the nmumber of independent coordinates necessary to define
completely the state of the system, This concept is based upon the
implied choice of displacements as coordinates, Not so in eléc_:tri-
cal systems, where either currents or voltages are commonly viewed
as coordinates, Since the number of independent loops in a circuit
is. often different from the mumber of independent nodes, the term
"degree of freedom% has some ambiguity for electrical gystems. |

Since we are investigating normal modes, our primary interest
is in the roots and cofactors of the system determinant, A(p). In
considering these quantities, the following awxiliary theorem* will
be useful, |

let the homogeneous equations of motion of a linear, passive,

lumped perameter, electrical or mechanical system be expressed in

any suitable set of coordinates, Let theseeguations be differentiated

# This is an elaboration of some ideas communicated to the writer
by Prof, A, R. Teasdale, Jr, in a course on Servomechanisms:
&t The University of Texas, 1949, It is essentially the same
as an analysis given by Guillemin (Ref, 18, Ch. 5).
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(or integrated) until all integral operators (1/p®) have been
“removed, and all "factorable" differential operators (p®) have
been removed, Then ‘qhe expanded system determinent will give a

system characteristic equation of order n, in the form

AnpP+any Pn—l *teee ¥ hpta; =0 (V-16)

where

Ay £ 0; 4, 0.
Theorem 9.. The characteristic equation of the system is -of
order equal to the number of independent energy storage ele~
ments in the system,
Corollary 1, The order of the system equation is independent
of the type of coordinates chosen, (Loop equations give the
same characteristic equation as node equations,)
Corollary 2. If series resistors are added in the loops of an
electrical network, they will create new nodes, However, this
cannot alter the order of the system equation, unless previously
dependent energy storage elements are rendered independent by the
additions,
Corollary 3. Adding shunt resistors between established nodes
of an electrical network will create new loops, However, this
cannot change the order of the system equation, unless previously
dependent energy storage elements are rendered independent by
the additions,
The theorem can be justified by noting that the homogeneous
equations of the system represent an initial value problem, The
initial state of the system is completely determined if all initial

energy storages (currents in all inductors, charge on all cepacitora)
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are known, Hence, the subsequent state of the system is like-
wise determinate, But the specification of n independent initial
energy storages requires n arbitrary constants in the solution,
Consequently, the equation must be of order n,

By reducing the form of the system equation to (V-16), ve
have factored out all "zero frequency" roots, which represent con-
stant terms in the solution, This means that we must regard ideal
capacitors in series, or ideal inductors in perallel, as beihg
dependent storage elements, even though the former can carry =
fixed charge, and the latter & fixed circulating ctirren‘b. ‘Figure 9
shows three exemples where added resistance destroys the dependence
of reactive elements, If the pure reactive network is set up.with
series and shunt elements of thé same type combined wherever possible,
and if all tfansformers in the network remain ideal, then series and
- shunt resistors associated with the L's and C's cannot possibly

change the number of non-zero roots,

Pigure 9, Cases Where Added Resistance Removes
Dependency of Energy Storage Elements,
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Figure 10, Four Basic Cases of Damping Added to Reactive

Elements,

In Figure 10 are shown four combinations in which damping

(parasitic or otherwise) might be added to reactive elements, For

each case we can write an "operational admittance", Simple series

or shunt damping occurs as a special case in these more general

exampies. Table I gives these admittance functions, together with

those for the two types of elastic hysteresis damping previously

discussed,

Table I,

Operational Admittance Functions for

Series - Shunt Damping Examples in Figure 10,
and for Structural Damping,

Type of Damping

Figure 10(a)

Figure 10(b)

Figure 10(c)

Operational Admittance

General

-

T+

103
+
51+

Uniform Damping

C(p + ki)
(kzp + k1k2 + 1)

C(kik2p + p + k1)
(kop + 1)

(kyp + 1)
L(kslyp + p + k3)
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Table I (Continued)

Type of Damping Operational Admittance:
General Uniform Damping
' (k,p+ Xk, + 1 :
Figure 10(d) g+ -t 4P T Ik ),, ;
r+ Ip L(p + k3)
1+ 1+
Struetural L Jg
Lp Ip
ig oJ8
Structural - —
Lp Ip

D, A General Theorem of Uniform Damping
Theorem 10, If linear damping of arbitrary type or types is‘
introduced uniformly into either the inductors or capacitors
of a conservative electrioal system, or into both capaéitors
aﬁd inductors simultaneously, then the normal modes of the
systen rema_in uncoupled; the mode shapes are unaffectgd;
and the system elgenvalues move in a predictable iocus,
characterized by a one degree of freedom system having
" damping of the same types, The exact normal mode analog of
the system is obtained by introdueing damping into boﬁh the
parent system and the analog according to the same pattern,
The proof is straightforward, being based upon the use of &
complex frequency transformation as in (V-B) .* Inspection of
Table I shows that any of the types of uniform damping listed there

will transform the operational impedances in the form:

% Guillemin has discussed this for the specific case of shunt damping
proportional to condensers and series damping proportional to
inductors (Ref. 20, Ch, 6).
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ap + B
o3 — o3 (757

4o (V-17)
Y
I‘ij o] Li.‘I Ep + B )

where a, a, B, B, etc. are constants, real or complex, these
transformations having the form of the bilineasr transformation

(Ref. 38)s The equations of the undamped system can be expreased

O RO IR

After transformation, (V-19) becomes

as

ap + B 1 (?p+-5) _ ‘

Kssociating the entire transformation with the Gi:] tern,

ap + B Ep-'-ﬁ) 1 _ ;p+§-_)
cij(a’p+6)(ip+'5 Tl Y _( Ii:\

(V-21)
Clearly, the elgenvalues of the damped system must be related to
those of the conservative system by |

(a Mg + B)(a Iy +B)
K K - o wKz (V-22)
(r i+ 0)(7 I +F)

which reduces to

[o5+adrFln+ (6 i+ aBlrem’ 67+ r5) "

+[ﬁ§+wK26§] =0 . (v-23)
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When (V-23) holda, the individual elements of A( l"K) are identical
with those of 4,(Jwg)e 4s a result, the eigenvectors have the
real components AiK’ and the first part of the theorem is proved,
Since the analysis applies either to the conservative parent
system or to its normal mode analog, the second part of the
theorem follows, Note that the foreing currents must be operated
upon by the same factor in both the parent system and thq analog,
in the non-homogeneous case, | |

Experimental confirmation of Theorem 10 is shown in Figwre 12,
The transient behavior of a system with unifqm series inductor
damping is compared with that of its normal mode analog, in (a)
and (b)e In (c) and (d), the series damping has been removed,
leaving only computer parasitic damping assoclated with the iron-
cored inductors, For the parent system all inductors were 0,9
- henries, but in the normal mode analog they ranged from 2,49 to
0.083 henries, Thus, {c) and (d) of Figure 10 lend support to
the assumption that parasitic damping in the computer coils can
be assumed to be uniform damping,

Figure 13 illustrates the effects of warious types of uniform
‘in_ductor damping upon the transient response of a system, The
relatively greater attenuation of the higher frequencies due to
the presence of shunt damping is apparent, The combination of series
and shunt demping was chosen to simulate structural damping

(constant Q coils) over the frequency range of the system modes,
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Ee. Uniform Series Damping and Bode's “Uniform Dissipation®

Theorem 11, & system with uniform series damping in the
inductors has the same eigenvalues as one with uniform shunt
demping in the capacitors, if r/L = g/C ,

Theorem 12, A system with uniform series damping in the
ea:pacitors has the same eigenvalues as one with uniform
shunt damping in the induetors, if gL = rC ,

Using the notation of Table I, let Lijp — I‘ij (p + k3). Then

[eagpto 4 3) + }f_;f] [v] = [e+eyn] v
for which .
“x_"'%‘ Be=Vor’ - of . (7-=25)

For the corresponding shunt damped capacitors,

and the foreing functions are [ P Ii] ¢ The proof of Theorem 12

is similar,
Next consider the case where both uniform .series damped in-

ductors and uniform shunt damped capacitors are used. We obtain

[ij(P +i)(p + k) + H ;]] [(p+ )T ] (-2}

from which, ( )
(kl K - k3
For k1 = k3 = k, we have the "distortionless transmission line"

condition, where r/L = g/C. All eigenvalues move together along

straight lines into the left half plane (Fig. 1lle), in agreement
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with the results of Bode (Ref, 37, Ch, 10), who designates this
case as a system with "uniform dissipation®, Bode represents the
effects of parasitic dissipation in a reactive network by the

frequency transformation,

p — p + 1/2(x/L + g/0) (V-29)
whicﬁ is approximate if r/L # g/C. From (V-28) the nature of
the approximation is easily evaluated, As damping of either type
is added, the eigenvalues move along semicircles, Then as the
other type of damping is added, the roots move back toward the
undamped frequency along a symmetriecal arc (Fig, 11f).

With equal, uniform series capacitor damping and shunt induetor

damping, the expression for the eigenvalues is |

2
e SUPI:. SEN .
Forede? +Jl+k2mK2 (7-30)

These roots move along semicircles centered at j %, as shown in

Figure llg. ‘
It should be noted that, since values of the individual aﬁ
are preserved by the transformation (V-22), it can be used on both

the poles and the zeros of impedance and admittance functions.
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(a) (b)

() ' (a)
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Figure 1l. Locl of Eigenvalues for Varlous Types
of Uniform Demping Discussed in Part V,



() Velocity at Station 3, (b) Force Lpplied at Station 7,

Uniform Series Resistance Added to Reduce Q of Coils to 20 at
Highest Mode Frequency.

(d) Force Applied at Station 7,

(¢) Velocity at Station 3.
Parasitic Damping Only,

Parasitic Damping Oniy.

Response of Seven Degree of Freedom Torsion Rod to
Upper Trace from Direct

This is

Figure 12,
Step Input Velocity Applied at Stetion 7.
Electric Analog; Lower Trace from Normal Mode Analog.

System No, 3 of Part VIII,
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(a) Computer Parasitic Damping (b) Series Demping Added to Give
Coils a Q of 20 at Mean Mode

Frequency.

(¢) Shunt Damping Added to (@) Series Damping Removed
Series Damning in (b), Fron (c).
Reducing Q of Coils to 10,

Figure 13, Effects of Added Inductor Damping on Reaction Force of
Uniformly Demped Torsion System to Step Velocity Input, (System

No. 4 of Part VIII,)
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VI, SEPARATION OF KNORMAL MODES IN SYSTEMS
WITH UNIFORM DAMPING

4, The Problem

We now turn to the second major problem mentioned in Part I,
that of determining, experimentally, the undamped normal modes of
a given physical system which has damping losses, It should be
remarked, at the outset, that this cannot be considered a "major®
problem as far as electric analog analysis 1s concerned, Since
1949 the staff of the Analysis Laboratory at California Institute
of Technology has made a large number of normal mode studies of
complex aircraft structures. In a typical system, there is little
difficulty in identifying and separating most of the modes, dﬁe
to the high quality of the reactive elements and transformers useds
~ However, in cases where two or more modes are close together in
frequency, the separation is often difficult and tinme consi:ming,
and the accuracy of results for such modes may be open to question,

In actual shake tests of the elastic structure, the pfoblem is
apparently a more serious one, due to the higher damping and the
‘greater inconvenience of meking changes in excitation and messure-
ment points, |

The usual practice of the Analysis Laboratory is to drive the
systez-n sinusoidally with a variable frequency voltage source in
the low audio frequency range of the computer, If the losses in
the computer circuit were infinitesimal, then it is clear from the
normal mode analog that at frequency wyg the impedance of tank K

would be very large relative to impedances of the remaining tanks;
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consequently, all of the applied voltage would appear across tank
X, and a pure mode shape would be obtained, The presence of a mode
would be indicated by a null in driving current, waity power faclor
of the high input impedance, and an absence of phase shift in the
responses of the system coordinates, relative to the driving
voltage, .

In practice, the losses in computer capacitors are negligible.
Computer inductors have both ohmic and magnetic losses, thereby
introducing damping that is to a large degree uniform, Computer
transformers have both series and shunt losses, which tend to
increase the non-mniformity of the damping, In the preseﬁce of
either uniform or non-uniform damping, all tank circuits in the
ndrma:_t node analog (Fig, 7) will be excited to some extent if
the system is driven at one point. The excitation of these
- interfering nodes will increase the minimum current driving mode
K, and shift it in fregquency. The unity power factor frequency is
also shifted, and relative phase shifts are introduced among the
coordinates, If the eigenvalues are well separated, these shifts
are small, but when two or more of them are close together t_he
‘separa‘be modes may be well scrambled.

In shake tests of an airfreme, the problem is essentially
the same, The system is usually driven by small electro-
mechanical shekers, which deliver a force rather than a velocity.
A pair of shakers, symmetrically placed, corresponds to a single
electrical drive source, because electrically the symmetric and
antisymmetric. modes of vibration can be separated by suitable

constraints on the system, Small pickoffs, usually electrodynamic,
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measure the accelerations or velocities over the structure, For
free = free vibration of an entire airframe, there are suspension
problems which do not occur in the electric analog, The damping
is primarily structural damping, and as such can be considered
highly uniform,

At least two serious studies of this problem of mode separa-
tion have been made, both from the mechanical point of view, In
1947, Kennedy and Pancu (Ref, 7) presented an excellent analysis
of the problem and a number of techniques for mode separation,
Assuming the normal modes to be uncoupled for small damping,
the asuthors proposed to excite the airframe with two pairs of
shakers, driven in like or opposite phase, the amplitudes to be
adjusted so as to make the resultant force fall at a node of the
suppressed mode., Lack of relative phase shifts among coordinates
- at any frequency in the range of interest would be tazken as evidence
that the ratio of forces was correcti, Uhere more than two modes
are present, a frequency response locus analysis was proposed,
based upon the principle that the locus is a sum of circular loci
representing the separate modes, and that these individual circles
6ften can be extracted, Il was observed that the assumptions based
upon small damping were open to question and that a more thorough
theoretical study was desirable on this point, ‘

In 1949 and 1950, Lewis and Vrisley (Ref. 8, 39) proposed a
method of excitation, based upon a physical argument with respect to
the forces involved, whereby each coordinate of the system would be
driven by a separate shsker, All shakers would be driven in phase,

using forces proportional to the product of mass and amplitude at
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each coordinate., An iteration procedure was proposed for arviving
at this condition, and necesgary experimental egquipment for carryving
out the process was developed, The authors assumed small damping
explicitly and uniform damping implicitly., For a complete airw
freme, a set of 24 shakers was used, Mutual masses were not
considered, nor was the effect of non-~uniform damping accounted
for in the theory, The method was tested on a simple beam-like
structure having lumped masses and shear compliance onl}f; Goed
results were obtained, both for uniform and non-uniform damping,
Tests of three well separated modes of an asctusl sirframe appear
to be somewhat less satisfactory, however,

The writer feels that the methods presented in both of these
studies are sound and valuable, if intelligently applied, Tt is
felt that the work presented here, in addition to proposing sone
~different technigues and criteria, should serve to substantiate
most of the conclusions of the other investigators, Meny of the
points covered by them will be included in the present analysis,

for the sake of continuity.

Be Method of Approach

It is now clear from the preceding work that the one type of
many-degree-of-freedom systen which lends itself to simplified analysis
is the uniformly damped system, Fortunately, the uniform damping can
assume a nunber of forms, and most of the systems with which ve are
concerned fall approximately into this special category. Therefore,
an effort will be made to develop a mode separation technique appli-

cable to uniformly damped systems, with very few restrictions as to
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the magnitude of the dampinge After this has been accomplished,
extensions to non-uniformly damped systems can be considered on a

- more logiéal basis,

Ce Shunt Damped Systems Driven at One Point

(1) Choice of Drive Point; Interpretation of Response

Let us consider first the specific case of a system with uni-
form shunt damping, being driven sinusoidally at one ecoordinate,
The drive may be either a constant current or a constant vcltage,
the choice being determined by convenience and accuracy aoﬁsiderations.
Electrically, the symmetric and antisymmetric modes will be isolated
by applying constraints, so that a single current source corresponds
to a symmetrically placed pair of shakers,

The anelysis will be made in terms of the normal mode analog
‘discussed in Part IV, but with the impedance level in the tank
circuits chosen differently., In (II-B) it was pointed -out that the
absolute level of amplitude coefficients, Asy, is arbitrary for each
mode. A normalizing condition (II-33) was proposed which was'
convenient for analysis of the undriven system, For the present
purpose, it will be more convenient to uge a new normalizing condition,
such that the resonant admittance of each of the tanks is the same.
For shunt damping, choose My such that

3-3&5 =B (Vi-1)
R

making B, an arbitrary shunt conductance, the same for all nodes,

The corresponding normalizing equation. is
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Figure 14 shows the system to be investigated,

With the excitation restricted to one coordinate, Qje We are
free to choose only the point j and the drive freguency we JAssume
for the moment that the mode frequency can be determined, so that
the system is exclted at frequency uye Then clearly, the best drive
point is one with a reasonably large AjK so thalt the impedéncé of
tank K will appear large when viewed from q 3 &%t the same time, we
desire that the & 3L of the nearby modes be small, Since it will
probably be impossible in a large system to choose j such that
A L << AjK for all L # K, we must consider only those modes which
are in a position to contribute signifieant interference, We can

place this matter on & quantitative basis most conveniently by the

ot
:G)c
]l
1l
s
)

M
3 n--I—- B Kn

Figure 1L, Conmplete Normal Mode Analog of System
With Uniform Shunt Demping, Normalized to Give All
Tanks the Same Resonant Admittance.



74

use of so-called "universal" resonance curves (Ref. 40, Che 7 and
Appendix A), Figure 15 shows these curves both for entire impedance
|Z|, and.for the real part of the impedance, R, of a parallel resonant
circuit, At resonance, R = |Z| = 1/B, where B is the conductance
common to all tanks in Figure 14, Figure 16 shows a corresponding
universel phase shift curve, and Figure 17 a universal circle
diagram,

It has been the past practice of the Analysis La-borétory to
drive a system with a voltage source at a favorable point, set the
frequency to unity power factor or minimum input current (usually
the latter), and record the in-phase components of response, re-
ferred to the drive voltage, Figure 15 shows clearly that the use
of in-phase components is a sound practics; however, the input
current should be taken as reference, rather than the input voltage.
 Since the curve for R approaches zero much faster than | Z|, we will
assume henceforth that in-phase components of response are1a1ways
1o be taken as the best single measure of the AjK'*

Using Figure 15, it is a simple matter to estimaté the relative
attenuation of the various modes in the neighborhood of wy, due to
‘frequency shift alone. Only the frequencies and the Q's need be
known or estimated., For example, if we wish to excite a mode K
at 190 cps, and thefe is a neighboring mode L at 200 cps, then
Ly/oy, for mode L is -,05, If mode L has an estimated @ of 20 (g-
factor of ,05), then the ordinate at -1.0 shows an attenustion of

the mode L response to 207° of its resonant value,

% Key points on the "universal" curve of R for Q = o are at b,
1.0, and 1,5; the corresponding ordinates of o5y o2, and ,1 are
easily remembered,
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Let us designate this as a detuning factor, N ¥, Then the

ratio of in-phase voltages across tank K and tank L will be:

U A
'.;.I.‘ = —-J-x-" = (VI=2
Uy }?KL bk e )

vhere U;, is teken here as the component of Uy, in phase with the
driving current, and vhere Asy and A,y are normalized by (VI-2),

The corresponding in-phese ratio measured at coordinate i would be:

a "
S g "
Agx JKL Ay 1jKL °

o

(VI-4)

The drive point should be chosen, then, to give small values of
“inL at all points ay and for all modes L, In practice, cne‘

simply hunts for the drive point that produces the least phase shifts
in the response, Note, however, that it is possible to have rather

_ large phase shifts and still get good accuracy by taking the in-phase
components, if the frequency separation exceeds about 2,0 in Figure
15, HNote, also, that it may not always be trve that the adjacent
modes give the greatest interference, For a given fre@uency separa-
tion, an increase in Qﬁno tends to decreaselz, from Figure 15, but
to increase AspAsp, linearly, from (VI-2); thus, the effects on p

tend to compensste, Suppose, though, that there is a mode in which
‘the heavy masses and springs do not participate to any great extent,
The normslizstion condition (VI-2) then recuires ggzgg values for

the & It may be more desirable to suppress such a mode than to

jL*
suppress another which is closer in frequency.
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The factors defined by (VI-4) are a measure of the accuracy
one cen expect in the determination of the A3xe TFor the sake of
brevity, let us designate as an interfegégg node any nearby mode L
which gives sub-standard values of “inL for rendon choice of j and
is. In general, we can hope to achieve partial suppregsion of one
badly interfering mode, in an electrical analog, using a singie
drive.t Since an mbsolute node point seldom occurs in a lumped
parameter system, complete suppression will usually be impoésible,
and the best we can do is to choose j for a maximum retio, IAjK/hjL"
If this does not suffice, multiple excitation should be used,

The approximation of the eigenvector components AJK Ey neglect-
ing the in-phase contributions of the off-resonant modes is essentially
equivalent to a converse assumption; namely, that the damping in the
off-resonant‘modes has negligible effect upon the driven system
response, Such an assumption has been used in computing the forced
response of damped systems {Ref. 3), It is equivalent to dropping
the damping elements from all modes except the dominant mode in
Pigure 14, and working with the simplified system in Figure 18,
Clearly, this is the most reasonable simplifying assumption that
‘can be made, and we are justified in proposing:.

Theorem 13, In a moderately damped system, driven such thab
badly interfering modes are suppressed, the best appraximation
to the shape of a driven mode, based upon a single set of
neasured velocities, is obtained from the components of velo-

city in phase with the driving forces, with the drive frequency

# Kennedy and Pancu (Ref., 7) have shown that as many as three modes
can be suppressed, theoretically, by loecation and space orienta-
tion of a shaker, on a continuous structure,
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being the unity power factor frequency of the driven modee
The theorem has not been restricted to uniform shunt denmping,
because the analysis will be extended later to other tyves. The
term "moderate damping" is intended to be much less restrictive

than Ysmall damping",
(2) Determination of Gorrect Drive Frequency

Next, consider the question of finding the correct drive fre-
quencys. Assume that there are no badly interfering modes, or
perhaps that there is one such mode which has been effectively
suppressed and can be ignored, Then the offuresonantvmodeé which
are excited will certainly lie outside of the resonance region
+ 1 in Figure 15, and probably beyond + 2, From Figure 16, the
phase shift in the neighboring off-resonant modes will be on the
order of 65° or greater.

If only mode X were excited, the impedance locus would be a
circle through the origin (Fig. 17)e Due to excitation of neigh-
boring modes, this circle will be displaced, the actual locus being
the sum of the loei of the wvarious mode responses, Kennedy and
Pancu have discussed cases of this kind where the displacement is
extreme, due to the presence of badly interfering modes, For the
situation we are considering, this displacement should be greatly
reduced, at the high amplitude stations of mode K. Furthermore, it
is apparent from Figure 17 that d%/do is much smaller for the off-
resonant modes than for the resonant mode, so that the displacement
vector is essentislly stationary as mode K swings through its

resonance peak, This is the basis of the Kennedy-Pancu method,
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Consider the driving point impedance at the optimum drive point,
Js to be the sum of the impedance of tank K, which desecribes a
cireular arc, and the residual impedance of the remaining tanks,
which will be represented as a constant displacement of the are

center, Arbitrarily teke the sign of A"K as positive, Then the

J
residual impedance at the driving point may be either positivé
inductive or positive capacitive, If we drive point j and messure
point i, taking AiK a8 positive, then the residuval transfer impedence
may be either positive or negative, Figure 19 shows these possible
displacements, with heavy dots marking the frecuencies of zero
phase shift, maximum impedance, and true frequency of the desired
mode, With a constant current drive, the diagrams may be thought of
as response voltage loci rather than impedance loci, Based upon the
geometry of Figure 19, we can state:

Theorem 14, In a damped system, driven such that the badly

interfering modes are suppressed, the true freguency of ﬂhe

damped mode will normally lie about midway between the maxi-

mum impedance freguency and the zero phase shift frequency,

as measuredr at any high amplitude response station,

Theorem 14 has not been restricted to uniform shun_t darﬁping

because the analysis will be extended later to cover other types,
& mueh more sensitive frequency criterion will be obtained next
from the quadrature components of the response mltaées:.

Theorem 15, In a damped system, driven such that the badly

interfering modes are suppressed, the true frequency of the

damped mode will be approximately at the point where the ine

phase components of response are orthogonal to the quadrature
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components of response, where phase is measured with respect to

the driving force or current,
Proof: Assume that the excitation is such that if the system were
driven at frequency wg, the in-phase components of the neasured
C.lj would be a good approximation of the AjK' Designate the
response voltages as

3y =4+ 14, )

the phase to be measured with respect to the driving current, Then
at resonance, mode K contributes nothing to the éj’ and the contri-
bution. of the remaining modes to the é 3 is smell by hypoﬁhesis.
If the quadrature component of {IL with respect to the drive current

is Uy, then

3= 2. 4k (V1-6)
LA
and
4= jK U * Z AjN N o° - (-7

Hence, using the orthogonality relation (II-19),

3. q = U U 22 A A.
;Z;.mij d3 3 ;KUKHL;%:% 1K 3L
+ Z Z —L N Z ZmiJAiNAJL ¢

N IAK
Z Z B3 ay

i

j=§KMLI_IL§L§O. (Vi-8)
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Hote that the residusl term in (VI-8) would be equal to the stored
energy in all off-resonant modes, if the phase shif'ts were all 45°.,
This is an extremely conservative upper limit,

The frequency criterion of Theorem 15 is extremely sensitive
and accurate, In general, if we measured all of the response.
voltage vectors at frequency gy they would be grouped somewhat
symmetricelly about the reference axis, as shown in Figu.;'e 20a,

But from Figure 19, it is clear that a slight increase in frequency
tends to rotate all the response vectors clockwise, This rotation
is quite rapid in the neighborhood of resonance, so a very small

shift ean put the vectors in the position of Figure 20b, .A reson~

ance indicating factor can be defined as
Y .
o 3y may 9 9

T 5 Im 43 g4l

Y -

. (VI-9)

4s the frequency is increased through resonance, y/ makes & rapid
transition from the neighborhood of +1 toward -l, The null will
usually be so sharp that even if the residual term in (VI-8) were
_appreciable, the frequency could still be determined with high
accuracy., This is demonstrated in Part VIII by numerical example,
and by test results from the analog computer. It was found that,
in application, the exact calculation of )/ is unnecessary to
establish the mode frequency, If a rapid survey of the response
voltages across the system capacitors shows that about half are

advanced and half retarded in phase, then W/ l is "in the notcht,
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(3) Evaluation of Mode Parameters

4 complete description of the normal modes of a uwniformly
damped system requires that all transformer ratios and mode
parameters in Figure 14 be evaluated., Methods of determining the
relative turns ratios and the frequencies have been discussed.: It
remains to evaluate My, Ky, and Bye There are a number of possi-
bilities, _

If the mass distribution of the system is known, then the kinetic
energy in mode K can be computed on the basis of measured in-phase
veloeities, Moreover, if we follow the usual electrical engineering
practice of considering the forces and velocities as root.mean square
values, then T and V become average energy functions, and the average
poﬁer input to the system is 2F, If we ignore the energy losses in

off-resonant modes, then

and

Ty = 1/2 My Uy & 1/2 ? Z;,: mys Qg éj © (V)

Thus, we can evaluate Qg:

Q’K = = = (I)K ° (VI.:LP')

£11 quantities on the right of (VI-12) are easily measured, except
the mij which are presumably known, If a multiple drive is used,

P must, of course, be the total average power input to the system
from all sources, Once Qg has been evaluated, the normalizing
condition (VI-2) can be applied to determine My and the AJK’ Normal-

ized values can be obtained directly by making P the same in all modes.
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Kx is then obtained from the frequency by (I1-15).

If the mass distribution is unknown, or if the interference
. from other modes is rather severe, then it may be desirable to
take a frequency response locus in the vieinity of resonance for
a few of the higher amplitude coordinates. Then, following
Kennedy and Pancu, a circle may be extrapolated from the circuiarv
arc in the neighborhood of resonance, ILet the diameter of this
circle for the driving point impedance Zj; be designated b. Let
Zi3 = Ryq + JXj45 then along the locus we can measure X4 3/
in the neighborhood of wye Tt is easily demonstrated (£ppendix 4)

that ‘
ax o
QK= -aj-K(——> ° (VI"J-B)

Hence, Qg (or 1/gg) is easily obtained from the extrapolated circle,
‘Then My can be computed from (VI-1), and Kg from (II-15)e The

normalization condition is

Big =1 B D C(VI-L)

vhere B is the common shunt conductence of all tanks, and D is the
impedance circle diameter, Equation (VI-14) is equivalent to (VI-2),

. If a transfer impedance locus is used, or if therevare mltiple
drive currents, then it is convenient to refer all drive currents
to the point of voltage measurement, and treat the locus as an
equivalent driving point impedance, To do this, plot the voltage
response at a3 directly, but assume an equivalent current:.

£, = P I (VI-15)
3 3K
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In general, it is believed that (VI-12) will give a more
accurate value for Qy than (VI-~13), due to the magnification of
experimsnﬁal errors in estimating the response circle center, and
due to the fact that the vector displacement of the center is
actually not stationary, The error in (VI-12) is actually quite
small, as can be seen by expanding the numerator in terms of
(VI-7), using orthogonality to eliminate some of the terms, and

expressing P as the sum of tank circuit losses, The result is

U2 4 & M
e S 7 e > (VI-16)
(By Ug? + %;K BL|UL] ) _

showing that the errors in mumerator and denominstor tend to

Qg = o

compensate,

In the impedance locus method, the direction of error due io
displacement of the cireulsr locus center can be predicted, for the
‘caée of an input impedance diagram and a single driving source.
Consider the ecircuit to be in the form shown in Figure 18, with
a; being driven, Then if we neglect damping in the off-resonant
tanks, Foster!s reactance theorem (Ref, 22) states that their totel
reactance must be an increasing function of freauency. Figure 21
shows the type of variation to be expected for the quadrature
components of the response, Now compare this with the input im-
pedance loci, Figure 19a, b, 4s the circular locus travels doun-
ward in a clockwise arc, the center moves upward, Figure 22 shows
the result, & virtval center displaced from the true center, Thus

we can states
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8g

Theorem 16, For a system driven at one coordinate, near resonance
of one of its modes, the extrapolated "best cirele® through the
input impedance locus will tend to be too smzll, due to the

variation in impedance of the off-resonant modes,

/

/
Undamped %’/
/

Induetive

"Residual

]

|
1 |
| |
o | I |
2 ! Dom:inant [
al . Mode (K) !
4 z | |
S| e | |
I / i :
L | |
I ! | |l
) ! | i
Og1 g _ Oy,

Figure 21, Variation in Reactive Parts of Input
Impedance, as Predicted by Foster's Reactance Theorem,

A R
X Y
Apparentj = Arc segments with varying
center center

Pigure 22, Reduction in Radius of Curvature Due to
Shift in the Displacement Vector,
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De Extension To Other Types of Uniform Damping

We will show next that all of the conclusions of (VI-G) are
valid for structurel damping, with slight modifications. All are
valid for small series damping, and some are valld for appreciable
series damping, Structural damping and uniform series damping in
inductors are the two cases of greatest practical interest, so
these will be considered in detail, The analyses will be carried
out in Appendix B and C, with only the results stated here, We
will work in terms of & damped resonant frequency, EI‘JK, which is

the unity power frequency of tank K,

(1} Uniform Structural Demping

Denoting the "ecomplex stiffnessh coefficients of & systeni
with elastic hysteresis as ejg kij’ the corresponding normal mode
_ spring cosefficients are ejg Kxe The quality factor of mode K is
then

O = —%— . (VI-17)
tan g :

The damped resonant frequency of mode K is

,“\31{ = ml{‘/ COS £ o ' (VI-18)
Thé masses are unaffected, so the normalizing condition equivelent
to (VI-1) or (VI=2) is

0')K MK -
Qk

B » (VI‘19 )

where B is an arbitrery constant for all modes, to be considered here

as the equivalent shunt conductance of the tank cireuit at frequency

S
(DK .
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Universal resonance cuwrves similar to Fgures 15 and 17 are
shown in Appendix B, The analysis of (VI-C-1l) follows, and Theorem
13 holds if the system is driven at frequency dy.

The impedance locus, Zx{w), is a distorted cirele for structural

danping, but in its place we can plot,

Zy =R+ JXg=="12¢ . (VI-20)

D=—= (vi-21)
CmK .
for which
ax 2D @
(Ef{) = - (VI-22)
dy K

Near rescnance, % and Z are approximstely equal, so Figure 19 and
Theorem 1/ are still valid, The proof of Theorem 15 is unchanged,
if the drive frequency is now understood to be &y » The same is

true of the evaluation of Qg by (VI-12); however, the total power

input at frequency &;K is

" 2
P =g ain g Z KL ‘UL\ . (VI"':’»B)
L
Hence, (VI~16) is replaced by
. * 2
0f U2 + 2o Mg, U7
qy & — itk ST (VI~24)

sin g (KKIlez + éKKL IUle)

where the error terms are still compensating, Thus, all of the theory

of (VI-C) applies to uniform structural damping.
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(2) Series Damping in Inductors

Since this type of damping occurs usually in elecirical sys-
tems, the relations will be stated in analogous electrical terms,
with C, L, G, V, and I replacing M, 1/K, B, U, and F, respectively.
The. series resistance in Ly will be designated ry. 4s before, Oy
will be an equivalent shunt conductance which gives the mode exactly
the same impedance at its damped resonant frequency &K' These

quantities are related as follows:

ay = g 1/ 1- --Q-I (VI-25)

%
. c
Gy = KK (VI-26)
Ig
~ g lg ax e )
QK == K K:: K UK . (VI—Z?)

g O
The normalizing condition is chosen to meke EK the same for all modea,
In Figure 14, series resistors Iy eppear in the tanks, replacing the
shunt conductances,

The universal resonance curves are shown in Appendix C, For
a 5 10 it is evident that all of the reasoning leading up to
Theorem 13 is still valid, if ax is substituted for oy.

The impedance locus, Zxﬂaﬂ, is distorted more seversly than
was the case for structural damping (Fig. 34, Appendix C), 4s a
result, Theorem 14 may not hold for cases where the residusl modes
have an inductive impedance, However, the reasoning behind Theorem

15 is still entirely velid, so that ¥~ in (VI-9) now indicates the

proximity to E{;K o
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4s before, the quality factor ecan be evaluated from pover
input and known eapacitance distribution, using (VI-12), 1In

~evaluating the error in this method, (VI-16) becomes

2 -
(CK vy + &KCL VLz)

. 2
. w1V
2 E By, AV,

(GKVK"’ r2+,i."2?2)

1Ak TLT F O Iy,

e

Oy

(T)K . (VI-28)

In evaluating mode parameters from the impedeance locus, we
should nouv plot the logus of
~ R
g = (?D- Zg - (V1-29)
2
) e The diameter of

L

which is approximately circular vhen Q2 » (

e

the extrapolated circle from ﬁ'ﬁ will be

Q
D= -g--{i- (VI-30)
Cx g

and we can normalize to make

n ~
The vertical rate of change of the locus of ZK at oy is

di’ ) -2 5}{
& = (VI-32)
/g Caf (1-1/48)

Neglecting l/CfK’?', this becomes

(_df‘_ls = 20D

= S (V1-33)
&g K

replacing (VI-13).
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The reasoning behind Theorem 16 is still valid for high Q

syatens,

E. 4 Technicue of Multiple Excitation

The analysis just presented is valid only in cases where it is
pogsible to suppress all badly interfering modes, If the preliminary
trials show that this is not possible with a single driving source,
then multiple excitation must be used, The equivalent circuit of
Figure 14 is an aid to the analysis of this problem for uniformly
demped systems,

It is clear that in order to achieve a completely pure mode
shape, the system must be driven at all of its n external coordinates,
as proposed by Wrisley and Lewls (Ref. 8)s In a large, compléx
system this usually will not be necessary, since to the order of
accuracy We are interested in, only the interfering modes, as defined
in (C), need be suppressed, The trend toward swept wings, delta
wings, and pylon mounted nacelles, will increase the probability of
near degeneracy and resulting multi-mode interference,‘but in most
practical cases the number of modes contributing significant dis-
tortion cannot be expected to exceed two or three.

From Figure 14 and the analysis of Parts II -V, if is evident

that any given mode, say mode L, can be left unexcited, provided

Fpo= ) Ay £5=0 . (VI-34)
- 1

Using r independent forces, it is possible, in general, to eliminate
any (r-l) modes by (VI-34). Since the values of the A;; are not
known a priori, an iteration procedure is clearly indicated, The

procedure suggested is as follows:
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(1) Make an initial survey to locate all modes in the fre-
quency spectrum, and to find the best single drive point for each
- mode,

(2) Take initial mode shapes from best drive points, Set
the frequency, by application of Theorem 15, to a point where the
response voltages are about half advanced and half retarded ink
phase, In cases where the distorting modes are remote, and the
phase shifts are smell, no multiple excitation will be reﬁuired.

For other modes, the best possible estimate of the mode shape should
be obtained, In all readings, the phase should be recorded to
allow computation of in-phase components, and to give a later check
on the purity of the mode and the accursey of the frequency setting.
| (3) Go through the spectrum and refine each distorted mode,
using a set of forees (currents) computed from the first trial mode
shapes, Use (r+l) driving sources to suppress r interfering modes,
&s a check on the effectiveness of the multiple drive, vary.the
frequency in the nelghborhood of the undesired modes apd obgerve
whether resonant pesks are obtained in the resvonse voltages,

(4) Continue the iteration process until it converges for each
ﬁode. Convergence may be indicated by reduced phase shifts, but the
phase shifts cannot be eliminated by this method unless all but the
most remote modes are suppressed., 4 repetition in the relative
values of the AiK on successive trials may be obteined even though
some signifiecant phase shifts remain,

(5) VWhen a satisfactory excitation has been oblained for a
mode, complete data should be taken, including phese angles, power
input, ete, If the mode perameters are to be evaluated from extrapo-

lated impedance eircles, then a frequency survey of response in the
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vicinity of resonance should be nade,

(6) Use orthogonality relations as a final check on the
purity of the various modes. Compute accurate values of ;V’ in
(VI-9) if an accurate check on the frequency is required,

As an example of the process, let us assume that we desire to
excite mode 2, and that there are two interfering modes, one at a
lower freguency and one at a higher frequency. Designate these as
mode 1 and mode 3, Then, choosing three suitable drive péints, i,

.

Jjo and k, and using values from the previous trials,

(VI-35)
These equations are solved for fi and fj in terms of fy, and the

proper ratios are then set in., 4 check should be made to see that

Ay £y Aj2 £5 % &y By A0, (VI-36)

It is very desirable that the terms of (VI-36) all be additive,
in order to provide a strong drive on the desired mode.'

The three important questions that remain to be answered are
(1) will the iteration procéss converge, (2) can the method be
exfended to non-uniformly demped systems, and (3) what ére the
practical problems involved in applying the method., The second and
third questions are discussed in subsequent parts, The general
question of convergence is best examined by experiment, but we
can consider a simple case where only two modes are present, Assume
uniform shunt damping, with the normalizing condition (VI-1) applied,

Then from (VI-3), our first trial values of Asx for mode 1 would be
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(A11 + a/312 312) at 43 e

(VI-37)

.(A21~+ )(312 A22) at q, e
To exeite mode 2, then, we set

(847 + ¥ 495) £ 4 (A + ¥ 4y) £5,=0 .
Hence,

Fp=hyy £y 4 8y £y == ¥ (8 £+ By £y)
Therefore,

]

Fp . (v1-38)
Since the detuning factor again affects the response,

1 7 2 n &5 2 r

where j is the drive point, Thus, from the iteration we attemuate
the undesired mode by the detuning factor, Pl .

For two or more interfering modes, the analysis is more involved
and it is felt that experimental justification is more:desirable. In
any event, any tehdency to diverge in possible unusual ceses could be
readily detected, and a different set of driving points could be
éelected.

There is one additional point that might be noteds If only one
drive source is available, or if experimentation time is quite limited,
then complete data on each mode in the interfering set could be tazken
at & number of drive points, Using superposition, the iteration
process could be carried out later on paper, Such a method has the

disadvantages of being tedious, and of allowing the possible cumula-

tion of experimental errors,
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VIiI, EXTENSIONS OF THEORY TO SYSTEMS WITH
NON-UNIFORM DAMPIMNG

A, Mode Separation in Shunt Damped Systems

Consider the normal mode analog shown in Figure 7 of Part IV,
With uniform shunt damping, the residual conductances gy are
eliminated, and we have shown that to suppress m modes we must use
(m+1) driving currents, all of like phase, Now let small non-
uniform damping in the form of the gij be added to the uniformly
damped system, Clearly, it is still possible to suppress n of the
modes with (m+l) current sources, but these must now have relative
phase shifts, if m < (n-1), This will be true because, in general,

the excitation of one or more off-resonant tanks will result ih

small currents of random phase in the coupling conductances, g.

ij*
Specifically, suppose we desire to make
[ ] L ] » .
Uy=0;3 Uy=0 3 Uy=1+j0 . (VII-1)

whils driving the system at frequency'ag. At steady state, the

system equations (III-8) can be expressed as

[BKK ¥ .j(()&;,’ MK - %)] {IK + ;K Bgy, EL =Fr (VII=2)

(K= lg see n) -

Thus, conditions (VII-l) require

n . -
Fi = > Byy, Uy, = El +3iF

1=3
n . -
F, = LZ_; Bor, U, =Fp + i Fy (VII-3)

n

Fo= ) By Up=Fy + jFy -
3= L Pl=B i
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If the system is driven from stations x, y, and z, we must reguire

that
3 I T r- _-
ba A Aoa) | Tx| [E1 Py
hyo 4pp Byp fy =|E, + JF, (VII-4)
A : 7
5 A Azzq fzq __3_3 + 5F3_

Letbing £, = £_+ jf,, etc., the solutions of (VII-4) give the
necessary muliiple exeitation, For n = 3, the ?E vanish in (VII-3),
and the drive sources are once again in phase., Generalizing this,
we can states
Theorenm 17, In a system of n degrees of freedom with arbitrary
shunt damping, it is possible to constrain any m of the undamped
normal coordinates to zero, by adjusting (mtl) driving forcés
in both amplitude and phase. A&s m approaches (n-l), the relative
phase shifts decrease, and when all coordinates are driven it is
possible to excite a pure undamped mode with a set of inephase
driving forces,.
This theorenm generslizes a conclusion reached hy Lewis and Wrisley
(Ref. 8, 39), who showed that for systems with uniform demping
driven at all coordinates, relative phase shifts among the driving
sources are not required. For non-uniform damping with all coordinates
driven, the drive sources should still be in phase, but the amplitude
of £; is no longer proportional to Zg mijAjK, which was the
criterion used for the uniformly damped case,
Now, if we wish to suppress two interfering modes in a large
system, using the iterative procedure of (VI-E), it appears to be

impracbieal to introduce phase shifts into the drive sources on
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anything other then a trial sand error basis, Such trisl and error
techniques can be very time consuming where sc many variables are
involved, If the non-uniform portion of the damping in Figure 7 is
small, then the gyj are small, and the phase shifts theoretically
required can be neglected, Unfortunstely, this has the effect of
introducing smsll quadrature exciting forces, f‘L, into the modés ve
are attempbing to suppress, As a result, the in-phase velocities,
é y» include reactive components excited bjr the Ff. These do not
attenuate very rapidly for small shifts awey from resonance, so we
should expeet the non-uniformity of the damping to reduce the
accuracy with which we can determine the modes, Experiment has
shown that the iteration process does converge when non-uniform
damping is present,

In some systems, there may be highly localized non-uniform
_ da_mping in one part of the system, In such cases it may be possible
to drive all of the coordinates to which the larger gy3 are
attached, and thus neutralize their effect, This is easily visualized
vhere there is a singie large dashpot added somewhere in a uniformly
damped system, |

B, Best Estimate of System Transient Response;
Eouivalent Orthogonal System

We should note at this point that the two types of uniform shunt
damping vhich we have been considering are not the only forms of shunt
demping for which F, T, and V will reduce simultaneously to sums of
squares, Any number of systems possessing this proverty can be
synthesized from the normal mode analog of Figure 8, by simply
choosing a set of positive Byyg arbitrarily, and setting all coupling

terms, Bgr, to zero, This results in a physically realizable, passive
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system for vhich the normal modes are clearly orthogonal, and for
which BKK‘#'CﬁMK + Cka? If Figure 8 revresents the normal mode
analog of a conservative physical system, and if positive shunt damping
elements Byg are inserted at random, then a transformation back to the
coordinates of the original system can be made.* The resulting cire
cuit is always physically realizable with pessive damping elements, but
the realization may recuire additional transformers. Let [EKj] be the

inverse of matrix [AjK] s Then if coupling conductances Bygy are zero in

the normal mode tanks,

bi 3 = ZK BKK EKi E.Kj . - (VII—D‘)
Clearly, the self-damping terms bs; are all non~negative, The coupling

terms may be either negative or positive, but they are certainly bi-
lateral, Hence, the system can be realized electrically with direct
conductive coupling between the qj if all offediagonal terms in [bij]
are non-positive, and if the sum of the elements of any row of [bij]
is positive (Ref, 23)es In any event, we can admit negative'conductu
ances for purposes of analysis, so the question of realizability need
not concern us here, The setsof b, . defined by CVII—S) can hardly

1]
be regarded as uniform damping, but we can designate them as a type

of orthogonal damping, and the resulting system as an orthogonal
§Z§32§3 iecs, One with no energy coupling between its nornal
modes,

The problem now is to represent an actual sysueﬁ having arbitrary
shunt damping by an equivalent orthogonal systen which best approxi-

mates its behavior, both transient and steady state, For the case

¥ As a matter of fact, all tank circuit parsmeters and ell trans-
former ratios can be picked at random, and a transformation to
he generalized coordinates so synthesized can be made, pro-
vided the matrix [:AjK] is non-singular,
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of small damping, it is quite apparent that the desired approximation
can be obtained by simply including the entire self conductance BKK

- as a shunt conductance in the Kth mode, and dropping the coupling
elements, Bgye Rayleigh has shown, for small damping, that the

second order correction to wy is in the nature of a small variation

in the ratio MK/KK, which affects only the imaginary component of
Iy (Refe 1, Che 5)s This correction is in the nature of an
tattraction? of the eigenvalues, with higher modes tending to in-
crease Px and lower modes tending to reduce By.

It has been shown by Guillemin (Ref, 19) that for highly

oscillatory systems the first order approximation to ay is
X324 bag Bt (oog)

QK = b (VII—é)
- 225;% my5 Bogg (I)
‘But this result is identically equal to
Zydsbig bk Ak g
= = (VIT="7)

> ZJ: myy dix byx 2 Mg
because Aoij( jmK) is proportionsl to Asy during the summation on i,
and proportional to AjK during the sumnmation on j, from (II-32).

More recently, the same result has been derived ‘oy' Morduchow
for a continuous system, by nmeans of a variational principle (Ref.
27)e

If (VIT-7) is used to evaluate the order of magnitude of the
danping in Theorem 3 of Part III, we obtain, for damping distributed

at random throughout the system,

20 B, 1
5 = b - KK - (VII-8)

3
o op M Qgy
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or, for highly localized damping,

2nal 1
§ = Bmk) == (VII-9)
' ( 4 ) Qkg

These relations will be taken as the guantitative evaluation of
smallnessY of damping, for a non-uniformly damped system,

Next, consider the situation where the damping is large in the
sense of (VII-8), but highly uniform, so that only the coupling
terms, Byy, are small, Assume first thet all other modes are well
separated from mode K in the frequency spectrum, and apply the
perturbation technique of Rayleighe If mode K is the dominant mode,

then we can neglect the summation in

(Mg p° + Byy P+ Ky) Uy + ZK Byg, Uy, = 0 (VII-10)
ivin
.g | g F’K‘t
X Byx
s in (III-10), where T

Then, for any other mode, S, excited by the dominant mode,

(Mg Mg® + Bgg g + Kg) Ug & - M Bgg Vg« (VII-11)
Hence,
~ - B
gﬁ* = K_KS . (VII-12)
K wg NP +Bgglx+ kg

This can be expressed as

- B
P§ g g KS 5= ° (VII-13)
Uy Ms(r’K-r’s)( Mg - I'g")
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Thus, the neglected terms in (VII-10) are approximately
R o
I's" B U
. A k
1A M, (G- i) (i =119

These are of second order in Bygg, and we are justified in neglécting‘

(VII-14)

them provided [ x and F'L are well sepgrated,
For two badly interfering modes we can estimate the interaction
effect by ignoring all the remaining modes, so that the approximte

system eguations are

(Mg P° + Byg D+ Ky) Ug + (Brg p) Ug S0

2 - (VII-15)
(Bgg p) Ug + (Mg p° + Bgg P+ K5) Ug £ 0 |
The eigenvalues must satisfy
: . 2 R
. B P
(M p2 + Byp P+ Kg) = XS . (VI1-16)

2.
Mg p” *+ Bgg p + Kg

Assume that the introduetion of the coupling shifts the Kth eigen-

velue from [y to (M + P), and let (g +p) = ([ + P)e Then,
neglecting ﬁz and ;,:;2,
2 | :
B [ + Ma * 1) ‘
(Mg + Byy) = Beg' (T + ©) (g *40) . (VII-17)
(2 Mg g + Bgg) -

Substitution of the unperturbed values of FK and g gives

- Byg- (Mg + D) (g + 1)

p= . (VII-18)
4y Yy Mg By Bg
The displacement P is of ordér of megnitude
(.]:) __EK_Sﬁ . : (VII-19)
wj gy
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This implies that a logical quantitative estimete of the uniformity

of damping can be expressed in terms of the following factors:

B
ops 2 _IBgsl (VII-20)
2 Y Mghig
2 Ggs lB
i Y - gesl L © (VII-21)

8]

When QKS is large for mode K with respect to other nearby modes,
we can safely apply the approximation that mode K is uncoupled in
the circuit of Figure 8, This gives us an equivalent orthogonal
system with which to work, Such a substitution is similer to the
use of an equivalent linearized system to replace one with marasitic
non-linearities,

It is clear that when the system can be driven so as to suppress
the badly interfering modes, all of the theory of (VI-C) still applies;
however, we should expect the accuracy of the approximétions to be
somevhat less for the non-uniform case, In Figure 8, the modes
which are suppressed, or which are so far off resonsnce that they
show a weak response, can be considered to be essentialiy at ground
potential, so that the measured demping parameter will be approxi-

mately that of the equivalent orthogonal system, Byy.
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Ce Non~lUniform Series and Structural Damping

In considering the effects of non-uniform series or structural
damping, we can make a few general observations:

(1) The addition of such damping cannot change the number of
non~zero eigenvalues, provided no change is made in the indepeﬁdence
of the system energy storage elements,

(2) 4s linear damping of any sort is added gradually, the
eigenvalues must move continuously in the complex plane, Hence,
there must exist some criterion by which we can specify "smallV
perturbations of any type of damping, with the assurance that the
corresponding displacement of the eigenvalues will likewise be
snall, |

(3) For any given series or structurally dsmped element at a
‘particular frequency (real or complex), there exists an equivalent
shunt damped element, The equivalent shunt reactence differs from
the actual series reactance by terms of order Q"a in the vicinity
of the real frequency axis,

The concept of an equivalent shunt damped system shows immedi-
ately that all of the theorems of small damping in Part III can be
applied to any form of smell linear damping, Moreover, a normal
mode analog of the type shown in Figure 6 can be used to represent
exactly any lightly damped system with steady stete sinusoidal
excitation, Such an exact representsbtion is not possible for
transient analysis, because the shunt conductances are now functions

of frequencye
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Next consider the case of a system with series or structural
damping where the departure from a uniform damping condition isg
~8mall, even though the total damping may not be small, For such &

system, at any given complex frequency, Wwe can replace each damped
element by en equivalent uniformly damped element, in shunt with =z
small demper (positive or negative) which gives the correct enérgy
dissipation toc the combination, The unifornly damped elements can
then be brought directly into the normal mode tanks. The.reSidual
equivalent conductances are freguency dependent, but if they are
small we can neglect their variation in the neighborhood of an
eigenvalue or a resonant drive frequency, and for some purposes we
can neglect the residual conductences altogether,

Series or structurally damped systems in vhich the damping is
orthogonal, but non-uniform, caen be synthesized exactly as in (VII-B).
Thus it is apparent that all of the theory so far developed can be
extended, with slight modifications, to include any forms of linear,
non-uniform damping, provided only that the non-uniformity be small,
For all such cases, we can work with an equivalent ortﬁogonal systen,

and apply our theory directly,.

D, The Effects of Transformer Parasitic Damping

The finite difference electric analogs of elastic structures in-
volve ideal transfbrmefs as well as inductors and capacitors, Experi-
mentally, the use of actual transformers introduces additional losses
into the system, Following standard transformer theory, we can
represent such losses by adding a small shunt conductance and a small

series resistance to each transformer, These may be referred to either
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side of the transformer. In the equivalent eircuit for a beam in
bending, the transformer shunt damping can be placed in the bending
circuit, vwhere it represents a rotary damping element, The series
damping, if placed in the deflection circuit, represents a sort of
"shear creep" in the beam, just as series leakage reactance repre-
sents a small shear compliance (Ref. 41), Clearly, then, ﬁransfbrmer-
shunt losses have the effect of adding ﬁon—uniform shunt demping

to existing coordinates of the system, Such damping has already
been considered, The transformer series losses can be thought of
as additional non-uniform series damping, provided we add some
additional degrees of freedom to the system, The series léakage
reactance does, in fact, add such degrees of freedom to the
laboratory set-up, The additional eigenvalues introduced in this

way will normally be far above the freguency range of interest.
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VIIT, NUMERICAL EXAMPIES AND EXPERIMENTAL RESULTS

The numerical examples have been chosen more or less at random,
to illustrate various portions of the theory,

The experimental phase of the research was confined to electri-
cal analogs, It was performed primarily for the purpose of investi-
gating convergence of the iteration technique of mode suppression.
There are practical problems involved in applying the technigque to

complex electrical systems, and these were investigated,

4, Computation of Normal Modes for System With
Uniform Shunt Demping - System Number 1

(1) Figure 23 shows a simple spring-mass system, The equations

of the undamped systemn are

-1 (@P+2) x| |oO

The characteristic equation of the system is

2P4+6p2+3=0 .

The eigenvalues are

of =2 W30 5 =P WE.

Use the normalizing condition, AjK =D Aij (3oox)s
i

Mode 13 Apy =3 3 Ay =22V3

2
Mode 2: Ay, = Y3 5 Ay = 3._2-13 .
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" Orthogonality Check:

nybihy, + by = =3 4206 +V3)G V3 ) =

(2) 444 shunt damping such that byy = 1/2 my 4 + 1/2 kyso The

equations of the damped systen are

(0% +3/2p+2) (~1/2p-1) _xl— ro—
] (-1/2p=-1) (2p° + 2p + 2) x| | o

This gives a characteristic equation,

2pt+ 5 + 85 P +bp+3 =

which factors to

(0P + 1.685 p + 2.368) (p° + o815 p + «633) = 0 .

The eigenvalues, to slide rule accuracy, are

f& = - Q4075 + § 683 f; = = 8425 + j 1,287 .,
Use the normalizing condition, z: ( f’)
ﬁcde 1l Dll = 1379 + j 595 Dzl = 1,884 + § .81

Mode 23 D12

5 o A
Doy = 205 /BT = 4 5eg Jo0,09° 5 2 = 1366 /00
Din 1,50 /23.36° 1

Dy, =1.505 /48.1°
__-l_é = &8-—.‘ = m 2.76 !0-20 = - 2074' LO_?

Doz 0546 f47.9° Azz




Orthogonality Check:

M Dy Dzp ¥ My Dyp Dop = 4005 - 023,

B. Transient Response of Free-Free Torsion System With

Uniform Shunt Demping -~ System Number 2

(1) A three degree of freedom torsion system is shown in
Figure 24, &ssume that a unit impulse of force is applied to co-
ordinate 93, with the system initially at rest, The response will
be obtained by superposition of the responses of the normal modes,.
For this simple system, the undamped normal modes can be written by

inspection, the amplitude factors being normalized to unity:

Table II
 Normal Modes of System Number 2

1 Free Rotation 0 1 1 1

2 Antisymmetrie
Oseillation V' 2 -1 0 1

3 Symmetric
Oscillation 2 1 -1 1

The corresponding normel mode parameters are computed from (17-18)

and (II-15) or (II=-20):

Ml =2 Mé = 1 Mé
Kl =0 K2 =2 Ké

With fy = f, = 0 and fé = (%), the generalized forces applied to the

=2
=8 .

normal coordinntes are obtained from (II-23):
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Fq = & (%) F, = 5(t) F3 = & (t)
For the undamped system, solutions of (II-~12) are

1
Uy =12t UZ=E sin V2 & ; Uy =1/4ksin2t .

From (II-14),
1
6 =12t~ — sinY2t+1/isin2t
V2

92=1/2t:..1/4sin2t

93=1/2'b+}1-5 sinY2t+1/4sin2t

(2) Next add damping uniformly to both the springs and the
masses, such that by; = sz mgy + 0s1 ky, @s shown in Figure 24 (e)e

Then By = 0.2 Mg + 0.1 Kg, giving,
Bl = 0.4. B2 = 0.4- B3 = 1.2 °

The solutions of (IV-4) give the normel coordinate response of the

damped system:

-.zt ﬂp?.t -
U1=2.5(1-e ) * U2=e. w;

L 4 1.4

U = o leinVIIL ¢
3 2 V391

and, as in the undamped solution,
6 =0y =0y #+ Uy
8, =1y =~ U3
93 =Uy + T, + Ué .
These solutions agree with solutions obtained directly in terms of

the Qi .
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Ce Analysis of Uniform Beam In Torsion;
Seven Degree of Freedom, Finite
Difference Analog - System No, 3

(1) Consider the finite difference snalog of a free-free,
uniform beam in pure torsion, The continuous structure is approxi-
mated by five full finite difference cells and two half ecell
terminations, in Figure 25, The normal mode frequencies of this
system can be obtained from a solution of the difference equation
of the system (Ref, 11, Ch, 11), For the free-free boundary con-

dition, they are

wg = —J_]I-%_—{Z (1-0059(—'%)-1) .

Take L = C = 1 for convenience, Then the mode frequencies are O,

5177, 1, ¥ 2, ¥V 3, 1.932, and 2.

The amplitude factors, AiK’ are easily computed for each mode
frequency by assuming a unit reference voltage, Vﬁ =14 jd, and
computing the voltages at the other six stations by a étep-hyastep
application of Kirchhoff's laws., The generalized masses Mg and the
‘generalized spring constants Ky are then obtained from (II-18), end
(I1-15) or (ITI-20). The results are shown in Table III, |
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Table IIX

Normal Modes of System Number 3

Mode wy Mg Kg Ay dx Ay Ag Asg A Aoy
1 o0 6 o0 1 1 1 1 1 1 1
2 W51 3 3(2403) A 860 <5 0 S5 L8660 1
3 1.0 3 3 1 .5 =5 Al a5 W51
L Y2 3 6 i 1 o0 -1 o0 1
5 Y3 3 9 1 =5 =5 I =5 =5 1
6 1,932 3 3(2H3) -1 866 <5 0 S5 -6 1
7 20 6 24 1 -1 1 -1 1 < 1

(2) Now let us introduce uniform series damping into this
system, By adding 0.1 ohm resistance to the unit inductanceé of
Figure 25, we obtain a Q for these elements ranging from 20 at
try to 5,177 at wy. Applying Theorem 10 of Part V, we can a&d
series resistance in like proportion to each inductor of the
normel mode analog, Figure 26 shows the resulting systen,
viewed from staiion e |
7\ If symmetry is ignored in Figure 25, and the series damﬁed
system is driven at station 7, then a progressive phase shift which
is characteristic of damped torsion systems can be obtained., From

(VI-25), the damped resonant frequency of mode 7 is

=gV 1182 = 19975 .

Using this frequency, the response voltages were computed for a unit

current input at station 7:



L, = 1.00 (0°) v, = ~1.65 (18.1°)
Vo = 432 (<46.8°) V3 = 141 (42.1°)
Vg ~1.36 (58.9°)
136 (6446°)

~3.08 (=27.7°) v,

i
i

Vs = 2420 (- 6,39) vy

Tt is clear from Table IIT that the principal ceuse of this phase
shift is the excitation of mode 6, which adds to mode 7 at one end

of the beam and subtracts at the other end,

(3) Table IIT indicates that a reasonably good excitation
of the highest mode can be obtained by a symmetrical drive at
stations 3 and 5, which eliminates the antisymmetrical modes
conpletely, (Elec'brically, this is equivalent to splitting the
system inmlf at station 4, and using a single drive at station 5.)

Por this excitation, the response at &y is

13 = 15 = 5 (09
Vy =V = 1,655 (12.38%) = 1,616 + § 354
V, = Vg = ~1.655 ( 6,63°) =-1645 ~ § L191

1,720 (=10,12°) = 1,694 - j 302

3 =75
1,720 (=4037°) = -1715 + § 131

s
The response of mode 7 alone would be + 1,667 volts. The in-phase

components of response range from 3.06% low to 2.88% high, The

resonance indication factor given by (VI-9) is

Yo=-.009.,

The Q for mode 7, evaluated from (VI-12), is
Q = 19,72
which is 1.!.5% low,
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(4) The system reaponse to symmetrical drive at stations 3
and 5 was computed for a range of frequencles near aw, in order
that an input impedance locus might be plotted, The equivalent
input impedance for the entire system is taken as Vs5/2Is, Table
IV shows the results, and illustrates the extreme sensitivity pf

the factor )/ to small frequency changes,

TABLE IV

Computed Frequency Response of System No, 3 With Uniform
Series Damping in Inductors, Symmetrical Drive at
Stations 3 and 5 to Excite Highest Mode

~ @\ 2
w 1’(/ Zin Zin = (—a;-) 23y Comments
1,980 1,502 ( 7.3° ) 1.515 + § J194

1,990 +.868 1,640 (- 1,9° ) 1.651 - j 4055 Unity Power Factor
149975 =4019 1,720 (=10,12°) 1,693 - § 302 Damped Resonance i
2,000 =354 1,738 (<12,78%) 14690 - ] 383 Undamped Resonance
2,005 1,750 (~18,129) 1,650 ~ j o540 Maximm |Zy)|
2,0075 =985 1,754 (-20,82°) 1.622 - j 617 Meximm |Z, |
2,010 1,750 (=23455°) 1.585 =~ § 4690

2,020 1,711 (=33.07°) 1.400 - j 912

The input impedance locus is plotted in Figure 27, Qomputations of
mode 7 parameters from the extrapolated circle give:

D=ls8oms &=L (&) =.3205
, 5
Qy = 20,4  from (VI-33)

Coy = 6047 from (VI-30)
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(5) This system was set up experimentally on the analog

computer, using L and C values of ,9 henries and ,704 microfarads

in the direct analog' (Figure 25)s This gave a resonant frequency

of 400 cps for mode 7,

The normal mode analog was set up on the

same scale, and transformers were added to bring out station 3 as well

as station 7.

in Figure 12, page 66, both with and without added series damping.

4n experimental input impedance locus, taken from the direct analog,

is shown in Figure 27.

The transient responses of the two analogs are compared

Uniform Series Demping in Inductors,

values are R, L, and C,

The numerical

Vl L Vv L L v L v L Vv L V,
2 4 5 6 7
W) QL /0, LT QG
=1/2¢ =¢ = —=¢C == = C =12 ¢
, +
Figure 25, System No, 3, Finite Difference Analog
of Uniform Beam in Pure Torsion,
1 .1 2 1 .1 1 a1 1 Jd 1,1
W804 804 3 3 6 B S 9 T2 .2 2t 24
6 : v,
MF 1T B
4 Iy
I ) j— | I
3 3 3 3 3 6
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7
Figure 26, Normal Mode Analog of System No, 3 With
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De MNon=Uniform Torsion System With Simuleted
Structurel Damping - System Number /4

(1} TFor the initial tests of the multiple excitation techni-
que of mode separation proposed in Part VI, a small system, suitable
for rapid testing and easy analysis, was desireds In order to achieve
truly uniform damping it was necessary to use a system with no trans-
formers, To make the test a severe one, closely spaced mode frequen=-
cies and an excessively high emount of damping were desirable;

The reguirements were met by forming a symmetrical torsion
system of cascaded stages having the same matursl frequency, each
cascaded stage having a smaller rotery inertia., 4 five deéree of
freedom system was set up in this way, Alterations were then made
to destroy the symmetry of the system. The system frequencies were
computed in ofder to establish scale factors that would put the
‘normal modes in the working range of the computer, Then a final
alteration was made, in order that the test could be made without
prior knowledge of the exact mode frequencies. The resulting
conservative system is shown in Figure 28,

Tt was anticipated that the system frequencies would be in the
range from 180 to 300 cps. The uniform damping was introduced by
adding series resictance to each inductor until its neasured ¢ at
2.0 eps was reduced to 20, Then shunt resistance was added across
the series combination to give a further reduction to a Q of 10,

For one sample inductor, the variation in Q with frequency was
checked:
fleps) s 60 120 130 240 300

Inductor 0 3406 8425 9.75 10.0 9.63

[ 1]
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Thus, over the frequency range of interest, the system damping
closely approximates the constant Q condition of struetural
7 demping, .

(2) An initiel survey of the frequency spectrum was made,
driving each of the five coordinates in turn with s voltage source,
Phase shifts were quite high, and at some points only one apparent
mode was observed, A sumary of the data revealed a well defined
mode near 156 cps, another mode in the vicinity of 232 cﬁs, and a
probable mode or modes in the interval 312-337 cps, The lower modes
were designated "A" and "B" respectively, the zero freguency mode
being designated "0", First trial mode shape data were taken for
modes A and B, using the most favorable driving point for each.
These were designated "A;" and "By %,

Next, & set of three input currents was computed for the

- suppression of 4, and By, as in (VI-35). Stations 1, 3, and 5 were

chosen aé drive points because these were high amplitude pdints of

the undesired modes, the supposition being that high amplitude
points are more accurately defined than low amplitude points. This
approach is in direct contrast with the conventional method of
seeking a null point on which to drive,
| Using the excitation just described, the frequency.spectrum

was re-surveyed, and a new mode was discovered near 243 cps, which
was designated "Cq%, Finally, mode "Dy" was excited with a single
voltage source, and a rough mode shape obtained, in the presence of
large phase shifts, at 320 cps,

Eech mode was then revised in succession, begimming with mode

Al, the two adjacent modes being suppressed in each cese, The
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frequencies were set to a value for which positive and negative
phase shifts appeared to balance (see page 84). After a third
trial, the response in each mode gppeared to be satisfactory with
regard_to phase shifts, The exact normal modes of the conservative
systen were then computeds The results are tabulated in Table V,
with only the in-phase components of the response being listed;

The mode data for the third trials in Table V appear to be
rather good, with the exception of mode 4, For this modé, the
iteration process apparently was divergent, However, a computation
of some of the interference factors defined in (VI-4) was nade, and
it was found that mode C had an appreciable distorting effect upon
mode A, To check this, mode A was driven with a set of currents
computed from the exact amplitudes of modes 0 and Bs The response,
listed as AA’ shows that the iteration process actually was convergent,

~but that mode C should have been suppressed.

(3) It was recognized that modes B and C contribute en unusual
amount of distortion, due to their very low values of generalized
mass {see page 78), The relative values of generalized mass vere
computed to be

Mg = 12,99 My = 4o Mp = 343 Mg = 354 . Mpy= 11,595,
using the amplitude factors as normalized in Table V,

Since the zero frequency mode WOV contributes only a quadrature
conponent to the response, a new set of currents was computed to
excite mode A while suppressing B and C, Also, mode C was excited
by eliminating A and B, rather than B and D, The process was started
from the second trial values of Table V, and two additional iterations

were made, The results, shown in Table VI, seem quite satisfactory
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for such a highly demped system,

(4) In order to observe the effects of non-uniform damping,
the added series resistance was removed from the two inductors on
the right in Figure 28, and the series resistance in the inductors
on the left was doubleds The shunt demping remained uniform. The
procedure described in (2) wes repeated, and the results are
summarized in Table VII, As might be expected, the accuracy is
not as good as in the case of uniform damping, but the value of the
multiple drive method is illustrsted by the successful excitation
of mode C, which again could not be identified using a single

voltage drive,

(5) Some transient response records were tsken for System
No. 4 to illustrate the effects of various types of uniform damping,

. These are shown in Figure 13, page 67,

Vi 2.5 Vo o245 V, w245 V, 1,225 ¥
L 2 0 S0 I 30 j
1,402 T 1.99 T.z,,o

11
|
[ 3
)
o
|
H
o~
[ ]
()
o0
11

Figure 28, System No. 4. Inductor Values are Henries,
Cepacitor Values are Microfarads, Added Damping Ele=-
ments are not Showun,
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TABIE V
RESULTS OF FIRST ITERATION TEST ON SYSTEM NO, 4
WITH UNIFORM DAMPING, RESPONSE VOLTAGES
ARE IN-PHASE COMPONENTS REFERHED T0O INPUT CURRENTS

Driven  Suppressed by

Mode Modes {eps) i1 V2 v3 V4 Vs
0 - 0 1 1 1 1 1
Ay - 156,0 =1 =523 o33 .839 1,483
Az 0 ,B‘l 3.55 .5’ "'1 -e 522 0287 ¢931 10727
AB O B2 156.5 "l -.480 .2'75‘ .795 1’575
2 (computed) 15504, -1 ~u534 4308 G261 1,617

i 0,B 155,5 =1 =o485 276 - 783 1.518
4 .
Bl Lo 23200 1 '.338 "'.018 0027 ’ .108
B A 02 226'5 1 - 011 - 083 .010 .l[-QO

¥, 41,8y 22,5 =1 W77 =328 2110 151
C B . D2 239 00 -l 010'7 "015’7 -00‘72 0719
G (ccmpu‘beas 23806 -l «102 --M6 -4070 0693
Dy - 320 J87 =197 1 1,353 1,047
§ 5205 320  W218 -e202 1 -1.675 1,780

(computed) 3193 .202 -o197 1 -1734 1,818

% Drive currents chosen to suppress computed mode B.

4% Mode G ecculd not be identified using a single driving source.
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TABLE VI
RESULTS OF SECOND ITERATION TEST ON SYSTEM KO, 4
WITH UNIFORM DAMPING, RESPONSE VOITAGES
ARE IN-PHASE COMPONENTS REFERRED TO INPUT CURRENTS

Driven Suppressed £ ! :

Mode Modes {cps) i % Vs v4 Vs
0 - 0 1 1 1 1 1l
Al 156,0 -l -e523 «330 «839 1.483
A2 0 Bl 155,5 =1 - 322 «287 0931 1727
AB Bz 9 02 155 5 —l hael | 506 0304- .80’7 1.49
Alp Ea GB 155 .5 -l —e 525’ 9312 .850 ) 1059
&4 (comput 155,4 =1 we53/, «308 361, 1.62
B'q 232.0 l "0338 -.018 '02!7 .108
Bg, 2, Gy 220,0 1 016  «,065 <013 ‘o324
BY AB sCa 227.0 1 -s01l1 =,082 +010 W43
B3 X 03 22740 1 =008 «=,091 008 o440
Blp(comwu'" eés 227 43 1 001 -, 101 0003 «506

tcl 47,8y 225 -1 J177 =328 110 1,51
2 B, 238,99 -1 o120 =,18, 080 +350
G3 A3 ,gj 239,5 -1 o108 -, 158 -,065 »700
C 4 LY 239,0 <1 106 =149  -,064 659

(computed] * 238.6 -1 J102 =146 =070 693
Dl -~ 3 20 . 187 -~ 19'7 I "'--03 53 1004'7
Dy 32,02 320 195 =,202 1 -1,718 1.802
D. 33 " 319 227  =e203 1 =1,735 1.785
Di G, 319 .75 -202 1 -L7B0 L5
(co'qputeés 319,.3 202 =, 197 1 =173 1,818

¥ Mode C could not be identified using a single driving source.
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TABIE VIT
RESULTS OF ITERATION TEST ON SYSTEM NO, 4

WITH NON-UNIFORM DAMPING, RESPONSE VOLTAGES
ARE IN-PHASE COMPONENTS REFERRED TO INPUT GURRENTS

Driven  Suppressed £

Mode Modes (cps) . T2 V3 v4, Vs

0 - 0 1 1 1 11
by - 164 <1 =385 188 661 1,430
2 0 Bl 159 "'l ~» U‘:? '2“4-8 .73 l.]- 1.4:70
3 0 ,B5 160 -1 o L4T 238 0739 1,497
8 (computed) © 155,38 -1 -.534 308 .86l 1,617
Bl - 225 .5 1 -.0052 "00906 000595 .481
226. 5 1 - 0021 - QIDA .004’.8 ’ Q516
B3 ( computeas 2273 1 L0006 =,101 0003 506
G, A B 28,5 -1 J31 =197 =085 987
Gz B?.’ Dl 23 8 '-l .12.0 - 0187 - 078 » 865
C Da 23 8 "‘1 e 116 - .1.78 -3 07!:- ;820
03 ( compu’te%i) 23 8 .6 -1 102 "9111;6 -s070 069.3
Dl ] 324.5 .379 "'02'48 1 —10610-'7 1095'7
D, Bz,c 32005 o258 =o207 1 =lJ775 2,225
I° (compute 319.3 .202 -.197 1  -l.734  1.818

t Used the same set of driving currents that was used to excite
mode Cq of Table V., Mode € could not be identified with a
single voltage drive,
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E, Separation of Modes in a Complex

Airfreme Analog - System No, 5.

(1) It was desirable that the multiple drive iteration techni-
que be tested on a practical problem, preferably one involving a large
mmber of transformers. For this purpose, an airfreme analog ﬁas
obtained from the Douglas Aircrafi{ Company, El Segundo, Celifornis,
This system had been studied quite thoroughly, and good agreement had
been obtained between analog computer results and tests of the elastic
structure, However, a great deal of difficulty had been encountered
in exciting the third symmetric mode, and the final valu@s used
included a2 number of points with large phase displacement,

The physical outlines of the electrical analog are shown in
Figure 29, The basic components of the system are represented as a
rigid fuselage, an attached wing structure with coupled bending and
'torsion, and a pylon mounted engine nacelle, For symmetrical modes,
the fuselage is free to move vertically, and to pitech, 4ll anti~

symmetric motions of the fuselage are constrained to zero,

(2) 4 careful survey was made of the system modes, using a single
voltage source for excitation, Then data on the first five symmetric
modes were taken, with the drive point chosen in each case S0 as to
achieve the least possible phase displacements among the larger res-
ponse voltages. In addition, the sixth mode was recorded, to be used
in computing the excitation for mode 5,

| Next, the system was excited by & set of three current sources.,
The relative values of the input currents were computed in advance

from the best previous data on the two adjacent interfering modes.
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Each of the lowest five oscillatory modes was excited in this manner,
after which the process was repeated, 4 third iteration was made on
_ mode 3 only,

The final response voltages are compared, in Table VIII, with
the initial values obtained using a single voltege drive, In Table
IX, the corresponding in-phase components of response are éempéred.
Table X shows the driving currents used in the final runs., In order
to compute node parameters and check orthogonality, the vbltége across
every capacitor in the system was required, Table X includes those
voltages which were omitted from Table VIIT and Table IX,

From Table VIII it is evident that the simple voltage excitation
gives reasonably low phase shifts in this system, in all modes except
the third, The multiple current drive was successful in producing
a significant reduction in the phase shifts of the third mode, A
. large number of trials were made, using various sets of driving points,
in an effort to reduce these phase shifts, The values preéented
represent the best response that could be obtained with three driving
sources. |

It is inﬁeresting to note, in Table IX, that the in-phase com-
ﬁopents of response do not differ as much as might be expectéd for
the third mode, The basic shape of the mode is well defined by the
voltage drive data, despite the large phase displacements, Thus,
if high accuracy is not required, mode data containiﬁg large phase
displacements may be perfectly acceptable, The important factors
with regard to accuracy, in such cases, are the ratios of in-phase
response of the interfering modes to their quadrature response, Such

ratios can be estimated from the universal resonance curves,
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It is believed that the phase displacements which remain in the
final values of Table VIII are due largely to non-uniformities in
~ the system damping, caused by the large number of transformers,
There seems to be no way of eliminating such phase displacements
without varying the relative phases of the driving currents, and

this does not appesr to be a practical procedure,

(3) & complete orthogonality check was made from the final
mode data of Tables I¥ and X, The degree of departure from ortho-
gonality can be measured by the dimensionless ratio

X2y may bax Agt |
EIG.: = . (VIII—l)

For an electrical system with lumped capacitors, (VIII-1) can be

expressed &s
Ty 01 bax Aar

By, .  (VIII-2)

\[(ZJ' G5 Ajgz)(z C. A =2)

> r rk

In the process of compubing these ratios, the generaliﬁed fmags? of
each mode wasrobtained. From the measured power inputs, the Qs of
‘the modes were computed from (VI-12)e |

The quantities EKL and Qy are independent of the normelizing
condition used, but the My are not. In the data of Tables IX and X,
the normalization was arbitrarily chosen for convenient comparison of
the various modes, However, it was pointed out in (VI-C) that the
interference effects of the modes could best be evaluated by using
the normalizing condition (VI-1), From (VI-10), this latter condition

can be approximated by adjusting the inpul power to the same valve



for each driven mode. Such an adjustment was computed for the in-
phase voltages of Tables IX and X, making use of the fact that the
input power varies as the square of the voltage level, The necessary
normalizing factors are tabulated in Table XI, and the generalized
masses are computed on this basis, Table XIT shows the matrix of
error factors, Eyy.

Table XI gives at least a partial explanation for the diffiéulty
in exciting ﬁode 3¢ The interference from mode 2 is appfeciable, due
to its low Q, small frequency separation, and higher normalizing
factor, When mode 2 is driven, the interference from mode 3 is ree
duced by the ratic of normalizing factors, This lack of reciprocity
bétween the interactions of two modes upon one another can be quite
nislesding unless a logical normalization procedure is followed,

The low values of §Q in Table XI can be explained by the large
nunber of transformers used in the system, For the first two modes
there is good agreement with values obtained from Douglas Aircraft
Company decay records, The decay records for the third mode were so
full of Mbeats" that no estimate of Q was given, No cémparisons were
available for modes 4 and 5, The energy in mode 4 is highly con-
\centrated in one part of the nacelle analog, |

The orthogonality check in Teble XTI is excellent, and this gives
some assurance that the final mode data accurately represent the
idealized modes, The only significant lsck of orthoéonality appears
between modes 1 and 5, Due to the wide frequency separation of the
nodes, this could hardly be due to an interference effect, The
discrepancy mey possibly be due to an incorreet reading in the fifth

mode dats,
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(4) Using the final set of driving currents for mode 3, the
frequency was varied in a region near resonance, and the voltages at
coordinate h, were recorded., The variation of damping with frequency
was assumed to be approximately the same as for struetural damping,
and the relations of (VI-D-1) were employed, Figure 30 shows the
response locus and the extrapolated circle diagram., The algebraic
sign of Vhy has been reversed to put the circle in the right half
plane, The definition of the circle is surprisingly good, and the
displacement of the circle is essentially a quadrature voltage. In
computing Q3 from Figure 30, the interval between 246.5 cps and
251.,5 cps was used to evaluate d%/dw in (VI-22), The smaller inter-
val near resonance was avoided because of the lack of precision in
reading freguency from a master oscillator dial, The value of QB
computed from Figure 30 is 17,9, This is low in comparison with the
~ value in Table XI, as would be expected, since dX%/dw is meximum
at &é.

(5) During the tests on System o, 5, a mumber of practical
problems were encountered which had not appeared in the teste on
simpler systems, One of these waes the choice of driving points when
three current sources were to be used, It is desirable that all of
the drive sources be additive in their effect upon the driven mode,
and one is tempted to select the three coordinates of highest apparent
amplitude, However, these are points where large inaceuracies may
exist in the data on the modes to be suppressed, The best set of
drive points for suppressing two modes seéms to be a set with reason=
ably high amplitudes in all three modes, If the algebrasic signs of

the chosen points are satisfactory, it is possible to get a strong
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drive, and yet base the suppression on a set of accurately defined
values, There are exceptions, of course, and the technique of
choosing suitable drive points comes only with experience,

The other problem was a metering problem, which appeared when
current sources were used to drive a high Q system, If the current
sources are assumed to have an infinite output impedance, then‘it
is clear that the system impedance, viewed from the voltmeter terminals,
will be quite high at resonant frequencies, The voltmeter aﬁd associ-
ated netering circuit may have enough conductive and capacitive
loeding effect to reduce the amplitude of oscillation of the desired
mode., Since this loading effect will be different at different
metering points, a false mode shape can be obtained, It wes not
feasible to change the anslog computer metering system, so the
difficulty was overcome by paralleling one of the current sources
. with a voltage source. The voltege source was adjusted in amplitude
and phase until it delivered no current to the system. Under these
conditions, the system as viewed from the metering point appears to
be off resonance due to the constraint imposed by the voltage source.
This greatly reduces the loading effect, particularly if the voltage

source is located ati a high amplitude drive point,
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TABIE VIII

CCMPARISON OF INITIAL MODE DATA, USING SIIGIE
VOLTAGE DRIVE, WITH FINAL MODE DATA, USING THREE
CURRENT DRIVES, IN SYSTEM NO, 5.

Mode 1 Mode 2
Excitation Voltage Current Voltage Current
Drive Pcints h39easP1 h2 hl,az,pl
Frequency (cps) 161 161 224 223.3
Coordinate
hy 18,6 (-1) 20,9 (-3) 15,0 (=8) = 11.95(0)
hy 11.5 (0) 1345 (1) 8,85(-6) 6455(e5)
ho 5464(0) 6,85(=.0) 4e0 (=6) 2.92(0)
hy 133 (~2) 1.39(-3) 1e16(-7) o83 (=4)
hy - 118(e5) - Les4(e5) +10(~40) «13(90)
ay, 25(=3) 30(-1) - W83(-1) - 58(-2)
A 28(~2) 34(-1) = J6(-1) - .53(-2)
o o86(=3) 1,05(=1) = 2.78(~2) = 1,91(-2)
aN .80(‘3) .99("08) - 2081("2) -1094("3‘)
U.l 061("2) 074("o8) - 1065("2) - 1015("'11‘)
%oen «25(45) «30(-1) 31(.5) 22(5)
0'0 : 03 0(3 ) 036(3 ) olkl(“‘o 5) . 030(3 )
pl - 4‘98("'2) - 6.08 (4.) 16.5(-6) 15 025 ( 05)
Py W64(-1) .80(0) - 1.37(2,5) = 1.00(=3)
r3 J19(-1) «24(2) - 79(3) - 58(0)
Py - $04(=13) - L04(-17) «81(-3) 57(-6)
Py - J46(2) - 56(3) - 1.38(=5)  « 495(=4)
6, 8443 (0) 10,1 (-1) 8.96(~7) 6,67(-1)
6y 6496(05) 8.38(0) 6.046(=6) 4.474(0)
o 5,08(45) 6.13(s5) 3451(~5) 2,57(1)
Oy hel5(5) 5440(e5) 3460(=5) 1.92(2)
Ogen 1.41(-1) 1.70(-2) o51(=4) +40(20)
h 2.’73 (--5’) 3 033 (-1) 2000("6) 1046("05’)
ag - 99(3) -19(2) = 3.82(20) - 2,71(=3)
8, 5010(0) 6415 (0) +50(=22) o4k(22)

Values shown in parentheses are phase angles in degreec referred

4o input currents.
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TABLE VIII (continued)

‘ . Mode 3 Mode A
Excitation Voltage Current Voltage Current
Drive Points he hosapePy Pg By 4 PosP%
Frequency {cps) 243,5 243.5 387 387
Coordinste ’

hy 3.78(=15)  1,37(-16) 2:42(3) = 4.12(.8)
hy 1.78(~9) $67(~15) .60(6) - «99(=ak)
I, «84(25) o22(-11) = 03(-32) = .07(17)
hy - o88(«29) = WA5(=4) - L06(0) - J2L(7)
hO - 2.36(5) bl 1-40("1-) - 012'(5) ,23.(3)
ay, 2.82(29) 1.30(8) 02(38) - 03(39)
o3 2,77(28.5)  1.28(8) O4L(15) - J06(13)
o 9.30(29) 4+37(8) #10(12) - W17(17)
oy 9.20(29) 4e32(8) «09(12) - J16(18)
L 5476(29) 2,67(8) W06(12) - J11(18)
o - J23(45) - .18(23) W004{~5) = L007(~14)
Ao - 62(34) - «27(13) 004(0) - 4006(~12)
Py 27,0 (29) 12,95(3) - 1,98(=2) 3.88(2)
o - &79(36) = «22(=16) 219,11 (~3) 343 (=e2)
r5 - 1.86(27) - .'78(33 1.50(=1) = 2.72(0)
v - 3.55(29) = 1.63(5 - o24{4) W41(3)
P 675(20)  3.05(6) - (7s(3)  137(<)
6, 2456(~24,) 86(<19)  2.59(=2) = 4e35(-1)
ey 1484, (~24) 62(=16)  1,19(2) - 2.03(.8)
o 1,06(-38) «27(~20) 05(29) - L06(5)
oy 292(-55) JA4(=31) - 24(-A) «42(0)
o 1.92(13) 1.01(,5) - .02(~33) «02(-20)
C 2,18(23) 1,03(3) .12(7) - 20(2)
h 087(72} - 002(-2-1&) . 1005("‘7) ‘ ’11(10)
I 9.28(31)  4e24(9) 29(5) = +34(8)
o 6.80(24) 3.43(7) - L20(<14) «34(-10)
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TABLE VITTI (continued)

Mode 5
Exeitation Volbtage Current
Drive Points 94 h2,93,p5
Frequency (cps) 515 517
Coordinate
hy - 6,50(-1) 14e25(=5)
hq 1.09(7) - 2.39(~14)
hz 2:30(.5) - 5,0L(=7)
h ¢94,(=46) - 2,05(«7)
ne - +2000) o3 (-3)
0.4 026(-2) - 057("9)
a3 »12(0) - $27(-12)
G.:g 016(-2) - ~38("1-1)
Q .02(-10) - $05(=14)
OSea 203(~4) - .06(-8)
5 02(3) - $05(~2)
Py 1.81(0) - 34925(~4)
D, - «66(7) T.47(-11)
P o45(=~6) - 97(3)
v 43(3) - L3 (=9)
P - +80(-4) 1474(-8)
94 =11e65(=e6) 25,75(=7)
e ~ 3443(=3) 740(=3)
A 994 - 2.15(-8)
GN 1041(1 - 3010("7
91 1069(l5) - 3068("7)
Oren 90(=6) - 1.95(-6)
ha 1063 ("05) - 3.55 ("7)
g - «59(2) 1,26(=7)
Qa 1040(1) - 3.05(-7)
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T4ABLE IX

IN.PHASE COMPOMNENTS OF RESPONSE IN SYSTEM KO, 5,
INITTAL VOLTAGE DRIVE COMPARED WITH FINAL CURRENT DRIVES
FOR EACH MODE, VALUES HNORMALIZED TO BE EQUAL AT Oy POINT,

Mode 1 Mode 2 lede 3
Exeitation Voltage Current Voltage Current Volisge Current
Drive Points hs h3,8,,Dq hy hy 400,17 hg hgeUys Py
Frequency(eps) 161 161 22/, 22343 RA345 248,.5
Coordinate ‘
h/“_ 1,00 1.00 0907 o784 +155 « 102
h3 619 YA 337 o430 075 «050
h2 0303 «328 243 191 «032 #0177
hl 061 066 <070 o054 - o033 - o035
h0 - 063 - 069 005 0 - 100 - o108
G:A‘ 0013 . 015 - 059 -~ 03 8 » 105 ' Y 100
. 0'3 .015 0016 - .046 - .03!;, .103 o .098
ay 046 050 = 167 - 125 346 . W335
aﬁ 042 # 047 - o171 - o127 o342 o331
a7 «033 0036 - 101 - 075 o214 204
Coen «013 +0l4 +019 015 - 013 - o013
Oo 2016 +017 +025 020 - 022 - o020
Pl - 0268 - 0291 1.00 1.00 1000 1000
Ps 034 +038 - J08L - 066 - 027 - 016
Py 011 «011 - JO48 - 038 - 071 - 061
p4 - 002 - 4002 «049 o037 - 4131 - 125
o - 4025 - o027 - 084 ~ 062 250 235
e L 453 o485 542 o438 «099 <063
8 o321 «£02 392 311 071 D46
Qg o273 294, o214 <169 035 +020
GF 239 259 o157 o125 T G022 o009
o4 215 232 o128 102 L79 078
Oen 076 082 031 026 ,085 080
hy 11 «159 121 09 - L0111 - 001
[ - 053 - 057 - #2220 - 178 339 o325
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TABLE IX (continued)

Mode 4 Mode 5
Excitation Voltage Current Voltage Current
Drive Points Pg h,49249¢ 8, ho,83,p5
FPrequency (cps) 387 387 515 517
Coordinate
h/ '127 - .120 -1.00 1.00
hy 031 - 4029 2166 - 164
’ - o003 003 o145 - ol43
ho - 4006 «006 - o031 31
. «001 - o002 +018 - J019
ag 1905 - 0005 0025 - 0025
GN .005’ - . 005 - . 004 Y 002
CLl ;003 - .003 QOOB - 0004
Coea 000 - 0002 <004 - o004
a, 000 - (0002 + 004 - 004
Py - o103 o113 278 - 276
p2 ~1,00 1,00 - o101 o102
p3 0079 - 0079 .069 - .068
. PA bt 0012 0012 .073 - .071
p 5 - e 03 9 0040 - .123 . .3.21
] ) 136 - o127 ~1e79 1.803
93* $062 - 2059 -~ o526 520
92 .002 - 0002 0151 ’ - 0150
QN - e 012 '3 012 .21'7 b 0217
01 000 +0006 «260 - 258
goea 0006 - ¢006 : 0138 b .137
h, ~ 4003 <003 o251 - o248
oo +010 - 4010 - 4091 088
95l - o010 010 215 - o213
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TABIE X
DRIVING CURRENTS AND ADDTITIONAL CAPACITOR VOLTAGES

FOR FINAL MODE DATA OF TABIES VIII AND IX,

Mode 1 Mode 2
cl 12,45(.5) .597 -15,55(-1)  -1,020
c2 - 1.66(7) - 079 5.,19(2) | «340
C3 - 1.89(6) - 090 5,75(2) 37
C4 .33(3) L016 1,53(=3) .100
c5 1.37(3) 066 314(=5) 205
- Cb - .58(2) - 028 - 2.72(-4) - .178
G’? - 1. 11’4-(3) - . 051& - 3 06'7 ("3 ) - 0240
c8 1,88(=5) .090 - 2.57(5) - .168
c9 1.84(-5) .038 - 2,01(5) - 132
clo 20,8 (-3) .100 12,5 (0) «820
cl1 13.9 (=1) .667 6.00(1) o394
c12 7 e45(=.5) 357 1,78(2) L116
C13 1.91(=2) .092 .02(=27) .001
Cl, ' 1.08(-.5) .052 - W32(-22) - 020

"

Mode 1 Excitation: Ih3 W26/ Ig, = «2416; Ipl =~ 125

fl

Mode 2 Excitation: Ihl 7625 Iy, =.,2775; Ipl = L125

~

First column for each mode shows measured values, with phase
angle in degrees, referred to input currents., Second column
shows normalized in-vhase components, Driving currents are
given in millianperes,
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TABIE X (coutinued)

Mode 3 Mode 4

cl -10,00(1) -~ M5 8.75(2) 2255
ve] 5405(4) 391 36,0(1) 1,050
c3 5484(4) o451 38,5 (5)  1.122
C4 - 2.29(7) - 176 1.37(1) <040
c5 - 7.70(5) ~ 59/ - 1.70(=2) - 049
ch LeO4L(7) 312 ~ 2.38(0) - ,069
c7 7,02(7) <540 - 1.02(4) = 030
c8 7.13 ('73 o543 ~ W75(3) - 022
) 5,58(7 430 - «35(3) =~ .010
c1o 55 (=82) 006 ~ 4e12(0) - +120
c1l 1.93(0) 150 - 1,05(0) - J031
c13 1446(11) J111 W04L(-15)  L001
cl4 1.66(.5). 2129 - 2003} - 006

Mode 3 Excitation: Iho = - 1,612; Iy = $988; Iy = o125
Mode 4 Excitation: Ihl,, = ~,016; ZI'_p2 = ,1625; Ipé = 4012

Mode 5
cl «86(=5) »060
Go?. - .22(58) - 0008
c3 «85(=8) «059
Cl - «83(~23) - o054
c5 - 4410(~7) - o287
cé 1.41(~11) «098
c7 3.18(=9) 221
c8 - 97(-8) - 068
09 - 2&01(“8) - .140
clo 1449(~5) 1.046
Cll - 2,69(=14) - .184
cl12 ~ 5426(=7) - 367
C13 = 2,12(=7) - J148
Cls ~ &38(=4) - o0R7

Mode 5 Excitation: 193 = o145 Ips = o543 In, = -+ 865
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TABIE XTI
NORMAL MODE PARAMETERS FOR SYSTEM NO, 5,

Mode " 1 2 3 4 5
Frequency (cps) 161 22343  248.5 387 517
Normalizing Factor : S

for Tables IX and X 1.90 191 1,00 1.63 1430
Generalized "Mass® (uf) 998 1,27 075 Jank 275
Q 209 36,9 219  25% 185

% These are minimum possgsible values, Exact velues for Mode L
cannot be given with certainty, due to a discrepancy in power

input data,

TABIE XIX

ORTHOGONALITY CHECK OF FINAL MODE DATA IN TABIES IX AND X,

AS THDICATED BY THE MATRIX OF RATIOS Egy.

Mode 1 2 3 4 5
1 1,000 - #0128 0103 »0008 ~ 0539
2 - <0128 1.000 «0089 #0015 - ..01'7'7
3 0103 20089 1.000 0014 - L0046
4 »0008 0015 0014 1.000 <0177
5 - 0539 - 0177 - 0046 0177 1,000
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IX., DISCUSSION AND CONCLUSIONS

In this work, an effort has been made to find some practical
7solutions‘to the two major problems discussed in Part I, The nature
of the problems are so general that no coverage of the subject could
?oésibly be regarded as complete; The work has been directed pfi—
marily toward sn investigation of approximste solutions which are
simple enough to be of use in industrial problems .

The writer feels that the contributions of greatest pracﬁical
value are contained in Part VI and its extensions.‘ The theory
developed there is based upon the assumption that a systém»is uniformly
damped, Admittedly, such an assumption is restrictive, butvsome
property of the demping must be specified in order to simplify
the analysis. It has been demonstrated that the condition of uniform
damping applies approximately to 2 number of important types of’k
'physical systems, The theme of the entire investigationkns,beén
that'the degree of wniformity of damping is an important,syétem'
property, together with the smallness of damping. B

Multiple driving methods and iteration technigues are in general
use in the aireraft industry at present, 4 method caﬁmonly employed
'is'to drive the system at apparent nodal points or lines of an
undesired mode, The disadvantage of this approach lies in the fact
that the low amplitude coordinates are usually the least accurately
defined coordinastes in a mode, and the true nodes may be quite
different from the apparent nodes, Meoreover, the nodes may be
inconveniently located for driving purposes, in a continuous system,.
and they may not be physically available in a lumped‘farameter |

system,
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It is believed that the iteration procedure proposed in. Part
VI will be very valuable in systems where three or more modes are
. badly interfering. During the early stages of the investigation,
an opportunity was presented to test the method on a cummercialﬁ
problem in the Analysis laboratorye. The structure being studied
had two modes closely adjacent to a third mode vhich was being
driven, Many attempts were made to obltain a suitable excitation,
and finally a reasonably good result was obtained with a‘differential
voltage drive, To test the proposed current drive method, the best
previoug data on adjacent modes were used to compute a set. of
drive currents, This excitation gave essentially the same mode
shape as the differential voltage drive, but the phase shifts“Were
somevhat less, The data gave an excellent orthogonal ity cheék.with
other bmodes, and were used in the commercial report. Valuable time
. might heve been sagved had the current drive method been used in the
beginning, |

The problem of exciting a system which has degenerate modes was
not considered in detsil, For cases of degeneracy or ﬁear degeneracy,
the proposed 7iteration procedure becomes impossible or impractical,
\The asccidental occurrence of modes which are completely degénerate
is not likely in an aireraft structure, but near degeneracy is some=~
times encountered, It is believed that no single procedure can be
applied to all such cases, There are a few rather oﬁvious techniques
that might be tried, such as the following:

(1) 4 trial and error procedure with two current sources might
be used, in an attempt to eliminate relative rhase shifts, This would

not be practical in the presence of additional interfering modes,
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(2) The system might be altered slightly by adding a variable
mass at some point, in an effort to spread the two modes apart,

&)

Once the éeparate identities of the modes were established, a
suitable drive could be computed for each., The perturbing mass
could then be reduced slowly to zero, with small adjustments in the
drive, if necessary, to maintain low phase shifts,

(3) If there is a small, but detectable, difference in the two
mode frequencies, then some advantage might be gained by driving
each node slightly off its resonant frequency in the direction away
from the interfering mode, In this way one could take advaﬁtage
of the maximum slope region of the resonance curve,

A second problem which has not been considered is that of finding
suitable excitations for taking decay records of pure modes, and of
interpreting such records when they sre badly distorted, This prob-
'1em, and the problem of nearly degenerate demped modes, are suiteble
topices for further investigation,

Although a quantitative measure of the uniformity of damping
has been proposed in Part VII, no studies of specific cases or
specific system types have been made, Additional work:should be done
along the lines of correlating the quantities QKS’ defined in
(VII-21), with the errors resulting from the use of equivalent
orthopgonal systems, A method of measuring BKS experimentally would
be quite valuable,

In summary the following conclusions can be stated:

(1) Exact normal mode analogs exist for systems with shunt

damping or for systems with any type of uniform damping,.
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(2) The degree of uniformity of demping throughout a system
is an important considerztion in simplifying the analysis of the
- system,

(3) Kpplication of the normal mode orthogonality property
provides a sensitive criterion for estimating normal mode frequencies,
(4) Practical approximate methods of evaluating normal node

perameters are available,

(5) A multiple drive iteration technique has been uéed success-
fully for the suppression of interfering modes under steady state
conditions,

(6) Moderate phase shifts in the steady state response of a
system do not necessarily result in inaccurate mode data, 1f the
system is driven at the proper frequency ond the in-phase components

of response are used,



1.
Qe

3

e

5e

%e

10.
1l.
12,

13,

15.

146
REFERENCES

Strutt, J. W., Baron Rayleigh: "The Theory of Sound," Vol, 1,
Macnlllan and Co,., London, 1894,

Strutt, J. W., Baron Rayleigh: "Seientific Papers," Vol, 1-6,
Cambrldge University Press, London, 1899-1920,

Poritsky, H., and C, S. L. Robinson: "Torsional Vibration in
Geared-Turbine Propulsion Equipment," 4,S.M.E, Transactions,
V. 62, p. 4117, 1940,

Inglis, C. E.: "4 Mathematical Treatise on Vibrations in
Railway Bridges," Cambridge University Press, London, 1934

Crookes, S. T "Structural Design of Earthquake-Resistant
Buildings," Leightons, Ltd., Aukland, New Zealand, 1940,
(Chapter II).

Robb, 4ds Me: "Theory of Naval Architecture," Charles .Griffin
and Co., Ltd., London, 1952,

Kennedy, C. C., and C, D. P, Pancu: "Use of Vectors in Vibration
Measurement and Analysis," Jour, of Aero., Sciences, V. 14,
p. 603, Nov. 1947,

Lewis, R. Ce, and D, L, VWrisley: YA System for the Excitation
of Pure Natural Modes of Complex Structure," Jour, of Aero.
Sciences, V., 17, p. 705, Nov, 1950,

Macleal, R. He, G, Ds McCann, and C, H, Wilts: "The Solution of
&eroelastic Problems by Means of Electrical Analogies," Jour,
of Aerc. Sciences, V, 18, pe 777, Dec. 1951,

Everitt, W, L.: "Communication Englneerlng," 2nd Ed., Ch. 1,
McGraw-H:.ll New York, 1937,

Von Kerman, T., and M, A, Biot: "Mathematicsl Methods in
Engineering," McGraw-Hill, New York, 1940.

Guillemin, E, A.: "The Mathematics of Circuit Analysis," Ch, 6,
John Wiley and Sons, New York, 1949,

Gardner, M, F,, and J. L, Barnes: "Transients in Linear Systems,"
Vol, 1, John Wiley and Sons, New York, 1942,

Thomson, W, (Lord Kelvin), and P, G. Tait: "Treatise on Natural
Philosophy," Vol, 1, No., 343b, Cambridge University Press,
Londen, 1879,

Scott, R, Fe, and G, B, Matthews: #The Theory of Determinants,"
2nd ...d., Ch, 6, Cambridge University Press, London, 1904



AV

16, Routh, E, J.: "Advanced Dynamics of a System of Rigid Bodies,"
Vol, 2, 6th Eds, Macmillan and Co., London, 1905,

17« Guillemin, E, 4,: "Making Normal Goordinates Coincide With
the Meshes of an Electrical Network," Proc, of T.REsy ¥V, 15,
p. 935, 19276

18, Guillemin, E. &,: "Communication Networks," Vol, 1, John
Wiley and Sons, New York, 1931,

19. Guillemin, E, A.: "Approximate Solutions for Eleetrical
Networks When These 4ire Highly Oscillatory,” Trans. deIEJE.,
Ve 47, pPe 361, 1928,

20, Guillemin, E. A.: “"Commnication Networks," Vol, 2, John
Wiley and Sons, New York, 1935, '

Rle McCann, G, Ds and R. H, Maclleal: "Beam Vibration Analysis
with the Electric Analog Computer,” Jour, of App. Mechanics,
V. 17, pe 13, March 1950, _

22+ TFoster, R. Ne: "A Reactance Theorem,” Bell System Technical
Journal, V, 3, p., 259, April 192/,

23« Maclleal, R, He: "Transformation Theory of dnalogies," from
course notes, "Theory and Operztion of the Blectric Analog
Computer," Calif, Institute of Technology, Summer, 1951,

Rke Wilts, C. Het YApplication of Amplifiers to Analog Computation,”
from course notes, "Methods of Machine Computetion in Engineering
Analysis," Calif, Institute of Technology, 1953-54.

25, Coleman, R, P,: "Damping Formulas end Experimental Values of
Demping in Flutter Models," N.A.C.A, Technical Note o, 751,
Washington, Feb, 1940,

26, Traill-lNash, R. W.: "The Response of a Demped Contimious
Iinear Blastic System to Transient Foree," Report S.M, 132,
Div, of Aeronautics, Dept. of Supply and Development,
Melbourne, Australia,

27. Morduchow, M.: "On Applicetion of a Quasi-Static Variational
Principle to a System With Damping," Jour, of App. Mechanies,
Ve 21, D8, March 195/, '

28, Hopkinson, B., and G, T, Williams: "The Elastic Hysteresis
of Steel," Proc, Royal Society of London, Series 4, V, 87,
p. 502, 1912,

29« Rowett, F. E.,: "Elastic Hysteresis in Steel," Proc, Royal
Society of London, Series 4, V. 89, p. 528, 1914,

30, Kimbell, A, L. and D, E, Lovell: "Internal Friction in Solids,"
Phys, Review, V. 30, p. 948, 1927,



31.

32,

33.

34

35.

364
37,
38,

39,

4le

148

Schabtach, Ce, and R, O, Fehr: "Measurement of the Damping of
Engineering Materials During Flexural Vibreztion at Elevated

Kimball, A. Le: "Friction and Demping in Vibrations," 4.S5.M.E.
Iransactions, pp. 4=37, A-135, 1941,

Robertson, J. M., and A, J. Yorgiadis: "internal Friction in
Engéneering Moterials," A.S.M.Is Transactions, V., 68, p. 4-173,
19464

lazan, B, Je: "Effect of Damping Constants and Stress Distri-
bution on the Resonance Response of Members," Jour, of App.
Mechanics, V. 20, p. 201, 1953,

Theodorsen, T., and I, E, Garrick: "Mechanism of Flutter -
A Theoretical and Experimental Investigation of the Flutter
Problem," N,4,C.A. Report No, 685, Washington, 1940,

Myklestad, N, Oe.: "The Concept of Complex Damping,"'Jour. of

Bode, He We; "Network Analysis and Feedback Amplifier Design,"
Ds Van Nostrand Co., New York, 1945.

Churchill, R. Ve.: "Introduction to Complex Variebles and
Adpplications," McGraw-Hill, New York, 1948,

Lewis, R. Co, and Wrisley, D, L.: YReport on Excitation of
Pure Natural lodes of Complex Structure; Phase &, Experimental
Development," Mass, Inst, of Tech,, Aero-Elastic and Structures
Research, Contract No, N1568-25797, 1949,

Lerage, We Rey and S, Seely: “General Network Analysis,”
McGraw-Hill, Hew York, 1952,

Russell, W, Te: "Lumped Parameter Analogies for Continuous
Mechanical Systems," Ph,D, Thesis, Celif, Inst., of Tech., 1950,



149
APPENDIX

A. Fesonance Properties of Single Degree of Freedom

System with Shunt Demping,

For a sgimple tank circuit with shunt damping, the input impedance

g = L - = R+ jX
G+ 3 -
jloc wL)

where - (00 - 1/L
R= G 3 X G /o)

a2 + (ot - 1/mL)2 o2 + (o0 - :L/a.>L)2

The resonant frequency and the Q are given by

0340 1
g = e H Q’O = --—Gq-- = .
NET: G gL

Near frequency Mgy

X = Ml = Roz(l/&)L - af)

GZ
and :
ax - 2( 1)_ 5 2 .
— = = R C+——2 ==« 2R ,
A (d'”> ° Iwo °
o

o
®o

Hence, Q Wy (dX )

On the circle diagream of input impedance, the diameter of the circle
is equal to R,, the shunt resistance.

The expressions for R and X, in terms of G,
21 -1
2 0 O ]
+ —" ey e
R=FR [1 QO My W )

X = -0 (-fél--“-’?-)n .
C)o (40

and &,, are

H
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If we let o = w, (1 +€), then €= ba}/wo, and

(__“_’_“_19 =e(2+6>
\ Wy w 1l+€

Thus,

] -1
R:Ro [1‘!’@ € (1+€

2 +€
X“"Qo€<1 +e) R .
For € << 1, R and X are approximately functions of the single parameter
(@ €)s

e

R 1
R~ I+4lgeR °

-2Q,€

I
1

oyl

o 1+4(Q€ )2

The “universal" resonance curves {for Q = o) are plotted from these

exmressions,
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B. Resonance Properties of Single Degree of Freedon

System with Structural Damping,

Usiﬁg the structural damping approximation of (V-5), the equation

of a single degree of freedom oscillator with such demping is

jg

M +e " K)YU=F .

If the system is forced sinusoidally at freguency w, the mechanical

"admittance? of the system is
_F - (K g ; i
Y=% = ((D sin g) + JlM- 2 cos g) .

At the damped resonant frequency, 65, the imaginary part of ¥ must

vanish; hence,

a;‘-:]/ ﬁcosg =mo‘\/ cos g

“vhere m o is the resonant frequency of the corresponding undamped
system, The "Q" of the spring element is the ratio of the imaginary

partto the real part of the spring Y"admittance", or

_cos g 1
—sing_'bang

For gtructural damping, Q does not vary with frequency.

Consider the expression

~ K sin -
Y:%Y:x — g+j% (wz-g)z)
w [4)] [4}]

When plotted as a function of w, this is a vertical line in the conm~-

plex plane, The inverse quantity,

Z=2=%+ X

<



1=
\n
™o

has & eircular locus in the complex plane, with a diameter

§ oo
K sin g

which can be expressed as

‘@

ﬁ= °
° ¥

gl

Inversion of i, and differentiation of the resulting ¥ with respect

to w, gives

These relations can be expressed in terms of the electric analog
by replacing M by C and K by J/L .

In order to plot universal resonance curves, we can invert ¥,
and express the resulting R and X in dimensionless form, in terms
of Q, Eo’ and € , as was done for shunt demping in Appendix A,

The resulting expressions are

R___1+c¢€
Ro 1 + g2 (a+e)?
X==Q€(R+€E)R .
For € << 1, the resonance curves are essentially the same as

those for shunt damping, the curves for "Q = oo" being identical,
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Ce Resonance Properties of Single Degree of Freedom

System with Series Damping.

In a resonant tenk circuit with series resistance, r, in the

inductor, the admititance is

Y.—:( L )'l'jw((?-—""l*"’“f"-).
r‘2 + @2L2' rz + (,021.2

At the demped resonant frequency, @, Y must be real; hence,

~2 _ 1 (L 12) _ 2<1 1)
AR = @m -
Lz(c ° O

where w, is the resonant frequency of the undamped system, and Q,

is the Q of the inductor at frequency w,. At frequency &, the

inductor has a ¢ defined as

2

bj:@: \,2-1 »
r o)

A&t the damped resonant frequency, the resl part of Y is

a rC ‘D(:;C‘__=

- —

°c L Q

of &
L ]

o

The real part of Y varies with frequency, so the locus of Z = 1/Y

is not circuler., However, we can plot the reciprocal of

§=cﬁg’>>)2¥= ~ l“?.'”‘” (a‘%j)zc' 2'~2L =5
[@ ()] [+ (3]
For a >2 1, the real part of ¥ is essentially constant near resonance,
and the locus of the reciprocal, 2, is essentially a circular are

with a dismeter

~ .,2—
Ro=r'(1+Q)..

& lo
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The expression for Y can be inverted, and if the imaginary

part of Z is X, differentiation gives

(&) - 2L .
doly @R (1 + 1/6°)

I G2 > 1, this expression becomes

(&) >
&D L
a
which is used in (VI-33), with ﬁo replaced by D.
In order to plot universal resonance curves, we can invert ¥,

-2
*

mn

Sl e

and express the resulting impedance components in dimensionless

-form. The desired expressions are
2 4 'ézez(l +e)2
(62 '5262) 14 (1 +€)°%(2 +€)? @666
+ G ~
4 (62 + Q2€2)2

€

R
Ry

- (L+e)2+e) TP’
%)

(€? + 5P

For € << 1, these functions approach those for

&

where € = =%
o

*

shunt damping,
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