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ABSTRACT

A thermal theory of laminar flame propagation for hydrocarbon-
oxygen flames is described. The method of analysis follows the earlier
work of von Karman and his collaborators. The problem is gr‘eatly
simplified by the introduction of several approximations and assump-
tions.

| In Secfion IIlthe problem is formulated and approximé.te solutions
are given for hydrocarbon-oxygen flames, assuming a second order rate-
controlling step. Approximate analytic solutions have been obtained for
all mixture ratios. |

Hydrocarbon-oxygen-inert gas mixtures are considered in
Section IV. A second order rate-controlling step is again assumed and
solutions are given for various initial gas compositions.

An attempt is made to correlate experimentally dete.rmined
burning velocity data in Section V., Reference to Section V shows that
a good correlation was obtained only for iean mixtures. Absolute values
for the laminar burning velocity cannot be estimated because of the lack
of data concerning reaction mechanism and specific reaction rate

constants.
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I. INTRODUCTION

The problem of laminar flame propagation has been considered
by many iﬁvestigators. Extensive references to the published literature
on this subject may be found in the well-known books by Lewis and
von Elbe(l) and by Jost(z) as well as in a survey report prepared by
Evans(3). In view of our obvious lack of detailed knowledge concerning
chemical reaction rates in regions of active combustion, we shall not
be interested in obtaining rigorous solutions to the complete set of
differential equations, a task which has been tackled particularly by
Hirschfelder and his collaborators(4). Instead we shall cohtent our-
selves with a simplified formulation of the problem of laminar flame
propagation with attempts to develop a phenomenological description
of flame Veloqities for hydrocarbon-oxygen-inert gas syst'erns.‘

The methods of analysis used in this paper are applications of
the procedures introduced by Th. von Karman and his collaborators('r)" 7).

Before discussing hydrocarbon flames, summary remarks
concerning approximations used in some of the published theories of .
laminar flame propagation will be given (Section II}). A phenomenological
theory of laminar flame propagation in hydrocarbon—oXygen mixtures
is developed in Seciion III. The corresponding analysis for hydro-
carbon-oxygen inert gas mixtures is given in Section IV. Attempts at

correlating experimentally determined burning velocities with the

theoretical equations are described in Section V.,
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II. SUMMARY REMARKS CONCERNING LAMINAR FLAME THEORIES*

The published theories on laminar flame propagation may be
classified as comprehensive theories, thermal theories, and diffusion
theories. In the comprehensive theories an attempt is made to deduce
a complete description of the flame, including expressions for the
velocities and concentrations of all chemical species as fgnctions of
distance or tefnperature, without assuming that energy and mass trans-
port, either by conduction or by diffusion, are of dominant importance.
Mass transport of atoms and free radicals by diffusion is of primary
importance in the diffusion theories; the burning rate is largely con-
trolled by heat conduction in the thermal theories.

Typical approximations and assumptions made in various
published(3) th.eoretical studies (of course, not all at the same time)
of laminar flame propagation are:

(a) All quantities depend only on a single space coordinate, that is,
the problem is one dimensional.

(b) All quantities are independent of time, that is, a steady state is
assumed to exist.

(c) Velocity gradients are small; hence viscous forces may be
neglected.

(d) The pressure is constant across the flame front.

(e) A single rate-controlling reaction is assumed as a basis for

the reaction rate law.

% For references to the original literature concerning the summary
statements made in this Section II, the survey paper by Evans
should be consulted.
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(f) All molecules are taken to have the same mass and dimensions.

(g) An ignition temperature concept is often used, that is, the
initial mixture is prepared for combustion by conduction of
heat to the unburned gas until the ignition temperature is
reached, at which time chemical reactions begin to occﬁr.

(h) In some diffusion theories it is postulated that the initial mixture
is prepared for combustion by diffusion of atoms and free
radicals from the hot burned gases. In these theories the energy
equation is neglected and a simplified temperature profile may
be used.

(i) In some diffusion theories the instantaneous concentrations of
active particles are assumed to be determined everywhere in
the flame by an equilibrium between active particles and the
initial gas mixture. In other treatments, equilibrium concen-
trations of active particles are assumed for the corni:letely
burnt gas and the active particles diffuse back into the unburnt
mixture. |

(j) If chain-branching occurs, the velocity of the chain-branching
reaction is sometimes taken as the limiting factor which
determines the flame velocity.

(k) The heat capacity, coefficient of heat conductivity, and diffusion
coefficients are assigned average values or elée are represented
by simple functional forms.

(1) Thermal diffusion is neglected.

(m) The ideal gas law is assumed to be valid.
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Some of the assumptions and approximations are not justified
and gre made only in order to simplify the problem and make it
tractable by ordinary means (e.g., f, h, i, j); some approximations
are introduced because exact data or relationships between variables
are unknown (e, k), and others because experience has shown- that
they lead to valid first approximations (a, b, ¢, d, g, k, X, m).

The validity of approximations and assumptions in anjr given
case depends upon the particalar problem which is being investigated.
Theorists in the field of laminar flame propagation agree that both
thermal and diffusional processes play a part in flame prdpagation.
However, the relative importance of the two processes is not .k'nown
until a complete description of the chemical reaction mechanism, as
well as accurate methods for calculating the diffusion coefficients and
thermal conductivities, are available.

It should be noted that most thermal theories yield results which

indicate that flame velocities are proportional to some function of

A T.-T,
£ *, where T, is‘the final temperature, T. the ignition
c_f 'I‘i - T-O f * i
i

temperature, To the initial temperature, » a thermal conductivity,
p the average specific heat, and p the density. Diffusion theories
generally yield results which indicate that flame velocities are pro-
portional to a function of the diffusion coefficients and an average
temperature,

Our approach to the problem of laminar flame propagation in

hydrocarbon-oxygen-inert gas mixtures involves the reasonable

approximations expressed in (a), (b), (c), (d), (g), (k), (®), and (m).
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In addition, we discuss only a thermal theory for a one-step chemical
reaction (assumption e) using constant molecular weights (assumption
f). We shall find that our simplified analysis leads to an acceptable
correlation of burning velocities, at least for lean mixtures (Section V).
Although the idea of a single ™effective® rate-controlling reaction
step for a flame-reaction is not unreasonable, the particular functional
form of the relation used by us cannot be justified in genéral”’ 8). For
free radical and chain mechanisms, the overall rate law may well be
complicated as it is, for example, in the steady-state treatment for the
hydrogen-bromine reaction. About the best that can be said for our
particular choice for the overall reaction-rate law is that deta.iled
treatments (see, for example, the book by Lewis and von Elbe(l),
Chapters IV and VII, ) show that, neglecting surface reactions, the fuel
and oxygen concentrations enter sometimes to the first power. An
attempt at empirical correlation of laminar burning velocities, without

(9)

detailed theoretical analysis, has been made previously by D. L. Ritter'”’,
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III. DEVELOPMENT OF THEORETICAL EQUATIONS FOR
CORRELATING BURNING VELOCITIES IN HYDROCARBON-
OXYGEN MIXTURES

The detailed chemical reaction steps in hydrocarbon-oxygen-

inert gas mixtures are understood only incompletely(l’ 2, 3).

Further-
more, neither the specific reaction rates nor the transport coefficients
can be estiméted with any degree of accuracy. For this reaéon it is of
obvious interest to attempt a phenomenological overall description of the
chemical processes involved, and to assess the utility of the simplified
theory by the success of the resulting equations in correlating observed
experimental data. With this objective in mind we may consider the

overall reaction

F + 0, — 2P (1)

as a first approximation to the rate-controlling reaction step in hydro-
carbon-oxygen-inert gas flames. Equation (1) represents a second-
order chemical reaction,which is in accord with the observation that
the linear burning velocity for some hydrocarbon flames is nearly
independent of pressure. As has been pointed out repeatedly before,
the linear burning velocity for laminar flames described by a single
rate-controlling chemical reaction varies as the pressure raised to
the (@ /2)-1 power, where ¢ is the reaction order of the slow
chemical process. Thus for o = 2 the burning velocity for a one-
step process is independent of pressure.

For the sake of simplicity we assume that the molecular weights

and the specific heats of the reactants and of the reaction products are
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constant and equal to W and Cp’ respectively. Let N noz, and ng
represent. the number of moles of F, 02, and P, respectively, the

initial number of moles being nOF, noO , and n? = 0. Let § repre-

P
2
sent the number of moles of F and O2 which have reacted and 2§
the number of moles of P formed. The total number of moles, oo, is
evidently constant and equal to ng + n;., . Since the molecular
2

weights of the chemical species F, 02, and P are equal, it follows

that the mole fractions and weight fractions are equal. Hence

Y. = (no -?)/(no + no), Y = (1'10 —?)/(nO + no)
F F 02 F 02 02 02 F
-YP = Z§/(n2)2 + n;.).
Let
Yp = ¢, | (2)
whence
T = (&/2) (n‘(’32 + np) .
Also let
0, 0
r = n_./n . ' (3)
F 02
Hence
Yo = t/(1+ 1) - (£/2), (4)
and
Yo = AL+ x) - (€/2). (5)

2

We now distinguish several cases for different mixture compositions,

"light™ mixtures for r <1 with &, = 2r/(1 + r), and "heavy"
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mixtures for r > 1 with Ef = 2/(1 + r). For the "balanced" mixture
ratio r =.1, Ef = 1,%

The definitions given in Eqs. (2) to (5} are useful for the
development of a simplified set of differential equations for the descrip-

tion of laminar burning velocities. Accordingly we turn our attention

now to a discussion of the basic equations.

A. Basic Equations for a Thermal Theory

The momentum equation need not be included in a discussion of
the basic equations for laminar flame propagation, since it is easily
shown that it leads only to the conclusion that the pressure drop across
a laminar flame front is negligibly small. In view of the crudeness of
our as sumptiqns about the chemical processes, it is not warranted to
include diffusive transport of chemical species in the discussion.
Accordingly, we shall content ourselves with the development of a
thermal theory and consider only the equations of conservation of energy

and mass,

1. Energy Equation
For a one-dimensional flow process the expression for conser-

vation of energy can be written in the form

A dT

o om C(ER YY) - (3R Yy (6)

f

* It is, of course, clear that the terms "light', *heavy", and
""balanced" mixtures as used here bear no relation to the terms
"lean', ''rich'", and '"stoichiometric™ used ordinarily. For practical
combustion flames r is considerably less than unity, i.e., practical
flames are "light" flames.
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where A is the thermal conductivity; m equals the mass flow rate
(in grams per unit area per unit time) which, as will be shown presently,
is the desired eigenvalue of the boundary value problem corresponding
to one-dimensional laminar flame propagation; T represents the
temperature; x equals linear distance; hi is the {specific) enthalpy per
gram of the i'th chemical species.

Introduction of Eqgs. (2) to (5) into Eq. (6) leads té the following

expression for conservation of energy:

A dT T f) (1 Z).
— —— = h - + h — + h £
m dx F(l-l‘-'r 2 02 1l +r 2 P
. ( _ _if__)_h o ff_>
Fof \1sr 2 Ot \Litr 2
- hp o &g

where the subscript f identifies conditions when the reaction has gone

to completion. The preceding relation may be rewritten in the form

A dT 50 5
— :cp(T_Tf)-(ff-£)<5P-_____§.___;F__,
m dx 2 2
i = = & = & i
since hF s F + cpT, ho2 02 + Cp T, hP P + CPT, with
6., & , and & representing, respectively, the standard heats
F 02 P

of formation of the chemical species involved. But the heat evolved

by the chemical reaction per gram of reacting mixture is

*o, °F
(SP - —= - --—)Ef =-c, (T- To),
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since & ¢ grams of product have been formed per gram of mixture
when the reaction is completed and the temperature has been raised

from To to Tf . Therefore the energy equation takes the form

A 4T

_ £
— — - cp[(T-Tf) £l - -e-f—~)(Tf-To)].

It is now apparent that dT/dx vanishes as T — T €= g Or as
T—>T, € = 0 . Introduction of the reduced temperature
e = T/Tf transforms the energy equation to the form in which it

will be used subsequently, viz.,

A de

) |
— c,|(6-1) + {1- - 0], m

where 60 = To/Tf .
2. Continuity Equation

For a one-step chemical process, the conservation of mass
equations for the chemical species involved are not independent and,
therefore, the conservation equation for one chemical species
determines the conservation equations for the others. In the present
discussion we choose the reaction product P as the chemical species
in terms of which the continuity equation is to be expressed. It follows

from Eq. (1) and the law of mass action that the net rate of production

of moles of P per unit volume at the temperature T, Yp: is

vp = 2k, (F)(O,) , (8)
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where k 1 is the specific reaction rate for the process described in

Eq. (1) and is assumed to be represented by the functional expression

k, =By exp (—AI/RT) ) {9)

with [31 (the "effective frequency factor™) and A.l (the "effecti;ie
activation energy") constants which will be determined by correlation
of empirical burning velocities with the final theoretical equation
derived from the present treatment, The parentheses around a
chemical symbol identify molar concentrations and R equals the molar
gas constant.

The molar concentrations are related to the weight fractions

through the expressions

P P
(F) = — Y, (O)) = — Y . (10)
W F 2 w 9

Introducing Eqgs. (4), (5), (9), and (10) into Eq. (8) it is readily seen

that
28, p%  -A/RT v e\/ 1 €
1 1
Yp = —— © - — ~ . ()
W 1 +r 2 1+~ 2
The net rate of production of reaction products in grams per unit
volume per unit time, (-JP , is relatedto d € /dx and to Yp
through the relation
d €
LJP = m = W YP . (}.2)
dx
Furthermore,
d e d e d €

dx d & dx
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whence
m de m d 86 /dx

w dx W de/d e

and Eq.. {11) becomes
,p° - e /e/r £/ 1 €\de  de
—_— e a —_ - — = ——, (13}
mw r+1 2 r+1 2 d§ dx

6 a = Al/RTf .

where

3. Basic Differential Equation for One-Dimensional Laminar Flame
Propagation
It is convenient in problems on laminar flame propagaﬁion to
eliminate the distance x as indepéndent variable. By dividing Eq. (7)

by Eq. (13) the following differential equation is obtained

, _
2B, ™ -6_/6f r £ 1 £EYae

_lp_z___.e a ___)(_______.)____: (6-1) + (1- £y (1- @).
c, mW l+r 2/\1+r 2 _ &

(14)

Finally, if XN is taken to be a linear function of the temperature, we

may write

and Eq. (14) becomes

A - /e de
E—e a [21‘—{(14'—1‘)1[2-&(1-!—1‘)]—(—1—6-=(6-1)+(1-:60)(1—z;),

(15)
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with
2
' 2By ™ g P !
A = m——— = (16)
R ™"T."m " c W 41 + 1)
g ' f p

where use has been made of the ideal gas equation of state,

P0 -
_;__ = RgT. | (17)

1
The parameter /A depends on the mass flow rate m and serves as an

eigenvalue of the transformed basic differential equation. The laminar

burning velocity, u_, which is defined as

u, = m/Po s | (18)
1
may be expressed in terms of A  as follows:
1/2
8 28, %
1 f
uy = > : : (19)
2(1 + r) o WA '

4, Boundary Conditions

In order to complete the formulation of the eigenvalue problem,
suitable, physically meaningful, boundary conditions should be intro-
d‘uc_ed. As the reactions go to completion, © — 1 and & — Ef .

Reference to Eq. {15) shows that the point =1, €=¢ _ isa

f
singular point since
£ ¢ = 2r , for r «<1;
' l+r
& = 2 s for r >1;
f l+r
and (20)
E. =1, for r=1,
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The boundary conditions specified by Eq. (20) lead to no essential
difficulties in the solution of the flame equations. However, as has
been emphasized particularly by von Ke{’rma/n and Emmons, imposition
of the cold boundary condition, © = 60 for &= 0, leads to infinite
values for the mass flow rate. Since it is known that the mass flow
rate is substantially independent of the value of an assumed ignition
temperature, O 3 for all reasonable values of 9.1 in fhe range

6, < 9, < 1, we may choose the following limiting values at the
cold boundary:

O = Gi, for €=0, with 6, appreciably;
larger than 60 and appreciably , (21)

smaller than unity.

The formulation of the cold boundary condition expressed in Eq. (21)
is known to lead to results which are equivalent to those obtained
through the use of Hirschfelder's porous-plug flame holder which

(4)

acts as a heat sink.

B. Solution of the Boundary-Value Problem

1\. "Heavy" Mixtures

For "heavy® (as well as for "light") mixtures, the eigenvalﬁe
for the mass burning rate can be obtained by a straightforward
application of the von Ka{rmaln - Millan technique, which is illustrated
in detail in the following analysis.

As has been noted in the preceding Section, for "heavy'" mix-

tures, Ef = 2/r+1, with r » 1. Hence the basic differential



-15-

equation
At -8,/6 , de '
5 e 2 [21‘-E(l+r)][2-£(l+r)]—g—g:(6-1)-!-(1-60)(1-—g—i—)
(22}

becomes at the hot boundary

ae (1-6_) (1/€)

Aim = : . , r v 1. (23)
e—>1 df 1+2A [exp(-ea)](r - 1)

E-’Ef

Introduction of Eq. (23) for O ~ 1 on the left-hand side of Eq. (22)

shows that
(6- 1)+ (1-6 )(1- £
_ ° €

e 1 -6 1/&
N e 2 2-€1+n)][2r- €0 +1) : 0)(ef)z
a(r” - 1)

l+2/\' e

The use of this last expression on the right-hand side of Eg. (22) yields
the following:
de [exp (- ea)] (1 -Ieo) (1/€)

de ) 1+ 2 /\‘[exp(—ea)] (rz—l)

-1 T
6 ! [exp (-0,/0) (24)
It is clear that Eq. (24) represents a useful approximation to the
differential equation in the vicinity of the hot boundary only for
r>» ry? 1 . We shall determine the value of ry later on by com-
paring the solutions for "light* and "heavy" mixtures with an approxi-

mation solution for "balanced" proportions of the reaciants (compare
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Section III, B4).
Equation (24) may be integrated from 6_, & to =1,

éf = 2/(1 + 1), viz.,

',2
2/(1 + ) - é’t = L2t - h [eXP('ea)] o} [exp(-@/e)] do.
[exp (-6,)] (1 - 0,) (1/ &) 2

t | (25)

From Eq. (22) the limiting slope at the cold boundary is found to

be
(e-1) + (1 -6)
ﬁim (de/dﬁ) = ; o]
o _, o (A /6) [exp (- ©,/6)]4r
£E—
Hence et
4r A 1
o= o [exp (-8,/0)] a6, (27)

(6,-1) + (1-0,)
%
where we have replaced © by =N in the term ( © - 1)(5).

Continuity of slopes of the two asymptotic solutions at the point

(et, £t) leads to the requirement

(0,-1) + (1-085) [exp (-0,) (1 - ) (1/ &)
(N lo) expl(-6,/00]4r  lexp (- 6,/00](1/8) {1+ 2 A [exp (- 6 )](=” - 1}
or
1 1 2
4r N 142N exp(-6)|(xr -1
i = [e Pl } - ) (28)
(6, - ) +(1-6) [exp (-6,)] (1 - &) (17&)

Addition of Eqgs. {25) and (27), in view of Eq. (28), leads to the

conclusion

b
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1
! 2
1+2 Alexp (-6 )|(r™ - 1)
2/{l + 1) = [ a] G-I[exp(- Ga/9)| do ,
lexp (-9,) (1= 6) (1/€)

(5, 6)

whence, after integrating ,

. exp (6.) exp (- 8.} (1 - O )
A = [ 5 a] [ a] o - 1{, rar1>l, (29)
2(z“-1) |E (- 6,/6,)-E (-6)

where Ei represents the exponential integral. For ei appreciably

smaller than unity we have

P CARN L lexp (- 6,) ]

5 -1 ,r>,r1>1; (30)
2(r® - 1) - E; (- Ga)
and, for sufficiently large values of © a?
" explo,) | (1-6)06,°
A= 5 - 1], r’/r1>1. (31)
2(r™ - 1) . -1

a
2. "Light" Mixtures
For "light" mixtures (if =2r{l+r), r « 1, and it is seen from

Eq. (22) that

(1- 0)(1/&))
fim (d@/dE) = . (32)

61 1+2 A [exp (- )1 - £%)

£ &

: , ,
As before, it is clear that routine application of the von Karman -

Millan technique will lead to useful results only if r < r, < 1. We shall
determine the value of r, later on by comparing the solutions for "light"

and "heavy" mixtures with an approximate solution for "balanced"



-18-

proportions of the reactants (compare Section III, B4),
Following the precedure described in the preceding Section III,

Bl it is readily shown that

. exp (8,) |[exp(-6,)] (1-0)

A = > - 17, rsrz»?l; (33)
2(l -1r7) Ei(-Ga/Gi)— Ei (-(9a)
for Gi appreciably smaller than unity,
‘ exp (0,) (1-0))exp(-0))
A = az ° a —1,rsr2<1; (34)
2 (1 -1% - E; (-8) _
and, for ea sufficiently large,
' exp ( 0,) (1-e_) 6> |
A = > — 1|, T =z, 1. (35)
2 (1 -‘r ) ea -1
3. "Balanced" Mixtures
For "balanced™ proportions of reactants (r = 1 and c‘,f = 1) it

is no longer possible to apply the von Karman - Millan technique without
modification since the point © =1, £=1 becomes a singular point.

A useful procedure, proposed by von Karman, for removing the singular

point is described below.

For f,f = 1l and r = 1 the energy equation takes the form

(%/m) (de/dx) = c_ [(e -1 #{1-e)(1-¢). (36)

iy

The net rate of production of reaction product is

L, = m (de/x) = (2.[3192/W)|(1 -&)2/4 Iexp (- 63/6) .
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Hence the boundary-value problem becomes

(A" 76y lexp (- 0_/0)]| (1 -€)% (@@ /de) = (6-1) + (1-0,)(1-¢),

(37)
©=6 at £=0 and ©=1 at € =1,
with
" 2 2 2 2 .
A= (B x; P, /ZRg T m% e, W), : (38)
and
1t 1 2
uy = 6, (ByAg/2e WA ) /2) _ (39)
Comparison of Eqs. {(16) and {38) shows that
A 4 A , for r = 1. (40)

We next replace the singular point (® =1, € =1) by the boundary
condition (@ =1, &= £1 < 1). This choice is plausible in view of the
results obtained for "unbalanced™ mixture ratios which show that
(d©/dt ) is close to zero as the hot boundary is approached, at least
for reasonable values of /\” exp (- Ga) » In the vicinity of the point

(=1, &€= £1) we may neglect the quantity (€ - 1) on the right-hand

side of Eq. (37), with the result
3] 2
(A" g0 |[ex - 0/0)] W@ojae) = -8y n-E). (a1
From Eqs. (23) and (32) one obtains formally

Lim (de/dE) = (1-0 ). (42)
e —1
£ 1

r = 1
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We shall now join the curve of Eq. (41) to the straight-line determined
t 1
by Eq. (42) at the point (@ , £ ). In order to accomplish this objective

1 1
we integrate Eq. (41l) from (© , € ) to (1, El) with the result

1

(1-6_) £n H :E—l-))- = /\”[Ei (-eale') - E, (;ea)], _ (43)

. !
or, since @ is very close to unity,

(1-6,) 4n %_:2_1)) =A"(1-6") exp(- 6,). (44)

The equation of the straight line with slope {1 - Go) passing through

the point (6‘, EI) is
(1-0) = (1-6,)(1-¢). | (45)

In order to join the curve of Eg. (41) to the line of slope (1l - 90) at
t f
(©, £) it is necessary to combine Eqs. (44) and (45) and to equate
1 ! ’
(d6/dE) in Eq. (41) to (1 - 60) at (0, £€). In this manner it is found

that
an (- eva-ep] = AT [exm(- 0] (a0
and, since 9' ~ 1,

A e -0 -8y =1, | (47)

From Egs. (46) and (47) we obtain an interesting explicit expression

1]
for & , viz.,

(1-€) = (1-€&))e (48)
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Similarly, from Eqs. (45) and (47) it is apparent that
! 1N
(1L-6) = (1- 60)/ [/\ exp (- ea)] (49)

It is clear from Eq. (49) that we must expect values of /\” exp (-.ea)
which are appreciably greater than unity.

As a first approximation it will now be assumed that Eq. (41)
holds over the entire integration interval from (61, 0) fo (1, &1) .

Hence, similarly to Eq. (43),
~{1-8) [Jn (1 - El)]exp (-6) = A [exp (- ea)] [E.l(-_'ea/ei) -Ei(-ea)],
\ ‘ (50)
But from Eqs. (47) and (48)
Al exp(-9) = 1/(1-E€) = 1AL-€)e;

whence

Ei (" eale 1) - El ("' ea)

(1—61) ln(1-£1)= - : (51)
e (1 - 90)[exp(— Ga)]
But from Eq. (50)
' a E.(-60/6.})-E (-6}
o ey - A LB G0 E ] 52,

-(1-6))
or, for © ; appreciably less than unity,

In{l-£) = A E (-6, /[(1-6,), (53)



and

e

(1-€&,) = exp {- A [- E, (- 6)/(1 -60)”. (54)

In view of Eq. (52), Eq. (51) becomes

/\'I [exp (-6 )] exp j—AHI[Ei i U (—ea)] = 1/e
a l !

1-0
O
or
Ei (' ea/ 61) - El ('ea)

'

_ A”

+ 4n [A exp(-@a)] =~ 1, (55)

1 -6
o

For © i appreciably smaller than unity, Eq. (55) becomes

- A |- By
1-6

11

+ ,fn[/\ exp(-ea)] =-1.  (56)

o

For @ a appreciably larger than unity the following approximation is

obtained from Eq. (56):

1t

- A exp ('ea) 1" :
+ n | A exp(- 6a) =-1 (57)
Q, (1-0,)
1t .
The eigenvalue A can be found from Eq. (57) conveniently by writing
1" ' '
z = A exp(- Ga) and Z = Ga(l - 60) whence Eq. (57)
becomes
! Z :
zE e (58)
1+ 4Ln=z

1
The quantity z is plotted in Fig. 1l as a function of z
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4. Limits of Validity of the Solutions for "Unbalanced" Mixtures

We shall now determine the pararheters ry and T which
define the limits of validity of the solutions for '"unbalanced' mixture
ratios, by the requirement that the burning velocities calculated for
"unbalanced' mixtures must appraoch the known value for the "balanced"
mixture as r approaches r) or r, . Here it is assumed that ea is
independent of mixture ratio.

Comparison of Egs, (19) and (39) shows that the condition given
in Eq. (40), viz.,

11 !

A = 4N

is sufficient to assure that the burning velocities for "light' and "heavy"

]
mixtures are equal as r approaches unity. Interms of A , Eq. (57)

becomes
4 /\‘ exp (- 9_) '
- a + Inv[4 N exp (- ea)] =-1. (59)
ea(l —90) "

For "heavy™ mixtures we may apply the following expression, which is

obtained from Eq. (31):

o [ewteplu-ee,

; (60)
2(x,%- 1)
for "light"™ mixtures, from Eq. (35},
! 1 -
Ao e tep]u-ene, o1

2

2 (1 - rz)
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1
Introduction of the value of A given in Eq. (60) into Eq. (59)

leads to the result

2(1-6)6 2
An 2°a R (62)

rl-l r. - 1

From Eqs. (61) and (59):

2(1L-6)e 2
ln( 3 2 )= >~ — 1. (63)
1-1'2 1—r2

From the preceding relations we find, for example, for (1_‘- 6o)ea =10,

1 = 1.18 and r, = 0.76,

It should be noted that the preceding method for the determination

the results, r

of Ty and r, involves the assumption that ea is independent of mixture
ratio, which has not yet been verified. Perhaps a more satisfactory
procedure for the determination of Ty and r, involves utilization of the
experimental fact that u is a continuous function of r. Thus we can
calculate u asa function of r for small values of r and for large values
of r and connect the resulting pair of curves.

The burning velocity for the most rapidly burning composition,
which generally differs from the stoichiometric mixture ratio, can be
obtained by calculating the maximum value of (ug )li ht 252 function
of r for fixed values of O o " From Eqgs. (19) and (35) it follows that

2) _ l - r 1
o light -~ ©

(u

, (64)



where
2
B. %, O
¢, = 1 7f "o , (65)
c W(l -8)
) o

&

From Eq. (64) it is apparent that the condition d(ui)nght/dr =0 leads
to the ‘,.relation
d fn [ea exp (ea)]

dr

= 2/(1-1%, (66)

i.e., at the most rapidly burning mixture composition, for which the

value of r = T, is known,

1 (Al) light -d Tf N 2
— 1 2 = T (67)
T, RT, dr (1-r% :

provided the activation energy (Al)light is independent of mixture
ratio r,

For the unusual case where the maximum value of (ﬁ 2') .

o ‘light

corresponds to r > 1, it can similarly be shown that

b Bineany) (29T 2 68
T, Rsz dr (rZ - 1)

5. .Deterrnination of Activation Energies for the Rate-Controlling
Reaction in Hydrocarbon - Oxygen Combustion
One of the problems in combustion, which has not yet been
answered satisfactorily with regard to the concept of a rate-controlling
reaction step in hydrocarbon-air flames,is the existence of a unique

value for the activation energy in *heavy™, "balanced", and in "light"
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mixtures, This question can be answered conveniently for € > 1,
a
In this case we obtain the following results:

(a) For "™heavy" mixtures, r > 1, whence from Eqs. (19) and (31),

Yo heavy (1+ r)(1/2)

(e - /2 p172)

3 in

(A eavy/ 2R - (69)

9 (1/T,)

for fixed values of 8 o and Ag e

b) For "light™ mixtures, r < 1, and from Eqgs. (19} and (35),
g q

(U highe (1 + /2
9 in
(- n8 gt = - (A), /2R (70)
(1/T,) Y1 1ight ?

for fixed values of e, and Ag -

Practically all of the available experimental data on hydrocarbon-
oxygen flames correspond to very ™light" mixtures, i.é. , ¥ << 1., If
To rather than eo is fixed, g is taken to be proportional to Tf s
and 1 - 60 is treated as a constant, then the terms in square brackets
in Eqs. (69) and (70) are multiplied by Tf(llz). This change does not
materially affect the computed correlations of experimental data because

the temperature variation of the burning velocity is controlled

primarily by the exponential term.
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1IV. DEVELOPMENT OF THEORETICAL EQUATIONS FOR
CORRELATING BURNING VELOCITIES IN HYDROCARBON -
OXYGEN - INERT GAS MIXTURES
The results of the present section constitute a straightforward
extension of the material given in Section III and are of particular

interest in connection with the discussion of hydrocarbon-air flames.

A. Basic Equations

As in Section III let § represent the number of moles of F and

02 which have reacted to form 2T moles of reaction product P. The

total number of moles is constant and equal to noo + n;, + n(; , Where
2

ncI) is the total number of moles of inert gas present. If the molecular

weights of all chemical species are all equal, the weight fractions and

mole fractions may again be equated. Hence

_ o _ o o o B o o o o
YF = (nF f)/(nO +nF+nI), YO = (nO f)(no +nF+n1.),
2 2 2 2
_ o o o
Yp = Z'f/(noz+nF+nI).
Let
Yo = £, (71)
whence

2 F
As before, letting
- n%/n°
T = Rpifo >
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and introducing the new parameter o through the relation

x = ngz/(ngz + n‘;), o< <], (72)
we find
r
- (3
Yo = - £ (73)
L+r+ (1-o)/ex 2
. ) _
Y, = &€, (74)
2 L+r4 (1 -=)/x 2
and
(1 -o<)/ox
Y, = . (75)

L+r+ (1 -o0¢)/e=

For "light" mixtures, r < 1, and

2r
f_f = ; for "heavy™ mixtures, r > 1, and
1L+ + (1 ~)/ec

2

L+ + (1 -ot)/e

Introduction of the preceding expressions into the energy equation

given in Eq. (6) leads to the result
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(»/m) (dT/dx) = hg d —
' 1 +r+ (1l -«)/ex 2
+ by ! -~ 51
2| 14+ (1 -o)/ex 2
(1 - )/e<
+ hI
141+ (1 -o)fex
+ hP£
i h; T _ £f ]
1+r+ (1 -o)/ex 2
1 £
_ hi) - ____f_}
2 | 1l+r+ (1 -)/x 2
Hf.K (1 - x)/ex
Dlrers (1-o)/e
- nl £ (76)
P - .
Setting hF = SF + CPT , hoz = 502 + cpT,
by = 51 + cpT » and hy = SP + 5 T, it is readily shown that

(% /m) (dT/dx) = c, (T - Tp) - (& - é)[sp- (502/2)-(5F/2)].



-30-
Proceeding as before it is found that

(n/m) (d0/dx) = ¢ {16 - 1) + [ - (e/EgJ(O - o ). (717)

.Following the procedure described in Section III it is easily

shown that Eq. (22) is replaced by the expression

(A'/@)[exp (-eale)][Zr SE(L 4 r 4 (L =)/ [2 - €01+ 41 -x)/e)](aB/dE) =

(- 1) +[1-(£/£f)](1-60), (78)
where
2B, 2. P 2 1
A s — ; (79)
Rg T,"m ch 4{(1 + 1+ (1 -0}/ o)

The boundary conditions are

6.=6, at &E=0, ©=1 at €E= £, 6. > 6 _, (80)
i f i o .
with
2r
Ef = R r < 1;
1 +1r 4 (1l -x)/ex
2 .
£, - , ot o»1; (81)
1 +1 ¢ (1 -ox)/ex :
and
2
Ef—‘— ’ r o= 1,

2+ (1 - =}/ X

Equation (79) may be solved for the linear burning veloci’ty, with the
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N (1/2)
2B
. = SIS 1M s (82)

© 214+ (l-x)/x) cPW/\l

B. Solution of the Boundary - Value Problem

1. "Heavy" Mixtures
Following the procedure described in Section III it is easily shown
that the term (r2 - 1) is to be replaced by (r - 1) [r + 14+ (1 —oc)/o<]

all other terms remaining unchanged. Hence

. exp () [exp (-0 )](1-0)
A = -1f, r> r1>1;
2r - Dr+ 140 -x)d| B (-9 70)-E.(-6,)
(83)
for © i appreciably smaller than unity we have
exp (8,) (1 -6))exp(-6,)
./\Iz 2 ° a—l,rr,r171;
2{r - 1)(r + 1+ (1 -e)/ex) - Ei (-ea) '
(84)

for sufficiently large values of © Q

2
exp (6_) (1-€3)6
/lI_“.’. a { °O & —_ rzzr, >1.

ot
-

2(r - 1) [r+ 1+ (1 -w)/e<] o_-1 !
(85)

2. "Light" Mixtures

Proceeding in the usual manner it is found that

2
exp (6 ) (1-6)e6

/\I= a o a —1,1'51'241,

2(1 - 1)[1 + ¢+ (1 -eq)/e<] (8, - 1)
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for © i appreciably less than unity and ea sufficiently large.

3. "Balanced™ Mixtures
For the "balanced®” mixture ratio, r = 1, the boundary-value

problem becomes simply

1 2
(AT/6) [exp(-éa/e) [1-(£/£f)] (a6/de) =

(e-1) + [1-(e/epla-a), (87)
where

A= g al : (88)
and the boundary conditions are &= O, at &= 0, 6=1 at

£ =& = 2x/(1+x). If we replace £/&; by £ inEq. (87), it is

evident that the present problem reduces to that treated in Section III
rt

with A replaced by /\H/ € ¢ Hence an approximate solution to

the present problem is given by the relation

11
(A/gg) exp (- 8,)
- : 2+ dnf(ae)em (o] =1 (89)
0,1 -9) "

The plot given in Fig. 1 may now be used with z = (’AII/{f) exp (- Ga).

4, Limits of Validity of the Solutions for "Unbalanced" Mixtures
A discussion similar to that presented in Section III, B4 may
be used to define the limits of validity of the solutions for "unbalanced'

mixture ratios. The results are similar to those given in Section III, B4.
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5. Determination of Activation Energies for the Rate-Controlling
Reaction in the Combustion of Hydrocarbon-Oxygen-Inert Gas
Mixtures

For ea >> 1 it is readily shown that

a) for "heavy" mixtures, r > 1,
Y .

> in (uo )heavy

(x - 12 (172

[1 +r+ (1 -x)/m](l/z)

- - (A'l)heavy/ZR (90)
o (lle)
for fixed values of eo and >‘f H
(b) for ™ight"™ mixtures, r < 1, and
(1/2)
. (80 )3 ght [1 42+ (1 ) /o]
(1 - 12 (/2 |
= (Al)light/ZR (91)
3 (1/Tf)

for fixed values of 60 and Ap e

Equations (90) and (91) will be used in the following Section V
in order to correlate the experimental burning velocity measurements
f(;r hydrocarbon-air combustion. Practically all available experimental
data refer to very "light"™ mixtures for which r is appreciably less than
unity, If To rather than e, is fixed, g is taken} to be proportional
to Tf , and 1 - E)o is assumed to be constant, then the terms in braces
appearing in Egs. (90) and (91) are multiplied by Tf(l/z). This change
in the form of the basic equations does not affect significantly correlation

of the experimental data.
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V. CORRELATION OF EXPERIMENTALLY OBTAINED RESULTS
FOR HYDROCARBON-OXYGEN-INERT GAS FLAMES

Experimental data on laminar flame velocities for mixtures of
oxygen (with varying amounts of inert diluent) and methane, ethane,
propane, pentane, ethylene, propyne, acetylene, benzene, and trimethyl
pentane from various sources were used in the correlation equations
developed in Sections IIl and IV, Egs. (90) and (91). Thelreferences(lo—lg)
from which the data were taken are listed in Tables I through XI, which
also give the results of computations using the experimental data. The
adiabatic flame temperatures, Tf, were calculated by usihg the methods
and data given in Refs. 20 and 21,

The results given in Tables I through IX refer to hydrocarbon-air
flames and are plotted in Fig. 2. A constant has been added to the
calculated value of the logarithmic function for éach system in order to
plot the curves on the same figure. Figure 2 shows that it 1s possible,
at least for "light™ mixtures, to correlate measured burning velocities
on the assumption that a second order rate-controlling reaction exists.
The change of slope of the curves in Fig. 2 occurs, approximately, at
the "balanced™ mixture ratios. No universal correlation appears to be
possible for "heavy"™ mixtures.

An improved correlation was obtained by drawing a mean
reference line on Fig. 2 for "light" mixtures of methane, pentane,
ethylene, and propyne and adding a constant to the logarithmic function

to shift these curves as closely as possible to the reference line. The

results obtained after using this procedure are given in Fig. 3. The
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effective activation energy for mixtures appreciably leaner than
stoichiometric, as given by the slope of the curve of Fig. 3,is 26 Kcals
per mole.

Tables X and XI give results of computations for propane-oxygen
and ethylene-oxygen systems with varying amounts of inert diluént. The
mixture ratios for these computations are nearly stoichiometric. The
results for the propane-oxygen system are plotted in Fig. 4. The slope
of this curve gives an effective activation energy for propane of 53 Kcals
per mole. The results for the ethylene-oxygen system are .piotted in
Fig. 5. The slope of the correlation curve for near-stoichiometric
ethylene-oxygen mixtures gives an effective activation energy of 36 Kcals
per mole.

In a recent paper(lg), Fenn and Calcote suggest that the activation
energy for stiochiometric mixtures of various compounds with oxygen

might be related to the lean limit blow-out temperature, T , i.e.,
f(lean)

A CTf(lean) ' (92)

where c is a constant. Substituting this into the correlation equations,
Egs. (90) and (91), results in

1/2
w (l+r+ 2%
o o

3 An

‘1_r\1/2 Tfl/Z ] )

2R
o [Ti(lean)/Tf]

(93)

Data from Ref. 19 were used in Eq. {(93). The results of these compu-
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tations are given in Table XII and plotted in Fig. 6. The value of c given
by the slope of the curve of Fig. 6 is 17.4 Kcals per mole per °K. Fenn
and Calcote, using a modified Semenoff equation, calculated values of

16-18 Kcals per mole per °K for c.

V. CONCLUSIONS

In the present analysis explicit analytical expressibns have been
obtained for the laminar burning velocity in hydrocarbon-oxygen-inert
gas mixtures for a one-step rate-controlling reaction, neglecting
diffusion. The results of this study have been found to be useful in
correlating burning velocities for lean combustible mixtures. It appears,
however, that the simplified kinetic model used here does not apply to
stoichiometric and fuel-rich mixtures. A significant improvement
over the present study must await a more complete understanding of

hydrocarbon combustion than we have at the present time.
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Table I, Results of Computations for Methane-air Flames (Experi-

mental Data taken from Reference 10, <=, 21),

7l
IUO (I+Y‘+ %‘2

Up (Cmisec) T (°K) " 1077, tn| =
f
5.9 1665 . 299 6. 006 -0.95
6.3 1667 .303 5.963  -0.88

10.5 1781 .335 5.615 -0.368
11.1 1811 . 344 5.522 -0.322
10.8 1828 . 348 5,470 -0.365
18. 4 2005 . 402 4. 488 0.191
20. 0 2045 . 415 4.890 0;274
22.6 2127 . 445 4,701 0. 406
24.9 2137 . 450 4.679 0.500
24,7 2206 . 486 4.533 0,458
27.2 2213 . 454 4.519 0.582
26.9 2234 508 4.476 0.615
26.7 2231 .528 4. 482 0. 642
27.2 2230 .531 4. 484 0. 659

- 26.8 2214 .547 4.517 0. 662
24.9 2183 .571 4.581 0. 631
23.6 2160 .587 4.630 0.610
22.6 2130 . 606 4. 695 0.592
19.2 2082 . 637 4.803 0.500
14.3 2028 . 671 4,931 0.251




Table I. Continued
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Us {cm/sed T (°K)

2
(1 22
r 10‘77; ’L: E‘ Ve Tr;)
- +
10.9 1997 . 694 5.008 0.030
9.1 1970 . 708 5.076 -0.111
5.8 1908 . 748 5.241 -0.476
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Table II. Results of Computations for Ethane-air Flames (Experimental

Data taken from Reference 11, & = 21},

Uo (I+ T+ -'—E—F—)llz

o 4
Uo (cm/sec) T CK) r 1077 n e K-
33.1 2140 . 450 4.673 .829
35.0 2175 . 461 4.598 - . 855
37.5 2232 . 485 4. 480 .938
38.9 2270 .509 4. 405 | . 989
39.8 2255 .532 4,435 1. 040
40.1 2220 .555 4.505 1.081
139.9 2190 .580 4.566 1.119
38.5 . 2170 . 603 4. 608 1.112

36.9 1780 . 627 5.618 1.200
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Table III. Results of Computations for Propane-air Flames (Experi-
~mental Data taken from References 12 and 13, ot =, 21),
) Uo(l”"" %ﬁ)lﬂ]
U, (Cm/sec) T (K} r 107 T; n e o Va
AR R j
33.23 1940 . 367 5.155 . 784
36.0 2028 . 393 4,931 . 860
38.67 2107 .418 4. 746 .935
41,17 2175 . 444 4.598 1.003
44. 0 2250 . 482 4. 444 1.085
44,92 2270 .507 4. 405 1. 120
44, 83 2258 .504 4.429 1,115
44.0 2237 .550 4,470 1.115
42,46 2210 .586 4.525 1.150
40. 39 2183 612 4,581 1.140
37.54 2152 . 639 4. 647 1.110
33.69 2118 . 665 4,721 1.080
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Table IV. Results of Computations for Pentane-air Flames (Experi-

. mental Data taken from Reference 14, o =, 21},

iy s 2= /2

Uy (Cm/sec) T, CK) r lO"/T,a An %%ﬁ;){/?
7.1 1513 . 250 6.609 -.74
10. 8 1670 . 290 5.988 -.345
23.7 2013 . 382 4.968 . 418
35.0 2262 . 488 4,421 . 858
35.6 2278 .506 4,390 . 890
36.7 2284 .535 4,378 .950
37.0 2277 .540 4.398 .968
36.6 2226 .588 4,492 1.030
- 35.1 2173 .623 4.602 1.046
33.8 2148 . 645 4, 655 .1.048
30.0 2091 . 682 4.782 1.011
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Table V. Results of Computations for Ethylene-air Flames (Experi-

mental Data taken from Reference 15, = ,21).

o o . . l+r+%)ﬁz
o ((m/sed  TK) r [0/T; on | P —
Jr-r|™ 14

33.6 1880 .313 5.319 . 746
36.5 2000 . 345 5. 000 L824
43.0 2110 .376 4.739 .985
49.2 2215 . 408 4.515 | 1.130
49.5 2232 . 416 4.480 1.138
61.1 2867 . 497 4.225 1. 400

1 65.5 2391 .538 4.182 1.512
67.8 2380 .579 4.202 1.598
68.2 2367 . 605 4.225 1. 640
67.5 2355 621 4.246 1. 660
64.0 2310 . 664 4.329 1. 680
56.9 2262 .707 4. 421 1640
52.3 - 2215 . 750 4.515 | 1.650
39.9 2150 .794 4,651 N 1.500
32,7 2105 . 838 4,751 1,440
27.3 2155 . 883 4. 866 1. 430
23.9 2005 .928 4.988 | 1.555
17.5 1906 1.021 5. 247 1.895
15. 2 1755 1.163 5. 698 .784

11,2 1575 1, 361 6. 349 , .187
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Table VI. Results of Computations for Propyne-air Flame (Experi-

-mental Data taken from Reference 14, « = ,21},

1/2
J-os
u (1 re 22)

U, (Cm/sec) oK) r 1077; An 17 1%
23.2 1860  .289 5.376 361
35.4 2030 .340 4.926 780
47.8 2235 . 396 4,474 1.082
56.9 2350 . 443 4.255 1.280
63.0 2439 .500 4.100 "1.420
66.9 2460 .553 4.065 1,540

67,4 2480 .602 4.032 1.602

63.0 - 2450 .672 4.082 1.645
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Table VII, Results of Computations for Acetylene-air Flames (Experi-

. mental Data taken from Reference 16, o« =,21).

e

f—ex

up (v + 12

U (cm/sec)  T,(°K) r 1077, An L
f
120. 0 2460 . 448 4. 065 2.01
138.0 2570 .518 3.891 2,20
145. 0 2555 .589 3.914 2.34
145. 0 2535 . 662 3.945 2. 44
141, 0 2515 . 736 3.976 2.55
122.0 2475 .812 4. 040 2.59
100. 0 2400 . 889 4,165 2.68
146. 2 2480 . 455 4.032 2.18
159. 6 2570 .500 3.891 2.32
169. 2 2560 .555 3.906 2.42
169. 2 2545 .624 3.929 . 2.54

155.7 2524 . 715 3.960 2.60
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Table VIII. Results of Computations for Benzene-air Flames (Experi-

mental Data taken from Reference 11, o = ,21),
: 7
U{cm/sec) T, °K) T Yar An Ye (I A )
h‘rlw T,.l/z
37.3 2500 .520 4,000 . 904
39.3 2500 .553 4. 000 .968
39. 8 2490 .572 4.016 1.033
40.5 2485 .571 4.024 1,077
40.7 2480 . 620 4,032 1.121
40.6 ' 2480 . 629 4,032 1.135
40,1 2470 . 648 4. 049 1.152 |

39.6 2460 . 667 4,065 1.170
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Table IX. Results of Computations for Tri-methyl Pentane Flames

(Experimental Data taken from Reference 17, == .21).

vua (I" r o+ l;“)_llz

Uo(Cm/sec) T, (°K) s 0%, n L 1%
30.70 2180 . 450 4,587 .709
32.57 2240 . 475 4, 464 L1775
34,28 2270 .500 4, 405 . 845
34, 64 2285 .525 4,376 . 891
34. 00 2250 .550 4. 444 . 895
32.43 2218 .575 4.509 . 895
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Table X, Results of Computations for Propane-Oxygen-Nitrogen

Flames {Experimental Data taken from Reference 18).

4 | ( N 1-&)”2
U, (CM/sec) T; CK) Y o 50/7; n o\l 7Y
f-r1” 1,7

16.1 2009 .53 .166 4,97 . 266

42.9 2293 .53 .210 4. 36 1.10

67.3 2441 .52 . 250 4.09 1.43

94.1 2561 .515 . 294 3.90 1.66

127.0 2670 .515 . 348 3.74 1.87

217.1 2896 .50 . 496 3.51 2,215
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Results of Computations for Ethylene-Oxygen-Nitrogen

Flames (Experimental Data taken from Reference 18).

( ‘_“)'/2
U, (cm/sec) T CK) r o YT, g[SV =
f-r|” T
42.6 2100 .58 . 166 4.76 1.305
81.3 2401 .57 . 210 4,16 1.76
116.6 2550 .55 . 250 3.92 1.995
156.3 2665 .54 . 295 3.75 2.18
203.0 2766 .54 . 348 3.62
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