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ABSTRACT

The préssure distribution over a double wedge airfoil under free
flight conditions with Mach number one is compared with the pressure
distribution over the same airfoil in a choked closed wind tunnel and in
a sonic free-jet,.

The computation is carried out as a development with respect to
a parameter which indicates the deviation from free flight conditions
© with Mach number one, The results are of interest for the question of
wind tunnel wall influences. It is found that the deviatiors af_.‘- the
pressure distribution for a sonic free-jet from the distribution in an
infinite air flow are somewhal larger than the deviations in a closed
wind tumnel under choked flow conditions., For a specific example of a
wedge of a length §f 13% of the tunnel height and a thickness ratio of
10%, the deviation of the pressure distribution does not go much beyond
the usual experimental scatter,

The results are quite encouraging for the applicatioﬁ of closed
throat wind tunnels in transonic testing although the axial symmetric

case may not show entirely the same desirable behavior,
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I. INTRODUCTION

Generally the test results obtained in a solid wall wind tunnel
under conditions at and close 1o choking are considered somewhat unreliable,
It is believed that data obtained for the flow over a body would be greatly
distorted once the local supersonic region on the body grows to the extent
that it approaches the wind tunnel walls, In a recent theoretical investi-
gation (Ref, 1) it was shown that a flow under choking conditions will
have in the vicinity of the model a close resemblance to a flow with a
free stream Mach number one, if the ratio between tunnel width and model
height is sufficiently large, The important question to be examined is
the order of magnitude of the flow deviation, If for a physically
reasonable ratio of wind tunnel to model size this deviation is within
limits wiiich are acceptable from a technical point of view, then it would
be possible to utilize present closed test sections in an extended Hach
number range. For this reason the present paper detemines numerical
data for the specific example of a double wedge airfoil in.a choked
closed wind tunnel and also in a sonic free~jet of finite width, Of
specific interest is a comparison of the pressure distributions -obtained
under these conditions and those in a free stream of Mach number one.

This latter case is available in Ref, 2.



II, TFORMULATION OF THE BOUNDARY VALUE PROBLEM

Figuré 1 shows a double wedge airfoil in a closed wall wind tunnel
under choking conditions, The sonic line CO extends with a downstream
slope from the model to the walls, The flow upstream of the modelf.is
independent from the downstream portion. As the structure of this flow
field has been described previously (Ref. 2), it is mentioned only that
from the shoulder of the wedge a fan of rarefaction waves will extend out
into the flow, Some of these Mach waves will end at the sonic line while
those further downstream end at the wind tunnel wall, The Mach wave DO
which reaches the sonic line last, ie.e., the Mach wave whose point of
intersection with the sonic line lies at the wall, will be referred to
as the limiting characteristic; it limits that part of the supersohic
region which influences the subsonic region,

~ The representation of this flow pattern in the hodograph plane
is shown in Fig, 2, Corresponding points in the physical plane (Fig, 1)
and in the hodograph plane (Fig, 2) have the same notationé. The zero
streamline starts at infinity with the choking Mach number and goes to
the stagnation point at the nose of the wedge, then it follows the side
of the wedge to the shoulder. At the shoulder it undergoes a Prandtl-
Meyer expansion, the line CD is referred to as the shoulder character-
istic, The wall streamline starts with the choking Mach number and
ﬁncreases to the sonic speed; as its slope is zero, it maps albng the
v~ axis in the hodograph plane,

The question whether this is the only possible formulation of the

boundary value problem in the hodograph plane is very difficult to answer,



One may consider the above formulation as tentative, then the results of
the computations will demonstrate whether one obtains a physically plausible
flow pattem. A strong support of the present fomulation is the fact
that it can be obtained from the formulation of the flow with Mach number
one which is known to give a result of physical significance, by a con=-
tinuous deformation of the boundaries,

The wedge in a sonic free-jet is shown in Fige 3. In. this case
all streamlines begin with the sonic velocity., At the boundary streamline
sonic speed prevails throughout the flow field and the zero streamline
goes to the stagnation point on the nose of the wedge and then follows
the side of the wedge. The concept of limiting characteristic and shoulder
characteristic also applies in this case and the corresponding hodograph
representation of this flow in Fig, 4 is easily understood,

_ As usual the hodograph equation will be reduced by the transonic
approximation to the so-called Tricomi equation., The above boﬁndary
value problems are of the type investigated by Tricomi (Re£ e 3)e An
attempt to use Tricomi's procedure in construction of the solution led
to very cumbersome computations, For the solutions to be presented the
foliowing point of view is of importance., In the case to be caicula.ted
the models will be small in comparison to the height of the wind tunnel
hence the choking Mach number will be close to one. Therefore the attempt
to develop the flow field with respect to the deviation of the choking
Mach number from one appears promising. For this purpose an approach
particularly well suited has been given in Ref, l. The details will be
presented after the necessary system of particular solutions have been

introduced,



III. BASIC EQUATIONS

The equatidons that are used in the subsequent analysis are

introduced in the following. The notations utilized are:

veloclty potential

stream function

potential transformed by Legendre's transfomation
speed of sound

pressure

= v 0 L &

density
f density at the sonic speed

%.Y cartesian coordinates in the physical plane

W the sonic velocity
«/~  absolute value of velocity vector
6@  inclination of velocity vector with x axis

W, Vv~  velocity components in x and y direction

§<

ratio of specific heats (1.)t)

In the actual computations only the density at the sonic speed will occur,
It can be placed equal to one without loss of generality,
The differential equation for the potential in two-dimensional

isentropic compressible flow is given by:

(1-%) b~ 25" &+ (1-5) $, =0 (3.1)

Applying the Legendre transformation and utilizing polar coordinates

we obtain the forms

L0 Ll W =
‘70WW+W’(/ a-*) ‘7Dwe yyz(/ ai ) %e g (3.2)



A new variable is introduced by the eguation

4

W= w* [/+ (r—l)- 3—7 ] (3.3}

The line 77=0 coincides with the sonic line. With certain
simplifications known from the derivation of the transonic similarity

law the following equation is obtained
YA o PR (3.4)
In a similar fashion the equation for the stream function is obtained,
k2

- Between the stream function and the transformed potential there

, =7 Yoo =0 (3.5)

exist the relations Ref, 6.

- _ Y
Yo F ™ W ] (3.6)
Y= [ * o) | (3.7)
In the present approximation these equations reduce to
* .
\)/‘ = .)D ,(f)@ ' (3.8a)
and with f* equal to one
V= o (3480)

The coordinates in the physical plane are found to be:

/ > (1)
2| o, eose- f, %0f | (3.9)



= e | h, 506 + By 228

(3410)
Within the present approximation
_ (};’T'I)é— .
wr Ty (3.11)
-
Y= (P@ :
(3.12)

Equations {(3.4) and (3.5) are of the form discussed by Tricomi
(Ref. 3),

The map of thie wedge in a solid wall tunnel in the transformed
hodograph ( 7 & ) plane is presented in Fige 5 and of the sonic free=
jet case in Fig. 6, The notation of corresponding points is the same

as in Figs. 1, 2, 3, and L.



IV, SYSTEMS OF PARTICULAR SOLUTIONS

Two systems of particular solutions of Eq. (3.5) are of importance
in this analysise

The first system is obtained by a product hypothesis of Eq. (3.5).

Y=g (zrm) sio mgn (La1)

o

from which the following equation for g (7 m) is obtained.

OL{ (7?1 m 2 . N _
-—5;7/—’?1 +(—»g:4/ 7 glzm) =0 (L.2)

The functions <j (/g, 7. ) can be expressed in terms of Bessel funciions,
_____ ! 3 ’
(7] 7 | |
(7 m ~—/ ——————— = £, &WUT 3 . \3
e D W FT 2

where - Z 1 indicates any linear combination of Bessel functions of the
order 1/3.
For future applications that combination of Bessel functions will

be used which tends to zero as 7 tends to -~ o Then

. 3 .
\‘Z

2 g 2

glzm)= € -
e T

L\
—
Ml
\S»
[+
M
()
[4Y)

{2 :
where F/j is a Hankel function of the first kind of order 1/3., The
representation in the supersonic region is then

&

72 7 2
9um)- 7 EG,)?{E{M\@" 60)3 } ' Iéimv[(% 6|

i 077 (1a8)

vhere J;; , are Bessel functions of order 1/3, We note for future use:
3



= L

dglom) 3 mm 3 HW m7TzJ
A7 R (34 |

0)% 7<0 (Le6)

a
where /- ” is a Hankel function of the first kind of order 2/3.
3
To derive the other sysiem of particular solutions it is convenient

to introduce a new set of independent variables.
s= 7/ (20

and 3 3 9)"

Ll

L.7)

(4.8)

A plot of lines of constant 5 and f in the 7, 0 plane is shown in
Fige Te Transfoming to § [ coordinate system the equation for the

stream fuction becomes:

_e330 ) 3 2 . 1L_‘/__
USYy -25(-) % =9 2 hE Y we

By the produet hypothesis:
Y=9(f) G(&) (420)

the following two differential equations are obtained:

ﬂauﬁ_gg z/f_ﬂ).‘il +(~207%) 9(p)= 0 (411)

and

(/%g)i}_g “55(1‘5) ()“%)6:0 (L.12)

A 1is a constant which is introduced by the separation of variables,

The solution to the first equation is

L) F
~ LIz iA
VS, f 3 (1.13)



The self adjoint form of Eq. (L.12) is

£ 4G 1
-8 H) e | (41k)
45 (- )7

‘I‘he‘ differential equation, Eq. (Le12), is closely connected to a
hypergeometric differential equation as discussed in Appendix Ia. |

For a given value of A. there exist two linearly independent
solutions 6— ( 5) « One can choose them such that the arising 'fun'ctions
Y}~ are symmetric or antisymmetric with respect to the line S=-ao ,
Accordingly the functions (G (5) may be differentiated by a superscript
(s ) or ( @) respectively, As the functions G~ and G & depend
upon £ and also upon A  they will be written as (& “ 51 and
G5 .

Formulae for the functions &

(@)

(§14)  and 6(5)(5/1) are
presented in Appendix Ias The functions G (§.1) are tabulated for
special values of )  in Ref, L. A different notation is used in the
tables of Ref, L and is listed for infommation:

Harvard Tables (Ref. L) Present Paper
x 3
] G (1)
y' G/ 3

w (_g) =
The function y for K = 0, 2, L, 6, ... in Ref, L are in our notation to
GO@ A) with )L_/i+3}z)* forh =0, 1, 2, +ss Likewise the functions Y
for K = 1, 3, 5’ see are (q' (? A) with )[ ( fSI'L) forh = 0, 1, 2, ees @
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V. SELECTION OF THE PARAMETERS m AND A

Both m and A in Egs. (4.1) and (L.12) were introduced in a
general rﬁanner and may assume any value, For the present paper only
special values of these parameters are required,

For the particular solution Eqe (L.1) and condition Y = 0 will
be imposed along the lines & =0 and 9=0, . It is seen directly
from Eqe (4.1) that m will then be an integral number.

In the application of the other particular solution Eg, (4.10)
several families will be utilized, The boundary condition coxr_nhon to
both families will be Y = O along the line § = = o0 , The line

§ == o9 corresponds to § = 0. The other prescription will be I = 0
along a line § = C, where C, is a constant whose choice will be settled
later. With 't.his- prescription of boundary conditions on Y- Eq. (4.12)
has the familiar form of an eigen value problem, The only deviation
from the classical type of eigen value problem is that the coefficient
of (7(§A) in Eqe (he14) changes sign as £ passes through zero, As
stated in Ref. 1 the eigen functions (7 (£ 1)have the following properties:

ae The eigen functions are orthogonal -

be The eigen values are positive or negative real numbers

c. The system of eigen functions is complete
The eigen values will be arranged according to the magnitude and are
denoted bys A _, . .. Ny Ay A, Aa A,
where the negative and positive subsdripts refer to negative and positive
eigen values respectively. The eigen functions belonging to these eigen

values are introduced:

GEAL) . G, GEA . GlsA,)
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The relations of orthoganality are derived in the standard manner

and are:
CZ
j?féiﬁ GOEN)GEN) s =0 R hrk (5.1)
¢ .
2 s 5 (%;)\h d)(;(l .
[(/"‘gjgdli{g ) ;;AJ4§=O For }15&/( (5.2)
c

}

tilizing the indicated ordering of the eigen values the following

notation for the particular solutions of Eq. (1.10) are introduced:

Y, - Glon)ptril o

I
R LY
%h = G{% )\hj /ﬁ _
(5.3b)
WA
PN T2 /1 { ~f
\751/7 ) q{% )\—b} j) o3 y_j— < )ga }
(5033)
~& ur'w} 2
b= alenglr Smg"ﬁf}
™ G2 A0 | : (5.34)

where L) = "/r:;\b and fo is an arbitrary constant, The functions

6. ( 3 A h) are represented in terms of hypergeometric functions and
can be found in Appendix Ia.

| The first family of the particular solutions of the fomm Eg. (4.10)
is obtained by choosing C, = O which is the prescription of }0 =0
along the sonic line, This prescription on the sonic 1ine‘ is uvsed in
Tricomi's memoir (Ref. 3). From the formulas for G{§ )\,,} in Ref, 1,

the eigen values are detemmined to be:
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= [ I -t 3}2,]»{
AL J (5.1)

The second family of particular solution of Eg, (h.iz) arises if
one tries .to represent certain solutions of the Tricomi equation, Eq. (3.5),
in a region OB'CD in Fig. 8, This region is bounded by §=--<0, P=
the characteristic CD, and the characteristic OD. Along the lower limit
of § = -9 the boundary condition Y} = 0 is prescribed. If the
characteristic CD is considered a boundary then the upper limit of §
is a function of f « This situation can be remedied by including con-
sideration of the area bounded by the characteristic CD, the character=
istic DG, and the line P - fe CF ; the shaded area indicated in Fig. 8.
Since the boundary condition ‘f’ = 0 is prescribed along the characteristic
CD the differential equation will be satisfied everywhere in the region
GDOB'CF when \7b = () 1is prescribed in the region GDCF, Draw a line
S = C. inFig. 8, i.e., OD'D" and the line f=f, tarough point A,
Then in the region AB'CFDYD'E of Fig, 8 the upper limit of § is
S =C. s The boundary condition Y- = 0 along £ = C, is imposed
establishing an eigen value problem and a system of eigen functions which
depend on the choice of C, can be obtained, The choice of G was
arbitréry and the values of fo become smaller when C, approaches one,
Thus in order to represent a solution with the boundary value of % =0
along OBBCD the system of particular sclutions cbtained ny prescribing
‘71/ = 0 along § =C, and letting C, tend to one can be used. Some
aspects of this limiting process will be discussed in the next section,
The positive eigen values obtained by the use of this limiting process

and the formlae for (& (% ),) in Ref. 1 are:
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A, = (4 +3h) h=01z - (5.5)

The negative eigen values form a continuous spectyum, but are without
importance in the present applications ,
For the specific eigen values given in Eq, (5.5) the following

notation is introduced for the particular sclutions given in Eq., (5.3):

yA (5063)
V - \//72

_Ih “5h (Soéb)

0~ Ty (5.60)

ﬂZh W (5.64)

for
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Vi. THE LIMITING PROCESS THAT ¢, TENDS TO ONE

By meé.ns of the detailed fomulae for the eigen functions G(£,A) given
in Appendix Ja and in Ref, 1, it is possible to determine the eigen
values A under the conditions that C, is close to one and then carry
out the limiting process 'bhat C, tends to one, Details of this
limiting process are shown in Ref, 1 where it is found that as C, tends
to one the positive eigen values tend to discrete numbers while the
negative eigen values will occur at smaller and smaller intervals. In
the limit as C, tends to one the spectrum of the negative eigen values
is continuous. The process as C, tends to one is similar to that of a
Fourier series for which the upper limit of the interval tends to
infinity and a Fourier integral arises. One might be tempted to replace
the condition that G(§A)=Cat £ =C, as C, tends to one by the
requirement that G(g A)=0 for C, equaling one. Such a formulation
would contradict the requirement of Tricomitls investigation of the
boundary value problem (Ref., 3)s In some cases, the boundary in the
vicinity of the origin coincides with the line C& = 1 and no boundary
conditions are prescribed along this line, The idea of the limiting
process will be retained in the determination of the eigen values and
hence in the definition of the eigen functions, It would be very
desirable from a mathematical point of view if the system of particular
solutions and their properties could be derived by considerations that
avoid this limiting process in the formulation of the eigen value
problen, and if a formula eguivalent to Fourier's integral formula
could be derived directly. To the author's knowledge such an approach

has not yet been carried oute
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VII. THE ROLE OF THE SOLUTIONS %ﬂ?h
. IN THE PRESENT BOUNDARY VALUE PROBLEM

Both the flow in the closed wind tunnel and in the sonic free-jet
can be treated to a large exient in the same manner., Consider the line
}’ = [ through the poin't A in Fig, 5 and the point E in Fig, 6, this
line divides the domain into two regions, the immer region ( f < ﬁ ) and
the outer region ( f 7f:) .

Introduce a system of functions ‘/-:h which consist of a singular
portion given by one of the functions 1[/'1[ , and another portioh %/
which is regular in the sense required in Tricomi's uniqueness and ex-

istence proof (Ref. k).

P

F-w, -

The functions ?h are required to fulfill the boundary condition \// =0
along the surface of the body ABCD (Fige. 8). Then as shown in Appendix
I, any solution which fulfills for f > fo the differential equation,

Eq. (3.5), and the boundary condition Y = 0 can be represented by a
supe;'position of the function ;i e It is then possible to express the
solution in both cases for f> fa by a series with undetermined coefficients

of the fom

G Y

> (7.2)

\1),

3~

f
1 M8

For small values of ﬁ the later tems ( 1 = 1, 2, +..) will appear as
a perturbation on the first term ( h = 0)s In the cases under consider-
ation, the first tem will represent the flow with a Mach nurber one

over the given body. The perturbation terms represent the effect of the



16

change of the boundary conditions at a distance from the body. This
change of the boundary conditions consists in the solid wall case as a
shift of the singularity from the point O where it is located in the
free streém case, to the point A in Fig, 5. Along AC the boundary con-
dition ‘}’ = constant will be prescribeds In the case of the sonic free-
jet, the location of the singularity remains unchanged, but the condition
'ﬁlf = constant is imposed along OE in Fig, 6, .

The present procedure is still unsatisfactory since by a super-
position of the perturbation terms (i.ees by }2 sh=}2--) the length
of the sides of the wedge will in general be changed., To be more
specific, if one superimposes in the hodograph plane certain expressions
?// on each other then in the physical plane the coordinates of the
points which wduld be found for the particular solutions % are additive,
The particular solutions L/E will be constructed so that the nose of
the wedge lies at the origin of the X.y system in the physical plane.

For the shoulder of {he wedge the expressions ‘7% will in general give a

value of x different from zero, HNow fom a linear combinafion of the
ZZZ (h=/,2..)with the 17;— s ie€s, with the solution of the basic flow,
such that in these combinations ﬁae value of x at the shoulder is zero.
This is always possible since in the basic flow the length of the wedge

side is different from zero., Thus the following combination will be used,

sl

= 77% + Ah}l: A=)z (7.3)

where bh is a constant chosen in such a manner that x at the shoulder
obtained from the \7;( h =1, 2, voo) will vanish, Then the most
general solution which fulfills all of the conditions at the stiri‘a.ce of
the body can be written
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Y=c,f+Z ¥

? /1="1 (70&-&)

or in another fom
- {7@% A }+h§1 Gl b b Y v | (7.1sb)

The treatment of the inner region }"< fa depends upon the boundary
conditions prescribed. The boundary conditions in this region‘ are non-
homogeneous with 1 assuming a constant value in Fig. 5 along A0 and in
Fige 6 along EO. The representation of the inner solution will be split
into a portion which fulfills the non-homogeneous boundary condition just
mentioned and a portion which has ‘/ = 0 along the boundary, Sipce
the lines A0 and OE are lines £ = constant, the non-homogeneous portion
will be found from Eq. {(4.10) with /’Xf—;’% + These particular solutions
will be denoted by H( £ )s The details of this non-homogeneous portion

- are presented in Appendix II, The homogeneous portion is formed by
solutions of the form of Eq. (k.10) which fulfill the boundary condition
Y =0along =0 (is04y along § = = ©0 ) and along QA or OE in
Figs, 5 and 6 respectively. (This can be written as Yo =0 along

5§ = C, « In the case of the free-jet C, = O while in the closed
turmel an application of a limiting process of C,~ 1 must be utilized,)
Thus the inner solution can be represented by the non-homogeneous portion

and a superposition of the expressions
=S G %+ Z Gk S G T, (1.50)

for the closed tunnels For the closed tunnel obviously the expressions
’%th must be excluded from the representation of the inner region for

the closed tunnel since they would introduce a singularity at the origin,
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Also the expressions 7@ and %Mh are singular at the origine How-
ever by the superposition in the limit G, . these singularities cancel
oute OSome more of the details are to be found in Refs 1.

In the free-jet case the point 0 is singular since Y jumps at
this point. Point O in Fig, 6 represents the free~jet at some distance
upstream of the models It can be seen that } varies only between
the value zero and some finite values at the surface of the free-jet.

If any singularity Y, , Would be included at the point 0, Y would
assume values beyond any limit, therefore the functions 7765 , can not be
adnitted and the imer solution will contain Yy, only. Y, and Y,

do not exist in this case as the inner region is entirely subsonice
b=z s, ‘/[J/1 (7.5b)

for the sonic free=jet,

The coefficients (

Ty 2 CJ/Z/L s Cp, and &, will then be

found by matching the inner and outer representations along the line
foef

An essential simplification arises if consideration is limited to
cases where j’o is very small, i.e., cases where the tunnel height
is large relative to the dimensions of the wedge. ZThen when matching
the inner and outer representations along the line f° = f  the tem
"%Ih will dominate in the expression for }E in Eq. (7.1) near the
vicinity of the matching curve f = f . Thus in the matching
process only the term containing 1/7;[6 need be considered in the

representation of the outer solution,

Vo2 G Y C(1.6)
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The program for the computations is:

a. Determination of the expression ‘/; e To find the lowest

order correction for a very wide tunnel only ‘k is needed,
be Matching of the inner and ouler representations.
¢ce Detemination of the change of the pressure coefficient

caused by the perturbation temm.
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VIII., FULFILLIENT OF THE BOUNDARY CONDITIONS

AT THE CLOSED WIND TUWNEL WALL AND AT THE SURFACE OF THE FREE-JET

Ae TIThe sonic Free-Jdet Case

In this case the line f = P which in Fig, 6 separates the
domain under consideration into the imner region f< j; and the outer
region j’ > f passes through point E. 4s explained in Section VII the

outer representation will be given by

oy

' Z% 3k 77% "h=0172 . ) )

where /3, ave suitable coefficients. In the terms 777’/: in Egs. (7e3)
and (7.1) the expressions Ygfh ¥will prevail for small values of ﬁ .
Then Y in the outer region in the vicinity of f = fo is represented
by .

_—h -
V=2 5 PTG ls Gk} deic o g

In the following we shall put
-~§+/}

B=b f | (8.3)

and thus obtain for the outer representation:

e rE |
y =>4 (1) g{g (F15by} thmar2e0 o)

As discussed in Section VII and with the eigen values for the

..S;_A
case of C, = 0 given in Eq. (5.4) and with CIh = a, J’ * “the inner
a .

representation can be writlten as
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p-HE 2 4 f’) C’S Grobf Groer

Along the curve f = ﬁ, the }’/ and ‘;Lf are matched for the two
representations Eqe (8.4) and Eq. (8,5). For the details of the matching
process the reader is refei'red to Appendix II, The results for the first

two coefficients of the outer region for sonic free-jet case are
b, = .395 (8.6a)
b/ = = 4,290 (Boéb)

As this paper is concerned only with the details of the flow near the
surface of the body and also for cases of small f; these are the only

coefficients that will be required.

B. The Closed Wind Tunnel Case

In this case the line f = [ passes through the point A of
Fig. 5 and the outer representation is the same as in the free~jet case
as given in Eq. (8.4) (naturally with different values of b; ).

And as discussed in Section VII the inner representation is given

VHEZ GV + 2 G +2 6 (8.72)

or
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Again, as in the sonic free-jet case, the inner and outer representation
and their normal derivative are matched along the line f = f , o From

the Appendix II one obtains for the closed tunnel case
b, = .86 (848a)

b= .61 (848v)
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IX. DETERMINATION OF THE PARTICULAR SOLUTION \/7

A detailed description of this part of the computation is presented
in Appendix III. In this section only the main features will be pre=-
sented so that the results can be discussed and the figures interpreted.

First the function,‘ ‘71—7 s must be determined, This function is
the solution of the Tricomi equation which fulfills the boundary condition
Y} = 0 along the boundary OABCD of Fig, 8 and furthermore has a singularity

at the origin given by
-4 7,5y o
VY =F 6{5 (‘4*3)} o (9.1)

An expression which has the proper singularity at the origin and fulfills
the boundary conditions | =0 along §=0and 6 = (¢, is obtained
by an image systém of singularities given by Eq. (9.1) spaced along the
§ axis at intervals of 26, ., This part of the solution is denoted by

This system Y% does not satisfy the conditions along the shoulder
characteristic CD., The value of the stream function induced by ‘,% ®
along the shoulder characteristic is presented in Fige 10, To fulfill
the condition along CD a system of Chapligin solutions Eq. (L.1) is
introduced, Coefficients of the Chapligin solutions are chosen to can-
cel the values of stream function induced by the image system along the
éhoulder characteristic, How close this super:imposed system of Chapligin
solutions satisfies this condition is indicated by the circled points
on Fige 10,

By this process the desired solution ‘_//l_ is determined, Next

the quantities which are of importance for the pressure distribution over
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the wedge will be determined, A preliminary step is the calculation of

the values of Y induced along the limiting characteristic OD in Fige 8
which are presented in Fig, 11.

For the evaluation of the change of the pressure distribution the
x coordinate along the side of the wedge has been calculated. 'I‘hé X
coordinate could be obtained by an integration of \//9 and ‘;ﬁ in the
hodograph plane., The way chosen in these computations was to detemine
first the expression for the transformed potential which belongs to the
expressions \7)7‘ ¢ The transformed potential and the stream function
are connected by Eqe {3.8a) and the x coordinate may be obtained from
Eqe (3.11). In obtaining ¢ for the calculations Eq. (3.8b) is used
which has f * set equal to one.

The notation ;’; will be used for the expression which corresponds
to 1;1‘; and correspondingly other notation will be carried over between
the transfomed potential and the stream function, Fige 12 shows LF,,)
along the subsonic part of the wedge and Fige 17 for the supersonic
portion as a function of }7/ { %90)%

As mentioned previously one must superimpose on these expressions
such a portion of the basic flow that the location of the shoulder of
the wedge does not change., The values of ‘;0; . for the basic flow are
presented in Fig. 18 for the subsonic and the supersonic region.

The superimposed L/’ determined from the combn.natlon of the
additional <70 and the bas:Lc 7/? is presented in Fige 12 and Fige 17
for the subsom.c and supersonic por’bz.ons of the wedge respectively,

With these calculations completed, all of the necessary computations

are completed and we may proceed to evaluate the changes to the pressure

distribution for the two cases under consideration,
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X. THE CHANGE OF THE PRESSURE DISTRIBUTION

In the previous considerations the singularities at the point O
in Fig, 8 were determined to be ﬁ}z for the basic stream function and
0
(}EE for the superimposed stream function. For a given body in either

(43

the sonic free-jet or the closed wind tunnel case a linear combination

of these two solutions will arise, it may be given by
\7[/ = /39 }Lo + /3, ‘k (10‘1)

The quantities /3, and 5, will be determined in the next section and
are connected to /90 and b/ as given in Eq. (8.3). For the present

analysis consider that /3

o

and /3, are known and detemine the change
of 7 due to the superimposed stream function ’:/7— at a given point x

on the surface of the wedge., The x coordinate of the body is given by

“R, R .2)

where the quantities C?Z?] and (70/ are shown in Figs. 12, 13, 17, and
4

18, In the basic flow:
= // e 70;2 ( ”, 6) (10'3)

In the flow given by Bq. (10.1) the value of 2 at the point x on the

wedge will be changed by an amount 472 thens
X=F, 7” (»122,6)+ f </> (7 ran 6) (20.ka)

Assuming that 27 is small, the x coordinate on the wedge for the

changed flow will be given by:

}—— _—_ —— —
A= B[ 7, (2.5)447 ﬁbp( 7,60)J+/% £, (26.) (10.4b)
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hence combining the last two equations

Ap=- ﬁ el (10.5a)

The values of 570 have been calculated and are presented in Fig, 18 and
Fig. 19, and the values of 95,7) are presented in Fig, 12 and Fig, 17.

In the expressions for ¢/  and <:£ certain powers of &, occur and
K&/ D :

are indicated in the figures.

Since 90,7 and ‘;’Z?? are given as functions of > in the basic
flow along the side of the wedge, the last equation gives A7) as a
function of the value of 7> in the basic flow, We are interested in
the dependence of 42> upon the x coordinate, Such a representa‘pion
can be obtained easily since the dependence of 77 in the basic flow

upon x/L is given, Therefore A% may be written in the form
. Bi (3 "3 -
VAN 2= 3, (5? 90) [L ( Z_) . - (10.5Dp)

The auxiliary function F(x/L) has been plotted in Fig, 20 and Fig, 21.

The x coordinate of the wedge /3, % has been made dimensionless
?

with the overall length of the wedge Le For future use it is noted

that the overall l=ngth of the wedge L is given by

L= 247[9(35) s (2’7‘/)3 0.6
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XI. INFLUENCE OF THE TUNNEL WALL
ON THE PRESSUHE DISTRIBUTION OVER THE BODY

The boundary condition of ' = 1 imposed along OE and OA in Fig,

5 and Fige 6 specifies that the half height of the closed wind turnnel or

sonic free-jet is 1, From Eq. (10.3) we find for general tunnel height
w

H, remembering that f* was assumed to be one,

B,=b, f ¢ H oy (11.1)
A
b P H
16‘ 'fo 2, : (11.2)

and from Eq, (10.6)

L wh (m)
D) =
G ar (R ) (11.3)
This determines the value of
3
(Yf‘)) & _3. g
R (ee) e

In the case of the closed wind tumnel, [ from Eq. (1l.4) is
closely connected to the choking Mach number as can be seen from Fig, 5.
From the definition of 7) in Eq. (3.3) and Bernoulli's equation, one

obtains for the local Mach number M

M- = D | (12.5)

From the relation between ) and f, we obtain for the choking Mach

number

N

£
5

) - (11.62)

[3

\

=M= _(# /)’5L L } A

2 1/235[9,,1‘-]
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or using b, from Eqe (8.92) and )} = 1ok

J-m=raar B e R

For the free-jet one can derive the value of the maximum angular
deviation which occurs along the jet boundary in a manner similar fto that in
the previous paragraph but this is of no practical interest,

The main result will be the determination of the pressure coefficient
deviations from the free stream Mach number one wedge caused by restrictions
in the flow by a wind tunnel and by a sonic free=-jet. _

Combining Egs, (10.5a), (11.1), (11.2), and (11,l) we obtain the
following expression for the change of >y at a given point x on the

bodye

o | & (11.72)

Or as a function of X/L) on the surface of the wedges

-2 % ro );i _
A= *%(H/) 5{ L } ﬁ&:} F(fi) (117b)

/. 235b,H
where F(x/L) is plotted in Fig, 20 and Fig, 21,

The pressure coefficient C], is expressed as:

Combining Egs. (11.72) and (11.8)

- }L} L 3
A@=ﬂﬁ0<;aﬂ} —Eﬁ (11.92)

Or in a more usable formm by combining Eqs. (11.7b) and (11.8) and using

Y = 1.k is obtained
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AGp= 910 { LH) b =) (11.9%)
Hence we may consider a double wedge of half angle &, , of length
L in a closed wind tumnel or sonic free-jet of height H and obtain the
deviations of the pressure coefficient from Eq, (11.9b)e For the solid
wall tunnel using the values of b, and b, from Eq. (8.8) can be written

as

. /% L Zé:' &
ALF=/-30290 (27) ‘(") (11.102)

and in a similar mamer for the free-=jet

6
2, LT =X )
= -2.037867% *‘) F(z
AG o ( H / (11..10b)
The pressure coefficient C}, for the double wedge in a free air-

flow at Mach number one is given in Ref. 2, We may write it as:

2
3

G = 6 9 (% ; (11.112)

The function g(x/L) is presented by the solid line in Fig, 22, The
total G (basic flow plus additional superimposed f£low) can be written

in the fomms

N ~2 L £ X
&= 9,,3{7(‘3:)+/.802 g, " (TJ) F(A)} (11.12a)

for the closed wind twnnel,

G- 8" % 0 (2)- 20378, (+)* F‘(-i‘t)}

%)

(11.12b)

for the sonle free-jet,
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It is desirable to discuss briefly the limitations of the analysis,
Besides the transonic simplifications which require that the Mach number
in the main portions of the flow does not deviate too far from one, the
assmnp‘bioﬁ has been made that the valve of ﬁ along which the inner
and outer solutions were maiched is smalle To be specific it mst be
small in comparison to the values of f which occur along the contour,
Along the subsonic contour the smallest value of f which occurs is at
Cin Figs. 5 and 6, The value is [ — Z g} . ByEq. (11.4) for

fo and the above value for J‘Z the ratio

75::/.0/ (ﬁ)? 4, : @

is obtained for the closed tumnel., The validity of our investigation
will increase as this ratioc decreases. For the relatively extreme
example of an airfoil of a length of 13 per cent of the tunnel height and
a thickness ratio of 10 per cent this ratio is found to be 04219,
Results obtained under these conditions can be considered as fairly

reliable but not as really accurate,
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XII, DISCUSSION QF THE RESULIS

The purpose of the present investigation is to illustrate in a
quantitative manner the wall influences in the transonic regions. A
wedge of 10 per cent thickness ratio and a length of 13 per cent of the
closed tunnel height has béen considered and the results of Eq, (11.12a)
are presented in Fig, 22, The solid line gives the pressure distribution
over the wedge in free air with a Mach number of one, while the dotted
line gives the distribution in the closed tummel, It is to be observed
that the wall influence is relatively small and this indicates. that
measurements of this type in a closed choked wind tunnel give a sur-
prisingly good approximation of free flight data.

A comparison of the result of a similar computation for a sonic
free~jet of the s.ame height will show that the deviations from free
flight conditions are of about the same magnitude but of opposite signe
One would obtain a line slightly undemeath the solid line in Fig. 22,
Examining the coefficients of the superimposed solution in Eqe (11.12a)
and Eq. (11.12b) one notes that the deviations of the pressure distri-
bution are greater in the sonic free~jet than in the choked closed wind
tunnel, This indicates that a free-jet funnel camot be considered as
preferable solely on the basis that the desired free stream Mach number
actually occurs upstream of the modele The closed wind tunnel will
néver attain the free stream Mach number one, but the results obtained
are even somewhat better than those obtained in a sonic free-jet,
Equation (11,9b) shows the influence of the model dimensions, Naturally
the deviation of the pressure distribution will become smaller if the
model is smaller in comparison to the tunnel heighte The deviation from

&
free air results is proportional to ( L’/H)S e And from Eq. (1146b)
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the deviation of the choking Mach number from one is proportional to

( L/H)_;ﬂ’ . o Hence the deviation of the pressure distribution
decreases much faster than the deviation of the choking lMach number from
one with decreasing (L/H). Thus consideration of disturbance to the
pressure distribution based solely on the | choking Mach number obtainable
in a wind tunnel is not realistic,

The dependence of the wall influence on the thickness .ratio of the
model (in this case on O, ) is given by § z in Eq, (11.12a), The
absolute deviabion of CI}, is reduced if G is decreased, tt the
relative accuracy of the measurements beccmes smaller, Egs. (1l.12a) and
(11.12b). This behavior is understandable from consideration of transonic
similarity. According to the transonic similarity law, a flow over a
thin body in a wide tunnel will correspond to flow over a thicker body
in a narrower tunnel, if the lengthwise coordinate is kept the same.

These considerations show that the measurements of very slender. bodies in
the transonic speed range offer certain difficulties, but extremely

thin bodies are of little interest for practical applicatioﬁ from a
structural point of view.

Equation (11.6b) gives the choking Mach number in terms of the
model dimensions. Naturally the validity of this formula is subject to
restriction that the ratio of ﬁ/ﬁ, is small, Bqe (11.13)e It shows that
the choking Mach number is not directly determined by the. one dimensional
flow area ratio considerations, otherwise the powers of —IL—/;— and 4, would be .

Although the present results indicate that measurements in a closed
wind tunnel may be quite valuable in the transonic region, one should be
careful not to generalize this result too quickly. The result nas been

found for two dimensional flow and while investigations of axial
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symmetric transonic flow show the behavior is similar to planar flows

there are also marked differences (Refs 7)e
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APPENDIX Ia
ON THE FUNCTIONS G(§ ,A)

The material in this appendix is discussed in detail in Refs, 1
and Se »
The basic equation for the stream function derived from the

application of the transonic similarity law is given by:

] —— =

The following change of independent variables is introduced:

5= 7/ (20)° (12.2)
and
P--7'+[20)

(I243)

With this change of variables, Eq. (Ia.l) becomes

(/§)3L Ss(1-0Y ¥ f %] **'EL (Tau)

~
o

Introducing the product hypothesis

Y= 90 G (g) | (Ia.5)

into Eq. (Ia.li), the following equation for G(% ) is obtained:

G(5) oze(g) R _
(g) oagg ~25(1-8) S (M) §B)=0 (1a.6)

A is a constant which is introduced in the separation of variables,
The function G(E ) will also depend on the value of A, hence the

function will be expressed as G( 5,1 ),
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The equation for G(§ ,A ), Eqe (Ia.6), is closely connected to the
hypergeometric differential equation, Equation (Ia.6) will be trans-

formed by the introduction of the following change of variables

Z; = g f(Ia.?a)

2 = -2 /A
(Ia.?b)

G )=l =11 5

(Iao70)

With these the following equation is obtained:

LOs-Df w(4a[E-30]5) foAZP =0 g

This equation has three regular singular points and is a hypergeometric
differential equatiocne As the properties of this differential equation

are well known, the solutions can be easily constructed, The fepresentations
of the solution for various regions of convergence of this equation as
tabulated in Section III of Ref, 5, which are Kummer's solﬁtions

specialized to the case of the above differential equation, Eq. (Ia.8),

are presented with the equations numbered as in Ref; 5 |

= (F %’ z ~=7r3 =z L
w=(2) P2 Eo51) £>/-(3,20a)

/57-(3,20b)

,{- E; -(3’200)
. 1 3\ :3— {/ g 49“ f[i’_)j:? 42 4-
L= (;/ L ) . -, = ; )

3232

57"(3, ZOd)
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where the region of convergence is given by: |4 | > [/
F
— =Y. pl-2 2n+ 4 &
“a ( _,) ’E( 26 2"5«)) [57-(3,21a)

T (éz)% )%/F( =73 /V’A’%Zé;l—)

— ~ 24/ Z& 3 / é
Z’Lzﬁ ) F( ’ éf 4/54
5“(39210)
1 1= .
B S B Ry S
?»;”“'{Z:;) (g-// T f%)Zé)
5"(3:21(3)
where the region of convergence is given by: £/ 4 < /%
2 2 2 DrE
U, = F(-5, %Y, 12 ~-7)
3 '3 6 ; / Z/ E-(B’zza)
27?7” 2243 A7
(0% F( e |
/57-(3,22b)
U.= 57 F/ ST —29r S s
3 L _\—é— E T 5 / ;)

[5/-(3522¢)

[5/-(3,224)

where the region of convergence is given by: [Z£—/ (< L



/
L) [5-G3,230

7 =(_’ ) B F( S . [57-(3,23b)

<
< v 742 2 |
e 035 [57-(3,23¢)

=y -
P BV s s g
/. /—< ¢ 3 )3// 4) 5‘_(3’23‘1)

12— 171> 1

where the region of convergence is given bys

Ug - \ g
» 5‘(3’2'40)
- (é:})zz%*/( /)/;;F(ﬁ DE3 oz £
3 é ; 6 v TZ o & z/> E"(B’zhd)

- am s s B e @ e - -
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w,= F (:? g4 2) £5/-(3,25a)

L -
- -x)-i—;’ —
w= 5t F (A )

6 ) T T2

5"(3, st)

w, = (17D < F(l—?'z 222, 4 2) [57-(3,25¢)

3 £) [57-(3,254)

N

C gt e

where the region of convergence is given by: - | é | < 1

The condition that G( § ,A ) = 0 for § = -0 ig transformed
into the condition £(%, 77) = 0 for 4 = 0,

4 function f(«f, 2 ) 1s represented by a linear combina'bi'on of the
functions 4. and 2:  in the vicinity of ¥ = 0., From inspection of
Y, and U in Eq. /57-(3,21a) and Eq. /5/-(3,21b), it is seen that

=land 2; =0 at the origin 3 = 0, So from the above condition
at [ =0, the function £(Z, 7 ) will be represented.by X« Denote
this function £( Ls 77 ) which is needed for the representation of G( LA
in Eqe (Tas7¢) by £III{, » ). From £III(3, 7 ) discussed above
together with the above tabulation of formulae given in Réf. 5 Section
IIIf connecting (£ and U, and Eq. (Ia.7c) we obtain formulae for
&( 5§43 )e These are given in Ref, 1 and are tabulated below with

numbering utilized in Ref, l.



40

J
(s )= (1 2y X,z
CT(E/\) (/-— ) / ( 37 Zzz) 373 _is, /?Lgfs) @-183.
valid from § =~ to § =
Glsny~- =0 )/7“) Fl-Uot &ps, £
’ //\ I, 2R 3TRIE ey
( FF(-d A 7186

=N s o A,s Kt 2 5
/7 e[ﬂf_ )[7 M*T_TJ@ ])3 F( 2 r3 )
valid from § = = o to §=2

- e e W e we s e e wm

37(23) (L) o
6(§/U F(ﬁ+J_L) /7(_ ( ) ( //1"/4 J~/§’T¢/~§J§j§

)
2p(3)7(2) 4, syt iye I
DD () s Bt E)

valid from £ =« l1lto S =1

LA _
Gls)=r(#){ L ((33/“;”’;’(3 i Bk B 1

(FER) sim(5 )
/T(% Ly -k

(157 F(_@%,;h/g,f/ﬁ"nfng -184

valid fram § =0 to § =‘21/3

The sbove formulae for G( § , \ ) are solutions to the differenti
equation, Eq.(Ia.5), in the indicated regions of validitye, The formulae
for G(§ , ) also satisfies the condition G( 5 , A ) =0 for § = =00
as is required by the boundary value prescription on the stream function

in the special cases under considerations
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APPENDIX T
ON THE REPHESENTATION OF THE OUTER SOLUTION

Assume thatb

TN

Vo @

are expressions which fulfill the boundary conditions Y = 0 along the
entire line OABECD in Fig, 8. Here Yy, is the solution defined in
Ege (5.3b) and ‘;’/: is a function which fulfills the conditions of
Tricomi's existence and uniqueness proof. Now consider L// a function
that satisfies the Tricomi equation outside of a line f =f,  and
furthermore fulfills the boundary condition ¥ = 0 along the boﬁndazy.
We shall show that 1// can be represented by a superposition of the functions
}E. . For this purpose it is assumed that a sequence of solutions of
Tricomi's equation will converge if the sequence of the boundary values
prescribed form a convergent sequence, In other words it is assumed
that the solution of Tricomi's problem depends continuousl;f upon the
prescribed boundary values.

Inside the region AB'CD'E in Fig. 8 bounded by =47,

f ='fc s 5==00 ,and § = C, the expression can be developed
because of the completeness of the system of eigen functions (This
development is discussed in detail in Appendix I of Ref, i) in the form

WZL:%? Sy }-LZA +%’/ CZZA%A ! 2: Cx, $LJKA_ +%’7 C, #Jm (£.2)
The expression %7@ '%Zr/l will converge for [ > f o In particular
it will converge along the boundary B'CD, and along the § axis it is

zero since all of the expressions %Th are zero along this line.
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Now form solutions of the Tricomi problem which have the boundary
values \} along the boundary OAB'CD given by the partial sums of %,7(;41 ‘é/:
The sequence of the boundary values will converge and therefore also the
sequence of the Tricomi solutions according to the theorem assumed
above, How because of the definition of {%: the sequence of solutions
of the Tricomi problem just mentioned is identical term by term with
the sequence of the partial sums of the series Z sz/l ;L/: + Hence it
follows that this last series converges in the entire region and there=

fore the series of the expressions
2 =2 Ayt .3

will converge.

The difference of the two expressions Eq, (Ie2) and Eq. (I.B)
represents a function that does not contain a term 7’3% and has the
prescription of 7,L = 0 along the boundary, hence by uniqueness proof
given Paragraph 5, Section III of Ref. 1 this function is identically

zeroe, Thus Eqe I.3 is a representation of the original function Yo
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APPENDIX II
DETERMINATION OF THE UNKHOWN COEFFICIENTS

A. Free~det Case

The representation of the solution in the inner region ( f <f)

of Fig, 6 is -
Z +h 2
1//:%07) (Tf) @{ 5, (szf*%)} +H (£) (I1.1)

H( £ ) is a solution of the differential equation for G( £, ) for

A = 1/16 which reduces then to

{(1 ) 5 (I1.2)

It satisfies the following boundary conditions

H (-~ )

[}
(@}

(II.Ba)
H (0)

]
=

(IT.3b)

The representation of the solution in the outer region ( J’ > ﬁ, )

of Fig 6 is given by

== b (F)

h=6

—2 l 2 (%L?_ %SAf} (IZ.hs)

The two representations and their normal derivatives are matched along

the curve f = S, %o obtain the following equations

Hor Z ey Gls (G =2 b Gls (Fo) msa

ZEs)als =5 (eha fs (G aby)

(II.5b)
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(5. G r3p)
We multiply these equations with 56( e ;:)2‘ )) and integrate from

- o0 %0 0, The functions G( §, A, ) are orthogonal to each other,

therefore the mth equation will contain only one term a,. One obtains

( ais. (4 *3“")_ s gdg Wasmy] ]
LH ) ot %/(/_ o § 3 )}]

I

bh/ a fslz)} {g (4 %3»9)}(/ . Js (II.62)

Zo0

)

and

(2 a B s ' . 3,774{0()'
| /(/g)f[ afs. (+ s

== ‘**A)E/ i#ﬁ)}(—ffg(% m}% ds (II.6Db)

Combining the mth equations of the systems of Eq. (II.62) and (II.6b)

one obtains a system of equations for the coefficients by,

/H{s) G 5, (%Ff’rn)} o el

“Z[ /;%w]b}]j;igl(z}usﬂg% (J_ﬁm)} =, ts (II.7)

Z“}m
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The integrals which occur here can be evaluated in a closed form. ILet

D =jH(§) 6{3,[#7‘3”)‘} (/~%§3)2" ds (I1.8)

From the differential equation for G( §, A ) in the self adjoint
form Eq. (k.14), one obtains

[(I : %ié_(,g/\e)}
d dg slnn : IIQ
ds (/1;, /é)(/ )% 6(? )\;,) (11.9)
Inserting this into Eq. (II.8) one obtains
AT E 4G s (s -
" (_4LL+SM)L/%]H[§)(3§[U 5) 01% o/§ . (II.IO)

An integration by parts yeilds

D,,,-—-(-—’——HH@) (-syF 4Gl s, sy} |
(

4.1*3/'71) iE § — o0
(IT.11)
"anfo-s)f] aals, Ghrom) .
- ds olg

— o0

Because of Eq, (II.2) the last integral vanishes and with the boundary

conditions on H( % ) one obtains

b~ 1 dalntemie
m (__‘%_L_?_Bm)’_/_é d-g (11012)
Quite similarily one finds that
EMA =/6{§)(;;13/l)‘)( 6{ 3 (%+3m)} ok 45 (11.13)
can be expre;sed as
_gls Gt als, s
"h (7'}7‘3m)1(z’}f35)‘  (IT.1h)
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From the representations from G( § , /\*A ) in terms of hyper-geometric

functions (Eqe 18 in Ref, 1) one finds that

’ Ji. ma —_ Mi =3
6{%, [+ )} 10" = 1 () (I1.152)
9 k32 (CE)(-E )
5 (F+3h) t=-CD
6{ (= E (5)--(2+h) - (II.15b)

With these expressions Eqe (II.12) and Eq., (II.1L) can be computed.

The E,), represent the elements of the matric of the linear system of
equations for the coefficients by, the D the negative values of the
right hand side, I is possible to approximate this infinite sys‘b_em by
a finite number of equations as the above system satisfies the condition
of E. Schmidt (Cf. Refe 5)e Using a system of seven equations the first

two coefficients 'bh are

by, = 395 - (I1.16a)
by = .29 | (II.16b)

Be Solid Wall Tumnel Case

The representation of the solution in the outer region ( f > fa )
of Fig". 5 is the same as in the free-jet case Eq. (II.4)s The repre-

sentation of the solution in the inner region is given by:

t=Fa(f )—§-+;,6 { s (30 I G (f )6{ s (343 cos(Z g )
(I1.17)

S () 6ls G en (Flaf)r HE)

Where H( S ) is defined by Eqe (II.2) and satisfies the follqtﬁng
boundary conditions:
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H(=00) = 1  and H(1) = o (11.18)

The matching process along the boundary curve f = }) , 1is again

carried out, Since the inner and outer representations have the same
eigen values ()\/,= ( zq fﬁ)‘) and form a system of orthogonal functions the
results are greatly s:i.mplified. The resulting equations from the matching
process are multiplied by (7_%7 £ G {g, (& +3h )zk and integrated from

- 0 t0 1, Introducing

! 2
C =~ 5 : AR 11,19
h /(#gsﬁ {G{g, (& +5h) H o5 | (IL.129)
' 9 5
— - - +3h)
D, ~/M H(s) G {3 (5 *34) }(l“i?{“ A5 (11.20)
the following relétions are obtained
D, + @, G, =by G - (IL.21)
(2+h)a G =(-5-h) % G .
Hence
L= % A3
hG RhtE (I1.23)

The integrai Dh is determined in a mammer similar to the evaluation of

the integral D , Eqe (11.8), with the result

3

=
2
(F +3h) 7%

The evaluation of the integral Ch is carried out on the basis of

D, = (L.2)

Appendix IV of Ref, 1 with the result
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R S R G - N )
2 (1T.25)

AT . 2 | i - N
3 (Z+h) 5 ($2h
And thus in a direct mamner without having to solve a system of linear

egquations one obtains the first two coefficients

b, = «586 (1I.26a)

by = W61 . (II.26b)
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APPENDIX IIX
DETAILS OF THE DETERMINATION OF THE PARTICULAR SOLTUION l/]’

The problem under consideration is the determination of the solution
to the differential equation of Tricomi, Eq. (3.5), with the boundary
conditions of Y = 0 along the line OABBCD of Fig. 8 and with a

singularity at the origin given by

/‘%\1 :fqlé G {g, (%*3)} | (XII.1)

The function G ig 5(9/h + 3)2 S’ is tabulated in Ref, L for the sub-
sonic region. In the supersonic region some unpublished results oi‘ the
same source were utilized; in the vicinity of the critical region
near g =1 'hhey were supplemented by some hand computations.

The above problem is analogous to that of the flow over a wedge

at Mach number one in Ref, 2, the difference being that in Ref, 2 the

.
z, |
The boundary conditions along O =0 and & =48, will be

singularity at the origin is given by .
fulfilled by an image system of the singularities given in Eq. (IIT.1)

spaced at intervals of 28, along the & axis, Since the expression,
Eq. (IiI.l) is antisymmetric with respect to the & = 0 axis all of the

singularities will occur with the same sign, Fige 9. Denoting the

portion of the stream function obtained by this image system as }#(/)
one has

—_ 20 _% |
j7€a)=m>:7:oyﬁn G{gm,(‘j};”)z}

o (111,2)

where
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fo= -y 2 (y—z-mmf (111.3)
and
_ 77
” 5—5 (6-2m0)) }% (IIT.k)

If 6 - 2n6, is negative then the value of Ref, 4 for the
G {(g , (9/L + 3)2} must be multiplied by minus one. |

For the fulfillment of the boundary conditions along the shoulder
of the wedge (Fig. 8) the value of the stream function induced by the
image system {/:‘ @) must be obtained. Along the shoulder characteristic

CD we have the relation

2 3 _ — _
S +(670,)=° (III.5)

For the calculations it is desirable to obtain a relation between
fm and § . as well as a relation between S, and 8/ 9, valid
along the shoulder characteristic CDs By manipulation of the last

three equations we obtain

fn= 26, 2% } | (II1.6)
and
2 _ = e, (II1.7)
55 7/ 20wl F )

with the upper sign for positive m and lower sign for negative m and

m = 0, Then one can rewrite Eq. (IIT.2) as

_ 5 ST
G = (L) Gimien) {»’-%?" %6 i%m,(-%ﬂ)zj (1I1.8)

1FEE

For the practical computations one plots the expression
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3 3
EN

-z

igm 1

: PN S Gilg_m, {%*S)J versus —--—j—_gﬁ’—
75T 5=Fl

From this curve one can obtain the expression occurring in Eq. (IIL.8).
Because of Eqe (III.7) the abscissa for a given & can be computed for
different values of m very simply. The values of the stream 'fun'ction
induced by the image system “77 w is presented by the solid line in
Fige 10,

To fulfill the boundary conditions /' = O along the shoulder
characteristié CD a system of Chapligin solutions "/—j ¥ is superimposed
to the image system W:L: @, In Section IV the Chapligin solutions
were chosen in such a mamer that they fulfill the boundary condition

S =Oalong ( =0and 0=6, ,

M o

2) .
V- F a, 7 (9, m s t”—g@ (IIL.9)

The coefficients a, must be determined to sabisfy along the shoulder

characteristic CD the condition:
] 1 2) (2 _
e+ & —o ' (II1.10)

In the fulfiliment of this condition we deviate from the procedure used

in Ref, 2, In that paper a rather ingeneous procedure waé devised by
which the determination of the coefficients a, was reduced to a number

of Fourier analysess It appeared that a direct fulfillment of the boundary
conditions along the Mach wave CD might be more exact and not involve a
larger amount of numerical worke A finite number of coefficients ay

will be determined in such a manner that along CD the square of the
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deviations of the left hand side of Eq. (III,10) is minimized, Rather
tha.n using the integral over the square of the deviations it is more
practical to minimize the sum of the same quantity over a finite number

of points .(in this paper 47 points). The list of the resulting values
obtained for a, is presented in Table I, The circled points on Fig. 10
give the negative sum of the Chapligin solutions for comparison, The
agreement is very satisfactory in the main part of the graph; particularly
since the subsonic region seems to be quite insensitive to an error in

the fulfiliment of the boundary conditions in the supersonic regione

The solution is given by
T s i ¢) 1 ()
A A (111.12)

It remains to evaluate the quantities of physical interest, i.e., the
deviatj.ons of the pressure distribution over the wedge caused by the
perturbation solution, |

In preparation for detemining this pressure distribution, it
is necessary to calculate the value of % along the limiﬁ.ng character-

istic ODe The limiting characteristic OD has the equation
,2_‘ —RE @ == O .
3 70 (I11.12)

The quantities S, and J,, are again introduced by Eqe (IIL.3) and

Eqe (III.L)e Then along the limiting characteristic one obtains

=)+ g3
~13 9, |an] i—’"_ (IIT.13a)
ﬁ’}a j )$§fj

and
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M

o
5 _ Y (III.13b)

EN 2 m]

The comnection between upper and lower signs and the values of m
are the same as previously. Consequently the mth tem of the series méy

be written

wa

1‘3‘9032’"‘3 1}:;;2} ¢ {%‘m) (%+3)5 - (ITI.1h)

The case that m = O must be considered separately and in obtaining

@ form = 0 we utilize Eq. (18d) of Ref, 1 with the eigen value

of our problem (9/h+ 3)2. Along the limiting characteristic 0D we have
§ =1, Thus one obtains immediately the simplified expression

t /7@)[;%, /7/(? i)}5//7; (‘;)(/ 5} (II1.15)

Since
f’ (§9)~-§1(} 3 B)H% | (1II.16)
One ébtains after manipulating the [’ funections for m = 0
L0 = (ze ( ~&) | (IIL.17)

' ST
along line § =1, With these results l/—" ualong the limiting character~
istic will be computed in a mamner quite similar te the computations
along the shoulder characteristic, Furthemmore the Chapligin sclutions

must be superimposed. Results of this computation are presented in Fig, 1l.
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To obtain the pressures along the front part of the wedge it is
necessary to detemmine the x coordinates., This can be accomplished in
tems of the stream function by means of integration, however, it is nmore
convenient. to utilize the transfomed potentiale This can be done
directly because of the relation between the stream function and the
transformed potential in Eq. (3.8)s If the transformed potential is
known one can obbtain the x coordinate by differention and Eqe (3.11)s In
the present approximation ¢ fulfills the same differential equation as

¥ and thus it is to be expected that the expression for ¢/ wuhich
corresponds to a particular solution ‘f has the same form with changed

values of the eigen values /\,7 « OSpecifically the expression for
~i () 9 2
Bl f 5, (‘4*3)} (1I1.18)

Setting fﬁ equal to one then the corresponding expression for (P
is given by: |

"“; (0|

G |5 (i“)zj ? (TI1.19)

_—- P
P="3 /
This is the expression which will be used for the further computations,

The expression "7/)‘ ) which corresponds to the Chapligin solution

for the stream function Eq, (IIT.9) is found to be

$P=Z an Fe g (ym)ces 7L | (I1.20)

In the calculation of the x coordinate along the subsonic portion
of the wedge it is necessary to determine t-/—?; along 8 = 9,, « From

Ege (III.3) and Eq. (III.L4) one finds for the mth singularity
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f.o=7" é t;%" J (III.21a)

' >

5, = s )
[lzmitlﬁo] (IIT.21b)

With some manipulation with Eqe (III1.19) one finds for the mth term of

the image system along 6 =6, .

) [””i’] 5%3- : GEAF G(%‘jij (IT1.22)

When §< -/, an independent variable W has been introduced instead of

-3 —
E 5 decey W=(~ g) *then the mth term of 90,;) is expressed as:

20
-_—(39) (lsmi/ \) i 5’7 ;)-lk [49(@0)%(/“‘)71%-”’-")}(111 23)

The values of 170 produced along the line & = &, in the
subsonic region by the image system as calculated by the sumnation are
presented in Fig, 12, To this summation the contribution of the Chapligin

solutions must be superimposed, The mth term of the Chapligin solution

has the form
T d—v‘ cos ‘—%UL : (I11.24)
where ol 7(%’”) is expressed in Eq., (4s6). The superimposi'bion of the

— —
two expressions é/ﬂ Y Q o along the line G = 69 is presented in
I?) /—9
Fig, 12, This curve gives 7 which belongs to the expression }%
'p

defined in Section VII,
To complete the computations of the subsonic part of the wedge

we need the value of lfg produced by the basic solution 7%0 o This
D
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is shown in Fig., 13 for a singularity which is expressed by
s % 9
y/‘ f G { %m, (4‘) } (111'25)

This curve. is the same as used in the calculations of Ref. 2 except for
a factor which comes in because of the different definitions of the
singularity. These resulis were checked by the method developed in this
paper and were found to be quite accurate.

According to the considerations discussed in Section VII such a
portion k of 77(; for the basic potential was superimposed to the

additional potential so that the sum of the value
AR (II1.26)

at the shoulder of the wedge °7 = 0, The curve thus obtained for the
superimposed potential is presented in Fig, 12.

| -The next step in the computations will be the construction of
the superimposed potential downstream of the limiting characteristic
0D of Fig, 8, This will be done by the method of characteristics in a
semigraphical forme, This construction must naturally be carried out
in the same region of the hodograph in which the potential of the basic
flow had been found. Therefore, the construction of the basic flow will
be discussed first. Only that part of the construction which affects
the pressure on the surface of the wedge is shown,

Figure 1 represents the basic flow in the physical plane, (This
is simplified version of Fig. 1l of Ref, 2,) The computation of the
flow over the nose of the wedge includes the computation of the values
of ‘ﬂ) and % along the limiting characteristic ND. Thersfore, in

the corresponding ) o graph the values of ¢, and ‘f? can be
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considered as known, For simplicity we shall use in these discussions a
graph in which 7) = is plotted versus & Fig. 15, In this plot the
characteristics appear as straight lines, At point D the velocity vector
has a slope + &/, while at the rear part of the wedge it has the slope
of = § o Therefore, an expansion will take place. This expansion
over the shoulder of the wedge imposes the boundary condition that

Y =0 along the characteristic DK, In Fig, 1y points D and K

coincide and from this condition one finds immediately that ‘;ﬂ,) = constant
along this line, With these boundary conditions , and 7 are
determined in the characteristic quadrangle NDKL (see Fige 1l and Fig.
15), In the physical plane this characteristic quadrangle corresponds

to the region of the Meyer expansion denoted by the same letters.. The
characteristics of the same family as the limiting characteristic FQ are
the Mach waves of the Meyer expansion, the characteristics of the same
family as DK are the Mach waves which come from the sonic line. Since
point O lies at infinity in the physical plane the Mach wave OR will
also lie at infinity. Because of the relations of Eq. (3.11) and Eq.
(3.12), Pig. 1 can be.interpreted as a representation of the ¢, (@
plane as well as of the physical plane. The characteristic conditions

in the hodograph plane yield

a4,
T

where the signs are used consistently with the equation for the

+ [y | (1II.28)

direction of the Mach waves in the 77, £/ plane
d» _ |
56 =+ /> (II1.29)

Equation (III1.28) gives in a L/; 507} plane the directions of the
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characteristics between two predetemmined points of the 27, & plane.
Thus Fige 14 can be interpreted as a construction of ‘709 and (/’) by
a giaphical method,

Along the rear of the wedge, i.e., for Wo= % = 0 we ha\(e in
the physical plane ¢ = - @, . Translated into the corresponding
condition in the 77, & plane is that along MK we have ‘fg = 0, The
construction in the physical plene shows how this condition will be
fulfilled, Ihe points of the region downstream of IK will be mapped
into a second sheet of the 27, § plane which is connected to the first
sheet along LK., The boundary condition along MK mentioned above will
be imposed in the second sheet.

For the determination of the superimposed solution we needk't_-he
values of CZ) and {Zy in the same regions, i.e., first in the region
ADKL and then in the second sheet KIM,

The values of 1/70 for the additional potential are known along
the limiting characteristic OD (Fig. 11). The values of [7—9?) can be
constructed in a 99%5% graph using Bq, (I1I.28), In the total
expression for the potential the line DK must correspond to the flow
over the shoulder of the double wedge, i.e., in the. total potential

Y =0 along DK. Since ¢/, = 0 in the basic flow, it follows that in
the additional flow one also has % = 0 along DK, With this boundary
condition the values of (7-%9 and ?7;; can be constructed in the
region NDKL. This is done in a ¢ ¢, plane (Figs. 16a and 16b), This
construction must be carried over into the second sheet IKM, Since MK
will correspond to the zero streamline also in the total flow one
obtains the condition ‘7% = 0 along MK in the superimposed flow, ie€s,

all the boundary conditions for the superimposed flow are of the sanme
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nature as those of the basic flow, With these remarks the construction
in the region IXM in Figs. 15 and 16 is understood. From the comstruction

in Figs. 16a and 16b the valuves of (7—10" along the rear of the wedge is
) . 7

obtained, Then %7) is obtained by the same linear combination between

%9 and 9_’; , 3 in the subsonic region, f;g; is shown in Figs, 13

and 18, The values of fz; are presented in Fig, 17.



60
TABLE I

. - (=)
LIST OF COEFFICIENTS OF SUPERPOSITION OF GHAPLIGIN SOLUTIONS Y-
IN THE FORM  a,, G (7, m) Sin TEE

&,

n an

1 +,1422

2 +,02042
3 +403915
L +,604.76
5 +,0184
6 -.000052
7 +,01L22
8 -.00200
9 +,0111
10 -.0001
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