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~ Abstract

Determinations of pressure, temperature and velocity as functions
of position in a non-uniform, steady, two dimensional, turﬁulently
flowing aeir stream have been made under four different flow conditions.

Values o_f the eddy viseosity and eddy eonduetivity have been
calculated and compared to those obtained under conditions of uniform
flow, Bulk temperatures have been computed and compared with those
obtained from existing empifical correlatioﬁé.

The.general problem of predicting ﬁempefature and velocity fields
in non-uniform flow is discussed., Previous theoretical work is compared
with the experimental results of this work, The further research
necessary to éolve'this problem for the case of fully developed turbulent
flow is outlined,

The partial differential equation for heat transfer has been
solved for one of the above four flow conditions by means of an electrical
analogy. Use has been made of eddy conductivity data obtained for uniform
flow. This work is evaluated in light of the accompanying experimental
results, and plans for further analog work aré outlined.
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Introduction

During the past four years, a program of investigation into the
nature of turbulent flow has been carried out at the Californis
Institute. The purpose of this program is to verify the Reynolds
anelogy which is presumed to exist between the turbulent transfer of
heat, momentum, and material (1). Experimental work accomplished up
to this time has been primarily coﬁeerned with the transfer of heat
and momentum.

Measurements of the turbulent flow of air have been made in a
rectangular channel 12,/ in, wide, 0.7 in. high, and 13;4 in, long.
Temperature and veloeity distributions have been obtained in the wakes
of heated cylinders (2) as well as in the unobstructed channel, All
data have been taken midway between the vertical walls, so that the
flow investigated has been very nearly two-dimensionsal.

Eﬁtensive measurements of uniform flow have been carried out by
Corcoran (3), Page (4), and Cavers (5). (Flow is defined as uniform
if the veloclty and intensive fluid properties are independent of the
downstream distence x.) The advantage of investigating uniform flow
is that the differential equations of heat and momentum transfer are
groatly simplified; parameters which describe the rates of transfer
of heat and momentum may be readily caleulated without the necessity
of making invalidating assumptions, For two-dimensional steady uniform
flow, the differential equation for momentum transfer may be expressed

in the following simple form:

' , dP _ du
Tyx = 4 ax = P&V 2y (1)



Under the same conditions the heat transfer equation is:

(-]

Q = % (€<+K)Z_r; (2)

The symbols used in these and succeeding equations are tabulated and
defined in the table of nomenclature,

The turbulent contribution to the transfer of momentum is rep-
resented by the eddy viscosity; the turbulent contribution to the
transfer of heat is represented by the eddy conductivity, Reynolds
first hypothesized that, since transfer of heat and momentum tekes
place by the same process of turbulent mixing, the two eddy quantities

€. and € are equal, Experimental evidence (4), (5), indieates that
the eddy quantities ere not equal even under éimple flow conditions;
but they are of the same order of magnitude, and some progress has
been made in predieting the ratio of the two quantities,

The quantities Y and * are proportional to the transfer of
momentum and heat by motion of the individual fluid mqlecules. A
turbulently flowing stream may be divided into three section_s accord=~
ing to the magnitudes of » and * relative to €, and €. , respective-
ly. In the turbﬁlent core V<< &, and W >>¢ 3 in the buffer
layer ¥2 €~ and ¥ = € ; and in the laminar layer, the eddy quan=«
tities are zero, J

The eddy quaﬁtities ¢, and € differ fundsmentally from their
molecular analogs » and 1T in that they are not thermodynamic proper-
ties of the fluid, but vary from point to polnt in a flowing stream,
even where the state of the fluid does not change, If these quanti=-

ties are to be of engineering value, some means must be devised of



predicting them, either on the basis of a hypothesis which must
finally be verified empirieslly, or directly from a correlation of
experimental data. An example of the former is the Karman similarity
theory (6), The latter is the method of approach of this research,

Calculations of €,,and €. can be made for the case of uniform
fiow if four types of measurements are mede: temperature, velocity,
heat flux, and pressure gradient. Careful measurements of these
quantities have been made for bulk air speeds ranging from 10 to
90 ft/sec.

The following conclusions seem indicated:
a. The eddy quantities €, and €. are independent of
temperature or temperature gradient; they seem to be
primarily a function of point veloecity,
b. The eddy viscosity at midstream is not zero as is
predicted by several investigators (7), (8).
These eonclusions are drawn from measurements of uniform flow, but
it seems remsonable to assume that they are valid for non-uniform
flow as well.

The problem of turbulent flow is further complicated by the
influence of wéll roughness upon the turbulence and hence upon £,
and €, , Results obtained in this research may or may not apply
to flow in other smooth channels.

Some of the problems which arise in the treatment of non-uniform
flow will now be discussed. Any flow in which there is an appreciable
net transfer of heat to the fluid is of necessity non-uniform, The

problem of determining the rate of heat transfer to a turbulently



flowing fluid is a formidable one, and is of paramount interest,
both theoretically and industrially. The partial dlifferentlal
equation for heat transfer is non-linear, Analytical solutions are
difficult even for the case of laminar flow,

The present engineering method of approach to the problem of
turbulent heat transfer is by the use of overall coefficients, The
numericel value of the heat transfer coefficient h may be calculated
in terms of dimensionless ratios which describe the flow and the fluid
properties. A large mass of heat transfer data has been correlated
in the form of a relation between the Stanton, Prandtl, and Reynolds

numbers (9):
s¢= 0023 (Re) "~ (Pr )'o"5 (3.)

Correlations such as this, which apply to flow of a fluid in
a pipe or between psrallel plates, are extremely useful in calculation
of overall rates of heat transfer, end the consequent evaluation of
the bulk temperature of the flowing fluid. However, they are not
adapted for ecalculation of point properties of a fluid, The eddy quan~
tities show considerable promise for calculation of point properties,
although their pfesent use in engineering cslculations is negligible,

The purpose of the investigation of uniform flow is to determine
the behavior of the eddy quantities under simple flow conditions where
they may be readily and accurately measured, Investigations of non=-
uniform flow permit computation of the eddy quantities under conditions
of direct industrial importance, although the calculation procedure

is unwieldy even after simplifying assumptions have been made.



The equation for heat tranafer in two-dimensional steady none

uniform flow is:

2 +K)LET = 2F
a‘, [CEC K) ay (ll-)

Jx

This equation is derived in Appendix I,

In order to solve this equation to obtain t as a function of
x and y, knowledge of the temperature boundary conditions, the velo-
city distribution, and the eddy conductivity distribution is necessary.
Analytical solution of the above equation is definitely not feasible.
Numerical methods are,tedious.and“not_genérally satisfactory.

A method of solution which shows considerable promise is that of
an electrical.énalogy.. An electrical circuit is devised which obeys
a differential equation analogous to Equation 4 when the latter is
expressed in finite diffarence.form, The heat transfer equation may
then be solved by making measurements of electrical quantities which,
upon conversion, give t as a function of x and y. The extent of
agreement between an analog solution and a corresponding set of
experimental measurements will.indicate,the.validity_of the eddy
conductivity information used in obtaining the solutlon; the other

variables may be accurately established.



Equipment

The experimental equipment used has been described in considerable
detail elsewhere (10) and only a brief outline of its features will be
presented here, A schematic diagram of the path followed by the work-
ing fluid (air) is shown in Fig, 1. Air is forced by the blower (C)
through a Venturi meter, then through a turning section equipped with
vanes to guide the flow, end then through a converging section (E) into
the entrance of the channel., After its passage through the channel,
the air is returned to the blower through another turning section,

The parallel plates which bound the working section above and
below are of copper, 3/8 in. thick. The outside surfaces of the copper
plates are in contact with independently circulating oil baths (Fig.2).
Electronic temperature control eircuits permit maintenance of the oil
baths and the entering air at predetermined.temperatures, Oil bath
and entering air temperatures are measured by means of platinum resist-
ance thermometers., Temperatures and velocities* are measured by a 0.5
mil platinuﬁ wire 3/8 in. long which is positioned in the channel by
means of a traversing mechanism, This dual usé of the wire has led to
its designetion as-éhe thermanemometer. To measure temperatures, the
wire is used as & standard four-lead resistance. thermometer, To measure
velocities, use is made of the constant resistance technique of hot-wire
anemometry. According to King's equation, the rate of energy dissi-

pation from a hot wire is proportional to the temperature difference

*The wire actually measures the quantity (u® + v2)5; which is the magni-
'tude of the velocity vector., In this work, the flow is practically

horizontal and (u® + v2)§'='u.



between thq wire and the air stream and to the square root of the
velocity:
I Raw - A+ BVW | (5)
Ruw"Ra _

The constants A and B in King's equation are determined experi-
mentally by frequent calibration of the thermanemometer against a
pitot tube. These instruments are mounted in the channel on piano wires
(Fig. 3). The traversing mechanism which controls the movement of this
aasembly.bermits the hot wire to be elevated to within 0,001 in, of the
upper wall and lowered to within about 0,015 in. of the lower wall,

The side~walls of the working section may be moved horizontally to allow
the traversing géar to be set at any desired downstream position., 4
sectional view and photograph of the traversing gear are shown in Figs, 3
and 4, respectively.

The static pressure is measured at a number of positions in the
channel by means of pressure taps connected to-a bank of manometers
£4i11ed with kerosene. The asbsolute pressure at the upstream end of the
channel is measured by means of a conventional mercury barometer; all
other static pressures are measured relative to the upstream pressure.

A cathetometer is used to measure the height of the colums of liquid
in the manometers, The cathetometer and manometer bank are shown in
Fig. 5. Pitot tube pressure measurements are made by means of a miero-
manometer (Fig. 6). |

The resistances of the platinum thermometers are measured by Mueller
bridges, one of which is also used to determine the resistance of the

thermgnemometer,



The circuit diagram for the thermanemometer is shown in Fig, 7.
The energy input to the thermanemometer is adjusted so as to bring it
to a predetermined resistance, which is attained by balancing & Wheat-
stone bridge which contains the thermanemometer as one leg. The volt-
ages across & resistance in series with the thermanemometer and across
the thermaﬁemometer itself are measured by means of White and K-type
potentiometers., The White potentiometer is also used to measure the
voltage of thermocouples which are mounted in the copper plates at
various distances downstream., Mueller bridges, potentiometers, and
electronic control eircuits for the oil baths and air are installed in
the bench shown in Fig, 8,

The rate of heat transfer in uniform flow is measured by means of
two calorimeters, which are installed at different downstream distances
to check on the uniformity of the flow and the consistency of each
calorimeter, The rate of electrical energy input necess;ry to maintain
the temperature of the block equal tc that of the surrounding plate is
measured. Correction for energy losses to the surroundings (which are
not large) permits calculation of the rate of heat transfer across the
fiowing stream. No calorimetric measurements were made under condi-

tions of non-uniform flow,



Experimental Results

The experimental work reported herein consists of measurements
of pressure, temperature, and velocity as a function of position in
the channel, Results are summarized in Table I. The data are also
presented graphically in Figs, 10-23,

Data were taken at two bulk velocities, Ug = 15 and 30 ft/sec,”
for boundary conditions 100/85/100%*. The other two boundary condi-
tions, 115/100/85 and 100/100/85, were investigated at only one bulk
velocity, Us = 30 ft/sec,

Temperature traverses for each set of boundary conditions were
made at downstream distances x = 23,22, 36,00, 50,00, 82,07, and
136.35 in,, measured from the entrance to the channel at the upstream
end of the copper plates. Velocity traverses were made at the first,
third, end fifth of the above positions, Temperature measurements
were made at shorter downstream intervals than velocity measurements
because the temperature fields under investigation were more complex
than the veloeity fields, .

The five temperature traverses for thé case 100/85/100, Ug = 30

ft/sec, are shown in Fig, 10, The vertical isotherm t = 84,9°F is

*Phese nominal values of Up will be used for convenience, Values of
the actual mass velocity and Reynolds number corresponding to these
bulk veloeities are listed in Table I,

*%phis deseription of the boundary conditions will be used throughout
the discussion. The first number is the temperature of the upper oil
bath; the second number is the bulk temperature of the entering airs
the third number is the temperature of the lower oil bath, All
temperatures are in OF,
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the assumed temperaturs traverse for x = 0, the entrance to the chane
hel. (A correction of «0,10F has been applied to the bulk entering
air temperature of 85,0°F to allow for the temperature drop in the
converging section,) It is to be emphasized that this f vs, y curve
is'only an estimation of experimental conditions; no actual measure-
ments of t and u were made for values of x smaller than 23,22 in,,
this being the farthest upstream that the traversing gear could be
moved, However, the approximetion of isothermal conditions at the
entrance to the channel should be very good as a result of the pas-
sage of the gir through the converging section, A very nearly con-
stant veloecity distribution should also prevaill at x = 0 for ihe
same reason, corresponding to potential flow,

The temperature traverses for 100/85/100, Up = 15 ft/sec, are
shom in Fig, 11, In this case the temperature drop in the converg-
ing section is negligible, and the bulk temperature of the entering
air is taken as 85.0CF.

For both these cases, the temperature of the air wlll have no
further tendency to change with downstream distance §n1y when it
reaches 100°F, the temperature of the plates, Uniform flow condi-
tions would thus be represented in this case by an isothermal traverae
at 100°F, Strictly speaking, uniformity would be attained only at
an infinite downstream distance, It is not,surprising that uniformity
has not been approache&.very closely at x = 136,35 in, (the farthest

distance downstream at which measurements were taken) for either Ug=

ft/sec or Ug = 30 ft/sec,
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The bulk temperatures corresponding to the traverses just discussed
are presented in Table II, If variations in cp and o are neglected,

the bulk temperature may be defined as:
!
N wed(Y%)
-t = ‘£l yo (6)
S ud(%)

It is the temperature which a given cross section of fluid would attain
i1f it were removed from the channel and thoroughly mixed.

The velocity traverses for the. above cases (100/85/100, Up =
30 ft/sec; 100/85/100, Ug = 15 £t/sec) are preéented graphically in
Figs. 12 and 13. The data are also plotted in the dimensionless form
u/% v8. ¥/¥o (Figs. 14 and 15), At Ug = 30 ft/sec for any value of
¥/¥os /vy is somewhat larger for the traverse at x = 23.22 in, than
for any of the other traverses, The relatively flat velocity distribu~-
tion indicated by large values of u/nm shows that the transition from
potential flow at x = O to a fully developed turbulent velocity pro-
file is not complete at x = 23.22 in,

The deviation of thev remaining traverses from a s'ingle curve is
small, and‘.the random nature of the deviations indicates that they
result from experimental uncertainty, Fully developed turbulent flow
is evidently attained somewhere between x = 23,22 in, and x = 36,00 in,
for Ug = 30 ft/sec. Fig, 15 indicates that fully developed turbulence
is obtained upstream of x = 23,22 in, for Ug = 15 ft/seé.

Fully developed turbulent flow is obtained at a downstream dlstance
beyond which the factors which describe the turbulence (such as intensity

and scale) are uniform, Thus if for any value of x greater than X,
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o] ey =0 .
A= ... £ Jx A=1.... m )

the turbulent flow is said to be fully developed at xp« An alternate
point of view 1s that the influence of the entfance conditions (such
as the shape of the velocity profile at the entrance) is negligible
for all values of X = Xqe

The 1nf;uence of entrance cpnditions on the temperature profiles
could have been eliminated by adding & conditioning section about four
feet in length to the.upstréam end of.the chamnel, This sectlion would
be geometrically similar to the remairder of the channel. Its dise
tinguishing.féatﬁre would be provision for conirol of the tempera=
ture of thé eopper piates separate from the plates bounding the main
part of the channel. The temperature of the plates in the conditioning
section would always be maintained at the temperature of the entering
air. The air would enter this section approximately at potentiasl flow;
its velocity profile would become fully developed under isothermal con=
ditions, The temperature boundary conditions would bé applied at the
domnstream end of the conditioning section, In this way, tamperaturé
development would take place independently of velocity development.
This design was not considered because the apparatus was bullt primarily
for studies of uniform flow, .

Fully developed tuébulent flow does not imply uniforhity, since
the velocity must change.with downstream dlstance whenever the density
of the fluid is chénging as a result of heat transfer,

Temperature and velocity data for the boundary conditions

115/100/85, Us = 39 rt/sec, are presented in Figs, 16 and 17. Previous



data were taken at these boundary conditions at x = 136,35 in, as a
pert of the uniform flow program (4), (5). The data of Figs. 16 and

17 indicate that the assumption of uniformity is Jjustified, since the
flow is substantially uniform as far upstream as x = 50,00 in,

Uniformity is evidently established much more rapidly for the
case 115/100/85 than for the case 100/85/100, For the latter case,
the midline.temperature must change by 15 degrees to reach the uniform
value; in the former case no change in the midline temperature is
necessary. The amount'of change which the midline temperature must
undergo is the factor which determines the distance downstream at
which uniform conditions will be established in the case of symmetrical
boundery conditions such as these,

The case 100/100/85 (Figs. 18 and 19) is intermediate between
115/100/85 and 100/85/100 in the distance downstream at which uniform
flow is established, The flow is decidedly non-uniform at x = 136,35 in.,
but one would expect uniformity to be esteblished at a finite dowmstream
distance, Practically no heat is transferred from the upper wall for
the traverses x = 23,22 in, and 36.00 in. A’temperaturé gradient
appears at the upper wall at x = 50,00 in,, and becomes progressively

larger for each remaining traverse.
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Accuracy of Experimental Data

The bulk temperature of the air entering the channel and
the temperature of the oil baths at the point of measurement
were maintained within ip.02°F of a predetermined value. It is
believed that circulation of the oil (countercurrent to the flow
of air) was sufficiently rapid so that the bulk temperature drop
in each oil bath did not exceed 0.1°F between thé point of meas~
urement of the oil temperaﬁure (x = 156 in.) and x = Q. However,
the temperature of the inside surface of each copper plate was
certeinly less than the temperature of the oil bath with which
it was in contact, the temperature drop being proportional to
the flow of heat through the plates into the air stream.

Measurement of plate temperature by means of thermocouples
indicates that the temperature drop through the plates may have
been as much as 2,2°F at the upstream end of the channel vhere
the rate of heat transfer to the air stream was largest. Each
thermocouple is installed in a well which extends to within a few
hundredths of an inch of the air-side surface of the copper plate,
but the thermocouple cannot be in contact with the flate; and it
is estimated that any thermocouple reading may differ from the
true temperature of the plate by as much as thSOF.

A knowledge of the rate of heat transfer through the plate
would permit prediction of the temperature of the air-side surface
of the copper plate from a knowledge of the temperature of the oile

side surface. But the oil-side temperature cannot be predicted
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unless the thermal resistance of the oil film is known. The oil
£ilm resistances are different for the upper and lower baths;
foreign matter is known to have settled from the upper oil bath
onto the upper plate and presumably increases the film resistances
Because of these difficulties, no attempt was made to calculate
air-side plate temperatures. It was believed that calculated
values would be more in error than the thermocouple readingse

The location of the thermanemometer in the channel was known
to within +0.005 in. for the x coordirate and +0.0015 ine. for the
y coordinates The largest temperature gradients encountered in
this work were approximately 200°F/in.; an error of 0.,0015 in. in
determining y would then correspond approximately to a temperature
error of 0,3°F, However, large temperature grédients were found
cnly near the walls where the uncertainty in determining y was
less than the maximum value cited above. The temperature uncertain-
ty as a result of uncertaiﬁty in thermanemometer position prob-
sbly does not exceed 19,1°F near the walls, and is less than this
near the center of the stream. The corresponding uncertaiﬁty in
velocity is +0.2 ft/sec.

Small vibrations of the hot wire about its eguilibrium position
resulted in corresponding fluctuations with time in the measured
resistance of the wire. These fluctuations were of course largest
near the walls where tﬁe temperature and velocity gradients were
highest. If lag in the wire is neglected, no error will be intro-

duced by these fluctuations with time, provided that an effective
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time average of the resistance can be taken. However, the method
of determining the mean value of the resistance was by means of

a visual estimation of the mean position of a galvanometer needle.
When the fluctuations were larze, the mean position of the needle
could not be accurately estimated; The resulting uncertainty in
temperature and velocity measurements is estimated at ip.O5°F and
+0.1 ft/sec, respectively.

4 further possible complication is the lag of the thermanem-—
ometer behind the velocity fluctuation (11), but the resulting
error is probably small and will not be considered further,

One of the most consistent sources of difficulty in the use
of the thermanemometer is the tendency of the calibrations to
change with time, It has been found that for a given air velocity
the current required to maintain the thermanemometer at its oper=-
ating temperature decreases with time. This phenomenon corresponds
to a decrease in the heat transfer coefficient of the wire, and
results in a change in the constants A and B¥ in Eqguation 5. It
is believed that foreign material accumulates on thé wire and
inhibits heat transfér to the air stream. It has been found that
heating the wire tc a red glow for about 20 minutes causes the |
velocity calibration constants A and B to reassume approximately
the values which they had when the wire was new, However, this
reassumption is not qu;ntitatively reliable, and so the wire was

*4 and B will be referred to as constants even though they are
functions of time.
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calibrated as a velocity measuring device at frequent intervals

and was burned off only when the rate of heat transfer from the

wire became so low as to render it insensitive to changes in

velocity. The’éongtants A ard B in Equation 5 were determined

as functions of time by means of a standardized procedure (L4)e

The uncerﬁainty in determining the air velccity by means of

the thermanemometer is attributed to two factors:
2., The thermanemometer was calibrated only three times
for each traverse. Considerable uncertainty exists in
the delineation of curves such as A vs. © and B vs, ©
from only three experimental pointses In order to avoid
this difficulty, the assumption is made in the drift
aralysis procedufe that the constants A and B change
with time when and only when air is flowing through the
channel. This assumption permits correlation of A and
B as a function of time for several consecutive traverses,
even when there are intervening idle periods. Unfortun-
ately, it is often obviously impossible to.correlate the
trave:ses in this way, due perhaps to such factors as
dislodgment of the foreign material from the thermanem -
ometer during movement of the traversing gear.
be Velocity measurements by means of the pitot tube,
against whicﬁ‘the hot wire was calibrated, are subject to

considerable uncertainty, especially at low velocities.
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The precision of the velocity measurenments, that is, their
éonsistency’withcut regard to calibration errors, is estimated at
4042 ft/sec. Their accuracy, however, is much lower; some of the
velocities in traverses in which calibration difficulties were
encountered may vary from the true value by as much as +0.5 ft/sec.

Unexpected difficulty was encountered in the change of temper-
ature coefficient of resistance of the thermanemometer with time.
The ¢hange wag noi I_Large, and unlike the change in velocity cali-
bration, it seemed to take place whether or not air was flowing
through the channel, Fortunately the drift was nearly linesr with
time. This phenomenon appears to be unique; no such steady drift
has taken place during other measurements on this project, and no
mention of it has been found in the literature. A possible ex~
planation for this drift is the diffusion along the wire of the
solder which was used to connect the wire to the supporting needles.

The thermanemometer was calibrated as a temperature measuring
device against a suitable standard in stagnant air at approximately

100°F. In the equation relating t and R

t= a(e) R +,2 | (8)

The coefficient & (@) was d.etermined as a function of 'time by in-
terpolation between the experimental calibrations with the assump-
tion of constant /7 A plot of A (©)vs.(O)is shown in Fige 2l
The temperature error resulting from uncertainty in determining

X (©) as a function of (6)is estimated to be +0.05%F,
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Additional physical phenomena introduce some uncertainty in
the measurement of temperature by means of the thermanemcmetars
The firsf of these is the impact effects The flow of air in the
vicinity of the wire is obstructed by the wire; some of the air
molecules are stopped completely, whereas others are slowed downe
If the process is assumed to be adiabatic, the general energy

balance for steady flow becomes
AKE + A H = O (9)

If the air is assumed to be stopped completely, and if perfect

gas behavior is aSsumed, BEquation 9 becomes:

w? |
0= 79 * Cp Aty = O (10)
or
u? y
At; = s7c, - t, - (11)

where ts is known as the stagnation temperature. |

Equation 11 is obviously not a reliable measure of the temper-
ature rise in the vicinity of the thermanemometere. Heat will be
conducted from the vicinity of the wire to the main body of the
stream. Most of the air near the wire is only slowed down, rather
than stoppede The result is that the measured impact temperature
rise & t; is only a frac%,ion of the temperature rise &t  as cal-

culated from Equation 11:

At

AtL = (12)




The quantity w , known as the recovery factor, has been
determined éxperimentally (12)s A value of & = 0,75 has been
used in correctihg the experimentally measured temperatures,

The maximum impact correction is 0,0829F at u = 36,0 ft/sec,
Even if the valuc of «w used is appreciably in error, the result—
ing error in the temperature will not be large. The equation used

for the impact correction is (13):

— At =632 x r077 u? (13)

A sizeable correction must be made for the heating effect of

the Wneller hridge ecurrent which

lows through the thermonemometer
when its resistance is measured. King's equation is rewritten in

the following form where AR = R R, is replaced by %%f:

Al

4 - a L®Ruy
A= Sl Ruw e

RHW is determined by direct measurement; I may be calculated from
the Mueller bridge circuit constants; @ , A, and B are determined
from experimental calibration of the thermanemometer as a temper=
ature and velocity'measuring deviceo. Substitution of these cone

stants into Equation 1Y gives the following:

“ [0
At = 4149 + /i (15)

As predicted by Equation 15, Astb" is a maximum (0.251°F) at zero
air velocity. Since the thermanemometer was calibrated as a tem=

perature measuring device at zero air velocity, this error is



introduced into all measurements, and the actual temperature

correction is:

o -V /
Aty =025 - SL0F \16)

This correction is subject to the assumption that the plot
of IQR/RHW-EA = @, vse /U is a straight line as predicted by
King'é equation. It is especially important that the correction
at zero air velocity be accurately known, since the thermanemom-
eter was calibrated at this velocity.

A possible source of error in the bridge current correction
is the loss of heat by conduction through the wire and into its
supportse. This heat loss will cause the wire to assume a some=-
what lower mean temperature than that predicted by Equation 16.
The mean temperature rise of the wire is calculated in Appendix IT
with the assumption that the ends of the wire are at the air tem=
perature, which is reasonable in view of the excellent thermal
contact between the ends of the wire and the supports. For any
given eir velocity, the mean temperature rise was found to be 90.7%
of‘Q>tbz the value predicted by Equation 16. The final expression

for the bridge current correction is gilven by the equation

t = -~ —LoZ .90
Aty <b.255/ T ,) ©. 907 (17)

The maxlmum correction for impact and bridge current as given
by the sum of Equations 13 and 16 is 40,C9°F. The uncertainty in
this correction is estimated as ip.OhoF, largely due to uncertainty

in the recovery factor c o
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The uncertainty in temperature measurement as 2 result of the
limit of precision of the Mueller bridge is ip.O2°F. The overall
temperature uncertainty is the root mean square of the individual

uncertainties (1L):

dt = é[0.022 (air temperature control) (18)
+ 0,10° (positioning of wire) |
%40.052 (calibration drift)
+ 0.022%(Mue11er bridge uncertainty)

+ O.OLL2 (impact/correction)

2 ™
+0.05 ](wire vibration)
§t = £ 0,1L°F

This value is an indication of the probable difference be-
tween reported and true values of temperature; the precision or
self-consistency of the temperature measurements is undoubtedly

much better than this.
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Gross Correlatlions: 8 and h

The heat transfer coefficient has been calculated from Equation 3

for the boundary conditions 100/85/100, = 15 and 30 ft/sec. The

s
change in fluid properties between 85 and 100°F is so slight that the
heat transfer coefficient at 100°F is only 0,3% higher than at 85°p,
This small variation has been neglected, The values of h caleculsted

from Equation 3, assumed uniform with respect to downstream distance,

ares
h = 444 BTU/hr £t° OF (4, = 15)
h = 7.62 BTU/hr £t> OF (U, = 30)

Bulk temperatures have besn calculated from the above heat trans-
for coefficients. An energy balance is taken on a segment of flowing
fluid of cross-sectional area y,z and infinitesimal length ax:

dQ=Zthx(f“,-ta)rr9\de'l’:B (19)
thx (éal)xzx, d‘&
or, upon integration £xrF—=— = j[— <=2 (20)
P &Bu)x:o ‘éw‘és

Equation 20 h;s been used to caloulate tp for x 23,22, 36,00, 50.00,
82,07, and 136.35 in. on the basis of two assumpfions:
a. The wall temperature, t_, is uniform at 100°F,
b, The tw -x distributién is as given by experimental thermoe
couple measurements (Fig, 42).
Case (a) was ealculated in order to determine the magnitude of the

error introduced by the assumption of a uniform wall temperaturs.



(Caleulations made subsequently with the analog computer involved
the assumption (a); the difference between (2) and (b) is nseful in
evaluation of the analog results.)

For the present calculation, then, (b) is the only case which
should be expected to agree with experiment.

f‘or the assumption (a), Equation 20 may be integratéd readily.
For the assumption (b), %, is no longer constant, but is a known
function of x. A laborious graphical integration is avoided by the

agsunption:

i'%u = K, » & constant (21)

&

which is subsequently proved to be valid. This assumption amounts
to determining tp as a function of x for the case in which t,, varies

with x as predlcted by:
dtw _ , dts (22)
dx " dx

This calculation (based on the assumption of Equation 21) will prove
satisfactory if integration of Equation 22 gives wall temperatures
which agree with the experimental values.

From Equation 21, it follows that:

dltw - £g)

dt (23)
K, —1 8

Equations 20 and 23 are combined to give:
(Ru-t3)x=x,

dbe-ts) _ o) RhEX (24)

h
‘£w-‘£5 n:le
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Equation 24 1s solved by successive gpproximations, the first
approximation being Kl= 0. The calculated bulk temperatures are
listed in Table II for UB——- 15 and 30 ft/sec for comparison with the
experimentel valves. The wall temperatures calculated from Equation 22
agree with the experimental values within 0,1°F, well within the accur-
acy of the experimental thermocouple mezsurements (Fig. 43). Thus
the assumption of Equation 21 is justified,

Agreement between caloulated and experimentel bulk temperatures
is not particulerly good. However, the main source of disagreement
is in the zone near the entrance to the channel, where the large
temperature gradients and non-uniformity of the turbulence make the
assumption of constant h quite invalid,

It ie noteworthy that the calculated bulk temperatures are not

even quelitatively correct for x = 23,22 and 36,00 in,, since for

these two downstream distances

(Ts),

a =15

> (Cs) Uy=30 (ealculated) (25)
(TB)Uaz,s < (fa )U‘,=3<: : (experimehtal) (26)

The experimental results at x = 23,22 and 36,00 in, differ from those
for the remaining traverses (x =50.00, 82.07, and 136,35 in,), for

whﬁ.ch
(Z, }775=/5 > (Za)va:go ' (experimental) (27)

as predicted by calculation from Equation 3.

This snomaly is doubtless due to entrance effects, the nature

of which is not fully understood,



It appears that for Ug = 15 f£t/sec, the heat transfer coefficient
caléulated from Equation 3 is essentially correct except for the
r_egion 0 <x <23,22 in,, where the calculated values of h are too
high, This statement follows from the approximately uniform differ=-
ence between the calculated and experimentsl temperatures for each
downstream distance, which indicates that practically all the error
in caleulation is introduced in the reglon 0 < x < 23.22 in,

This conclusion is confirmed by the calculation of h as a |

funetion of x from the experimental bulk temperatures for Up = 15 ft/sec.

The values obtained rénge from h = 4.45 BTU/hr ft2 OF at x =23,22 in,
to h = 5,05 BIU/hr £t2 OF at x =82,07 in., compared with the calcu-
lated value of h = 4.44 BTU/hr £t2 OF, assumed uniform,
For Ug = 30 ft/sec, the situation is somewhat different. The
calculated bulk temperature is too high for x = 23,22 and 36 in., and
in agreement with experiment at the remaining downstream distances,
Thus the calculated heat transfer coefficient (7.62 BTU/hr f£t2 °F)
is too high upstream and tdo low downstream, Values of h caleulated
| directly from the experimental bulk tompera.t.ufes lead to the same con-
clusion; h ranges from 6.21 BIU/hr £t OF at x =23.22 in, to
8,83 BTU/hr £t2 OF at x = 136.35 in., compared with the uniform cal=-
culated value of 7.62 BTU/hr £42 OF,
Table 111 contains values of 8 (as well as h) which are calcuiated

from the experimentel date.



Point Correlations: €, and € ¢

Values of €, and €, have been calculated for the case
100/85/100, Up = 30 ft/sece In addition, ¢, has been computed
for the case 115/100/85, Uy = 30 ft/sec. Equations 176 and 179
(Appendix I) were integrated graphically to obtain the eddy
quantities, which are listed in Table IV. Calculations of the
eddy quantitiés were made only fof 0.5 <y <1.0, symmetry being
assumed for.the remaining half of the channel, and for x = 23.22,
36, 50, 82407, and 13635 in., the downstream distances abt which
experimental data were takén.v

One of the major difficulties in determining the eddy quanti-
ties in non-uniform flow is the lack of precision of the quanti-
ties du/ex and 9t/ex, which are determined graphically from cross
plots of the experimental temperatures and velocities. Uncertain-
ties in the calibration for velocity or temperature will not affect
the precision of each individual traverse, since any error intro-
duced is essentially constant throughout the traverse. However,
these uncertainties tend to change with timej; the I;eSul'b is that
the comparative precision of the traverses at successive downstrean
distances is affected adversely, and so is the accuracy of deter—
mination of du/dx and ot/oxe (The accuracy of the temperature and
velocity data is ﬁot a -factor in determining the accuracy of the
derivatives of these quantities with respect to downstream distance;
only the precision is important.)

The results of the calculations of €,,and € for 100/85/100

are in general goode The eddy viscosity changes very little with
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downstream distance, the maximum change being only 2%; according-
1y, the values of €, Vse y/yo have been correlated in Fig. 27 by
means of a single curve. The values of €, calculated for y/y0 =1
are very nearly zero, the maximam deviation being only 0.005x10=3
f‘bz/ seco This deviation is less than 3% of the kinematic viscosity
at the walle The eddy viscosity attains its maximum value approx=
inately at y/yo = 0o8: The midstream eddy viscosity is about 80%
of the maximum values The calculated values of €,,agree well with
the results obtained for uniform flow (L)e |

The eddy conductivity distribution calculated for the same
case (100/85/100, Uy = 30 ft/sec)_ is similar to the eddy viscosity
distribution. A definite increase in the eddy conductivity with
downstream distance is noted. This increase amounts to as much as
80% (for a given value of y/yo) between x = 23.22 and 136,35 in,
This increase seems excessive compared to the nearly uniform dis-
tribution of eddy viscosity.

The eddy conductivities calculated for 115/100/85, U = 30
ft/sec, show the same general behavior as the eddy cﬁnductivities
discussed above. They increase with downstream distances They
pass through a Iﬁaximum approximately at y/yo = Uofs However,
quantitative agreement between the eddy conductivities for the two
cases 1s not goode The values of €. are nearly twice as high for
the boundary conditions 100/85/100 as for 155/100/85, It would be
expected that the eddy conductivities wuld be equal, or nearly so,
for these two cases, since they differ only in temperature, which

is presumed to exert little or no influence on €¢ o
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Difficulties were encountered in the calculation of €. for
the case 115/100/85., Since in this case at/ay is not zero at
yfyb = 005, Equation 178 (Appendix I) must be integrated from

the wall where €. is known to vanish:

(GC*K)M 'é 7‘13:7]7 .[u“ dy  (28)

Yy .
or E‘-_ = yo 9 yn - K ( 29 ) ‘/’_,
| At '

J
g dy
Unfortunately, too few laminar layer data were ottained

to permit gccurate evaluation of 2t/3y at the wall. Hence the
accuracy of the eddy conductivities calculated from Equation 29
is low, However, the precision is good for the determination of
€. as a function of y for a given value of x, since the uncer=-

tainty in 8t/@y at the wall will introduce a constant error in€. s
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Prediction of Temperature
and Veloclty Fields in Non-Uniform Flow

In a previous sqction the concept of fully developed turbulent
flow was discussed, According to this notion, the shape of the velo-
cit;j profile is independent of entrasnce conditions for all values
of x greater than x,, the distance downstream at which the turbulent
flow is said to be fully developed. In other words, the dimension-
less quantity u/um is a function of only the y coordinate for
x > xc; The independence of u/uy of the downstream distance has
been experimentally verified by this research. The data indicate
that for Up = 30 ft/sec, X, is between 23.22 and 36 in., and that
for Ug = 15 ft/sec, x, is less than 23.22 in,

The velocity field in non-uniform flow may be predicted (for

%X > ¥¢) from a knowledge of the functionel relationship

*

U ( X vY) £

——iL = y (30

U, ¥) i ( ) 30)
if the meximum velocity izm(x) is alsc known. To determine um(x) ’
knowledge of the mass velocity G and the temperature and pressure

fields t = t (x,y) and P= P (x,y) is necessary. The latter two

quantities determine the specific weight:c= o (P,t)=o(x,y). Then
! y
G:LO/’O-U d{%)

6= [ ch ) im0 d(3)

(32)

*For a given fluid at a fixed Reynolds number, fy and ft are functions
of y only. The dependence of fy and fi on fluid properties and

flow conditions will be discussed below,

(31)
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G
()=
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4
U (XY :'ﬁ‘ Y) —= g
D ot (4 .

, Attention will now be directed to the problem of determine .
ation of the temperature field in non-uniform flow for X>Xo. The
quantity ty=t/ty~te has been plotted vs. y/y, for all temperature
traverses taken st Up = 30 ft/sec (Fig. 28). It is found that within
experimental error the points lie on a single curve. Furthermore,
this curve very nearly coincides with the curve W/uy, vs. y/¥o0, (Fig. 14)
which is reproduced in Fig, 28 for comparison. Similarly, ty~t/ty-te
has been plotted vs. y/y, for Ug = 15 ft/sec (Fig. 29). The points
are again correlated by a single' curve, which nearly coincideé with
the curve u/uy vs. y/y, for the same bulk velocity.

From a knowledge oi‘,- the functional relationship#

:::Z(’(C;;) =A@ (3

the temperature field ¢ = t(x,y) may be predicted if the centerline
temperature b, — tc(x) is known. The centerline temperature may be

related to the bulk temperature as follows:

ru t o X

VAT

(36)

¥See footnote, previcus page.
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em ‘W
fa‘;fwfi %) + f{«%‘; a3)

¢ (x)= , a

8 o /‘lm d(%) (37)

o L4 ) % 6) 7 (%) L (39)
(%¢ )= — we '

B /" fa-(:) d{}//yo)

teta(x) L) Bl 2( %) (29)

bnte () [ () & ()

Equations (34), (35), and (39) may be solved simultaneously*

for t(x,y) and u(x,y) from a knowledge of the following quantitiess

G = constant (40)
b - 6,00 o
tp : t5(x) (42)
P - P(x) (43)
iy = e =
b ()= E(x,y) _ £ () (45)

e ()~ (%)
The pressure P is assumed to be a function of x only, and since

it enters only in determination of -, may be assumed constant. The

- v aa

#¥A trial solutlon is involved. A good first approximation for flow of a
gas is ty~tp/ty~te 0.85., This ratio is nearly independent of G.



mass velocity G and the wall temperature t,(x) are independent variables.
The bulk temperature of the alr may be ca.lculated from empirical correla-
tion such as Equation 3.

The discussion of the last several pages will be summarized in the
next three paragraphs. It has been found experimentally thet for air
at a given Reynolds number the velocity field u(x,y) can be represented
as a product of a function of x only [um(x)] , and a function of y only
[fu(y):l . Similarly, the quentity [tw(x) - t(x,y)] may be represented as
the product of a funetion of x only, [tw(x) - tc(x)] , and a
funetion of y only, I:ft(y):l . '

It has been shown that if G, ‘bw, t., and P are known, the functions

B
[um(x);[ and [tﬁ(x) - tc(x)] may be eliminated from Equations 30 and 35,
respectively. Furthermore, G, ty, tp, and P are either known or readily
determinable funections, and so the préblem of determining the velocity
and temperature fields has been reduced the determination of the functions
£,(y) and £ (y). The advantage is obvious;. the number of dimensions
involved has been reduced from two to ome.

However, this discussion is valid only i"o:é fully developed turbulent
flow. It must fail where entrance effects are appreciasble, that is, where
x is less than x,. No attempt has been made to apply this treatment to
non-symmetrical cases such as 115/100/85 ox 100/100/85.

A theoretical approach "bo this problem by Martinelli (15) indicates
that the functions of fu and ft depend on the Reynolds number as well as
the vertical position in the chamnel. In addition, £, depends on the

Prandtl number:



3
s =1 (Re, y) (46)

fl" = 7@_ (;Q@, /D/‘, y) (47)

According to Martinelli's treatment, the dimensionless velocity and
temperature distributions £, and fy coincide at Pr = 1:

fu = 7% (48)

£ (Re, y) = ﬁcﬁ@e,],y) | (49)

The Prandtl number. for air at 100°F is 0.71, and the dimensionless
temperature and veloclty distributions predicted by Martinelli for
air are thus nearly identical.

As mentioned previously, the functions f,, and fi have been
calculated from the experimental data for air at two bulk velocw
ities, Ug =15 and 30 £t/sec. These experimentally determined
functions £, and £y and their corresponding theoretical values
predicted by Martinelli are compared in Figs. 28 and 29. Agree-
ment between theory and experiment is reasonably good.

The problem of predicting temperature and velocity fields in
non=uniform turbulent flow is not finally solved. Martinelli's admir-
able theoretical approach cannot be relied on for quantitative infor-

mation, largely because of the assumption
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%i— # Fly) - (50)

which he had to maké In order to integrate the differential equation
for heat transfer,

It is the writer's belief that the best approach to this problem
is the experimental détermihation of the function fy(y,Re,Pr) for a
variety of values of the Reynolds and Prandtl numbers. The funetion
£ (v.Re) is already well defined by such familiar expressions as the
universal equations for turbulent velocity distribution (16):

o _ +
U" =y 0%y < 5 (51)
Ut = ~3205+500 b 7 S < yTs 30 (52)
U* = S5 +25 y+t 3F0< y?t (53)

Furthermore, since f,, and £, coincide at Pr = 1, the most exhaustive
investigations of fi should be made at Prandtl numbers differing
appreciably from unity, Since heat transfer to oils (Pr=100)
and to liquid metals (Pr=0,01 for mercury) has important industrial
appliestions, tﬁe detarmination of f‘b for widely varying Prandtl numbers
will be of immediate practi;sal value, The experimental work reported
ﬁerein is only a first step in this direction,

It will be noted that this methoed of approach does not require

the knowledge of €,,,or €. as a function of x and y,



No established method exists at present for the prediction of
temperature and velocity fields for downstream distances x less than

x In fact, the calculation even of bulk temperatures in this region

c®
by existing correlations, such as Equation 3, is not very reliable,
The experimental work carried oﬁt in this research contributes little
to solution of the problem, since phyéical limitations of the apparatus
were such that no megsureménts of temperature or velocity could be made
for values of x less than 23,22 in,, at which point the transition to
fully developed tnrpulent flow was practically complete, |

Since the region in which x less than x, is ﬁy definition a region
wherein the entrance conditions affect the flow, experimental results
obtained in one channel will not be applicable to other channels
unleas entraned conditions are identical.

For the transition from isothermal potential flow to fully devel=
oped turbuleqt flow, the dimensionless temperature and velocity distrie

butions at the limits of the transition reglion are:

Coe ~
—&(’f’—@ = ?;_—;:;— (x = 0) (54)
Lo Bezl oA (f=R ) (x=x) (55)

Um tw- - tc,

For Pr = 1 (Approximated by air and other gases) u/'um = t“rt/t'rtc
at.both ends of the transition region. It is possible that this
equality holds throughout the transition region. Experimental measure-

ments of the simulteneous developments of temperature and veloecity



profiles will be necessary to test this hypothesis,

Studies of the development of the turbulent temperature and
velocity profiles independently of each other could be made by
means of equipment described in a previous section, in which the
velocity profile is allowed to attain full development under
isothermal donditions upstream of the point of application of the

temperature boundary conditiona,
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Solution of the Heat Transfer Equation by Electriéal Anajogy

If conduction in the direction of flow is neglected, and if

cP¢- is assumed constant, the heat conduction equation beccmes:
2T

J ﬁ] = { T
Sl 93] = “ox (56)
This equation is derived in Appendix I.

A quantity @(y) , designated the thermal resistance, is

defined as follows:

%/g
b)) = f ———ad(%)

€. 1K (57)

/

a————

€M (58)

by

A
so that &{

|

=

AN

Equation 56 can be expressed in terms ofj? as follows:

27 2 2T

—_— = é +K Q

g T % (Er0 ok (59)
The steps by which Equation 59 follows froﬁ Equations 56 and 57

are non-essential and have been omittede.

The left side of Equation 59 is now expressed in finite differ-

ence. forms
fo tr | Tl
- © agd a 2T
=y (bt U 5x
~ 7 - (60)

P = 1,2,30000..!1

The points P = 1,2,3es+0enl are spaced at equal intervals of £ ¢ «
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#(%.)
e (61)

AL P o=

The value of n (the total number of points) is guite arbitrary.
As ' n is increased, Equation 60 approaches Equation 59 more and
more closely. It is important to remember that the points
P = 152,3¢00000n divide the channel between y/yo = 045 and
y/yo = 1.0 into (n-1l) sections of equal thermal resistance.

We now proceed to develop the electrical analog of Equation &0
by con;ide;'ing unsteady flow of current through the network shown
in Fige 30. The sum of the currents leading into any junction j

mist be zero:

LR AR S A8 (62)

A comparison of Equations 60 and 62 shows that they are of
the same form. The analogous quantities are: temperature,

t ~ voltage, E; thermal resistance, @ ,~'electrical.resistance,
R; downstream distance, x,~ tiue, & ; and (&+WUF 2 ~
capacitance, Ce.

At any one time, junctions j = 1,2,3eesseet Of the electrical
network represent a set of vertical points p = 1,2,34eeeen in the
flow channel all of mh:ii:h are at a particular downstream distance x.
For the actual axalog circuit, n =_25’. Point p = 1 is 1océted at
the wall of the channel (y/yo = 1); point p = 25 is at the center

of the stream (y/yo = 0.5)s The analog circuit thus represents



- 40 =

only half the channel, symmetry being assumed with respect to the
axis y/yo ='0.5.. Tbe Values of y/yb corresponding to the inter-
vening points p = 2,3,leeee24 are obtained by plotting § vse y/yb
and determining the values of y/yb for successive equal intervals
of @ .

The factor of proportionality between downstream distance x
in the heat transfer equation and its electrical analog, time, is
designated as A . This quantity may be determined by a balance

of the dimensions of Equations €0 and 62:

paYat C} _ Py
A N o (63)

Only two of the quantities R, A , Cl’CZ’CB""“Czh may be
chosen arbitrarily; the rest are fixed by Equation 63, In
practice, the magnitude of the components was dictated by the
range 6f values available in the analog circuite

This analog circuit is adaptable only tocases for which both
(€ tK ) and u are assumed to be functions of y onl&. It would
be necessary to vary the circuit resistances and capacitances with
time to allow for a variation of ( & +K ) and u with downstream
distance Xe

Before Sw 1 (Fige 31) is closed, the circuit is quiescent.
A1l junctions are at géound potential, which will be assigned the
value zero. When Sw 1 is closed, the battery voltage E; appears
at junction j = 1. This voltage will remain constant as long as

Sw 1 remains closeds The boundary conditions thus imposed on
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on Equation 62 are:

‘ﬁ"r:ﬁ'/@,/) J

i

L2, 3..,..25 (64)

E/O,/')=O J =/ (66)

A temperature tl is now assligned to the voltage E, and
another temperature 'bo to the ground potential of zero. A linear
relationship between the two variables being assumed, t is thus
defined in terms | of E. Equation 58 is now subjeet to the following

boundary conditions whichk correspond to Equations 64 - 661
t=tlgp)  pe=l,2,G... 28 (6n)
oy, 1) =4 (68)
Hap)=ts prl (69)

Since each point p 1,2,3......25 corresponds to a particular

value of y/yo ,» the above boundary conditions may be expressed as

follows:
t=17 (x,y) (70)
t(x,y,) =%, | (71)
cetlx,0)=4 - (72)

o, y)= 4, (73)



Knowledge of Ej as a function of time will then permit deter-

mination of "bp (for p = J) as a function of xi:

t.(x) =4 r i;@ (¢,-T,) (7h)

/

for which ti)(:;) denotes t as a function of x for a parﬁicular
value of y/ﬁb. In practice By for J = 1,2,3ee0eee is recorded
by photographing an oscilloscope trace. (See Figse 32 - 35) The
vertical axis of an oscilloscope trace represents voltage; the
horizontal axis, times (The oscilloscope trace is formed by the

motion of a small beam of light at a constant horizontal speed.)

the case 100/85/100, Ug = 30 ft_sec. ‘The eddy conductivity in-
formation used in the analog work was obtained from uniform flow
measurements at Uy = 30 ft/sec (L) The measurements from which
these eddy conductivities are calculated are designated in (L) as
"Test LO"; this terminology will be continued.

One of the purposes of this investigation isto test the.
applicability of eddy conductivity information obtained from uni-
form flow measurements to npnruniform flow problems.

Subsequent calculations of €, directly from the experimental
data for 100/85/100, Ug = 30 ft/sec, give results which do not
agree with the uniform eddy conductivities. This lack of agree-
ment is no cause for céncern, however; &, is a very sensitive varie

able and errors in its assumed distribution may not affect the

validity of the analog solution. Furthermore, the accuracy of
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determination.of 5; for non~uniform flow is decidedly less than
for uniform flow; it is possible that the uniform values of
(Test 4O) are as representative of actuality for the case
100/85/100 Up = 30 ft/sec as the values calculated directly from
the non-uniform experimental data.

At any rate, limitations of the analog circuit force the

assumption that

& & (¥ (75)

and the non-uniform values of €, could not have been used on
this account.

The velocity distribution used in the analog solution was
that of Fig. 1L which is determined from the experimental data

for 100/85/100, Ug = 30 ft/sec.

« # f(x (76)

is also necessary for this analog solution. The average of the
expermehtal maximum velcities, 34e87 ft/sec, was taken as
representative of the entire channel, and a single u - y relation-
ship determined from this value amd Fig. 1ll.

The analog circuit components were computed from the experi-
mental vdl ues of €, and u by Equation (63). The eddy conductivi-.
ties of Test LO were nd£ accurately determined near the wall, due
to uncertainty in determining the large temperature gradients in
that region. Accordingly, several different interpolations were

made of the 5;..:, curve between its known limiting behavior at



the wall (namely €°=o ) and the nearest accurately calculated
point ab%? = 0e¢96e The way in which this interpolation is made
o

is important, since it defines the thermal resistance in the
rYegion in which it is highest,

Three interpolations, labeled A,B, and C, are shown in the
plot of € vVse %% in Fige 3le Case A was drawn in only as an
upper limit beyond which the curve could not possibly go; it was

not thought to be a very probable distribution, since it shows

Ec;>¢9 throughout the laminar layer. Case C follows from the

laminar layere. Case B was'intermediate between cases A and C,
Case D was drawn in light of more recent eddy conductivity ine

formation and will be discussed belowe

Solutions of the heat transfer problem were carried out for
cases B and Ce No significant difference was found between the
solutions for the two cases, indicating that the thermal resistances
for the two cases are, for practical purposes, identiéal.

Five representative oscilloscope traces are shown in Figs. 32 -
36. (These are for Case C about which the subsequent discussion
will be concerned.) As indicated above, the oscilloscope traces
are curves of voltage vs. time vwhich may be converted into temper-

ature vs. downstream distance by use of Equation 74 and the follow-

ings

e=2r%X 7
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Fige 32 represents t vs. x (or more precis'ely, the electrical
analogs of these quantities, E vs. 6 ) for ‘&é Oe5e Figse 33,
34, and 35 represent t vs. x for j‘/%: 0.643, 04821, and 0,964
respectively. ‘

'Fig. 36 differs from Figs. 32 = 35 in that it is a trace of
El.2 vse O ,which is equivalent to a plot.of the temperature
difference scross a Known ‘tnermal resistance vs. distance down-
stream; Since this thermal resistance is adjacent to the wall,
th_e  temperature drop determined from Fig. 37 can be used to cal-
culate the rate of heat transfer from the wall to the air streanm

as well as the heat transfer coefficient h:

o J (78)
Pw= K //;;’/fjo
A= qu/c.w_z-.a (79)

These quantities are plotted vse. downstream distances in Fige 37.
Values of h determined in this way are listed in Table III. These
are compared with those calculated from the analog bul-k temperatures
(see below) by means of Eéuation 20,

Plots of t OF vse x (in) corresponding to Figse. 32 =35 are
shown in Figs. 38 = Ll respectively. In all, 25 such traces have
been obtained, one for each junction je The lemperalure informa=
tion obtained from these ‘traces has been cross-plotted to give
t vs. 7, at the five values of x at which experimental measurements

were mades These temperature traverses are plotbted in Fige 42, and
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the data are listed in Table V. Bulk temperatures have been cale
culated from these data and are included in Table II for ready
comparison with the experimental resultse.
Agreement between the experimental temperature traverses
(Fige 10) and those obtained by analog solution (Fig. L2) is only
fair,
Three reasons are presented for this lack of sgreement. It
is probable that all are significant factors:
ae Failure of Cése C to represent the actual eddy con-
ductivity distribution near the wall., Since predicted
temperatures exceed experimental temperatures through-
out the chammel, the values of €, predicted by Case C
are apparently teco high. Information which has recently
become available (5) indicates that the eddy conductivity
distribution is better represented by the curve in Fig. 32,
labeled Ds The total thermal resistances for the two

cases are related as follows:
_—_ = Vad (80)

Case D is seen to have an apprecilably higher thermal
resistance than Case ¢ and should give correspondingly
lower temperatures.

be Failure 6f any uniform eddy conductivity distribution
to apply in Lhe transition reglon between potential and
fully developed turbulent flows As indicated in a pre-

vious section, conditions near the channel entrance are
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very complex, It is assumed that the intensity of
tﬁrbulence increases from a rather small value at x= O °
to a much larger, essentially uniform value at x = Xy
at which point the transition to fully developed turbu=-
lent flow is complete, If this assumption is correct,
the eddy conductivity must show a corresponding increase
with downstream distance, Therefore, the assumption of
a uniform eddy conductivity distribution equal to that
bbtained in fully developed turbulent flow will lead to
predicted rates of heat transfer which are much too high
in the transition region.

¢, Disagreement between the boundary conditions imposed
on the anslog eircuit and those obtained experimentally.
‘The analog solution of course applies to the case where
the plates are maintained isothermal at 100°F, 4s pre-
viously mentioned, the measured plate temperatures are
appreciably lower than 100°F, due to the temperature drop
through the plates, This drop is largest near x =0
where the rate of heat transfer is highest. Plate tem-
peratures (air side) as measured by thermocouples are
plotted v, x in Fig. 43+ The temperature at x=- 0 is
seen to be 97.7°F, and that at x = 136,35 in. is 99.5°F.
Obviously, if fhe analog solution is to be directly com-
pareble to the experimental work, the analog boundary con=

ditions must be made to coincide with the experimental

values,
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An attempt has been made to correct for this discrepancy
between analog and experimental boundary conditions. The bulk
temperature of the air has been calculated by use of Equation 3
on the basis (1) of a uniform wall temperature of 100°F and
(2) experimental tw - X distribution as given by thermocouple
measurements. The difference in the temperatures thus attained
represents a correction for lack of agreement of the boundary
condition t = 100° with the experimental boundary condition.

This correction is applied to the analog bulk temperature:z§§f1=é

It is not presumed that this correction is anything better
than a reasonable approximation to readlity. The corrected analog
bulk temperatures (Table II) are still higher than the experi-
mental values. This discrepancy is attributed primarily to (a)
and (b), above, since the effect of (c¢) has largely been elimin-
ated by the correction just discussed.

In an effort to resolve these difficulties (a), (b), and (c),
a new set of analog measurements is planned. The temperature at
the wall will coincide wth the experimental curve (Fig. 43)e In
the analog circuit (Fig. 30) the point j = 1 corresponds to the
wall. The voltage imposed at j = 1 must be made to vary with time
in a manner analogous to the actual variation of temperature with
distance downstream as shown by Fig. 43. A variable voltage may
be imposed on the circﬁit by means of an arbitrary function gener-
ation.

In this proposed set of measurements, the eddy conductivity

distribution of Case D (Fig. 31) will be utilized, As outlined

£
&
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above, this information is believed to be the best presently
available.

In order to determine the error introduced by assumption
of uniform eddy conductivities in the transition region (0 € x

< xc) two analog solutions are planned. The first of these
will be for initial conditions corresponding to an experimental
traverse at a vdlue of x > Koo (x =_36.00 in. has been proposed.)
The voltage corresponding to this experimental temperature dis-—
tribution will be applied to the circuit points j = leseses25{each
of which corresponds to a different value of %: ) until equili-
bz_'ium_ is attained. The voltages will then be removed from all
points except j = 1l; the time of removal will correspond to a
do_wn_stream "di_stance of x = 36,00 ins The voltage at j = 1 must
be varied with time to account for the known change in wall Lem-
perature with downstream distance, Oscilloécope traces of E vse & ,
representing t as a function x, will be obtained in the usual
marmnere

The other analog solution will cover the entire éhannel. The
initial condition will correspondto the isothermal entrance of
air at t = 859F. This initial condition is identical with that
of the solution already carried out for case C.

If both of the two planned solutions agree with experiment,
it can be co_ncluded thai_ case D is an accurate representation of
the eddy conduqtivity distribution, aixd that its anticipated
failure in the transition region has not taken ‘place. if, as is

expected, satisfactory agreement wi th experiment is obtained for
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the solution beginning at x = 36.00 in. but not for the solution
beginning at' x = O, the uniform eddy conductivity distribution
will be proved satisfactory for solutions of problems involving
fully developed turbulent flow, but not for flow in the transition
region x < X0

If agreement is not satisfactory for the solution beginning

at x = 36,00 in., Case D is an erroneous representation of the

eddy conductivity.
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Conclusion

Experimental messurements of temperature and veloeity in
non-uniform turbulent flow have been made at two Reynolds numbers
and three sets of temperature boundary conditions, Values of the
eddy viscosity, the eddy conductivity, and the heat transfer co-
efficient have been calculated from the experimental measurements.

It has been found that in the :Eegion of fully developed tur-
bulence the eddy viscosity is substantially uniform, The eddy
conductivity increases appreciably with downstream distance in the
samé region.

The values of bulk temperature calculated from the experi-
mental measurements are in reasonably good agreement with the
predictions of Equation 3 for the region of fully developed turbu-
lence, However, Equation 3 is unreliable for calculations of bulk
temperature in the transition region.

The problem of determining the temperature and velocity fields
in non-uniform flow has been approached in. two ways:

" a. It has been found that for the fully developed turbu~-
lent flow at a fixed mass velocity, the dimensionless
velocity and temperature distributions, fu and ft’ can
be expressed as functions of only the vertical position
in the channel; These functions have been determined
for air for two Reynolds numbers (9750 and 19,290) and
have been found to vary only slightly with the Reynolds
number over this limited range. The desirability of the
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experimental determination of these functions at Prandtl
numbers differing appreciably from unity _has been indi-
cated.

b. The partial differential equation for heat transfer
has been solved by means of an electrical analogy, and
the results compared with experimental data, Agreement
between the analog solution and the experimental results
is only fair; this has been attributed to the inaccuracy
of the eddy conductivity information utilized in the
solution, Further analog work is planned in which more
accurate information regarding the eddy conductivity
distribution near the wall will be used.
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Appendix I, Theoretical Background
Equations of Motion

In this section the equations of motion of a fluid in laminar
flow will be developed by use of Newton's second law, These equa-
tions will then be generalized so as to apply to turbulent flow,

The first step in the development of these equations is to consider
the forces which may act on a body of fluid, Forces arising from
gravitational or other fields will be neglected.

In order to apply the laws of staties to the body of fluid, it
is conveniént to consider a separating surfﬁce S thrcuéh tﬁe body,
and to evaluate the force per unit area exerted by thé paﬁticles to
the right of S on those to the left, If one can determine the stress
for.eveny conceivable surface Sl, Sz,..... which may be passed through
a point §, the problem of delineating the state of stress at A is
evidently solved, It can be demonstrated in a relatively simple man-
ner (16) that knowledge of the stresses for three mutually perpen-

dienlar surfaces Sx’ S_, and Sz through A yields sufficient infor-

y
mation completely to characterize the state of stress at A,

The stress vectors for the three mutually perpendicular surfaces
Sx, Sy’ and Sz are Px’ Py’ and P 57 respectively. FEach vector may be

resolved into components as follows:

Px:‘ 7;x 7;y Txz

Pt 4Tyx Tyy Tyz (e1)

Pz‘ 72" 7;Y 7:?2
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for which ’/}y represents the y component of the stress on the surface

normal to the x axis, The three stresses with repeated subscripts are

normal stresses; the other six are tangential or shearing stresses,

It may be readily proved (16) that the shearing stresses with reversed

subscripts are equal. Thus 7y =7yx ;Txz =Tz 5 aod 7yz =Tzy
Consider an infinitesimal volume element of dimensions dx, dy, and

daz:

'rgx + (_a_g_a_’i) dy

‘r .
’rEX ___T_. .g) \‘K\‘rxy_-i' (.a_a))é_x) Ax
rrxx \ i '_i((f}+ (a;r;x)d.z
Tyx ——j—rZe P

-,4——-dX—-——->—/

This volume element moves with the fluid. The net force on this
volume element is to be evaluated. The x component of the force on
each of the six faces of the volume element is obtained by multiplying
the x component of the stress by the area of the face:

left yz face: - Txx dy dz

right yz face: :7;“ + (ﬁ%) dx_ dy dz

lower xz face: - Jyx dx dz

upper xz face: -7‘9,( + ( a—a’%&) dyl
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front xy face: — MTaxdyx dy
A s 2T
rear xy face: E’F’Ex o+ (ﬁﬂ)dz]dx db‘

The sum of these six terms is the x component of the net force on

the volume element:

= (2% 2x
l'—; = (:’7& + 2’:“ + 2: )de\‘d% (82)

The corresponding expressions for the y and z components of force

are:

< (2T 4+ 2T 2T, )dxdydz
£ (?x“’?aﬂ‘*'s?i)” (83)

F = 2T + ’b’r”% + 2T )dxdqdi (84)
°ox 2y 2%
The change in shape of the volume element as a result of the
above forces will now be considered, The x component of wvelocity,
u, is expanded in a Taylor series in the neighborhood of & point

A (xa’ yaa. .za) :

Uik, 9,2) = UKo Ya Za) +,§_;'(i(><—x.)+%\§ (4-Ya)+ %‘% (z-2,) (85)

Only the linear terms of the series have been retained since these
will suffice to describe the behavior of the fluid in the immediate
neighborhood of A. From this and similar expressions which. may be
written for the y and z components of veloeity, it appearsA that the
character of the motion of A may be described by the following nine

partial derivatives:

2w 2v dw
ox  ox  ox
M Y 2w
Yy Yy Ry
2u 2y 2w
DA 22 32
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The three diagonal members of the above matrix, ?u/fox, >v/2y,
and Ow/>z represent the rate of change in shape of a fluid element

by extension in the direction of each of the coordinate axes:

o8

ex = %;: (along x axis) (86)
e, = %‘9"— (along y axis) (87)
e, = %‘%’; (along z axis) (88)

The remaining six terms of the matrix represent rates of angular
rotation about the various coordinate axes. For example, -2v/ox
measures the rate of rotation about the z axis of lines which were
originally parallel to the x axis; correspondingly, 7u/dy measures
that rate of rotation about the z axis of lines originally parallel
to the y axis. The sum of these derivatives gives the rate of angular

deformation of an element in the xy plane:

2
1
12
+
o

QUL | (29)

Similar expressions may be written for the rates of deormation in the

xz and yz plenes respectively:

"sz ~ %"’l:." + %‘;’_ (90)
_  Pw 2V (91)
T‘f .~ 3_; T D

It is now assumed that stress is proportional to rate of strain.

The factor of proportionality is M the coefficient of viscosity.
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The resulting equations for the three shear stresses are:

Ty = Ve = (3572 (92)

Mew =M Ve =t (34 + 2% (93)
Ty = Tye = 1 (Z5-+ 2% (94)

The three normsl stresses are:

T = - P + 224 (95)
Ty = —P'+ 1/»—%13_ (96)
(97)

in which p' is the true pressure, a thermodynamiec property of the

fluid independent of flow conditions,
Equations 95-97 may be expressed in terms of a mean pressure,

p, which is defined as follows:

p=—L (Tae+ Tyy + To2) (98)

A combination of the above four equations ylelds:

(99)

N ]

The equations for the normal stresses, rewritten in terms of the mean

pressure p are:

U DV 4 I 2w
/l‘;(x._,_ P__ 2 p——+§_+_——>+l/"" .._._4. (100)
/] - P-z DU 4D ow du
| _,3_./(L ( oW 4 oV -t~__f——® -|-—l/(/k’§,__ (101)
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o~ ' L‘ ’Du ,’bv B D {
=z P 3 M (fbx y 2z /T = (102)
The pressures p' and p differ by terms which vanish in the case

of Steacly incompressible flow, since under these econditions the con-

tinuity equation becomes:

QU + 2V 4 Pw -
5< oy Tme T ° (103)

An element of arbitrariness is involved in the definition of p as
the arithmetic mean of the three normal stresses. One advantage of
this definition is that p is independent of the cholce of coordinate
exes (17). The mean pressure p is that which would be measured by
determining the mean value of the normal forces on three mutually
perpendicular planes which move with the fluld, It is not to be con-
fused with the so-called "stagnation pressure” which is measured by
a fixed impact tube,

The equations relating stress and rate of strain may be expressed

more compactly in matrix form:

Pu AV U VU Yy
Tee Tey Trz Ploo o 5% X X ox W OF
' U dv  Pw QY DV v

Tyr Top Tyep=—A4° 7 205y 55 55 (TH)e oy 921 (104)
D AW I
T Ty ) 0 @ 0) 3% 3530 (BR5yae

The matrix formulation is in this case a shorthand way of expressing

the desired functional relationship between each of the terms which
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occupy equivalent positions in the various matrices. Thus, Equation
104 is the equivalent of Equations 92-97,

Newton's second law, written for the x component of force on a

volume element of constant mass, 1is:

o= Dipad - UMD pdaudz B

Do (105)

in which D/D6 , the fluid derivative, is defined as:
D -2 +ud _ 4+v2 w2 06
Dp 739 > X Y 2= (106)

Equations 82 and 105 are combined and (dxdydz) cancelled from
both sides:

DNy L 2Tyx  PTax p Du (107).
DX oY °e Lo

The analogous expressions for the y and z components of force are:

2Tay +2Tay + 3Tey — o Dv 108
T %Tgm T e ¢ 5o (108)
DX 2y 22> 0. '

These equations were first derived by Navier (18) and Stokes (19).
Turbulent steady flow will now be considered, Under these condi~
tions, the lnstantanesous vaiocity at any polnt may be resolved into

components uij, vy, and wi, which are represented as the sum of a mean

velocity and a fluctuating velocity:

U, = U+U (110)

Vi= V+Vv' - (111)

Wi = W+w (112)
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The time average of each fluctuating component must be zero, since by
definition ﬁi = u, etc, _

Equations 107-109 may be applied directly to turbulent flow if the
steady velocities u, v, and w encountered in laminar flow and appearing
in these egquations are replaced by the instantanecus turbulent velocities

vy, vy, and Wy, The equations of motion of a turbulently flowing fluid

are as follows:

d Txx D Tyx dTax Dui

s T 5 ; t3s Da (113)

dTx y dTyy dTzy _  Dwi 11
0x + dy * Az Dé (124)

OTXE. + bTyz + bTZE - DW‘;. (115)

dx dy >z D6

If u in Equation 113 is replaced by its equivalent (u ¢ u'), and

the time average of each term taken, the result is:

(uru)2-(u+u) + (v~+v~‘)% (u+u)+ (w~+w*j—§—£(u+u')

=~/ AT x A3y . 23Txz. L ' (116)
/p[ dx * dy * OZ ]
or, [ ]
. du " ou du’ c Qu’
u dx t o dx tou dXx ol ox
du ' du du’ -1’4
2L g QK v —SL
oy TV ey T Vaym T ey (117)
du ‘Qu du’ 17
L+W Sz fow Tt W >z + w %

- ! bTxx bTXy brrxzj
/P [bx ' Ay * Az
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Terms of the type u'du/zx vanish since u' subhHx=u'2ufHhx=0,

 Simllarly, terms of the type usu'/ox also vanish since uwsu'/ox =usu'/Hx=0,

If these and similar terms sre eliminated from Equation 117, the result

is:
a ék S -, b‘l&’ V/éy—"’}‘ LAJ', é_u-{/z é—_,/xr*%__!u -t ‘g—?;\/;.—z
u__i.,. L +fw~+f’“’a";+(’ QX F %% ox ;j
C43x 7073y o= (118)

The steady-flow continuity equation applies to both the instan-
teneous and the mean velocities; hence it also applies to the fluctu-

ating velocities:

3 v, pw’ 4
dx BLJ D= (129)
/ NI
’ ae L(,, /?ﬁ_}f —+ (,L,/—L’ =0 (120)
x :
The result of adding Equations 118 and 120 is:
S Sl dpu’w A0 v’
P — + e
e Sy TV oy (Y 8% s T BT
d J (121)




The analogous equations resulting from a balance of y and z com-

ponents of force are:

2 e e T T
4 3% 3 .
| | J °2  (122)
o ‘xﬁ o T:J“ Bthz
¥ 'ay 0% -
duwr Swr ow + op W wr' g ':'_/_a_’-/_.
el s b v ot + B g
3Tyxz  dTyz O Tzz (123)
dx ‘SJ PFE

It is more convenient to use the mean velocities u, v, and w than

the instantaneous velocities u', v', and w'. Equations 107-109 may

‘be written in terms of the mean velocity if the laminar stresses
rj;% ) Jx:; essso are replaced by a set of turbulent stresses

Tex )Xj ++++s Equations 107-109 then become:
aTxx + 3T« 9 Tys _ Du
t + T _¥# —
) —"‘VLBU S = € DQ B (124)
D T3 “aq —
| + o 33 o ) % DV
T == = — (125)
O aj 3= € D&
> -
= 4 2yx | Tex Dw (126)
874 6‘3 = Do

A comparison of Equations 121-123 with Equations 124-126 leads to the

following results:
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Ty =Ty — 2 v (128)
Tx =% — o ww (129)
Ry =Tay =0 uv (130)
Tia = Txz — 0 u'w ()
Tyz = Tya — 0 o (132)

=
=
¥
;4
b3
|
R
§+-'
R

in which the unprimed stresses result from the molecular viscosity of
the fluid and are defined in Equations 92-97,

The turbulent contribution to the stress will now be described in
terms of the eddy viscosity, €,, . The primed stresses ai‘e redefined

by a set of equations analogous to 92-94 and 100~102, in which « is

replaced by («#0 €m )i The resulting equations are:

Tox ' = __p_sz_(/uv-/ae,,,)(-g—‘;-,«-g}”i+%—"‘z")+2(,a+,o6m)%‘f (133)
e A A Y S
Te = =P §pemo (St 3T 5 ) #2 (P ) 5 (139)
7;cly= (/"‘7"‘/05”‘){%{'/‘%;% (136)
Tez = (et pEm) (3 + 35 o
Tz = (“rpén) (35 +35 (228)

For iaminar flow Emié zero and Equations 133-138 reduce to Equations

92«94 and 100-102.



Comparison of Equations 127-132 with Equations 133-138 yields a.
set of relations all of which must be satisfied simultanecusly by the

eddy viscosity:

o/
<
N

—UU = 2€m

2 - Zen %-&g—;’{-%—:’) (139)
SV zem B - Ze, (342 2) (140)
weze, B 2z (M +_g;;~_'+ e (14)
— ' = ent('%§'+ %sf> N - (142)
_W':Gm %+ %"—:) | (143)
~ Vs (B4 22) (144)

A case of steady uniform flow will now be considered. Consider
isothermsl two-dimensionsl flow between parellel plates. Ewvidently

v=w=0, and u depends on y only. Equations 139-14/4 then reduce.to:

—uwu=o | (145)
— V=0 | | (146)
— ww' =0 (147)
~ UV =Em g—‘; , (148) .
- Uw'=0" (149)
— Vw'=0 _ (150)

The first three of the above equations indicate that the mean

square of each fluctuating velocity is zero, and hence that the fluctu-
etions all vanish,  Since turbulent flow is based on the existence of

these fluctuations, it would seem that the concept of a single entity,



- eddy viscoslty, wh.i_ch' satisflies equations 139-144 1is too restrictive,
at least in some cases, (Since the case in which it has beén shown
to be too restrictive is simple, it might be inferred that it is

00 restrictive in all c&.ses.) '

This fact has been implicitly recognized; some investigators
have attempted to replace the scalar €,, by a vector of components
€Emy,Emy 8NAE,,; for use acecording to the direction of momentum trans-
fer., The normal componenté of turbulent stress can be defined in
this way without diﬁ'iculfy; € would be replaced by Cmy,€En, and
€m, in Equations 133, 134, and 135, respectively.

However, ambiéuity results if the tangential components of
turbulent stress are defined in this way., Equation 136 can be writ-

ten in two ways:

—_, dv 4 b_u.) (turbulent transfer of momentum
oy

TUV = €my (35X in y direction) (151)
T = € v | 2u ) (turbulent transfer of momentum
mx Lax dy/ in x direction) (152)

Since u'v' = v'u' €, =€.my and representation of the eddy viscosity
as a vector quantity is in general unsatisfactory,

A more general way of ropresenting the eddy viscosity is in

terms of the nine components of a tensor:

Emyy me_y Emyy
@myx Emyy @myz

@'“Zx §mzy g"‘zz

where €m, = €m,, 3§mu=§"‘iﬁx 3Emys=€my, » @8 in the case of the



stress tensor. The turbulent analog of Equation 104 then becomes:

f/}xﬂy Tx= AP oo Emyy mey. Emxz

TyxTyy Ty= Lo P oby Ervyx Einyy Emyz 153)

SR SR Rk
R 2R W

7zx Ty Tzz 0 0 P\ [Em,, Emgy Emgy

—

.Since six components of the eddy viscosity tensor ere independent,
some of them may vanish independently of the others, and relations
such as Equations 145-150 may be fulfilled.

It has been shown that representation of the eddy viscosity

by means of a sealar in isothermal two-dimensional uniform steady

flow forces the assumption that w'ut=0; v'v'=0; ww' =0, Evep
though these normal stress terms do not actually vanish in turbﬁlent
flow, they are usually quite small compared to the pressure p',

and hence may be néglected in Equations 127-129. It is concluded
that turbulent flow may for all practical purposes be deseribed

in terms of a single scalar eddy viscosity, even though this point

of view is theoretically incorrect,
Energy Balance

The equation of heat transfer for a flowing fluld will be
developed by use of the general energy balance for steady flow,
neglecting radiation, Cbnsider a fixed infinitesimal volume element

of dimensions dy, dy, and dz:

L ———X




The general energy balance (20) for this volume element may be

expressed as?
d.ﬂ*dﬂi*d@:% (154)

For flow through the two vz faces, the rate of accumilation of

eﬁthalpy is:

gx a'u/-/) dx dy dz

The net rate of accumulation of enthalpy for the six faces of the

volume element is:

which may be expanded to give:

M [a'(aaH * V“a}/;/vL w-az +/7,(30‘a ao;lw aa‘w)}dxa’yﬁué)

The three terms which are multiplied by H vanish in light of the

dou , dav ., Qo w
x+by T3z /=0

steady-flow continuity equation,

Equation 156 then becomes:

]
dH = o*[agx + l/“g}fj %) dx &y Az (157)

Perfect gas behavior is now assumed, for which dl =e dT. Equation

157 becomes:
d7T
d/‘7'- c’,ga"(uaDC ¥ be +w—)dx dy oz (158)

Expressions similar to Equation 157 may be written invelving

the potential energy and the kinetic energy:
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o QPE ,  DPE,  QJPEY
d PE=o(u S+ gy, +w FE )dx oy 2z (159)

BA?AF axrf' atfé"
a
a/,CE a-(abx Vay *+ W )a’x dy dz (260)

If the y axis is assumed to be vertical JIPE/px=JPE/yz =03
OPE/»y=1; and Equation 159 simplifies to:

o PE= owdx dy dz (161)

The rate of conduction of heat into the volume element is

obtained by use of the fundamental conduction eguation:

6= et ay e §) e v 5 (et @’ O gys 2 ((c/xa’ )de (162)

. TN, D (e dTNT
Q= [%("%ﬁ)*'g—y(/‘a—y)* oz (¥ OZ )] (163)

If the above values for dH, dKE, dPE, and q are substituted
into the Equation 154 and dxdydz cancelled from each term, the result

0‘(& + mbﬁz)mv‘ +O‘(ub/(f ba/i/f 5§f
bax (§5)+ 53 + 55 (SE)  am

The kinetic and potentisl energy terms are usually small and may. be

neglected. Equation 164 then becomes:
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o (@B v 2 2E)- 2 (62E) e (AP 2 e

This equation is wvalid for laminar flow, Represéntation of the
instanteneous temperature as the sum of g mean temperature t and a
fluetuating component t' leads to the derivation of the anslog of
Equation 165 for turbulent heat transfer, The steps in the derivation
are qulte slmllar to those in the derivation of the equations for
momentum transfer and have been omitted, Turbulent fluctuations in

Uy O and £ are neglected. The resulting equation for heat transfer

[ Py
E -

cpo-(ug ng/ a?)’agx(/(ax) ay(" )+02( gf)

_ dout' | 2ovi . dowr (166)
el "oz T ey T oz

The eddy conductivity €. is now defined so that Equation 165 is
valid for turbulent heat transfer if £ is replaced by(€.*#£)0Co .

According to this definition,f, must satisfy all the'following

relations: |
~Ut =€, % (167)
—Vt =€, gf: (268)
W =€, g_f (169)

The scalar C, is sometimes replacéd by a vector of components

€. 6oy and €.p for use according to the direction of heat
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transfer:
- @ e (170)
— V' = €y % -@m)
—w't' =€, %—g (172)

' This vectorial representation of €. (unlike that of its analog, €, )
js theoreticelly satisfactory, but is of 1little practical use, since
sufficient information to evaluate the eddy conductivity in termé
of components is not readily available in most cases., Scalar rep-
resentetion for both the eddy quantities is used in this research.

For the special case of two-dimensionﬁl steady flow, the equa~-
tions of motion and heat.transfer may be simplified considerably,
since all derivativeé with respect to z and & vanish, Equation 124

then becomes:

dTx x' blxy N U
DX + "/0< Y 57> | (173)

Equations 133 and 136 are differentiated and combined with Equation

173:
-~ 8- 5 pbre e ) 22 [0 ve]
rletrelde g At D

A further simplification results if 1t is assumed that v=0.



Equation 174 then becomes:
2 ydulp 4 D
ay["’(”’“e’") ayJ‘L EREY: [ (V+€n)s } P4 S

The term —- —[ (w mld x] is small compared with the remaining
terms in Equation 175 and will be neglected. The resulting equa-
tion, solved for the eddy viscosity, is:

- . (176)
/0 by' |

for which the origin is taken at the axis of flow where du/dy =0.

The heat-transfer equation for two=dimensional steady flow

reduces to:
Co U %—}%[@0‘(@&7@2{] aﬁ[cpo“(&ﬁk } (177)

This equation may be simplified if it is assumed that ¢, o is
~ constant and that the term-= [ o (€c+ }{) ] -, which represent
heat transfer in the dii'ection of flow, is negligible. The resulting
simplified equation is:

> st ]
Vi g;,{(ﬁﬁf K) ay} (178)
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which may be solved for €. ¢

[ya t dy .

oy

o

(9

The origin is again taken at the axis of flow.

It is possible that for fully developed turbulence, the eddy
quantities are independent of downstresm distance, The conditions
which must be fulfilled to obtain uniformity of the eddy quantities
will now be considered., If the density is assumed constant, Equation

176 mey be rewritten as follows:

€, = am«/ [(( au * /0/ bx)dy)}
/"Fy‘

(120)

The maximum velocity uy is a function of x only and may be moved
inside differentiels and integrals with respect to y without compli-

cation:

+
o)
P (&) )

The denominator of Equation 181 is a function of y only, since
for fully developed turbulence 3/0 x(u/ug)= 0£,/3x= 0, In the

numerator, OP/dx and lloum can be considered to be functions of
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¥y only, the former on the assumption of a constant pressure gradient,
the latter from the continuity equation for two=dimensionsl steady
flow, vertical velocities being neglected. Since v/uy is also a
function of y only, the eddy viscosity will be a function of only the
y coordinate for fully developed turbulence if the following require=

ments are met:
O = constant (182)
N 2 _ -
4 ox" =0 (183)

Equation 179 may be rewritten as follows:

//)'o o
U 2 |T-bw (p - b/
€tk = °/a dm X £rc 1;‘«:: 2 t‘“)*f““} d(/)é) wen
Zn 'bz%é) l}.-, Zi‘w_":_zc.. (Z‘W“Z"c)'f'l‘w.] ' B
Since ty=constant and both oF. /d x  &nd DL, /ay are equal to

zero, Equation 184 becomes:

jY/x’ Fu ft 3 oL o (%)

Z‘w- "tc : bft
U sm, O Y/)Q

€. +A= (185)

or

€2k =

/x,
Yt ?,?: [J /y/)é) } (186)

é "tc bft
a(y/y.,)

Thé bracketed term in the above expression is a function of ¥

only, but of the remeining quantities u,, 2t/dx, and t, are all
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functions of x, The necessary condition for uniformity of the eddy

conductivity is:

1: Um %_-? Y J | (187)
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Appendix I, Thermanemometer Correction

This section is devoted to the estimation of the effect of con-
duetion of hoat from the thermanemometer by its supporting ﬁeedles.
This effect need not be considered for velocity measurements, since
it is accounted for by the calibration, quever, the correction for
the heating of the thermanemometer during temperature measurements
due to the Mueller Bridge current is.influenced by this effect.

' The ends of the wire will be assumed to be at zero temperature,
which is also the temperature of the free air stream, The heat trans-
fer coefficient from the wire tc the air stream is determined by
application of Equation 5 (King's Equation) at zero air velocity,

An energy balance on an infinitesimal element of wire of lemgth
dx glves: :
—eé—_-z z-idzic- 4-0-?0%-‘ [K ”402 %—5] dx = hmrotdx

(188)

The first term of Equation 188 represents the heat developed in
the element of wire due to the flow of current; the second term is the
gain in heat of the element by conduction; the third term represents
the heat loss from the element to the air stream by convection,

Equation 188 may be simplified by the introduction of constants
B 'and C:

e v
8 et = (189)

2
where B'= K7L £L (190)

and C = £ 2 (191)
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The general solution of this equation is:

. c’

The constants M and ¥ are determined from the boundary conditions:

¢ (o) = Q
L o (x=e) (193)
X

Equations 192 and 193 are combined to give:

M+eN *+ Z’L = 0

(194)
, ‘ - c’
M e ‘ ?C_’_' = N e ‘ A
(195)
whence
M ’ (196)
C(/+re 2"\/0'/6’7
fc/a
N = - (197)
C(/+624\/C’/5 )
The resulting equation is:
e V8% o VC/8 ' (2L~x)
t= Lo li- ] (198)

./,,_ e ZLJCI/BI

The mean temperature of the wire is determined by integration:
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'[‘tdx

L

A
il

(199)

& /- - (200)

aNC /g
L[He‘ /BJ

¢, ALY
Since eL{zs"»l and e raéd 1, Equation 200 simplifies to:

[ 4, 2y ‘%'J
W;- l:e G e (201)
/-

L ezt cl/el

o cr 2L [Chnt 7 -1yCh. )
- ‘ W,c![eﬁwg/] , % V/_c'[/—e TZ}

¢ =

L
C L}

2/,

Jot Je: ,
Since e /B»*GL /@ s Equation 201 reduces to:
= 2ii-7/%
-z I V7 (202)

The numerical values of the _constants are now obtained:

Ve . (xe . _/
¢ 4 A 595.3
L = o.or5625

2 —/
£ - !
¢ = [2770/:21.] T o.251
Then £= 0.25/ {/- 0,0.93} = 0. 25/ {o. 907} (203)
This result shows that the mean temperature rise of the wire
at zerc air velocity is 96.'7% of the rise which would teke place
in the absence of heat conduction from the ends of the wire,

This result is applicable to hot wire corrections for bridge

current temperature rise at any air velocity (even though it was
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derived for the correction at zero air velocity) if the slight
variation of tﬁe heat transfer coefficient with velocity is

neglected,
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Nomenclature

A poin§ of coordinates (xa, Ty za)

Dimensional constant in thermanemometer velocity calibration
equation

Dimensional constant in thermanemometer veloceity calibration
equation '

Dimensional constant in equation for heat flow along a wire
Dimensional constant in equation for heat.flow,along a wire
Diameter of wire, ft.

Electrical potential difference, volts

Potentlal difference between junction j of analog cirecuit
and ground

Potential difference between junctions 1 and 2 of analog
circuit

Base of natural logarithms

Rate of change in shape o{ fluid element by extension in
direction of x axis, sec

Component of force acting in x direction, 1b

Dimensionless temperature distribution funetion, (tw- t)/ (tw- tc)

Dimensionless velocity distribution function, u/um
A function of x

Mass velocity, 1b/sec £t2

Acceleration due to gravity, ft/sec2

Specific enthalpy, BTU/1b

Rate of enthalpy transport, BTU/sec

Heat transfer éoefficient, BTU/hr £42 OF

Current, amperes

An intensity factor of turbulence

Thermal conductivity, BTU ft/sec £t2 OF

Dimensionless constant
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=4

Specific kinetic energy, £t 1b/1b

Rate of kinetic energy transport, ft 1b/sec
Dummy index

Length of wire, £t

The number of turbulent intensity factors existing in a
particular flow situation

The number of turbulent scale factors existing in a par-
ticular flow situation

Weight rate of flow, lb/sec

Constant of integration, Equation 192

Constant of integration, Equation 192

A number

Thermodynamic pressure, 1b/ft2 or 1b/in?

Mean pressure in a flowing fluld, 1b/ft2 or 1b/in®

Stress vector for surface normal to x axis, 1b/ft2 or lb/in2

A point in the channel equivalent to a particular value of y/y,,
and analogous to a junction j of the anslog circuit

Rate of potential emergy trensport, ft 1b/sec
Rate of heat transfer, BTU/sec
Rate of heat transfer per:unit area, BTU/sec 2

Rate of hegt trensfer per unit area from wall to air stream,
BTU/sec ft

Resistance, ohms

Resistance of thermsnemometer at air stream temperature, ohms
Resistance of thermanemometer at its operating temperature, ohms
Surface normal to x aXis

A scale factor of turbulence

Time average temperature, °F

Temperature fluctustion, OF
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uw,v,w

Instantaneous temperature, °F

( Mean temperature of wire (averaged over its length), Op
Bulk air temperature, O

Centerline temperature, °F

Temperature as a function of x for a point p in the chane
nel, corresponding to a particular value of y/&b

Wall temperature, °F
Correction to be added to analog bulk tempersture, °F

Bulk temperature caleculated from assumption (2), page 48,
minus bulk temperature caleulated from assumption (1),
page 48

Correction of thermanemometer for bridge current heating

%;tarmediate value of bridge current heating correction,
Intermediate value of bridge current heating correction,
‘O

Impact temperature correction, °F

Stagnation temperature rise, Op

Uncertainty in temperature, °F

Friction velocity, {ﬁﬁii;’ , £t/sec

Bulk air veloeity, ft/sec

Time average veloeclties in x, y, and z directions, ft/sec
Flﬁctuating.velocities in x, y, and z directions, ft/sec
Instantaneous velocities in %y, and z directions, ft/sec
Maximum veloeity in x direction, ft/see

Longitudinal coordinate of channel, origin at channel
entrence, ft or in,

Vertical coordinate in channel, origin at lower wall,
ft or in,

Lateral coordinate in channel, origin at longitudinal
midline, £t or in,
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X Downstream distance for fully developed turbulence, ft or in,

c

y! Vertical coordinate in channel, origin at y/yoz 0.5, £t or
in,

Y, Channel height, ft or in,

Gre_ek letters

ol Dimensional constant in thermanemometer temperature calib-
ration equation

I Dimensional constant in thermanemometer temperature calib-
ration equation

T Rate of change_in shape of a fluid element by angular def-

ormation, sec”

& Eddy conductivity, £t%/sec

Eom Eddy viscosity, £t2/sec

€n Sun of eddy and kinematic viscosities, f‘bz/sec

pal Time, sec

T Thermometric conductivity, ftz/sec

A Faci/:g' relating time to downstream distance (analog computer),
sec

Absolute viscosity, 1b sec/ft?

Kinematic viscosity, ftz/sec

4

Y

P Specific mass, 1b sec?/pth
o Specific weight, 1b/rt>

_

T x compcnent of stresszvector fo;é surface normal to y axis
(1laminar flow), 1b/ft° or 1b/in
7:;; Turbulent stress componentzzsum of laminer stress 7 and

eddy stress 'jou"v', 1b/£t° or 1b/in®
el Turbulent stress é.omponent at well, 1b/f‘b2 or 1bv/ in2
3 Thermal resistance, sec/ft2

& Thermanemometer velocity function, Izﬁ}m/ (BHW' RA) , eme2
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Dimensionless quantities:

Pr Y/

Re DUB/y

§t h/cPG

u u/u*

y* (yg=y)u* /v

Symbols:

o~ Same order of ;nagnitude
’& Approximately equal to
~ Anslogous to

<< Much less than

u'v? Time average of the product u'v'
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ures the plotted scale of t or u is valid for the traverse at x=23.22 in.
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Fig. 1. General View of Equipment
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Fige ¢ Equipment, Domnstream End
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= 0,643
Fig. 33. Oscilloscope Trace, E vs. & , /7o
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Fig, 36. Oscilloscope Trace, E,, vs. C]
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List of Tables
Temperature, Velocity, Pressure, Pressure Gradient, Weight
Rate of Flow, Mass Velocity, Reynolds Number

Bulk Temperature

Q
Rate of Heat Transfer (, Heat Transfer Coefficient h Calculated from
Experimental Data and Analog Solution

Eddy Conductivity, €, , Eddy Viscosity,€,. , and the Ratio
6(! /€hv

Solution of Heat Transfer Equation by Analog Computer
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Table I: Part 1
Temperature and Velocity

a. 100/85/100/Ug = 30 ft/sec Db. 100/85/100/Ug = 30 ft/sec

x =23.22 in. x = 36.00 in.
Vo = 0.703 in. Yo = 0.713 in.

/¥, £OF u ft/sec ¥/¥o _ tOF

0.997 95.22  10.61 0.993 96.12
0.993  94.24  13.15 0.989 94.57
0.986 93.01  17.31 0.982 93457
0.972 91.68  21.37 0.968 92.33
0.943  90.57 24,61 0.912 90.89
0.886 89.61  27.52 0.856 90.24
0.801 88.76  29.95 0,799 89.69
0.741 88.26  31.15 0.743 89.23
0,687 87,99  32.18 0.687 89.10
0.630 87.75 32.88 0.631 88.82
0.573 87.56 33.32 0.575 88.72
0.516 87.53  33.71 0.519 88.65
0.479 87.58  33.73 0.463 88.72
0.479 33.76F 0.407 88.76
0.459 87.52  33.56 0.351 88.92
0.403 87.60  33.30 0.295 89.16
0.346  87.85  32.68 0.238 89.53
0.289 88.06  31.88 0.178 90.02
0.232 88.41  30.78 0.098 90.99
0.175 88.92  29.42 0.053 92,21
0.088 90.01  26.34 0.039 93.22

0.045 91,29 22.49
0.031 92,14 19.32
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Table I: Part 1 (cont)

c. 100/85/100/Up = 30 ft/sec 4. 100/85/100/Ug = 30 ft/sec

x = 50,00 in. x = 82,07 in.
Yo = 0.695 in., : Yo = 0.682 in.
¥/¥o tOF | u ft/sec /Yo t°F u ft/sec
0.997 96.02 10.92 0,997 98.00 11.54
0.993 95.21 13.79 0.993 97.47 14.36
0.984  94.40 17.34 0.985  96.89 17.55
0.971  93.51 21,20 0.971 96.01 22.46
0.942  92.43 25,52 0.941 95.21 26.32
0.885 91.50 28.44 0.883 94,56 29.11
0.799  90.77 31.10 0.795  94.00 31.73
0.741  90.34 32,42 0.736 93.73 32.96
0.683  90.19 33.47 0.677 93.54  34.06
0.626  90.12 34.38 0.619 93.37 35.07
0.568  89.93 34.89 0. 560 93.26 35,40
0.517 89.99 35.08 0.526 93.25 35.71
0.517 35.05* 0.526 35.64"
0.453  89.90 34.83 0.443 93.31 35.59
0.396  90.00 34.40 0.384  93.41 35.01
0.338 90.17 33.66 0.326 93.57 34,13
0,281 90.59  32.23 0.267 93.78 33.02
0.223  90.92 31.14 0.208 94,00 31.72
0.165 91.34 29.54 0.150 94.36 30,01
0.079  92.40 25,68 0.062 95432 25435

0.036 94,13 17.97 0.032 96.34 19.83
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Table I: Part 1 (cont)

e. 100/85/100/Ug = 30 ft/sec f. 100/85/100/Ug = 15 ft/sec

x = 136.35 in. x = 23,22 in.
Yo = 0.681 in. Yo = 0.701 in.

¥/yo  t°F  u ft/sec /Yo tOp u ft/sec
0.990 98.57  10.45 0.990  95.08 6.05
0.985 98.17  13.76 0.976  93.31  10.71
0,978  97.71  18.17 0.954  91.72 15.48
0.963  97.22 22,77 0.912  89.97  20.27
0.934 96.71  26.52  0.854  88.68  21.87
0.905  96.47  28.56 0.797  87.84  23.22
0.846  96.24  30.79 0.740  87.29  24.47
0.787  96.06  32.23 0.683  86.90 25,38
0.727  95.92  33.%56 0.626 86,65  26.23
0.670 95.82 34.50 0.569 86,45 26.54
0.611 95.74 35.35 0.484 86.37 26.39
0.552  95.68 35.55 0.484 26.36"
0.496  95.62 35,80 0.398  86.67  26.26
0.496 35.79" 0.341  87.04  25.68
0.455 95.65  35.33 0.284 87,37  24.84
0.391 95.75  34.86 0.227  87.82  23.79
0.317 95.80 = 34,02 0.170  88.51  22.47
0.258  95.93  33.14 0.123  89.39  21.05
0,200 96403  31.97 0.084 90,44  18.70
0.141 96,24  30.36 0.056  91.51  16.35
0.097 96.43  28.24 0,041  92.55  13.78
10,053 96.83  25.67 0.027  93.64  9.79

0.023  97.33 20.28
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Table I: Part 1 (cont)

 g. 100/85/100/Ug = 15 ft/sec h. 100/85/100/Ug = 15 ft/sec .

x = 36,00 in. X = 50.00 in.
Yo = 0.696 in. Yo = 0.714 in,
¥/¥o tOF ¥/¥o £OF u ft/see
0.994  97.08 0,991  96.76 5.60
0.990 95,98 0.987  96.04 7407
0.980 94,30 0.981  95.38 8.66
0.968 93437 0,967 94,24  11.71
0.911  90.83 0.909 92,11  16.63
0.853  89.99 0.852  91.27  18.16
0.796  89.40 0.794  90.76  18.93
0.739 88.93 0.737  90.39  19.27
0.681  88.59 0.679  90.21  19.89
0.624 88.36 0.622  89.93 20.01
0.566 88.20 ' 0.564 89.86 20.21
0.509  88.16 0.506  89.75  20.18
0.451 88.15 0.506 20,15%
0.394 88.24 . 0.449  89.76 20,02
0.336 88.41 0.391  89.87  19.85
0.279 88.66 0.334  90.05  19.42
0.227 89,06 0.276  90.28  18.97
0.164  89.61 0.212  90.63  18.31
0.069 91.25 0.161 91.07 17.70
0.023  94.15 * 0.075 92,28  15.32

0.027 94,63 9.71
0.017 95.58 7.06
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Table I: Part 1 (cont)
i. 100/85/100/11g = 15 ft/sec  j. lOO/85/lOO/UB 15 ft/sec

X = in. x = 13 g in.
Yo = 0.695 in., 681 in.
v/¥o tOF Yo - tOF u ft/sec
0.994 98,63 0.994 98,80 4,60
0.990 98.36 0.990  98.54 5.75
0.983 97.56 0.982 98.21 - 8.17
0.968  96.68 0.967 97.67 11,45
0.911 95.85 0.938 97.12 14,81
0.853 94,16 0.908  96.89  16.43
0.796 93.72 0.849  96.56 17.94
0.738  93.47 0,790  96.38 18,77
0.681  93.22 | 0.731  96.31 19.48
0.623  93.10 0.670 96419 19.97
0.565 93,00 0.612  96.12 20.39
0.529  92.97 0.572 96.09 20.59
0.450  92.95 0.504  96.06 20.84
0.393 93,08 0.504 20,81%
0.328  93.19 0.435 96,09  20.62
0.278  93.36 0.376 96.14  19.38
0.220 93.67 0.314  96.21 1§.7o
0.163  94.00 0.254  96.33  19.16
0.076  95.26 0,192  96.47  18.22
0.033  96.48 : 0.151 96,61 17.46
- 0,019  97.25 0.095  96.92 15.97

0,046 97.48 12,40
0,015 98.44 5,44
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Table I: Part 1 (cont)

ke 115/100/85/Ug = 30 ft/sec 1. 115/100/85/Ug = 30 ft/sec

x = 23.22 in. x = 36,00 in.
Yo = 0.695 in, Yo = 0.705 in.

¥/¥o tor u ft/sec ¥/¥o toF
0,993 109.15  8.44 0,993  109.63
0.989  108.49  9.89 0.990  108.92
0,982 107.46  13.83 ©0.982  107.81
0.968 105.86 19.33 0.967 106.43
0.939 104.33 23.80 0.911  104.28
0.911 103.66 25.88 0.854  103.72
0.855 102.60 28.21 0.797 102.75
0.798  102.03 29.84 0.740  101.91
0.742  101.49 31.08 . 0.684  101.62
0.685 101.01 32.22 0.627  101.04
0.629 100.56  33.21 0.570  100.45
0.573 101.16  33.70 0513 99.79
0.516  99.67  34.25 0.454 99.13
0.516 34,32% 0.400 98. 60
0.456  99.20  33.59 0.343 97.85
0.403  98.79  33.04 0.287 97.44
0.347 98,30  32.47 0.230 96.91
0.291  97.80 31.38 0.173 96426
0.234 97.35 30,33 0.088 95,05
0.178  96.68 28.8% 0.041 93.57
0.093  95.62  25.86 0.027 92.30

0.051 04,43 22.25
0.032 .. 92.93 17.21



v/¥o

0.994
0.990
0.983
0.969
0.940
0.911
0.854
0.797
0.740
0.683
0.626
0.569
0.569
0.519
0.454
0.397
0.340
0.283
0.226
0.169
0.083
0.027

Table I:

Part 1 (cont)
Me 115/100/85/UB = 30 ft/sec

X = 50000 ino
Yo = 0.700 in.

toF

116.62
110.00
108.81
107.23
105.60
104,89
103.96
103.33
102.70
102.11
101.45
100,82

100.14

99.22
98460

97.19
96.65
96,06
94.76
92.91

u ft/sec
6.83
8.42

12.84

19.51

25.27

2755

30.21

32.22

33.64

34.92

35.58

36,11

35.98%

36.18

35.89

35.52

34.64

33.39

32.00

29.83

26,05

18,52

ne. 115/100/85/U8 = 30 ft/sec

Y/Yo
0.994
0.990

0.968
0,909
0.851
0.793
0.734
0.676
0.618
0.559
0.498
0.436
0.384
0.326
0.267
0.209
0.150
0.063
0.019
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Table I: Part 1 (cont)

o 100/100/85/U5 = 30 ft/sec 0.040 94,23 22,03
- x = 23,22 in,
Yo = 0.701lin, 0.024 92.64  16.34 |

/v, t9F u ft/sec p. 100/100/85/U5 = 30 ft/sec

0.994  99.29  .5.89 R

0.989  99.29 9.38 /¥,  tOF

0.981  99.29  11.96 0.987  99.21

0.967 99.28 20,47 0,973 99.21

0,939  99.22  25.18 ©0.951  99.19

0.910 99.17  27.38 0.908  99.18

0.853 99.16  29.68 0.850  99.14

0.793 99.12  31.10 0.793 99.06

0.739 99.04 . 32.08 0.735 99.00

0.682 98,98  32.92 0.677  98.90

0.621  98.93 33.67 0.620 98,71

0.568 98.79  34.12 0.562  98.52

0.511 98.59  34.01 0.492  98.22

0.489 34,06% 0.447 97,91

0.489 98,53 34.15 0.389 97.58

0.454  98.38 33.29 0.323 97.18

0.397 98.11  32.73 0.274  96.83

0.340 97.81 31.92 0.217 = 96.39

0.282 97.46  31.13 0.159  95.86

0.225 97.01 29.91 0.116 95.36

0.168  96.49 28.55 0,073 94,67

6.126 96.05 27.27 0.044 93.95

0.083  95.40 25.55 0.027 93.03

0.054 94,83 23.94 0.017 92.86
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Table I: Part 1 (cont)
 q. 100/100/85/Ug = 30 ft/sec r. 100/100/85/Us = 30 f£t/sec

X = 50,00 in. x = 82,07 in.
Yo = 0.687 in. Yo = 0.686 in,

¥/¥o tOF | u ft/sec v/¥o tOF

0.987 99,58 11.06 0.987  98.95
0.972  99.42 19.12 0.972  98.56
0.951  99.32 23.67 0.950  98.26
0.907 99.16 27.38 0.907  98.05%
0.847  99.13 30.10 - 0.849 97.83
0.790 98.94  31.93 0.790  97.65
0.732  98.87  33.50 0.728  97.45
0.674  98.73 34.54 0.674  97.23
0.616  98.47  35.32 0.615  96.96
0.557  98.15 35.78 0.557 964,65
0.505  97.83 35.78 - 0.499  96.26
0.505 35.81% 0.441 95.87
0.441 97.48  35.37 0.381  95.42
0.383 97.09 34,48 0.324 95.04
0.325  96.72 33.80 0.266  94.61
0266  96.28 32449 0.208 94,18
0.208 95.81  31.25 0,149 93.67
0.150 95.42  29.54 0.106  93.19
0.106  94.99 28,01 0.062 92.53
0.063 94.27  25.44 0.031  91.63
0.033 93.35  2l.22 0.017  90.40

0.023 91.98 14,62



Y/Yo

0,990
0.984
0.969
0.955
0.933
0.903
0.845
0.786
0.728
0.669
0.611
0.552
0.493
0.493
0.435
0.376
0.318
0.259
0.201
0.142
0.098
0.054
0.025
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Table I: Part 1 (cont)
s. 100/100/85/Ug = 30 ft/sec

X =

136.35 in.

Yo = 00683 in..

$OF
98.81
98.43
97.87
97.51
97.27
97.10
96.75
96.55
96.21
96.00
95.68
95.26
94.89

94.54
94,08
93.75
93.32
92.93
92.45
92.09
91.44
90.55

u ft/sec
8.20
11.63
18.85
23.26
26.08

27.93

30.46
32.44

* Pitot tube measurement
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Table I: Part 2

Pressure, Pressure Gradient,

Weight Rate of Flow, Mass Velocity,

Reynolds Number

100/85/100/Ug = 30 ft/sec

X, in

1b/in® 1b/in2 1b/in2

a. 23.22
b.  36.00
. 50.00
d.  82.07
e. 136.35

_Pl

0

o O O O

~Ps -P3

0.01486 0.02823 o0,
0.01501 0.02660

0.01573 0.02679 O.
0.,01198 0.02734 O,
0.01196 0.02751 0.

Xy ine ¥yo, in. m 1lb/sec G 1b/se

8. 23.22
be 36,00

o 56 00
e WASE AVAV

d. 82.07
e. 136.35

average

Fixed tapsi

P71 is measured at xj

0.703

0.713

0. _AQK
vel 7
0.682
0.681

0.694

0.1331 24203
0.1349 2.202

0.122% 5.0
*d 3/ (=% ¥~

0.1336 2,280
0.1336 2.283

_p4

1b/in2

00257

00700
01179
01969

c ft2

"‘Ps . -P6
1b/in2 1b/4in2

0.01944 0.01936

0.1337 2,241 (Re)gy = 192903
-(dP/dx) 4y = 0.001796 psi/ft
Location of static pressure taps:

4,01 in,

Po is measured at xp = 82,07 in.

P3 is measured at X3

158,07 in.

Taps on traversing gear:

P4 is mcasurcd at x4 = (x-0.44) in.

Pg is measured at X5
Pé is measured at X¢

Pressures are meacsured

(x-2.25) in.
: (X"‘2025) ino

in 1b/in® referred to Py.
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Table I: Part 2 (Cont)
100/85/100/Ug =

Xy in. =Py

15 ft/sec

_P2

1b/in2 1b/in2

_P3

1b/in2

f.
Ee
h.

i.

23.22 ©
36.00 0
50.00 ©
82,07 0

Je 136.35 0O

0.00796
0.00584
0.00594
0.00430
0.00417

0.01285
0.01025

0.01035

0.01028

'0.01042

X, in.
f.. 23.22
36.00
50.00
82.07
Jo 136,35

average

g
he

i.

Location of static pressure taps:

Fixed taps:

P1 is measured at x3
P2 is measured at Xo

P3 is measured at X3

YO in L d

0.701
0.696
0.714
0,695
0.681
0.697

m 1b/sec
0.06854
0.06876
0.06829
0.06684
0.06796

Taps on traversing gear:

P4 is measured at X4
P5 is nmeasured at X5
P6 is measured at X4

Pressures are measured

1l

-P4

1b/1in?
0.00251
0.00238
0.00148

0.00710

G 1b/sec f£t2

1.121
1,143

1l.142

1.135 (Re)av = 9750
-(dP/dx) 4 = 0.000641 psi/ft

4,01 in,
82.07 in.
158,07 in.

(x=-0.,44) in.
(x=2.25) in.

(X"Zogs) in.

-95
1b/1in?
0.00230
0.00220

0.00401
0.00691

in 1b/in? referred to Pl‘

..P6
1b/in®

' 0.00220
0.00145

0.00148
0.00401
0.00685
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Location of static pres

Fixed taps:

1]

Pl is measured at *7

P2 is measured at X5

P3 is measured at X3

Taps on traversing gear

Py 1s measured at x4

P5 is measured at Xg

P6 is measured at x¢

Pressures are measured

Table I: Part 2 (cont)
© 115/100/85/Ug = 30 ft/sec
. oxmin -Bp <P <Py -P, -Ps
1b/in? 1b/in®  1b/in®  1b/in®  1b/in?
ke 23.22 0 0.01533 0,02616 0.00272 0.00249
1. 36.00 0 0.01614 0.02726 0.00686 0.,00673
-me 50,00 0 0,01627 0.02740 - 0.00483
n. 82.07 0 0.01167 0.02694 —-— 0,01117
Yo in  m Ib/sec G 1b/sec £t2
ke 23.22 O 0.695 0.,1330 2.227
l. 36,00 0O 0.705 0.1350 2.228
m. 50.00 0 0.700 0.1344 2.234
n. 82.07 0 0.685 0.1335 2.268
average 0.696 0.1340 2.239
(Re)qy = 19200
-(dP/dx) 4y

sure taps:

4.01 in.

82.07 in,.

158,07 in.

(x-0.44) in,

(x-2.25) in.

(x~2.25) in.

in 1b/in2 referred to 120

-P6
1b/in2
0.00248
0.00677
0.00453
0.01141

= 0.001784 psi/ft
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¢ Part 2 (cont)

100/100/85'/15;B = 30 ft/sec

X,y in. -P1 =P -P3 -Py -P5 =Pg
1b/in? 1b/in2 1b/in® 1b/in? 1b/in2  1b/in?
0. 23.22 O 0.01485 0.02588 0.00255 0.00252 0.00247
p. 36.00 O 0.01602 0.,02707 0.00474 0.00445 0.00444
ge 50.00 O 0.01600 0.02718 0.00706 0.00667 0.00659
r. 82,07 0 0,01188 0.02697 ==  0.,01146 0,01124
s. 136,35 0 0.01145 0.02635 0,01892 0.01858 0.01849
%, in. yg, in m 1b/sec G 1b/sec ft2
0. 23.22 0.701 .1334 2.214
p. 36.00 0.694 .1335 2.238
ds 50.00 0.687 .1335 2,261
r. 82.07 0.686 «1335 2.264
s. 136.35 0.683 .1334 2.273
average 0.690 .1335% 2.250 (Re),y = 19130

-(dP/dx) 5y = 0.001804 psi/ft
Location of statiec pressure taps:

Fixed tapss

P71 is measured at xj = 4.0l in.
P> is measured at xp = 82.07 in.
P3 is measured at X3 = 158,07 in.

Taps on traversing gear:

(x=0.44) in.

P, is measured at X4J

(x~2.25) in.

(X"go 25) ino

P5 is measured at Xg
Py is measured at xg =

Pressures are measured in 1b/in2 referred to
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Table II. Bulk Temperature, °F
(defined by Equation 65

Part 1. 100/85/100/QB = 30 ft/sec

X, in.  t__ t t t t
? B1 B2 B3 B4 BY

00.00 84,90 84,90 84.90 85,00 85,00
23.22  88.43 87.86 88.47 89,16 88.5%
36,00  89.65 89.24 90.03 90.74 89.95
50,00  90.67 90.58 91.49 92.32 91.41
82,07  93.18 93.11 94,08  95.07  94.10
136.35 96,06 96.00 96,80 97.69 96.89

tBl Experimental bulk temperatures, 1OO/85/100/UB = 30 ft/sec

tB2 Bulk temperatures calculated from Equations 3 and 24,

experimental plate temperature distribution (Fig. 43) assumed.

tB3 Bulk temperatures calculated from Equations 3 and 24,

plate temperature assumed uniform at 100°F.

tB4 Bulk temperatures calculated from analog solutionj,eddy

conductivities used were Case C, Fig. 31.

tB5 Analog bulk temperatures corrected to experimental plate

temperature distribution.



- L6 -
Table II (cont)

Part 2. 100/85/100/QB==15 ft/sec

X, in. '%6 '%7 '%8
00.00 85.00 85.00 85.00
23,22 88.03 88.56 89.08
36.00 89.54 90.16 90.60
50,00 - 91.07 91.67 92.15
82,07 93.99 94.33 94.82
136.35 96.13 97.02 97.39

tB6 Experimental bulk temperatures, 100/85/100/Ug = 15 ft/sec

tB? Bulk temperatures calculated from Equations 3 and 24,

experimental plate temperature distribution (Fig. 43) assumed.

tB8 Bulk temperatures calculated from Equations 3 and 24,

plate temperature assumed uniform at 100°F,
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Table IIX
Rate of Heat Transfer from Wall to Air Stream, 8.“, BTU/hr £t2

Heat Transfer Coefficient h, BTU/hr £t° °F

Part I. 100/85/100 Uy = 30 ft/sec

X, in. ﬁul 8‘,2 awB hq ) h3

23.22 60.0 82.5 7843 6.21 7.61 7.22
36,00 55.6 76,2 765 6u43 8.23 8.26
50,00 50,6 68.5 64.0 6.43. 8.92 8.33
82.07 413 42.6 4147 7,10 8.65 8.46

136.35 - 304 30.2 18.3 8.83 13.10 7.92

-+ and h, were computed from experimental bulk tempora-
1 1l

tures by Bauation 20.

Q :
Q. and hy were computed from analog bulk temperatures by
Equation 20.

o _
QWB and h3 were obtained directly from the analog solution.

See page 45,
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Table III (cont)

Part II. 100/85/100/Uy = 15 ft/sec

Xy ine. 8W1 hl

23,22 48,2 4,45
36,00 43,1 4451
50400 41.0 5,02
82.0'7 27.9 5.02

136,35 ' 11.4 349

8W1 and hl were computed from experimental bulk tempera-

tures by Equation 20,



Part 1.

Y/Yo

0.90
0.80
0.70
0.60

/Yo

1.00
0.95
0.90
0.80
0.70
0.60
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Table IV
Eddy Conductivity, &,
Eddy Viscosity, ¢, and the Ratio éé/é

££2/sec
x = 82,07

in.
0.00319
0.00583
0.00532
0.00505

= 50,00 x = 82,07

in.
0.00000
0.00129
0.,00322
0.00446
0.00390

100/85/100/U; = 30 ft/sec
a. BEddy Conductivity, €.,
= 23,22 x = 36,00 x = 50.00
AN i 1N
0.00277 0.00324 0.00286
0.,00387 0.00380 0.01052
0.00415  0.00484 0.00507
0.00390 . 0.00834 0.00774
b. Eddy Viscosity, €, ft2/sec
= 23.22 x = 36.00 x
in, in, in.
0.00000 0.00000 -0.00001
0.00131 0.00128 0.00128
0.00326 0.00320 0.00319
0.00451 0.00442 0.00440
0.00392 0.00385 0.00382
0.00375 0.00368 0.00366

0.00376

= 136435

ine
0.00486
0.00755
0.00630
0.00517

= 136.35
in.

0.00000
0.00131
0.00327
0.00453
0.00396
0.00381



v/ Jo

0.90

0.80
C.70
0.60

Part

¥/¥q

0.98
0.96
0.94
0.92
0.90
0.80
0.70
0460
0450

Table IV: Part 1 (cont)

c. Ratio éc/e,,,

= 23.22 x = 36,00 x = 50,00 x = 82.07 x

ine.

0.85
0.86
1.06
1.04

in.

1.01
0.86
1.26
2.27

- 150 =-

in,
0490
2439

1.33
1.98

2 115/100/85/Ug = 30 ft/sec

in,

0.99
1.31
1.36
1.34

Eddy conductivity, €., £t2/sec

X = 23.22 X

in.
0.00023
0.00068
0.00095
0.00135
0.00178
0.00164
0.00201
0.00030
000000

= 36,00 x = 50,00 x

in.
0.00017
0.00061
0.00096
0.00138
0.00205
0.00312
0.00293
0.00236
0.00219

in,.
0.00018
0,00048

0.00098

0.00153
0.00205
0.00356
0,00348
0.00287
0.00250

= 82.07

ine.
0.00005
0.00040
0.00098
0.00160
0.00218
0.00359
0.00347
0.00300
0.00293

136.35

in,

1.49

1.67

1.59
1.36



- 15] -

Table V
Temperature, OF
Solution of Heat Transfer Equation
by Analog Computer

'100/85/100/U5 = 30 ft/sec

y/¥o X = 23.22 x = 36,00 x = 50.00 x = 82.07 x = 136.35

in, in. in. - in. in.
1.00 100,00  100.00 100,00 100,00 100,00
0.99 96.82 97.08 97.72 98.48 99.45
0.98 94.43 95. 50 96.29 97.77 99..00
0.96 92,77 = 94.16 94,96 96.89 98.61
0.93 -  91.73 92,94 94,12 96429 98.30
0.90 91.13 92.26 93456 95.91 98.11
0.85 90.25  91.45 92.88 95.47 97.89
0.80 89.50  90.90 92,45 95.17 97.72
0.75 88.89  90.46 . 92.12 94,94 . 97.59
0,70 88.38 90,10 91.85 94,74 97.50
0.60 87.70 89,58 91.36 94,43 97.38

0.50 87.43  89.37 91.16 94.26 97.34
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Chemical Enginesring

1. The heat transfer coefficient h as determined by
the equation

h/e 6 = 0,028 Ro™O+Zpym0e6 (1)

is not applicable to heat transfer near a channel entrance or at
any point where temperature houndary conditions are suddenly

changed,

2. The concept of isotropic turbulence is of limited
utility in practical fluid flow problems since isotropic turbulence
can exist only in the absence of a velocity gradiert.

3. The following observations are made regarding hot
wire anemometry:t

a. The use of a hot wire anemometer to measure
velocities near a wall is subject to error because
of heat transfer from the wire to the wall. A
method of correction has been suggested (2) ine
volving measurement of the function

$ = PRy /Ry = By)

at successively smaller values of (RHW - BA).

A value of é;corrected for the effect of the wall
is obtained by extrapolating the curve §a VSe
(Rygy = Ry) o (Rgy = Rp) = 0. The corrected
velociby would then be caleculated from King's
equation:

w = (1/82) (& - 1)?

This method of correction for the effect of the
wall i§ operationally unsatisfachkory sinee the
constants A and B in King's equation have been
Pound experimentally (3) to be functions of the
hot wire operating resistance Ryype

b. The hot wire method of measurement of the
intensity of turbulence is inaccurate at any
point where the velocity gradient normal to the
wire is appreciable, since the fluctuvations in
velocity due to vibrations of the hot wire are
of the same order of magnitude as ths turbulent
velocity fluectuations.



4. Present correlations for natural convection heat
transfer are serlously in error when applied to small wires
(diameter less than 0,001 in.). The equation recommended by McAdams
(4) for natural convection from horizontal eylinders

h = 0.27( At/n,) "%

results in a calculated rate of heat transfer which 1Is leas than
102 of the experimental value, It is proposed that natural con=
vection heat transfer from small wires of various sizes be inves~
tigated to determine the effect of wire size on heat transfer,

5. Attempts to represent the eddy viscosity as a scalar
or a vector are theoretically unsatisfactory. Reference to the
fundamental defining equations indicates that the eddy viscosity
is a symmetric tensor of the second rank analogous to the stress
tensor,

Chemistry
6. A simple proof for the equation

CEF, =0
has besn devised, This equation is used in a derivation of the

diffusion displacement equation

—

sz = 208

without adequate proof (5).

7. The temperature distribution within a solid body
in which heat is generated at a variable rate may be solved for
analytically by operating successively on the energy balance equae.
tion by means of a substitution of variable and a Laplace trans-
form, Thls asnalysis is applicable to an arbltrary heat generation
function, Previous solutions to this problem (6) have been applie
ceble only to a heat generation function corresponding to a first
order chemical reaction,

8. The induction time for the first order decomposition
of azomethane has been estimated (7) by assuming that the heat
generated does not vary with time. A better approximation has
been devised which takes the variation of Qy with time into
accounty
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Hechanlical Engineering

9. It is proposed that a flow meter measuring the rate
of gasoline consumpbion be provided as opticnal equipment for
avtomobiles.

10, Lemb (8) defines a2 mean pressure as follows:

P = l/s ( T, xx ¥ ¢1*"gz )

Ragarding P, he states: "The question remains open as to whether

£

in the case of a gas, the mean pressure is & funetion of the deng=
2
ity and temperaturp only or nhether it depends also on the rate of

expansi on at the poink (Y,y,y)

It may readily be showm that for the case of flow of a

compressible fluid, the meen pressure P does depend on the rate of

expansion as well as on the density and temperature of the fluid,
The only necessary assumpbion is the validity of the Navier-Stoke
oguations of motion,

11, The expended in frictionless isothermal compress
ac

3
T
of a gos b"y' moesns f a voolvnrooabings ump ai cnhg\nmﬂ'nrr 15\;1;0 a r =)

mey be expressed

of a reosiproo el mp dischargin
in terms of a boomo’crlc mean pressurc Pi

N r.o.n- P
W.\-:bTAmU‘"Eﬁ‘! ! = |

!

where _ e \)EJ
' P- (L%

A method of determining'§ in terms of the total nmumber of piston
strokes n and the path of the fluid in the receiver is proposed.

s

on
iver
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Nomenclature, Propositions
Dimensional constants in Xing's equation
Dimensional constents in induction timé equation
Specific heat at constant pressure, BTU/1b OF
Diffusion coefficlent, £+°/sec
Outside diameter of cylinder, ft
Energy of activation, cal/em mol
Bage of natural logarithms
x component of force, 1b
Mass velocity, 1b/ft° sec
Heat transfer coefficient, BTU/hr ft° °F
Current, amperes
Dummy index
Total wéight of gas compressed, 1bs
Total number of piston strokes in compression
Mean mressure as defined in Prop. 10, 1b/ft2
Geometric mean pressure as defined in Prop. 11, lb/ftz
Prandtl number, dimensionless
Heat generated by chemical reaction, cal/sec
Reynolds numbér, dimensionless
Gas constant, cal/gm mol °K
Resistance of thermanemometer at airstream temperature, ohms
Resistance of thermanemometer at iis operating temperature, ohms
Temperature difference between cylinder and airstream, °p
Temperature, °XK (Prop. &) or °R (Prop. 11)
Initial temperature, °k
x component of velocity, ft/sec
Work expended in frictionless compressien, BTU

Mean square displacement, £4°
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